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Abstract

Information extraction and text mining applications are just beginning to tap the immense amounts of
valuable textual information available online. In order to extract information from millions, and in some
cases, billions of documents, different solutions to scalability emerged. We review key approaches for
scaling up information extraction, including using general-purpose search engines as well as indexing
techniques specialized for information extraction applications. Scalable information extraction is an
active area of research, and we highlight some of the opportunities and challenges in this area that are
relevant to the database community.

1 Overview

Text documents convey valuable structured information. For example, medical literature contains information
about new treatments for diseases. Similarly, news archives contain information useful to analysts tracking
financial transactions, or to government agencies that monitor infectious disease outbreaks. All this information
could be managed and queried more easily if represented in a structured form. This task is typically called
information extraction. More specifically, information extraction systems can identify particular types of entities
(e.g., person names, locations, organizations, or even drug and disease names) and relationships between entities
(e.g., employees of organizations or adverse interactions between medical drugs) in natural language text. In this
paper we focus on entity extraction (NER) and event or relation extraction (RE). Once created, the structured
representation of entities or relations can be used to answer specific questions quickly and precisely by retrieving
answers instead of complete documents, for sophisticated query processing, data integration, and data mining.
Managing text is an increasingly important use of relational database management systems [9], and information
extraction can be a key technology for this effort.

We focus on extracting information from large document collections (e.g., newspaper archives, web snap-
shots, biomedical literature archives). This setting is particularly important as information extraction is most
useful when the collections are too large to process manually. Additionally, as we will describe, some extraction
systems perform best precisely when the collection sizes are large (e.g., [1, 25]). Hence, for usefulness and
even accuracy, scaling information extraction to large document collections is crucial. The document collection
sizes we consider range from a few hundred thousand documents (e.g., Newspaper archives) to millions of docu-
ments (e.g., PubMed and other “hidden web” databases) to tens or hundreds of millions of documents (e.g., Web
snapshots, focused web crawls). We provide a brief overview of information extraction process in Section 2.
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Unfortunately, extracting the entities and relationships from a document is computationally expensive. Even
simple information extraction tasks can require days or weeks of running time to process a large collection. For
example, Ravichandran et al. [27] estimate that to just perform part-of-speech tagging (a common pre-processing
step for information extraction) over a terabyte of text (between 50 and 100 million documents) required 125
days on a 2.5GHz PC, and a shallow syntactic parse required 10 machine-years. Clearly, this is not feasible for
large document collections1. To scale up information extraction to large collections, four main approaches have
been used:

• Scanning the collection using simplified and efficient rules: In this case, every document is processed
using patterns and rules highly optimized for speed. In this model the complete scanning process is
repeated for each new task (Section 3).

• Exploiting general-purpose search engines: To avoid scanning all documents in a collection, some systems
use generic search engines to zoom in on relevant documents (Section 4).

• Using specialized indexes and custom search engines: A special-purpose search engine can index and
query annotations useful for a predefined family of information extraction tasks. In some cases this may
allow doing extraction over the index only, for dramatic efficiency gains (Section 5).

• Distributed processing: We briefly describe representative distributed data mining solutions that could be
applied for scalable text mining and information extraction (Section 6).

Some of the efficiency approaches can degrade extraction completeness and accuracy, as well as generality
and applicability of the resulting solutions. We discuss these challenges and promising research directions in
Section 7, which concludes the paper.

2 Background: Information Extraction

The general information extraction process is outlined in Figure 1 (adapted from [15]). In general, a document
is broken up into chunks (e.g., sentences or paragraphs), and rules or patterns applied to identify entities. For
the NER task, systems usually scan each document for textual “clues” indicating presence of a useful entity.
Most common clues are the text surrounding the entity and the text of entity itself, as well as part-of-speech
tags and word classes if available. Then, for the RE task, scenario-level extraction patterns are applied to infer
relationships between the extracted entities (See [15] for natural language processing-focused overview). Some
systems can use statistics collected over the whole collection to assign confidence scores to extracted objects.
Either after or during the extraction, information can be merged for multiple occurrences of the same object (and
different objects with shared attribute values can be disambiguated). These postprocessing steps are relatively
fast compared to the actual information extraction process, and are beyond the scope of this paper. Note that
entities can be extracted independently of the relation, so that entity annotations can be shared across multiple
relation extraction tasks.

The different stages in the extraction process have varying computational requirements. Most probabilistic
parsers or taggers use a form of Viterbi algorithm for decoding the most likely sequence of tags (e.g., [22]),
which have linear complexity with respect to sequence length and corpus size, but with widely varying constants.
Pattern-based extraction systems (e.g., [1]) apply each pattern to each candidate passage in a document, resulting
in complexity linear with the size the collection and the number of patterns used (which can be large for partially
supervised and unsupervised extraction systems). Complexity of rule-based extraction systems is difficult to
estimate, but is consistently reported to be high, as it usually takes seconds to process a medium-size document
(3K), resulting in estimates of years [27] required to process large document collections.

1Most preprocessing steps only need to be run once if we store the annotated text. Also, the preprocessing step is inherently
parallelizable. We discuss these issues in subsequent sections.
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Figure 1: Typical stages in the information extraction process.

3 Scanning Large Document Collections

A traditional information extraction approach is to scan every document in a given collection, possibly using
various forms of filtering to discard documents (or passages) as early as possible in the process. One approach
is to use a classifier or hand-crafted patterns. Only the documents that match these (presumably “cheap”) filters
are processed further. For example, a system for extracting information about disease outbreak events [16] uses
hand-crafted regular expressions to select documents to process further with the full features extraction system.
These filtering patterns are usually designed to have high recall (i.e., not to discard useful documents) while
ignoring a large fraction of the non-useful documents. In some settings (e.g., focused crawling), it is possible to
discard documents without processing the document text (e.g., by applying rules to the document URLs or links
pointing at the document) [5, 8]. Efficient text filtering (e.g., by using optimized regular expression matching
and even specialized hardware solutions) were reported for text filtering as early as 1993 [24], and could be
naturally adapted to work with information extraction.

A different approach is to use only extremely simple, “cheap” extraction patterns, and apply them to every
document in the collection [25]. This relies on the assumption that information in large text collections appears
redundantly, and at least some of the occurrences of a desired entity or relationship will match one of the
simple patterns. The authors describe experiments with extracting pairs of noun phrases for the is-a relations
(e.g., 〈“MCI WorldCom”, “phone company”〉). The system uses 15 simple lexical and part-of-speech patterns,
followed by a more expensive machine learning-based postprocessing step. The authors report requiring 10 days
to process a 15GB document collection (approximately 5 million documents) using this implementation, which
is still an order of magnitude slower than part-of-speech tagging. Interestingly, the reported accuracy of the
simple lexical pattern-based system is comparable to the accuracy of the much slower approach requiring full
syntactic parsing of each sentence.

The created annotations can be stored and re-used for all future extraction tasks that require such information
(e.g., locations of the named entities in the documents to be used for the relation extraction task). Hence, the
initial pre-processing effort would amortize if the annotations are general enough. Another example of such
preprocessing is indexing the words and the documents in which they occur, as typically done by general-
purpose text search engines. Next we describe two scalable information extraction architectures that make use
of such indexing.
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Figure 2: Querying generic search engines for scalable information extraction.

4 Exploiting General-Purpose Search Engines

Often, only a small fraction of the documents contain information that is relevant to the extraction task. Hence it
is not necessary for extraction completeness –or desirable from an efficiency viewpoint– to run the information
extraction system over every database document. Furthermore, if a document collection is the set of all web
pages indexed by a search engine such as Google, then it is virtually impossible to extract information from
every page. For these reasons, an intuitive approach is to zoom in on the promising documents, while ignoring
the rest. This approach was introduced in the QXtract system [2] for efficiently extracting relations from large
document collections.

The general QXtract architecture is outlined in Figure 2. Starting with a set of user-provided seed tuples for
the target relation, QXtract retrieves a small sample of documents, likely to be useful to the extraction system,
as well as other randomly chosen documents, likely to be useless to the extraction system. The information
extraction system is run over this sample set, producing as output a set of extracted tuples and the identifiers
of useful documents. The documents in the sample are thus labeled automatically as either positive or negative
examples, where the positive examples represent the documents in the sample from which the information
extraction system was able to produce tuples. These examples allow QXtract to derive queries targeted to
match –and retrieve– documents similar to the positive examples. These queries are used to retrieve a set
of promising documents from the database, to be returned as QXtract’s output and finally processed by the
information extraction system. The performance improvement can be substantial: QXtract allows a state-of-the-
art information extraction system to extract 48% of the tuples in the target relation when retrieving only 5% of
the documents in the collection, for an order of magnitude increase in efficiency at the expense of extraction
completeness. The QXtract approach is general in that any information extraction system could be plugged and
use QXtract as an interface to large collections, hidden web databases, or, in principle, the web at large.

More recently, Etzioni et. al introduced the KnowItAll system [14] for extracting concepts and relationships
from the web (e.g., the “is-a” relationship between noun phrases). KnowItAll uses a set of predefined generic
extraction rules (e.g., “NP1 such as NP2”, where NP stands for noun phrase, indicating that a string tagged as
NP2 in a document is an instance of a class named in NP1.). To retrieve candidate documents, KnowItAll auto-
matically generates queries by instantiating the general patterns with the target class (e.g., for the “cities” class, a
query would be “cities such as”) and submits these to a generic web search engine such as Google. The returned
documents are retrieved, parsed with part-of-speech tagger, and patterns applied following the general informa-
tion extraction framework of Section 2. As an interesting use of web search engines, KnowItAll estimates the
confidence of the extracted values by using web co-occurrence statistics via Google hit counts. Specifically,
KnowItAll uses a form of pointwise mutual information (PMI) between words and phrases estimated similarly
to Turneys PMI-IR algorithm [32]. PMI-IR estimates mutual information between the class name (e.g., “cities”)
and a proposed city instance (e.g., “Seattle”) by computing web hit counts of each phrase individually, as well
as the number of pages containing the phrase “cities such as Seattle”. Hence, for each candidate concept or
relation tuple, KnowItAll would issue at least three distinct web search queries (first to retrieve a document, and
then two more queries to compute the PMI-IR measure).
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In addition to improving the efficiency of extraction, a system that queries a generic search interface might
be adapted to extract relations from “hidden-web” databases only accessible via generic search interfaces [4, 18],
allowing a system to process relevant documents not otherwise reachable via crawling or scanning mechanisms.

While clearly more feasible than processing every document in the collection, both QXtract and KnowItAll
can still require days (or even weeks) to extract a large fraction of all relation tuples or concepts hidden in the
collection documents. This limitation is addressed by more recent systems in the KnowItAll family, as discussed
in the next section. Another shortcoming of both systems is retrieving thousands of results for each query (a
functionality rarely supported by generic search engines). By removing reliance on generic web search engines
and incorporating extraction-specific features at index time, it is possible to dramatically increase information
extraction efficiency and scalability, as we describe next.

5 Using Specialized Indexes and Search Engines

General-purpose search engines are designed for short keyword queries and for retrieving relatively few results
per query. In contrast, information extraction systems can submit sophisticated and specific queries and request
many or all query results. To better support information extraction, Cafarella et al. [7] introduced the Bindings
Engine (BE), which supports queries containing typed variables and some linguistic functions. For example,
in response to the query “Mayors such as ProperNoun(Head(NP))”, BE would return a list of proper nouns
that appear in that context. To accomplish this, BE indexes the neighborhood of words (Figure 3 adapted from
Cafarella et al. [7]).
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Figure 3: The BE engine neighborhood index.

The neighborhood index is similar to the inverted list index [31], but for each posting BE stores up to K
words immediately to the left and to the right of each term. Additionally, BE stores all part-of-speech labels
for each term (and, in principle, any other available semantic information) computed at index time. By using
this expanded index, a query such as “mayors such as”, which might be issued by a class extraction system
for extracting names of all mayors, will retrieve the postings list for the word “mayors” and then scan the list
returning all proper noun phrases that are preceded by the “such as” string. BE is well suited to extraction
patterns using exact phrases (e.g., DIPRE [5] and KnowItAll [14]). As reported by Cafarella et al. in [6], the
KnowItNow information extraction system and other systems in the KnowItAll family2 use the BE search engine
to quickly extract information from an indexed web snapshot of 90 million documents.

2Available at http://www.cs.washington.edu/research/knowitall/.
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A related approach has been used for extraction-based Question Answering (notably by Prager et al. [26]
and Chu et al. [10]), where a system retrieves short answers to natural language questions extracted at query time
from the text documents in the collection. During an indexing pass over the collection, the entities predicted to
be potential answers to questions are extracted and stored, and at query time only the documents (or passages)
containing an entity of appropriate type (e.g., person name) are retrieved for extracting candidate answers.
An intriguing new search engine was recently demonstrated by Resnik et al. [28] for indexing and searching
linguistic (e.g., syntactic) structures3 but it has not yet been formally evaluated for relation extraction or question
answering tasks.

Unfortunately, word neighborhood indexing may not be directly amenable for extraction patterns without
lexical items (e.g., patterns such as “Adjective ProperNoun(Head(NP))”), for patterns with only frequent words
in patterns (e.g., “〈Organization〉 in 〈Location〉” [1]) or for probabilistic extraction models (e.g., HMMs [23] or
CRFs [29]). Furthermore, extractors that rely on web page structures such as HTML lists (e.g., [11, 14]) still
have to retrieve the complete document and apply extractors as the original QXtract or KnowItAll system would.

More generally, annotations such as part-of-speech tags and sentence boundaries can be viewed as adding
partial structure to the text documents, which can then be represented in a semi-structured form (e.g., in XML
format), and indexed for fast querying (e.g., [20]). Preliminary question answering results over annotated and
indexed XML documents [21] indicate that with a rich schema and carefully constructed XPath queries it may
be possible to represent question answering and information extraction as a retrieval task. We explore this idea
further in Section 7.

6 Distributed Processing

So far we focused on algorithmic techniques for scaling up information extraction. Parallelization and distrib-
uted processing are attractive alternatives for processing extremely large collections, such as the billions of doc-
uments on the web. Information extraction is particularly amenable to parallelization, as the main information
extraction steps, (e.g., part-of-speech tagging and shallow syntactic parsing) operate over each document inde-
pendently (e.g., [13]). Hence, most parallel data mining and distributed processing architectures (e.g., Google’s
MapReduce [12]) might be easily adapted for information extraction over large collections.

Extracting information is only one of the steps in large scale web mining and extraction. Discovering useful
document sources [3, 19], crawling (retrieving documents), extracting and indexing relevant document features,
and other tasks are all required for a complete, enterprise-scale systems. IBM’s WebFountain [13, 17], an
influential end-to-end system, puts these steps together for information extraction and text mining from the
web. WebFountain retrieves, processes, extracts and indexes information from billions of documents on the
web and in local collections. The WebFountain approach includes both algorithmic and hardware solutions,
and uses a heavily distributed architecture with clusters of nodes devoted to crawling, extracting and indexing
web page content. WebFountain is a blackboard architecture that allows multiple annotators (i.e., extraction
systems) to store tags (e.g., named entities) or any other annotations with each document for further processing.
Unfortunately, a distributed architecture with hundreds of machines (WebFountain) or thousands of machines
(Google’s Map/Reduce) requires significant resources to create and maintain, which limits the applicability of
this approach. As we have shown previously, it is possible to perform scalable information extraction even with
modest hardware resources.

3Available at http://lse.umiacs.umd.edu:8080/.
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7 Opportunities and Challenges

We described four general approaches for scaling information extraction to large document collections. A tru-
ism stating that “there is no free lunch” applies. Current algorithmic techniques either trade off information
extraction accuracy and completeness for speed (e.g., Sections 3 and 4), or impose restrictions on the types of
extraction patterns supported (Section 5). Hence, choosing the appropriate approach is heavily dependent on the
application and use requirements.

One promising general approach that we mentioned earlier is to store the semantically annotated documents
(e.g., with part-of-speech or named entity tags) in semi-structured form (e.g., in XML). The annotated documents
could be indexed to speed up future information extraction runs. While many indexing and querying methods
for semi-structured data (e.g. [20]) have been developed in different contexts, these techniques have not been
adequately explored for information extraction and are a promising direction for research.

A dimension of information extraction scalability not addressed in this survey is a trade-off between domain
independence and extraction accuracy. While named entity extraction technology is relatively mature and is
generally accurate for common entity types (e.g., person and location names), domain-independent relation
and event extraction techniques are still error-prone, and are an active area of natural language processing and
text mining research. One interesting research direction is to apply probabilistic query processing techniques
(reviewed in [30]) to derive usable query answers from the noisy information extracted from text.

As we discussed, redundancy and variability in large document collections can mitigate the inherent diffi-
culty in interpreting natural language text. By operating over large collections, information extraction systems
can significantly improve both accuracy and coverage of the extracted information. For this, efficient techniques
for extracting information from such large document collections are crucial, and would greatly enhance our
ability to manage and exploit the available textual information.
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