
Bulletin of the Technical Committee on

Data
Engineering
June 2005 Vol. 28 No. 2 IEEE Computer Society

Letters
Letter from the Editor-in-Chief . David Lomet 1
Letter from the Special Issue Editor . Gustavo Alonso 2

Special Issue on Databases for New Hardware

A ”Measure of Transaction Processing” 20 Years Later . Jim Gray 3
Architecture Sensitive Database Design: Examples from the Columbia Group .

. Kenneth A. Ross, John Cieslewicz, Jun Rao, Jingren Zhou 5
StagedDB: Designing Database Servers for Modern Hardware Stavros Harizopoulos, Anastassia Ailamaki 11
MonetDB/X100 - A DBMS In The CPU Cache Marcin Zukowski, Peter Boncz, Niels Nes, Sándor Héman 17
New Hardware Support for Database Operations .

. Nagender Bandi, Chengyu Sun, Hailing Yu, Divyakant Agrawal, Amr El Abbadi 23

Conference and Journal Notices
ICDE’06 Conference .back cover

Editorial Board

Editor-in-Chief
David B. Lomet
Microsoft Research
One Microsoft Way, Bldg. 9
Redmond WA 98052-6399
lomet@microsoft.com

Associate Editors

Gustavo Alonso
Department of Computer Science
ETH Zentrum, HRS G 04
CH-8092 Zurich
Switzerland

Minos Garofalakis
Bell Laboratories
Lucent Technologies
600 Mountain Avenue
Murray Hill, NJ 07974

Meral Özsoyoğlu
EECS Department
Case Western Reserve University
Cleveland, OH 44106

Jignesh M. Patel
EECS Department
University of Michigan
1301 Beal Avenue
Ann Arbor, MI 48109

The Bulletin of the Technical Committee on Data
Engineering is published quarterly and is distributed
to all TC members. Its scope includes the design,
implementation, modelling, theory and application of
database systems and their technology.

Letters, conference information, and news should be
sent to the Editor-in-Chief. Papers for each issue are
solicited by and should be sent to the Associate Editor
responsible for the issue.

Opinions expressed in contributions are those of the
authors and do not necessarily reflect the positions of
the TC on Data Engineering, the IEEE Computer So-
ciety, or the authors’ organizations.

Membership in the TC on Data Engineering is open
to all current members of the IEEE Computer Society
who are interested in database systems.

There are two Data Engineering Bulletin web sites:
http://www.research.microsoft.com/research/db/debull
and http://sites.computer.org/debull/.
The TC on Data Engineering web page is
http://www.ccs.neu.edu/groups/IEEE/tcde/index.html.

TC Executive Committee

Chair
Erich J. Neuhold
Director, Fraunhofer-IPSI
Dolivostrasse 15
64293 Darmstadt, Germany
neuhold@ipsi.fhg.de

Vice-Chair
Betty Salzberg
College of Computer Science
Northeastern University
Boston, MA 02115

Secretry/Treasurer
Paul Larson
Microsoft Research
One Microsoft Way, Bldg. 9
Redmond WA 98052-6399

SIGMOD Liason
Marianne Winslett
Department of Computer Science
University of Illinois
1304 West Springfield Avenue
Urbana, IL 61801

Geographic Co-ordinators

Masaru Kitsuregawa (Asia)
Institute of Industrial Science
The University of Tokyo
7-22-1 Roppongi Minato-ku
Tokyo 106, Japan

Ron Sacks-Davis (Australia)
CITRI
723 Swanston Street
Carlton, Victoria, Australia 3053

Svein-Olaf Hvasshovd (Europe)
ClustRa
Westermannsveita 2, N-7011
Trondheim, NORWAY

Distribution
IEEE Computer Society
1730 Massachusetts Avenue
Washington, D.C. 20036-1992
(202) 371-1013
jw.daniel@computer.org

i

Letter from the Editor-in-Chief

The Current Issue

The characteristics of the hardware upon which modern database systems run have change dramatically since the
early years of relational database systems. We have gone from uniprocessor machines of a few MIPS to SMP
machines and dual core machines executing at several GIPS. Disks have grown from hundreds of megabytes
to hundreds of gigabytes. Main memory has grown from the megabyte range to the gigabyte range. Memory
latency has grown from a few machine cycles to over a hundred cycles. Disk latency in machine cycles, has
exploded from thousands of machine cycles to millions of cycles.

It is a tribute to the architecture of database systems, which has changed very little, that they continue to
execute “reasonably well” on modern hardware. Larger memories have been exploited for larger database caches
so as to reduce the number of disk accesses. We have worked hard to make more I/O sequential. Database page
size has increased modestly. These simple things have worked fairly well, and have been successful in causing
database system performance to increase enormously as hardware capabilities have grown. Nonetheless, the
ratio of peak machine performance to realized machine performance has has grown.

We are simply not exploiting modern machines as well as we had exploited the hardware of the 1970’s
on which the first database systems were implemented. This performance “gap” has attracted the attention of
database systems providers as well as the research community. The research community has been very active
from quite early in doing the more adventuresome “tuning”, such as for processor cache characteristics, e.g
AlphaSort, a paper on which was published in SIGMOD’94. Work in this area continues with papers appearing
regularly in the leading database conferences. Indeed there is a community of database researchers who have
focused on the problem, with interesting and useful results.

I was enthusiastic about an issue on this topic when Gustavo Alonso, this issue’s editor, first proposed it.
Gustavo has solicited and assembled an interesting collection of papers on this important topic which are well
worth serious study. I want to thank Gustavo for his efforts and I encourage you to read the issue. I am confident
that you will find the papers presented here both interesting and useful.

David Lomet
Microsoft Corporation

1

Letter from the Special Issue Editor

Databases have been around for quite a while now. A great success story, today’s databases are built on very
solid theoretical foundations and an amazing wealth of engineering knowledge. Yet, for all their success, some
of the fundamental assumptions behind the architecture of modern database systems are being challenged by
the evolution of the underlying hardware. In this issue of the Bulletin, several authors explore the problem in
great detail and provide valuable insights on how to exploit new features at the hardware to improve database
performance.

The first article, by Jim Gray, reviews the history of a number of database benchmarks. It points out that
the rate of improvement in speed for several key benchmarks has slowed down in the last years. He conjectures
that the reason for this slowed improvement is due to the benchmarks becoming bound by memory latency, and
the slow progress in speed merely reflecting the slow improvement in memory latency. The second article, by
Ken Ross et al., discusses how different aspects of modern processors can be exploited by database engines. It
provides a very good overview of the different issues involved and of a number of techniques proposed over
the years to adapt database processing to the characteristics of the underlying hardware. While Ross’ article
describes a collection of techniques, the third article in the issue -by Harizopoulos and Ailamaki- proposes a
novel database architecture that optimizes data and instruction locality at all levels of the memory hierarchy.
The relevance of this contribution is that it shows what needs to be changed in the way databases are built to be
able to function efficiently on modern processors. The fourth article in the issue, by Zukowsky et al., explores the
problem of minimizing the amount of instructions needed to process a query. They show that the performance
of today’s databases is order of magnitudes worse than hand coding the solution using C++. Then they go on to
describe a new query execution engine, X100, that uses in-cache vectorized processing to reach very significant
performance improvements. The last article, by Bandi et al., tackle the problem of using new hardware such
as MEMS storage devices to improve the performance of certain database operations. The article shows how
to effectively use MEMS to process spatial queries and they show how to incorporate this new hardware into
existing database products.

Taken together, these articles offer a fascinating perspective on how some of the basic assumptions behind
the architecture of existing database systems are being challenged by advances in hardware. If we consider the
changes that are taken place in many other areas (e.g., use of clusters for scalability, or the advent of aspect ori-
ented programming) it becomes clear that databases must radically change their architecture to avoid becoming
niche systems usable only in a very small set of applications. I am sure some of these topics will soon become
the main theme of new issues of the Data Engineering Bulletin.

Gustavo Alonso
Department of Computer Science

Swiss Federal Institute of Technology (ETH Zurich) Zurich
Switzerland

2

A “Measure of Transaction Processing” 20 Years Later

Jim Gray
Microsoft Research

April 2005

”A Measure of Transaction Processing Power” [1] defined three performance benchmarks: DebitCredit: a
test of the database and transaction system, Sort: a test of the OS and IO system, and Copy: a test of the file
system.

DebitCredit morphed into TPC-A and then TPC-C. In 1985, systems were nearing 100 transactions per sec-
ond, now they deliver 100,000 transactions per second, and a palmtop can deliver several thousand transactions
per second (www.tpc.org, and [2]). Price-performance (measured in dollars/tps) has also improved dramatically
as shown in Figure 1.

The sort benchmark has seen similar improvements.

Figure 1: (by Charles Levine from [2]): Price/performance
trend lines for TPC-A and TPC-C. The 15-year trend lines track
Moore’s Law (100x per 10 years.)

The traditional Datamation ”sort 1M records” now runs
in a fraction of a second and has been replaced by Pen-
nySort (sort as much as you can for a penny), MinuteSort
(sort as much as you can in a minute), and Terabyte sort
(sort a trillion records). Each of these three benchmarks
has a Daytona (commercial), and Indy (benchmark spe-
cial) category [3].

This year Jim Wyllie of IBM Almaden Research won
both Terabyte Sort and MinuteSort medals with his SCS
(SAN Cluster Sort) [4] using SUSE Linux (SLES8) and
IBM’s General Parallel File System (GPFS) on an IBM
40-node 80-Itanium cluster with a SAN array of 2,520
disks. The machine delivered up to 14 GBps of IO band-
width and sorted a terabyte in 437 seconds. SCS was able
to sort 125 GB within a minute (wow!). It is hard to know

the price of this system (now at UCSD) but the ”list” price is at least $9M.
At the other end of the spectrum, Robert Ramey with his PostmansSort used a $950 Wintel box (3.2 GHz

Pentium4, 2 Maxtor SATA disks, WindowsXP) to sort 16.3 GB in 979 seconds - setting a new Daytona Pennysort
record [5].

Figure 2 shows that price-performance improved about 68%/year each year since 1985, handily beating
Moore’s 58%/year law. Sort speed (records sorted per second) doubled every year between 1985 and 2000. That
doubling in part came from faster hardware, in part from better software, and in part from the use of LOTS more
hardware (the year 2000 system used 1,962 processors and 2,168 disks.) In the last 5 years, peak sort speed has
only improved 2.4x (about 20%/year improvement).

Copyright 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

3

Figure 2: Sort speed doubled every year from 1985 to 2000;
but it only improved 2.4x since then (a 20%/y improvement).
Price-performance has steadily improved at 68%/y.

Figure 3: Sort speed per processor improved 100x at first,
then 10x more with cache-conscious algorithms. But for the
last 10 years improvement has been about 20% year - probably
reflecting the improvement of bulk RAM latency.

Performance improvements have been accomplished with multi-processors (hundreds of them). Price-
performance improvements have come from cheaper and faster disks and from cheaper processors. But as
Figure 3 shows, per-processor speeds seem to have plateaued. Sorted-records/second/processor (r/s/p for short)
improved ten fold between 1985 and 1995. But speed has improved only 2.7 fold in the last decade.

The 1980’s saw 200 r/s/p on a minicomputer to 38.5 k r/s/p on a Cray. In 1994, AlphaSort showed the
importance of cache-conscious sorts and got to 111 k r/s/p. Since then, there has been a slow climb to 280 k
r/s/p (e.g., Jim Willey’s SCS Itanium TerabyteSort and the Pentium4 SkeenSort.)

I conjecture that this relatively slow improvement reflects the slow improvement in memory latency. All the
algorithms are now cache conscious, so they are all limited by the speed of bulk memory - processor speed (and
even cache speed) is not relevant here since sort cache misses are essentially random during the ”comparison”
and merge phase. But, that is just my guess. It would make an interesting study for the hardware architects –
speed problems may lie elsewhere. But, my guess is: Remember! It’s the memory.

References

[1] Anon et. al.. ”A Measure of Transaction Processing Power” Datamation, 1 April, 1985. Also at:
http://research.microsoft.com/ gray/papers/AMeasureOfTransactionProcessingPower.doc

[2] Jim Gray and Charles Levine. Thousands of DebitCredit Transactions per Second: Easy and Inexpensive.
MSR TR 2005-39. http://research.microsoft.com/research/pubs/view.aspx?msr tr id=MSR-TR-2005-39

[3] Sort Benchmark Website http://research.microsoft.com/barc/SortBenchmark/

[4] Jim Wyllie Sorting on a Cluster Attached to a Storage Area Network April, 2000
http://research.microsoft.com/barc/SortBenchmark/2005 SCS Wyllie.pdf

[5] Robert Ramey. 2005 Performance/Price Sort and PennySort. http://research.microsoft.com/barc/ SortBench-
mark/2005 PostMansSort.pdf

4

Architecture Sensitive Database Design: Examples from the
Columbia Group

Kenneth A. Ross∗
Columbia University

John Cieslewicz
Columbia University

Jun Rao
IBM Research

Jingren Zhou
Microsoft Research

In this article, we discuss how different aspects of modern CPU architecture can be effectively used by
database systems. While we shall try to cover most important aspects of modern architectures, we shall not aim
to provide an exhaustive survey of the literature. Rather, we will use examples from our own recent work to
illustrate the principles involved. While there is related work on using other components of modern machines
such as graphics cards and intelligent disk controllers for database work, we limit our discussion here to just a
single CPU and the memory hierarchy (excluding disks).

In recent years the primary focus of database performance research has fundamentally shifted from disks to
main memory. Systems with a very large main memory allow a database’s working set to fit in RAM. At the same
time processors have continued to double in performance roughly every eighteen months in line with “Moore’s
Law,” while memory speed improvements have been marginal. The CPU now spends many hundreds of cycles
waiting for data to arrive from main memory, and database workloads are often memory-bound. Because of this
bottleneck, database research at Columbia and elsewhere has focused on effectively using the cache hierarchy
to improve database performance.

Changes in processor technology have also influenced database research. Modern processors feature a very
long pipeline, which helps to provide better performance. It also results in a higher branch misprediction penalty,
because the pipeline must be flushed and restarted when a branch is mispredicted.

Modern CPUs provide the database programmer with a rich instruction set. Using specialized instructions,
such as SIMD instructions, database performance can be improved by allowing a degree of parallelism and
eliminating some conditional branch instructions, thus reducing the impact of branch mispredictions.

1 The Data Cache

In traditional B+-Trees, child pointers are stored explicitly in each node. When keys are small, child pointers
can take half of the space within each node, significantly reducing the cache-line utilization. The idea of Cache-
Sensitive Search Trees (CSS-Trees) [7] is to avoid storing child pointers explicitly, by encoding a complete n-ary
tree in an array structure. Child nodes can be found by performing arithmetic on array offsets. As a result, each
node in a CSS-Tree can store more keys than a B+-Tree, and thus reduce the number of cache-line accesses
when traversing a tree. The small amount of CPU overhead of computing child node addresses is more than
offset by the savings of fewer cache misses. CSS-Trees are expensive to update, and are therefore only suited
for relatively static environments where updates are batched.

Copyright 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

∗Supported by NSF grant IIS-01-20939. The work described here was performed while the authors were at Columbia University.

5

To overcome this limitation of CSS-Trees, we developed another indexing technique called Cache Sensi-
tive B+-Trees (CSB+-Trees) [8]. It is a variant of B+-Trees that stores all the child nodes of any given node
contiguously. This way, each node only needs to keep the address of its first child. The rest of the children
can be found by adding an offset to that address. Since only one child pointer is stored explicitly in each node,
the utilization of a cache line is almost as high as a CSS-Tree. CSB+-Trees support incremental updates in a
way similar to B+-Trees, but have somewhat higher cost because when a node splits, extra copying is needed
to maintain node contiguity. In summary, CSB+-Trees combine the good cache behavior of CSS-Trees with the
incremental maintainability of B+-Trees, and provide the best overall performance for many workloads with a
mix of queries and updates.

CSS-Trees and CSB+-Trees focus on better utilization of each cache line and optimize the search perfor-
mance of a single lookup. For applications in which a large number of accesses to an index structure are made
in a small amount of time, it is important to exploit spatial and temporal locality between consecutive lookups.

Cache memories are typically too small to hold the whole index structure. If probes to the index are ran-
domly distributed, consecutive lookups end with different leaf nodes, and almost every lookup will find the
corresponding leaf node not in the cache. The resulting cache thrashing can have a severe impact on the overall
performance. Our results show that conventional index structures have poor cache miss rates for bulk access.
Even cache-sensitive algorithms such as CSB+-Trees also have moderately high cache miss rates for bulk access,
despite their cache-conscious design for single lookups.

We propose techniques to buffer probes to memory-resident tree-structured indexes to avoid cache thrashing
[12]. As a lookup proceeds down the tree, a record describing the lookup (containing a probe identifier and the
search key) is copied into a buffer of such records for an index node. These buffers are periodically emptied,
and divided among buffers for the child nodes. While there is extra copying of data into buffers, we expect to
benefit from improved spatial and temporal locality, and thus to incur a smaller number of cache misses.

0

2

4

6

8

10

12

14

B+-Tree CSB+-Tree R-Tree

E
la

p
se

d
 T

im
e

(s
ec

o
n

d
s)

Conventional Lookup Buffered Lookup

(a) Variable-Size Buffered Tree (b) Overall Performance

Figure 1: Buffering Accesses to Indexes

Figure 1(a) shows a variable-size buffered tree. The root node A is used to process a large number of probes.
Buffers for A’s children are created, and filled with the corresponding probes. Eventually, the buffer of node B
gets flushed, buffers for its children are created, and probes are distributed between the child buffers. When the
leaf level is reached, the probes generate join results. When multiple levels of the tree can fit in the cache, we
do not buffer at every level. Instead, we buffer once for the maximum number of levels that fit in the cache. For
more details, see [12].

Figure 1(b) shows the results of buffering for various index techniques. (See [12] for the experimental setup.)
Buffered lookup is uniformly better, with speedups by a factor of two to three. Interestingly, the performance of
B+-trees and CSB+-trees differ little once buffering techniques are applied. The buffering overhead is the same;
the size of nodes is relatively unimportant for bulk access.

6

Hash Join
l_orderkey=o_orderkey

TableScan
lineitem

TableScan
orders

Buffer

Buffer

Agg
sum, avg, count

Buffer

Hash
(o_orderkey)

0

2

4

6

8

10

12

14

Original Query Plan Buffered Query Plan

E
la

p
se

d
 T

im
e

(s
ec

o
n

d
s)

Other Cost Branch Misprediction Penalty

L2 Cache Miss Penalty Instr. Cache Miss Penalty

(a) Original Plan (b) Buffered Plan (c) Execution Time Breakdown

Figure 2: Buffered Plans

2 The Instruction Cache

As demonstrated in [1, 6, 5, 2], database workloads exhibit instruction footprints that are much larger than
the first-level instruction cache. A conventional demand-pull query execution engine generates a long pipeline
of execution operators. An operator returns control to its parent operator immediately after generating one
tuple. The instructions for this operator get evicted from the cache to empty cache memory space for the parent
operator. However, the evicted instructions are required when generating the next tuple, and have to be loaded
into the cache again. The resulting instruction cache thrashing may reduce the overall query performance
significantly.

To avoid the instruction cache thrashing problem, we proposed implementing a new light-weight buffer
operator using the conventional iterator interface [13]. A buffer operator simply batches the intermediate results
of the operator(s) below it. We do not require modifications to the implementations of any existing operators.
Buffers are placed between groups of operators, where a group is the largest set of consecutive operators that
together fit in the instruction cache.

Like other operators, when the GetNext() function of a buffer operator is called for the first time, it begins to
retrieve a tuple from the child operator. However, instead of returning the tuple immediately, a buffer operator
saves the pointer to the previous tuple and continues to retrieve another tuple. A buffer operator won’t return any
tuple until either end-of-tuples is received from the child operator or it collects a full array of tuples. Subsequent
requests will be filled directly from its buffered array until all the buffered tuples have been consumed and the
operator begins to retrieve another array of tuples. The benefit of buffering is that it increases temporal and
spatial instruction locality below the buffer operator. Another possible benefit of buffering is better hardware
branch prediction. More details can be found in [13].

We validate our techniques using an experimental prototype built on PostgreSQL 7.3.4. All of the queries
are executed on a TPC-H benchmark database with scale factor 0.2 and can be answered within memory without
I/O interference. We illustrate the buffering method on the following query:

SELECT sum(o totalprice), count(*), avg(l discount)
FROM lineitem, orders
WHERE l orderkey = o orderkey AND l shipdate <= date ’1998-11-01’;

Figure 2 shows the plans using a hash join and the query execution time breakdown. For the buffered plan,
footprint analysis suggests three execution groups (marked with boxes). The “Hash” operator builds a hash
table for the “orders” table on orderkey. The “HashJoin” operator implements the probe phase of the join. Both
the build and probe phases are complex enough that they should be considered separately. The build operator,
“Hash”, is blocking and is not considered in any execution group. The combined footprint of a “TableScan” and

7

either phase is larger than the L1 instruction cache. Therefore, a buffer operator is added for each “TableScan”
operator. The buffered plan reduces the instruction cache misses by 70% and the branch mispredictions by 44%.
Overall, the buffered plan improves query performance by 15%.

3 Branch Mispredictions

Modern CPUs have a pipelined architecture in which many instructions are active at the same time, in different
phases of execution. Conditional branch instructions present a significant problem in this context, because the
CPU does not know in advance which of the two possible outcomes will happen. Depending on the outcome,
different instruction streams should be read into the pipeline.

CPUs try to predict the outcome of branches, and have special hardware for maintaining the branching
history of many branch instructions. Such hardware allows for improvements of branch prediction accuracy, but
branch misprediction rates may still be significant. Branches that are rarely taken, and branches that are almost
always taken are generally well-predicted by the hardware. The “worst-case” branch behavior is one in which
the branch is taken roughly half of the time, in a random (i.e., unpredictable) manner. In that kind of workload,
branches will be mispredicted half of the time.

A mispredicted branch incurs a substantial delay. Branch misprediction has a significant impact on modern
database systems [1]. As a result, one might aim to design algorithms for “kernel” database operations that
exhibit good branch-prediction accuracy on modern processors.

Suppose we have a large table stored as a collection of arrays, one array per column, as advocated in [3].
Let’s number the arrays r1 through rn. We wish to evaluate a compound selection condition on this table, and
return pointers (or offsets) to the matching rows. Suppose the conditions we want to evaluate are f1 through fk.
For simplicity of presentation, we’ll assume that each fi operates on a single column which we’ll assume is ri.
So, for example, if f1 tests whether the first attribute is equal to 3, then both the equality test and the constant
3 are encapsulated within the definition of f1. We assume that the condition we wish to test is a conjunction of
basic conditions. For more general conditions, see [10].

The straightforward way to code the selection operation applied to all records would be the following. The
result is returned in an array called answer. In each algorithm below, we assume that the variable j has been
initialized to zero.

for(i=0;i<number_of_records;i++) {
if(f1(r1[i]) && ... && fk(rk[i])) { answer[j++] = i;} }

The important point is the use of the C idiom “&&”. This implementation saves work when f1 is very selective.
When f1(r1[i]) is zero, no further work (using f2 through fk) is done for record i. However, the potential
problem with this implementation is that its assembly language equivalent has k conditional branches. If the ini-
tial functions fj are not very selective, then the system may execute many branches. The closer each selectivity
is to 0.5, the higher the probability that the corresponding branch will be mispredicted, yielding a significant
branch misprediction penalty. An alternative implementation uses logical-and (&) in place of &&:

for(i=0;i<number_of_records;i++) {
if(f1(r1[i]) & ... & fk(rk[i])) { answer[j++] = i;} }

Because the code fragment above uses logical “&” rather than a branching “&&”, there is only one conditional
branch in the corresponding assembly code instead of k. We may perform relatively poorly when f1 is selective,
because we always do the work of f1 through fk. On the other hand, there is only one branch, and so we expect
the branch misprediction penalty to be smaller. The branch misprediction penalty for that one branch may still
be significant when the combined selectivity is close to 0.5. The following loop implementation has no branches
within the loop.

8

for(i=0;i<number_of_records;i++) {
answer[j] = i; j += (f1(r1[i]) & ... & fk(rk[i])); }

To see the difference between these three methods, we im-
plemented them in C for k = 4 and ran them on a 750Mhz
Pentium III under Linux. (See [10] for details of the exper-
iment.) The graph on the right shows the results. Each of
the three implementations is best in some range, and the per-
formance differences are significant. On other ranges, each
implementation is about twice as bad as optimal. There are,
in fact, many additional plans that can be formed by combin-
ing the three approaches. An example that combines all three
is the following (with the loop code omitted): 0

0.005

0.01

0.015

0.02

0.025

0.03

0 0.2 0.4 0.6 0.8 1

tim
e

pe
r

re
co

rd
 (

m
ic

ro
se

co
nd

s)

selectivity

&&
&

nobranch

if((f1(r1[i]) & f2(r2[i])) && f3(r3[i]))
{ answer[j] = i; j += (f4(r4[i]) & ... & fk(rk[i])); }

Several of these combination plans turn out to be superior to the three basic methods over some selectivity
ranges. In [10, 9] we formulate a cost model that accurately accounts for the cost of branch mispredictions in
query plans for conditional scans. We also derive exact and heuristic optimization algorithms that can find good
ways of combining the selection conditions to minimize the overall cost.

4 SIMD Instructions

Modern CPUs have instructions that allow basic operations to be performed on several data elements in parallel.
These instructions are called SIMD instructions, since they apply a single instruction to multiple data elements.
SIMD technology was initially built into commodity processors to accelerate multimedia applications. SIMD
technology comes in various flavors on a number of architectures. We focus on a Pentium 4 because the SIMD
instructions are among the most powerful of mainstream commodity processors, including 128-bit SIMD regis-
ters and floating point SIMD operations.

Table with 1 million records. Predicate selectivity 0.2

0

5

10

15

20

25

SUM

SIM
D S

UM

COUNT

SIM
D C

OUNT
M

AX

SIM
D M

AX
M

IN

SIM
D M

IN

E
la

p
se

d
 T

im
e

(m
ill

is
ec

o
n

d
s)

Other Cost Branch Misprediction Penalty

(a) Packed Operation (b) Aggregation and Branch Misprediction

Figure 3: Using SIMD Instructions

We illustrate the use of SIMD instructions using the packed single-precision floating-point instruction avail-
able on Intel SSE technology chips, and shown in Figure 3(a). Both operands are using 128-bit registers. Each
source operand contains four 32-bit single-precision floating-point values, and the destination operand contains
the results of the operation (OP) performed in parallel on the corresponding values (X0 and Y0, X1 and Y1,
X2 and Y2, and X3 and Y3) in each operand. SIMD operations include various comparison, arithmetic, shuffle,
conversion and logical operations [4]. A SIMD comparison operation results in an element mask corresponding

9

to the length of the packed operands. For this operator, the result is a 128-bit wide element mask containing four
32-bit sub-elements, each consisting either of all 1’s (0xFFFFFFFF) where the comparison condition is true or
all 0’s (0x00000000) where it is false.

Suppose we wish to sum up y values for rows whose x values satisfy the given condition. SIMD instructions
can compare 4 x elements at a time and generate an element mask. Suppose that we have a SIMD register called
sum that is initialized to 4 zero words. The element mask can be used to add up qualified y values in two
SIMD operations sum[1..4]=SIMD +(sum[1..4], SIMD AND(Mask[1..4], y[1..4])). The idea is to
convert non-matched elements to zeroes. After finishing processing, we need to add the 4 elements of sum as
the final result. Similar techniques also apply to other aggregation functions [11].

Figure 3(b) shows the performance and branch misprediction impact of a query corresponding to “SELECT
AGG(y) FROM R WHERE xlow < x < xhigh” for different types of aggregation functions. Table R has 1 million
records and the predicate selectivity is 20%. There are no conditional branches in the SIMD-optimized algo-
rithms. As a result, they are faster than the original algorithms by more than a factor of four. Forty percent of
the cost of the original algorithms is due to branch misprediction.

The use of SIMD instructions has two immediate performance benefits: It allows a degree of parallelism,
so that many operands can be processed at once. It also often leads to the elimination of conditional branch
instructions, reducing branch mispredictions. SIMD instructions can also be useful for sequential scans, index
operations, and joins [11].

References

[1] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood. DBMSs on a modern processor: Where does time go? In
Proceedings of International Conference on Very Large Data Bases, 1999.

[2] L. A. Barroso, K. Gharachorloo, and E. Bugnion. Memory system characterization of commercial workloads. In
Proceedings of International Symposium on Computer Architecture, 1998.

[3] P. A. Boncz, S. Manegold, and M. L. Kersten. Database architecture optimized for the new bottleneck: Memory
access. In Proceedings of International Conference on Very Large Data Bases, 1999.

[4] Intel Inc. IA32 intel architecture optimization reference manual. 2004.

[5] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, and W. E. Baker. Performance characterization of a Quad
Pentium Pro SMP using OLTP workloads. In Proc. of the 25th Int. Symposium on Computer Architecture, 1998.

[6] A. M. G. Maynard, C. M. Donnelly, and B. R. Olszewski. Contrasting characteristics and cache performance of
technical and multi-user commercial workloads. In Proceedings of International Conference on Architectural Support
for Programming Languages and Operating Systems, 1994.

[7] J. Rao and K. A. Ross. Cache conscious indexing for decision-support in main memory. In Proceedings of Interna-
tional Conference on Very Large Data Bases, 1999.

[8] J. Rao and K. A. Ross. Making B+ trees cache conscious in main memory. In Proceedings of ACM SIGMOD
International Conference on Management of Data, 2000.

[9] K. A. Ross. Conjunctive selection conditions in main memory. In Proceedings of ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, 2002.

[10] K. A. Ross. Selection conditions in main memory. ACM Transactions on Database Systems, 29(1):132–161, 2004.

[11] J. Zhou and K. A. Ross. Implementing database operations using SIMD instructions. In Proceedings of ACM
SIGMOD International Conference on Management of Data, 2002.

[12] J. Zhou and K. A. Ross. Buffering accesses to memory-resident index structures. In Proceedings of International
Conference on Very Large Data Bases, 2003.

[13] J. Zhou and K. A. Ross. Buffering database operations for enhanced instruction cache performance. In Proceedings
of ACM SIGMOD International Conference on Management of Data, 2004.

10

StagedDB: Designing Database Servers for Modern Hardware

Stavros Harizopoulos, Anastassia Ailamaki
Carnegie Mellon University

{stavros,natassa}@cs.cmu.edu

Abstract

Advances in computer architecture research yield increasingly powerful processors which can execute
code at a much faster pace than they can access data in the memory hierarchy. Database management
systems (DBMS), due to their intensive data processing nature, are in the front line of commercial ap-
plications which cannot harness the available computing power. To prevent the CPU from idling, a
multitude of hardware mechanisms and software optimizations have been proposed. Their effectiveness,
however, is limited by the sheer volume of data accessed and by the unpredictable sequence of memory
requests.

In this article we describe StagedDB, a new DBMS software architecture for optimizing data and
instruction locality at all levels of the memory hierarchy. The key idea is to break database request
execution in stages and process a group of sub-requests at each stage, thus effortlessly exploiting data
and work commonality. We present two systems based on the StagedDB design. STEPS, a transac-
tion coordinating mechanism demonstrated on top of Shore, minimizes instruction-cache misses without
increasing the cache size, eliminating two thirds of all instruction misses when running on-line trans-
action processing applications. QPipe, a staged relational query engine built on top of BerkeleyDB,
maximizes data and work sharing across concurrent queries, providing up to 2x throughput speedup in
a decision-support workload.

1 Introduction

Research shows that the performance of Database Management Systems (DBMS) on modern hardware is tightly
coupled to how efficiently the entire memory hierarchy, from disks to on-chip caches, is utilized. Unfortunately,
according to recent studies, 50% to 80% of the execution time in database workloads is spent waiting for instruc-
tions or data [1, 2, 10]. Current technology trends call for computing platforms with higher-capacity memory
hierarchies, but with each level requiring increasingly more processor cycles to access. At the same time,
advances in chip manufacturing process allow the simultaneous execution of multiple programs on the same
chip, either through hardware-implemented threads on the same CPU (simultaneous multithreading—SMT), or
through multiple CPU cores on the same chip (chip multiprocessing—CMP), or both. With higher levels of
hardware-available parallelism, the performance requirements of the memory hierarchy increase. To improve
DBMS performance, it is necessary to engineer software that takes into consideration all features of new micro-
processor designs.

Copyright 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

11

�
�
�
�
�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�
�
�
�
�Q2

Q1
��
��
��
��

�
�
�
�

Stage 1 Stage 2

StagedDBConventional DBMS

queries

queries

Q2

Q1CPU
schedule

context−switching

Figure 1: Example of conventional and Staged DBMS architecture with two system modules. Striped boxes in
the query schedule (assuming single CPU) correspond to time spent accessing instructions and data common to
both queries; these need to be reloaded when modules are swapped. StagedDB loads a module only once.

1.1 Techniques to improve memory hierarchy performance

Since each memory hierarchy level trades capacity for lookup speed, research has focused on ways to improve
locality at each level. Techniques that increase reusability of a page or a cache block are referred to as temporal
locality optimizations, while spatial locality optimizations are improving the utilization within a single page
or cache block. Database researchers propose relational processing algorithms to improve data and instruction
temporal locality [16, 14], and also indexing structures and memory page layouts that improve spatial locality
[15]. Buffer pool replacement policies seek to improve main memory utilization by increasing the reusability of
data pages across requests [5, 12]. Computer architecture researchers propose to rearrange binary code layout
[13] to achieve better instruction spatial locality. A complementary approach to improve performance is to
overlap memory hierarchy accesses with computation. At the software level, recent techniques prefetch known
pages ahead of time [4], while at the microarchitecture level, out-of-order processors tolerate cache access
latencies by executing neighboring instructions [9]. Despite the multitude of proposed optimizations, these are
inherently limited by the sheer volume of data that DBMS need to process and by the unpredictable sequence of
memory requests.

1.2 StagedDB design: exploiting concurrency to improve locality

Most of the research to date for improving locality examines data accessed and instructions executed by a single
query (or transaction) at a time. Database systems, however, typically handle multiple concurrent users. Request
concurrency adds a new dimension for addressing the locality optimization problem. By properly synchronizing
and multiplexing the concurrent execution of multiple requests there is a potential of increasing both data and
instruction reusability at all levels of the memory hierarchy. Existing DBMS designs, however, pose difficulties
in applying such execution optimizations. Since typically each database query or transaction is handled by one
or more processes (threads), the DBMS essentially relinquishes execution control to the OS and then to the CPU.
A new design is needed to allow for application-induced control of execution.

StagedDB [6], is a new DBMS software architecture for optimizing data and instruction locality at all levels
of the memory hierarchy. The key idea is to break database request execution in stages and process a group
of sub-requests at each stage, thus effortlessly exploiting data and work commonality. The StagedDB design
requires only a small number of changes to the existing DBMS codebase and provides a new set of execution
primitives that allow software to gain increased control over what data is accessed, when, and by which requests.
Figure 1 illustrates the high-level idea behind StagedDB. For simplicity, we only show two requests passing
through two stages of execution. In conventional DBMS designs, context-switching among requests occurs at
random points, possibly evicting instructions and data that are common among requests executing at the same
stage (these correspond to the striped boxes in the left part of Figure 1). A StagedDB system (right part of Figure

12

1) consists of a number of self contained modules, each encapsulated into a stage. Group processing at each
stage allows for a context-aware execution sequence of requests that promotes reusability of instructions and
data. The benefits of the StagedDB design are extensively described elsewhere [6].

In this article we present an overview of two systems based on the StagedDB design. STEPS, a transaction
coordinating mechanism, minimizes instruction misses at the first-level (L1-I) cache (Section 2), while QPipe,
a staged relational query engine, maximizes data and work sharing across concurrent queries (Section 3).

2 STEPS for Cache-Resident Code

According to recent research, instruction-related delays in the memory subsystem account for 25% to 40%
of the total execution time in Online Transaction Processing (OLTP) applications [2, 10]. In contrast to data,
instruction misses cannot be overlapped with out-of-order execution, and instruction caches cannot grow as the
slower access time directly affects the processor speed. With commercial DBMS exhibiting more than 500KB
of OLTP code footprint [11] and modern CPUs having 16-64KB instruction caches, transactional code paths
are too long to achieve cache-residency. The challenge is to alleviate the instruction-related delays without
increasing cache size.

STEPS (for Synchronized Transactions through Explicit Processor Scheduling) is a technique that minimizes
instruction-cache misses in OLTP by multiplexing concurrent transactions and exploiting common code paths
[7]. At a higher level, STEPS applies the StagedDB design to form groups of concurrent transactions that execute
the same transactional operation (e.g., traversing an index, updating a record, or performing an insert). Since
DBMS typically assign a thread to each transaction, STEPS introduces a thin wrapper around each transactional
operation to coordinate threads executing the same operation. Although transactions in a group have a high
degree of overlap in executed instructions, a conventional scheduler that executes one thread after the other
would still incur new instruction misses for each transaction execution (left part of Figure 2). The reason is that
the code working set of transactional operations typically overwhelms the L1-I cache. To maximize instruction
sharing among transactions in the same group, STEPS lets only one transaction incur compulsory instruction
misses, while the rest of the transactions “piggyback” onto the first one, finding the instructions they need in the
cache. To achieve this, STEPS identifies the points in the code where the cache fills up and performs a quick
context-switch, so that other transactions can execute the cache-resident code (right part of Figure 2).

2.1 Implementation of STEPS

We implement STEPS inside the Shore database storage manager [3] by wrapping each transactional operation
to form groups of threads. To achieve overhead-free context-switching between threads in the same group,
we execute only the core context-switch code, updating only the CPU state, and postponing updates to thread-
specific data structures until those updates become necessary. In our implementation, the fast context-switch

code fits in
instruction
cache

window
capacity

instruction
cache select()

s1
s2
s3

select()
s1
s2
s3

THREAD 1 THREAD 2

No STEPS

code misses in
instruction cache!

CPU context−switches
CPU executes code

select()
s1

select()
s1

s2
s3

s2
s3

THREAD 1 THREAD 2

With STEPS

Figure 2: Illustration of instruction-cache aware context switching with STEPS.

13

Shore w/STEPS

Shore

2,000

3,000

4,000

1,000

Concurrent threads
1 2 4 6 8 10

L1
−

I c
ac

he
 m

is
se

s

0

80%

60%

40%

20%

0%

N
or

m
al

iz
ed

 c
ou

nt
 (

S
ho

re
 is

 1
00

%
)

100%

L1−I misses Cycles

Number of users
100 200

80%

60%

40%

20%

0%

N
or

m
al

iz
ed

 c
ou

nt
 (

S
ho

re
 is

 1
00

%
)

100%

L1−I misses Cycles

Number of users
100 200

(a) (b) (c)

Figure 3: (a) L1-I cache misses for Shore without and with STEPS, when running index select. (b) L1-I miss and
execution cycles reduction with STEPS running a single TPC-C transaction, and, (c) a mix of four transactions.

code is 76 bytes and therefore only occupies three 32-byte or two 64-byte blocks in the instruction cache. We
locate points in the source code to insert context-switch statements by using a cache simulation tool and also
by measuring actual misses in the code using hardware counters. The rest of the code changes are restricted to
the thread package, to make sure that every time a thread yields control (either because it needs to wait on I/O,
or failed to acquire a lock, or for any other reason, such as aborting a transaction), all thread-package structures
that were not updated during fast context-switches are checked to ensure system consistency.

2.2 Evaluation

We conducted an extensive evaluation of STEPS, using both real hardware (two different CPU architectures) and
full-system simulation, on both microbenchmarks and full workloads. The full results are presented elsewhere
[7]. In this article we present microbenchmark and TPC-C results on a server with a single AMD AthlonXP
processor, which has a large, 64KB instruction cache. Figure 3a shows that, when running a group of transac-
tions performing an indexed selection with STEPS, L1-I cache misses are reduced by 96% for each additional
concurrent thread. Figures 3b and 3c show that when running a single transaction (Payment) or a mix of transac-
tions from TPC-C in a 10-20 Warehouse configuration (100-200 concurrent users), STEPS reduces instruction
misses by up to 65% while at the same time produces up to 30% speedup.

3 QPipe: A Staged Relational Query Engine

Modern query execution engines execute queries following the “one-query, many-operators” model. A query
enters the engine as an optimized plan and is executed as if it were alone in the system. The means for sharing
common data across concurrent queries is provided by the buffer pool, which keeps information in main memory
according to a replacement policy. The degree of sharing the buffer pool provides, however, is extremely sensi-
tive to timing; in order to share data pages the queries must arrive simultaneously to the system and must execute
in lockstep, which is highly unlikely. Queries can share work through materialized views which, however, have
a maintenance overhead and also require prior workload knowledge.

To maximize data and work sharing at execution time, we propose to monitor each relational operator for
every active query in order to detect overlaps. For example, one query may have already sorted a file that
another query is about to start sorting; by monitoring the sort operator we can detect this overlap and reuse
the sorted file. Once an overlapping computation is detected, the results are simultaneously pipelined to all

14

Engine−Aggregateµ

µ Engine−Scan

query
plans

µ Engine−Join
��
��
��
��

��
��
��
��

query
packets

dispatcher
packet

QPipe

local
thread
pool

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12

T
hr

ou
gh

pu
t (

qu
er

ie
s/

ho
ur

)

Number of clients

QPipe w/S
DBMS X
Baseline

(a) (b)

Figure 4: (a) QPipe architecture: queries with the same operator queue up at the same micro-engine (for sim-
plicity, only three micro-engines are shown). (b) Throughput results for a set of TPC-H queries.

participating parent nodes, thereby avoiding materialization costs. There are several challenges in embedding
such an evaluation model inside a traditional query engine: (a) how to efficiently detect overlapping operators
and decide on sharing eligibility, (b) how to cope with different consuming/producing speeds of the participating
queries, and, (c) how to overcome the optimizer’s restrictions on the query evaluation order to allow for more
sharing opportunities. The overhead to meet these challenges using a “one-query, many-operators” query engine
would offset any performance benefits.

To efficiently detect and exploit overlaps across queries, we introduce QPipe, a new query engine architec-
ture which follows a “one-operator, many-queries” design philosophy [8]. Each relational operator is promoted
to an independent micro-engine which manages a set of threads and serves queries from a queue (Figure 4a).
A packet dispatcher converts an incoming query plan to a series of query packets. Data flow between micro-
engines occurs through dedicated buffers - similar to a parallel database engine. QPipe achieves better resource
utilization than conventional engines by grouping requests of the same nature together, and by having dedicated
micro-engines to process each group of similar requests. Every time a new packet queues up in a micro-engine,
all existing packets are checked for overlapping work. On a match, each micro-engine employs different mech-
anisms for data and work sharing, depending on the enclosed relational operator.

3.1 QPipe prototype

We implement QPipe on top of the BerkeleyDB storage manager, using native OS threads. The resulting pro-
totype is a versatile engine, naturally parallel, running on a wide range of multi-processor servers. Each micro-
engine is a different C++ class with separate classes for the thread-pool support, the shared-memory implemen-
tation of queues and buffers, the packet dispatcher, and the modules for detecting and exploiting overlapping
work. The basic functionality of each micro-engine is to dequeue the packet, process it, optionally read input or
write output to a buffer, and destroy the packet. Calls to data access methods are wrappers for the underlying
database storage manager (BerkeleyDB) which adds the necessary transactional support, a buffer-pool manager,
and table access methods. Client processes can either submit packets directly to the micro-engines or send a
query plan to the packet dispatcher which creates and routes packets accordingly.

3.2 Evaluation

We experiment with a 4GB TPC-H database on a 2.6 GHz P4 machine, with 2GB of RAM and four 10K RPM
SCSI drives (organized as software RAID-0 array), running Linux 2.4.18. We use a pool of eight representative
TPC-H queries, randomly generating selection predicates every time a query is picked. Figure 4b shows the

15

throughput achieved, when varying the number of clients from 1 to 12, for three systems. “Baseline” is the
BerkeleyDB-based QPipe implementation with sharing disabled, “QPipe w/S” is the same system with sharing
enabled, and “DBMS X” is a major commercial database system. Although different TPC-H queries do not
exhibit overlapping computation by design, all queries operate on the same nine tables, and therefore there
often exist data page sharing opportunities. For a single client, all systems perform almost the same since the
disk bandwidth is the limiting factor. As clients increase beyond six, X is not able to significantly increase
the throughput while QPipe with sharing enabled takes full advantage of overlapping work and achieves a 2x
speedup over X. A more extensive evaluation of QPipe is presented elsewhere [8].

4 Conclusions

As DBMS performance relies increasingly on good memory hierarchy utilization and future multi-core proces-
sors will only put more pressure on the memory subsystem, it becomes increasingly important to design software
that matches the architecture of modern hardware. This article shows that the key to optimal performance is to
expose all potential locality in instructions, data, and high-level computation, by grouping similar concurrent
tasks together. We presented two systems based on the StagedDB design. STEPS minimizes instruction cache
misses of OLTP with arbitrary long code paths, without increasing the size of the instruction cache. QPipe, a
novel query execution engine architecture, leverages the fact that a query plan offers an exact description of all
task items needed by a query, and employs techniques to expose and exploit locality in both data and computa-
tion across different queries. Moreover, by providing fine-grained software parallelism, the StagedDB design is
a unique match to future highly-parallel infrastructures.

References

[1] A. Ailamaki, D. J. DeWitt, et al. DBMSs on a modern processor: Where does time go? In VLDB, 1999.
[2] L. A. Barroso, K. Gharachorloo, and E. Bugnion. Memory System Characterization of Commercial Workloads. In

ISCA, 1998.
[3] M. Carey et al. Shoring Up Persistent Applications. In SIGMOD, 1994.
[4] S. Chen, P. B. Gibbons, and T. C. Mowry. Improving Index Performance through Prefetching. In SIGMOD, 2001.
[5] H.T. Chou and D. J. DeWitt. An evaluation of buffer management strategies for relational database systems. In

SIGMOD, 1985.
[6] S. Harizopoulos and A. Ailamaki. A Case for Staged Database Systems. In CIDR, 2003.
[7] S. Harizopoulos and A. Ailamaki. STEPS Towards Cache-Resident Transaction Processing. In VLDB, 2004.
[8] S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki. QPipe: A Simultaneously Pipelined Relational Query Engine. In

SIGMOD, 2005.
[9] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach. Morgan-Kaufmann, 1996.

[10] K. Keeton, D. A. Patterson, et al. Performance Characterization of a Quad Pentium Pro SMP Using OLTP Workloads.
In ISCA, 1998.

[11] J. Lo, L. A. Barroso, S. Eggers, et al. An Analysis of Database Workload Performance on Simultaneous Multi-
threaded Processors. In ISCA, 1998.

[12] N. Megiddo and D. S. Modha. ARC: A Self-Tuning, Low Overhead Replacement Cache. In FAST, 2003.
[13] A. Ramirez, L. A. Barroso, et al. Code Layout Optimizations for Transaction Processing Workloads. In ISCA, 2001.

[14] S. Padmanabhan, T. Malkemus, R. Agarwal, and A. Jhingran. Block Oriented Processing of Relational Database
Operations in Modern Computer Architectures. In ICDE, 2001.

[15] M. Shao, J. Schindler, S. W. Schlosser, A. Ailamaki, and G. R. Ganger. Clotho: Decoupling Memory Page Layout
from Storage Organization. In VLDB, 2004.

[16] A. Shatdal, C. Kant, and J. Naughton. Cache Conscious Algorithms for Relational Query Processing. In VLDB,
1994.

16

MonetDB/X100 - A DBMS In The CPU Cache

Marcin Zukowski, Peter Boncz, Niels Nes, Sándor Héman
Centrum voor Wiskunde en Informatica

Kruislaan 413, Amsterdam, The Netherlands
{M.Zukowski, P.Boncz, N.Nes, S.Heman}@cwi.nl

Abstract

X100 is a new execution engine for the MonetDB system, that improves execution speed and over-
comes its main memory limitation. It introduces the concept of in-cache vectorized processing that
strikes a balance between the existing column-at-a-time MIL execution primitives of MonetDB and the
tuple-at-a-time Volcano pipelining model, avoiding their drawbacks: intermediate result materializa-
tion and large interpretation overhead, respectively. We explain how the new query engine makes bet-
ter use of cache memories as well as parallel computation resources of modern super-scalar CPUs.
MonetDB/X100 can be one to two orders of magnitude faster than commercial DBMSs and close to
hand-coded C programs for computationally intensive queries on in-memory datasets. To address larger
disk-based datasets with the same efficiency, a new ColumnBM storage layer is developed that boosts
bandwidth using ultra lightweight compression and cooperative scans.

1 Introduction

The computational power of database systems is known to be lower than hand-written (e.g. C++) programs.
However, the actual performance difference can be surprisingly large. Table 1 shows the execution time of
Query 1 of the TPC-H benchmark run on various database systems and implemented as a separate program
(with data cached in the main memory in all situations). We choose Query 1 as it is a simple single-scan query
(no joins), that calculates a small aggregated result, thus mainly exposing the raw processing power of the
system. The results show that most DBMSs are orders of magnitude slower than hand-written code.

DBMS “X” MySQL 4.1 MonetDB/MIL MonetDB/X100 hand-coded
28.1s 26.6s 3.7s 0.60s 0.22s

Table 1: TPC-H Query 1 performance on various systems (scale factor 1)

We argue that the poor performance of MySQL and the commercial RDBMS “X” is related to the Volcano
iterator pipelining model [6]. While the Volcano approach is elegant and efficient for I/O bound queries, in
computation-intensive tasks, its tuple-at-a-time execution makes runtime interpretation overhead dominate exe-
cution. That is, the time spent by the RDBMS on actual computations is dwarfed by the time spent interpreting

Copyright 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

17

. . . Query tree . . .

Decompression

1.19

1998−09−03

Disk Disk Network

selection
vector

X100
execution
engine

CPU

Storage

vat_price

Select

Project

selection
vector

shipdate returnflag extprice

hash table maintenance aggr_sum_flt_col

map_mul_flt_val_flt_col

map_hash_chr_col

returnflag sum_vat_price

the cache
vectors fit in

Cache

Aggregate

Scan

vectors
contain multiple
values of a single
attribute

primitives
process entire
vectors at a time

operators
process sets
of tuples
represented as
aligned vectors

select_lt_date_col_date_val

returnflagshipdate

Scan
extprice

ColumnBM

Main
memory in DSM

data

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

1 2 3 4

5 76
1 2 3

1 2 3

3

67

5

4

4

Figure 1: X100 – architecture overview and execution layer example

the expressions in a query tree, and looking up the needed attribute values in pages storing tuples in the N-ary
storage model (NSM). As a result, quite a high number of CPU instructions are needed for each simple compu-
tational operation occurring in a query. Additionally, the instructions per cycle (IPC) efficiency achieved tends
to be low, because the tuple-at-a-time model hides from the CPU most parallel execution opportunities, namely
those provided by performing computations for different tuples in an overlapping fashion.

MonetDB [2], developed at CWI 1, is an alternative approach to building a query execution system. Its
MIL algebra [3] minimizes the interpretation overhead by providing execution primitives that process data in
a column-at-a-time fashion. Since MonetDB uses vertically decomposed storage model (DSM) [5], where
columns are simple arrays, and each primitive performs only one fixed operation on the input data, the primitive
implementation boils down to a sequential loop over aligned input arrays. Modern compilers can apply loop
pipelining to such code, allowing MIL primitives to achieve high IPC on super-scalar CPUs. However, the
column-at-a-time execution model introduces the extra cost of intermediate result materialization, which is only
sustainable inside main memory, thus limiting the scalability of the system.

Figure 1 presents the architecture of X100, a new execution engine for MonetDB that combines the benefits
of low-overhead column-wise query execution with the absence of intermediate result materialization in the
Volcano iterator model. One of its distinguishing features is vectorized execution: instead of single tuples, entire
vectors of values are passed through the pipeline. Another is in-cache processing: all the execution is happening
within the CPU cache, using main memory only as a buffer for I/O and large intermediate data structures. These
techniques make X100 execute efficiently on modern CPUs and allow it to achieve raw performance comparable
to C code.

To bring the high-performance query processing of X100 to large disk-based datasets, a new ColumnBM
storage manager is currently being developed. It focuses on satisfying the high bandwidth requirements of X100
by applying ultra lightweight compression for boosting bandwidth and cooperative scans for optimizing multi-
query scenarios. Preliminary results show that it often achieves performance close to main memory execution
without the need for excessive numbers of disks.

The outline of this article is as follows. In Section 2 we describe the hardware features important for the
design of X100. Then, the system architecture is presented, concentrating on query execution in Section 3 and
on the ColumnBM storage manager in Section 4. Finally we conclude and discuss future work.

1MonetDB is now in open-source, see monetdb.cwi.nl

18

2 Modern CPU features

In the last decade, a CPU clock-speed race resulted in dividing execution of a single instruction into an instruc-
tion pipeline of simple stages. The length of this pipeline continuously increases, going as far as 17 stages in
AMD Opteron and 31 stages in Intel Pentium4. Another innovation found in modern super-scalar CPUs is the
increase in number of processing (pipeline) units. For example, the AMD Opteron has 2 load/store units, 3
integer units and 3 floating point units, and allows for executing a mix of 3 instructions per cycle (IPC).

To fully exploit the pipelines, the CPU needs to know which instructions will be executed next. In the case
of conditional branches, the CPU usually guesses which path the program will follow using a branch prediction
mechanism and performs speculative execution of the chosen code. However, if a branch misprediction occurs,
the pipeline needs to be flushed and the processing restarts with an alternative route. Obviously, with longer
pipelines more instructions are flushed, increasing the performance penalty.

1) original code
for(i=0;i<n;i++) {

t=a[i]+b[i];
x[i]=t*c[i];

}
2) loop pipelining
for(i=0;i<n;i+=8) {

t0=a[i]+b[i];
t1=a[i+1]+b[i+1];
...
t7=a[i+7]+b[i+7];
x[i]=t0*c[i];
x[i+1]=t1*c[i+1];
...
x[i+7]=t7*c[i+7];

}

Figure 2: Loop Pipelining

Another feature required to fully exploit available execution units is instruction
independence. For example, when calculating a=b+c;d=b*c; both a and d can be
calculated independently using two units. However, for a=b+c;d=a*c; process-
ing of d has to be delayed until a is evaluated, resulting in just one processing unit
being used. Figure 2 shows how loop pipelining eliminates this problem by inter-
leaving the computation of multiple loop iterations. That is, x[i] is scheduled 8
instructions after the computation of t0 started, making the result of t0 immedi-
ately available for use. A similar effect can be achieved without compiler by a CPU
that implements out-of-order execution, allowing it to execute instructions further
up the stream (i.e. belonging to next loop iterations) while earlier instructions still
wait on the result of another. Crucially, these techniques only work when a loop
processes a large number of independent iterations. This property of the execution
system, already present in MonetDB/MIL where one operation is executed on an
entire column in a tight loop, is further improved in X100.

Among the features of modern CPUs, cache memories received most attention from the DBMS community.
A growing family of cache-conscious algorithms reduce access to main memory by tuning the access pattern
of query processing algorithms and data structures [11, 1, 9, 8]. X100 goes even further by limiting its entire
execution engine to the cache, as presented in the next section.

3 X100 architecture

The X100 engine is designed for in-cache execution, which means that the only “randomly” accessible memory
is the CPU cache, and main memory is already considered part of secondary storage, used in the buffer manager
for buffering I/O operations and large intermediate results. The other main principle behind X100 is vectorized
execution, sketched in Figure 1:

• vertically decomposed tables are further partitioned horizontally into small chunks called vectors.

• a set of aligned vectors (one for each attribute), representing a set of tuples, is a single data unit in the
execution pipeline.

• an optional selection vector contains the positions of the tuples currently taking part in processing. This
removes the need for the extra after-selection projection steps present in MonetDB/MIL.

• the control logic of the operators is common for all data types, arithmetic functions, predicates etc.

• the actual data processing in the operators is performed by a set of execution primitives - simple, special-
ized and CPU-efficient functions.

19

 1 4 16 64 256 1K 4K 16K 64K 256K 1M
 0.1

 1

 10

26.6

 100

DBMS "X"
MySQL 4.1

28.1

"tuple at a time"

interpretation
dominates
execution

6M4M

MonetDB/X100

in−cache materialization

query without selection

materialization overhead
main−memory

MonetDB/MIL
"column at a time"

T
im

e
(s

ec
on

ds
)

0.60

0.22
Hand−Coded
C Program

"vector at a time"

3.7

2.4

vectors start to exceed
CPU cache, causing
extra memory traffic

interpretation
overhead
decreases

low interpretation overhead

input time avg. X100 primitive
count (us) cycles

6M 13307 3.0 select lt usht col usht val

5.9M 10039 2.3 map sub flt val flt col

5.9M 9385 2.2 map mul flt col flt col

5.9M 9248 2.1 map mul flt col flt col

5.9M 10254 2.4 map add flt val flt col

5.9M 13052 3.0 map uidx uchr col

5.9M 14712 3.4 map directgrp uidx col uchr col

5.9M 28058 6.5 aggr sum flt col uidx col

5.9M 28598 6.6 aggr sum flt col uidx col

5.9M 27243 6.3 aggr sum flt col uidx col

5.9M 26603 6.1 aggr sum flt col uidx col

5.9M 27404 6.3 aggr sum flt col uidx col

5.9M 18738 4.3 aggr count uidx col

Figure 3: TPC-H Query 1 performance in X100 with varying
vector size (in tuples, horizontal axis)

Table 2: MonetDB/X100 performance trace
during TPC-H Query 1 (primitives)

The execution primitive for multiplication of two vectors of floating point numbers might look like this:

int map_mul_flt_col_flt_col(int n, flt* res, flt* col1, flt* col2, int *sel)
{

for(int i=0; i<n; i++)
res[sel[i]] = col1[sel[i]] * col2[sel[i]];

return n;
}

The simplicity of these primitives allows compilers to produce code that achieve IPC of over 2 and, as
Table 2 shows, spend only a few cycles per tuple. In the case of a multiplication of two values, X100 spends
2 cycles per tuple, whereas MySQL spends 49 [4]. Complex expressions must be executed in X100 by calling
multiple primitives that each materialize intermediate results. While this materialization is in-cache, hence
highly efficient, it still causes a high ratio of load-store instructions. For example, the multiplication primitive
reads from sel, col1 and col2, and writes in res, thus needing 4 load/stores for 1 ”work” instruction. A hand-
coded C program does not need these load/stores as subexpression results are passed through CPU registers.
To overcome this problem, primitives in X100 are generated from a so-called signature request and a code
pattern. This allows X100 to generate compound primitives that execute an entire expression subtree (e.g.
(a*1.19+b)*0.95). Currently, primitive generation is predefined, but the ultimate goal is to allow a query
optimizer to generate and compile compound primitives in a just-in-time fashion.

A key tuning factor in X100 is the size of the vectors, which can be chosen at run-time. Figure 3 shows the
performance of MonetDB/X100 on TPC-H Query 1 with vector sizes varying from 1 (tuple-at-a-time) to 6M (the
entire table: column-at-a-time). For better understanding, we also plotted the results of MySQL, DBMS ”X”,
MonetDB/MIL and the hand-coded C program from Table 1. The performance of X100 at vector size 1 is highly
similar to that of the relational DBMS systems. As the vector size is increased, performance of MonetDB/X100
improves by two orders of magnitude, clearly showing that interpretation overhead was the bottleneck. With
further increase, however, the cache size boundary is crossed and cache misses start to occur. In other words,
the materialized intermediate results become too big, making the query memory bandwidth bound. At size 6M,
we indeed observe the performance of MonetDB/X100 to be suboptimal and highly similar to MonetDB/MIL.
MonetDB/MIL is slower mainly due to materialization the of 99% selection of Query 1, which is avoided in
X100 thanks to selection vectors. With this selection omitted, the performance of X100 exactly coincides with
MIL.

20

Figure 4: Performance of vari-
ous compression algorithms on
example TPC-H data

 0

 1

 2

 3

 4

 5

 6

 7

211815141211765431

C
om

pr
es

si
on

 r
at

io
 /

sp
ee

du
p

TPC-H Query

Compression ratio
Speedup

Figure 5: Compression ratio and performance
improvement on a subset of TPC-H queries

ColumnBM

CScan CScan CScan

ScanScanScan

Buffer
Manager

Figure 6: Scan process-
ing in a traditional system
and in the ColumnBM

4 ColumnBM

While the X100 execution engine is efficient in main memory scenarios, achieving similar performance for disk-
based data is a real challenge. Due to its raw computational speed, MonetDB/X100 exhibits an extreme hunger
for I/O bandwidth. As an extreme example, TPC-H Query 6 uses 216MB of data (SF=1), and is processed in
MonetDB/X100 in less than 100 ms, resulting in a bandwidth requirement of ca. 2.5GB per second. For most
other queries this requirement is lower, but still in the range of hundreds of megabytes per second. Clearly, such
bandwidth is hard to achieve except by using expensive storage systems consisting of large numbers of disks.
ColumnBM combines three techniques (DSM, compression and cooperative scans) to combat this problem.

DSM. ColumnBM vertically fragments tables on disk using DSM, which saves bandwidth if queries scan a
table without using all columns. Its main disadvantage is an increased cost of updates: a single row modifica-
tion results in one I/O per each influenced column. ColumnBM tackles this problem by treating data chunks
as immutable objects and storing modifications in the (in-memory) delta structures, periodically updating the
chunks [4]. During the scan, data from disk and delta structures are merged, providing the execution layer with
a consistent state. While ColumnBM uses DSM, this is not strictly required by the X100 execution model. The
rationale behind the in-cache column-wise layout (i.e. vectors) in X100 is not optimizing memory storage or re-
ducing I/O bandwidth, but to allow a compiler to detect loop-pipelining opportunities in its execution primitives.
To store data with a high-update rate, ColumnBM will also support the PAX [1] storage scheme, which stores
entire tuples in disk blocks, but uses vectors to represent the columns inside such blocks.

Compression. While compression in databases was proposed by many researchers [7, 10], we introduce two
novel techniques: ultra lightweight compression and into-cache decompression. Traditional compression algo-
rithms usually try to maximize the compression ratio, making them too expensive for use in a DBMS. X100
introduces a family of new highly CPU-efficient compression algorithms, specifically designed to create a
(de)compression kernel, that compiles into a pipelinable loop by making it simple, predictable and eliminat-
ing all if-then-else constructs. As Figure 4 shows, these new algorithms achieve a throughput of over 1 GB/s
during compression and a few GB/s in decompression, beating speed-tuned general purpose algorithms like
LZRW and LZO, while still obtaining comparable compression ratios. Preliminary experiments presented in
Figure 5 show the speedup of the decompressed queries to be close to the compression ratio, which in case of
TPC-H allows for a bandwidth (and performance) increase of a factor 3.

21

Most database systems employ decompression right after reading data from the disk, storing buffer pages
in uncompressed form. This solution requires data to cross the memory-cache boundary three times: when it
is delivered to the CPU for decompression, when uncompressed data is stored back in the buffer, and finally
when it is used by the query. Since such approach would make X100 decompression routines memory-bound,
ColumnBM stores disk pages in a compressed form and decompresses them just before execution, on a per-
vector granularity. Thus (de)compression is performed on the boundary between CPU cache and main memory,
rather than between main memory and disk. This approach nicely fits the delta-based update mechanism, as
merging the deltas can be applied after decompression, and chunks need to be re-compressed only periodically.

Cooperative Scans. While compression is tuned to improve performance of isolated queries, it is often the
case that multiple queries are running at the same time, often fighting for disk bandwidth. If they read the same
columns, ColumnBM applies cooperative scans [12], a technique in which queries, instead of reading data in a
fixed sequential order, try to reuse data already buffered by other queries. Disk accesses are scheduled to satisfy
the largest possible number of ”starving” queries. Preliminary results show that X100 on a single CPU can
sustain a load of 30 I/O bound queries (TPC-H Query 6) without performance loss.

5 Conclusions and future work

In this article we presented X100, a novel execution engine for MonetDB. By applying vectorized in-cache
execution, it efficiently exploits the features of modern CPUs and allows for raw in-memory performance one
to two orders of magnitude higher than other systems. Additionally, we discussed ColumnBM, a new storage
system that enables scaling MonetDB to large disk-based datasets.

X100 and ColumnBM are still in an experimental stage. Both components will play a role in our future
research into architecture-aware query processing, e.g. looking at new CPU features such as SMT and CMT.

From a software point of view, X100 is part of the MonetDB software family so it will re-use its API
infrastructure and query front-ends (SQL and XQuery). X100 is already being used in multimedia information
retrieval on the TREC-VIDEO collections. Other applications on our agenda for X100 are data mining and
analysis of astronomy datasets.

References

[1] A. Ailamaki, D. DeWitt, M. Hill, and M. Skounakis. Weaving Relations for Cache Performance. In Proc. VLDB,
2001.

[2] P. A. Boncz. Monet: A Next-Generation DBMS Kernel For Query-Intensive Applications. Ph.d. thesis, Universiteit
van Amsterdam, May 2002.

[3] P. A. Boncz and M. L. Kersten. MIL Primitives for Querying a Fragmented World. VLDB J., 8(2):101–119, 1999.
[4] P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-Pipelining Query Execution. In Proc. CIDR, 2005.
[5] G. P. Copeland and S. Khoshafian. A Decomposition Storage Model. In Proc. SIGMOD, 1985.
[6] G. Graefe. Volcano - an extensible and parallel query evaluation system. IEEE TKDE, 6(1):120–135, 1994.
[7] G. Graefe and L. D. Shapiro. Data compression and database performance. In Proc. ACM/IEEE-CS Symp. on Applied

Computing, 1991.
[8] S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizing Main-Memory Join On Modern Hardware. IEEE TKDE,

14(4):709–730, 2002.
[9] J. Rao and K. A. Ross. Making B+-Trees Cache Conscious in Main Memory. In Proc. SIGMOD, 2000.

[10] M. Roth and S. van Horn. Database compression. SIGMOD Rec., 22(3):31–39, September 1993.
[11] A. Shatdal, C. Kant, and J. F. Naughton. Cache conscious algorithms for relational query processing. In Proc. VLDB,

1994.
[12] M. Zukowski, P. A. Boncz, and M. L. Kersten. Cooperative scans. Technical Report INS-E0411, CWI, December

2004.

22

New Hardware Support for Database Operations ∗

Nagender Bandi†, Chengyu Sun‡, Hailing Yu�, Divyakant Agrawal†, Amr El Abbadi†
† Department of Computer Science, University of California, Santa Barbara

‡ Department of Computer Science, California State Universtity, Los Angeles

� Oracle Corporation, Redwood Shores, California

Abstract

Query processing cost in database applications can be divided into two parts: the I/O cost and the
computational cost. Traditionally DBMS researchers have focused on the issue of reducing the I/O cost
as it is the primary source of bottleneck in most of the database operations. As the computer systems
which run the DBMSs evolved, this problem worsened because the speeds of secondary storage devices
increased at a much slower pace compared to the memory access and processing speeds. Further, as
databases become increasingly accepted in areas such as spatial databases, we encounter new chal-
lenges. For example, the computational cost has been known to be the bottleneck in certain spatial
operations. In this paper, we present a survey of our work where we present novel solutions which use
hardware to alleviate the I/O cost bottleneck for traditional database applications and the computational
cost bottleneck for non-standard database applications such as spatial databases. In particular, we use
the novel MEMS-based storage devices to develop efficient data placement solutions for relational data-
bases and two-dimensional datasets. Using commodity graphics hardware, we develop novel spatial
solutions which outperform conventional software techniques. We also integrate these techniques into a
popular commercial spatial database and demonstrate significant improvement in query performance.

1 Introduction

The cost of a DBMS query consists of two factors: I/O cost, the time spent in loading the data from the secondary
storage into the main memory, and computational cost, the time spent by the DBMS in processing this data and
returning the result. Traditionally I/O cost has been known to be the major bottleneck due to the high cost
of disk access and algorithms were developed to reduce the I/O cost [10]. Although the past two decades
witnessed tremendous improvement in the processing and memory speeds, the disk access speeds have not
substantially changed thus worsening the I/O cost bottleneck. Furthermore, increasing acceptance of DBMSs in
non-traditional areas, such as spatial databases, presents new interesting challenges. For example, computation
cost accounts for most of the query cost for certain spatial operations [12]. Although many solutions have
been proposed over the last decade to alleviate this computation cost, the problem still persists. Most of these
solutions have been software based, however, recently, more interest has been directed to using the impressive

Copyright 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

∗This research has been supported by the NSF grant IIS-02-20152.

23

advances in hardware to reduce both the I/O and the computational costs. We believe that novel architectures
and hardware devices promise to provide efficient solutions to some of the significant bottlenecks encountered
by DBMSs. In this paper, we present a survey of our work which provide efficient hardware-based solutions that
alleviate the I/O cost in the case of relational databases and computation cost in spatial applications.

In Section 2, we present efficient data placement and retrieval solutions for relational databases and two-
dimensional datasets. Our research is based on the novel MEMS-based storage devices [1, 18, 2] being devel-
oped towards replacing magnetic disks as secondary storage media. We exploit the inherent two-dimensional
layout of the MEMS-based storage to develop a data placement scheme for relational databases which caters for
both OLAP and OLTP applications in most efficient way [19]. We also apply the high bandwidth parallel trans-
fer provided by thousands of synchronous tips of a MEMS-device to develop mappings for two-dimensional
datasets which enable highly optimal retrieval for window queries [20].

In Section 3, we discuss novel spatial database techniques [17, 6] where we exploit the computation power of
off-the-shelf graphics hardware towards achieving significant performance improvement over most sophisticated
techniques. We also integrate our techniques into a popular commercial database and show that significant
reduction in the computation cost can be achieved through this integration.

2 MEMS-based Storage

In this section, we describe the basic features of MEMS and how we use MEMS to develop efficient data place-
ment algorithms for relational databases and two-dimensional datasets. MEMS are extremely small mechanical
systems formed by the integration of mechanical elements, actuators, electronics, and sensors. They are fabri-
cated on silicon chips using photo-lithographic processes similar to those employed in manufacturing standard
semiconductor devices. As a result, MEMS-based storage can be manufactured at a very low cost. They repre-
sent a compromise between slow traditional disks and expensive storage based on EEPROM technologies. Due
to the great potential for applications MEMS present, several major research labs such as IBM [18] and HP [2],
and universities such as Carnegie Mellon University [1] have been involved in their development. MEMS de-
vices from these research groups differ largely in the types of actuators used to position the media and the media
used to record data in the medium. Figure 1 shows a high level view of a MEMS-based storage device from
CMU CHIPS project [15]. The media sled is organized into rectangular regions at the lower level. Each of
these rectangular regions contains over millions of bits and is accessible by one tip. Because of heat-dissipation
constraints, in the CMU CHIPS model, not all tips can be activated simultaneously to access data even though it
is theoretically feasible.

Tip array

Anchor

X actuator

Y actuator
Media sled

A probe tip

Figure 1: The architecture of CMU CHIPS

MEMS-based storage has several advantages over traditional magnetic disk technology. Since MEMS do
not contain large mechanical components, the access latency is significantly smaller. Furthermore, since MEMS

24

are based on conventional silicon-based technology, they can leverage from the large-scale integration resulting
in much smaller form factor and economies of scale. Another advantage of MEMS over disks is that the power
consumption is much smaller and they do not incur long latencies when powered-up or powered-down. Recent
efforts in computer science research have focused on taking advantage of MEMS-based storage devices from
different perspectives. One such aspect is how to integrate MEMS-based storage into current systems and to
develop novel solutions using these devices. In our studies, we exploit the inherent characteristics of MEMS-
based storage devices and design novel data layout designs for different applications [19, 20]. In particular, we
exploit the property of MEMS-based storage devices that they are inherently two-dimensional and can provide
high-bandwidth concurrent data access through thousands of concurrent tips. In the following subsections, we
describe our data placement schemes for relational databases and two-dimensional datasets.

2.1 MEMS-based Storage Architecture for Relational Databases

Databases have always suffered from the increasing gap between economically viable non-volatile hard disks
and expensive but fast transistor-based in-memory chips. One of the main challenges in database research is
to find efficient methods to support operations that have conflicting needs in terms of storage and page layouts.
In particular, due to the update characteristics of OLTP transactions, relations need to be accessed in a row-
wise manner. In contrast, for OLAP queries where only a subset of attributes are of interest, the I/O system
should facilitate data retrieval in a column-wise manner. Hence OLTP workloads perform better with row-
wise placement of relations while OLAP workloads perform better with column-wise allocation. However the
traditional data layouts over disk devices for relational data neither favor the OLTP applications nor the OLAP
applications. Since a disk is modeled as an one-dimensional array, achieving row-wise access and column-wise
access are conflicting goals. Recent proposals have been made to address this problem at both the cache and disk
levels. Ramamurthy et al. [14] propose multiple representations of the same relation on disks to support such
conflicting requirements. Even though multiple representations of the same relation alleviates this problem, two
copies of each relation have to be stored. In order to address cache performance, Ailamaki et al. [4] propose
PAX that reorganizes the data in each page so as to reduce cache pollution. The essence of PAX is not to pollute
cache with unnecessary data, but no I/O time is saved.

Based on these observations, we take advantage of the inherent properties of MEMS-based storage and
propose to replace disks in relational database systems. In [19], we propose a new strategy for placing relational
data on MEMS-based storage devices [19]. The new data placement scheme exploits the two-dimensional nature
of MEMS-based storage devices to support efficient query processing for different types of workloads. In other
words, the new scheme supports both row-wise and column-wise access to relations, hence the unnecessary data
will not be brought into main memory and a lot of I/O time is saved. We also exploit the parallel retrieval property
of MEMS devices to efficiently reduce cache pollution. As a result, our data placement strategy for placing
relations on MEMS-based storage improves I/O time as well as reduces the processor and main memory gap. Our
theoretical analysis and experimental results show that the new strategy can result in significant improvements
for relational DBMSs. The TPC-H queries can be improved up to 5 times compared to disk devices. We also
develop query processing algorithms for different types of queries and address the issues of indexes, because
MEMS-based storage devices have a different interface from disks in our design.

2.2 Slicing and Dicing Two-dimensional Datasets

Multi-dimensional datasets have received a lot of attention due to their wide applications, such as relational data-
bases, images, GIS, and spatial databases. Range queries are an important class of queries for multi-dimensional
data applications. In recent years, the size of datasets has been rapidly growing, hence, fast retrieval of relevant
data is the key to improve query performance. To alleviate this problem, two-dimensional datasets are often
uniformly divided into tiles. The tiles are then declustered over multiple disks to improve query performance

25

through parallel I/O. In [3], it is shown that strictly optimal solutions for range queries exist in only a small
number of cases. However, all prior research, including the optimal cost formulation itself, is based on the as-
sumption that the retrieval of each tile takes constant time and is retrieved independently (random I/O involving
both seek and transfer time). This condition does not hold when considering current disk technology. Recent
trends in hard disk development favor reading large chunks of consecutive disk blocks (sequential access). Thus,
the solutions for allocating two-dimensional data across multiple disk devices should also account for this factor.

In [20], we define the new optimal cost and prove that it is impossible to achieve the new optimal cost for the
general case, since the new optimal cost of range queries requires two-dimensional sequential access. This is not
feasible in the context of disks, since disks are single-dimensional devices. In order to improve the performance
of range queries over two-dimensional datasets, we explore data placement schemes for two-dimensional data
over MEMS-based storage to facilitate efficient processing of this type of queries. We develop a new data
placement scheme for MEMS-based storage that takes advantage of its physical properties, where the two-
dimensional sequential access requirement is satisfied. We utilize the Y -axis sequential access of MEMS-based
storage devices to achieve the Y dimensional sequential access over a dataset and take advantage of intra-device
parallelism to achieve the X dimensional sequential access. The new scheme allows for the reorganization
of query ranges into new tiles which contain more relevant data, thus maximizing the number of concurrent
active tips to access the relevant data. In our new scheme, we tile two-dimensional datasets according to the
physical properties of I/O devices. In all previous works, the dataset is divided into tiles along each dimension
uniformly. Through the performance study, we show that tiling the dataset based on the properties of devices can
significantly improve the performance without any adverse impact on users, since users only care about query
performance, and do not need to know how or where data is stored. Our theoretical analysis and experimental
results show that our new scheme can achieve almost optimal performance.

3 Hardware Acceleration for Spatial Database Operations

In this section, we address the problem of alleviating the computational cost bottleneck for spatial database ap-
plications. We observe that spatial database operations lend themselves well to hardware acceleration. Specif-
ically, both spatial databases and graphics hardware abstract real world objects as geometries such as points,
polylines, and polygons, and process them based on their topological properties and relationships. In our re-
cent work [17, 6], we developed a hardware intermediate filter for spatial database primitives, and showed that
this technique can be easily integrated into commercial databases without changes to existing storage and index
structures.

3.1 Spatial Query Evaluation

Spatial database queries are typically evaluated in two steps: the filtering step and the refinement step. In the
filtering step, the minimal bounding rectangles (MBRs) of the objects and spatial indexes such as R-trees [11]
are used to quickly determine a set of candidate results. In the refinement step, the final results are determined
by retrieving the actual geometries of the candidates from the database, and comparing them to either a query
geometry or to each other. For complex geometries such as polygons, the cost of the refinement step usually
dominates the query cost due to the complexity of the underlying computational geometry algorithms.

The cost of the refinement step consists of two factors: the I/O cost of loading the geometries from disk to
main memory, and the computational cost of geometry-geometry comparison. The ratio of the computational
cost over the I/O cost varies significantly depending on the types of spatial queries and the complexity of the
geometries, which can be roughly characterized by the number of vertexes of a geometry. Generally speaking,
the more complex the data, the more significant the computational cost. For instance, a recent study on spatial
selections [12] shows that for point geometries, the I/O cost is the dominant factor, but for polygon geometries,

26

both costs are significant. In the case of a spatial join, the computational cost could be orders of magnitude
higher than the I/O cost, because once a geometry is loaded, it is buffered in the main memory and compared to
many other geometries.

(a) LANDC (b) LANDO

Figure 2: Sample Objects from Two Dataset

The high computational cost of the spatial operations comes from the complexity of the data in the real
world, where it is not uncommon that a polygon has tens of thousands of vertexes. Furthermore, the shapes of
the polygons can be arbitrarily complex, as can be seen from Figure 2, which shows the first 100 polygons in the
Wyoming land cover dataset (LANDC) and the Wyoming land ownership dataset (LANDO). In many cases, the
polygons are concave, and sometimes, even non-simple1. Processing these types of polygons is very expensive.
For instance, assuming the numbers of vertexes of two polygons are n and m, the complexity of the commonly
used intersection test algorithm is (O((n + m) log(n + m)) [9], and the distance calculation algorithm is even
more expensive with O(n×m) worst case complexity [8]. Since the I/O cost remains linear, the computational
cost quickly outweighs the I/O cost as the complexity of data increases.

Over the last decade, many techniques have been proposed to improve spatial query processing, and most of
them rely on an intermediate filtering step [7, 21, 5, 12, 8], where false or positive hits can be identified without
performing the costly geometry-geometry comparison. These techniques have been shown to be very effective
for improving query performance, but suffer from two drawbacks. First, the computation required to pre-process
the data is usually expensive, which degrades update performance, and cannot be applied to cases where one of
the datasets is an intermediate dataset, e.g. the results of a map overlay operation. Second, the pre-computed
polygon approximations or auxiliary data structures have to be stored on disk. The extra storage and I/O costs
may not be significant, but it still requires changes of existing storage or index structures, therefore it is more
difficult to incorporate these techniques into commercial DBMSs [13].

3.2 Hardware-based Intermediate Filtering

Our technique is based on the observation that most low-level algorithms spatial databases rely on have been
well studied by the computational geometry community. Under current computer architectures, it is unlikely that
algorithmic advances will significantly reduce the cost of geometry-geometry comparison. On the other hand,
the last few years have seen tremendous advances in graphics hardware technologies. Off-the-shelf graphics
cards are now capable of handling thousands of polygons in real time, and are widely used in computer games,
3D modeling, and virtual reality applications. Since both graphics hardware and spatial databases work on
geometries such as points, lines, and polygons, and they both deal with geometric relations such as intersection
and containment in a 2D or 3D space, it is only natural to exploit the computational power of graphics hardware
to speed up spatial database operations.

The general strategy to test for intersection of two polygons with graphics hardware is quite straight-forward:

• Render the first polygon with color c1

• Render the second polygon with color c2

1Non-simple polygons are polygons with self-intersecting edges or with vertexes that have degrees greater than 2 (more than 2 edges
incident to a vertex).

27

• Search the frame buffer for overlapping pixels with color c1 + c2. If such pixels exist, these two polygons
intersect each other.

An example of this strategy is illustrated in Figure 3(a), where the two polygons are rendered with color gray,
and the overlapping pixels are black.

Figure 3: Hardware Intersection Test

It turns out that implementing this strategy is quite difficult. First of all, in order to achieve maximum per-
formance for the most common tasks, graphics hardware is designed to support only a limited set of geometries,
which include points, line segments, and convex polygons. Concave polygons, which are common in spatial
datasets, must be triangulated before they can be rendered by hardware. Polygon triangulation, which has to be
performed in software, is much more expensive than hardware operations. Secondly, the coordinates of publicly
available GIS data typically have 4 to 6 digits accuracy, or about 11 to 18 bit accuracy in binary form. On the
other hand, the resolution of a rendering window is rather limited. For instance, a 32× 32 rendering window
only provides 5 bit accuracy in each dimension. This disparity between the data resolution and the window
resolution means that the hardware approach may produce false results, which are usually not acceptable for
spatial database applications.

Taking these issues into account, we developed a polygon intersection test algorithm [17] that uses hardware
segment intersection test as an additional filtering step. This algorithm has several properties:

• The algorithm only renders the boundary of a polygon, thereby is highly efficient regardless of the con-
vexity of the polygon.

• The algorithm guarantees no false results based on the anti-aliasing property of OpenGL [16],

• The algorithm can be easily extended to handle distance test.

3.3 Integration with Oracle Spatial

In order to evaluate the performance of the hardware-based spatial solutions against sophisticated software-based
techniques, we integrated our techniques into Oracle, a popular commercial spatial database [6]. We developed
a general framework for integrating novel hardware-based techniques such as ours into a commercial database.
We integrate the hardware-accelerated spatial solutions as external procedures where the query processing which
accesses the graphics hardware happens in a process external to the address-space of the DBMS. This integration
enables a comparison of the run-time hardware-based techniques against both run-time and preprocessing-based
software techniques provided by Oracle. It also presents how our technique seamlessly integrates with existing
software-based indexes with out requiring any modifications as in the case of preprocessing-based solutions.

3.4 Performance Results

Experimental evaluation over real world datasets show that the hardware-accelerated spatial operations achieve
significant performance improvements over sophisticated software-based algorithms. Comparison of hardware-
based intersection solutions against run-time software solutions [6] using R-tree indexes show an average case

28

improvement of 3-4 times for spatial selection queries. In the case of spatial joins, we achieve an improvement
of 3-4 times for intersection joins and 5.9 times for with-in distance joins. We also compare the performance
of the hardware-based solutions with preprocessing-based software solutions. Preprocessing-based solutions in
Oracle utilize Quad-tree indexes and the preprocessing accuracy is determined by the Quad-tree tiling level.
Preprocessing cost increases exponentially with the tiling level both in terms of index creation time and index
storage cost where a typical index creation for a real world megabyte-sized dataset can take hours of creation
cost and gigabytes of index space. Our evaluation shows that the hardware-based solutions not only outperform
the preprocessing-based solutions at lower tiling levels but also performs as well if not better at higher tiling
levels with out incurring any of the preprocessing overheads.

4 Conclusion

In this paper, we briefly highlighted some of our recent research exploiting modern hardware to improve the
overall performance of DBMS operations. Software solutions are restricted in terms of how much improvements
they can provide. Hardware, on the other hand, has been achieving incredible advances in recent years. In our
MEMS work, we are exploiting a new and futuristic technology, with the goal of reducing the I/O cost of
retrieving data. As material and mechanical engineers develop new and more efficient MEMS-based storage
devices, we believe the role of the computer scientist, in general, and the database researcher, in particular, is to
develop efficient ways to integrate such devices into computer systems. Our work represents an initial step in this
direction for data placement, and has shown the great potential MEMS has for computer systems. On the other
hand, our research with graphics hardware exploits a well established and widely available hardware device.
In fact, due to its widespread availability on most modern day computers, we strongly believe that graphics
cards should be exploited as much as possible to improve the performance of large software systems, and in
particular databases. Our research has clearly demonstrated the successful integration of graphics hardware
with commercial databases, resulting in substantial performance improvements. We are continuing, at UC Santa
Barbara, to explore such trends, namely using both futuristic devices with high potential, as well as existing off
the shelf hardware for new and novel applications.

References

[1] CMU CHIP project. 2002. http://www.lcs.ece.cmu.edu/research/MEMS.

[2] Hewlett-packard laboratories atomic resolution storage, 2003. http://www.hpl.hp.com/research/storage.html.

[3] K.A.S. Abdel-Ghaffar and A. El Abbadi. Optimal allocation of two-dimensional data. In International
Conference on Database Theory, pages 408–418, January 1997.

[4] A. Ailamaki, D.J. DeWitt, M.D. Hill, and M. Skounakis. Weaving relations for cache performance. In
proceedings of the 27th Conference on Very Large Databases, pages 169–180, September 2001.

[5] Wael M. Badawy and Walid G. Aref. On local heuristics to speed up polygon-polygon intersection tests. In
ACM-GIS ’99, Proceedings of the 7th International Symposium on Advances in Geographic Information
Systems, pages 97–102, 1999.

[6] Nagender Bandi, Chengyu Sun, Divyakant Agrawal, and Amr El Abbadi. Hardware acceleration in com-
mercial databases: A case study of spatial operations. In Proceedings of 30th International Conference on
Very Large Data Bases (VLDB’04), pages 1021–1032, 2004.

29

[7] Thomas Brinkhoff, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. Multi-step processing of
spatial joins. In Proceedings of the 1994 ACM SIGMOD International Conference on Management of
Data, pages 197–208, 1994.

[8] Edward P.F. Chan. Evaluation of buffer queries in spatial databases. In Proceedings of 7th International
Symposium on Advances in Spatial and Temporal Databases (SSTD 2001), pages 161–170, July 2001.

[9] Mark De Berg, Marc Van Kreveld, Mark Overmars, and O. Scharzkopf. Computational Geometry: Algo-
rithms and Applications, chapter 2. Springer, 2000.

[10] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database System Implementation, chap-
ter 4. Prentice Hall, 1999.

[11] Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In SIGMOD’84, Proceedings
of Annual Meeting, Boston, Massachusetts, June 18-21, 1984, pages 47–57, 1984.

[12] Ravi K. Kothuri and Siva Ravada. Efficient processing of large spatial queries using interior approximation.
In Proceedings of the 7th International Symposium on Advances in Spatial and Temporal Databases (SSTD
2001), pages 404–421, 2001.

[13] Ravi K. Kothuri, Siva Ravada, and Daniel Abugov. Quadtree and r-tree indexes in oracle spatial: A compar-
ison using gis data. In Proceedings of the 2002 ACM SIGMOD International Conference on Management
of DATA (SIGMOD’02), pages 546–557, 2002.

[14] R. Ramamurthy, D.J. DeWitt, and Q. Su. A case for fractured mirrors. Proc. Int. Conf. on Very Large Data
Bases, pages 430–441, September 2002.

[15] S. W. Schlosser, J. L. Griffin, D. F. Nagle, and G. R. Ganger. Designing computer systems with MEMS-
based storage. In Proceedings of the ninth international conference on Architectural support for program-
ming languages and operating systems, pages 1–12, 2000.

[16] Mark Segal and Kurt Akeley. The OpenGL Graphics System: A Specification (Version 1.2.1). Silicon
Graphics, Inc., April 1999.

[17] Chengyu Sun, Divyakant Agrawal, and Amr El Abbadi. Hardware acceleration for spatial selections and
joins. In SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD international conference on Management
of data, pages 455–466. ACM Press, 2003.

[18] P. Vettider, M. Despont, U. Durig, W. Haberle, M.I. Lutwyche, H.E. Rothuizen, R. Stuz, R. Widmer, and
G.K. Binnig. The ”millipede”-more than one thousand tips for future afm storage. IBM Journal of Research
and Development, 44(3):323–340, May 2000.

[19] H. Yu, D.Agrawal, and A. El Abbadi. Tabular placement of relational data on MEMS based storage devices.
In Proc. Int. Conf. on Very Large Data Bases, pages 680–693, 2003.

[20] H. Yu, D.Agrawal, and A. El Abbadi. Declustering two-dimensional datasets over MEMS based storage.
In 9th International Conference on Extending DataBase Technology, pages 495–512, 2004.

[21] Geraldo Zimbrao and Jano Moreira de Souza. A raster approximation for processing of spatial joins.
In Proceedings of 24rd International Conference on Very Large Data Bases (VLDB’98), pages 558–569,
1998.

30

Sponsored by the
IEEE Computer Society

CALL FOR PAPERS

22nd International Conference on Data Engineering
April 3 - April 7, 2006

JW Marriott Buckhead Hotel, Atlanta, Georgia, USA
http://icde06.cc.gatech.edu Mirror: http://icde06.ewi.utwente.nl

� � � � � � � � � 	 	
 � � � � 	 � � � � � � � � 	 � 	 � � 	 � � � � 	 	
 � � � � 	 � � � � � � 	 � � � � 	 � � � � � � � � � 	 � � � � 	 � 	 � � � � � 	 	 � � ! � 	 � � � � � � 	 #

� 	 � � � � � � � �
 � � � � � � $ � 	 � � �
 � � � � 	
 	 � � � � � ! � � � � � ! � � � � �
 � � � � � ! ! � � � � � � � � 	 � �
 � � � 	 � � & ' � 	 ((� �) � � 	
 � � � � � � � � * � � � 	 #

 	 � � 	 � � � � � � � � � � � 	 	
 � � � !
 � � � 	 � !
 	 � � 	
 � �
 � � � �
 � �
 � � � � � � 	 0 � � � � � � � �
 	 	 �
 � � � � � 	 � � � � 	 	
 � � �
 	 � � � � �

!
 � 1 � 	 � 	 � � � � � � 	
 	 � � � � � � � $ 2 � � � �
 � � � � � � � � � 	 � $ &

3 3
4 	 	 ! 	 � � � � � $ 	 � � � �
 � � 	 � 1 � � � � � � � � � � � 5 	 	 � � �
 � � � 6 7 8 � 0 ! � � � �

!
 � � � � � � � � 	
 � � � � � 	
 	 	 �
 � �
 	 � � � � � � � � � � � � � � � � �
 � 1 � � � � � � � � � 	 �

	 	
 $ � � $!
 � 1 � 	 � � � !
 � � � � � 	 � � � � !
 � � � � � � � � 	 � � � � � � � 	 �
 � $

� ! ! �
 � � � � � $ � � 	 � � � � � 	 � � 	 	 � � � � @ 6 (8 A � � � � � � � �
 	 � 	 � � � � 	

 	 	 �
 � � � � � � � � � � $ � � � � 	 !
 � 1 � 	 � � � !
 � � � � � � � � ! ! � � � � � � � � � � � � � �

	 � � � � 	 	
 � � � � � � !
 � � � � � � � � � 	 	 0 � � � � � 	 � � � � � � 	 � � � � 	 	
 � � �

� 	 � � � � � � � � 	 � � � 	 0 ! 	
 � 	 � � 	 � � � � �
 	 	 �
 � � 	
 � � � !
 � � � � � � � � 	
 @ 6 H 8
) � 	 � � � � $ � � � � 	 � � � 	 � � � � �
 	 � � � � � � �
 � � � �
 	
 	 	 �
 � � � � �

� 	 	 � � ! � 	 � � � � � � 	 � � � � 	 � � � � 	 	
 � � � � � 	 � � &

) * � � (N N O � � � � 	
 	 	 �
 � � � 1 � � � � � � � � � � � � ! � �
 	 � � � 	 � � � � � � �

	 � � � � 	 	
 � � � � � � � � � � � � � 1 � � � � � � � � � � 	 � � � � � � 	 � � � 	 � 1 	 � � � P

7 & � � � �) � � 	 �
 � � � � � �) � � 	
 � ! 	
 � 1 � � � � $ � � � � R 	 � � � � � �
(& S 1 � � � � � � � � � � � R � � � � 	 � 	 � � � � � R � 1 � � 	 � � � � 1 � 	

H & U � 	
 $!
 � � 	 � � � � � � 	
 $ � ! � � � � V � � � � � � � � � � � � � �
 � � � �
 	
W & � � � � X
 � � � $ � � � Y 	 � �
 � � $

Z & � � � � R � � � � �
O & Y 	 � � # �
 � � � �
 	 � � � � � � � � [R \ � � � � 1 � 	

] & � � �
 � 1 � � 	 � � ! �
 � � � 	 � � X 	 	
 � � X 	 	
 � � � � 1 � 	
^ & 4 	 1 � � � � R � � � � 	 � 	 � � � � � � 	 	 ! 4 	 1

_ & Y � � 	 � � � � � � � � � ` � � � � � � � � � � � � � 1 � 	 � � � ` � � � � � �
 � � � � �

7 N & 4 �
 5 � � � � � 4 	 1 Y 	
 � � 	

7 7 & Y �
 	 � � !
 � � 	 � � � � � � 	 � �
 � � � � 1 � 	

7 (& � � � � a
 � � � � � � � 4 �
 	 � � � � � � � b \ c X
7 H & ' 	 � ! �
 � � � Y ! � � � � � � � � � R � � � � � 	 � � � � � � � 1 � 	

7 W & � � � � 1 � 	 c ! ! � � � � � � � � � � � � 0 ! 	
 � 	 � � 	

7 Z & d e f e g e h i j k h f i l m n f i o n e p h e n q r i o s t o l e n u i

v w v x y z

c � � � �
 � � � � � 1 	 � � 	 � � � � � 	 1 	 � ! � ! 	
 & c 	 ! �
 � � 	 � � �
 � � � � � 1 	 � � 	 �
� � � � 	 1 	 � � � � 	 � � ! � ! 	
 & X � ! 	
 	 � � � � 1 � 	 � �
 � � � � � �
 � � � � � � 	 �

6 �
 � � � � � 	 �
 � � � 	
 �
 � � � � � 	 8 � � � 	 � � � � � 	 � � � � 	 � �
 � � � � � � � � � � �
� � � � �
 � � � � � � 	 � � { �
 � � $ � � � � 	 � � � � �
 � � � 1 	 � � � 	 � � & Y � � �

 � 1 � � � � � � � � 1 	 � �
 5 	 � � � � � 	 � � ! � ! 	
 � � � � 	 � � � 	 � �

 � 1 � � � � � &

| } y ~ z � x | v � � x � � x v �

' � 	 � � � � 	
 	 � � 	 !
 � �
 � � � � � � � � � � � � 	 � � � � 1 	
 � � � �
 � ! � ! 	
 � � �

� � � � 	 � !
 	 	 � � � � � � � � 	 � � 	 � � � � � � � �
 � � � � 	 	 � � ! � 	 � � & Y 	 � � $ � �

! � ! 	
 � !
 � ! � � � 	 � 	 � �
 � � � � � � � $ � � � 	 �
 � $ � �
 5 	 � � � � � � �
 � � � �
 � � 5

! � ! 	
 � � � � �) � � � �
 � � � X
 � �
 � � * � � �
 � �

� � �
 � & 1 � � 	
 � c ' � � 	
 � � & � �
 � � &

� v } � � z

X � � 	 � !
 � ! � � � � � � � � � � � � 	 � � � 1 �
 � � � � � � � � � � � � 	 � � � � 	 ! � � 	 � � �
 � � � �

� � �
 	 � 	 � � � � � � �
 � � � � � � � 1 � � � � � 	 !
 � ! � 	 � ! � � 	 � � � & Y 	 � � $ � �
 !
 � ! � #

 � � 	 � 	 � �
 � � � � � � � $ 1 $ � � 	 � 1 � � � � � � 	 � � � � � 	 � � � � 	 X � � 	 � * � � �
 � �

� � �
 	 5 � c ' �
 	 	 �
 � � � & � � 	 � � �
 � � � � & � � � � � �

v y � v } � � y � � � � } � � � � � z � � | } v x z

Y 	 � � � �
 !
 � ! � � � � � � � � � � � � 	 � � � 1 �
 � � � � � � � � � � � � 	 � � � 	 �
 � ! � � � � � �
� � 	 � �
 � 	 � � � � � 	 � � 	 � � �
 � � � � � 6 7 & Z �
 H � � �
 8 � � � � � � �
 � 1 � � � � � � 	

!
 	 	 � � 	
 6 8 & Y 	 � � $ � �
 !
 � ! � � � 	 � 	 � �
 � � � � � � � $ � � � � 	 Y 	 � � � �
 * � � �
 � �

� $ V � � � � � c ' � � � � & � � � & � 	 � � � & � � � � �

y � � � } z � x v � | � } z
� 	 � � � �
 � � � � � !
 � ! � � � � � � � � � � � � � � � 	 � � 	 � � � � � � � $ � � � � � 	 � �

� ! ! � $ � � � � � � � 1 � 	 �
 � 	 � � 	 � � � � � � 	 & X
 � ! � � � � � � 1 	 � � � �
 	 � � � �
� � �
 � � � 1 � 	 # � � � � � � 	 � ! � � 	 � � � � � � � � � � � 	 � � �
 � � 	 �
 � ! � � � � � � � � 	

� 	 � � � �
 � � 	 � $ � 	 � � 	 0 ! � � � � � � � � � � � � � � � � 1 	 � 	 � � � �
 � � 	 � � � � �

 � � � 	 � � 	 � � � � � � � � � � 	 � � � � 	 � � � �
 � 1 � � � � � � � � � � � 1 � 	 � 	 � � � � � � � $ �
� ! ! � � � � � � � � �
 � 	 � � � � � � 	 & Y 	 � � $ � �
 !
 � ! � � � 	 � 	 � �
 � � � � � � � $ � � � � 	

� 	 � � � �
 � � � � � * � � �
 � �

� � � � � c ' � � V � 	 � � & � � � � � & � � 	 � � � � � 	 � & � �
 5 � c ' � � � � & � � � � 	 � � � & � 	 � � � � � � �

� �
 { 	 � � & � � 	 � & �
 � 	 � c ' � � � � � & � � � � �

z ~ � � | z z | � } | } � � x � v � | � }

A 	 	 �
 � � ! � ! 	
 � � � 1 	 !
 	 ! �
 	 � � � � � 	
^ � Z � 0 7 7 �) � � � � � � 	
 � #
 	 � � $ � �
 � � � � � � � � � 7 (#

! � � 	 � � � � � � � � � � 1 � � � � 	 � 	 � 	 � �
 � � � � � � � $ � �
� f f � � � � � u q i � � � u u � � e f i u � � i q � & c � � � � � 	 ! � 	 � ! � ! 	

� � � � � ! ! 	 �
 � � � � 	 X
 � � 	 	 � � � � ! � 1 � � � 	 � 1 $ � � 	

) � � � * � � ! � � 	
 Y � � � 	 � $ &

| � � � x � v } � y v � � z

v � � � ¡ ¢ � y £ ¡ ¤ ¥ ¦ § £ ¨ © � � 	 7 W � (N N Z

z ª � « ¦ � � ¦ ¬ § y £ ¡ ¤ ¥ ¦ § £ P © � � 	 (7 � (N N Z

} ¬ � ¦ ¦ ¢ ¡ � ¦ ¬ § ¨ Y 	 ! � 	 � 1 	
 7 Z � (N N Z

® 3
� � } � x v � � � v | x z

¯ ° ± ² ³ ´ µ ° ¶ · � S � � & * � � � � �
 � � � �)
 � � 	 � S Y c
¸ ° ¹ º » · ¼ ½ � a 	 �
 � � �) � � & � � ' 	 � � � � � � � $ � S Y c

� x � � x v � � � v | x z

¾ ¶ · ¿ ¾ ¶ ½ � a 	 �
 � � �) � � � � � � 	 � � ' 	 � � � � � � � $ � S Y c

À · Á Â ² ° ³ ¯ ² ½ º ² Â � � �
 � ! 	 � � R 	 � � � \ � 1 & a 	
 � � � $

Ã Ä ½ Å Æ » ½ · ¿ Ç ´ ° · ¿ È É c) Y ' � É �
 	 �

� � � v � v x x v } � � � � } � z

Ê Â ¶ ° · ¸ » » Ë ² Â � a 	 �
 � � �) � � & � � ' 	 � � � � � � � $ � S Y c

Ì ° · ¶ ² ¹ ¯ » Í Í » � 4 	 � a 	 �
 � � � S � � 	
 � � $ � S Y c

� ~ � � | � | � � � � v | x z

Î Ï Ð Ñ Ò Ó Ô Õ Ö × Ø × t o � � Ù j Ú

Û Ó Ü Ý Ï Ò Þ Î ß à á Ò â ã Ï Ý ä Ù n � å æ ç i n f i Õ æ � i Ö i f � i o p e n q h

� x � v z ~ x � x

è é Ã é ¼ ° Â ê � S � � & � � R � � �
 � É � � � * � � $ � S Y c

| } y ~ z � x | v � � x � � x v � � � v | x z
¸ ´ Â ¶ ³ º » Ë ´ Ê ½ ³ ³ ¹ ² Â È � � A) �)
 	 � � � �

ë ° ì ¶ » ¸ ° ³ ° º ¶ � í X � S Y c

� v } � � � � v | x

î ° Â ² ê ¯ ½ ³ ¶ · ê ¶ ² ï ¶ Í ð È ' 	 � � �
 � � � � S Y c

z � � | } v x � � v | x

Æ ° · Í ´ ½ · ñ ´ ° · ¿ È ò � � � �
 � � S � � & c � �
 � � � �

w � x ó z � � � � � v | x
¯ » ¿ ² Â Ê ° Â ¿ ° È R � �
 � � � � A 	 	 �
 � � � S Y c

ô ¶ ° » õ ° · ¿ ñ ´ » ½ È S � � & � � U � 	 	 � � � � � � c S Y

y � � � } z � x v � | � } � � v | x z
ö ß ÷ Ð ö ß ÷ Ð Ó Ü Ò Ý Ò ø Ò Ó ä Ú ù f i u Õ m n q � e

¾ ² » î ° Â ê � a 	 �
 � � �) � � & � � ' 	 � � � � � � � $ � S Y c
Û Ý ø Ï Ó Ü Ï ú Ý Ð Ï Þ Õ × û m Õ æ � i Ö i f � i o p e n q h

v x � v � � v | x z

ü ° ± ² Â ý ð ³ ½ È S � � & � � û e f i o p t t Õ × e n e q e

ý ½ Â ¶ Î ß þ � Þ ß Ó Õ Ù n � å � t s m p p � n t � h e f × � � u e � t Õ Ù j Ú

Û þ � ß Ó Þ � Ï à � Ï Ý Õ æ i u � n � h u � i Ù n � å � � � n u � i n Õ � i o l e n k

è ¹ ¶ ³ ° Ê ² Â º ¶ · » � X �
 � � 	 S � � 	
 � � $ � S Y c

� ß ã Ò Ó Ó Ï Þ ö Ï ã Ý � Ï Õ × t o n i p p Ù n � å � Ù j Ú

Æ ° · · ¶ ³ ¼ ° Ë ° ê » · ³ º ° · º ¶ · » ½ � S * Y � � � � 	 � � � S Y c

Ê ² · ¿ ¸ ´ ¶ · ý » ¶ � 	 � � � � � � � S � � & � � Y � � � � ! �
 	

 Ò ß þ ß Û � � Ï Ó Ð ä Ù n � å i o h � f Ø t l e æ o i Õ m f e p k

� ° ¹ ü ° · · ² · È S � � 	
 � � $ � � X 	 � � $ � � � � � � S Y c

Û Þ � à Ò Ó � ß Ô Ò â ä � � æ Ù Õ æ � o � i k

Ì » · ° ¹ Á Ã » ³ ³ ± ° · · � � ' í � �
 � � � � Y � � � V 	
 � � � �

¼ ° ½ ¹ Ç ° º ³ » · � S � � & � � 	 	 � � � � � 	 � S É

î ¶ · ¿ Å � Ä ° · ¸ ´ ² · � 	 � � � � � � � ' � � � � � S � � &

� Ò Þ Ò � ß Þ ã Ð � ß Þ ã Ð � Ò � Ò Õ Ö e � t k e Ù n � å � � e � e n

� Ò Ó Ô � � � Ó � ã Ò ä j i t � p Ö e f � t n e p Ù n � å � t o i e

IEEE Computer Society
1730 Massachusetts Ave, NW
Washington, D.C. 20036-1903

Non-profit Org.
U.S. Postage

PAID
Silver Spring, MD

Permit 1398

