
Fast and Furious Text Mining

Joel D. Martin
National Research Council, Canada

joel.martin@nrc.gc.ca

Abstract

Text mining studies in biology are often limited to thousands instead of millions of Medline records or
are very slow. However, with a modified search engine, many common text mining tasks can be done
rapidly. In fact, some information extraction and text categorization tasks can be achieved in seconds
or minutes even across tens of gigabytes of (previously indexed) text. In this paper, we present TLM, an
efficient implementation of a text analysis engine that uses a highly expressive query language. With this
language, users can create queries that quickly accomplish what previously required several different
custom-built systems to achieve.

1 Introduction

Text mining is our only hope to find all the literature references to specific facts, such as gene or protein inter-
actions. At present, it is still a hope and not fully a reality. Most text mining tools work for a small number of
abstracts, or more rarely full-text articles (e.g., [1]). Some do work for millions of articles but are relatively slow
(e.g., hours to days, [6]). Still other approaches have been designed to process millions of articles quickly, but
they can apparently lose considerable accuracy compared to slower methods (e.g., [11]).

The challenge then is to build tools that permit a wide variety of very rapid text mining across millions of
documents. This challenge is even more relevant when we consider that the next generation of text mining tools
will be expected to handle terabytes of full-text articles, not just gigabytes of abstracts. If we cannot rapidly
mine the text of Medline, how can we hope to handle the full articles?

Below, we describe a text analysis engine called TLM (Text and Language Mining) with a highly expressive
query language. TLM is a principle component of our integrated suite of tools called LitMiner ([9]). TLM
permits queries that can quickly accomplish what previously required several different custom-built systems to
achieve.

2 TLM: A Text Analysis Engine

How is text analysis different from search? On a search engine, users compose words into queries and expect
lists of documents in return. That is an important capability and many other tasks are made possible by search
engines. However, our text mining tasks often require a little more and would be easier with a slightly different
engine.

Copyright 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1

A text analysis engine would let us compose queries out of words and other entities such as punctuation, tags,
part of speech, phrases, sentences, etc. For example, we might want all the occurrences of THA in parentheses:
’X(’ THA ’)X’ (the X is a wildcard character for punctuation). Instead, we might want to refer to any
occurrence of any verb: is <Verb> by, or might want to find sentences that contain two or more genes,
<Sentence> > (<Gene> .. <Gene>).

Second, a text analysis engine would return results of different types, including documents, but also sections,
sentences, phrases, terms, and words. For example, in asking for sentences that contain two genes, we may not
care which documents they come from. We just want the statements themselves so we can see which genes are
said to inhibit each other. In asking for three words before THA,* * * ’X(’ THA ’)X’, we do not want
to see the matching documents. We want to see the possible expansions for the acronym THA, such as Total Hip
Arthroplasty(374), tetrahydroacridine(25), or Tokai High Avoider(4).1

Third, a text analysis engine should permit rapid statistical analysis of the text pieces that are returned.
There is a wide range of possible analyses, including simple frequencies in documents or sentences and ranging
to more complex distributions.

2.1 Engine Design

TLM is a relatively mature implementation of a text search and analysis engine. Figure 1 shows one client
graphical user interface (GUI) that is connected to a remote installation of TLM. The figure illustrates the query
* * * ’X(’ THA ’)X’ and shows its output. TLM has many added conveniences for users and has been
optimized for many types of search, but its operation can be summarized by five basic ideas that are outlined
below. Although none of these ideas is completely new, some aspects are unusual or unique when compared
to search engines. Furthermore, the combination of the five ideas is new. That combination is essential for
supporting the above definition of text analysis.

The first and most fundamental idea behind TLM’s functionality is borrowed directly from search engines.
It is an inverted index of the positions of words (e.g., [2]). Uniquely in TLM, this idea is extended to include
strings of spaces and punctuation as well as words. Any document or collection of documents can be described
as a list of words (or punctuation) and their position of occurrence. For example, if we were indexing the current
paragraph, we would assign the position 1 to the word The, 2 to first, etc. All of these words and their positions
can now be organized as in a back-of-the-book index. Each word can be connected to a list of the positions in
which it appears. In TLM specifically, each word or collection of adjacent punctuation (called a separator) is
connected to a list of the positions of that term in documents. In a collection of multiple documents, the position
could include the document number or could ignore it (e.g., [5]; [3]). In our collection TLMtest, the word
tumourogenic appears 10 times in 9 Medline abstracts. The index stores the word position of each of those
occurrences. Similarly, the separator ’,,,, ’ (four commas and a space) appears once, and that position is
stored.

Once we know the positions of each word and separator, we can ask how often two particular words occur
near each other. We do this simply by comparing the lists of positions and checking certain conditions. For
example, we might want to find all the (up to) four word phrases that contain cancers and tumours. Our search
engine can retrieve the lists of word positions for cancers and for tumours and can iterate through those lists
looking for two, three, or four word phrases that contain both. For example, suppose cancers appears as the 10th
and 45th word of a document and tumours appears as the 20th and 43rd word of the same document. Scanning

1All example queries described in this paper were run against the TLMTest collection. For these examples, TLM was running
on a 2.4 GHz AMD Opteron. The TLMTest collection is a set of 15,176,580 Medline records. A collection of important fields was
included (eg., title, abstract, MeSH terms, etc.) resulting in approximately 22 Gigabytes of text. This text was indexed by TLM in
approximately 18 hours. An additional 24.5 hours was used to create a list of potentially useful tags such as <Sentence>, <Noun>,
<ContainsDigit>. The algorithms used for division into sentences and the part-of-speech tagging are very simple and will be
replaced in future uses of TLMTest.

2

Figure 1: A screenshot of a GUI client to TLM. The figure show the overall frequency for the query, the overall
number of documents that contain the query, and the time to run the query. As well, in the center frame, the
results are organized in a frequency distribution.

those word position lists reveals that the range of positions from the 43rd word to the 45th word describes
a phrase containing both cancers and tumours. In the TLMTest collection, we find 128 occurrences in 120
documents. One of the resulting phrases is tumours, including cancers, which appears twice.

The second idea is that, unlike most search engines, TLM returns parts of documents. Usually, we don’t
want to see the whole document and only want a snippet, like Google’s several word summary that appears
under every result, or a passage (e.g., [8]). TLM does this by returning a range of two positions, say the position
of the word ’tumours’ and the position of the nearby word ’cancers’ (cf., [3]). If they appear as the 43rd and
45th words respectively, the range is from 43 to 45. All query operations process these ranges of word positions.

The use of ranges leads directly to the third idea, that lists of ranges can be given a tag name. This idea is
similar to macros or variables in some search engines, but its simple syntax is unique to TLM. For example,
all the titles in a collection of documents can be described as a list of word position ranges. If that list is given
the name <Title> or <TI>, the user can easily refer to the list of ranges in later queries. These special tags
could be based on XML tags that actually appear in the text or can be defined by the user during the creation of
queries. TLM stores these tags in an inverted index of ranges, just like the inverted index of word and separator
positions.

The fourth fundamental idea is that the result of a query can be statistical information rather than just a simple
list of discovered documents. This is a common text mining activity that is unique as part of a search engine.
The simplest form of such statistical information is the frequency and document frequency of a query. For
example, the query mdm2/i | hMDM2 | mouse double minute 2 matches 7,811 words or phrases in
the TLMTest. These matches occur in 6,248 sentences, and these sentences occur in 1,769 documents. A second

3

useful form of statistical output is a frequency distribution of the distinct matches to a query. As an example,
the query, blood near growth near vessel*, is a request for phrases that have the word blood near
(within 10 words of) the word growth which together are near any word beginning with the six letters vessel.
This would tell us that there are 280 occurrences of blood vessel growth, 90 occurrences of growth of new blood
vessels, 52 of growth of blood vessels, 6 of growth of new capillary blood vessels, etc.

A fifth fundamental idea is that query speed is more important than conserving disk space. The availability
of low cost massive storage, allows us to store multiple indexes that each accelerate different types of queries.
Many search engines have indexes based on compression technology (e.g., [13]) and advertise that they require
disk space that is only a small percentage of the original text size. TLM was designed to make many aspects of
text mining fast. For example, there is a case-sensitive inverted index and a case-insensitive conversion index.
These two indexes allow the user to specify specific capitalization patterns. The query hMDM2 is a request for
matches to exactly that term. In contrast, the query hmdm2/i, is a request for matches to hMDM2, HMDM2,
hmdm2, hMdm2, etc. In addition, many common queries are pre-computed with results stored in a file. As a
result of all this, the indexing file system can be four times the size of the original text (or more). If any part of
that is removed, some type of common query would be slower to calculate.

All that follows and all that we have tried as part of LitMiner should be possible given a text analysis engine
implementing these five ideas. The engine should have an inverted index of words, separators, and tag ranges. It
should return parts of documents as ranges of word positions that match the query and should permit statistical
post processing before giving the user the answer. Finally, it should prioritize fast text mining over conserving
disk space.

2.2 A summary of the query language.

We have already presented a few example queries, with only a simple definition of the query language. More
example queries are shown in Table 1. From these examples, it is obvious that the enhanced expressive power of
TLM is in exchange for increased complexity. Most internet users would prefer Google’s simple syntax to these
complex queries. However, in many cases, the simplicity can be restored without losing the power, by using
interfaces such as LitMiner that bury the query complexity behind GUI buttons.

In general, a TLM query is composed of words, tags, or separators connected by pairwise operators. All
operators describe transformations of two lists of word position ranges into a resulting list of word position
ranges. There are four major operators in TLM, as well as a syntax for tag definitions.

interact* <Adverb> All adverbs that appear immediately after the word stem
’interact’.

<NounPhrase> > (<TI> > cancer) All noun phrases that appear in titles that contain the
word ’cancer’.

interact* near protein* All passages that have the word stem interact near
(within 10 words) of the word stem protein.

Table 1: Some example queries for TLM. See section 2.2 for an interpretation of the query language’s operators.

The first major operator, and the one with the highest precedence is adjacency. When two words are sepa-
rated by a space in a query, open heart, it forms a request for phrases that contain the first word followed
immediately by the second word.

The second major operator is the ‘or’ operator. It simply merges two lists of word ranges. For example,
mdm2 | MDM2 is a request for all the word position ranges that contain just the word mdm2 and all the word
ranges that contain just the word MDM2. Then it merges those lists of word ranges.

4

The third major operator restricts answers to have two nearby parts. There are actually two forms of this
operator, near and ... A query like word1 near word2 is a request for all the word position ranges in
which the two words appear within 10 words of each other. Similarly, a query could request that the two words
be nearby and in order, word1 .. word2. It is a request for all the ranges in which the two words appear
within 10 words of each other and word1 appears first.

Both the near and .. operators can be modified with specified distances. The simplest modification is to
add ’/’ followed by a number. The modified operation near/2means that two ranges must be near, within two
words. Similarly, ../100 means that the two ranges must be in order and within 100 words. The distance can
be further modified by specifying a minimum distance as well. For example, near{4,10} means that the two
ranges must be at least four words apart and up to 10 words apart.

The fourth major operator tests containment and was inspired by [3]. Considering two word position ranges,
it is possible for them to overlap, for one to contain the other, or for them to be non-overlapping. In TLM,
queries can force all answers to contain at least one example of another range. For example, the query <TI>
> geopolitical is a request for word ranges that are whole titles, but only the ones that contain the word
geopolitical. This query could be reversed and be a request for geopolitical < <TI>, ranges of
length 1 with the word ’geopolitical’, but only those occurrences inside titles.

The common search engine operators and and not were purposely omitted from this description, because
they are not flexible enough for text analysis. In most query languages, and is a request for documents con-
taining both of two words (or boolean expressions). In TLM, a query such as <DOC> > protein > gene
is also a request for documents that contain both words. This approach is more flexible than the operator and,
because it also applies to smaller document segments such as abstracts, or sentences, or phrases. For example,
<TI> > protein > gene. Similarly, not typically is a request for documents that do not contain a partic-
ular word. In TLM, a query such as <DOC> /> protein would have the same effect, while also permitting
<Sentence> /> protein.

The TLM query language also permits the definition of variables to hold partial query results. Multiple
variable assignments can appear in a single query and the variable value is available even inside the same query
but to the right of the first appearance. For example, the query ($det = (the|a|an)) .. <$det> is
a request for two determiners that appear near each other. As in this example, a variable name, which always
begins with a $, is assigned the results of a query using an = operator. That variable then becomes a tag name
for future queries by simply enclosing the variable name within < >.

3 TLM for Text Mining

TLM is a step closer to what users need. TLM queries have greater expressive power compared to most search
engines, because a wider range of textual patterns can be specified. In exchange for much more complex queries,
this greater expressive power allows queries to better correspond to real world entities. In biological (or any)
text mining, there is a gap between a referent, such as a gene, and how we refer to that entity, i.e., the gene. In
some sense, all queries are 100% accurate because they return exactly what they are supposed to do. Practically,
though, they rarely find all and only what we want them to. TLM is not perfect, but it is a step beyond many
search engines.

In this section, we will consider a few examples of how TLM can be useful for biological text mining. In
none of these illustrations do we prove that TLM results are more accurate than previous results, only that they
are similar. The point of this exercise is that TLM can do relevant text mining and can do it rapidly. We will
leave it to future work to discover the best ways to use TLM to produce the highest accuracy, precision, and
recall.

5

3.1 MedMiner

The goals of using TLM for mining the biological literature match many of those for MedMiner ([12]). Med-
Miner was designed to access ‘extrinsic’ information about genes. It was composed of three key components:
internet-based querying of multiple databases, text filtering, and a carefully designed user interface. TLM could
address the querying and text filtering. Our LitMiner system is our attempt to create a carefully designed inter-
face.

In illustrating the value of their system, the authors considered a specific biological relationship (inhibition)
between two genes, MDM2 and P53. They argued for their system on the basis of the completeness of the result,
the amount of irrelevant information presented, the query complexity, and the running time.

3.1.1 More complete and fewer irrelevant sentences

TLM can be used to further increase the completeness of the results. As the authors noted, MedMiner will
“miss relevant concepts if they are not represented in the keywords”. The interactive use of TLM with frequency
distributions can partially address this problem.

The gene, MDM2, could be represented by any number of synonyms. A simple string of queries on TLM can
tell us new terms to add. Each of the following queries has results that suggest new synonyms. The first query
is a request for four words followed by MDM2. This query suggests that the two most frequent expansions
of MDM2 are murine double minute 2 and mouse double minute 2. The third column shows the accepted
suggestions.

Query time Suggested synonyms

* * * * MDM2 330 ms murine double minute 2 |
mouse double minute 2

MDM2*/i | MDM*/i (2 | ii/i) 1120 ms MDM2 | mdm2 | Mdm2 | mdm 2 |
MDM 2 | Mdm 2

hMDM2*/i | hMDM*/i 2 200 ms hMDM2 | hmdm2 | hMdm2

In a few seconds, we have a better query than simply MDM2. If we include the synonyms from Entrez Gene
[10] and truncate important words, we produce a more complex query for MDM2 (Table 2). This query took
about 30 seconds to create and about 9.7 s to run.

These queries can yield more complete results. In addition, like MedMiner, TLM’s results for inhibition
displays the phrase or the sentence that indicates the relationship rather than merely identifying the document.
It is also possible to highlight the gene names and inhibition phrases, because TLM returns the positions of
matches.

3.1.2 Query complexity and running time

As shown in Table 2, the TLM queries created for MDM2 and P53 are rather complex as is the query for
identifying some sort of relationship between genes. However, TLM provides user defined tags which greatly
simplifies later queries. After the first three complex queries in the table have been submitted, the very simple
fourth query can be submitted to ask for all phrases in Medline where MDM2 and P53 are said to interact.

The MedMiner time for a similar inhibition query was approximately 60 s and the equivalent PubMed query
was 30 s when that paper was first written. It is not easy to compare these times with TLM. As a preparatory
step, TLM requires between 2 and 60 s to perform each of the individual gene queries like those shown in Table
2. In addition, it requires approximately 6 minutes to process the interaction verb query in row 3 of Table 2.
However, after that preparation, requests between arbitrary pairs of genes require an average of 4.8 s. This

6

Run time Frequency Query

9.7 s 11,010 $mdm2 = MDM2/i | MDM/i 2 | HDM2/i | HDM/i 2 |
MGC71221/i | P53/i bind*/i protei*/i | Mouse/i
double*/i minute*/i 2 | murine/i double*/i minute*/i
2 | hMDM2/i

1.4 s 195,159 $p53 = tp53/i | tp/i 53 | Cys51Stop/i | TRP/i 53 |
TRP53/i | p53/i | tp53s/i | Cys51Stops/i | TRP53s/i |
p53s/i

372 s 15,664,040 $Iverb = (inhibit*/i | block*/i | reduc*/i | decreas*/i
| acetylat*/i | activat*/i | target*/i | suppress*/i |
stabiliz*/i | regulat*/i | phosphorylat*/i | modulat*/i
| is/i ../2 conjugat*/i ../2 to/i | interact*/ i|
inhibit*/i | destabiliz*/i | bind*/i | bound/i |
associate*/i ../2 with/i)

4.8 s 719 <$mdm2> n/5 <$p53> > <$Iverb>

Table 2: The queries (and times) needed to find the passages describing the interaction between P53 and MDM2)

suggests a scheme where gene queries and interaction verb queries are updated nightly, allowing users to get
more complete pairwise responses in only a few seconds.

Overall, TLM meets many of the same goals as MedMiner but also provides improved performance (assum-
ing some pre-processing) and a fast interactive solution to the problem of missing relevant concepts.

3.2 Finding interactions between sets of proteins

Blaschke et al. ([1]) went beyond a single pair of genes and described a text mining system that scanned 6728
abstracts looking for the pattern <Protein> .. <InteractionVerb> .. <Protein>, that is two
proteins separated by a verb (or nominalization) that means some form of interaction. In their first example, they
scanned for six different proteins separated by several different interaction patterns. The six proteins were, pell,
dorsal, toll, tube, spatzle, and cactus.

Their scan of abstracts rediscovered nine known pairwise interactions between the proteins. The authors
noted that frequency of the mention of a relationship can help determine which interactions to predict.

As an illustration, we attacked this same problem with TLM. Table 3 shows the queries created to repre-
sent parts of this task and their time to run. Each query was assigned to a variable for later use. The vari-
able called $Protein is a list of capitalized and lowercase protein names. That query was combined with
$InteractionVerb to find patterns of the type sought in the original paper, protein .. verb ..
protein. In a total time of about 75 seconds, 15 million abstracts were searched and TLM rediscovered the
interactions discovered in the original paper. The time for each component query is shown in Table 3.

The query in the fourth row resulted in 57 total phrases, 55 of which were unique. Of all fifteen automatically
detected interactions reported in [1], the 57 results contain at least one example interaction for each. Six of the
results identified the same relationship verb. TLM did not find exactly the same results, because it was searching
all of Medline, it permitted matches across sentence boundaries, and it was only looking for results of length
five words or fewer.

Using TLM to follow Blaschke et al.’s example required a few minutes and returned similar results with very
few irrelevant phrases. In addition, these results included suggestions of the two known interactions between
Pelle and Cactus and between Dorsal and Cactus that the earlier technique missed (”Cactus inhibits Dorsal”,
”Pelle proteins Phosphorylation of Cactus”). The same 57 TLM results also reveal that there is a protein called

7

Run time Frequency Query

1.8 s 233,899 $Proteins = Pelle | Dorsal | Toll | Tube | Spatzle
| Cactus | pelle | dorsal | toll | tube | spatzle |
cactus

66.7 s 11,671,613 $InteractionVerb = acetylat*/i | activat*/i |
target*/i | suppress*/i | stabiliz*/i | regulat*/i |
phosphorylat*/i | modulat*/i | is/i ../2 conjugat*/i
../2 to/i | interact*/i | inhibit*/i | destabiliz*/i |
bind*/i | bound/i | associate*/i ../2 with/i

5.8 s 57 <$Proteins> ../5 <$Proteins> > <$InteractionVerb>

Table 3: The queries (and times) needed to find interactions among Pelle, Dorsal, Toll, Tube, Spatzle, and
Cactus.

”Twist” that interacts with Dorsal and another related protein called ”Kra” (”Dorsal-interaction proteins (Twist
and Cactus)”, ”Kra associates with Pelle and Tube”).

We repeated this exercise for the authors’ larger protein list for cell cycle control in Drosophila. We con-
structed a single query ($CellCycleProtein) for the 91 proteins included in ([1]), using case insensitive
searches. This created many irrelevant matches where both proteins were the same. In addition, many pairs of
proteins were not matched because of intervening matches. To address these problems, we created one query for
each of the protein names. This meant finding, for example, ranges containing Myb followed by an interaction
verb, then by a cell cycle protein other than Myb.

For this second exercise, we reused the definition for interaction verbs that must occur between each pair.
The TLM queries, including the redefinition of the variables CellCycleProtein and InteractionVerb, took a total
of 6 minutes, 32 seconds.

The original paper ([1]) rediscovered 28 well-known interactions, 20 possible interactions, and missed one
well-known interaction. In the list of 610 resulting phrases from TLM, we also found evidence for 27 of the
28 known interactions and all but five of the possible interactions. The main interaction missed by TLM was
between cdc2 and twine. However, TLM did detect the interaction between cdk and p21 that the original paper
missed.

TLM clearly supports the extraction of significant facts from large text collections. Specific entities can
be identified and relationships between those entities can be correctly discovered. TLM can achieve these and
similar tasks in minutes. This is fast enough to allow a tolerable interaction between the user and the text.

4 Text categorization

Another important text mining application is text categorization. Researchers have applied text categorization
to label Medline abstracts as relevant or not to some task (e.g., [6]; [11]). For example, in PreBIND, text
categorization was used to select papers about protein-protein interactions for later human curation.

In principle, this is similar to search engine retrieval. However, text categorization uses additional computa-
tion (slower) to improve the precision and recall (and accuracy) as compared to the results of search. A search
on Google might return 100 results with only 10 of them being relevant. In that search, the precision would
be 10%. If the search results completely missed 190 other relevant documents, the recall of that search would
be 5%. In contrast, text categorization often results in 65% recall and precision ([11]) or even 90% recall and
precision ([6]).

The other difference with Google, besides precision and recall, is the time necessary to produce the results.

8

Google often reports millisecond response time whereas Donaldson et al. [6] quotes a time in days to apply a
text categorization model to 12 million Medline records. With other techniques ([11]) text categorization like
levels of accuracy can be achieved much more quickly. Even in that second case, though, the authors suggest
using a cluster of several processors to achieve fast learning and application of that learning.

TLM can be used to achieve high recall and precision without requiring days or multiple processors. To
illustrate this potential for categorization, we recreated the experiment described in [6]. For this experiment, we
used the following technique. From the training examples of protein-protein interaction abstracts, we extracted
two general types of features: ”A appears in the document”, ”A near/5 B” In those features, A and B refer to
one or two word phrases. Among those thousands of possible features, we selected the 5000 that individually
were most diagnostic in determining whether a document was a positive example or a negative one. As in
the previous study, we used information gain to select those features. Then we applied Ripper ([4]) to learn a
boolean expression of the features that would select the positive documents while excluding the negative ones.
These boolean expressions were translated into acceptable TLM queries allowing rapid application across all of
Medline.

We divided the development set into 10 folds and performed cross-validation, each time training on 90%
and testing on the remaining 10%. As a result, we found a precision of 89% and a recall of 86%. Both of
these numbers are lower than, but similar to, the results reported in [6]. From past studies, we can expect this
new technique to always under-perform Support Vector Machines (e.g., [7]; [14]). However, we expect the new
technique to always outperform techniques such as those in [11] again based on performance in those same past
studies.

In addition to the high precision and recall, TLM plus Ripper was fast. In our illustration, a single query
that resulted from applying Ripper required an average of 85.25 s when submitted to TLM. This is much shorter
than the hours necessary to apply an SVM. As well, it is much faster than would be possible with any non-index
based technique. In fact, in contrast to the suggestions in [11], we are able to achieve reasonable performance
with a single CPU and several users.

As for the case of identifying specific interactions, we have only shown that TLM can be used to achieve
similar results quickly. More work has to be done to devise and evaluate a scheme to create consistently high
recall and precision while still requiring only a few minutes.

5 Discussion

A text analysis engine is a necessary tool for the future of text mining in biology and other fields. In contrast
to search engines, in a text analysis engine, queries are composed of not just words, the results are not just
documents, and the final answer is not just a list. Queries can contain punctuation, tags, variables, etc. Results
can be documents, sections, topic-based passages, paragraphs, sentences, phrases, etc. The final answers can be
a list or could be multiple levels of frequency counts or a frequency distribution.

One example of such a text analysis engine is TLM. It has an inverted index of words, separators, and tag
ranges. It returns parts of documents represented by ranges of word positions that match the query and permits
statistical processing of the results. As well, it favours speed over conserving disk space.

In our illustrations, we have taken classic examples of text mining in biology and shown that TLM can match
the reported performance and can do so very quickly. We have not shown TLM’s results to be conclusively better
or worse than earlier results, only that they are similar and fast.

CONTRIBUTIONS & ACKNOWLEDGEMENTS

All the code for TLM, except for a public domain sdbm implementation (by J. Chapweske), was written at NRC
(engine by the author; GUI by Chengbi Dai). Chengbi Dai’s client GUI is shown in Figure 1 above. All the

9

examples in this paper were created by the author. The idea to use RIPPER for query based text categorization
arose in discussion with Berry de Bruijn.

I would also like to thank all LitMiner team members for the motivation to create TLM, both on the computer
side (Berry de Bruijn, Lynn Wei, Darrell Ferguson, Norm Vinson, and Jeff Demaine), and on the biology side
(Hung Fang, Annie Law, Qing Liu, Maria Moreno, Brandon Smith, and Roy Walker).

References

[1] C. Blaschke, M. Andrade, C. Ouzounis, and A. Valencia. Automatic extraction of biological information
from scientific text: Protein-protein interactions. In Intelligent Systems for Molecular Biology, pages 60–
67, 1999.

[2] James P. Callan, W. Bruce Croft, and John Broglio. TREC and Tipster experiments with Inquery. Infor-
mation Processing and Management, 31(3):327–343, 1995.

[3] Charles L. A. Clarke and Gordon V. Cormack. Shortest substring retrieval and ranking. ACM Transactions
on Information Systems, 18(1):44–78, 2000.

[4] William W. Cohen. Fast effective rule induction. In Machine Learning: Proceedings of the Twelfth Inter-
national Conference, 1995.

[5] O. de Kretser and A. Moffat. Effective document presentation with a locality-based similarity heuristic. In
Proceedings of the Twenty Second International ACM-SIGIR Conference on Research and Development in
Information Retrieval, pages 113–120. ACM Press, 1999.

[6] I. Donaldson, J. Martin, B. de Bruijn, C. Wolting, V. Lay, B. Tuekam, S. Zhang, B. Baskin, G.D. Bader,
K. Michalickova, T. Pawson, and C.W. Hogue. Prebind and Textomy–mining the biomedical literature for
protein-protein interactions using a support vector machine. BMC Bioinformatics, 4(11), 2003.

[7] Thorsten Joachims. Text categorization with support vector machines: Learning with many relevant fea-
tures. In ECML-98, Tenth European Conference on Machine Learning, 1998.

[8] M. Kaszkiel and J. Zobel. Effective ranking with arbitrary passages. Journal of the American Society For
Information Science and Technology, 52(4):344–364, 2001.

[9] J. Martin and B. de Bruijn. Litminer. www.litminer.ca, 2003.

[10] U.S. National Library of Medicine. Entrez gene. www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene.

[11] B.P. Suomela and M.A. Andrade. Ranking the whole medline database according to a large training set
using text indexing. BMC Bioinformatics, 6(75), 2005.

[12] L. Tanabe, U. Scherf, L. Smith, J. Lee, L. Hunter, and J. Weinstein. Medminer: an internet text-mining tool
for biomedical information, with application to gene expression profiling. BioTechniques, 37:1210–1217,
1999.

[13] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes: Compressing and Indexing
Documents and Images. Morgan-Kaufmann Publishers, 2nd edition, 1999.

[14] Yiming Yang and X. Liu. A re-examination of text categorization methods. In Proceedings of SIGIR-99,
22nd ACM International Conference on Research and Development in Information Retrieval, 1999.

10

