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Letter from the Editor-in-Chief

New and Retiring Bulletin Editors

Every two years, I appoint a new set of issue editors for the Data Engineering Bulletin. This is the single most
important thing that I do as the Bulletin Editor-in-Chief. Iam very proud of the distinguished record that these
editors have established over the years. I want to thank them, one and all, for the great jobs done over the years.

It is now time to thank the editors who have just completed their terms. Each has done the two issues that
our “contract” requires. These retiring editors are Gustavo Alonso of ETH, Minos Garofalakis of Intel Research,
Meral Ozsoyoglu of Case Western Reserve, and Jignesh Patel of the University of Michigan. Thank you one
and all for a fine job. Special thanks also goes to those who assisted significantly in the editorial process over
the past two years, Gultekin Ozsoyoglu of Case Western Reserve and Dan Suciu of University of Washington.

I am very pleased to now introduce the Bulletin issue editorsfor the next two years. They represent on-
going evidence that the Bulletin is held in high regard and continues to attract outstanding members of the
database community. These new editors are Anastassia Ailamaki of Carnegie Mellon University, Jayant Haritsa
of the Indian Institute of Science, Nick Koudas of the University of Toronto, and Dan Suciu of the University
of Washington. Parenthetically, Dan has already been a co-editor of the March 2006 issue. I want to both
welcome them to the Bulletin and also thank them for joining us in what, in the final analysis, represents a great
cooperative venture to deliver timely reports on the very latest that is happening in the database field.

Nominations for Chair of the TC on Data Engineering

I want to call your attention to the letter following this onefrom the Nominating Committee for the election
of a new chair for the Technical Committee on Data Engineering (TCDE). The TCDE is the organization that
sponsors the publication of the Bulletin as well as the International Conference on Data Engineering (ICDE).
The chair position has significant responsibilities and TCDE members should take an interest in the election.
Please read the next letter and consider nominating someoneas TCDE Chair.

The Current Issue

When people ask questions of a web search engine, their expectation is that the results produced will represent
a best effort. They anticipate scanning, with human eyeballs, the results in order to discover the most useful and
accurate information from a potentially vast sea of possible results. Users of database systems have very different
expectations. When they submit a query, they expect that theanswer will be precisely what they requested and
that it will accurately reflect the situation about which they care. This can be essential, as in the case where it is
not a human, but a computer, that will be interpreting and acting on the delivered results.

Unfortunately, even data in dtaabases needs to come from somewhere. And that somewhere is only some-
times other database systems. Ultimately, all data originates from outside of the database system. So what are
we to make of this data? It is, in fact, not always accurate, itis sometimes simply imprecise, at other times
contradictory, and frequently redundant. This is where oneneeds to consider, and hopefully solve, the problem
of data quality. And it is data quality that is the subject of the current issue.

Nick Koudas knows this area and the researchers, both industrial and academic, who are actively engaged in
sorting out the very complex and demanding problems surrounding data quality. The current issue represents a
snapshot of some of the very exciting work going on in this area. I want to thank Nick for his efforts in bringing
this issue together. I am sure that readers will find articlesof immediate interest and will want to come back
again to the this issue to re-examine the work in this field. That is, indeed, a core strength of the Bulletin, giving
readers a status report on research that represents an on-going effort to deal with the hard problems of our field.

David Lomet
Microsoft Corporation
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Call for Nominations Letter

Election of a New Chair for the TC on Data Engineering

The Chair of the IEEE Computer Society Technical Committee on Data Engineering (TCDE) is elected for a
two-year period. The mandate of the current Chair, Erich Neuhold, expires at the end of this year and since
this is his second term, he is ineligible to be nominated as chair for the next term. A Nominating Committee
for electing a chair for the period 2007-2008 consisting of Betty Salzberg (salzberg@ccs.neu.edu), David Lomet
(lomet@microsoft.com) and Erich Neuhold (neuhold@ipsi.fhg.de) has been struck. The Nominating Committee
invites nominations for the position of Chair from all members of the TCDE. To submit a nomination, please
contact any member of the Nominating Committee before August 25, 2006.

More information about TCDE can be found at http://ipsi.fhg.de/tcde. Information about TC elections can
be found at http://www.computer.org/tab/hnbk/electionprocedures.htm.

Betty Salzberg, David Lomet, Erich Neuhold
TCDE Nominating Committee
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Letter from the Special Issue Editor

This issue of the Data Engineering Bulletin is devoted to thetopic of data quality. Data quality is an important
topic of vast business importance. Quality problems significantly degrade common business practices (with
billing being a prominent example). Typical quality problems include incorrect person or business names,
inconsistent address information, poor integrity constraints, missing keys to name a few. It is estimated that
data quality problems cause approximately 600 billion dollars of financial loss in the US alone each year. Data
quality has been in the center of research interest for more than thirty years. Although several steps have been
made towards addressing major problems and an array of industrial tools are available, fundamental problems
remain still widely unsolved.

The issue contains seven articles authored by leading experts in the area. The specific collection of articles
was chosen in a way to highlight current research directionsin data quality as well as new interesting approaches
to known problems.

The first two articles present new approaches to the problem of entity resolution. The article by Bhattacharya
and Getoor addresses the problem of collective entity resolution, namely exploring relationships or ties between
entities in a way that related entities are resolved collectively. The article by Benjelloun et. al., is an overview of
the approach to entity resolution by the Stanford SERF project. In this approach match predicates are considered
as black boxes and algorithms are presented to merge entities efficiently.

The article by Naumann et. al., presents an interesting approach to data fusion by considering a multi-level
approach. In particular the authors present the results of their research to merging data from different sources by
systematically tracking inconsistencies at the value, tuple as well as schema level. Laure Berti-Equille discusses
quality aware query processing. This is a relatively new andhighly important problem. Traditional approaches
to data quality consist of techniques to ’clean’ data in order to enable query processing on the clean image of
a data set. Quality aware query processing aims to enable query processing on ’dirty’ data (data with various
quality problems) and provide tradeoffs between query processing cost and result quality.

Dasu et. al., present work in the context of the Bellman data quality tool from AT&T Research. A very
interesting direction in data quality deals with data base exploration for quality problems. It is highly important
to provide tools and methodologies to identify data qualityproblems, in addition to providing techniques to
resolve them once they have been identified. The Bellman toolis an important step in this area. The article
explores data mining on database dynamics. In particular isperforms data mining to explore database changes
as a function of time. Chaudhuri et. al., present work in the context of the Data Debugger project at Microsoft
Research. The main goal of the project is to identify genericand robust abstractions for data cleaning operators
and to support efficient implementations of these abstractions. Doing so will enable composability of operators
(relational and non relational) to derive operator trees. In the paper the authors illustrate their approach using
the record matching operation.

Finally the article by Milano et. al., deals with addressingquality problems in non relational data sources. In
particular it presents approaches for resolving identities for XML data taking into account the specifics of such
data and in particular the underlying document structures.

I would like to take this opportunity to thank the contributors to this special issue once again for the time
and effort they have put in delivering the articles. I would like to also thank the editor in chief of the publication
Dr. David Lomet for his availability and timely response andhandling of all matters related to the issue. Mr.
Dimitris Tsirogiannis provided valuable assistance in assembling the issue and I would like to thank him for his
time. I hope readers will enjoy the article collection as much as I have.

Nick Koudas
University of Toronto

Toronto, Canada
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Collective Entity Resolution In Relational Data

Indrajit Bhattacharya and Lise Getoor
Department of Computer Science

University of Maryland, College Park, MD 20742, USA

Abstract

An important aspect of maintaining information quality in data repositories is determining which sets of
records refer to the same real world entity. This so called entity resolution problem comes up frequently
for data cleaning and integration. In many domains, the underlying entities exhibit strong ties between
themselves. Friendships in social networks and collaborations between researchers are examples of
such ties. In such cases, we stress the need for collective entity resolution where, instead of indepen-
dently tagging pairs of records as duplicates or non-duplicates, related entities are resolved collectively.
We present different algorithms for collective entity resolution that combine relational evidence with
traditional attribute-based approaches to improve entityresolution performance in a scalable manner.

1 Introduction

There has been an increase in automated acquisition and integration for data repositories and information sources
and, because completely manual curation is impossible in all but the smallest databases, there has been an
increasing dependence on automated techniques for maintaining data integrity and quality of information. While
we have seen a surge in research interest in this area over thelast decade, the problems are quite challenging.
Because accuracy is critical in many applications, there isneed for further improvement. In addition to the
attributes of records that have traditionally been used by data cleaning and integration algorithms, quite often
there may be relationships between different database records. In such cases, the models and algorithms for data
cleaning can take such relationships into account to improve performance.

Entity resolutionis an important problem that comes up frequently for cleaning and integration. In many
databases, records refer to real world entities, and as suchdatabases grow, there can many different records
that refer to the same entity. For example, a social network database can have different records with names
‘J. Doe’, ‘Jonathan Doe’ and ‘Jon Doe’ that refer to the same person. In the absence of keys such as social
security numbers, this duplication issue [13, 15] leads to many different problems, such as redundant records,
incorrectness of computed statistics, and several others.This issue also comes up when integrating data from
different heterogeneous sources without shared keys and possibly even different schemas [10]. Broadly, we call
such database recordsreferencesto real world entities, and the entity resolution problem isto find the underlying
entitiesin the domain and tag the references in the database with the entities to which they correspond.

Entity resolution is a difficult problem and cannot be solvedusing exact matches on tuple attributes. First,
there is theidentificationproblem, when different representations arising from recording errors or abbreviations

Copyright 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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refer to the same entity. In our earlier example, figuring outthat ‘Jon Doe’ and ‘Jonathan Doe’ are the same
person is an instance of this problem. Failure in identification affects completeness of information. The second
issue isdisambiguation. It is possible that two records with name ‘J. Doe’, the same address and the same age
refer to two brothers and not to the same person. This affectsprecision. Early approaches to entity resolution
prescribed fuzzy attribute matches and many sophisticatedtechniques have been developed. However, attribute-
based approaches still cannot satisfactorily deal with theproblem of false attribute matches and, in general, it
may be hard to improve precision and completeness at the sametime using just attributes of records.

In many domains, some underlying entities exhibit strong relational ties to certain other entities. For instance,
people interact frequently with their close friends in a social network, while in academic circles, researchers
collaborate more with their close associates. When such ties exist between entities, co-occurrences between the
references to these entities can be observed in the data. In the social network example, we may have the records
for the best friends of ‘J. Doe’ and ‘Jon Doe’. Our goal will beto make use of such relationships between
references to improve entity resolution performance. However, the problem is that we do not know the entities
for these related records either. So how can we use these relations then? One way is to use the attributes of
related records as well when computing fuzzy matches. Whilethis is an improvement, it may not always work.
For example, we do not want to merge two person records simplybecause their best friends have similar names.
The correct evidence to use is whether their best friends arein fact the same entity. This is the idea behind
collective entity resolution, where the entity for any reference depends on the entities for its related references.
Computationally, it is a more difficult problem to solve thanattribute-based resolution. The database cannot
be cleaned with a single-pass approach anymore because of the dependent nature of the resolutions. We need
to resort to iterative approaches, where each resolution that we make potentially provides evidence to discover
other duplicate references. However, there is also the promise that the resolution accuracy can be significantly
improved over traditional techniques. In this article, we present a survey of algorithms we have proposed in
earlier work [3, 4, 5, 6] that address the computational challenge of collective resolution and combine attributes
of records with relational evidence to improve entity resolution performance.

2 Problem Formulation

In domains where the data contains relationships between different entity references, these may be represented
using an auxiliary table of relations. We now introduce a generic notion of areference databasethat records
information about references and the relationships between them that are observed in the data. Then we describe
the entity resolution problem in such a reference database using examples to illustrate the various issues involved.

2.1 Reference Database

In the simplest formulation, a reference database containsa table of references,R = {ri}, where each reference
has an identifierR.id and a set of attributes{R.A1, . . . ,R.Ak}. Also, we have the unobserved domain entities
E = {ej}. For any particular referenceri, we denote the entity to which it maps asE(ri). We will say that
two or more references areco-referent if they correspond to the same entity. Note however that the database is
unresolved — the references do not have any identifiers that disclose the mappingE(ri). Further, the domain
entitiesE and even the number of such entities is not known. To model relationships between references in a
generic way, we use a hyper-edge tableH with identifierH.id and attributes{H.A1 . . .H.Al}. Each hyper-
edge connects multiple references. We use a mapping tableM = {hid, rid} to associate the referencerid to
the hyper-edgehid. For convenience, we use the notationr ∈ h to mean that a referencer ∈ R is associated
with a hyper-edgeh ∈ H: r ∈ h ⇐⇒ (r.id, h.id) ∈ M. Note that each reference may be associated with zero
or more hyper-edges.

Let us now look at a sample domain to see how it can representedin our framework. We consider as our
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motivating example a database of academic publications similar to DBLP, CiteSeer or PubMed.1 We consider
the problem of resolving the authors of the publications. Each publication in the database has a set of author
names. For each author name, we have a referenceri in R andri.Name records the observed name of the
author in the publication. In addition, we can have attributesR.Affil andR.Email to record the affiliation and
email of each author reference if they are available in the paper. Additionally, each publication represents a
co-author relationship among the references in it. So we have an entryhi in the hyper-edge tableH for each
publication and an tuple(hi.id, rj .id) in the mapping tableM for each referencerj in a publicationhi. If a
publication also comes with additional information, such as title, these are represented as attributes (H.T itle)
of the hyper-edge tableH. While in general our representation allows each referenceto belong to zero or more
hyper-edges, in this domain each author-name in a paper is a distinct reference and therefore occurs in exactly
one hyper-edge.

As an example, consider the following four papers.

1. W. Wang, C. Chen, A. Ansari, “A mouse immunity model”

2. W. Wang, A. Ansari, “A better mouse immunity model”

3. L. Li, C. Chen, W. Wang, “Measuring protein-bound fluxetine”

4. W. W. Wang, A. Ansari, “Autoimmunity in biliary cirrhosis”

These may be represented in our notation with 10 references{r1, . . . , r10} in the reference tableR, wherer1 is
(id 1; Name ‘Wang W’), etc. There are 4 entries{h1, . . . , h4} in the hyper-edge tableH for the four papers,
whereh1 is (id 1; T itle ‘The mouse immunity model’) and so on. The mapping tableM also has 10 entries,
one for each reference, to record which reference appears inwhich paper. For example, the entry(hid 1; rid 1)
records that referencer1 appears in hyper-edgeh1. This is represented pictorially in Figure 1(a).

2.2 Entity Resolution Problem in a Reference Database

Given the formulation of a reference database, the entity resolution task is to partition or cluster the references
according to their underlying entities. To illustrate thisfor our example, suppose we have six underlying entities,
which are shown in Figure 1(a) using six different shades. All references with name ‘A. Ansari’ are co-referent,
as are all the ‘L. Li’ references. However, the two ‘C. Chen’sare not co-referent and map to two different
entities. More interestingly, the four references with name ‘Wang’ map to two different entities. Referencesr1,
r4, andr9 are co-referent, whiler8 maps to a different entity.

A natural task in a reference database is to take all references with a given name and partition them according
to the entities to which they correspond. We refer to this as thedisambiguation task. Consider the name ‘W.
Wang’. In our example, there are three author references for‘W. Wang’: r1, r4, andr8. Our goal is to partition
these identically named references according to entities.Then the correct disambiguation for ‘W. Wang’ is
{{r1, r4}, {r8}} indicating thatr1 andr4 map to the same entity andr8 maps to a distinct entity. The complete
disambiguation for the database would cover the other references as well.

Observe that the disambiguation task handles one part of theresolution process. In our example, while it
finds the co-referent pairs with name ‘W. Wang’, it does not consider references whose names are not exact
matches. However, referencer9 from the fourth paper is co-referent withr1, even though it has a different
recorded name. So, ther9 reference from the fourth paper should be included in the same entity cluster as the
r1 reference. Therefore, in addition to disambiguation, we need to ‘identify’ coreferences with different names
as well. To handle this, we define theentity resolution task as a partitioningall references in the database

1However, this entity resolution framework is general enough to handle application domains such as customer relationship manage-
ment, personal information management and others that involve references, entities and complex relationships.
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Figure 1: (a) Example papers represented as references connected by hyper-edges, with different entities shaded
differently (b) Two underlying groups of collaborating entities, with their generated papers listed alongside.

according to the entities to which they correspond. The entity resolution result for our example should return six
clusters:{{r1, r4, r9}, {r8}, {r2}, {r7}, {r3, r5, r10}, {r6}}. The first two clusters correspond to ‘Wang’, the
next two to ‘Chen’, the fifth to ‘Ansari’ and the last to ‘Li’.

2.3 Entity Resolution Approaches

Different approaches may be used to resolve the references in a database. Here we briefly look at the intuition
behind three of the prevalent ones.

1. Attribute-based Entity Resolution: This is the traditional approach where similarity is computed for each
pair of references based on their attributes and only those pairs that have similarity above some threshold are
considered to be co-referent. Many sophisticated and efficiently computable similarity measures have been
proposed for different types of attributes over the years. However, attributes alone often run into problems, as in
the case of the three ‘W. Wang’ references in our example.

2. Naive Relational Entity Resolution:When relations between references are available, this approach consid-
ers the attributes of the related references when computingsimilarity between pairs of references. In our running
example, when computing the similarity between ‘W. Wang’ and ‘W. W. Wang’, it would take into account that
both have co-authors with name ‘A. Ansari’.

3. Collective Entity Resolution: While the naive relational approach improves significantlyon the attribute-
based approach, it can be misled in domains where many entities have the same name and the relationship graph
is dense. In our example, the two ‘W. Wang’ referencesr1 andr8 are not co-referent, though they both have co-
authors with name ‘C. Chen’. The correct evidence to use hereis that the ‘Chen’s are not co-referent either. In
such a setting, in order to resolve the ‘W. Wang’ references,it is necessary toresolvethe ‘C. Chen’ references as
well, and not just consider them as attributes. This is the goal of collective entity resolution, where resolutions
are not made independently. Instead one resolution decision affects other resolutions via hyper-edges. This
increases the computational expense of the resolution process but improves accuracy significantly in ambiguous
domains.

For the first two approaches, all that is needed is a similarity measure between pairs of references. Given
such a similarity measure, the algorithm for resolving entities is straight-forward — those reference pairs that
have similarity above a given threshold are declared to be co-referent. However, collective entity resolution is
more involved. Specifically, the dependencies between the different resolution decisions need to be modeled.
Also, as we have already mentioned, the algorithm needs to make multiple passes over the references to capture
the dependencies. We next describe two approaches to collective entity resolution that we have developed.
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3 Algorithms for Collective Resolution

We first describe a clustering approach to collective resolution and then briefly discuss a probabilistic generative
model for the same problem and how we can do inference in it.

3.1 Relational Clustering

Given that the goal of entity resolution is to cluster the database references according to their entities, we have
developed a relational clustering algorithm for entity resolution (RC-ER) [3]. Given a current set of reference
clustersC = {ci}, it iteratively merges the pair of clusters that are the mostsimilar. We associate a cluster label
r.C with each reference to denote its current cluster membership. Note that it is the similarity measure that
distinguishes the different entity resolution approaches. For the attribute-based approach, the similarity only
considers the attributes of references. For the naive relational approach, it additionally considers the attributes
of related references. The collective approach, in contrast, considers the cluster labels of the related references.

The similarity of two clustersci andcj is defined as

sim(ci, cj) = (1 − α) × simA(ci, cj)+ α × simR(ci, cj) 0 ≤ α ≤ 1 (1)

wheresimA() is the similarity of the attributes andsimR() is the relational similarity between the references
in the two clusters. The most important and interesting aspect of the collective approach is the dynamic nature
of the similarity. In contrast to attribute-based and naiverelational resolution, where the similarity between
two references is fixed, for collective resolution it depends on thecurrent cluster labels of the references and
therefore changes with the labels. In our example, the similarity of the two references ‘W. Wang’ and ‘W.
W. Wang’ increases once the Ansari references are given the same cluster label. Let us now see how the two
components of the similarity are computed.

Attribute Similarity: For each reference attribute, we assume the existence some basic similarity measure that
takes two reference attributes and returns a value between0 and1 that indicates the degree of similarity between
them. In addition, if the hyper-edges have attributes, thenthe attribute similarity of two references can also take
into account the attributes of the hyper-edges with which they are associated. Several sophisticated similarity
measures have been developed for names, and popular TF-IDF schemes may be used for other textual attributes
such as keywords. The measure that works best for each attribute may be plugged in. Finally, a weighted
combination of the similarities over the different attributes yields the combined attribute similarity between two
reference clusters.

Relational Similarity: For collective entity resolution, relational similarity considers the cluster labels of the
references that each cluster is connected to via the hyper-edges. There are many possible ways to define this
similarity; here we discuss one of measures that we have proposed [3, 5].

The hyper-edges relevant for a cluster are the hyper-edges for all references in it. Recall that each reference
r is associated with one or more hyper-edges in the hyper-edgetableH. Therefore, the hyper-edge setc.H for
a clusterc of references is defined as

c.H =
⋃

r∈R∧r.C=c

{hid | (hid, rid) ∈ M ∧ r.id = rid} (2)

This set defines the hyper-edges that connect a clusterc to other clusters, and are the ones that relational similarity
needs to consider. For instance, when all the references in our running example have been correctly clustered as
in Figure 1(b), the edge-set for the larger ‘W. Wang’ clusteris {h1, h2, h4}, which are the hyper-edges associated
with the referencesr1, r4 andr9 in that cluster.
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The different clusters to which any clusterc of references is connected via its hyper-edge set is called the
neighborhoodNbr(c) of clusterc.

Nbr(ci) =
⋃

h∈c.H,r∈h

{cj | cj = r.C} (3)

Returning to our example, the neighborhood of the ‘W. Wang’ cluster mentioned above consists of the ‘Ansari’
and the ‘Chen’ clusters, which are connected by its edge-set. Now, for the relational similarity measure between
two clusters, their neighborhoods are compared using set similarity such as Jaccard similarity:

simR(ci, cj) = Jaccard(Nbr(ci), Nbr(cj)) (4)

Recall that for two setsA andB, their Jaccard similarity is defined asJaccard(A,B) = |A
T

B|
|A
S

B| . The similarity
can be computed and updated efficiently, in time that is linear in the average number of neighbors per cluster.

Clustering Algorithm: Given the similarity measure for a pair of clusters, a greedyagglomerative clustering
algorithm is used for collective entity resolution. The algorithm bootstraps the clusters, identifies the candidate
set of potential duplicates and iterates over the followingsteps. At each step, it identifies the current ‘closest
pair’ of clusters (ci, cj) from the candidate set and merges them to create a new cluster cij . It identifies new can-
didate pairs and updates the similarity measures for the ‘related’ cluster pairs. All of these tasks are performed
efficiently using an indexed priority queue. The algorithm terminates when the similarity for the closest pair
falls below a threshold.

3.2 Probabilistic Group Model

In addition to the relational clustering algorithm, we havealso developed a probabilistic generative model for
collective entity resolution [6], which we call the Latent Dirichlet Allocation model for Entity Resolution, or
LDA-ER for short. It describes how the author references in any paper might be generated. Instead of modeling
pair-wise collaboration relations between author entities, the novelty of the model is that it uses the notion of
collaboratinggroups of entities. For our example, the six relevant entities belong to two different groups, as
shown in Figure 1(b). The generative process for each paper first selects one or more groups that collaborate to
write the paper. Then each author for the paper is chosen fromone of these selected groups. The true name of
an author entity determines what the reference name in a paper might be. In the example, papers 1, 2 and 4 are
generated by collaborating entities from group G1, while paper 3 is written by entities from group G2. Note that
for the author entity with true name “WeiWei Wang”, the reference name is “W. Wang” in two of the papers and
“W. W. Wang” in another.

We have developed a Gibbs Sampling algorithm for doing inference in this model. Starting from an initial
assignment of groups and entities for the references, the algorithm repeatedly samples the group and entity for
each reference given those for the others until a stationarydistribution is reached. In our example, the algorithm
is expected to predict that the ‘Wang’ references in papers 1, 2 and 4 are likely belong to the same group, and
therefore they are more likely to map to the same entity. The other ‘Wang’ reference in paper 3 maps to a
different entity, since most probably it belongs to a different group. Also, one interesting aspect of our inference
algorithm is that number of entities does not need to specified as a parameter — it automatically determines
the most likely number of entities given the reference database. Another important aspect is that the inference
algorithm is completely unsupervised. This is significant given the scarcity of training data for this problem.

4 Experimental Results

We have evaluated our collective entity resolution algorithms [3, 4, 5, 6] for the task of author resolution in
synthetic as well real-world citation databases such as CiteSeer (2,892 author references from Machine Learn-
ing), arXiv (58,515 author references from High Energy Physics) and BioBase (831,991 author references from
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Biology). Here we present an overview of our results. The first baseline (A) that we compare against uses only
attributes of the references for resolution, while the second (A+N) additionally uses attributes of neighboring or
related references. We also consider the variantsA* andA+N* that take transitive closures over the pair-wise
decisions made inA and A* respectively. For evaluating entity resolution performance, we use the popular
F1-measure (the harmonic mean of precision and recall) of the pair-wise decisions over all references.

In Table 1, we show the performance of our relational clustering algorithm algorithmRC-ER against the
baselines in the three datasets. The best performance for each dataset is shown in bold. We can see thatRC-ER
outperforms the baselines in all cases. Also, the improvement over the baselines increases as we move from
CiteSeer to arXiv and then to BioBase. The improvement usingcollective resolution depends on how densely
the references are related to each other and also on what fraction of the references names are ambiguous, or
in other words, are shared by more than one entity. The results confirm this since both the density of relations
and ambiguity of reference attributes in highest for BioBase and lowest for CiteSeer, which explains the dif-
ference in performance. We experimented with different attribute similarity measures and we observed similar
improvements with all of them. Performance using our probabilistic modelLDA-ER is very similar to that of
RC-ER.

Table 1: Entity resolution performance (F1-measure) of fivealgorithms on three datasets. Results are for the
entire CiteSeer and arXiv datasets and for the 100 most frequent names in BioBase.

A A* A+N A+N* RC-ER

CiteSeer 0.980 0.990 0.973 0.984 0.995
arXiv 0.974 0.967 0.938 0.934 0.985
BioBase 0.701 0.687 0.710 0.753 0.818

While Table 1 records improvements over the entire CiteSeerand arXiv datasets, the strength of collective
resolution clearly stands out when we look at specific instances of ambiguous names. When a name or its
abbreviation is shared between multiple entities, it is hard to resolve different references having that name using
attributes alone. In Table 2, we show some examples of ambiguous names from arXiv and the performance of
the attribute baselines and ourLDA-ER model only over references that have this abbreviated name.We can
see that for all such cases collective resolution out-performs the baselines by very large margins.

Table 2: Entity resolution performance (F1-measure) for theLDA-ER model and the best baseline performance
for some example ambiguous names from the arXiv dataset.

Cho H Davis A Sarkar S Sato H Shin H Veselov A Yamamoto K Yang Z Zhang R Zhu H

Best of A/A* 0.80 0.67 0.67 0.82 0.69 0.78 0.29 0.77 0.83 0.57
LDA-ER 1.00 0.89 1.00 0.97 1.00 1.00 1.00 0.97 1.00 1.00

We have done extensive evaluations of the different aspectsof our models and algorithms. Figure 2 shows
some sample plots. Figure 2(a) shows how performance changes with the combination weightα between at-
tribute and relational similarity for arXiv. We also experimented with synthetic data to see how different struc-
tural properties in the data affect the algorithms. Figure 2(b) plots one of the trends, which shows that expected
improvements usingLDA-ER are higher when each relation covers more references on average. Finally, Fig-
ure 2(c) shows howRC-ER scales with data size once the potential duplicate pairs have been identified. We can
see that it takes longer than the attribute baseline, but thegrowth is still linear.
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Figure 2: (a) Entity resolution performance usingRC-ER versus combination weightα for arXiv. (b) Improve-
ment overA* using LDA-ER against average number of references in each relation. (c) Execution time of
RC-ER andA* for increasing number of references in the data.

5 Related Work

The entity resolution problem has been studied in many different areas under different names — deduplication,
record linkage, co-reference resolution, reference reconciliation etc. Most of the work has focused on traditional
attribute-based entity resolution. Extensive research has been done on defining approximate string similarity
measures [15, 7, 8] that may be used for unsupervised entity resolution. The other approach is to use adaptive
supervised algorithms that learn similarity measures fromlabeled data [18]. The WHIRL system [9] has been
proposed for data integration using similarity join queries over textual attributes. Swoosh [2] is generic entity
resolution framework that minimizes the number of record-level and feature-level operations when resolving
and merging duplicates. Probabilistic techniques have been proposed for quick similarity computation between
tuples for fast text-joins [12] and for efficiently looking up candidate matches for incoming tuples [8].

Many recent approaches take relations into account for dataintegration [1, 3, 5, 14, 11, 16, 17]. Ananthakr-
ishna et al. [1] introduce relational deduplication in datawarehouse applications where there is a dimensional
hierarchy over the relations. Neville et al. [16] have shownhow relations may be combined with attributes for
clustering. Kalashnikov et al. [14] enhance attribute similarity between an ambiguous reference and the many
entity choices for it with relationship analysis between the entities, such as affiliation and co-authorship. Dong et
al. [11] collectively resolve entities of multiple types bypropagating relational evidences in a dependency graph,
and demonstrate the benefits of collective resolution in real datasets. Singla et al. [17] propose a probabilistic
model based on conditional random fields that exploits similar dependencies.

6 Conclusion and Future Directions

Entity resolution is an area that has been attracting growing attention to address the influx of structured and
semi-structured data from a multitude of heterogeneous sources. Accurate resolution is important for a variety
of reasons ranging from cost-effectiveness and reducing redundancy in data to accurate analysis for critical
applications. We have found collective entity resolution to be a powerful and promising technique that combines
attribute similarity with relational evidence and significantly improves performance over traditional approaches.
The improvements using relations are more dramatic in databases where names are more likely to be ambiguous.
While collective resolution is more expensive than attribute-based resolution, the computational cost is not
prohibitive. As future directions, we are interested in localized entity resolution, incremental updates and in
challenging and important domains such as geo-spatial databases and others with unstructured context as in
email archives.
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Abstract

The SERF project at Stanford deals with the Entity Resolution (ER) problem, in which records deter-
mined to represent the same real-life “entities” (such as people or products) are successively located
and combined. The approach we pursue is “generic”, in the sense that the specific functions used to
match and merge records are viewed as black boxes, which permits efficient, expressive and extensible
ER solutions. This paper motivates and introduces the principles of generic ER, and gives an overview
of the research directions we have been exploring in the SERFproject over the past two years.

1 Introduction

Entity Resolution (ER) (also referred to as deduplication)is the process of identifying and merging records
judged to represent the same real-world entity. ER is a well-known problem that arises in many applications.
For example, mailing lists may contain multiple entries representing the same physical address, but each record
may be slightly different, e.g., containing different spellings or missing some information. As a second example,
consider a comparative shopping website, aggregating product catalogs from multiple merchants. Identifying
records thatmatch, i.e., records that represent the same product is challenging because there are no unique iden-
tifiers across merchant catalogs. A given product may appearin different ways in each catalog, and there is a fair
amount of guesswork in determining which records match. Deciding if records match is often computationally
expensive, e.g., may involve finding maximal common subsequences in two strings. How tomergerecords, i.e.,
combine records that match is often alsoapplication dependent. For example, say different prices appear in two
records to be merged. In some cases we may wish to keep both of them, while in others we may want to pick
just one as the “consolidated” price.

In the SERF project, we study ER as a “generic database problem”. We say we take a generic approach
because we do not study the internal details of the functionsused to compare and merge records. Rather, we
view these functions as “black-boxes” to be invoked by the ERengine. Given such black-boxes, we study
algorithms for efficiently performing ER, i.e., we develop strategies that minimize the number of invocations
to these potentially expensive black-boxes. An important component of our work is that we identify a set of
properties that the black-boxes should have in order to leadto a well-defined single “answer” to the ER problem,
as well as to efficient algorithms. For example, associativemerges is one such important property: If merges are

Copyright 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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not associative, the order in which records are merged may impact the final result. Our general framework for
ER is introduced in Section 2, as well as our main algorithm.

Except for a few works such as [HS95], most existing work on ERfocuses on developing techniques to
achieve the best quality for ER, measured in terms of precision and recall, on some class of data or applications.
In our generic approach, such metrics are dependent on the black-box functions, and our focus is rather on the
framework and algorithms in which these black-boxes are used. Of course, to define a simple coherent setting
for ER, we have to make some assumptions (e.g., that matches are computed pairwise), hence we only capture a
subset of the (diverse) set of existing techniques for ER, a subset which we believe is useful for a large number
of applications. We refer the reader to [BGMJ+05] for a detailed review of related works.

Since ER is computationally expensive, we also developed strategies to distribute its computation across
multiple processors. Again, we made our distributed ER algorithm generic, by providing simple abstractions
that make the distribution strategy configurable, i.e., capable to accommodate the characteristics of data in
specific applications. In particular, our abstractions provide a single unified way to express and leverage common
forms of domain knowledge in order to “block” unnecessary record comparisons. For instance, if it is known
that records representing products can only match if their prices are close enough, records can be split among
processors based on their price, in a way that greatly reduces the communication costs, while still computing the
correct result. Our distributed ER algorithm is presented in Section 3.

Because ER is an approximate process, it is often desirable to attach confidence values to the records, and
propagate these confidences as matches and merges are performed. However, the meaning of confidences and
the way they are propagated may vary. In some applications, the confidence of a record could be interpreted as
the probability that it correctly represents an entity, while in others, confidences may measure the precision of
data. We extend our model with confidences in a generic way, byleaving to the match and merge functions the
responsibility to interpret and propagate confidences. As we illustrate in Section 4, adding confidences implies
that some of the properties previously identified for the black-box functions do not hold anymore. For instance,
the associativity of merges is often not satisfied, because the order in which records are matched and merged
may quite naturally affect the confidence of a derived record. As a consequence, more expensive algorithms are
needed for ER with confidences. However, some optimizationsmay reduce the cost of the ER computation, e.g.,
when the properties still apply for the data component of therecords, or if only records with confidence above
some threshold are of interest.

We conclude this paper with a discussion of current and future research directions in Section 5.

2 Generic Entity Resolution

We start by defining our generic model for ER. The input of ER isa set ofrecords, and so is its output. We do
not make any assumption about the particular form or data model used to represent records.

As an example, in Figure 1 we consider records representing products, along the lines of the comparison
shopping scenario mentioned in the introduction. Each product has a name, a price (or price range), and a
category. This example is inspired from the data used in our experiments, which consists of actual product
descriptions provided to us by the Yahoo! Shopping team.

name price category
r1 Apple iPod 249 MP3 player
r2 Apple iPod 299
r3 iPod 270 MP3 player

Figure 1: Product records
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2.1 Match and Merge

Our generic ER model is based on two black-box functions provided as input to the ER computation: match and
merge.

A match functionM is a function that takes two records as input and returns a Boolean value. FunctionM
returns true if the input records represent the same entity,and false otherwise. Such a match function reflects
the restrictions we are making that (i) matching decisions can be made “locally”, based on the two records being
compared, and (ii) that such decisions are Boolean, and not associated with any kind of numeric confidence
(we will revisit this restriction in Section 4). In practice, such functions are easier to write than functions that
consider multiple records.

A merge functionµ is a function that takes in two records and returns a single record. Functionµ is only
defined for pairs of matching records, i.e., records known torepresent the same entity. Its output is a “consoli-
dated” record representing that entity. If a recordr is (transitively) obtained through a merge involving a record
r′, we say thatr is derivedfrom r′.

WhenM andµ are understood from the context,M(r1, r2) = true (resp.M(r1, r2) = false) is denoted
by r1 ≈ r2 (resp.r1 6≈ r2), andµ(r1, r2) is denoted by〈r1, r2〉.

To illustrate, we define sample match and merge functions forour comparison shopping example. The
match function is based on product names being equal, or all attributes of the records being highly similar. Such
a match function can be expressed as:

M(r1, r2) = (r1.name == r2.name) ∨ (Mname(r1, r2) ∧ Mprice(r1, r2) ∧ Mcategory(r1, r2))

Let us say thatMname computes some similarityn of record names (e.g., an edit-distance) and returns true
if n > 0.8. Mprice computes the relative distancep among prices, and returns true ifp > 0.9. Mcategory returns
true if the two records have the exact same category.

With this match function, in Figure 1r1 ≈ r2, because they have the exact same name. However,r1 6≈ r3

because their prices are too far apart, andr2 6≈ r3 becauser2 does not have a category value.
For the merge function, let us assume that it has some way to normalize product names into a single name

(e.g., by relying on an external source to find the closest reference product name), that it keeps a range for prices,
and keeps the union of category values from the base records.This merge function would producer4 = 〈r1, r2〉:

r4 = (Apple iPod, [249-299], MP3 Player)

Observe that, unliker1 andr2, the obtained recordr4 may matchr3 because it has combined price and
category information fromr1 andr2. This example illustrates one of the difficulties of ER: it isnot sufficient to
compare base records to each other. Derived records must be recursively compared to the other records in the
dataset.

2.2 Domination

A last notion we need to introduce before defining generic ER is domination. Intuitively, if two recordsr1 and
r2 are about the same entity butr1 holds more information thanr2, thenr2 is useless for representing this entity.
We say thatr1 dominatesr2. In general, any partial order on records could be used to define domination. For
each application, a different notion of domination may be suitable.

To capture the fact that domination is application specific,we rely on the match and the merge functions to
define it: We say thatr1 dominatesr2 if r1 ≈ r2 (i.e., the two records match), and〈r1, r2〉 = r1. The consistency
conditions we will introduce shortly in Section 2.4 ensure that domination is a partial order on records. In our
example, the reader can verify thatr4 dominatesr1 andr2.
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2.3 Generic ER

We are now equipped to define entity resolution: Given a set ofinput recordsR, an Entity Resolutionof R,
denotedER(R) is a set of records such that:

• Any record inER(R) is derived (through merges) from records inR;

• Any record that can be derived fromR is either inER(R), or is dominated by a record inER(R);

• No two records inER(R) match, and no record inER(R) is dominated by any other.

2.4 Consistent ER

If match and merge are arbitrary functions, entity resolution of a set of recordsR may not exist, may not
be unique, and may be infinite. In [BGMJ+05], we introduce simple and practical conditions on the match and
merge functions, which guarantee that ER is “consistent”, i.e., that it exists, is unique and finite. These properties
are the following:

• Commutativity:For any pair of recordsr1, r2, r1 ≈ r2 is the same asr2 ≈ r1, and if r1 andr2 match,
then〈r1, r2〉 and〈r2, r1〉 produce the same record.

• Reflexivity/Idempotence:Any recordr matches itself, and〈r, r〉 = r

• Representativity:If r3 = 〈r1, r2〉, thenr3 “represents”r1 andr2, in the sense thatr3 matches any record
that matchesr1 or r2.

• Merge associativity:For any recordsr1, r2, r3, if 〈r1, 〈r2, r3〉〉 and〈〈r1, r2〉, r3〉 exist, then they are equal.
Intuitively, this property means that if there exists multiple derivations involving the same set of records,
then they should all produce the same result.

As discussed in [BGMJ+05], if some of these properties do not hold, the entity resolution problem becomes
much more expensive. For instance, without merge associativity we must consider all possible orders in which
records may match and merge. Extending ER with confidences (see Section 4) leads to such a situation.

2.5 The R-Swoosh algorithm

When the four properties introduced above are satisfied, we develop an efficient ER algorithm, R-Swoosh, that
reduces the number of invocations to the match and merge functions.

R-Swoosh relies on two sets:R, which initially contains all the input records, andR′, which maintains the
set of (so far) non-dominated, non-matching records. R-Swoosh successively compares each record inR to
all the records present inR′. R-Swoosh performs a merge as soon as a pair of matching records is found. The
obtained record is added toR, and the pair of matching records is deleted immediately. The algorithm terminates
whenR is empty, andR′ containsER(R).

To illustrate, consider the run of R-Swoosh given in Figure 2. The algorithm starts with all the input records
in R, and an emptyR′. At every round, one record fromR is compared to the records inR′ and moved toR′ if
no match is found. Here,r1 andr2 are successively moved toR′. At roundi, r3 is compared tor1 and a match
is found. The two records are immediately merged intor7, which is put back intoR, while r1 andr3 are deleted.
The algorithm ends whenR is empty.R′ contains the result of ER.

Intuitively, R-Swoosh is efficient because it interleaves matches, merges and deletions of dominated records.
R-Swoosh may end up comparing all pairs of records to each other, but it eagerly performs merges and deletions
as early as possible, thereby avoiding unnecessary future match comparisons. In [BGMJ+05], it is shown that
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Figure 2: A sample run of the R-Swoosh algorithm

R-Swoosh is optimal, in the sense that no other algorithm canperform fewer record comparisons in the worst
case.

In [BGMJ+05], we also give a variant of the algorithm called F-Swoosh (F stands for “feature”) that effi-
ciently caches the results of value comparisons when the match function can be expressed as a disjunction of
match functions over “features”, i.e. parts of the records.

3 Distributed ER

Even though R-Swoosh is optimal, ER is still an expensive process, as it may need to perform (expensive)
match comparisons on each pair of records in the (often large) input dataset. To deal with this complexity, we
investigated in [BGMK+06].ways to parallelize the ER computation across multipleprocessors.

Distributing data to processors for the ER computation requires care, as any pair of records is a potential
match, and therefore needs to be compared. Also, recall thatrecords produced through merges need to be
compared with others, and must be distributed adequately.

In general, there is no optimal, application-independent strategy to distribute data to processors. Depending
on the application and the distribution of values, some strategy may be more sensible than others. In particular,
it is important to exploit any domain knowledge that saves some comparisons, by reflecting it in the distribution
strategy.

As an example, in our comparison shopping application, we may have the domain knowledge that prices for
the same product never vary by more than, say, 20% from one vendor to another. We can exploit this knowledge
by making each processor responsible for one price segment,with a 20% overlap to account for prices close to
segment boundaries. However, prices may not be uniformly distributed, in which case we should distribute the
workload of crowded segments across multiple processors.

To support such distribution needs in a generic way, we introduce two abstract functions:

• scope:captures the distribution of records to processors, by assigning to each record a set of processors,

• resp: determines which processors are responsible of comparing which pairs of records.

We use these functions as primitives in our distributed ER algorithm. To guarantee the correctness of the
algorithm, the scope and resp functions need only satisfy a simple coverageproperty: any pair of potentially
matching records have scopes that intersect at least at one processor, which is responsible for comparing them.

The D-Swoosh algorithm runs a variant of R-Swoosh at each of the processors. Initially, records are dis-
tributed to processors based on the scope function. Then, each processor operates in a similar fashion to R-
Swoosh, with the main difference that processors asynchronously exchange messages about which records are
added or deleted (again, using the scope function), and keeptrack of all the records they know have been deleted.
The algorithm terminates when all processors are idle and nomore messages are exchanged. The result of ER
is the union of theR′ sets at each processor.
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Figure 3 illustrates part of the computation at one of the processors.Pi discovers that recordsr3 andr1

match, and merges them intor7. It sends anadd(r7) message toP27 andP67, the processors inscope(r7),
and delete messages forr1 andr3 to the processors in their respective scopes (including itself). Upon receiving
these add and delete messages, the processors update their localR andR′ sets accordingly. The full D-Swoosh
algorithm is described in [BGMK+06].
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Figure 3: The D-Swoosh algorithm

In [BGMK+06], we also provide a “library” of scope and resp functions,both for the case when no domain
knowledge is available, and all pairs of records must be compared, and for the case where domain knowledge of
some common forms is available. In the latter case, we are able to express and leverage necessary conditions on
pairs of matching records such as the equality on the value ofsome attribute (such as the category in our exam-
ple), a linearly ordered attribute with a sliding window (such as our price example), or an ancestor/descendant
relationship in a hierarchy. We experimentally compared the different schemes (both with and without domain
knowledge) on a comparison shopping dataset from Yahoo!.

4 ER with confidences

In the model we presented so far, everything is certain: records are exact facts, and the match function makes
Boolean decision on whether pairs of records represent the same entity. The properties of the match and merge
function essentially guarantee that there exists a unique ER solution. However, manipulating numerical confi-
dences (or uncertainties) is often desirable in ER. For instance, input records may come from unreliable sources,
and may have confidences associated with them. The match comparisons between records may also yield con-
fidences that represent how likely the records are to represent the same real-world entity. Similarly, the merge
process may introduce additional uncertainties, as there may not be a deterministic way to combine the infor-
mation from different records. In each application domain,the interpretation of confidence numbers may be
different. For instance, a confidence number may represent a“belief” that a record faithfully reflects data from
a real-world entity, or it may represent how “accurate” a record is.

In [MBGM05], we extended our framework for ER with confidences in a generic way by simply associating
a confidence valueconf (between 0 and 1) to each record. The match and merge functions are responsible for
manipulating and propagating confidence values. For instance, our product records may have initial confidences
(e.g., reflecting the reliability of their sources), as shown in Figure 4.
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name price category conf
r1 Apple iPod 249 MP3 player 0.8
r2 Apple iPod 299 0.7
r3 iPod 270 MP3 player 0.5

Figure 4: Product records with confidences

The merge ofr1 andr2 may now producer4, with a confidence value assigned by the merge function:

r4 = (Apple iPod, [249-299], MP3 Player)conf: 0.56

Here, the merge function multiplied the confidences ofr1 andr2 to generate the confidence ofr4. This
choice intuitively corresponds to making an independence assumption in a probabilistic interpretation of confi-
dences. Other choices may also be reasonable, such as takingthe minimum of the confidences ofr1 andr2 as a
confidence forr4.

When confidences are present, the notion of domination must be extended. We say thatr1 dominatesr2

(with confidences) if the data component ofr1 dominates that ofr2 and the confidence ofr1 is higher than
or equal to that ofr2. In our example, observe thatr4 does not dominater1 nor r2, because it has a lower
confidence.

Adding confidences significantly affects the ER process, because some of the properties introduced in Sec-
tion 2.4 are not satisfied anymore:

• No representativity:The fact that two recordsr1, r2 match is inherently an uncertain operation, and
therefore the recordr12 produced by their merge is likely to have a lower confidence than bothr1 and
r2. Even if the data component ofr12 “represents” that ofr1 andr2, r12 may not match a record thatr1

or r2 matches, because its has a lower confidence, an information that may be used by the match function.
Therefore, the representativity property may not hold.

• No Merge associativity:The confidence of a derived record may depend on the sequence of merges that
produced it. Given three recordsr1, r2, r3, 〈r1, 〈r2, r3〉〉 and〈〈r1, r2〉, r3〉 may very well have different
confidence values, e.g., because one of the derivation was based on “strong” match evidence (therefore
yielding high confidence) while the other derivation follows a tenuous connection.

Because representativity and merge associativity may not hold, ER must be performed using a more expen-
sive algorithm than R-Swoosh. Essentially, records participating in a merge cannot be deleted right away, and
dominated records can only be removed after all possible matches and merges have been found. In [MBGM05],
we provideKoosh, a variant of R-Swoosh which is the optimal sequential algorithm for generic ER when rep-
resentativity and merge associativity do not hold. In a nutshell, Koosh also uses two setsR andR′, but always
compares records inR to all the records inR′, and postpones the deletion of dominated records untilR is empty.

For the important case where the properties of Section 2.4 dohold for the data component and are only
violated because of confidences, we proposed a two-phase algorithm which performs much better than Koosh.
The algorithm exploits the fact that matching on the data component is a necessary condition for matching in
ER with confidences. It runs a first pass of R-Swoosh on the datacomponent only to partition the base records
into “packages”, and then runs the more expensive Koosh algorithm on each package separately.

Another optimization we investigated was the use of thresholds to prune the search space: If the user is only
interested in records with confidence above some fixed value,and if the meaning of confidences is such that they
may only decrease upon merging records, then any record can be discarded as soon as its confidence falls below
the threshold, because it cannot contribute to the derivation of any above-threshold record.
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5 Conclusion

Entity resolution is a crucial information integration problem. We believe our generic approach provides a clean
separation between the quality aspects of ER, encapsulatedin the black-box match and merge functions, and its
algorithmic and performance aspects, addressed by the sequential and distributed algorithms we developed. To
conclude, we would like to mention some of the research directions we are currently investigating in the SERF
project:

• Large scale distributed ER:We are in the process of deploying our D-Swoosh algorithm on alarge-
scale, shared-nothing distributed infrastructure consisting of tens of commodity PCs, to run ER on the full
Yahoo! comparison shopping dataset (several Gigabytes). We hope to understand the performance and
cost trade-offs involved in large scale distributed ER, andto develop optimization strategies to best adapt
the distribution scheme (i.e., the scope and resp functions) to particular applications and datasets..

• Negative ER and uncertainty:Going beyond our essentially monotonic model for ER, we are incorpo-
rating negative information, to express constraints needed by a number of applications. Negative facts
essentially lead to modeling uncertainty in the ER process,and embracing the fact that ER may have
multiple alternative solutions, possibly with a probability distribution over them. We are building upon
the ULDB model for databases with uncertainty and lineage [BSHW06]. Lineage, which keeps track of
the derivation history of records is crucial to back-track previously made merge decisions, should new
evidence suggest to do so. We are investigating efficient algorithms to compute the most probable ER
answer in the presence of such negative information.

• I/O’s and buffer management for ER:We are investigating strategies to efficiently perform ER when the
dataset does not fit in main memory. We are developing and experimenting with various buffer manage-
ment strategies, and corresponding adaptations of our ER algorithms.

• Declarative ER:We believe ER should be specified declaratively using match rules that combine atomic
similarity functions on attribute values, and high level constraints able to capture applicable domain
knowledge. Based on these specifications, which could be either entered by experts or learned from a
training sample, we would like to derive an efficient “execution plan” for performing ER, possibly tak-
ing into account statistics on the atomic match and merge black-box “operators” through a suitable cost
model.
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Abstract

Heterogeneous and dirty data is abundant. It is stored underdifferent, often opaque schemata, it rep-
resents identical real-world objects multiple times, causing duplicates, and it has missing values and
conflicting values. Without suitable techniques for integrating and fusing such data, the data quality of
an integrated system remains low. We present a suite of methods, combined in a single tool, that allows
ad-hoc, declarative fusion of such data by employing schemamatching, duplicate detection and data
fusion.

Guided by a SQL-like query against one or more tables, we proceed in three fully automated steps:
First, instance-based schema matching bridges schematic heterogeneity of the tables by aligning cor-
responding attributes. Next, duplicate detection techniques find multiple representations of identical
real-world objects. Finally, data fusion and conflict resolution merges each duplicate into a single,
consistent, and clean representation.

1 Fusing Heterogeneous, Duplicate, and Conflicting Data

The task of integrating and fusing data involves the solution of many different problems, each one in itself
formidable: Apart from the technical challenges of accessing remote data, heterogeneous schemata of different
data sets must be aligned, multiple but differing representations of identical real-world objects (duplicates) must
be discovered, and finally the duplicates must be fused to present a clean and consistent result to a user. In
particular this final step is seldomly or inadequately addressed in the literature. Figure 1 shows the three steps
and the inconsistencies they bridge.

Each of these tasks has been addressed in research individually at least to some extent: (i) Access to remote
sources is now state of the art of most integrated information systems, using techniques such as JDBC, wrap-
pers, Web Services etc. Such technical heterogeneities arenot addressed in this article and we assume JDBC or
file-based access to the relational data sources. (ii) Schematic heterogeneity has been a research issue for at least
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Figure 1: The three steps of data fusion

two decades, first in the context of schema integration and then to automatically generate schema mappings.
Especially recently, schema matching techniques have madegreat progress in automatically detecting corre-
spondences among elements of different schemata. (iii) Duplicate detection is successful in certain domains, in
particular in customer relationship management where duplicate customers and their contact information must
be detected, and several research projects have presented well-suited domain-independent algorithms. Other
research directions have developed domain-independent approaches. All are usually performed as an individual
task, such as a separate cleansing step in an ETL procedure. Here we bed duplicate detection into a domain-
independent ad-hoc querying environment. (iv) Data fusion, i.e., the step of actually merging multiple, duplicate
tuples into a single representation of a real world object, has only marginally been dealt with in research and
hardly at all in commercial products. The particular problem lies in resolving value-level contradictions among
the different representations of a single real-world object.

We have combined all these techniques under the umbrella of the Humboldt Merger (HumMer) – a one-
stop solution for fusing data from heterogeneous sources [2]. A unique feature of HumMer is that all steps are
performed in an ad-hoc fashion at run-time, initiated by a user query to the sources; in a sense, we performad
hoc, automatic, and virtual ETL. Apart from the known advantages of virtual data integration (up-to-dateness,
low storage requirement), this on-demand approach allows for maximum flexibility: New sources can be queried
immediately, albeit at the price of not generating as perfect query results as if the integration process were defined
by hand. To compensate, HumMer optionally visualizes each intermediate step of data fusion and allows users
to interfere: The result of schema matching can be adjusted,tuples discovered as being border-line duplicates
can be separated and vice versa, and finally, resolved data conflicts can be undone and resolved manually.

Ad-hoc and automatic data fusion is useful in many scenarios: Catalog integration is a typical one-time
problem for companies that have merged, but it is also of interest for shopping agents collecting data about
identical products offered at different sites. A customer shopping for CDs might want to supply only the different
sites to search on. The entire integration process, from finding corresponding metadata, to detecting entries
for identical CDs, and finally to fuse all conflicting data, possibly favoring the data of the cheapest store, is
performed under the covers. In such a scenario, a schema matching component is of special importance, as
many web sites use different labels for data fields or even no labels at all.

Another application made possible only by automatic data fusion systems like HumMer is the provision of
online data cleansing services. Users of such a service simply submit sets of heterogeneous and dirty data and
receive a consistent and clean data set in response. Such a service is useful for individuals trying to compare
different data sets, but also for organizations not wantingto employ complex ETL procedures for all data sets.

Finally, an important application is disaster data management. In an area affected by a disaster, data about
damages, missing persons, hospital treatments etc. is often collected multiple times (causing duplicates) at dif-
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ferent levels of detail (causing schematic heterogeneity)and with different levels of accuracy (causing data
conflicts). Fusing such data with the help of a graphical userinterface can help speed up the recovery process
and for instance expedite insurance pay-outs or detect insurance fraud.

2 Components for Data Fusion

HumMer combines several larger research projects under oneumbrella. In the following sections we describe
each project in some detail. Related work is references intermittently, but we point out that this article can be no
means be a complete survey for each of the vast fields of schemamatching, duplicate detection, and data fusion.

2.1 Schema Matching and Data Transformation

When integrating autonomous data sources, we must assume that they do not conform to the same schema.
Thus, the first phase in the integration process is the resolution of schematic heterogeneity. This phase proceeds
in two sub-steps: schema matching, i.e., the identificationof semantically equivalent schema elements, and data
transformation, i.e., the bringing the data under a single common schema.

Schema matchingis the (semi-automatic) process of detecting attribute correspondences between two het-
erogeneous schemata. Various approaches that exploit different kinds of information [19], i.e., schema infor-
mation [15], instances [17], or additional metadata [14], have been proposed. As we assume the databases to
contain duplicates according to our scenarios, we apply theDUMAS schema matching algorithm [3]: First, the
DUMAS efficiently detects a few duplicates in two (or more) unaligned databases and then derives a schema
matching based on similar attribute values of duplicates. This key idea is shown in Figure 2 where two detected
duplicate tuples from different sources are used to find a schema matching.
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Figure 2: Schema matching using duplicates

Duplicate detection in unaligned databases is more difficult than in the usual setting, because attribute corre-
spondences are missing, i.e., it is not known which attribute values to compare. However, the goal of this phase
is not to detect all duplicates, but only as many as required for schema matching. Detectingall duplicates is
left to the next HumMer component. DUMAS considers a tuple asa single string and applies a string similarity
measure to extract the most similar tuple pairs. From the information retrieval field we adopt the well-known
TFIDF similarity for comparing records. Experimental evaluation shows thatthe most similar tuples are in fact
true duplicates.

These duplicates can be used for schema matching. If two duplicate tuples have the same or a sufficiently
similar attribute value, we assume that these attributes correspond. Because two non-corresponding attributes
might have a similar value by chance, we use several duplicates instead of only one. Two duplicates are com-
pared field-wise using theSoftTFIDF similarity measure[6], resulting in a matrix containing similarity scores
for each attribute combination. The matrices of each duplicate are averaged, and the maximum weight match-
ing is computed, resulting in a set of 1:1 correspondences. Correspondences with a similarity score below a
given threshold are pruned. HumMer allows users to manuallyadd missing or delete false correspondences
simultaneously across multiple data sources.
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Like most related approaches, the matcher currently incorporated into HumMer is restricted to 1:1 correspon-
dences. However, we have also developed a matcher that is able to detect complex 1:n or m:n correspondences
based on the detected duplicates. The underlying idea is to combine source or target attributes and merge their
respective matrix rows or columns in the matching step. The algorithm searches through the space of similarity
matrices using greedy pruning, i.e., if a merge does not improve the overall matching, that branch of the search
tree is not further considered.

In addition to complex matchings, we have also devised a duplicate-based matcher for schemata consisting
of multiple tables. The algorithm starts with a few correspondences and crawls though the schemata by joining
neighboring tables. In each step, additional correspondences are detected using the DUMAS matcher, which are
used in the following steps to add more tables.

Thus with the schema matching step, schematic inconsistencies are detected and “marked” with appropriate
correspondences. In the next sub-step the inconsistenciesare overcome by transforming the data so that it
appears under a single common schema.

The following transformationphase is straightforward because we assume only union-typeintegration:
Without loss of generality, we assume that one schema is the preferred schema, which determines the names
of attributes that semantically appear in multiple sources. The attributes in the non-preferred schema that partic-
ipate in a correspondence are renamed accordingly. All tables receive an additionalsourceIDattribute, which is
required in later stages. Finally, the full outer union of all tables is computed.

If correspondences cross multiple relations of source or target schema joins are necessary and a Clio-style
data transformation becomes necessary. In this paper we assume that integration is to be performed over relations
talking about same types of objects. Only then does duplicate detection and conflict resolution as described in
the next sections make sense. Any more complex transformations should be performed in beforehand.

2.2 Duplicate Detection

Duplicate detection is a research area with a long tradition. Beginning with early work on record linkage [10],
among many others a prominent technique for domain-dependent duplicate detection is the sorted neighborhood
method [13]. More recently, several approached have emerged that regard not only data in a single table, but
also data in related tables (or XML elements) to improve accuracy [1, 9, 21].

In [24] we introduce an algorithm that detects duplicates inXML documents. More precisely, duplicate
XML elements are detected by considering not only their textnodes, but also those of selected children, i.e.,
elements involved in a 1:N relationship with the currently considered element. We map this method to the rela-
tional world (similar to [1]) to detect duplicates in a tableusing not only its attribute values, but also “interesting”
attributes calleddescriptions, from relations that have some relationship to the current table. In this section, we
first describe how descriptions are selected. Then, we introduce the duplicate detection procedure that compares
tuples based on their descriptions.

2.2.1 Description Selection

Generally, we consider attributes interesting for duplicate detection being attributes that are (i) related to the
currently considered object, (ii) useable by our similarity measure, and (iii) likely to distinguish duplicates from
non-duplicates. We developed several heuristics to selectsuch attributes in [25], based on descendant depth,
data type, content model, optionality of elements, etc. In the relational data integration scenario descriptions are
determined as follows: The attributes related to the currently considered object are attributes of the integrated
table and attributes of “children tables”. We consider as children all tables that contain foreign keys referencing
the tables matched in the previous step. For efficiency, we limit the children tables to direct children only, i.e.,
no descendants reached by following more than one referenceare considered.
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The default description selection proposed by HumMer is theset of corresponding attributes between the
two schemas, i.e., those that include values for tuples fromboth sources, opposed to values of non-matching
attributes, which are padded with NULL values. Indeed, NULLvalues do not distinguish duplicates from non
duplicates and thus such attributes should not be included in the description.

The heuristic of selecting only matched attributes as descriptions applies both to the already matched tables
and attributes from their children tables. Therefore, the children tables need to be matched and integrated as
well. Currently, children tables are matched pairwisely and the transitive closure over these pairwise matches is
the final result. More specifically, let tablesT1 andT2 be the two matched tables, and let{T1,1, . . . , T1,k} and
{T2,1, . . . , T2,m} be their respective children tables. Then, every pair of tables(T1,i, T2,j), 1 ≤ i ≤ k, i ≤ j ≤ m
is matched. A given threshold determines if a pair of children tables correspond at all as shown in Figure 3. If
they do, their data in the matched attributes can be used for duplicate detection as well.
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Figure 3: Matching children tables to improve duplicate detection

Once the descriptions is determined automatically, HumMerprovides a comfortable means to modify the
selection of interesting attributes proposed by our heuristics.

2.2.2 Duplicate Detection

After finalizing the selection of descriptions of an object,tuples are compared pairwisely using a thresholded
similarity approach. More specifically, using a similaritymeasuresim(t1, t2) that computes the similarity be-
tween two tuplest1 andt2, we classify a tuple pair as sure duplicate, possible duplicate, or non-duplicate, using
two thresholdsθsure andθposs in the following duplicate classifier.

Γ(t1, t2) =







t1 andt2 sure duplicates ifsim(t1, t2) > θsure

t1 andt2 possible duplicates ifθposs ≤ sim(t1, t2) ≤ θsure

t1 andt2 non-duplicates otherwise

The currently used similarity measuresim() is proposed in [25] and takes into account (i) matched vs.
unmatched attributes, (ii) data similarity between matched attributes using edit distance and numerical distance
functions, (iii) the identifying power of a data item, measured by a soft version of IDF, and (iv) matched but
contradictory vs. non-specified (missing) data; contradictory data reduces similarity whereas missing data has
no influence on similarity. The number of pairwise comparisons are reduced by applying a filter and comparing
only the remaining pairs. The filter used in combination withour similarity measure is the filter proposed in [25]
that is defined as an upper bound to the similarity measure. Hence, ifsim(t1, t2) ≤ filter(t1, t2) ≤ θposs, then
we can classify pair(t1, t2) as non-duplicate without computing the actual similarity measure, which is more
complex to compute than the filter.

Pairs classified as possible duplicates are presented to theuser in descending order of similarity. The user
can then manually classify the pair as sure duplicate or non-duplicate. Using the descending order of similarity,
users can often conclude that after classifying several pairs as non-duplicates, the remaining pairs, which are
less similar, are also non duplicates.
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When all pairs of sure duplicates are finally available, the transitive closure over duplicate pairs is formed
to obtain clusters of objects that all represent a single real-world entity. The output of duplicate detection is
the same as the input relation, but enriched by anobjectID column for identification. Thus, inconsistencies at
tuple-level are resolved: The identity of each object and its multiple representations is know. Conflicts among
duplicates are resolved during conflict resolution.

2.3 Conflict Resolution

The last step in a data integration process, afterschema matchingandduplicate detectionhas been done, is to
combine the different representations of a single real world object into one single representation. This step is
referred to asdata fusionand aims at resolving the still existing conflicts (uncertainties and contradictions) in
the attribute values. First we show a query language to specify for each attribute a functions to resolve conflicts.
Thereafter we present initial ideas to optimize queries involving data fusion.

2.3.1 Specifying data fusion

We considerdata fusionas a step in the integration process that is guided by an (expert) user. The user specifies
how the different representations and their values are usedin determining the final representation, whereas a
specific information system, like our HumMer system, carries out the fusion itself. In fusing data from different
sources, a user can follow one of several different strategies that are repeatedly mentioned in literature [11, 16,
18, 20, 22] and categorized in [5]. Example strategies are:

• CONSIDER ALL POSSIBILITIES: Conflicts areignoredand all possible combinations of values (occasion-
ally creating ones that have not been present in the sources before) are passed on to the user, who finally
decides about which “possible world” to choose.

• TRUST YOUR FRIENDS: Specific conflicts areavoidedby taking a preference decision beforehand and
using only values from a specific source, leaving aside the (possibly conflicting) values from other sources.

• CRY WITH THE WOLVES: Choosing the value that is most often used, results inresolvinga conflict by
taking one of the existing values and following the idea thatcorrect values prevail over incorrect ones.

• MEET IN THE MIDDLE: Another possible way ofresolvingthe conflict is in creating a new value that is a
compromise of all the conflicting values, e.g., an average over several numeric values.

Data fusion in the HumMer system is implemented as a relational operator. It takes as input a number of
tables containing multiple representations of a real worldobject and gives as output one table with exactly one
representation for each real world object. This is done by grouping and aggregation, hereby using a global key to
group the representations. The key needs to be provided by duplicate detection techniques applied before on the
data. In each group conflicts may arise in each column that is not used for grouping. These conflicts are resolved
per column by applying a conflict resolution function to the data. Functions that can be used do not only include
the standard SQL aggregation functions (min, max, sum, . . . )but other more elaborate functions as well, for
instance functions that not only use the conflicting values in determining a final value, but also other data from
the same attribute, data from other attributes or metadata as given by the query context (e.g., statistics, meta data
of sources, etc.). The HumMer system is extensible allowinguser defined conflict resolution functions. In the
following a brief list of some functions that could be used:

• MAX / M IN: Returns the maximum/minimum value of the conflicting data values.

• GROUP: Returns a set of all conflicting values and leaves resolution to the user.
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• SHORTEST/ LONGEST: Chooses the value of minimum/maximum length.

• VOTE: Returns the value that appears most often among the presentvalues. Ties could be broken by a
variety of strategies, e.g., choosing randomly.

• FIRST / LAST: Takes the first/last value of all values, even if it is aNULL value.

• COALESCE: Takes the firstNON-NULL value appearing.

• CHOOSE(SOURCE): Returns the value supplied by the specific source.

• MOST RECENT: Recency is evaluated with the help of another attribute or other metadata.

The fusion operation is expressed with the help of the FUSE BY statement as described in [4]. Defaults, such
as usingcoalesceas the default conflict resolution function or using the order of the tables given as preference
judgement, as well as implicitly removing subsumed tuples,make it easy to specify conflict resolution in an
SQL-like syntax. By issuing such a FUSE BY statement the user is able to accomplish many of the different
possible fusion strategies. An example for a FUSE BY statement is:

SELECT Name, RESOLVE(Age, max), RESOLVE(Address, choose(EE_Students))
FUSE FROM EE_Students, CS_Students
FUSE BY (Name)

This statement fuses data two student tables, leaving just one tuple per student. Students are identified by their
name, conflicts in the age of the students are resolved by taking the max (assuming that people only get older),
and conflicts in the address are avoided by choosing the address from source EEStudents (implementing a
TRUST YOUR FRIENDSstrategy).

2.3.2 Optimizing data fusion

In an information integration scenario a FUSE BY statement could be seen as a mediator, composing different
sources and shaping a consistent view on these sources. Querying such a view results in a query tree combining
other relational operators and the fusion operator (e.g., Figure 4). The sources used in the view may themselves
be complex queries involving other relational operators aswell.

σAge=20

φName,max(Age),choose(Address,EE)

CSEE=⊲⊳Name

ADDRESSSTUDENT

Figure 4: Query on two tables EE and CS involving Fusion and selection, assuming dirty tables CS and Student,
and clean table Address (one address per name). Theφ operator denotes fusion

For ad-hoc queries efficiency is important. To support algebraic query optimization we analyze different
properties of the conflict resolution functions, e.g., commutativity, order dependance, decomposability, etc.
These play an important role when deciding whether a fusion operator can be pushed down below a join, or
a selection can be pushed down below a fusion, etc. Rules for decomposable, order- and duplicate insensitive
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functions, such as max and min, can be taken from the literature on optimization of grouping and aggregation
([12, 23]) and used in pushing down fusion beyond joins. Likewise, rules for selection pushdown below Group
By for these kinds of functions also apply to fusion [7].

An example for such a transformation is in Figure 5, where early selection and fusion decreases the car-
dinality of intermediate results. We are currently investigating rules for the more complex functions (VOTE,
CHOOSE, etc.), eventually making it necessary to use an extended relational algebra that is order-aware. The
rules will be included into the query optimizer of the HumMersystem. Choosing among different equivalent
plans in a cost based fashion (physical query optimization)is currently only supported in the HumMer system
by using a tuple-based cost model.

σAge=20

φName,max(Age),choose(Address,EE)

φName,max(Age)

σAge≥20

πName,Age

CS

⊲⊳Name

ADDRESSφName,max(Age)

σAge≥20

STUDENT

Figure 5: Query from Figure 4, optimized, decreasing the size of intermediate results by pushing selection and
fusion down the tree. Theφ operator denotes fusion

3 Composing the Individual Steps

The Humboldt Merger is implemented as a stand-alone Java application. The underlying engine of the entire
process is the XXL framework, an extensible library for building database management systems [8]. This
engine together with some specialized extensions handles tables and performs the necessary table fetches, joins,
unions, and groupings. On top of the process lies a graphicaluser interface that drives the user experience.
HumMer combines the techniques described in the previous section to achieve all phases of data fusion in a
single system. A metadata repository stores all registeredsources of data under an alias. Sources can include
tables in a database, flat files, XML files, web services, etc. Since we assume relational data within the system,
the metadata repository additionally stores instructionsto transform data into its relational form. This section
briefly describes the architecture and dataflow within the system, as shown in Fig.??.

HumMer works in two modes: First, querying via a basic SQL interface, which parses FUSE BY queries
and returns the result. Second, querying via a wizard guiding users in a step by step fashion: Given a set of
aliases as chosen by the user in a query, HumMer first generates the relational form of each and passes them to
the schema matching component. There, columns with same semantics are identified and renamed accordingly,
favoring the first source mentioned in the query. The result is visualized by aligning corresponding attributes on
the screen. Users can correct or adjust the matching result.Data transformation adds an extra sourceID column
to each table to store the alias of the data source and performs a full outer union on the set of tables.
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The resulting table is input to duplicate detection. If source tables are part of a larger schema, this component
consults the metadata repository to fetch additional tables and generate child data to support duplicate detection.
First, the schema of the merged table, along with other tables that still might reside in the databases is visualized
as a tree. Heuristics determine which attributes should be used for duplicate detection. Users can optionally
adjust the results of the heuristics by hand within the schema. The duplicate detection component adds yet
another column to the input table – an objectID column designating tuples that represent the same real-world
object. The results of duplicate detection are visualized in three segments: Sure duplicates, sure non-duplicates,
and unsure cases, all of which users can decide upon individually or in summary.

The final table is then input to the conflict resolution phase,where tuples with same objectID are fused into
a single tuple and conflicts among them are resolved according to the query specification. At this point, the
relational engine also applies other query predicates. Thefinal result is passed to the user to browse or use
for further processing. As an added feature, data values canbe color-coded to highlight uncertainties and data
conflicts. Also HumMer collects lineage information for each value, so that users can see the original conflicting
values and their data source. Figure 6 shows a screen shot of this final view.

Figure 6: Screenshot of HumMer

4 Outlook

We conclude by reiterating the observation that surprisinglittle work has been done in the field of data fusion to
improve the quality of data. A survey of the field of duplicatedetection, which would be an obvious place for
authors to at least indicate what is to be done once duplicates are detected, yielded no satisfactory approaches. In
fact, a common synonymous term for duplicate detection is “duplicate elimination”, which precisely describes
what many authors propose: Simply remove all but one representative of a duplicate group.
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In the field of data integration there are indeed a few concrete approaches to data fusion as cited exemplarily
in Section 2.3. Those results have not yet moved to commercial databases and applications yet, despite great
efforts of vendors to extend databases to wrap heterogeneous data sources. Data fusion in real-world applications
is mostly performed manually or is hard-coded into proprietary applications or ETL scripts. We believe that
inclusion of data fusion capabilities into the DBMS kernel is promising.
Acknowledgments. Christoph Böhm and Karsten Draba were very helpful in implementing HumMer. This
research was supported by the German Research Society (DFG grants no. NA 432 and GRK 316).
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Contributions to Quality-Aware Online Query Processing
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Abstract

For non-collaborative data sources, quality-aware query processing is difficult to achieve because the
sources generally do not export data quality indicators. This paper presents a prospective work on the
declaration of metadata describing data quality and on the adaptation of query processing for taking
into account constraints on the quality of data and finding dynamically the best trade-off between the
cost of the query and the quality of the result.

1 Introduction

In both centralized or distributed query applications (e.g., in decision support area or Bussiness Intelligence), a
set of interesting data sources may be potentially candidate to answer a query. But these sources are usually non-
collaborative and do not export information describing thelocal cost of their query processing, neither indicators
of their quality of service (e.g., resource accessibility,reliability, security, etc.), nor information describingthe
quality of their content (e.g., data accuracy, availability, freshness, completeness, etc.). Relational query opti-
mization has traditionally relied upon table cardinalities when estimating the cost of query plans they consider.
While this approach has been and continues to be successful,the need to consider the various dimensions of
data quality (such as accuracy, freshness, completeness, etc.) for query execution requires a particular approach.
The dual problem is to fix the query cost and search for the “best quality” result, or to fix the result quality and
optimize the query cost.

Data quality awareness when querying single or several distributed data sources in a dynamic and distributed
environment raises several interesting questions such as:

- Selecting dynamically the adequate data source: different data sources may answer a global query with
different response times, query costs and various levels ofdata quality. How to define strategies for select-
ing adaptively the most appropriate sources for answering aquery with suitable (or, at least, acceptable)
data quality?

- Defining semantically and qualitatively correct distributed query plans: the result of a global query is
classically built depending on the particular order for theexecution of subquery plans. For ensuring data
quality awareness, this technique must combine in a coherent way both information and meta-information
from the various data sources (i.e., data quality metadata if available). Data quality levels are often un-
known, heterogeneous from one source to another, more or less aggregated or locally non uniform (i.e.,

Copyright 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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a source may provide excellent data reliability for one specific area, data subset or data type but not for
the others). In this context, one of the problems is to control and merge the data quality indicators in a
consistent way.

- Making trade-offs between the query cost and the measurable result quality: because one may accept
a query result of lower quality (if it is cheaper or has a shorter response time than if the query cost is
higher), it’s necessary to adapt the query cost to users’ quality requirements. The objective is to measure
and optimally reduce the cost and bargain query situations where the system searches for solutions that
“squeeze out” more gains (in terms of data quality of the query result) than the query without data quality
constraints.

- Developing query cost models to evaluate whether the expected benefits from a “quality-augmented”
query compensate for the cost of computing or predicting quality indicators and collecting feedbacks
from the source and the environment during execution time. The difficulty is to adapt existing query
processing techniques to environments where resource availability, allocation, query cost and data quality
may be not decidable at compile time.

Several “static” approaches have been proposed to select the data sources before the query processing;
they mainly use metadata describing the source content, structure, and quality [6, 7]. The work presented in
[6] studied the alternative distributed query plans for mediation systems. Naumann proposed a distributed query
planning algorithm that enumerates query plans in such way that it usually finds the bestN plans after computing
only a fraction of the total number of plans. Upper quality bounds for partial query plans are constructed and
thereby non-promising subplans are early pruned in the search tree. This technique relies on source-specific
quality criteria and also query-specific quality criteria for the selection phases in the planning algorithm. In [7],
Naumann extends this work and proposes mechanisms to followthe execution of the query and, if necessary,
to cancel it or change the query plan execution. In [2], the author proposes to take into account data quality
estimates when evaluating the users query and deciding the best manner of carrying out the query (which sources
to reach, which server to use, etc).

To the best of our knowledge, the issues of data quality-awareness in online query processing have not been
much investigated in the literature. In this short paper, weconsider data quality for per-query adaptivity of the
query processing, and we attempt to approach the problem of quality-aware online query processing extending
our previous work in [1].

The remainder of this paper is organized as follows. Section2 presents an example that illustrates the need
for ensuring data quality for online query results. Section3 states the problems to tackle for quality-aware
query processing and briefly presents our proposed solutions for data quality declaration, data and metadata
partitioning and quality-aware online query processing. In Section 4, we conclude and present topics for future
research.

2 Revisited Example

Adapting the example of Kossmannet al. [5], Figure 1 shows the skyline of seaside hotels of Brittany(France)
which are supposed to be cheap and close to the beach without considering data quality. Submitting his query,
the user wants to get abig pictureof hotels satisfying his preferences and then, choose the most “promising”
hotel to make his room reservation.

In Figure 1, the connected points represent the hotels that dominate the others in terms of minimal price and
distance to the beach. The underlying assumption is that theuser fully trusts the quality of the data describing
the hotels. Retrieved query points are located in the2-d Data Space.
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Figure 1: Classical Skyline Query Result

Figure 2: Quality-Blind Skyline Query Result Figure 3: Quality-Aware Skyline Query Result

Consider now data quality as a “multidimensional, complex and morphing concept” [3]. Quality metadata
(such as freshness or accuracy, for example) can be associated, at a given time, to each retrieved data point
with (price, distance)as coordinates. Figure 2 shows the2-d Quality Metadata Spacedescribing data accuracy
and freshness associated to each retrieved data point of theprevious figure. The dotted lines joining the data
points from the2-d Data Spaceto the points in the2-d Quality Metadata Spacerepresent a scoring function that
computes the score (as coordinate) for each dimension of quality (e.g., accuracy and freshness).

Because, the main idea of Skyline queries is to give instantaneously the user the interesting options from
a potentially large set of data and, then, let the user make a decision, one might legitimately wonder if a so-
called “interesting” points are meaningful when the available data are “dirty” (e.g, not accurate, not up-to-date
anymore, or even worse, not complete, or not credible, etc.).

As the probability that a decision uses data increases, the needed data quality increases as well.
Actually, in this example, we observe that interesting points which are part of the initial and “quality-blind”

skyline (Fig. 2) have low scores for data accuracy and freshness. In the2-d Quality Metadata Spaceof Figure
3, the optimal quality is represented as a line connecting the points (⋆) that dominate others points in terms of
maximal quality scores for data accuracy and freshness. Thecorresponding data points in the2-d Data Space
(called “quality-aware” Skyline) may not be the same retrieved points of the initial “quality-blind” Skyline of
hotels with minimal price and distance.

Consequently, answering online queries with data quality-awareness implies to compute interesting points
(and recompute them continuously) to produce first results quickly and simultaneously check if they are also
optimal in terms of data quality. This may change the initial“quality-blind” skyline of the2-d Data Spaceto
produce results with optimal data quality.

3 Problems Statement and Propositions

Ensuring data quality awareness in query processing requires to propose algorithmic, computational, and
technical solutions to the five following problems:
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1. the definition and both offline and online computation ofgenericanduser definedfunctions for measuring
or predicting data quality dimensions that could be either specified or called in a declarative and flexible
way, or “hard-coded” in the query processor enabling the careful quality-aware query analysis, the prepa-
ration of alternative query evaluation plans at compile time, and the selection of quality-aware query plans
at run time,

2. the appropriate partition of bothk-dimensional data and associated quality metadata; for thecase of
skyline queries, the partioning method has to enable fast and efficient nearest neighbor searches in the
multidimensional data and metadata spaces,

3. the multi-objective optimization of the queries both on data dimensions and on data quality dimensions
(for finding the best trade-offs between the cost, the delay of the query, and the quality of the result),

4. the adaptive query processing enabling interactive result presentation to users with possibly changing
behaviours when submitting their queries and eventually their requirements or preferences in terms of
data quality,

5. the transparent, reversible and explainable result presentation of “quality-augmented” queries, so that
these results can be understood and accepted by the users.

In our current work, we attempt to propose several solutionsfor these requirements for ensuring data quality
awareness in the query processing.

3.1 Declaration and Computation of Data Quality Indicators

In [1], we have proposedXQuaL, a first version of a quality-extended query language combining SQL and QML
(Quality-of-Service Modeling Language) proposed by [4] and we have implementedXQuaLprocessor version
2 upon TelegraphCQ V0.2.XQuaLis a generic query language extension for describing and manipulating, in a
flexible way, data and source quality contracts withSFW-Qwith queries.

A quality-extended query (Qwith-query) is a SFW query followed by aQwith operator used to declare
the required quality constraints based on the notions of quality contract types, contract instances and quality
profiles. Table 1(a) presents examples of quality contract types composed of a list of ten named measurable di-
mensions (e.g.,dataAge for the contract type namedFreshness), their corresponding dimension type (noted
dim-type1, . . ., dim-type10 for the sake of simplicity), the target of the measure that can be applied re-
spectively on values, attribute domains, records, tables or database (notedON VALUE, COLUMN, RECORD,

TABLE, DATABASE), and the identifier of the measure function that computes the quality dimension indicator.
For example, the function identified byfid1 for the dimensiondataAge computes the difference between the
current date and the date of creation of each record in the database.

The creation of a contract type associated to a current database implies the execution of the identified func-
tions (i.e., the computation of the declared data quality metrics) and the creation of the contract instances
that correspond to the various granularity levels of targeted data. A contract is an instance of a contract
type. Table 1(b) gives examples of contract instances, respectively namedfresh, accurate, complete,
and available that respectively correspond to the previously declared contract types namedFreshness,
Accuracy, Completeness, andAvailability.

The contract typeFreshness contract has three dimensions (notedd1,· · ·, d3 as comments in Table
1(a) and respectively nameddataAge, lastUpdate, and updateFrequency). The type of dimension
updateFrequency is dim-type3 composed of a numerical value and a unit/day (see Table 1(b)) and it
is computed by the function identified byfid3 applied on each table of the considered database.

Similarly, the dimensionfailureMasking (d8) of contract typeAvailability is defined on the whole
database and computed by functionfid8. dim-type8, not presented for the sake of simplicity, corresponds

35



CREATE CONTRACTTYPE Freshness(
dataAge dim-type1 ON RECORD BY FUNCTION fid1, //d1
lastUpdate dim-type2 ON VALUE BY FUNCTION fid2,//d2
updateFrequency dim-type3 ON TABLE BY FUNCTION fid3); //d3

CREATE CONTRACTTYPE Accuracy(
percentageOfContradictions dim-type4 ON VALUE BY FUNCTION fid4, //d4
NumberOfApproximateMatching dim-type5 ON VALUE BY FUNCTION fid5); //d5

CREATE CONTRACTTYPE Completeness(
percentageOfNullValues dim-type6 ON VALUE BY FUNCTION fid6, //d6
numberOfNullValuesPerQuery dim-type7 ON VALUE BY FUNCTION fid7) ; //d7

CREATE CONTRACTTYPE Availability(
failureMasking dim-type8 ON DATABASE BY FUNCTION fid8, //d8
serverFailure dim-type9 ON DATABASE BY FUNCTION fid9, //d9
numberOfFailures dim-type10 ON DATABASE BY FUNCTION fid10) ; //d10

CREATE CONTRACT fresh Freshness(
dataAge < 4200 seconds;
lastUpdate == 4500 seconds;
updateFrequency == 3 / day);

CREATE CONTRACT accurate Accuracy(
percentageOfContradictions < 15%;
NumberOfApproximateMatching < 1 / source);

CREATE CONTRACT complete Completeness(
PercentageOfNullValues == 8 %;
NumberOfNullPerQuery == 2 / query);

CREATE CONTRACT available Availability(
failureMasking IN {noExecution, response};
serverFailure == initialState ;
numberOfFailures < 10 / year );

(a) Quality Contract Types (b) Quality Contract Instances

Table 3: Quality Contract Declaration

to the set of possible values amongOmission, lostResponse, noExecution, response. Creating quality
contract types, our objective is to incorporate a set of primitives and data quality functions (e.g.,fid1, · · ·,
fid10) that can be both computed offline and recomputed or estimated at runtime.

A quality profile can be created in order to specify quality requirements and constraints by combining several
instances of contract types with a particular weight. Table2 gives an example of a profile namedquality
composed of the four previously declared contract instances (Table 1(b)) with a weighted function (WEIGHT()).

CREATE PROFILE quality(
REQUIRE(fresh, accurate, complete, available)
WEIGHT(fresh 0.4, accurate 0.3, complete 0.2, available 0.1));

Table 4: Quality Profile Declaration

One (or several) profile(s) may be used in theQWITH part of theXQuaLqueries and applied on the attributes,
tables or database involved in the query. Table 3 presents the naive “nested-loops” way to compute the revisited
skyline example with data quality awareness. Price and distance values are queried from tableHotels and the
profile namedquality given in Table 2 is applied on the price and distance attributes with theQWITH operator.

SELECT *
FROM Hotels h
WHERE h.region=’Brittany’ AND NOT EXITS(

SELECT *
FROM Hotels h1
WHERE h1.region=’Brittany’ AND

h1.distance <= h.distance AND
h1.price <= h.price AND
(h1.distance < h.distance OR
h1.price < h.price))

QWITH (PROFILE(quality) ON (price, distance));

Table 5: SFW-QWITH Query example

3.2 Quality Metadata and Data Partioning

As soon as a contract type is created and instanciated for theconsidered database, quality scores are computed
for each of the targeted entities (i.e., data values, columns, records, tables of the database). For the sake of
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simplicity, in the rest of this paper, we choose to focus on the record level among the other data granularity
levels and we consider data points as vectors in ad-dimensional data space withd, the number of numerical
attributes of the record. Leti (i ∈ [1..n]) representing the data points andj (j ∈ [1..k]) be the required quality
profiles (e.g., combiningfresh, accurate, complete, andavailable). Let zij ∈ [minij ,maxij ] be the
instances of the declared contract types computed for each data pointi on thejth required quality dimension.

Each data point has a scoring functionscoreij : [minij,maxij ] → [0, 1] that gives the score value of the
data pointi assigned to the quality dimensionj in the range of its acceptable values. For convenience, scores
are kept in the interval[0, 1].

The relative importance that the user assigns to each dimension is modeled as a weight,wj , that gives the
importance of the quality dimensionj (expressed in the declaration of the profile, see Table 2). Weassume the
weights are normalized,i.e.,

∑

1≤j≤k wj = 1, ∀j ∈ [0, 1]. An aggregate scoring function for data pointi in the
k-dimensional quality space defined byz = (z1, · · · , zk) is defined as :Scorei(z) =

∑

1≤j≤k wj · scoreij(zi).
For analytical purposes we restrict our study to an additiveand monotonically increasing or decreasing value

scoring function.
As an illustration based on the quality scores of several data points, we can represent a Kiviat graph on

a grid of equal-distanced points (i.e., points with coordinates in[0, 1]) such that all the vertices are both grid
points and score values for each quality dimension. The circumcenter is the point where all quality dimensions
are maximal and equal to 1. Figure 4 shows the Kiviat graph forfive data points with their corresponding
scores on ten quality dimensions (noted,d1, · · ·, d10). A polygon represent the quality of a data point over
the specified quality contract types. Searching for the optimal quality data point (for more than three quality
dimensions) correspond to find the polygon with the minimal area. Pick’s theorem provides a simple formula
for calculating the areaA of each obtained polygon in terms of the numberi of interior points located in the
polygon and the numberb of boundary points placed on the polygon’s perimeter, as:A = i + b/2 − 1.

Figure 4: Kiviat Graph for Five Data Points in10-d Data Quality Metadata Space

Based on these considerations and faced to high-dimensional data and metadata sets, we propose a method
for partitioning data and associated quality metadata. Therepresentation, calledDQ Hyper-Pod, consists of
partitioning data that carves both thed-dimensional data space into homogeneous regions (as hyperspheres) and
thek-dimensional quality metadata space into lines fork ≤ 2 or polygon areas fork ≥ 3. TheDQ Hyper-Pod
partition method is based on two concepts, the distance fromthe center of the hypersphere and the projection
of the data quality scores that creates a line or a polygonal area whose center is the data point (vector) in the
multidimensional data space. The lines or areas representing data quality metadata compose a pod (or envelope)
upon each data hypersphere. TheDQ Hyper-Podpartition method is defined in an Euclidean space and requires
an offline phase during which data vectors are first clusteredin minimum bounding hyperspheres and outliers
isolated.

Consider data points in the2-d Data Spacerepresenting the vectors for(price, distance)of the Skyline of
hotels of Figure 1:
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Figure 5:DQ Hyper-PodRepresentations in1-d (a),2-d (b), and8-d (c) Quality Space

- For 1-d Quality Space, the representation ofDQ Hyper-Podpartitioning method is hyperspheres with or-
thogonal lines whose length corresponds to the quality score of each data point for the only one considered
quality dimension (see Fig. 5(a)).

- Fork-d Quality Space(k ≥ 3), the representation ofDQ Hyper-Podpartitioning method is right cones with
their vertex above the center of their base (also the center of the hypersphere). Each cone of heighth and
base radiusr oriented along thez-axis, with vertex pointing up, and with the base located atz = 0. A slant
heightsj of the cone is a distance measured along a lateral face from the base to the apex. It supports one
quality dimension notedj, such as the score of each data pointi is located on it, as:∀i, scoreij ∈ [0, sj ]
with sj =

√
h2 + r2 = 1 (see Fig. 5(c)). A polygonal area is defined for each data point joining its scores

coordinates per dimension located on respectively on the slant heights of the cone.

- For2-d Quality Space, the representation ofDQ Hyper-Podpartitioning method is a particular case where
polygon areas are reduced to lines whose length are in[0, r] and coordinates are defined by the quality
scores coordinates on two opposite slant heights of the cone(see Fig. 5(b)).

In Figure 5, we consider the same hypersphere centered onC1 with five data pointsP1, · · · , P5 in the three
cases (a), (b), and (c) respectively for one, two or eight quality dimensions for which scores are computed
simultaneously with the contract types creation.

3.3 Quality-Aware Online Queries

Back to the initial example, nearest neighbor search is applied in the context of skyline queries [5]. First, let
us recall its principle and howDQ Hyper-Podpartioning method can be used for data quality-awareness inthe
online query processing.

We assume we focus on two specific hyperspheresSi andSj that cluster data points in the2-d Data Space
(see Figure 6). The minimum hypersphere bounding the data points, calledSi, is centered onCi and its radius
is ri. dmini

denotes the minimum distance between a query pointq andCi, the center of the hypersphereSi.
Based on geometrical properties of these data regions, a classical NN algorithm will first use filtering rules
and discard the hyperspheres which the minimum distance to the queryq is greater than the farest points of
another hypersphere, as: ifdmin(q, Ci) ≥ dmax(q, Cj) then disguardSi. Then, the NN algorithm will rank
the hyperspheres based ondmin, the distance to the query point. For each hypersphere, the distances between
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the data points and the query point are computed and ranked. Finally, the sequential search is stopped when
dmin(q, Ci) ≥ d(q, nnk) with nnk thekth retrieved query points.

Figure 6: Quality-Blind NN Search

For ensuring data quality-awareness in this processing, weuse theDQ Hyper-Podpartioning method and
consider the quality metadata computed for each data point.Depending on the number of quality dimensions
considered in the “quality-augmented” query, the NN algorithm is adapted and applied to the appropriateDQ
Hyper-Podrepresentation in the different cases of one, two or more quality dimensions. Similarly to data points,
the query is applied the thed-dimensional space and thek-dimensional quality space. Thus, it is a vector in
R

d × R
k. The adaptation of the NN algorithm mainly consists of two steps:

Step 1: compute the minimal distance to the query point (without considering quality,i.e., z = 0) and rank the
hyperspheres only based on the data space for retrieving thenearest neighbor,

Step 1: for each hypersphere in the list, consider the quality axis (i.e., z-coordinate) and:

- in the1-d Quality Space, rank the data points based on the distance between each datapointPi with
x-, y-, andz-coordinates, notedPi = (xi, yi, zi) and the queryq = (qx, qy, qz), as:
d(q, Pi) =

√

(xi − qx)2 + (yi − qy)2 + (zi − qz)2 for zi andqz ∈ R,

- in the 2-d Quality Space, rank the data points based on the lengthLi defined by(z1 · r
h

+
d(q, Ci), 0, z1) and (z2 · r

h
+ d(q, Ci), 0, z2) with z1 andz2 the scores of the data pointi on the

two quality dimensions (zi ∈ R
2) in the hypershere centered onCi with radiusr and heighth and

d(q, Ci) the distance between the query coordinates and the center ofthe hypersphere,

- in thek-d Quality Spacewith k ≥ 3, rank the data points based on the areaAi of the polygon defined
by z = (z1, . . . , zk) the vector of quality scores of each data point (zi ∈ R

k).

Figures 7, 8 and 9 respectively show the three case of NN search considering the quality spaces with one,
two and four dimensions. In these cases, the query requires hotels with minimal price and distance to the beach
and maximal data quality on the declared dimensions in theQWITH part of the query, that’s the reason why the
quality-augmented query is reduced to a single point (e.g.,((0, 0), (1, 1, 1, 1)) in Fig. 9), and the algorithm rank
the data points based on the distance between the apex of eachcone in theDQ Hyper Podrepresentation and
their aggregate quality scores represented as lines or polygons.

In Figure 7, the algorithm will rank the data points inside each hypersphere based on the distance between
the quality-augmented query point and the point defined by the score on the considered dimension. In Figure 8,
the algorithm will rank the data points inside each hypersphere based on the length of the lines defined by the
scores on the two considered dimensions.

In Figure 9, the algorithm will rank the data points inside each hypersphere based on the area of the polygon
associated to each data point and defined by the scores on the various considered dimensions.
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Figure 7: Quality-Aware NN search Considering One Quality Dimension

Figure 8: Quality-Aware NN search Considering Two Quality Dimensions

This technique can be easily extended to the cases where the quality scores required in the query are defined
by the user and are not necessarly maximal. Hence, theQWITH part of the query will be evaluated and the corre-
sponding quality scores coordinates, line length or polygon area of the query will be computed and respectively
compared to the list of quality scores coordinates, line lengths or polygon areas that were pre-computed for the
data points clustered in the hyperspheres of theDQ Hyper Podpartition.
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Figure 9: Quality-Aware NN search Considering Four QualityDimensions

4 Conclusion and Future Research

As mentioned in this short paper, providing efficient accessto information sources received a sustained interest
since several decades but an interesting research direction in optimizing queries for single- and multi-source data
management systems is the use of data quality. Few approaches have been proposed to deal with the various
issues of quality-aware query processing mainly in distributed environments (HiQIQ - [7, 6]; ObjectGlobe - [2]).
These issues are particularly challenging due the characteristics of the sources, including autonomy, volatility,
amounts of data, large heterogeneity spectrum oni) data type (e.g., multimedia, XML, relational records, etc.),
ii) on database schema, andiii) on the quality of data and the quality of data management services. An initial
motivation is that the constraints on data quality may reflect the user’s needs better in such environments. And
constraints on information quality are of crucial importance for some critical applications (e.g., homeland se-
curity, business intelligence, etc.). A challenging research and development direction is to build quality-aware
query processing infrastructures and this requires addressing several research issues as outlined in the following:

- Quality of data and quality of service extended query languages. Devise a declarative query language
that targets quality of data and also quality of data management service with the advantage that the same
quality-constrained query specification holds whatever underlying information is available.

- Computation model. In a multi-source infrastructure, the resolution of any “quality-augmented” query
may involve an iterative process between the different systems. We need to devise a computation model
for the interaction of the different (sub-) systems (e.g., wrapper/mediator systems, sources/data warehouse,
peers, Web portals/Web services/Web providers, etc.) in order to ensure data quality awareness (through
quality of data and quality of service contract negotiation, for example), not only for the query processing
but also for the entire data management and processing chain.

- Optimization model. Performance has a prime importance in successfully deploying a quality-aware query
processing infrastructure. It mainly relates to query optimization. One challenge is to define appropriate
metrics to characterize and measure QoS and QoD depending onthe application domain, the systems
capabilities and the required performance. The different query planning strategies focus generally on
finding feasible and optimal sub-goal orderings based on available bindings and supported conditions
at the data sources. Proposed techniques assume a full knowledge of the query capabilities of every
participating source. They rely heavily on the way that information sources are described and the objective
function of the optimizer (e.g., number of sources, response time, etc.). Using the same source description
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and quality description models may not always be possible across a large spectrum of data sources. The
optimization of quality-aware query processing on structured data (i.e., relational records) as well as on
semi-structured data (XML) has to be considered. XML quality-aware query processing is still at its
infancy and constitutes a very interesting trend in the nearfuture.

- Optimization heuristics. In most of the real world applications, it is quite natural that “quality-augmented”
query should meet a number of different and potentially conflicting quality dimensions. Optimizing a
particular objective function may sacrifice optimization of another dependent and conflicting objective.
An interesting perspective is the study the quality-aware query processing problem from the perspective
of multi-objective optimization.

- Quality-aware adaptive query processing. Another interesting trend is the use of adaptive and dynamic
approaches for dealing with quality-aware query optimization. This is motivated by the intrinsic dynam-
ics of the distributed and autonomous sources where unpredictable events may occur during the execution
of a query. The types of actions that are considered in these approaches fall into one of the following
cases:i) change the query execution plans in order to privilege data quality of query results,ii) change the
scheduling of operations in the same query execution plan orin different concurrent query plans,iii) intro-
duce new operators to cater for the unpredictable events (e.g., improvement or degration of data quality),
or iv) modify the order of inputs of binary operators. Adaptive techniques have yet to demonstrate their
applicability to various real applications with large numbers of information sources. There is also a need
to show how they react under heavy quality of data and qualityof data management service fluctuations.
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Abstract

Data analysts often work at a “distance” from the databases they analyze. DBAs of production
databases generally do not give logins to data analysts, whomight run large disabling queries. Since
large and complex databases are often poorly documented, the analyst faces significant problems in
understanding the process of how a database is updated, or even whether the processes are correctly
implemented. The current trend of outsourcing compounds the problem, as the outsourcing provider
has a strong incentive to reveal as little as possible about their operations. In this paper, we explore
the possibility of data mining on database dynamics – that is, performing data mining to explore how
a databases changes over time. Two uses for the results are data quality monitoring to verify that the
database is being properly maintained, and database reverse engineering to give the analyst additional
insight into the structure of a very large but poorly documented database. Our methods use summaries
of the database which are generated by our database profilingsystem, Bellman. This approach allows a
user with limited computational resources to mine databasedynamics.

1 Introduction

Database users frequently work at a distance from their datasources, and do not know how the large and com-
plex databases they use are maintained and updated. In a large enterprise (commercial, scientific, government,
or otherwise), the data producers are often in a different organization than the data consumers and analysts.
Database management issues increase the separation between users and their database. The DBAs of production
databases generally do not give logins to data analysts, outof concern that the analyst might run a crippling
query which interferes with ongoing operations. The current trend of outsourcing compounds the problem, as
the outsourcing provider has a strong incentive to reveal aslittle as possible about their operations. As a result,
the data user lacks a crucial piece of metadata: by what process is the database updated? Even if the analyst
knows what the processes are supposed to be, she doesnt know whether these processes are being followed. In
the case of outsourced databases, no-one in the enterprise may know whether or not the outsourcing provider is
maintaining critical information correctly.

Large and complex enterprises are usually supported by correspondingly large and complex databases. The
most difficult and time-consuming part of a data mining studyis often the identification, acquisition, and clean-
ing of the data to be mined. Similarly, a complex and time consuming first step in database integration is to

Copyright 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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understand the databases to be integrated and how they relate to each other. The basic problem is one of com-
plexity. Production databases which support large and complex enterprises have hundreds to thousands of tables;
a large and complex enterprise will have dozens of such databases. These databases are often poorly and incom-
pletely documented, and existing documentation might be out of date. Even developers who are familiar with
a database can encounter problems while adding functionality to a database to support new applications due
to the complexity of the existing database (the disorder andcomplexity in a database is often the result of the
continuing need to adapt an existing database to new requirements). As a result, the DBA of a large, complex
database might not be fully aware of the database update process, or whether the process is working correctly. A
variety of work has been performed with the goal or side-effect of enabling database exploration and automatic
extraction of metadata. For example, database profiling hasbeen studied in the literature [10] and is the basis
for some commercial database exploration systems [1, 34]. Data integration systems often include facilities for
exploring data integration query results (e.g., Potters Wheel [32], and Clio [18]). Additional relevant research is
discussed in the related works section.

In this paper, we propose to aid in the exploration of a database by providing information about database
dynamics – that is, how the database changes over time. Our methods for mining database dynamics use the
kind of database summary information generated by databaseprofiling systems. By mining database changes
over database summaries instead of database snapshots, we can inexpensively perform large-scale analyses of
database changes. An enterprise data warehouse might gather copies of dozens of production databases together
for correlation, analysis, and data mining. End-users often do not have the resources to host multiple copies
of these snapshots; and in any case many organizations have rules which prohibit the proliferation of database
copies (for version management and data security reasons).Since the database summaries are small, an end-user
can inexpensively support time series analyses of databasechanges even in very large data warehouses. Further,
end-users can store the summaries while they might be prohibited from storing database copies.

There are many applications of database dynamics information; we roughly group them into two types. In
database data quality monitoring, we try to detect anomalous or suspicious behaviors while in reverse engineer-
ing, we try to understand properties of the database.

Database change information is useful for data quality monitoring. We can place a number of a-priori
constraints on the database, then watch for violations. Have important tables or fields been dropped? Did the
unfilled orders table fail to get updated? Conversely, was there a change in a table which should be static? Are
new values infiltrating a field which should have a limited domain? We can also detect possible data quality
problems by searching for deviations from past behavior. For example, a previously static table or field which
exhibits a significant change can indicate either a data glitch or a change in procedures. An active entity which
fails to change can indicate a data warehouse loading problem or a problem in production processes.

One common example of a reverse engineering activity is to try to find the important tables in the database.
This task is surprisingly difficult, e.g. in a poorly documented database with hundreds or thousands of tables.
The database explorer can use a variety of clues to find interesting tables: table and field names, documentation,
the number of rows in a table, and samples of row and field values. Several database exploration systems provide
this kind of information [1, 10, 34], but there is still a missing piece: the update activity on the table. Is the table
regularly updated or is it static? If the table is regularly updated, what is the nature of the update – small or
large; added and deleted rows, or changes in field values? Which fields of a table are being updated? These
properties indicate how the table is used. For example, a static table might be a relic that is no longer in use. A
table of unfulfilled orders should exhibit large changes from week to week, while a table of customers should
exhibit relatively small changes.

In this paper, we explore the use of time series of database profiles, generated by our Bellman profiling tool,
to mine information about database dynamics, which to our knowledge has not been done before (except for
some degree in [23]). Our contributions are:

1. Evaluating the effectiveness of different types of profile data for performing database change detection,
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2. Developing methods for mining information from profile time series, and

3. Evaluating these methods on profile time series from two production databases used by a large enterprise.

Our analysis techniques are deliberately simple exploratory methods – the contribution of this paper is the
extraction and exploration of a novel data set. Nevertheless, these techniques can find many interesting properties
of the databases we explore.

1.1 Related Work

The results in this paper use data gathered by a database profiling system [13] small but informative summaries
of database contents. Commercial providers of profiling systems include Similarity Systems [34] and Ascential
[1]. For our research we use data collected by Bellman [10] developed and used at AT&T. These summaries
can include keys and functional dependencies [6, 20, 30, 33]. In [1] the authors present techniques for creating
summaries based on information-theoretic clustering. However, Bellman does not incorporate this kind of profile
data so we do not explore its use for change detection in this paper.

Database reverse-engineering is a pre-requisite for schema mapping and database integration. Several
schema mapping efforts have incorporated database exploration tools [12, 17, 18, 29, 30]. Some schema map-
ping tools also allow the exploration of the database integration results [18, 32].

Recent work has developed tools for keyword search in a database [1, 3, 5, 21, 22]. Other types of advanced
search tools include regular expression indexing [8, 19]. Arelated topic is that of approximate join for which
we refer the interested reader to the tutorial by Koudas and Srivastava [16].

Some of the results in this paper can be considered to be data mining for data quality. Other methods include
the use of multiple independent models [27], non-parametric outlier identification [26], and automated learning
to detect data quality problems [25].

Most commercial DBMSs optionally allow the logging of all queries submitted to the system. An analysis
of the query log could provide a more direct method for reverse-engineering a DBMS [28]. However, query logs
are usually not available to end-users, and their contents can be difficult to interpret.

Some recent work has addressed detecting changes in data sets [14, 15, 24]. These papers treat the contents
of a table (or stream) as a multivariate distribution and look for changes in the distribution (in [14] by measuring
distance through classification models, in [15] by partition-wise comparison, while [24] tests stationarity by
measuring distance between distributions). In [7], the authors use a sampling method to detect the frequency by
which a data source (web pages or data warehouses) changes. The focus of this paper is to minimize the cost
keeping a local copy of the data up-to-date. A side effect of the algorithm presented in [7] is to estimate the rate
at which data sources change, but requires a copy of the data set. The most closely related work is [23], which
monitors the rate of change in text databases by measuring longitudinal change in a summary (an inverted list
index). However, this study only measured table changes, used a single summary, and did not attempt to infer
properties of the table (the issue was finding a schedule for loading a local copy). In contrast to previous work,
we present a method for mining database dynamics which extracts information about database management and
update procedures, and is the first study of its kind that we are aware of.

2 Profile Data

The profile data that we use for our study is that collected by the Bellman profiler. The basic profile data collected
by Bellman is:

• The schema of the database.

• The number of rows in each table.
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• The number of distinct values of each field.

• The number of NULL values of each field.

• The frequency distribution of each field.

• The top ten most common values of each field, and each values frequency of occurrence.

Basic profile data is collected by the commercial database profiling systems that we are aware of [1, 34].
The commercial database profilers generally collect some additional information, for example the keys and
functional dependencies in the tables. While Bellman can also collect key and FD data, the longitudinal data set
that we had access to did not include them (computing keys andfunctional dependencies is expensive, so they
were not collected). Commercial profiling systems can also collect row samples; Bellman does not. While it is
clear that, e.g. keys and functional dependencies are very useful, e.g. for data quality monitoring, we cannot
report any results about them.

Bellman also collects minhash signatures and sketches of some database entities. While these approximation
techniques are well-discussed elsewhere [10], we provide abrief review here to make the paper self-contained.

The resemblance between two sets is the size of the intersection of the sets divided by the size of their union.

ρ =
|A ∩ B|
|A ∪ B| (5)

The resemblance of two sets can be approximated by a minhash signature: Let hi be a hash function defined
over the domain of setA. Let si(A) = min{hi(a)|a ∈ A}. ThenPr[si(A) = si(B)] = ρ. We repeat
this experimentN times, and the minhash signature of a setA is the collection of these experiments:S(A) =
{s1(A), . . . , SN (A)}. Bellman collects minhash signatures over multisets (e.g., the multiset of values of a field),
providing an opportunity to collect an approximation to thefrequency distribution of the multiset:M(A) =
{m1(A), . . . ,mN (A)}, wheremi(A) is the number of times thath−1

i (si(A)) occurs inA.
Bellman also makes use of random vector projection sketches. Let V be ad-dimensional vector, andX ad

by k dimensional matrix,k ≪ d. Then the sketch of V is

SK(V ) = V · X (6)

Where SK(V) is ak-dimensional vector. TheL2 distance between two vectorsV1 andV2 can be approximated
by

ˆL2(V1, V2) = L2(SK(V1), SK(V2)) (7)

New fast sketch techniques, e.g. the count-min sketch [9], have been proposed, but they have not been
incorporated into Bellman at the time of our study.

The sketch and signature profile data that Bellman collects is

• The minhash signature of value each field.

• The minhash signature of the values of the rows of each table.

• The minhash signature of the set of 3-grams of each field.

• The sketch of the frequency vector of the multiset of 3-gramsof each field.
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3 Experimental Setup

Bellman is used on a variety of projects within AT&T, providing a source of data for our experiments. One
project in particular is a data warehouse consisting of copies of production databases, to be used for intensive
data mining analyses. Currently, this data warehouse contains 15 databases updated weekly, with a total of 2899
tables. We selected two of these databases, which we call A and N, to study. We chose these particular two
because among the large and complex databases in the warehouse, they were the most reliably updated and
the best understood by the local analysts (but the documentation for these databases was quite meager). These
databases also represent the distance problem that the analysts face, as corporate policy forbade the analysts
from making a local copy (for version management and data security reasons), and the management of these
databases had been outsourced.

We arranged with the Bellman developers to collect snapshots of the weekly profiles, timestamped with the
profile collection time, for two of the fifteen databases. At the time of this writing, the first database (A) contains
385 tables and 3522 fields, while the second database (N) contains 508 tables and 3547 fields. We collected 33
profile snapshots, allowing for 32 successive weeks of comparison data.

We supported our experiments by making a pre-analysis of thedata, computing time series of table and
field self-resemblances by value, by q-gram, and by q-gram distance; and also summaries of changes in other
field statistics. Databases A and N contain more than 420 million rows and represent about 100 Gbytes of
data; computing their profiles requires about 8 hours of computing time (on a 2.8 GHz, 2-processor server) and
results in about 500 Mbytes of profile data. Computing the summary tables requires about an additional hour
of compute time, after which all queries used to generate thedata in this paper ran in real time. Since the data
warehouse is profiled weekly anyway, the results in this paper provide database dynamics information almost
”for free”.

4 Experiments

In this section, we explore the efficacy of different types ofprofile data to detect various types of changes in a
database. This section is divided into subsections based onthe type of change we are trying to detect.

We do not examine the use of schema information in this paper.Although schema information is quite
useful for detecting added or dropped tables or fields, detecting these changes is straightforward (this kind of a
data quality alerting facility was added to Bellman withoutthe need for research). We note that we found many
examples of added and dropped tables and fields in the course of our study.

This study is limited by the types of databases we study, the types of profile data collected on them, and
the local knowledge about these very complex databases (butobtaining the data used for the experiments was a
multi-year effort). The results of the experiments indicate the type of information that can be found by mining
database change information. Different applications willhave different characteristics, so one cannot expect
the precise results of this study to be universally applicable. Still, databases A and N show remarkably similar
behavior, and provide an indication of what one might find in other databases.

4.1 Database Change Detection

In the context of a data warehouse receiving weekly updates,an important question is, did the database refresh
occur successfully? Although it would seem that this is a simple question to answer (e.g., look at the server logs),
in a large enterprise there can be complications. The data warehouse we studied is managed on a shoestring
budget by an organization remote from its users. The data loads are accomplished using automated scripts, and
the DBAs do not have the resources to analyze the loading process. The database load might fail for many
reasons: the backup image was not transferred from the production database, resource limitations such as lack
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of disk space, a failure in an ETL process, and so on. So, the task of evaluating the quality of the database refresh
falls to the users.

There are two types of profile data which naturally suggest that they can be used to measure a table change:
the change in the number of rows in the table, and the resemblance of the row values of a table to themselves
(table self-resemblance). Self-resemblance would seem tobe the more sensitive of the two tests, as it can
detect changes to a table made using row updates only. However, we approximate the table self-resemblance
using minhash signatures, which cannot reliably detect small changes. To evaluate these two methods, we
collected 12249 week-to-week comparisons of profile data for the A and N databases. We counted the number
of table changes detected using combinations of row count change and a table self-resemblance of less than 1.
A summary is in Table 6.

Row count and self resemblance2256 (18.4%)
Row count only 2857 (23.2%)

Self resemblance only 2520 (20.6%)
Row count or resemblance 3121 (25.5%)

Table 6: Number of table changes detected.

By plotting the number of changes over time, we can track aggregate database behavior. In Figure 1, we
plot the week-to-week fraction of the tables in database A with a change detected by self-resemblance, change
in row count, and both. Figure 2 shows the same chart for database N.
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Figure 1 : Tables with a detected change. Figure 2 : Tables with a detected change.

One striking feature of these databases is that most of the tables are static – only 20% to 30% of the tables
in Database A and 20% to 40% of the tables in Database N change from week to week. We found this property
to hold for all of the 15 databases in the data warehouse. Therefore, looking for changing tables can be an e
ffective way to reverse engineer a database. We explore thistopic further in Section 4.2.

In addition, Figure 1 indicates a data refresh problem in Database A for its 6/21/05 data point. Using self-
resemblance indicates no week-to-week change, while usingrow count does. Further investigation shows that
while the average percentage change in the row count (of tables whose row count changed week to week) is
5.9%, the row count change during that week is only .4%. We later confirmed a data refresh problem.

A comparison of the changed tables detected by self-resemblance and row count indicates a subtle but
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distinct change in database dynamics when we compare pre-6/21 to post-6/21 behavior. The fraction of tables
which change increases dramatically in Database N. In addition, self-resemblance accounts for a larger number
of detected changed tables. For example, in Database N more changes are detected by self-resemblance than by
row count after 6/21, but fewer before 6/21. We confirmed thatdata loading procedures were improved during
this period in response to user complaints.

4.2 Table Change Detection

The results from Section 4.1 suggest that row counts are generally a better indicator than self-resemblance
for detecting changed tables. However, in that section we are primarily interested in determining whether or not
tables did change. In this section, we will also be interested in the degree by which the table changed. Therefore,
we need to determine which measure is more sensitive in detecting the degree of change. In Figure 3, we plot
the degree of table change detected using table self-resemblance vs. the degree detected using row counts for
the 3121 instances where we detected any table change using either method. Unsurprisingly, self-resemblance
is almost always a more sensitive indicator of change (as shown by the fact that almost all data points are below
the diagonal).
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Figure 3 : Fraction of change detected in tables using row count and resemblance.

We can try to classify the type of updates to a table by the correlation of the fraction of change detected by
row count to the fraction of change detected by self-resemblance. If the change is primarily due to insertions or
deletions, the resemblance change and the row count change should be strongly correlated as indicated by the
diagonal line in Figure 3. If the change is due primarily to updates, the row count should stay the same while
the resemblance should show a large change – as indicated by the horizontal line in Figure 3. Changes due to a
mixture of inserts, deletes, and updates should lie betweenthese two lines.

Next, we can characterize how a table changes: Is it mostly updates, inserts or deletes, or a mixture. Is the
mixture consistent? We collected the 2520 instances where table self-resemblance indicates a week-to-week
change in a table. Next, we computed the ratio of the fractionchange in row count to the fraction change in
self-resemblance:

ratio =
|countold − countnew|

1 − ρ
(8)

We next analyzed this data on a per-table basis, for the set oftables with at least four week-to-week changes
(80 tables in database A, 66 tables in database N).
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We computed the coefficient of variation (square root of the mean squared error divided by the mean) for
the fraction change ratio, and found a wide range of coefficients. To limit our scope to well-behaved time series,
we selected those tables with at least four changes detectable by resemblance and a coefficient of variation less
than .75 (an arbitrary value that we selected by eyeball). Weare left with 46 tables in database A, 60 tables in
database N.

In these 106 tables, we found 26 with a ratio of 5% or less, and 27 with a ratio of 85% or greater (Figure 4
shows the distribution of the ratio, by sorting tables on their change ratio). Since we chose these tables because
their change ratio time series is reasonably well behaved, we find that we can distinguish between these tables
based on the types of updates they normally receive. For example, consider the change ratio time series for
the three tables in Figure 5. One table (ratio < .05) changes primarily through updates, another (ratio = .5)
through a mix of inserts, deletes, and/or updates, and the third (ratio > .85) primarily through inserts (we
verified that its size increases, not decreases, over time).
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Figure 4 : Row count vs self-resemblance change. Figure 5 : Change ratios for three tables.

We can also classify tables by the degree to which they changefrom week to week. We selected the tables
which changed at least six times as indicated by self-resemblance, computing the change to be1− ρ. The result
is 63 tables in Database A and 60 tables in Database N. Next, wecomputed the trimmed coefficient of variation
for these tables1 and selected those whose coefficient of variation is .75 or less. The result is 54 tables from
Database A and 48 tables from Database N.

These tables show a wide variation in the fraction by which they change week to week, as is shown in
Figure 6. 22 of the 102 tables change by an average of 1.5% or less per week, and 13 of the tables change by
85% or more. Figure 7 shows the week-to-week fraction of change for a table with small, medium, and large
week-to-week change, respectively (the large-change table was added in July 2005).

Yet another way to classify tables is by whether or not they tend to recycle their rows. We call a table which
recycles its rows convergent, while a table which tends to create new rows divergent. We look for convergent ta-
bles by comparing the time series of four week resemblance changes to an estimate of the four week resemblance
change computed using 1-week resemblance changes. We estimate the 4-week resemblance by the product of
the previous four 1-week resemblances, and the 4-week change by one minus the four week resemblance.

We found that this simple estimator generally works well. That is, we found that most tables are divergent.
For the 63 tables in Database A and 60 tables in Database N which have at least six changes indicated by
resemblance, we computed the ratio of the actual four-week change to the estimated four-week change. For

1For this analysis, we ignore zero change (ρ = 1) data points, because they might indicate only a failure to refresh.
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Distribution of week-to-week table change
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Figure 6 : Fraction of change week-to-week. Figure 7 : Small,medium, and large week-to-week change.

each table, we counted the number of times that this ratio is .7 or less. We selected the tables with a count of
six or higher as the convergent tables. We found 10 convergent tables in database A, and 6 convergent tables in
database N.

Figure 8 shows a comparison between the estimated and actual4-week resemblance changes in a divergent
table. This table actually shows a change in its behavior. Before 5/9/2005, the actual change is somewhat
less than the estimated change (about 77% of estimated change, above our somewhat arbitrary 70% threshold).
On 5/9/2005 and after, the estimated change closely tracks the actual change. Figure 9 shows estimated and
actual four-week changes for a convergent table. Its behavior is different than that shown in Figure 9, as actual
percentage change is persistently about half the estimatedchange – indicating that this table tends to recycle its
rows.
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Figure 8 : Divergent table, 4-week changes. Figure 9 : Convergent table, 4-week changes.

There is one more type of information we can use for classifying changes in tables changes in the q-grams
of their rows considered as strings. Recall from Section 2 that we have two types of q-gram information: q-gram
resemblance and q-gram distance. To evaluate these metrics, for each of the 123 tables with at least six changes
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detected by value self-resemblance, we computed the ratio of the week-to-week change detected by value self-
resemblance to the change detected by q-gram self-resemblance, and to the change detected by q-gram distance.
The result is shown in Figure 10.

Neither q-gram resemblance nor q-gram distance is a good metric for determining that a table has changed.
However, the distribution of ratios for q-gram resemblancesuggests that this ratio can classify tables based on
the rate at which they change their textual content (the peaks in both charts are due to only two tables). The
changes detected by q-gram resemblance versus q-gram distance are only moderately correlated: we found an
R2 value of only .33 when performing a linear regression between the two variables, and that only after removing
two outliers. Since row q-gram resemblance is more sensitive in detecting textual changes, we recommend it as
the better mechanism for classifying this kind of table change.
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Figure 10 : Row value change versus row q-gram change.

4.3 Field Change Detection

For detecting changes in fields, we have a wealth of information. In addition to the value and q-gram resem-
blances, and q-gram distance information, we have the countof the number of distinct items, the count of the
NULL values, the top-10 values, and an approximation to the frequency distribution of the values of the field.
We limit the scope of our experiments to fit within page limitsand minimize reader fatigue. We will use value
self-resemblance and frequency distribution informationto characterize the nature of the updates to the tables,
and q-grams, count distinct, count NULL, and top-10 information to discover unusual events.

In Section 4.2, we search for “hot” tables – those that get updated – and found that a small fraction of the
tables in the database get updated from week to week. A natural extension is to search for “hot” fields. That is,
can we identify a small collection of fields in a table which account for the updates? For every occasion in which
a table shows a table self-resemblance change, we compute the fraction of that tables fields which also show a
value self-resemblance change. We plot this fraction for the 2732 week-to-week table changes in Figure 11. We
find that in a large number of tables, the values in only a smallset of fields have value changes on 130 occasions,
there are no value changes in any fields. Conversely, on 274 occasions, 90% or more of the tables fields show a
value resemblance change.

Next we can ask whether there are fields of a table that are persistently “hot”, in terms of value resemblance
change. We selected the 123 tables which showed a table self-resemblance change on six or more occasions
and analyzed the number of times each of their fields show a change. We only considered those fields which
exist in every observation (there was a small but significantnumber of added and dropped fields). The result
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Figure 11 : Fieldswith a value resemblance change. Figure 12: Fields with persistent changes.

is in Figure 12. Although there are a significant number of occasions in which none of a tables fields show a
resemblance change, there are no tables whose fields persistently never, or even rarely, change. However, for
most tables there is a subset of hot (frequent value change) and cold fields (infrequent value change).

Is there significance to the set of fields whose values are not changing? In most databases there is a large
collection of fields with only a few values, e.g. Male/Female. One would expect that values in these fields do not
change. To answer this question, we correlated the number ofdistinct items in a field to its resemblance change
during the occasions where the fields table has a week-to-week resemblance change. We plot the distribution all
of fields, for those fields which do not have a resemblance change, and for those which have a high resemblance
change (larger than or equal to the table resemblance change) in Figure 13. As expected, fields with large
changes tend to have significantly more distinct values thanusual, and fields which do not change tend to have
significantly fewer distinct values than usual. However, there is a significant fraction of fields with few distinct
values but a large resemblance change, and also of fields withmany distinct values but no resemblance change.

We can use the change in the distribution of a fields values as amore sensitive metric. Of the 34727
field/occasions under consideration, the self-resemblance is 1.0 in 20327 of the fields, but the distribution is
identical in only 6555 of these. A failure for a field to changein distribution strongly suggests that its table is
changed by updates on other fields. Are there fields which persistently do not change their distribution? We col-
lected 1474 fields which occur six times or more in tables2 and which show a resemblance change, and counted
the number of times when each of these fields showed zero change in resemblance and distribution. We plot the
results, in terms of frequency of no change, in Figure 14. We find 90 fields which never change, and 144 fields
which do not change 80% of the time or more when their table changes. These non-changing fields occurred in
24 of the 207 tables which showed six or more resemblance changes.

For the remainder of the field change data (q-gram resemblance, q-gram distance, number distinct, number
null, top-10), we search for significant changes in the field.We collected field change data such that the fields
table showed a week-to-week change and for which we could join field statistics, table row counts, q-gram
resemblance, and q-gram distance. The result was 18078 rows.

• We compared the week-to-week change in the number of NULL values of each field, and divided by the
(ending) number of rows in the table. We found 59 occurrencesin which the number of NULL values
changed by 20% or more.

2We need this restriction because some fields were added or deleted during the course of the study.
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Figure 13 : Distribution of field count distinct values. Figure 14 : Frequency on non-change.

• We compared the week-to-week number of unique values of eachfield, and divided by the (ending) num-
ber of distinct values. We found 407 occasions in which the number of unique values changed by 20% or
more.

• We computed the number of top-K values which were common week-to-week and divided by the number
of top-K values at the end of the week. We found 1308 occurrences in which 20% or more of the top-K
values changed.

• We found 630 occurrences in which the week-to-week q-gram resemblance indicates a change of 20% or
more.

• We found 186 occurrences in which the week-to-week q-gram distance is .2 or more.

Unsurprisingly, these indicators of unusual behavior in a field are strongly correlated.

4.4 Time Series Analysis

Since we have a time series of table change data, we can try to look for tables which change in similar ways. If
the changes are strikingly similar enough, we might even suspect that there is a similar process which updates
the tables. To do this, we need to cluster tables based on their time series. For this experiment, we use the
week-to-week table self-resemblances.

A common approach to clustering time series involves summarizing the time series using summaries such
as Fourier transforms and clustering the resulting fixed length vectors. However, model based clustering can fail
when the assumptions are not true. We know very little about how tables are expected to change from week to
week; therefore we use the fast, simple, and nonparametric method to cluster the time series, described in [11].
This method computes simple nonparametric summaries of thetime series, and then clusters time series based
on their summaries.

In this specific instance, we use the following three descriptors: average resemblance, the number of times
the resemblance is less than 1.0, and the smallest resemblance (i.e. the biggest change). We then run a fast
k-means clustering algorithm (FASTCLUS from SAS) with 10 and 20 clusters. While seemingly simple, the
technique is very fast and effective, resulting in clustersthat clearly identify different types of behavior. The
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”goodness-of-fit” criteria provided by the software (e.g. R-square of 0.98) all indicate that clustering was effec-
tive in explaining the variability of the three clustering attributes. Note that our aim here is to create approximate
groupings which explain behavior, rather than exact, optimally separated clusters. The approximate clusters en-
able us to partition the data into smaller pieces for furtherexamination of the peculiarities of individual time
series.

Since Database A and Database N show similar behavior, we concentrate on Database N. We found that
20 clusters produced many singleton clusters (i.e., capturing outliers), so we chose to examine the 10-cluster
results. Figure 15 is a bubble chart showing the minimum resemblance and number of detected changes axes for
database N (the bubble size indicates the size of the cluster.

We picked a few of the 10 clusters to show as representatives.Figure 16 shows a low-activity cluster,
while Figure 17 shows a high activity cluster, demonstrating that clustering technique does tend to group similar
behaving time series. In Figure 18, the tables are mostly quiescent, but many of them show a significant change
at week 27. These tables all show an anomalous change of similar magnitude at the same time period, suggesting
that there is a similar process behind this update.
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Figure 15 : Clusters in Database N’s value resemblance time series. Figure 16 : Low activity cluster.

For our final experiments, we attempt to find anomalous behavior in the week-to-week table self-resemblances
using time series analysis. We use the table self-resemblance time series and search for anomalous table updates.
At first we tried to capture the structure in the resemblance time series using linear regression models of various
sorts. However, the data was not amenable to such models due to high correlations and singularity issues. We
then switched to a control chart type of approach, modified slightly to meet our needs.

We computed a set of four-step moving averages for each time series. We then computed the average and
standard deviation of these moving averages to serve as a central reference line of the control chart and basis
for the confidence or error bounds respectively. We used 2-sigma limits, and flag an alert whenever the self-
resemblance is outside these bounds. Analogously, we also computed the median of the moving averages and
10th and 90th quantiles to serves as error bounds. However, we believe that these bounds are less reliable than
the mean and standard deviation based ones due to the limitedamount of data.

The control chart technique raised at least one alert on almost half of the time series. Many of these alerts
indicated an anomalous update to a table; Figure 19 shows an example. There were also many alerts as shown
in Figure 20. Here the most extreme alert indicates a failureto update the table.
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Figure 17 : High activity cluster. Figure 18 : Cluster indicating an anomolous correlated change in tables.
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Figure 19 : Anomalous table update. Figure 20 : Failure to update a table.
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5 Conclusions

A common problem faced by database users and maintainers is that of understanding what is in the database. A
production database for a complex enterprise is generally aquite complex thing itself, separated from the end-
user, and often outsourced. Frequently, even the DBAs of a database dont completely understand its operations,
sometimes leading to disastrous mistakes in maintenance and upgrades.

Data warehouse maintainers and users have even fewer resources than the DBAs for understanding what
is happening in a database. In fact, this project was motivated by problems encountered in using a large data
warehouse used for cross-database analysis and data mining; in particular to determine whether or not weekly
database refreshes to the (remotely managed) warehouse were successful.

Recent research has developed new tools for exploring the contents of complex databases. In particular,
database profiling has been developed both in research efforts and as commercial offerings. These tools provide
a wealth of information about the structure and contents of asnapshot of a database. However, an important
dimension of information is missing the database dynamics.That is, what parts of the database are changing,
and in what way are they changing.

Data warehouse maintainers and users typically do not have access to query logs of production databases,
which can provide direct evidence of database dynamics. Maintaining historic snapshots of database contents
in a data warehouse is often not feasible in a large federatedwarehouse, and analyzing large database snapshots
for differences can be prohibitively expensive. A data warehouse maintainer might perform periodic database
profiling on the data warehouse contents, to provide metadata to the warehouse users and to screen for data
quality problems. Historic database snapshot profiles provide an excellent data source for data mining to discover
database dynamics. Being small but informative summaries of database contents, they are easily stored and
mined even on inexpensive equipment, and can reveal trends in databases changes.

In this paper, we explore possibilities of mining database snapshot profiles. Because of the novel nature of
the data set, our analyses use deliberately simple exploratory techniques. Nevertheless, we are able to extract
from our sample databases a significant amount of reverse engineering and data quality information, including:

• Baselines for changes to a database.

• Identification of hot tables.

• Classification of changes to tables by a variety of criteria,including rate of change, insertions vs. updates,
and convergent versus divergent change.

• Identification of hot fields within a table.

• Identification of suspicious changes to a field.

• Identification of tables with correlated updates.

• Identification of suspicious updates to a table.

Because of the wealth of information which can be extracted for free from a database profiling system, the
Bellman developers are using the results of this study to addnew browsing and alerting functionality to the
Bellman system.

5.1 Future Work

A great deal of future work is possible; in particular when specific domain knowledge is available. Our particular
interest is to make a deeper exploration of the meaning of what we can discover. For example, can we correlate
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the anomalous events we found in Section 4.3 with particulardata quality problems. Conversely, if we identify
data quality problems, can we correlate them to events observed in the database change data?

Our access to this kind of domain-specific information was very limited (and formed part of the motivation
for this research). We hope that the results of this researchwill motivate the development of database change
detection systems which, when put into production use by subject matter experts, can yield more detailed exper-
imental results.
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1 Introduction

Data cleaning is an essential step in populating and maintaining data warehouses. Owing to likely differences
in conventions between the external sources and the target data warehouse as well as due to a variety of errors,
data from external sources may not conform to the standards and requirements at the data warehouse. Therefore,
data has to be transformed and cleaned before it is loaded into the warehouse so that downstream data analysis
is reliable and accurate. This is usually accomplished through an Extract-Transform-Load (ETL) process.

Typical data cleaning tasks include record matching [10, 12, 6, 9, 14, 16], deduplication [16], and column
segmentation [5, 1] which often go beyond traditional relational operators. This has led to development of util-
ities that support data transformation and cleaning. Such software falls into two broad categories. The first
category consists of verticals such as Trillium [20] that provide data cleaning functionality for specific domains,
e.g., addresses. By design, these are not generic and hence cannot be applied to other domains. The other
category of software is that of ETL tools such as Microsoft SQL Server Integration Services (SSIS) [22] and
IBM Websphere Information Integration [23] that can be characterized as “horizontal”platformsthat are appli-
cable across a variety of domains. These platforms provide asuite of operators including relational operators
such asselect, project andequi-join. A common feature across these frameworks isextensibility—
applications can plug in their own custom operators. A data transformation and cleaning solution is built by
composing these (default and custom) operators to obtain anoperator tree or a graph. This extensible operator-
centric approach is also adopted in research initiatives such as Ajax [13] and Morpheus [11].

While the second category of software can in principle support arbitrarily complex logic by virtue of being
extensible, it has the obvious limitation that most of the data cleaning logic potentially needs to be incorporated
as custom code since creating optimized custom code for datacleaning software is nontrivial. It would be
desirable to extend its repertoire of “built-in” operatorsbeyond traditional relational operators with a few core
data cleaning operators such that with very less extra code,we can obtain arich varietyof data cleaning solutions.

In our Data Debugger project, we seek to achieve the above goal. Thus, we aspire to identify key primitive
data cleaning operators and then ensure their efficient implementation on horizontal ETL engines such as SSIS.
Thus, we adopt the approach of developing a domain-neutral framework of generic data cleaning operators. We
believe that decomposing a data cleaning solution into simpler well-defined operators makes it easier to compose
data cleaning operators with each other and with other (relational and non-relational) operators. In particular, it
will be possible to easily customize and to analyze the overall data cleaning solution.

Copyright 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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While this is the long-term goal of our project, we illustrate our approach with the record matching operation
in this paper. Section 2 goes over prior approaches to this problem and we examine our solution in Section 3.
We conclude in Section 4 with a brief discussion of next steps.

2 Record Matching: An Overview

The record matchingproblem forms the basis for record linkage (e.g. [10, 12, 6, 9, 14]) and identifying ap-
proximately duplicate entities in databases (e.g., [16]).This is a very important problem in data cleaning. We
illustrate our approach for developing data cleaning solutions using this problem.

Record matching is the operation of joining “similar” data.For example, consider a sales data warehouse.
Owing to likely errors in the data such as typing mistakes, differences in conventions, product names and cus-
tomer names in sales records may not match exactly with records in the master product catalog and reference
customer registration tables, respectively. For example,two records “[Microsoft Corp.,, Redmond, WA, 98052]”
and “[Microsoft Corporation, One Microsoft Way, Redmond, WA, 98052]” are not equal even though they iden-
tify the same organization.

The record matching problem has been considered in several domains such as web informatics [3, 15] and
genome sequencing [17]. At the core of this problem, across all domains, is the concept of a measure that
can be used to compare records, called asimilarity function. The similarity function returns a value between 0
and 1, a higher value indicating that the two records are closer to being the same. A value of 1 indicates exact
equality. A similarity join between two relationsR andS returns all pairs of records, one each fromR and
S, such that the similarity function when applied to them is greater than a threshold [12, 16, 10]. By setting
this threshold to a “high” value, we find all pairs that we can consider to be matches. Examples of similarity
functions include edit distance, cosine similarity, Jaccard similarity and the recently proposed generalized edit
distance [6]. Recent work on record matching [2] has also proposed the use of information beyond the text of
records in order to determine whether they are duplicates. An example of this use of contextual information is
to determine whether two state names (say “Washington” and “WA”) are the same by checking similarity of the
co-occurring sets of cities present in these states. Note that these notions of similarity apply independent of the
textual content in the records. We informally use the term “co-occurrence similarity function” to apply to these
notions of similarity.

Each of the above similarity functions has a unique characteristic and it is well-known that no single sim-
ilarity function is universally applicable across all domains and scenarios [18]. For example, the characteris-
tics of an effective similarity function for matching products based on their part names, where the errors are
usually spelling errors, would be different from those matching street addresses because even small differ-
ences in the street numbers such as “148th Ave” and “147th Ave” are crucial, which would be different from
similarity functions for matching person names based on their sounds. In fact, techniques based on machine
learning for combining several similarity functions have been shown to be effective and is an active area of
research [18, 21, 4, 19].

A general purpose data cleaning platform has to efficiently support this whole variety of notions of similarity.
A naive implementation is to apply the similarity predicateafter the cross product between the input relations.
Obviously, this approach is prohibitively expensive when the input relations are large.

Several prior techniques provide efficient implementations for specific similarity functions [14, 9]. Naturally
this option is tedious and it does not enable us to get to a moregeneral solution. Alternatively,blockingheuristics
have been proposed as a replacement for cross products. The idea is to first “group” potential candidate dupli-
cates together and then apply similarity joins among small groups of candidates. Candidate groups are identified
by grouping all records which match exactly on “approximatekey” attributes. These approximate key attributes
may either be user-specified [16] or be artificially generated via heuristic signature generation schemes [20].
These techniques are heuristic in nature. They do not necessarily guarantee that all pairs of records which sat-
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isfy the similarity predicate will be returned. Thus, the independence between the operator specification and the
implementation is lost.

We are left with the challenging option of supporting a foundational primitive which can be used as a building
block to implement a broad variety of notions of similarity.Our approach to record matching is driven by the
desire to support a wide variety of standard similarity functions like Jaccard similarity with (IDF) weights on
tokens, edit similarity. We also consider the generalized edit similarity function [6], which builds upon edit
distance and jaccard containment measures with (IDF) weights on tokens, and has been shown to provide better
matches in several scenarios. More importantly, we want to support all of these functions using a uniform
abstraction so that we may then focus on efficient support forthis abstraction. We achieve this using the SSJoin
operator described in the next section. Our second goal thatdistinguishes us from the above approaches based on
blocking is to separate, as in the case of relational operators, the operator specification from its implementation.
Our implementation of similarity join returns all results required to be returned by its specification.

3 Record Matching Using the SSJoin Operator

As noted in Section 2, our goal is to efficiently support a foundational primitive which can be used as a building
block to implement a broad variety of notions of similarity.TheSSJoinprimitive proposed in [7] and discussed
below enables such a general implementation. The idea is to model strings as sets and perform a set-similarity
join over these sets (hence the name S(et)S(imilarity)Join). In this way, most of the the effort in a similarity
join can be done by the SSJoin operator. The benefit of an efficient implementation of the SSJoin operator
simultaneously translates to a variety of similarity functions.

OrgName 3-gram Norm 

Microsoft Corp mic 12 

Microsoft Corp icr 12 

Microsoft Corp cro 12 

… … … 

Microsoft Corp cor 12 

Microsoft Corp orp 12 

          R 
 

OrgName 3-gram Norm 

Mcrosoft Corp mcr 11 

Mcrosoft Corp cro 11 

Mcrosoft Corp ros 11 

… … … 

Mcrosoft Corp cor 11 

Mcrosoft Corp orp 11 

        S 
 

Figure 1: Example sets from strings

We now describe the SSJoin operator. The operator works withsets and intuitively finds all pairs of sets that
have a high overlap. We refer to the size of the intersection between two setss1, s2 to be their overlap similarity,
denotedOverlap(s1, s2). While our discussion below focuses on unweighted sets, thediscussion extends to
weighted sets as in [7].

We assume that sets are represented in First Normal Form by storing every element in a separate record.
Consider relationsR(A,B) andS(A,B) whereA andB are subsets of columns. Each distinct valuear ∈ R.A
defines a group, which is the subset of tuples inR whereR.A = ar. Call this set of tuplesSet(ar). Simi-
larly, each distinct valueas ∈ S.A defines a setSet(as). The simplest form of the SSJoin operator joins a pair
of distinct values〈ar, as〉, ar ∈ R.A andas ∈ S.A, if the projections on columnB of the setsSet(ar) and
Set(as) have a high overlap. The formal predicate isOverlap(πB(Set(ar), πB(Set(as))) ≥ α for some thresh-
old α. We denoteOverlap(πB(Set(ar), πB(Set(as))) asOverlapB(ar, as). Hence, the formal predicate is
OverlapB(ar, as) ≥ α. We illustrate this through an example.
Example 1: Let relationR(OrgName, 3-gram) and S(OrgName , 3-gram) shown in Figure 1 associate the
strings “Microsoft Corp” and “Mcrosoft Corp” with their 3-grams. DenotingOrgNamebyA and3-grambyB,
the SSJoin operator with the predicateOverlapB(ar, as) ≥ 10 returns the pair of strings〈“Microsoft Corp”,
“Mcrosoft Corp”〉 since the overlap between the corresponding sets of 3-gramsis 10.

In general, we may wish to express conditions such as: the overlap similarity between the two sets must
be 80% of the set size. Thus, in the above example, we may wish to assert that the overlap similarity must be
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higher than 80% of the number of 3-grams in the string “Microsoft Corp”. We may also wish to be able to assert
that the overlap similarity be higher than say 80% of the sizes of bothsets. We now formally define the SSJoin
operator as follows, which addresses these requirements.

Definition 1: Consider relationsR(A,B) andS(A,B). Let pred be the predicate
∧

i OverlapB(ar, as) ≥ ei,
where eachei is an expression involving only constants and columns from eitherR.A or S.A (but not both). We
write R SSJoin

pred
A S to denote the following result:{〈ar, as〉 ∈ R.A × S.A|pred(ar, as) is true}. We also

denotepred as{OverlapB(ar, as) ≥ ei}.

We illustrate this through the following examples based on Figure 1, where the third columnNormdenotes
the length of the string. In general, thenormcould denote either the length of the string, or the cardinality of the
set, or the sum of the weights of all elements in the set. Several similarity functions use the norm to normalize
the similarity.

Example 2: As shown in Figure 1, let relationsR(OrgName, 3-gram ,N orm) and S(OrgName, 3,N orm)
associate the organization names with (1) all 3-grams in each organization name, and (2) the number of 3-
grams for each name. The predicate in the SSJoin operator canbe used to capture different notions of similarity
by varying the predicate specification.

• Absolute overlap:OverlapB(ar, as) ≥ 10 joins the pair of strings〈“Microsoft Corp”, “Mcrosoft Corp” 〉
since the overlap between the corresponding sets of 3-gramsis 10.

• 1-sided normalized overlap:OverlapB(〈a,norm〉r, 〈a,norm〉s) ≥ 0.8·R.norm joins the pair of strings
〈“Microsoft Corp”, “Mcrosoft Corp” 〉 since the overlap between the corresponding sets of 3-gramsis 10,
which is more than 80% of 12.

• 2-sided normalized overlap:OverlapB(〈a,norm〉r, 〈a,norm〉s) ≥ {0.8 · R.norm, 0.8 · S.norm} also
returns the pair of strings〈“Microsoft Corp”, “Mcrosoft Corp” 〉 since 10 is more than 80% of 12 and 80%
of 11.

3.1 Exploiting SSJoin for Similarity Joins

First, note that the above definition of SSJoin can be directly used to capture notions of similarity based on co-
occurrence [2] where it has been shown to be very effective for identifying approximate duplicates. We illustrate
with an example below.

Example 3: Suppose we have two tables, say from different sources that are being integrated, of author names
joined with the titles of the papers, say with the schema<PTITLE, ANAME>. Since we want a unified view of
all authors, we are interested in identifying author names that are likely to represent the same author. Now,
if the naming conventions in the two sources are entirely different, it is quite likely that the textual similarity
between the author names is only a partial indicator of theirsimilarity. We are forced to rely on alternative
sources of information for identifying duplicate author entities. In this instance, we can use the set of paper
titles associated with each author to identify authors. Theidea is that if two authors are the same, then the set
of paper titles co-occurring with them must have a large overlap.

The notion of set overlap can also be used to capture various string similarity functions—edit distance, jac-
card similarity and generalized edit similarity as shown in[7]. The way the SSJoin operator is used for string
similarities is outlined in Figure 2. Let Rbase(A) and Sbase(A) be relations whereA is a string-valued attribute.
The goal is to find pairs〈Rbase.A, Sbase.A〉 where the string similarity, according to a specific similarity func-
tion, is above a thresholdα. We first convert the strings Rbase(A) and Sbase(A) to sets, construct normalized
representationsR(A,B, norm(A)) andS(A,B, norm(A)), and then perform an SSJoin between the normal-
ized representations. The SSJoin predicate, especially the overlap thresholdα′, is chosen so that all pairs whose
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Rbase (A: String) Sbase (A: String) 

String to set String to set 

R (A, B, norm(A)) S (A, B, norm(A)) 

SSjoin 

UDF check for string 
similarity 

Figure 2: String Similarity Join usingSSJoin

string similarity is greater thanα areguaranteedto be in the result of the SSJoin. Hence, the SSJoin operator
provides a way to efficiently produce a small superset of the correct answer. We then compare the pairs of strings
using the actual similarity function, declared as a UDF within a database system, to ensure that we only return
pairs of strings whose similarity is aboveα.

Note that a direct implementation of the UDF within a database system without SSJoin is most likely to lead
to a cross-product where the UDF is evaluated for all pairs oftuples. Hence, this is an impractical approach. On
the other hand, an implementation using SSJoin exploits thesupport within database systems for equi-joins to
result in a significant reduction in the total number of string comparisons. This results in orders of magnitude
improvement in performance [7]. Ajax [13] proposed a matching primitive based on a user-specified similarity
function. First, this focuses purely on record level similarity and hence cannot capture co-occurrence similarity
functions. Further, they do not identify any common features across all similarity functions they support. Hence,
they run the risk that their implementation would reduce to across-product followed by a UDF check and hence
would also be impractical.

We now illustrate how similarity join with respect to edit distance can be performed using SSJoin. The
edit distance between strings is the least number of edit operations (insertion and deletion of characters, and
substitution of a character with another) required to transform one string to the other. For example, the edit
distance between strings ‘microsoft’ and ‘mcrosoft’ is1, the number of edits (deleting ‘i’) required to match the
second string with the first.

We illustrate the connection between edit distance and overlap through the following example.

Example 4: Consider the strings “Microsoft Corp” and “Mcrosoft Corp”.The edit distance between the two
is 1 (deleting ’i’). The overlap similarity between their 3-grams is 10, more than 80% of the number of 3-grams
in either string.

The intuition is allq-grams that are “far away” from the place where the edits takeplace must be identical. Hence,
if the edit distance is small, then the overlap onq-grams must be high. This intuitive relationship between edit
distance and the set ofq-grams can be formalized as follows [14].

Property 2: [14] Consider stringsσ1 and σ2, of lengths|σ1| and |σ2|, respectively. LetQGSetq(σ) de-
note the set of all contiguous q-grams of the stringσ. If σ1 and σ2 are within an edit distance ofǫ, then
Overlap(QGSetq(σ1),QGSetq(σ2)) ≥ max(|σ1|, |σ2|) − q + 1 − ǫ · q

Thus, in the above example, the edit distance is 1, and Property 2 asserts that at least 9 of all the 3-grams from
the two strings have to be common. Based on this property, we can implement similarity join based on edit
distance using SSJoin, as detailed in [7].

3.2 Top-K Similarity Join

Consider the example where we want to match a product name in asales transaction reported by a reseller against
the standardized set of products in a product reference table. In this context, we know that the incoming products

64



have to match with those in the reference table. If there is norecord in the reference table which does not match
exactly with an input product name, we want to match it with the “best matching” record in the reference table.
This operation has been shown to be very effective in dealingwith input errors [6, 20]. The intuitive notion of
match quality can again be quantified using a similarity function and thus this operation is like the similarity join
between the input relation and a reference table. However, unlike the similarity join where a user specifies the
threshold, we want the most similar record or in general theK most similar records to each record in the input
relation.

Observe that we stipulate one of the two relations involved as areference table, and for each record in the
other relation we want theK most similar records from the reference table. Thus, this operation is inherently
asymmetric unlike the similarity join, which can be symmetric if the similarity function is. As with the similarity
join operator, we ideally want to be able to support the top-K similarity join operator over many similarity
functions discussed earlier. Currently, we support an index-based implementation (with probabilistic guarantees)
of this operation for the generalized edit similarity in SQLServer Integration Services 2005. We call this specific
implementation thefuzzy lookuptransform. Other details of this implementation are discussed in [6].

4 Conclusions

In this paper, we discussed the Data Debugger framework for data cleaning. The main goal is to identify
generic and robust abstractions for data cleaning operators, and to support efficient implementations of these
abstractions within the platform. We are now able to composethese operators with other relational and non-
relational operators to derive operator trees.

We illustrated the Data Debugger framework for the specific problem of record matching, which is only one
important operation in data cleaning. Deduplication (alsocalled entity resolution) [16, 8], which partitions a
relation into groups of records based on their pairwise similarities, is also an important data cleaning operation.
Another operation is one which takes an attribute value and segments it into constituent attribute values [5, 1].
Commercial address cleansing tools (e.g., Trillium) rely heavily on this operation, which they call “parsing”.
We want to extend the Data Debugger framework to these other important data cleaning operations.
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Abstract

The object identification problem is particularly difficultfor XML data, due to its structural flexibility.
Tree edit distances have been used to perform approximate comparisons among XML trees. However,
such distances ignore the semantics implicit in element labels and nesting relationships of XML data.
Furthermore, the use of tree edit distances for unordered trees, that would be more suitable for this task,
is computationally infeasible. In this paper, we define a newdistance for XML data, thestructure aware
XML distance, that overcomes these issues, and present a polynomial algorithm to calculate it.

1 Introduction

Theobject identification problemis a central problem arising in data cleaning and data integration, where dif-
ferent objects must be compared to determine if they refer tothe samereal-world entity, even in the presence of
errors such as misspellings.

As the spread of the XML format as a data model increases, the need to develop effective strategies for XML
object identification grows. As a data model, XML is half a waybetween completely semistructured models,
in which nothing is known in advance about the structure of the data, and structured ones, like the relational
model. XML documents often represent complex, nested data.However, they are usually required to conform
to some kind of structural specification, expressed in schema languages like DTD and XML Schema. Hence,
their structure, though flexible, usually exhibits a certain degree of regularity.

Flexibility is one of the major issues in XML object identification. XML data representations may allow
for optional values, and lists of values whose length is not known schema-wise. Functions for approximate
XML data comparisons must thus be able to cope both with errors at the level of textual data values and with
this structural flexibility. The hierarchical nature of XMLdata has lead to the use oftree edit distances([1]) to
compare XML documents for various purposes, like approximate DTD matching and detection of differences in
versions of XML documents ([3]). Some proposals also address the object identification problem ([4]).

Tree edit distances in their original form give great importance to topological features of trees, but are not
well suited when node labels and their nesting have semantics and data structure is somewhat regular. The
proposals cited above adapt or extend tree edit distances tohandle XML documents, but ignore this problem.

Copyright 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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Another issue is that, due to the infeasibility of tree edit distance measures for unordered trees([18]), such
proposals are usually based on versions of tree edit distance for ordered trees. Notice that, while the XML data
model is indeed ordered, the presence of unbounded lists of values and optional elements in the data motivates
for the adoption of unordered comparisons when looking for approximate matches. As an example, consider an
element defined by the following DTD element definition:

<!ELEMENT SHOP (NAME, ADDRESS?, PHONENUM*)>

Here, an object representing a shop may contain zero or more phone numbers. The order in which phone
numbers are listed is irrelevant, or however unspecified, sotwo objects representing the same shop might contain
the same set of phone numbers in different order. Requiring that elements correspond to each other in an ordered
way may lead to miss some of the similarities among those objects. We believe that unordered comparison are
much more suited than ordered comparisons to perform approximate matches in data-oriented XML.

We are currently investigating how to overcome these issues. This paper presents the first results of our
ongoing research. In particular, we propose a novel distance measure for XML data, thestructure aware XML
distance, and present an algorithm to compute it. This distance copeswith the flexibility which is usual for
XML documents, but takes into proper account the semantics implicit in structural information. It allows for
comparison of XML data as unordered tree, and is thus particularly suited to identify objects that may differ
also for the order of the data values they contain. Nonetheless, differently from other distances for unordered
trees, it can be computed in polynomial time. The structure aware XML distance can be used as the basis for
approximate comparisons in an XML object identification framework.

The rest of this paper is organized as follows. In Section 2 wereview some related work. In Section 3 we
first motivate the introduction of a new distance, showing with examples how approaches based on classical
tree edit distance fail to respect the semantics of XML data.We then define formally the structure aware XML
distance. In Section 4 we present an algorithm to calculate the distance on two XML trees and review its time
complexity. In Section 5 we draw some conclusions, and describe some issues we plan to consider in our future
work.

2 Related Work

Theobject identificationproblem has been extensively studied for relational data (with the name of record match-
ing or record linkage problem), but the correspondent problem for semi-structured data has only recently drawn
some attention. Most proposals for XML object identification arestructure oblivious, in the sense that they rely
on some kind of flattening of document structure to perform comparisons. In [16], XML objects are flattened
and compared using string comparison functions. In the DOGMATIX framework([15]), data is extracted from
an XML document and stored in relations calledobject descriptions. Tuples of two object descriptors contain-
ing data with the same XPath are classified as similar or contradictory using string edit distance, and object
descriptions similarity is assessed taking into account the number of similar and contradictory tuples. The ap-
proach in [13] is similar, but objects have, beside flat object descriptors, also nested objects calleddescendants.
Comparisons among objects are performed level by level in a bottom up fashion, and approximate similarity
results at lower-levels are considered when comparing objects at upper levels. In particular, the similarity of two
objects is influenced by how many of their descendants are supposed to be similar. Notice that, in contrast to
this approach, the distance we define in this paper takes intoaccount the entire structure of an XML tree at once.
Structure awareapproaches proposed for XML object identification rely on distance measures based on the tree
structure of XML, liketree edit distances(see [1] and below in this section). In particular, the authors of [4]
integrate string comparison functions into the classic tree edit distance for ordered trees to compute approximate
joins on XML documents. The paper is mainly concerned with heuristics to filter unneeded comparisons, based
on efficient computation of bounds for the distance.
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It is worthwhile to notice that tree edit distances have beenused to measure similarity of XML documents
also in proposals not directly related to object identification. As an example, in [3] the authors use a version
of tree edit distance that allows moving entire subtrees, inorder to detect changes in hierarchically structured
documents. In [9], an analogous version of edit distance is used to cluster XML documents by similarity.

The notion oftree edit distancefor ordered trees has been introduced in its most widely known form by
Tai ([14]), though a restricted version already appeared in[11]. Since then, the problem has been extended to
unordered trees ([18, 12]) and many variations have been proposed (see e.g. [5, 17, 10]). Most versions of the
edit distance problem allow polynomial-time algorithms inthe case of ordered trees, but become NP-hard in the
unordered case([18]). Thetree alignment distance([5]) is a restricted version of edit distance. In tree alignment,
trees are first made isomorphic (ignoring node labels) with the insertionof nodes labelled withspaces, and then
overlayed. A cost function is defined on pairs of labels and the cost of an alignment is the sum of the costs
of opposing labels. Anoptimal alignmentis an alignment of minimum cost. Differently from the distance we
propose in this paper, tree alignment considers insertionsof nodes and overlays nodes with different labels. The
alignment problem has polynomial cost for ordered trees, but becomes NP-Hard for unordered trees. In [10] a
structure respecting edit distanceis presented. Despite the similarity with the name of the distance introduced
here, the proposal in [10] is a tree edit distance, with the added constraint that disjoint subtrees are mapped to
disjoint subtrees, and does not take into account the semantics of structure, as in our case. We refer to [1] the
reader interested in a survey on various versions of tree edit distances.

3 A Structure-Aware Approach to XML Object Identification

Approaches to solve the object identification problem generally make use of some kind of distance function to
detect the similarity of two objects. In record matching techniques proposed for the relational model, attribute
values are often compared usingstring comparison functions([8, 6]). XML documents can be modelled as node
labelled trees. This hierarchical, tree-like nature justifies the proposal of similarity measures that integrate string
comparison functions withtree edit distances([1]). Tree distances have been introduced to measure structural
similarity among trees. However, they are not fully able to capture the semantics of XML data, as they do not
keep into account the semantics and structural relationships among XML elements.

In this section, we first show some weaknesses that classic tree edit distances suffer when used to compare
XML data, and then define a new notion of distance for XML data,the structure-aware XML distance, as the
basis of an approach to XML object identification.

3.1 Tree Distances

Given a set of edit operations on labelled trees (i.e. node insertions, deletions and relabellings) and a function
that assigns a cost to each operation, thetree edit distancebetween two trees is defined ([14]) as the minimum
cost sequence of tree edit operations required to transformone tree to another. Other variants of this notion have
been proposed in the literature, including versions where edit operations are allowed on entire subtrees.

Comparison of XML data based on tree distances has been proposed for various purposes ([4, 3, 9]). As an
example, in [4] the authors adapt the tree distance defined above to perform approximate XML joins by adding
comparisons of text node labels based on a string comparisonfunction. With respect to other proposals for
XML object identification, this approach has the advantage of keeping into account the tree structure of XML
data. However, the use of tree edit distance for this purposehas some drawbacks. The following examples
illustrate two of them. First, consider the XML data trees represented in Figure 1(a). Treec) represents the
same data as treea), and also contains some additional information. Treeb), instead, represents different data.
However, as it can be easily verified, the tree distance between a) andc) is greater than the distance between
a) andb). Let us now consider the example shown in Figure 1(b). Here, aperson can be represented with its
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“Mark”
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“John”

“John” “Mark” “Carl”
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e)

parents

“Paul” “Ada”

(b)

Figure 1: Two issues in classical tree edit distance-based XML comparisons

parents and an optional list of friends. When measuring the distance between the two treesd) ande), a minimal
distance is obtained by deleting from treed) the entireparentsubtree, relabelling nodefriendsinto parentsand
matching its leaves to two of the nodes of theparent subtree of treee). This behaviour clearly violates the
semantics implicit in node labels. These problems, in addition to the need of performing unordered comparisons
efficiently, motivate the introduction of a new distance measure for XML data.

3.2 XML Structure-aware Distance

In this section, we first give an intuitive description of ourapproach to distance measurement, and then we
formalize the distance itself. Our aim is to overcome the problems highlighted in the previous section by taking
into full account the presence of structural information inXML data.

The above examples show that, when comparing XML trees, a good choice is to match subtrees that have
similar structure and that are located under the same path from the root. These can be indeed interpreted as
clues of the same semantics. If two trees have exactly the same structure, and only differ by the textual values
present on the leaves, we canoverlaythe trees so that nodes with the same path match. When multiple overlays
are possible, then we choose one such that the distance amongtextual values on the leaves is minimal. If the
two trees have different structure, due to the presence of additional information, we can match those subtrees
that exhibit the least distance on leaves, and ignore those that cannot be matched. Intuitively, we are trying to
realize an overlay as above by deleting extra subtrees that do not match well. In the remainder of this section we
formalize these intuitions, and use them to define a new distance for XML data.

An overlayO of two data treesT1 andT2 is a non-empty set of couples of nodes fromT1 andT2 with the
following properties. Letvi, v

′
i ∈ Ti, ni ∈ (Ti − leaves(Ti)), i = 1, 2:







if 〈v1, v2〉, 〈v′1, v′2〉 ∈ O, thenv1 = v′1 iff v2 = v′2;
if 〈v1, v2〉 ∈ O, thenpath(v1) = path(v2);
〈n1, n2〉 ∈ O iff ∃v1, v2 s.t.n1 = parent(v1) ∧ n2 = parent(v2) ∧ 〈v1, v2〉 ∈ O.

Where,path(v) denotes the sequence of node labelslabel(root) . . . label(v) encountered when traversing the
tree from the root to node v. If〈v1, v2〉 ∈ O we say that v and wmatch. If a node is not matched with any
other node, we say that it isdeleted. Informally, an overlay matches nodes fromT1 to nodes fromT2 one-to-one,
so that nodes or leaves are matched only if they have the same path from the root. Two nodes can be matched
iff they are ancestors of two leaves that are matched. Noticethat this implies that, if a node is deleted, all its
descendants are also deleted. It also implies that an overlay of two trees exists only if there exist two leaves
l1 ∈ T1 andl2 ∈ T2 with the same path from the root. We say that two trees arecomparableif they have at least
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one overlay. An overlayO of two trees iscompleteif there is no other overlayO′ such thatO ⊂ O′. In the rest
of this paper, when we refer to an overlay, we implicitly assume that it is a complete overlay.

Let sdist(s1, s2) be a string comparison function. Ifv is a leaf node, we denote withtext(v) its string value.
Thecost of matchfor two nodesv,w is:

µv,w =

{

sdist(text(v), text(w)) if v,w are leaves
0 otherwise

The cost of an overlay Ois defined asΓO =
∑

〈v,w〉∈O µv,w. An overlayO of two trees isoptimal if it is
complete and there is no other complete overlayO′ such thatΓO′ < ΓO.

The structure aware XML distanceof two comparable XML treesT1 andT2 is defined as the cost of an
optimal overlay ofT1 andT2. In Section 4, we describe an algorithm that measures the structure aware XML
distance among two trees. Differently from other tree-distances, the distance defined here can be computed in
polynomial time, even if the trees are unordered. Therefore, this distance is suitable for object identification,
which requires a high number of pairwise comparisons among trees.

Notice that, when applied to the trees in the example given above, this distance works as expected. Treesa)
andb) in Figure 1(a) are incomparable, while the distance of treesa) andc) is zero. In the case of Figure 1(b),
the distance only considers the differences among those leaves that is meaningful to compare, giving as a result
the least distance between names present under the nodesparents.

4 Structure Aware XML Distance Measurement

In this section, we introduce an algorithm to measure the structure aware XML distance defined in Section 3.
Before presenting it in details, we describe some properties of overlays that are useful to understand how the
algorithm works. We denote withT1, T2 two comparable data trees, withr1, r2 their roots, and withvi, wj , i ∈
[1, deg(r1)], j ∈ [1, deg(r2)] the children ofr1 andr2, respectively. Furthermore, given a nodev, we denote
with T (v) the tree rooted atv.

Let O be an overlay ofT1, T2. It can be easily shown that if〈v,w〉 ∈ O, then the setOv,w = {〈y, z〉 ∈
O|y ∈ T (v), z ∈ T (w)} is an overlay ofT (v) and T (w). Therefore, O can be writtenO = 〈r1, r2〉 ∪
(
⋃

〈vi,wj〉∈O Ovi,wj
). It follows that the cost ofO is the sum of the costs of all the overlaysOvi,wj

. It is also
immediate to see thatO is optimal only if the overlaysOvi,wj

are all optimal.
A complete overlay ofT1 andT2 can be obtained by first matchingr1 with r2 and then matching a children

of r1 with a children ofr2 until no more matches are possible. Notice that nodes can be matched only if they
have the same label. Nodes that are not matched are deleted, along with all their descendants. Ifvi andwj

are matched, then an overlay is built forT (vi) andT (vj) by applying the same process, recursively, up to the
leaves. From the above considerations, it follows that, in order to obtain an optimal overlay, the children ofr1

andr2 must be matched so that the sum of the costs of optimal overlays for subtrees rooted at matched nodes
is minimal. In other words, an algorithm must choose, among all possible assignments of subtrees rooted at the
children ofr1 to subtrees rooted at the children ofr2, one that minimizes the sum of the distances of all couples
of subtrees.

Algorithm 1 analyzes two comparable trees recursively, starting from the roots. If the roots are leaf nodes,
a distance measure for their associated text values is returned. Such function is denoted by the procedure
compareStrings() in the algorithm. Otherwise, the algorithm considers theirchildren, and computes a distance
for each couple of subtrees rooted at children with the same label, recursively. After all distances have been
calculated, the algorithm must assign each node to another node with the same label, minimizing the overall
cost. This is an assignment problem and can be solved using a variation of the well-known Hungarian Algorithm
([7],[2]). In the algorithm, this task is performed by a callto procedurefindAssignment(). In particular, given
a matrix of distances, the procedure returns a set of assignments containing couples of indices of assigned
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Algorithm 1 StructureAwareXMLDist(T1, T2)

if isLeaf(r1) andisLeaf(r2) then
returncompareStrings(text(r1), text(r2))

else
structDist := ∞
for all l in labels(children(r1) ∪ children(r2)) do

for all vi ∈ childrenl(r1) do
for all wj ∈ childrenl(r2) do

childrenlDistance[i, j] := StructureAwareXMLDist(T (vi), T (wj))
end for

end for
assignmentl := findAssignment(childrenlDistance[])
for all 〈h, k〉 ∈ assignmentl do

if structDist = ∞ then
structDist := 0

end if
structDist := structDist + childrenlDistance[h, k]

end for
end for
returnstructDist

end if

nodes. For ease of presentation, in the algorithm we denote the set of all children of node v having labell with
childrenl(v). Results of distance calculations for a certain set of children having labell are stored in an array
namedchildrenlDistance. The distance is initially set to∞, and reset to 0 only in the case that there is at least
one assignment of root children.

In order to understand the cost of the algorithm, let us consider a case in which all the leaves of the tree have
the same path, and the data trees are complete. We consider distance calculation among two treesT1 andT2.
We denote withdeg1 anddeg2 their respective degrees and withL1, L2 their sets of leaves.

Let T ′
1, T ′

2 be two subtrees ofT1 andT2 rooted at levell, and letr′1, r
′
2 be their roots. In order to compute

their distance, we must choose a match among the children ofr′1 andr′2 such that the the sum of distances for
corresponding subtrees is minimal. Assuming that we have already calculated all pairwise distances, we need to
solve an instance of the linear assignment problem. The Hungarian algorithm gives a solution in cubic time, so
the cost of an assignment isO((deg1 + deg2)

3).
To compute all distance measurements, we proceed bottom up,starting from the leaves and calculating all

pairwise distances among all nodes at each level. At leveldepth − 1, before performing the assignment phase
we must compute distances among textual values. These are computed in constant time (w.r.t. the size of the
trees). At upper levels, we already know the distances amongnodes at lower levels, so we just need to perform
the assignment phase. In total, the assignment phase is repeated(|T1| − |L1|) × (|T2| − |L2|) times. Thus, the
overall cost isO((|T1| − |L1|) × (|T2| − |L2|) × (deg1 + deg2)

3

When there is more than one path for leaf nodes, the calculation is less expensive. For example, if the
sets of children of two nodes are partitioned according to their label in two sets of equal cardinality s, in order
to compute the distance among the two nodes the algorithm will have to calculate(s2 + s2) distances among
children, instead than(s + s)2, and calculate two assignments at the cost ofO((2s)3) instead of a single one at
costO((4s)6).
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5 Conclusions

XML data has tree-like nature and flexible structure. These features have lead to proposals for XML object
identification that exploit tree-edit distances to performapproximate comparisons among XML trees. However,
tree edit distances suffer from certain drawbacks, since they ignore the semantics implicit in the element labels
and nesting relationships. Furthermore, while tree-distances for unordered trees are better suited to perform
approximate comparisons of XML data, their use is computationally infeasible. In this paper, we have defined
a new distance for XML data, thestructure aware XML distance, that overcomes these issues. The distance
compares only portions of XML data trees whose structure suggest similar semantics. Furthermore, it performs
comparison on unordered trees, without incurring in high computational costs. We have presented an algorithm
to measure the distance between two trees, and discussed itscomplexity, that is polynomial.

In our future work, we will perform experiments to determinethe effectiveness of our distance as the basis
of an object identification approach. We also plan to investigate other interesting issues related to the use of tree
distances for XML comparison. As an example, in [4] the authors suggest the use of ontology based techniques
to evaluate the cost of relabelling element nodes. How to balance the effects of string- comparison-based and
ontology- based cost evaluation seems far from trivial.
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