
Hard Queries can be Addressed with Query Splitting Plus
Stepping Stones and Pathways

Xiaoyan Yu
Computer Science Dept.

Virginia Tech
Blacksburg, VA 24061

USA

Fernando Das-Neves
Snoop Consulting

Paraguay 346 Piso 5
Buenos Aires

Argentina

Edward A. Fox
Computer Science Dept.

Virginia Tech
Blacksburg, VA 24061

USA

Abstract

A key finding of the Reliable Information Access Workshop of 2003 was that in collections like those
used for TREC 6-8, there are a number of hard queries for which no current search engine can return
a high quality set of results. Our Stepping Stones and Pathways (SSP) approach may yield an effective
solution to such hard problems, as well as support exploration of collections of content not well known
to a person (with broad interest and/or complex information needs). Our initial and promising testing
of SSP had users prepare two separate short queries in order to launch processing. However, since
beginning with a single information need is a more typical initial situation, we have extended the SSP
research by exploring query splitting, especially as might apply to handling hard queries. This paper
summarizes our recent results and identifies some of the future work needed.

1 Introduction

Searching, such as of text, is a key service of digital libraries. The quality of search results, however, is highly
variable. This situation has been a key concern of the information retrieval community, and also is of interest to
the database community.

Though on average results are fairly good, there is room for improvement, and in particular cases, results may
be unacceptable. Accordingly, the Robust Retrieval Track of the Text REtrieval Conference (TREC), starting in
2003, has focused on individual query effectiveness rather than average effectiveness [16]. Typically, variability
in retrieval effectiveness is caused by: 1) an incorrectly formulated query, 2) a collection that lacks pertinent
content, or 3) an information retrieval method/system that is inadequate.

The Reliable Information Access (RIA) Workshop 2003 was initiated to investigate in-depth the reasons for
retrieval variability. It approached this by studying the behavior of 7 leading search engines developed by the
research community. One of the interesting results is that all of the systems failed on a subset of queries, most
of which are considered to be ‘hard’ due to their multiple-aspect (i.e., touching on several different topics or
aspects, each of which should be satisfied) property [8]. This finding suggests that the problem may be due to a
combination of causes 1 and 3 listed above.

Copyright 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1

Several studies have tried to predict the variability of effectiveness or to improve the handling of queries
for which performance is poor. [11] predicted a query’s performance by its clarity score, basically the rela-
tive entropy between the query in the relevant document set, versus in the whole document collection set. A
SIGIR workshop was held to target the problem, but in summarizing the findings of the meeting, [9] reported
that research on query variability prediction is in its infancy. Information retrieval researchers lack a clear un-
derstanding of why performance is low for some queries, and cannot reliably predict which queries are ‘hard’.
Similarly, in the database community, Graupmann targeted this problem; his approach was to add annotations
using XML to attach semantic meaning to important terms [12].

Different people have different interpretations of what a document is about. Similarly, people vary in their
ability to express their information needs in the form of a query [1]. Based on the finding that the cause of poor
performance for some queries might be their multi-aspect property [8], we propose our query-splitting-enabled
Stepping Stones and Pathways approach to detect different aspects of a query and then to improve retrieval by
identifying connections among these aspects.

We also identify two situations that may exist for some poorly-performing queries:

1. A low-relevance set is retrieved where the results are dominated by a subset of the query aspects.

2. A low-relevance result set is retrieved where it is possible to get high relevance for connected subsets of
the query aspects (maybe with modification).

In order to address these two possibilities, we think it necessary to create an alternative interpretation of a user’s
intention. In this alternative interpretation, a query is identified as a description of two or more separable aspects.
By separable aspects we mean that a significantly different set of documents representing each aspect can be
retrieved for the query. The query is thus split into multiple sub-queries; without loss of generality we limit the
splitting to two [17]. The next step is to retrieve a set of documents that support a valid relationship between the
two sub-queries using the Stepping Stones and Pathways (SSP) approach [4]. The result returned by the SSP
system is a set of topic sequences (pathways). Each step in each pathway is supported by documents connecting
a sub-query with an intermediate topic (stepping stone), or connecting different intermediate topics, that provide
a rationale for the connection between the two original sub-queries, i.e., the end stones. The two sub-queries
become the endpoints which may be reached through different pathways. Each pathway connects the endpoints
by a succession of stepping stones, and thus is an answer to the user information need. The SSP user interface
(Figure 1) highlights the end stones, stepping stones, and pathways, and supports as well as exploratory type of
search.

Query splitting have been used in the past [7]. Most commonly it converts a natural language query into
two parts, so that the new query will be interpreted as of form X or Y. However, earlier work on query splitting
did not address the problem of coherence from the user’s point of view: Are X and Y related (possibly by other
intermediary concepts)? Ours is the first study we know of that has researched both query splitting and new
methods to build and display the connections of the results from query splitting.

The Stepping Stones and Pathways approach was inspired by earlier research on Literature-Based Discovery.
The explosion of scientific knowledge in the last half of the 20th century resulted in many researchers being
highly specialized. Different researchers may work on related problems without even being aware of each other.
Discovering relations that are not explicitly stated but yet are latent in a body of knowledge is the objective of
Literature-Based Discovery. Swanson [2] was the first to introduce the idea of discovering such new relations
within a bibliographic database. Further work by Swanson with Arrowsmith [3] detected indirect relationships
between topics in the Medline database, by finding common keywords between two document sets through an
intermediate document set. Our work with SSP has extended the line of research launched by Swanson; we are
extending it further through integration with new work on query splitting.

This paper concentrates on the effectiveness of query splitting as a technique for improving retrieval results.
The rest of the paper is organized as follows. Our prior work with SSP is summarized in Section 2. Section

2

Figure 1: The areas of the Stepping Stones and Pathways user interface.

3 describes query splitting algorithms. Section 4 discusses testing of query splitting methods and the findings
from our experiments. Finally, we conclude this paper and list future plans in Section 5.

2 Stepping Stones and Pathways: How it works

In order to describe the context in which we use query splitting to answer hard queries, we briefly discuss
how Stepping Stones and Pathways works. In particular, we provide an overview of the user interface and the
methods used to create the stepping stones and pathways. Details can be found in [4].

The Stepping Stones and Pathways user interface is divided into three areas (see Figure 1): 1) The Query
Area: Here the user types a (two-aspect) query describing topics of interest. 2) The Network Area: Every time
a new query is issued in the query area, this area shows the initial graph connecting the topics in which the user
is interested, through a number of intermediate topics. 3) The Document and Connections Area: This area
displays a list of documents and provides indications of how they support the corresponding connections.

From a user’s point of view, a SSP retrieval session starts with the user typing a query. The query is split to
create two sub-queries. SSP displays a network, in which the leftmost and rightmost nodes are labeled according
to the sub-queries, and intermediate nodes are labeled according to topics connecting the sub-queries. Below
the network, SSP also displays a list of documents and explains how each of them supports a connection in the
network. The user can click on any node to see all the documents covering that topic, or on any edge to see any
connections between the topics at each end of the edge. If the connection between any two topics is too vague,
then the user can request SSP to add more intermediate topics (stepping stones) between those topics.

From an implementation point of view, a SSP session works as shown in Table 1.

3

1. (Off-line) Index the document collection, using the document text and also references, if available.
Document text is indexed using a tfidf word weighting, after filtering stop words.

2. Split and process the query, trying to match all words in the sub-queries first.
If that fails, relax the sub-queries by making words optional.
To calculate the similarity between two documents, use the formula
sim(d1, d2) = 1 − (1 − Pw(d1, d2)(1 − Pcocit(d1, d2))(1 − Pref (d1, d2))

3. Create the endpoint nodes (end stones) of the graph by:
3.1. Retrieving two document sets, one from each of the user sub-queries;
3.2. Creating a document cluster for each document set;
3.3. Calculate a cluster centroid from the top 10 documents in the cluster;
3.4. Label the cluster using Suffix-Tree Clustering [6].

4. Create intermediate Stepping Stones and Pathways by:
4.1. Using the endpoint centroids as queries to find two document sets;
4.2. Creating an intermediate document set with the documents that appear in both retrieved sets;
4.3. Finding relevant connections between the documents in the endpoint clusters and
the documents in the intermediate set;
4.4. Eliminating all documents in the intermediate set that are not part of a connection;
4.5. Clustering and labeling documents left in the intermediate set; the clusters become stepping stones.

5. Visualize and display to users the stepping stones and pathways.

Table 1: Overview of SSP working steps

3 Query Splitting

In this section we explain how we decide if a query has multiple aspects. In general, we employ clustering
algorithms, heuristic rules, and thresholds set to control the splitting. If there is not enough difference between
two clusters, for a given splitting threshold, we call the query a single-aspect one; no splitting is appropriate. On
the other hand, when the difference is sufficient, we have identified a multiple-aspect query, and split it into two
sub-queries.

3.1 Algorithms for Query Splitting

In order to determine how best to split queries, we have devised and implemented three algorithms.

Relevance-Feedback-Based Clustering (RFC). Borodin [7] also believed a user would search for multiple
concepts using a single query. He made good use of relevance feedback information from users, to retrieve more
documents for different concepts. We adopt Borodin’s method here. q0 is a user’s original query. New queries
are generated iteratively as follows.

1. Retrieve the n highest-ranking documents, not previously retrieved, of the current query qi, for relevance
judgment. n is 5 initially.

2. Generate different groups from the documents judged as relevant documents. We put each such pair of
documents, ds and dt, into different groups if
(correlation of ds and dt) <= τ × [(correlation of ds and qi) + (correlation of dt and qi)]/2.
Here the cosine correlation is calculated, with τ as the splitting threshold. So there can be zero (if no
relevant documents are retrieved), one, or multiple groups.

4

3. For each group j, get top m words as a new sub-query qji+1 of the current query qi by

qj
i+1 = qi +

∑
(r)/|Rj

i | −
∑

(nr)/|nonRi|, where Rj
i are relevant documents of the group j (if none, then

omit this expression). nonRi are at most two non-relevant documents with highest ranking. r ∈ Rj
i and

nr ∈ nonRi.

4. Repeat the above steps for each newly generated sub-query, if any, but let n be 3 in the first step.

Term-Based Clustering (TC). Based on the observation that the representative terms in a user query might
reflect different aspects, we characterize a query using its expanded term list, considering the top retrieved
documents. The algorithm basically consists of the following steps.

1. Get the top m words from a query, plus the top |R| retrieved documents for the query, using Rocchio’s
query expansion algorithm. That is, q′ = αq + β

∑
(r)/|R| where r ∈ R.

2. Represent each word as a list of documents.

3. Calculate the word distances using cosine correlation.

4. Cluster words using the agglomerative hierarchical clustering algorithm, requiring complete linkage.

5. Cut the cluster tree into groups based on the splitting threshold τ , so that each group represents a sub-
query.

Document-Based Clustering (DC) Similar to Term-Based Clustering, we also propose an algorithm to cluster
a user query based on the diversity of its top retrieved documents. It is like the TC algorithm, but with terms
swapped for documents, and vice versa, except that: we use the top k retrieved documents for a query, and in the
last step we cut the tree into groups based on the splitting threshold τ , and get the top m terms in the centroid of
each group as a sub-query q′. More specifically, q′ = αq + β

∑
(r)/|R|, where R represents the documents in a

group and r ∈ R.

3.2 Term Scoring Functions and Parameter Values

Term scoring plays an important role in every query splitting algorithm. The different term scoring functions
used in the algorithms are: 1) Term Scoring Functions in First Pass Retrieval: For all the approaches, we
used the Okapi BM25 [13] term scoring function in the first pass retrieval. 2) Term Scoring Functions in
Clustering: We also used Okapi BM25 [13] for the dividing groups step (i.e., the second step of RFC), to
weight query terms and document terms. We tried Okapi BM25 [13] and pivoted tfidf (Ptfidf) [14] for weighting
terms in all the clustering parts (i.e., the second step in both TC and DC). 3) Term Scoring Functions in Query
Expansion: For all the approaches, we employed a Kullback-Leibler Distance (KLD) based method [10] for
selecting and weighting expansion terms, with normalization based on dividing by the maximum term weight.

It also is essential to assign values to the parameters properly. Multiple experiments by Carpineto [10] on
TREC 7-8 showed that an increasing number of pseudo-relevant documents decreased the retrieval performance
nearly monotonically. Further, an increasing number of selected terms in query expansion just slightly increased
the retrieval performance. Therefore, we selected m = 20 and |R| = 12 in the TC method, since that combi-
nation yielded good results in [10]. For consistency with the TC algorithm parameter settings, we set k = 24,
since the ideal case in the DC method is to generate two equal-size clusters. In this case, the number of pseudo-
relevant documents in each cluster will be 12, which is the value of |R|. For the same reason, we set m = 10
in the DC method and the RFC method. Further, α = 1.0 and β = 1.5 are commonly used with the Rocchio
algorithm, and so are used in the TC method. For the DC method, we set α = 0.2, since we found α = 1.0
makes two sub-queries very alike, and to a large extent hides their differences.

5

Precisionn The minimal value of the rankings, falling within the top n, of each
relevant document retrieved by each sub-query.

Overlapn The maximal value of the rankings, falling within the top n, of each
relevant document retrieved by each sub-query.

Differencen (Precisionn − Overlapn)/Precisionn;
This measure is limited to only two sub-queries generated.
A more complicated measure should be used to compute the difference
among more than two sub-queries.

Pavg The maximum of the Pavg values, as used in TREC, for the sub-queries.
Precisionn average, The total of the values of Precisionn,
Overlapn average, Overlapn, Differencen, or Pavg ,
Differencen average or divided by the number of detected multiple-aspect queries.
Pavg average

Table 2: A new evaluation strategy.

4 Experiments

In order to evaluate the effectiveness of our approach, three kinds of experiments are required: comparing the
three query splitting algorithms in Section 3, evaluating SSP itself, and evaluating the combination of query
splitting and SSP. The third experiment is underway. Also, we will not describe here the evaluation of SSP as an
effective tool to discover connections among documents and topics, since that is detailed in [5]. Nevertheless,
we must recall one of the interesting findings, i.e., that SSP can help users explore many implicit connections
between a query pair. In this paper we focus on the first experiment, so as to generate a good split, based on a
user’s information need, and to provide sub-queries as input for SSP.

4.1 Evaluation Strategy

Since there are no well-known techniques to evaluate the prediction of query difficulty [9], it is hard to apply
widely used evaluation strategies when judging the quality of our query splitting algorithms. Also, though it adds
complexity to the evaluation problem, we must continue our focus regarding query splitting, wherein we detect
poorly-performing queries based on their having the multi-aspect property. Thus, we adopt the requirement of
SSP, whose starting point is query splitting. Accordingly, we claim that the quality of a query splitting algorithm
depends on three factors: retrieval performance, difference between sub-queries, and overlap of sub-queries.

The most important factor deciding the quality of the results of a sub-query is still the number of relevant
documents retrieved. Since the reason to propose a query-splitting algorithm is to improve information retrieval,
it is reasonable not to expect a degradation of retrieval performance when using an algorithm. Regarding the sec-
ond factor, we note that only with enough overlap of sub-queries is it feasible to find the intermediate concepts,
i.e., the stepping stones. Regarding the third factor, we observe that a very small difference among sub-queries
makes building a bridge among them unnecessary, since the sub-query topics can be directly connected and
discussed in a single document to be retrieved by the original query.

We evaluate these three factors based on the retrieval results of the sub-queries. Thus, we make use of the
relevance judgment information available in TREC, and evaluate the three query splitting approaches using a
relevance × rank matrix. Each row in the matrix contains all the relevant documents for a specific query;
each column corresponds to one query splitting approach; and each cell value is the corresponding relevant
document’s rank when documents are retrieved by a sub-query generated when the corresponding approach is
employed. We define the measures in Table 2 based on the matrices.

6

Total number Total number Total number Total number
detected by RFC detected by DC and TC detected by TC
at the threshold of 12.5 at the threshold of 1 at the threshold of 200

using Okapi and Ptfidf using Ptfidf
Queries selected 20 14(70%) 20(100%) 16(80%)
manually
Hard queries 17 14(82%) 17(100%) 11(65%)
Union 34 25(74%) 34(100%) 24(71%)
Overlap 3 3(100%) 3(100%) 3(100%)

Table 3: Query split results using different algorithms

4.2 Experimental Setup

Collections and Queries. Our test collection is the one used in the Robust Track of TREC 2004 [15]. Two
sets of queries were chosen from the TREC queries. The first set consists of 17 queries selected due to the
multiple-aspect property pointed out in the analysis in [8, 15]. The other set consists of 20 queries we selected
as likely to have multiple aspects, based on reading the title, description, and narrative. There are three queries
that are common to both sets; thus we have 34 unique queries.

Upper Bound Experiment. Since we do not know in advance what should be the proper splitting threshold
in each algorithm, we ran an upper-bound experiment first using trial-and-error to find the threshold value under
which the corresponding algorithm performs the best. Then we compared the algorithms using their optimal
settings. We evaluated each algorithm’s performance based on the evaluation strategy in Table 2. More specifi-
cally, the metrics are numdetected (the number of detected multiple-aspect queries), pavg , sumn (precisionn +
overlapn + differencen), where n = 20, 30, 50, and 100. We consider each metric to be of the same impor-
tance, so we normalize each one by its total value. The higher the value of each metric, the better the algorithm
performs.

4.3 Findings

Splitting Thresholds. By the upper bound experiment, we identify the optimal settings for each algorithm: 1)
RFC: the splitting theshold τ = 12.5; 2) TC when using Okapi as the term scoring function in clustering: τ = 1;
3) TC when using Ptfidf as the term scoring function in clustering: τ = 200; 4) DC when using Okapi as the
term scoring function in clustering: τ = 1; 5) TC when using Ptfidf as the term scoring function in clustering:
τ = 1. More details are in [17].

Query Splitting Results. We summarized the number of queries split by each algorithm in their optimal
settings in Table 3. At least 70% of the queries that we selected by manually judging the multi-aspect property
are split by all the algorithms. At least 65% of the hard queries identified with multi-aspect property by [8] are
split as well. All the algorithms split all the common three queries. Further, we note that all the algorithms split
at least 24 of the 34 queries (71%).

Comparison of Best Cases of All the Algorithms. In general, the results follow the pattern PRFC > PDC >
PTC , where P stands for performance, as can be seen in Figure 2.

We also measured the performance of retrieval of the original query without a splitting process, and the
refined query with a query expansion (QE) process, using the pavg average, since other metrics are not applicable.

7

original QE TC TC DC DC RFC
(w=Okapi,τ=1) (w=Ptfidf,τ=200) (w=Okapi,τ=1) (w=Ptfidf,τ=1) (τ=12.5)

0.157597 0.171934 0.155587 0.156439 0.179454 0.175758 0.26489

Table 4: Comparison of all the best cases with the retrieval performance by original queries without query
splitting and the performance by refined queries with only query expansion (QE) in terms of pavg .

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

p-avg sum-20 sum-30 sum-50 sum-100

DC(w=okapi,

t=1, n=34)

DC(w=ptfidf,

t=1, n=34)

TC(w=okapi,

t=1, n=34)

TC(w=ptfidf,

t=200, n=24)

RFC (t=12.5,

n=25)

Figure 2: Comparison of all the best cases on the metrics of pavg , sum20, sum30, sum50, and sum100.

The refined queries are produced using the method in [10], which is also the method to select top terms in all the
query splitting algorithms. The results are shown in Table 4. Considering only the pavg average, the performance
of the TC algorithm is very close to the original query retrieval performance, while the DC algorithm using Okapi
and Ptfidf are 13.9% and 11.5% better than the original query performance. The RFC algorithm is even better,
68.1% over the original query retrieval performance. The refined queries perform 9.1% better than the original
ones, on average, and also are close to the DC algorithm.

When using different term weighting mechanisms, the performance values for the same algorithm are very
close to each other, except concerning the metric sum100. For the DC algorithm, the result when using Okapi
is 5.7% better than when using Ptfidf; for the TC algorithm, the one using Okapi is 6% than when using Pt-
fidf. However, there are more interesting results when we consider the precisionn, the overlapn, and the
differencen, respectively. Table 5 shows the results and reveals a pattern: the TC algorithm gets a rather low
value on the overlap metric, which leads to a relative low result of sumn.

P20 O20 D20 P30 O30 D30 P50 O50 D50 P100 O100 D100

DC(w:Okapi,τ :1) 0.197 0.249 0.153 0.203 0.255 0.160 0.214 0.266 0.153 0.216 0.278 0.152
DC(w:Ptfidf,τ :1) 0.193 0.247 0.172 0.202 0.250 0.159 0.201 0.268 0.154 0.201 0.273 0.137
TC(w:Okapi,τ :1) 0.171 0.068 0.245 0.174 0.051 0.257 0.178 0.041 0.268 0.184 0.037 0.285
TC(w:Ptfidf,τ :200) 0.164 0.069 0.253 0.160 0.057 0.261 0.160 0.045 0.270 0.163 0.034 0.280
RFC(τ :12.5) 0.275 0.368 0.177 0.261 0.386 0.163 0.247 0.380 0.155 0.236 0.379 0.146

Table 5: Comparison of all the best cases on the Pi(precisoni), Oi(overlapi), and Di(differecei) metrics,
where i = 20, 30, 50, 100.

8

4.4 Discussion

The term-based clustering and document-based clustering algorithms perform better, if not the best, when all the
queries are split. Even considering the relevance-feedback-based clustering, there is a trend that the performance
is better when more queries are split. More importantly, as can be seen in Table 2, the performance (measured
by pavg) of each algorithm in its optimal settings is not worse, and sometimes is better, than when there is no
splitting. Also, all of these algorithms, except for TC, perform even better than does the refined query resulting
from query expansion. Hence the majority of the query samples we selected are, indeed, multi-aspect queries,
since the splitting process did not hurt performance. We expect that integrating query splitting with SSP will
yield an even better result since SSP can find more relevant documents by means of discovering the connections
within a multi-aspect query.

Relevance-feedback-based clustering is a special variation of the document-based clustering, since its basic
idea is to cluster documents and use a cluster centroid as a sub-query. However, it clusters already-known rele-
vant documents (from relevance judgments) instead of top retrieved documents. Hence much less noise should
be included when representing the aspects of an original query. However, in practice, this kind of relevance in-
formation only can be obtained implicitly or explicitly from users. How to collect such information accurately,
but not intrusively, is still an open question.

In our experiments document-based clustering performed in general better than term-based clustering. As we
pointed out in Section 4.3, the utility of term-based clustering for splitting was poor due to its rather low overlap
metric value. Term-based clustering divides the term candidate representatives for a query so that there are no
overlap terms in the sub-queries of the query, hence decreasing the probability of the overlap of top retrieved
results. On the other hand, the document-based approach clusters the document candidate representatives for the
query and generates sub-queries containing common terms, from a document cluster. Since the query splitting
results are to be fed into SSP, which finds connections between the query parts, we expect that different enough
sub-queries will yield a bigger search space for intermediate concepts as bridges connecting the sub-queries.
Our future experiments on the combination of SSP and document-based clustering and term-based clustering,
respectively, should yield further insight.

The term scoring function used had no significant effect on the algorithm performance, though Okapi results
generally were slightly better than Ptfidf. Consequently, in future work, we will use Okapi as the term scoring
function for clustering (when testing performance on the combination of SSP and query splitting).

5 Conclusions and Future Work

We have studied an approach to handle poorly-performing queries where a possible reason for the poor results
is their multi-aspect property. We have shown the feasibility of splitting this type of queries without decreasing
the retrieval performance.

We plan further experiments to test how much retrieval improvement will result from using SSP, taking the
split results as input. The experiments will consist of automatic runs and user studies. We will run SSP on the
TREC collection, already used in the query-splitting experiment, and will evaluate the results using pavg and
other reasonable measures. It is also important to get feedback from real users with respect to their subjective
impression of the query splitting results. Accordingly, we plan a user study on the split results, and also one on
SSP, with those results as input.

6 Acknowlegments

Our work was funded in part by NSF grant IIS-0307867.

9

References

[1] Cleverden, C.W. (1991). The Significance of the Cranfield Tests on Index Languages. In Proceedings of ACM SI-
GIR91, pp. 3-12, ACM Press, 1991.

[2] Swanson, R. (1986). Fish oil, Raynauds syndrome, and undiscovered public knowledge. Perspectives in Biology and
Medicine, 30(1): 7-18.

[3] Swanson, R., Smalheiser, N, Bookstein, A. (2001). Information Discovery from Complementary Literatures: Cat-
egorizing Viruses as Potential Weapons. Journal of the American Society for Information Science and Technology,
52(10): 797-812.

[4] Das Neves, F. (2004). Stepping Stones and Pathways: Improving Retrieval by Chains of Relationships between Docu-
ments. Ph.D. dissertation, http://scholar.lib.vt.edu/theses/available/etd-11012004-003013/restricted/dissertation.PDF.

[5] Das Neves, F., Fox, E.A., and Yu, X. (2005). Connecting topics in document collections with Stepping Stones and
Pathways. In Proceedings of the 2005 ACM CIKM, Bremen, Germany, 31 October - 5 November.

[6] Zamir, O., Etzioni, O. (1998). Web document clustering: a Feasibility Demonstration. Proceedings of SIGIR98, pp.
45-54. ACM Press.

[7] Borodin, A., Kerr. L., Lews, F. (1968). Query Splitting in Relevance Feedback Systems. Scientific Report No. ISR-14,
Dept. of Computer Science, Cornell University, Ithaca, NY.

[8] Buckley, C. (2004). Why current IR Engines Fail. In Proceedings of SIGIR2004. ACM Press.

[9] Carmel, D., Yom-Tov, E., and Soboroff, I. (2005). Predicting Query Difficulty: Methods and Applications. In SIGIR
2005 workshop.

[10] Carpineto, C., et al. (2001). An information-theoretic approach to automatic query expansion. ACM Transactions on
Information Systems (TOIS), 19(1): 1-27.

[11] Cronen-Townsend, S., Zhou, Y., and Croft, W.B. (2002). Predicting Query Performance. In SIGIR 2002. Tampere,
Finland: ACM.

[12] Graupmann, J., Schenkel, R., and Weikum, G. (2005). The SphereSearch Engine for Unified Ranked Retrieval of
Heterogeneous XML and Web Documents. In VLDB.

[13] Robertson, S.E., Walker, S., and Beaulieu, M. (1999). Okapi at TREC-7: automatic ad hoc, filtering, VLC and
interactive. In Proceedings of the 7th Conference on Text Retrieval. Gaithersburg, MD.

[14] Singhal, A., Buckley, C., and Mitra, M. (1996). Pivoted document length normalization. In Proceedings of the 19th
annual international ACM SIGIR conference on research and development in information retrieval. pp. 21-29.

[15] Voorhees, E.M. (2005). The TREC Robust Retrieval Track. ACM SIGIR, June, p. 39.

[16] Voorhees, E.M. (2003). Overview of the TREC 2003 robust retrieval track. In Proceedings of TREC 2003. Gaithers-
burg, MD.

[17] Yu, X., Das Neves, F., and Fox, E.A. (2005). Query Splitting. Virginia Tech Department of Computer Science Tech-
nical Report, November.

10

