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Letter from the Editor-in-Chief

The Data Engineering Conference ICDE’06

The next International Conference on Data Engineering (ICDE’06) will be held in Atlanta in April, 2006. This
conference is the flagship conference of the IEEE Technical Committee on Data Engineering. Atlanta is a great
venue, and April is a wonderful time to visit the city, with balmy weather and with magnolias and peach trees
in bloom. This year’s conference is a very selective conference with high quality papers. Additional informa-
tion about the conference is available on the conference web site, http://icde06.cc.gatech.edu/,
including the technical program.

About the Bulletin

I have made a minor change in how the Bulletin is available. Starting with the current issue, the individual
papers accessed via the Bulletin web sites will be in PDF, not postscript. My primary reason for doing this is
because PDF files are smaller than PS files, and hence download more quickly. I invite your comments on this
change. My intent is to convert, over time, the individual papers of past issues into PDF as well. So if you do not
like this turn of events, please send me email at lomet@microsoft.com telling me why this is a bad idea.

The Current Issue

In the database world, we extract information via very precise query languages. Moving to the world of doc-
uments has required our community to master and hopefully enhance in our own way, the technology of the
information retrieval community. The world is clearly moving to putting everything online in the hopes that
we will learn how to exploit this as an invaluable resource for much of what we do, surely professionally, and
perhaps personally as well. We, the database community, should be able to help.

One interesting manifestation of this move toward putting things online is the rapid growth of literature
digital libraries, both in professional domains and more generally. This is happening now, as anyone who has
consulted DBLP will be aware. But this area also has many challenges. Perhaps we would like to know which
papers have been published, to choose an area “at random”, in “application recovery”. This is a complicated
query, much more like an IR query than a SQL query, but it requires more than simply key word search, even
when augmented with web link analysis.

It is the desire to extract and exploit information such as the above that makes the current Bulletin issue
so important, interesting, and timely. Gultekin Ozsoyoglu has worked in this area himself. So he brings to
his editorial duties as a special issue editor, knowledge both of the field and of its research participants. The
names of the authors may be less familiar to you than is normally the case with Bulletin authors. But this is
an opportunity for readers to very rapidly get the feel for the exciting things that are happening with literature
digital libraries and how they might be exploited. I want to thank Tekin for his fine job with the current issue.
He has assembled an excellent overview of the current state-of-the-art in this increasingly important area.

David Lomet
Microsoft Corporation
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Letter from the Special Issue Editor

Literature digital libraries, now an indispensable part of research and education worldwide, are increasing in
size at very high numbers. As an example, PubMed, a literature digital library for biomedical sciences, currently
contains 15 million papers, and is increasing at a rate of 400,000 papers every year. This issue of Data Engineer-
ing Bulletin is on the critical areas of searching, mining, querying, and information extraction from literature
digital libraries.

In ”Scaling Information Extraction to Large Document Collections”, Eugene Agichtein classifies and re-
views four approaches for scalable information extraction from large document collections, namely, scan-
ning large document collections, exploiting general-purpose search engines, employing specialized indexes and
search engines, and using parallelization and distributed processing. Algorithmic approaches trade off informa-
tion extraction accuracy and completeness for speed. A promising approach is to store semantically annotated
documents in semi-structured form.

Text analysis engines are different than search engines in that they allow for queries with words and entities
such as punctuation, tags, etc. as well as returning results of different types, e.g., sections and phrases of
documents. In ”Fast and Furious Text Mining”, Joel D. Martin describes and briefly evaluates the performance
of a text analysis engine called TLM (”Text and Language Mining”) with a highly expressive query language.
TLM is part of an integrated suite of tools called LitMiner.

Example-based publication searching is becoming common place in digital libraries, which essentially re-
quires the evaluation of a publication similarity measure. In ”Evaluating Publication Similarity Measures”,
Sulieman Bani-Ahmad, Ali Cakmak, Gultekin Ozsoyoglu and Abdullah Al-Hamdani classify the existing pub-
lication similarity measures as text-based (from Information Retrieval) and citation-based employing biblio-
graphic coupling and/or co-citation, and extend and evaluate a number of publication similarity measures in
terms of accuracy, separability, and independence.

Current search engines are known to perform poorly for a number of ”hard” queries. In ”Hard Queries can
be Addressed with Query Splitting Plus Stepping Stones and Pathways”, Xiaoyan Yu, Fernando Das-Neves, and
Edward A. Fox propose an approach based on ”Stepping Stones and Pathways” and query splitting, and find the
approach feasible and promising.

In ”Ten-Year Cross-Disciplinary Comparison of the Growth of Open Access and How it Increases Research
Citation Impact”, Chawki Hajjem, Stevan Harnad, Yves Gingras report that openly accessible (OA) articles from
ten disciplines are cited more than those that are not. Their results indicate that the overall percentage of OA
articles varies from 5% to 16%, and OA articles have from 25% to 250% more citations as compared to non-OA
articles.

Finally, in ”A System of User-Guided Biological Literature Search Engine”, Meng Hu and Jiong Yang pro-
pose and briefly evaluate a new digital library search paradigm based on iterative clustering and user feedback.

I hope that you will find this issue useful and informative. My special thanks to all the authors for their
contributions to this special issue of the Bulletin.

Gultekin Ozsoyoglu
Case Western Reserve University

Cleveland, Ohio, USA
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Scaling Information Extraction to Large Document Collections

Eugene Agichtein
Microsoft Research

eugeneag@microsoft.com

Abstract

Information extraction and text mining applications are just beginning to tap the immense amounts of
valuable textual information available online. In order to extract information from millions, and in some
cases, billions of documents, different solutions to scalability emerged. We review key approaches for
scaling up information extraction, including using general-purpose search engines as well as indexing
techniques specialized for information extraction applications. Scalable information extraction is an
active area of research, and we highlight some of the opportunities and challenges in this area that are
relevant to the database community.

1 Overview

Text documents convey valuable structured information. For example, medical literature contains information
about new treatments for diseases. Similarly, news archives contain information useful to analysts tracking
financial transactions, or to government agencies that monitor infectious disease outbreaks. All this information
could be managed and queried more easily if represented in a structured form. This task is typically called
information extraction. More specifically, information extraction systems can identify particular types of entities
(e.g., person names, locations, organizations, or even drug and disease names) and relationships between entities
(e.g., employees of organizations or adverse interactions between medical drugs) in natural language text. In this
paper we focus on entity extraction (NER) and event or relation extraction (RE). Once created, the structured
representation of entities or relations can be used to answer specific questions quickly and precisely by retrieving
answers instead of complete documents, for sophisticated query processing, data integration, and data mining.
Managing text is an increasingly important use of relational database management systems [9], and information
extraction can be a key technology for this effort.

We focus on extracting information from large document collections (e.g., newspaper archives, web snap-
shots, biomedical literature archives). This setting is particularly important as information extraction is most
useful when the collections are too large to process manually. Additionally, as we will describe, some extraction
systems perform best precisely when the collection sizes are large (e.g., [1, 25]). Hence, for usefulness and
even accuracy, scaling information extraction to large document collections is crucial. The document collection
sizes we consider range from a few hundred thousand documents (e.g., Newspaper archives) to millions of docu-
ments (e.g., PubMed and other “hidden web” databases) to tens or hundreds of millions of documents (e.g., Web
snapshots, focused web crawls). We provide a brief overview of information extraction process in Section 2.

Copyright 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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Unfortunately, extracting the entities and relationships from a document is computationally expensive. Even
simple information extraction tasks can require days or weeks of running time to process a large collection. For
example, Ravichandran et al. [27] estimate that to just perform part-of-speech tagging (a common pre-processing
step for information extraction) over a terabyte of text (between 50 and 100 million documents) required 125
days on a 2.5GHz PC, and a shallow syntactic parse required 10 machine-years. Clearly, this is not feasible for
large document collections1. To scale up information extraction to large collections, four main approaches have
been used:

• Scanning the collection using simplified and efficient rules: In this case, every document is processed
using patterns and rules highly optimized for speed. In this model the complete scanning process is
repeated for each new task (Section 3).

• Exploiting general-purpose search engines: To avoid scanning all documents in a collection, some systems
use generic search engines to zoom in on relevant documents (Section 4).

• Using specialized indexes and custom search engines: A special-purpose search engine can index and
query annotations useful for a predefined family of information extraction tasks. In some cases this may
allow doing extraction over the index only, for dramatic efficiency gains (Section 5).

• Distributed processing: We briefly describe representative distributed data mining solutions that could be
applied for scalable text mining and information extraction (Section 6).

Some of the efficiency approaches can degrade extraction completeness and accuracy, as well as generality
and applicability of the resulting solutions. We discuss these challenges and promising research directions in
Section 7, which concludes the paper.

2 Background: Information Extraction

The general information extraction process is outlined in Figure 1 (adapted from [15]). In general, a document
is broken up into chunks (e.g., sentences or paragraphs), and rules or patterns applied to identify entities. For
the NER task, systems usually scan each document for textual “clues” indicating presence of a useful entity.
Most common clues are the text surrounding the entity and the text of entity itself, as well as part-of-speech
tags and word classes if available. Then, for the RE task, scenario-level extraction patterns are applied to infer
relationships between the extracted entities (See [15] for natural language processing-focused overview). Some
systems can use statistics collected over the whole collection to assign confidence scores to extracted objects.
Either after or during the extraction, information can be merged for multiple occurrences of the same object (and
different objects with shared attribute values can be disambiguated). These postprocessing steps are relatively
fast compared to the actual information extraction process, and are beyond the scope of this paper. Note that
entities can be extracted independently of the relation, so that entity annotations can be shared across multiple
relation extraction tasks.

The different stages in the extraction process have varying computational requirements. Most probabilistic
parsers or taggers use a form of Viterbi algorithm for decoding the most likely sequence of tags (e.g., [22]),
which have linear complexity with respect to sequence length and corpus size, but with widely varying constants.
Pattern-based extraction systems (e.g., [1]) apply each pattern to each candidate passage in a document, resulting
in complexity linear with the size the collection and the number of patterns used (which can be large for partially
supervised and unsupervised extraction systems). Complexity of rule-based extraction systems is difficult to
estimate, but is consistently reported to be high, as it usually takes seconds to process a medium-size document
(3K), resulting in estimates of years [27] required to process large document collections.

1Most preprocessing steps only need to be run once if we store the annotated text. Also, the preprocessing step is inherently
parallelizable. We discuss these issues in subsequent sections.
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Text Document

Lexical Analysis
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DISCOURSE and 
COLLECTION 
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Figure 1: Typical stages in the information extraction process.

3 Scanning Large Document Collections

A traditional information extraction approach is to scan every document in a given collection, possibly using
various forms of filtering to discard documents (or passages) as early as possible in the process. One approach
is to use a classifier or hand-crafted patterns. Only the documents that match these (presumably “cheap”) filters
are processed further. For example, a system for extracting information about disease outbreak events [16] uses
hand-crafted regular expressions to select documents to process further with the full features extraction system.
These filtering patterns are usually designed to have high recall (i.e., not to discard useful documents) while
ignoring a large fraction of the non-useful documents. In some settings (e.g., focused crawling), it is possible to
discard documents without processing the document text (e.g., by applying rules to the document URLs or links
pointing at the document) [5, 8]. Efficient text filtering (e.g., by using optimized regular expression matching
and even specialized hardware solutions) were reported for text filtering as early as 1993 [24], and could be
naturally adapted to work with information extraction.

A different approach is to use only extremely simple, “cheap” extraction patterns, and apply them to every
document in the collection [25]. This relies on the assumption that information in large text collections appears
redundantly, and at least some of the occurrences of a desired entity or relationship will match one of the
simple patterns. The authors describe experiments with extracting pairs of noun phrases for the is-a relations
(e.g., 〈“MCI WorldCom”, “phone company”〉). The system uses 15 simple lexical and part-of-speech patterns,
followed by a more expensive machine learning-based postprocessing step. The authors report requiring 10 days
to process a 15GB document collection (approximately 5 million documents) using this implementation, which
is still an order of magnitude slower than part-of-speech tagging. Interestingly, the reported accuracy of the
simple lexical pattern-based system is comparable to the accuracy of the much slower approach requiring full
syntactic parsing of each sentence.

The created annotations can be stored and re-used for all future extraction tasks that require such information
(e.g., locations of the named entities in the documents to be used for the relation extraction task). Hence, the
initial pre-processing effort would amortize if the annotations are general enough. Another example of such
preprocessing is indexing the words and the documents in which they occur, as typically done by general-
purpose text search engines. Next we describe two scalable information extraction architectures that make use
of such indexing.
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Figure 2: Querying generic search engines for scalable information extraction.

4 Exploiting General-Purpose Search Engines

Often, only a small fraction of the documents contain information that is relevant to the extraction task. Hence it
is not necessary for extraction completeness –or desirable from an efficiency viewpoint– to run the information
extraction system over every database document. Furthermore, if a document collection is the set of all web
pages indexed by a search engine such as Google, then it is virtually impossible to extract information from
every page. For these reasons, an intuitive approach is to zoom in on the promising documents, while ignoring
the rest. This approach was introduced in the QXtract system [2] for efficiently extracting relations from large
document collections.

The general QXtract architecture is outlined in Figure 2. Starting with a set of user-provided seed tuples for
the target relation, QXtract retrieves a small sample of documents, likely to be useful to the extraction system,
as well as other randomly chosen documents, likely to be useless to the extraction system. The information
extraction system is run over this sample set, producing as output a set of extracted tuples and the identifiers
of useful documents. The documents in the sample are thus labeled automatically as either positive or negative
examples, where the positive examples represent the documents in the sample from which the information
extraction system was able to produce tuples. These examples allow QXtract to derive queries targeted to
match –and retrieve– documents similar to the positive examples. These queries are used to retrieve a set
of promising documents from the database, to be returned as QXtract’s output and finally processed by the
information extraction system. The performance improvement can be substantial: QXtract allows a state-of-the-
art information extraction system to extract 48% of the tuples in the target relation when retrieving only 5% of
the documents in the collection, for an order of magnitude increase in efficiency at the expense of extraction
completeness. The QXtract approach is general in that any information extraction system could be plugged and
use QXtract as an interface to large collections, hidden web databases, or, in principle, the web at large.

More recently, Etzioni et. al introduced the KnowItAll system [14] for extracting concepts and relationships
from the web (e.g., the “is-a” relationship between noun phrases). KnowItAll uses a set of predefined generic
extraction rules (e.g., “NP1 such as NP2”, where NP stands for noun phrase, indicating that a string tagged as
NP2 in a document is an instance of a class named in NP1.). To retrieve candidate documents, KnowItAll auto-
matically generates queries by instantiating the general patterns with the target class (e.g., for the “cities” class, a
query would be “cities such as”) and submits these to a generic web search engine such as Google. The returned
documents are retrieved, parsed with part-of-speech tagger, and patterns applied following the general informa-
tion extraction framework of Section 2. As an interesting use of web search engines, KnowItAll estimates the
confidence of the extracted values by using web co-occurrence statistics via Google hit counts. Specifically,
KnowItAll uses a form of pointwise mutual information (PMI) between words and phrases estimated similarly
to Turneys PMI-IR algorithm [32]. PMI-IR estimates mutual information between the class name (e.g., “cities”)
and a proposed city instance (e.g., “Seattle”) by computing web hit counts of each phrase individually, as well
as the number of pages containing the phrase “cities such as Seattle”. Hence, for each candidate concept or
relation tuple, KnowItAll would issue at least three distinct web search queries (first to retrieve a document, and
then two more queries to compute the PMI-IR measure).
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In addition to improving the efficiency of extraction, a system that queries a generic search interface might
be adapted to extract relations from “hidden-web” databases only accessible via generic search interfaces [4, 18],
allowing a system to process relevant documents not otherwise reachable via crawling or scanning mechanisms.

While clearly more feasible than processing every document in the collection, both QXtract and KnowItAll
can still require days (or even weeks) to extract a large fraction of all relation tuples or concepts hidden in the
collection documents. This limitation is addressed by more recent systems in the KnowItAll family, as discussed
in the next section. Another shortcoming of both systems is retrieving thousands of results for each query (a
functionality rarely supported by generic search engines). By removing reliance on generic web search engines
and incorporating extraction-specific features at index time, it is possible to dramatically increase information
extraction efficiency and scalability, as we describe next.

5 Using Specialized Indexes and Search Engines

General-purpose search engines are designed for short keyword queries and for retrieving relatively few results
per query. In contrast, information extraction systems can submit sophisticated and specific queries and request
many or all query results. To better support information extraction, Cafarella et al. [7] introduced the Bindings
Engine (BE), which supports queries containing typed variables and some linguistic functions. For example,
in response to the query “Mayors such as ProperNoun(Head(NP))”, BE would return a list of proper nouns
that appear in that context. To accomplish this, BE indexes the neighborhood of words (Figure 3 adapted from
Cafarella et al. [7]).

...

...

...

docid0
pos

block#docs-1

neighbor
block0

neighbor
block1

neighbor
block#pos-1

“mayors” 5 A

6

pos
block1

B

2

E

54 450

<offset> 3 NPleft “Seattle” TERMleft “Seattle” TERMright “such”

“...Seattle mayors such as…"Document A

term #docs pos 
block0

docid#docs-1

# 
positions pos0 pos1 pos#pos-1

docid1

offset to 
block end

# 
neighbors neighbor0 str0 neighbor1 str1 neighbor#nbrs-1 str#nbrs-1

Figure 3: The BE engine neighborhood index.

The neighborhood index is similar to the inverted list index [31], but for each posting BE stores up to K
words immediately to the left and to the right of each term. Additionally, BE stores all part-of-speech labels
for each term (and, in principle, any other available semantic information) computed at index time. By using
this expanded index, a query such as “mayors such as”, which might be issued by a class extraction system
for extracting names of all mayors, will retrieve the postings list for the word “mayors” and then scan the list
returning all proper noun phrases that are preceded by the “such as” string. BE is well suited to extraction
patterns using exact phrases (e.g., DIPRE [5] and KnowItAll [14]). As reported by Cafarella et al. in [6], the
KnowItNow information extraction system and other systems in the KnowItAll family2 use the BE search engine
to quickly extract information from an indexed web snapshot of 90 million documents.

2Available at http://www.cs.washington.edu/research/knowitall/.
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A related approach has been used for extraction-based Question Answering (notably by Prager et al. [26]
and Chu et al. [10]), where a system retrieves short answers to natural language questions extracted at query time
from the text documents in the collection. During an indexing pass over the collection, the entities predicted to
be potential answers to questions are extracted and stored, and at query time only the documents (or passages)
containing an entity of appropriate type (e.g., person name) are retrieved for extracting candidate answers.
An intriguing new search engine was recently demonstrated by Resnik et al. [28] for indexing and searching
linguistic (e.g., syntactic) structures3 but it has not yet been formally evaluated for relation extraction or question
answering tasks.

Unfortunately, word neighborhood indexing may not be directly amenable for extraction patterns without
lexical items (e.g., patterns such as “Adjective ProperNoun(Head(NP))”), for patterns with only frequent words
in patterns (e.g., “〈Organization〉 in 〈Location〉” [1]) or for probabilistic extraction models (e.g., HMMs [23] or
CRFs [29]). Furthermore, extractors that rely on web page structures such as HTML lists (e.g., [11, 14]) still
have to retrieve the complete document and apply extractors as the original QXtract or KnowItAll system would.

More generally, annotations such as part-of-speech tags and sentence boundaries can be viewed as adding
partial structure to the text documents, which can then be represented in a semi-structured form (e.g., in XML
format), and indexed for fast querying (e.g., [20]). Preliminary question answering results over annotated and
indexed XML documents [21] indicate that with a rich schema and carefully constructed XPath queries it may
be possible to represent question answering and information extraction as a retrieval task. We explore this idea
further in Section 7.

6 Distributed Processing

So far we focused on algorithmic techniques for scaling up information extraction. Parallelization and distrib-
uted processing are attractive alternatives for processing extremely large collections, such as the billions of doc-
uments on the web. Information extraction is particularly amenable to parallelization, as the main information
extraction steps, (e.g., part-of-speech tagging and shallow syntactic parsing) operate over each document inde-
pendently (e.g., [13]). Hence, most parallel data mining and distributed processing architectures (e.g., Google’s
MapReduce [12]) might be easily adapted for information extraction over large collections.

Extracting information is only one of the steps in large scale web mining and extraction. Discovering useful
document sources [3, 19], crawling (retrieving documents), extracting and indexing relevant document features,
and other tasks are all required for a complete, enterprise-scale systems. IBM’s WebFountain [13, 17], an
influential end-to-end system, puts these steps together for information extraction and text mining from the
web. WebFountain retrieves, processes, extracts and indexes information from billions of documents on the
web and in local collections. The WebFountain approach includes both algorithmic and hardware solutions,
and uses a heavily distributed architecture with clusters of nodes devoted to crawling, extracting and indexing
web page content. WebFountain is a blackboard architecture that allows multiple annotators (i.e., extraction
systems) to store tags (e.g., named entities) or any other annotations with each document for further processing.
Unfortunately, a distributed architecture with hundreds of machines (WebFountain) or thousands of machines
(Google’s Map/Reduce) requires significant resources to create and maintain, which limits the applicability of
this approach. As we have shown previously, it is possible to perform scalable information extraction even with
modest hardware resources.

3Available at http://lse.umiacs.umd.edu:8080/.
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7 Opportunities and Challenges

We described four general approaches for scaling information extraction to large document collections. A tru-
ism stating that “there is no free lunch” applies. Current algorithmic techniques either trade off information
extraction accuracy and completeness for speed (e.g., Sections 3 and 4), or impose restrictions on the types of
extraction patterns supported (Section 5). Hence, choosing the appropriate approach is heavily dependent on the
application and use requirements.

One promising general approach that we mentioned earlier is to store the semantically annotated documents
(e.g., with part-of-speech or named entity tags) in semi-structured form (e.g., in XML). The annotated documents
could be indexed to speed up future information extraction runs. While many indexing and querying methods
for semi-structured data (e.g. [20]) have been developed in different contexts, these techniques have not been
adequately explored for information extraction and are a promising direction for research.

A dimension of information extraction scalability not addressed in this survey is a trade-off between domain
independence and extraction accuracy. While named entity extraction technology is relatively mature and is
generally accurate for common entity types (e.g., person and location names), domain-independent relation
and event extraction techniques are still error-prone, and are an active area of natural language processing and
text mining research. One interesting research direction is to apply probabilistic query processing techniques
(reviewed in [30]) to derive usable query answers from the noisy information extracted from text.

As we discussed, redundancy and variability in large document collections can mitigate the inherent diffi-
culty in interpreting natural language text. By operating over large collections, information extraction systems
can significantly improve both accuracy and coverage of the extracted information. For this, efficient techniques
for extracting information from such large document collections are crucial, and would greatly enhance our
ability to manage and exploit the available textual information.
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Abstract

Text mining studies in biology are often limited to thousands instead of millions of Medline records or
are very slow. However, with a modified search engine, many common text mining tasks can be done
rapidly. In fact, some information extraction and text categorization tasks can be achieved in seconds
or minutes even across tens of gigabytes of (previously indexed) text. In this paper, we present TLM, an
efficient implementation of a text analysis engine that uses a highly expressive query language. With this
language, users can create queries that quickly accomplish what previously required several different
custom-built systems to achieve.

1 Introduction

Text mining is our only hope to find all the literature references to specific facts, such as gene or protein inter-
actions. At present, it is still a hope and not fully a reality. Most text mining tools work for a small number of
abstracts, or more rarely full-text articles (e.g., [1]). Some do work for millions of articles but are relatively slow
(e.g., hours to days, [6]). Still other approaches have been designed to process millions of articles quickly, but
they can apparently lose considerable accuracy compared to slower methods (e.g., [11]).

The challenge then is to build tools that permit a wide variety of very rapid text mining across millions of
documents. This challenge is even more relevant when we consider that the next generation of text mining tools
will be expected to handle terabytes of full-text articles, not just gigabytes of abstracts. If we cannot rapidly
mine the text of Medline, how can we hope to handle the full articles?

Below, we describe a text analysis engine called TLM (Text and Language Mining) with a highly expressive
query language. TLM is a principle component of our integrated suite of tools called LitMiner ([9]). TLM
permits queries that can quickly accomplish what previously required several different custom-built systems to
achieve.

2 TLM: A Text Analysis Engine

How is text analysis different from search? On a search engine, users compose words into queries and expect
lists of documents in return. That is an important capability and many other tasks are made possible by search
engines. However, our text mining tasks often require a little more and would be easier with a slightly different
engine.

Copyright 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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A text analysis engine would let us compose queries out of words and other entities such as punctuation, tags,
part of speech, phrases, sentences, etc. For example, we might want all the occurrences of THA in parentheses:
’X(’ THA ’)X’ (the X is a wildcard character for punctuation). Instead, we might want to refer to any
occurrence of any verb: is <Verb> by, or might want to find sentences that contain two or more genes,
<Sentence> > (<Gene> .. <Gene>).

Second, a text analysis engine would return results of different types, including documents, but also sections,
sentences, phrases, terms, and words. For example, in asking for sentences that contain two genes, we may not
care which documents they come from. We just want the statements themselves so we can see which genes are
said to inhibit each other. In asking for three words before THA,* * * ’X(’ THA ’)X’, we do not want
to see the matching documents. We want to see the possible expansions for the acronym THA, such as Total Hip
Arthroplasty(374), tetrahydroacridine(25), or Tokai High Avoider(4).1

Third, a text analysis engine should permit rapid statistical analysis of the text pieces that are returned.
There is a wide range of possible analyses, including simple frequencies in documents or sentences and ranging
to more complex distributions.

2.1 Engine Design

TLM is a relatively mature implementation of a text search and analysis engine. Figure 1 shows one client
graphical user interface (GUI) that is connected to a remote installation of TLM. The figure illustrates the query
* * * ’X(’ THA ’)X’ and shows its output. TLM has many added conveniences for users and has been
optimized for many types of search, but its operation can be summarized by five basic ideas that are outlined
below. Although none of these ideas is completely new, some aspects are unusual or unique when compared
to search engines. Furthermore, the combination of the five ideas is new. That combination is essential for
supporting the above definition of text analysis.

The first and most fundamental idea behind TLM’s functionality is borrowed directly from search engines.
It is an inverted index of the positions of words (e.g., [2]). Uniquely in TLM, this idea is extended to include
strings of spaces and punctuation as well as words. Any document or collection of documents can be described
as a list of words (or punctuation) and their position of occurrence. For example, if we were indexing the current
paragraph, we would assign the position 1 to the word The, 2 to first, etc. All of these words and their positions
can now be organized as in a back-of-the-book index. Each word can be connected to a list of the positions in
which it appears. In TLM specifically, each word or collection of adjacent punctuation (called a separator) is
connected to a list of the positions of that term in documents. In a collection of multiple documents, the position
could include the document number or could ignore it (e.g., [5]; [3]). In our collection TLMtest, the word
tumourogenic appears 10 times in 9 Medline abstracts. The index stores the word position of each of those
occurrences. Similarly, the separator ’,,,, ’ (four commas and a space) appears once, and that position is
stored.

Once we know the positions of each word and separator, we can ask how often two particular words occur
near each other. We do this simply by comparing the lists of positions and checking certain conditions. For
example, we might want to find all the (up to) four word phrases that contain cancers and tumours. Our search
engine can retrieve the lists of word positions for cancers and for tumours and can iterate through those lists
looking for two, three, or four word phrases that contain both. For example, suppose cancers appears as the 10th
and 45th word of a document and tumours appears as the 20th and 43rd word of the same document. Scanning

1All example queries described in this paper were run against the TLMTest collection. For these examples, TLM was running
on a 2.4 GHz AMD Opteron. The TLMTest collection is a set of 15,176,580 Medline records. A collection of important fields was
included (eg., title, abstract, MeSH terms, etc.) resulting in approximately 22 Gigabytes of text. This text was indexed by TLM in
approximately 18 hours. An additional 24.5 hours was used to create a list of potentially useful tags such as <Sentence>, <Noun>,
<ContainsDigit>. The algorithms used for division into sentences and the part-of-speech tagging are very simple and will be
replaced in future uses of TLMTest.
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Figure 1: A screenshot of a GUI client to TLM. The figure show the overall frequency for the query, the overall
number of documents that contain the query, and the time to run the query. As well, in the center frame, the
results are organized in a frequency distribution.

those word position lists reveals that the range of positions from the 43rd word to the 45th word describes
a phrase containing both cancers and tumours. In the TLMTest collection, we find 128 occurrences in 120
documents. One of the resulting phrases is tumours, including cancers, which appears twice.

The second idea is that, unlike most search engines, TLM returns parts of documents. Usually, we don’t
want to see the whole document and only want a snippet, like Google’s several word summary that appears
under every result, or a passage (e.g., [8]). TLM does this by returning a range of two positions, say the position
of the word ’tumours’ and the position of the nearby word ’cancers’ (cf., [3]). If they appear as the 43rd and
45th words respectively, the range is from 43 to 45. All query operations process these ranges of word positions.

The use of ranges leads directly to the third idea, that lists of ranges can be given a tag name. This idea is
similar to macros or variables in some search engines, but its simple syntax is unique to TLM. For example,
all the titles in a collection of documents can be described as a list of word position ranges. If that list is given
the name <Title> or <TI>, the user can easily refer to the list of ranges in later queries. These special tags
could be based on XML tags that actually appear in the text or can be defined by the user during the creation of
queries. TLM stores these tags in an inverted index of ranges, just like the inverted index of word and separator
positions.

The fourth fundamental idea is that the result of a query can be statistical information rather than just a simple
list of discovered documents. This is a common text mining activity that is unique as part of a search engine.
The simplest form of such statistical information is the frequency and document frequency of a query. For
example, the query mdm2/i | hMDM2 | mouse double minute 2 matches 7,811 words or phrases in
the TLMTest. These matches occur in 6,248 sentences, and these sentences occur in 1,769 documents. A second
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useful form of statistical output is a frequency distribution of the distinct matches to a query. As an example,
the query, blood near growth near vessel*, is a request for phrases that have the word blood near
(within 10 words of) the word growth which together are near any word beginning with the six letters vessel.
This would tell us that there are 280 occurrences of blood vessel growth, 90 occurrences of growth of new blood
vessels, 52 of growth of blood vessels, 6 of growth of new capillary blood vessels, etc.

A fifth fundamental idea is that query speed is more important than conserving disk space. The availability
of low cost massive storage, allows us to store multiple indexes that each accelerate different types of queries.
Many search engines have indexes based on compression technology (e.g., [13]) and advertise that they require
disk space that is only a small percentage of the original text size. TLM was designed to make many aspects of
text mining fast. For example, there is a case-sensitive inverted index and a case-insensitive conversion index.
These two indexes allow the user to specify specific capitalization patterns. The query hMDM2 is a request for
matches to exactly that term. In contrast, the query hmdm2/i, is a request for matches to hMDM2, HMDM2,
hmdm2, hMdm2, etc. In addition, many common queries are pre-computed with results stored in a file. As a
result of all this, the indexing file system can be four times the size of the original text (or more). If any part of
that is removed, some type of common query would be slower to calculate.

All that follows and all that we have tried as part of LitMiner should be possible given a text analysis engine
implementing these five ideas. The engine should have an inverted index of words, separators, and tag ranges. It
should return parts of documents as ranges of word positions that match the query and should permit statistical
post processing before giving the user the answer. Finally, it should prioritize fast text mining over conserving
disk space.

2.2 A summary of the query language.

We have already presented a few example queries, with only a simple definition of the query language. More
example queries are shown in Table 1. From these examples, it is obvious that the enhanced expressive power of
TLM is in exchange for increased complexity. Most internet users would prefer Google’s simple syntax to these
complex queries. However, in many cases, the simplicity can be restored without losing the power, by using
interfaces such as LitMiner that bury the query complexity behind GUI buttons.

In general, a TLM query is composed of words, tags, or separators connected by pairwise operators. All
operators describe transformations of two lists of word position ranges into a resulting list of word position
ranges. There are four major operators in TLM, as well as a syntax for tag definitions.

interact* <Adverb> All adverbs that appear immediately after the word stem
’interact’.

<NounPhrase> > (<TI> > cancer) All noun phrases that appear in titles that contain the
word ’cancer’.

interact* near protein* All passages that have the word stem interact near
(within 10 words) of the word stem protein.

Table 1: Some example queries for TLM. See section 2.2 for an interpretation of the query language’s operators.

The first major operator, and the one with the highest precedence is adjacency. When two words are sepa-
rated by a space in a query, open heart, it forms a request for phrases that contain the first word followed
immediately by the second word.

The second major operator is the ‘or’ operator. It simply merges two lists of word ranges. For example,
mdm2 | MDM2 is a request for all the word position ranges that contain just the word mdm2 and all the word
ranges that contain just the word MDM2. Then it merges those lists of word ranges.
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The third major operator restricts answers to have two nearby parts. There are actually two forms of this
operator, near and ... A query like word1 near word2 is a request for all the word position ranges in
which the two words appear within 10 words of each other. Similarly, a query could request that the two words
be nearby and in order, word1 .. word2. It is a request for all the ranges in which the two words appear
within 10 words of each other and word1 appears first.

Both the near and .. operators can be modified with specified distances. The simplest modification is to
add ’/’ followed by a number. The modified operation near/2 means that two ranges must be near, within two
words. Similarly, ../100 means that the two ranges must be in order and within 100 words. The distance can
be further modified by specifying a minimum distance as well. For example, near{4,10} means that the two
ranges must be at least four words apart and up to 10 words apart.

The fourth major operator tests containment and was inspired by [3]. Considering two word position ranges,
it is possible for them to overlap, for one to contain the other, or for them to be non-overlapping. In TLM,
queries can force all answers to contain at least one example of another range. For example, the query <TI>
> geopolitical is a request for word ranges that are whole titles, but only the ones that contain the word
geopolitical. This query could be reversed and be a request for geopolitical < <TI>, ranges of
length 1 with the word ’geopolitical’, but only those occurrences inside titles.

The common search engine operators and and not were purposely omitted from this description, because
they are not flexible enough for text analysis. In most query languages, and is a request for documents con-
taining both of two words (or boolean expressions). In TLM, a query such as <DOC> > protein > gene
is also a request for documents that contain both words. This approach is more flexible than the operator and,
because it also applies to smaller document segments such as abstracts, or sentences, or phrases. For example,
<TI> > protein > gene. Similarly, not typically is a request for documents that do not contain a partic-
ular word. In TLM, a query such as <DOC> /> protein would have the same effect, while also permitting
<Sentence> /> protein.

The TLM query language also permits the definition of variables to hold partial query results. Multiple
variable assignments can appear in a single query and the variable value is available even inside the same query
but to the right of the first appearance. For example, the query ($det = (the|a|an)) .. <$det> is
a request for two determiners that appear near each other. As in this example, a variable name, which always
begins with a $, is assigned the results of a query using an = operator. That variable then becomes a tag name
for future queries by simply enclosing the variable name within < >.

3 TLM for Text Mining

TLM is a step closer to what users need. TLM queries have greater expressive power compared to most search
engines, because a wider range of textual patterns can be specified. In exchange for much more complex queries,
this greater expressive power allows queries to better correspond to real world entities. In biological (or any)
text mining, there is a gap between a referent, such as a gene, and how we refer to that entity, i.e., the gene. In
some sense, all queries are 100% accurate because they return exactly what they are supposed to do. Practically,
though, they rarely find all and only what we want them to. TLM is not perfect, but it is a step beyond many
search engines.

In this section, we will consider a few examples of how TLM can be useful for biological text mining. In
none of these illustrations do we prove that TLM results are more accurate than previous results, only that they
are similar. The point of this exercise is that TLM can do relevant text mining and can do it rapidly. We will
leave it to future work to discover the best ways to use TLM to produce the highest accuracy, precision, and
recall.
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3.1 MedMiner

The goals of using TLM for mining the biological literature match many of those for MedMiner ([12]). Med-
Miner was designed to access ‘extrinsic’ information about genes. It was composed of three key components:
internet-based querying of multiple databases, text filtering, and a carefully designed user interface. TLM could
address the querying and text filtering. Our LitMiner system is our attempt to create a carefully designed inter-
face.

In illustrating the value of their system, the authors considered a specific biological relationship (inhibition)
between two genes, MDM2 and P53. They argued for their system on the basis of the completeness of the result,
the amount of irrelevant information presented, the query complexity, and the running time.

3.1.1 More complete and fewer irrelevant sentences

TLM can be used to further increase the completeness of the results. As the authors noted, MedMiner will
“miss relevant concepts if they are not represented in the keywords”. The interactive use of TLM with frequency
distributions can partially address this problem.

The gene, MDM2, could be represented by any number of synonyms. A simple string of queries on TLM can
tell us new terms to add. Each of the following queries has results that suggest new synonyms. The first query
is a request for four words followed by MDM2. This query suggests that the two most frequent expansions
of MDM2 are murine double minute 2 and mouse double minute 2. The third column shows the accepted
suggestions.

Query time Suggested synonyms

* * * * MDM2 330 ms murine double minute 2 |
mouse double minute 2

MDM2*/i | MDM*/i (2 | ii/i) 1120 ms MDM2 | mdm2 | Mdm2 | mdm 2 |
MDM 2 | Mdm 2

hMDM2*/i | hMDM*/i 2 200 ms hMDM2 | hmdm2 | hMdm2

In a few seconds, we have a better query than simply MDM2. If we include the synonyms from Entrez Gene
[10] and truncate important words, we produce a more complex query for MDM2 (Table 2). This query took
about 30 seconds to create and about 9.7 s to run.

These queries can yield more complete results. In addition, like MedMiner, TLM’s results for inhibition
displays the phrase or the sentence that indicates the relationship rather than merely identifying the document.
It is also possible to highlight the gene names and inhibition phrases, because TLM returns the positions of
matches.

3.1.2 Query complexity and running time

As shown in Table 2, the TLM queries created for MDM2 and P53 are rather complex as is the query for
identifying some sort of relationship between genes. However, TLM provides user defined tags which greatly
simplifies later queries. After the first three complex queries in the table have been submitted, the very simple
fourth query can be submitted to ask for all phrases in Medline where MDM2 and P53 are said to interact.

The MedMiner time for a similar inhibition query was approximately 60 s and the equivalent PubMed query
was 30 s when that paper was first written. It is not easy to compare these times with TLM. As a preparatory
step, TLM requires between 2 and 60 s to perform each of the individual gene queries like those shown in Table
2. In addition, it requires approximately 6 minutes to process the interaction verb query in row 3 of Table 2.
However, after that preparation, requests between arbitrary pairs of genes require an average of 4.8 s. This
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Run time Frequency Query

9.7 s 11,010 $mdm2 = MDM2/i | MDM/i 2 | HDM2/i | HDM/i 2 |
MGC71221/i | P53/i bind*/i protei*/i | Mouse/i
double*/i minute*/i 2 | murine/i double*/i minute*/i
2 | hMDM2/i

1.4 s 195,159 $p53 = tp53/i | tp/i 53 | Cys51Stop/i | TRP/i 53 |
TRP53/i | p53/i | tp53s/i | Cys51Stops/i | TRP53s/i |
p53s/i

372 s 15,664,040 $Iverb = (inhibit*/i | block*/i | reduc*/i | decreas*/i
| acetylat*/i | activat*/i | target*/i | suppress*/i |
stabiliz*/i | regulat*/i | phosphorylat*/i | modulat*/i
| is/i ../2 conjugat*/i ../2 to/i | interact*/ i|
inhibit*/i | destabiliz*/i | bind*/i | bound/i |
associate*/i ../2 with/i)

4.8 s 719 <$mdm2> n/5 <$p53> > <$Iverb>

Table 2: The queries (and times) needed to find the passages describing the interaction between P53 and MDM2)

suggests a scheme where gene queries and interaction verb queries are updated nightly, allowing users to get
more complete pairwise responses in only a few seconds.

Overall, TLM meets many of the same goals as MedMiner but also provides improved performance (assum-
ing some pre-processing) and a fast interactive solution to the problem of missing relevant concepts.

3.2 Finding interactions between sets of proteins

Blaschke et al. ([1]) went beyond a single pair of genes and described a text mining system that scanned 6728
abstracts looking for the pattern <Protein> .. <InteractionVerb> .. <Protein>, that is two
proteins separated by a verb (or nominalization) that means some form of interaction. In their first example, they
scanned for six different proteins separated by several different interaction patterns. The six proteins were, pell,
dorsal, toll, tube, spatzle, and cactus.

Their scan of abstracts rediscovered nine known pairwise interactions between the proteins. The authors
noted that frequency of the mention of a relationship can help determine which interactions to predict.

As an illustration, we attacked this same problem with TLM. Table 3 shows the queries created to repre-
sent parts of this task and their time to run. Each query was assigned to a variable for later use. The vari-
able called $Protein is a list of capitalized and lowercase protein names. That query was combined with
$InteractionVerb to find patterns of the type sought in the original paper, protein .. verb ..
protein. In a total time of about 75 seconds, 15 million abstracts were searched and TLM rediscovered the
interactions discovered in the original paper. The time for each component query is shown in Table 3.

The query in the fourth row resulted in 57 total phrases, 55 of which were unique. Of all fifteen automatically
detected interactions reported in [1], the 57 results contain at least one example interaction for each. Six of the
results identified the same relationship verb. TLM did not find exactly the same results, because it was searching
all of Medline, it permitted matches across sentence boundaries, and it was only looking for results of length
five words or fewer.

Using TLM to follow Blaschke et al.’s example required a few minutes and returned similar results with very
few irrelevant phrases. In addition, these results included suggestions of the two known interactions between
Pelle and Cactus and between Dorsal and Cactus that the earlier technique missed (”Cactus inhibits Dorsal”,
”Pelle proteins Phosphorylation of Cactus”). The same 57 TLM results also reveal that there is a protein called
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Run time Frequency Query

1.8 s 233,899 $Proteins = Pelle | Dorsal | Toll | Tube | Spatzle
| Cactus | pelle | dorsal | toll | tube | spatzle |
cactus

66.7 s 11,671,613 $InteractionVerb = acetylat*/i | activat*/i |
target*/i | suppress*/i | stabiliz*/i | regulat*/i |
phosphorylat*/i | modulat*/i | is/i ../2 conjugat*/i
../2 to/i | interact*/i | inhibit*/i | destabiliz*/i |
bind*/i | bound/i | associate*/i ../2 with/i

5.8 s 57 <$Proteins> ../5 <$Proteins> > <$InteractionVerb>

Table 3: The queries (and times) needed to find interactions among Pelle, Dorsal, Toll, Tube, Spatzle, and
Cactus.

”Twist” that interacts with Dorsal and another related protein called ”Kra” (”Dorsal-interaction proteins (Twist
and Cactus)”, ”Kra associates with Pelle and Tube”).

We repeated this exercise for the authors’ larger protein list for cell cycle control in Drosophila. We con-
structed a single query ($CellCycleProtein) for the 91 proteins included in ([1]), using case insensitive
searches. This created many irrelevant matches where both proteins were the same. In addition, many pairs of
proteins were not matched because of intervening matches. To address these problems, we created one query for
each of the protein names. This meant finding, for example, ranges containing Myb followed by an interaction
verb, then by a cell cycle protein other than Myb.

For this second exercise, we reused the definition for interaction verbs that must occur between each pair.
The TLM queries, including the redefinition of the variables CellCycleProtein and InteractionVerb, took a total
of 6 minutes, 32 seconds.

The original paper ([1]) rediscovered 28 well-known interactions, 20 possible interactions, and missed one
well-known interaction. In the list of 610 resulting phrases from TLM, we also found evidence for 27 of the
28 known interactions and all but five of the possible interactions. The main interaction missed by TLM was
between cdc2 and twine. However, TLM did detect the interaction between cdk and p21 that the original paper
missed.

TLM clearly supports the extraction of significant facts from large text collections. Specific entities can
be identified and relationships between those entities can be correctly discovered. TLM can achieve these and
similar tasks in minutes. This is fast enough to allow a tolerable interaction between the user and the text.

4 Text categorization

Another important text mining application is text categorization. Researchers have applied text categorization
to label Medline abstracts as relevant or not to some task (e.g., [6]; [11]). For example, in PreBIND, text
categorization was used to select papers about protein-protein interactions for later human curation.

In principle, this is similar to search engine retrieval. However, text categorization uses additional computa-
tion (slower) to improve the precision and recall (and accuracy) as compared to the results of search. A search
on Google might return 100 results with only 10 of them being relevant. In that search, the precision would
be 10%. If the search results completely missed 190 other relevant documents, the recall of that search would
be 5%. In contrast, text categorization often results in 65% recall and precision ([11]) or even 90% recall and
precision ([6]).

The other difference with Google, besides precision and recall, is the time necessary to produce the results.
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Google often reports millisecond response time whereas Donaldson et al. [6] quotes a time in days to apply a
text categorization model to 12 million Medline records. With other techniques ([11]) text categorization like
levels of accuracy can be achieved much more quickly. Even in that second case, though, the authors suggest
using a cluster of several processors to achieve fast learning and application of that learning.

TLM can be used to achieve high recall and precision without requiring days or multiple processors. To
illustrate this potential for categorization, we recreated the experiment described in [6]. For this experiment, we
used the following technique. From the training examples of protein-protein interaction abstracts, we extracted
two general types of features: ”A appears in the document”, ”A near/5 B” In those features, A and B refer to
one or two word phrases. Among those thousands of possible features, we selected the 5000 that individually
were most diagnostic in determining whether a document was a positive example or a negative one. As in
the previous study, we used information gain to select those features. Then we applied Ripper ([4]) to learn a
boolean expression of the features that would select the positive documents while excluding the negative ones.
These boolean expressions were translated into acceptable TLM queries allowing rapid application across all of
Medline.

We divided the development set into 10 folds and performed cross-validation, each time training on 90%
and testing on the remaining 10%. As a result, we found a precision of 89% and a recall of 86%. Both of
these numbers are lower than, but similar to, the results reported in [6]. From past studies, we can expect this
new technique to always under-perform Support Vector Machines (e.g., [7]; [14]). However, we expect the new
technique to always outperform techniques such as those in [11] again based on performance in those same past
studies.

In addition to the high precision and recall, TLM plus Ripper was fast. In our illustration, a single query
that resulted from applying Ripper required an average of 85.25 s when submitted to TLM. This is much shorter
than the hours necessary to apply an SVM. As well, it is much faster than would be possible with any non-index
based technique. In fact, in contrast to the suggestions in [11], we are able to achieve reasonable performance
with a single CPU and several users.

As for the case of identifying specific interactions, we have only shown that TLM can be used to achieve
similar results quickly. More work has to be done to devise and evaluate a scheme to create consistently high
recall and precision while still requiring only a few minutes.

5 Discussion

A text analysis engine is a necessary tool for the future of text mining in biology and other fields. In contrast
to search engines, in a text analysis engine, queries are composed of not just words, the results are not just
documents, and the final answer is not just a list. Queries can contain punctuation, tags, variables, etc. Results
can be documents, sections, topic-based passages, paragraphs, sentences, phrases, etc. The final answers can be
a list or could be multiple levels of frequency counts or a frequency distribution.

One example of such a text analysis engine is TLM. It has an inverted index of words, separators, and tag
ranges. It returns parts of documents represented by ranges of word positions that match the query and permits
statistical processing of the results. As well, it favours speed over conserving disk space.

In our illustrations, we have taken classic examples of text mining in biology and shown that TLM can match
the reported performance and can do so very quickly. We have not shown TLM’s results to be conclusively better
or worse than earlier results, only that they are similar and fast.
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Abstract

Publication searching based on keywords provided by users is traditional in digital libraries. While
useful in many circumstances, the success of locating related publications via keyword-based searching
paradigm is influenced by how users choose their keywords. Example-based searching, where user
provides an example publication to locate similar publications, is also becoming commonplace in digital
libraries.

Existing publication similarity measures, needed for example-based searching, fall into two classes,
namely, text-based similarity measures from Information Retrieval, and citation-based similarity mea-
sures based on bibliographic coupling and/or co-citation.

In this paper, we list a number of publication similarity measures, and extend and evaluate them
in terms of their accuracy, separability, and independence. For evaluation, we use the ACM SIGMOD
Anthology, a digital library of about 15,000 publications.

1 Introduction

Searching publications based on keywords is common in digital libraries. While useful in many circumstances,
the success of locating related publications based on keywords depends on the choice of keywords [6]. Example-
based searching, i.e., locating similar/related publications to a given publication is also becoming a common
search query type in digital libraries [13]. In this work, we deal with the quality of publication similarity mea-
sures used for locating related- or similar-publications of a given publication. Existing publication similarity
measures fall into two classes: (i) text-based similarity measures from the field of Information Retrieval (IR),
such as the cosine similarity and the TF-IDF (term frequency-inverse domain frequency) model [14], or (ii)
citation-based similarity measures based on bibliographic coupling (i.e., common citations between two publi-
cations) [8], co-citation (i.e., common citers of two publications) [15] or author-coupling (i.e., common authors
between two publications). In this paper, we summarize the existing publication similarity measures, and ex-
tend and evaluate them in terms of their accuracy, separability, and independence. For evaluation, we use the

Copyright 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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ACM SIGMOD Anthology [1], referred to as AnthP here, a digital library of about 15,000 publications in data
management.

Text-based similarity measures are based on information retrieval methodologies [14, 5]. As an example, us-
ing the vector space model of IR and the TF-IDF weighting scheme [14], the similarity between two publications
may be measured by using Cosine, Jaccard, Dice or other document measures [10].

CiteSeer [2] is a literature search system for searching (presently) about 730,000 computer science and bioin-
formatics publications, and uses three document similarity measures, namely, word vectors, LikeIt string dis-
tance, and the Common Citation Inverse Document Frequency [7]. Google Scholar, Google scholarly literature
search engine [3], does not provide publication similarity functions which are needed to answer example-based
queries where the user provides an example publication and asks for similar publications.

By evaluating ”multiple levels” of paper similarities based on bibliographic-coupling, co-citation and author-
coupling, we make the following observations:
(a) Similarity value distribution curves are similar within the same group of similarity measures, i.e., bibliographic-
coupling-based, co-citation-based, and author-coupling-based measures,
(b) Citation-based and author-coupling-based similarity measures are more separable than bibliographic-coupling-
based measures,
(c) Citation-based and author-coupling-based similarity measures are all highly correlated. This phenomena is
due to the citation and coauthorship behavior in the literature [11].
(d) Text-based similarity measures show low overlapping with citation-based and with author-coupling-based
measures. Therefore, providing two sets of similarity scores, one text-based and another based on citation and/or
author-coupling may prove to be a useful practice.

This paper is organized as follows. In section 2, we list and extend a number of publication similarity
measures. In section 3, we evaluate the proposed similarity measures. Section 4 concludes.

2 Similarity Measures between Two Publications

2.1 Text-Based Similarities

The vector space model of text documents is used to evaluate title, abstract, index terms, and body similarities
between two papers [14]. Consider a vocabulary T of atomic terms t that appear in each document. A document
is represented as a vector of real numbers v ∈ R|T |, where each element corresponds to a term. Let vt denote
an element of v that corresponds to the term t, t ∈ T . The value of vt is related to the importance of t in
the document represented by v. Using the Term Frequency-Inverse Document Frequency (TF-IDF) weighting
scheme [14], vt is defined as

vt = log(TFv,t + 1) ∗ log(IDFt)

where TFv,t is the number of times that term t occurs in the document represented by v, IDFt = N/nt, N
is the total number of documents in the database, and nt is the total number of documents in the database that
contain the term t.

The cosine similarity between two documents with vectors v and w is computed as

cosine(v,w) = (
∑|T |

i=1 f(vi).f(wi))/(
∑|T |

i=1 f(vi)2.
∑|T |

i=1 f(wi)2)

where f() is a damping function, which is either the square-root or the logarithm function. Other similarity
functions include Dice and Jaccard measures [10] where both change the normalization factor in the denominator
to account for different characteristics of the data. As a preprocessing step, one needs to first remove the
stopwords from the terms of a document, and then use the Porter’s algorithm [12] to stem the terms.
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2.2 Citation-Based Similarities

The citation-based similarity between two publications can be computed using (a) bibliographic coupling: com-
mon citations between the two publications [8], and (b) co-citation: common citers to the two publications [15].
One can then define citation-based similarity between two publications as a weighted sum of the two. In this
section, we discuss various ways of computing bibliographic coupling and co-citation.

2.2.1 Bibliographic Coupling with Reachability Analysis

The bibliographic coupling-based similarity between papers PQ and PX , Simbib(PQ, PX), can be defined as

Simbib1(PQ, PX ) = (common citations count between PQ and PX)/MaxB.

where MaxB is the maximum number of common citations between any two publications in AnthP . One
problem with this definition is that it assumes that each common citation contributes to the reference similarity
equally, and ignores the effects of publications that are cornerstone works leading to significant research in the
field. A cornerstone publication is cited by all the publications that discuss an issue related to the field, and its
citation by two publications carries a lesser significance. Hence it is quite possible for two publications about
two unrelated topics to cite the same cornerstone publication.

To reduce the effect of common citations to cornerstone works, we define a new bibliographic coupling
measure where each common citation contributes at a different level depending on the extent to which it is ”in-
fluential”. Assume that we assign importance scores to publications using the well-known PageRank algorithm
[4]. PageRank scores are computed recursively using the formula Pi+1 = (1 − d)MT Pi + E where Pi+1 and
Pi are the current and next iteration PageRank vectors respectively, citation matrix C is the adjacency matrix of
a graph with papers representing nodes, and citation relationships between papers representing edges, M is a
matrix derived from C by normalizing all row-sums in C to 1, and, d is the ”future citation probability” defined
as follows. Given (a) an author A writing a new paper and citing paper u which in turn cites paper v, and (b)
w, a randomly selected paper in AnthP , the parameter d, which we choose to be low, represents the probability
that A will cite w, and (1 − d) is the probability that A will cite v. C is of size N × N , where N is the total
number of papers in the system. To guarantee that the PageRank algorithm converges, a hidden link, represented
by the user-defined parameter E, is assumed to exist between each pair of graph nodes. A choice for E is simply
E1 = d. Another choice, used in [4], is E2 = d/N [1N ].Pi where 1N is a vector of N ones. A highly important
publication is cited by a large set of publications, and therefore, cannot provide an informative measure. On the
other hand, if two publications cite a publication with a relatively low importance score, this citation informa-
tion provides more clues toward the similarity of the two publications. Therefore, we assign weights to common
citations, which are inversely proportional to their (importance) scores as follows.

Simbib2−L1(PQ, PX) =
∑

Pi∈SQX
(1 − PScore(Pi))/MaxW

where SQX is the set of common citations between PQ and PX , PScore(Pi) is the PageRank-based score of
paper Pi. MaxW is the maximum

∑
Pi∈SQX

(1 − PScore(Pi)) for any two publications in AnthP.
Another extension to bibliographic coupling similarity is to incorporate the notion of citations iteratively,

which we refer to as reachability analysis. The formula of Simbib2−L1 can be considered as the firstlevel
(level-1) evaluation of a given citation information. We can also make use of second− level and third− level
citation information. Due to efficiency considerations, next we consider only the most basic reachability analysis
cases. Normally if a publication is cited by only one of the publications (i.e., either PQ or PX , but not both)
then this publication is not considered in Simbib2−L1. Nevertheless, by following the citation information one
more level, we may obtain additional information. For instance, assume that publication Pi is cited by PQ, but
not cited by PX . It is possible that, at one level below, Pi may be cited by one of the publications, say Pj , which
is in turn cited by PX , as illustrated in Figure 1(a).
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Note that second-level common citations can be used to strengthen common citation information of pub-
lications PQ and PX . Assume that Pi is cited by both PQ and PX . This common citation may lead to more
similarity clues such that Pi might cite a publication Pk which is cited by PQ, PX or both, as illustrated in Figure
1(b). Finally, third level common citations can be considered as common citations for publications PQ and PX

which is illustrated in Figure 1(c).

Figure 1: Illustration of citation networks (a) one level (b) two levels (c) three levels

We do not consider higher levels of co-citation information since, at each new level, publications get more
diverse in terms of their contents, and their citations become less significant.

2.2.2 Co-citation Similarity with Reachability Analysis

As in multi-level bibliographic coupling, we can apply the same one, two, or three-level co-citation similarity
in a similar manner. Different co-citation cases are illustrated in Figure 2, and the corresponding co-citation
definitions are given next. One-level co-citation similarity between papers PQ and PX is defined as

Figure 2: Illustration of three levels of co-citation similarity.

Simco−cit1 = |CQ ∪ CX |/MaxN

where CQ, CX are the set of publications each of which cites PQ and PX , respectively and MaxN is the
maximum number of common citers between any pair of publications in the AnthP . Once again, assume that
we use a paper scoring algorithm, such as PageRank, to assign importance scores to publications. Then, if a
publication citing PQ or PX is a hub (e.g., a survey paper) [9], then it will refer to many publications. To reduce
the effects of hubs, we use

Simco−cit2−L1 =
∑

Pi∈SQX
(1 − PScore(Pi))/MaxC

where SQX is the set of publications that co-cite PQ and PX , PScore(Pi) is the importance score of co-citer Pi,
MaxC is the maximum

∑
Pi∈SQX

(1 − PScore(Pi)) value of any pair of publications in AnthP .
If publications PQ and PX are cited together by more than one publication, then we can weigh the con-

tribution of each citing publication by its ”hub score” of HITS [9]. Here we use the hub score of the citing
publication because this relationship represents an outgoing link from the citing publication to PQ and PX . For
outgoing links, in Kleinberg’s model [9], the hub score of the entity determines the strength of the outgoing
link. Therefore if the citing publication is a good hub with a relatively high hub score then it contributes more
than other citing publications rather than each citing publication contributing equally. Thus, we have yet another
co-citation-based function:
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Simco−cit−Hub = (
∑

Pi∈SQX
(1 − PHubScore(Pi)))/MaxCh

where PHubScore(Pi) is the hub score of publication Pi, and MaxCh is the maximum∑
Pi∈SQX

(1 − PHubScore(Pi)) value between any pair of publications in AnthP.

2.3 Author-Coupling-Based Similarities

We compute the author similarity between two publications directly via the number of common authors between
the two publications (referred to as the Level-0-author overlap SimAOC−L0) or indirectly via co-authorship in
other publications, e.g., two different authors, each of different publications PQ and PX , are co-authors in a
third publication PW (referred to here as the Level-1-author-overlap SimAOC−L1). We then use the following
formula to compute the author similarity between publications PQ and PX :

SimAuthor(PQ, PX ) = WL0 ∗ SimAOC−L0(PQ, PX ) + (1 − WL0) ∗ SimAOC−L1(PQ, PX)

where 0 ≤ WL0 ≤ 1 and

SimAOC−L0(PQ, PX) = |AQ ∪ AX |/MaxA0
SimAOC−L1(PQ, PX) = (1/MaxA1)

∑
(i∈AQ)∧(j∈AX) |(Si − {PQ}) ∪ (Sj − {PX})|

where AQ and AX are the sets of authors of PQ and PX , respectively. Si and Sj each is the set of papers written
by authors i and j, respectively, where i ∈ AQ and j ∈ AX . MaxA0 and MaxA1 are the maximum numbers
of level 0 (L0) and level 1 (L1) co-author overlaps, respectively, of any two publications in AnthP.

Next we assume that we have importance scores computed for authors. As an example, we may compute an
author importance score as the average of importance scores assigned to the author’s perhaps top-k publications.
Then, as another variant, we can also consider using a different mechanism so that each shared author contributes
to the similarity of publications in different proportions, depending on his/her author importance scores. This
is based on the assumption that the works of important authors share a common thread. As an example, we
produce a higher similarity score for two publications which share one author with a high importance score in
comparison with two publications which share one author with a low ranking. On the other hand, in practice,
with some exceptions, well-known authors are usually the ones who publish many high quality publications.
Moreover, due to their prolificacy, it is not uncommon for these authors to publish on relatively different topics.
Therefore we use a weighing mechanism which leads to author weights that are inversely proportional to their
importance scores. In this way, the information that two publications share a less important author implies more
towards the similarity of the publications in comparison to the case that these publications share an author with
a higher importance score. Thus, we define the Level-0 and level-1 author-overlap involving author weighting
SimAOW−L0 and SimAOW−L1 as follows

SimAOW−L0(PQ, PX) =
∑

ai∈AQX
(1 − AScore(ai))/MaxA0

SimAOW−L1(PQ, PX) =
(1/MaxA1)

∑
(i∈AQ)∧(j∈AX)(1 − AScore(ai))(1 − AScore(aj))|(Si − {PQ}) ∪ (Sj − {PX})|

where AQ and AX are the sets of authors of publications PQ and PX , respectively, AQX is the set of common
authors between PQ and PX . MaxA0 and MaxA1 are the maximum numbers of level 0 (L0) and level 1 (L1)
co-author overlaps, respectively, of any two publications in AnthP. In our experiments, we compute the score
AScore(a) of author a as the average score of most important K papers of a, where K is 5.
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Figure 3: AnthP statistics

3 Empirical Evaluation of Publication Similarity Measures

3.1 Experimental Setup

For each publication in AnthP , we extracted titles, authors, publication venues, publication year information,
and citations. The final experimental dataset included (a) 106 conferences, journals, and books, (b) 14,891
publications, and (c) 13,208 authors. AnthP citation refers to a citation from any publication in the AnthP set
to a publication in the same set. DBLP citation refers to a citation from a publication in AnthP to a publication
P outside of AnthP, but within DBLP. External citation of publication P is a citation from publication P to a
publication outside of AnthP and DBLP.

Next we present AnthP statistics. The average number of citations in an AnthP publication is 20. The
average number of AnthP and DBLP citations in an AnthP publication is 4.289. The average AnthP citation
count per AnthP publication is 2.066. Thus, the average citation reduction due to DBLP citation removal is
48.2%. Figure 3(a) displays the citation count distribution of AnthP publications over years, Notice that the
most recent publications are not cited yet, which means that their scores will be very low even though we do
not know how important they are for sure. Same comments apply to the publications published before 1974; we
do not have information as to which publications cite them. The publications published before 1974 and after
2000 are very few as shown in Figure 3(b). Figure 3(c) displays the distribution of AnthP citation counts for the
publications in AnthP. Figure 3(d) shows top ten venues in term of citation counts. We think that all ten venues
are known to be among the best in the computer science community.

In section 3.2, we compare publication similarity measures in terms of separability, independence and
accuracy. Separability refers to having similarity scores that distribute to a large range reasonably well. To
compare similarity measures in terms of separability, we use similarity score distribution plots. Independence
refers to similarity measures that are not (highly) correlated. We evaluate independence using pairwise Top-K
overlapping ratios. We define the Top-K Overlapping ratio between two measures m1 and m2 as:

TKO(m1,m2) = Average(∀p∈AnthP)[SS1(p) ∩ SS2(p)]/min(|SS1(p)|, |SS1(p)|)
where SS1(p) and SS2(p) are the sets of K most-similar publications to publication p based on m1 and m2,
respectively. For our experiments, we used K=50. We do not consider publications with zero similarity in the
set of similar publications. Accuracy refers to how accurate a similarity measure is. For accuracy, we compute
the overlapping between text-based and citation-based similarity measures, i.e., we consider text-based measure
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(in this case, TF-IDF and Cosine similarity) as a benchmark to which we compare citation-based similarity mea-
sures.

3.2 Experimental Results

Observation: (Figure 4): Paper similarity measure distribution within the same group of similarity measures are
similar, where the groups are defined as bibliographic-coupling-based, co-citation-based, and author-coupling-
based.
Observation: (Figure 4): Citation-based and author-coupling based similarity measures are more separable than
bibliographic-coupling-based measures
Observation: Paper overlapping ratio within bibliographical coupling-based similarity measures outputs to the
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Figure 4: (a) Bibliographic-coupling-based, (b) citation-based and (c) author-coupling-based paper similarity
score distributions.

same query ranges from 0.82 to .92.
The reason for the above observation is that, although a particular paper P usually deals with a limited and
usually a single topic, its references cover a much wider range of research topics. This diversity increases by
moving to the references of references. Thus,
Observation: In general, moving from a lower level to a higher level in bibliographical coupling-based mea-
sures creates more diversity, and in turn, smaller overlapping ratio.
Observation: Top-50 overlapping ratio between those similarity measure outputs based on bibliographical cou-
pling and those based on co-citation ranges from 0.81 to 1.0.

The reason for the above observation is perhaps that authors usually tend to cite their own previous papers.
On the other hand, most of one author’s papers in general cover a small number of research interests which
makes most of his/her work cite similar works. This leads to high top-50 overlapping paper ratios between the
similarity measures based on bibliographical coupling and those based on co-citation.
Observation: Top-50 overlapping paper ratio between those similarity measures based on author-coupling over-
lapping and those based on co-citation ranges from 0.86 to 0.95.
Observation: Top-50 overlapping papers ratios between those similarity measures based on author-coupling
and those based on bibliographical coupling ranges from 0.77 to 0.96.

The reason for the above observation is that, if two papers are similar based on an author-coupling measure
then these papers in general are similar based on bibliographical coupling because the common authors usually
have the same or at least somewhat related research interests. This makes the papers they publish commonly
cite almost the same set of publications.
Observation: Text-based similarity measures show low overlapping with citation-based and author-coupling-
based measures.
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The above observation resulted from the way we retrieve top similar papers based on TF-IDF and Cosine simi-
larity measure. That is, the papers that we find to be similar to a particular paper p are sorted according to their
importance scores. Then we report top scored similar papers. This prevents papers that are similar, but low
scored, to p also from appearing in the reported set. This in turn reduces the overlapping between text-based
similarity measures in one side, and citation-based and author-coupling-based measures in the other side.

4 Conclusions

In this paper, we have presented and evaluated three groups of paper similarity measures in terms of their (i)
accuracy (ii) separability and (iii) independence. For evaluation, we have used the ACM SIGMOD Anthology,
a digital library of about 15,000 publications.
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Abstract

A key finding of the Reliable Information Access Workshop of 2003 was that in collections like those
used for TREC 6-8, there are a number of hard queries for which no current search engine can return
a high quality set of results. Our Stepping Stones and Pathways (SSP) approach may yield an effective
solution to such hard problems, as well as support exploration of collections of content not well known
to a person (with broad interest and/or complex information needs). Our initial and promising testing
of SSP had users prepare two separate short queries in order to launch processing. However, since
beginning with a single information need is a more typical initial situation, we have extended the SSP
research by exploring query splitting, especially as might apply to handling hard queries. This paper
summarizes our recent results and identifies some of the future work needed.

1 Introduction

Searching, such as of text, is a key service of digital libraries. The quality of search results, however, is highly
variable. This situation has been a key concern of the information retrieval community, and also is of interest to
the database community.

Though on average results are fairly good, there is room for improvement, and in particular cases, results may
be unacceptable. Accordingly, the Robust Retrieval Track of the Text REtrieval Conference (TREC), starting in
2003, has focused on individual query effectiveness rather than average effectiveness [16]. Typically, variability
in retrieval effectiveness is caused by: 1) an incorrectly formulated query, 2) a collection that lacks pertinent
content, or 3) an information retrieval method/system that is inadequate.

The Reliable Information Access (RIA) Workshop 2003 was initiated to investigate in-depth the reasons for
retrieval variability. It approached this by studying the behavior of 7 leading search engines developed by the
research community. One of the interesting results is that all of the systems failed on a subset of queries, most
of which are considered to be ‘hard’ due to their multiple-aspect (i.e., touching on several different topics or
aspects, each of which should be satisfied) property [8]. This finding suggests that the problem may be due to a
combination of causes 1 and 3 listed above.

Copyright 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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Several studies have tried to predict the variability of effectiveness or to improve the handling of queries
for which performance is poor. [11] predicted a query’s performance by its clarity score, basically the rela-
tive entropy between the query in the relevant document set, versus in the whole document collection set. A
SIGIR workshop was held to target the problem, but in summarizing the findings of the meeting, [9] reported
that research on query variability prediction is in its infancy. Information retrieval researchers lack a clear un-
derstanding of why performance is low for some queries, and cannot reliably predict which queries are ‘hard’.
Similarly, in the database community, Graupmann targeted this problem; his approach was to add annotations
using XML to attach semantic meaning to important terms [12].

Different people have different interpretations of what a document is about. Similarly, people vary in their
ability to express their information needs in the form of a query [1]. Based on the finding that the cause of poor
performance for some queries might be their multi-aspect property [8], we propose our query-splitting-enabled
Stepping Stones and Pathways approach to detect different aspects of a query and then to improve retrieval by
identifying connections among these aspects.

We also identify two situations that may exist for some poorly-performing queries:

1. A low-relevance set is retrieved where the results are dominated by a subset of the query aspects.

2. A low-relevance result set is retrieved where it is possible to get high relevance for connected subsets of
the query aspects (maybe with modification).

In order to address these two possibilities, we think it necessary to create an alternative interpretation of a user’s
intention. In this alternative interpretation, a query is identified as a description of two or more separable aspects.
By separable aspects we mean that a significantly different set of documents representing each aspect can be
retrieved for the query. The query is thus split into multiple sub-queries; without loss of generality we limit the
splitting to two [17]. The next step is to retrieve a set of documents that support a valid relationship between the
two sub-queries using the Stepping Stones and Pathways (SSP) approach [4]. The result returned by the SSP
system is a set of topic sequences (pathways). Each step in each pathway is supported by documents connecting
a sub-query with an intermediate topic (stepping stone), or connecting different intermediate topics, that provide
a rationale for the connection between the two original sub-queries, i.e., the end stones. The two sub-queries
become the endpoints which may be reached through different pathways. Each pathway connects the endpoints
by a succession of stepping stones, and thus is an answer to the user information need. The SSP user interface
(Figure 1) highlights the end stones, stepping stones, and pathways, and supports as well as exploratory type of
search.

Query splitting have been used in the past [7]. Most commonly it converts a natural language query into
two parts, so that the new query will be interpreted as of form X or Y. However, earlier work on query splitting
did not address the problem of coherence from the user’s point of view: Are X and Y related (possibly by other
intermediary concepts)? Ours is the first study we know of that has researched both query splitting and new
methods to build and display the connections of the results from query splitting.

The Stepping Stones and Pathways approach was inspired by earlier research on Literature-Based Discovery.
The explosion of scientific knowledge in the last half of the 20th century resulted in many researchers being
highly specialized. Different researchers may work on related problems without even being aware of each other.
Discovering relations that are not explicitly stated but yet are latent in a body of knowledge is the objective of
Literature-Based Discovery. Swanson [2] was the first to introduce the idea of discovering such new relations
within a bibliographic database. Further work by Swanson with Arrowsmith [3] detected indirect relationships
between topics in the Medline database, by finding common keywords between two document sets through an
intermediate document set. Our work with SSP has extended the line of research launched by Swanson; we are
extending it further through integration with new work on query splitting.

This paper concentrates on the effectiveness of query splitting as a technique for improving retrieval results.
The rest of the paper is organized as follows. Our prior work with SSP is summarized in Section 2. Section
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Figure 1: The areas of the Stepping Stones and Pathways user interface.

3 describes query splitting algorithms. Section 4 discusses testing of query splitting methods and the findings
from our experiments. Finally, we conclude this paper and list future plans in Section 5.

2 Stepping Stones and Pathways: How it works

In order to describe the context in which we use query splitting to answer hard queries, we briefly discuss
how Stepping Stones and Pathways works. In particular, we provide an overview of the user interface and the
methods used to create the stepping stones and pathways. Details can be found in [4].

The Stepping Stones and Pathways user interface is divided into three areas (see Figure 1): 1) The Query
Area: Here the user types a (two-aspect) query describing topics of interest. 2) The Network Area: Every time
a new query is issued in the query area, this area shows the initial graph connecting the topics in which the user
is interested, through a number of intermediate topics. 3) The Document and Connections Area: This area
displays a list of documents and provides indications of how they support the corresponding connections.

From a user’s point of view, a SSP retrieval session starts with the user typing a query. The query is split to
create two sub-queries. SSP displays a network, in which the leftmost and rightmost nodes are labeled according
to the sub-queries, and intermediate nodes are labeled according to topics connecting the sub-queries. Below
the network, SSP also displays a list of documents and explains how each of them supports a connection in the
network. The user can click on any node to see all the documents covering that topic, or on any edge to see any
connections between the topics at each end of the edge. If the connection between any two topics is too vague,
then the user can request SSP to add more intermediate topics (stepping stones) between those topics.

From an implementation point of view, a SSP session works as shown in Table 1.
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1. (Off-line) Index the document collection, using the document text and also references, if available.
Document text is indexed using a tfidf word weighting, after filtering stop words.

2. Split and process the query, trying to match all words in the sub-queries first.
If that fails, relax the sub-queries by making words optional.
To calculate the similarity between two documents, use the formula
sim(d1, d2) = 1 − (1 − Pw(d1, d2)(1 − Pcocit(d1, d2))(1 − Pref (d1, d2))

3. Create the endpoint nodes (end stones) of the graph by:
3.1. Retrieving two document sets, one from each of the user sub-queries;
3.2. Creating a document cluster for each document set;
3.3. Calculate a cluster centroid from the top 10 documents in the cluster;
3.4. Label the cluster using Suffix-Tree Clustering [6].

4. Create intermediate Stepping Stones and Pathways by:
4.1. Using the endpoint centroids as queries to find two document sets;
4.2. Creating an intermediate document set with the documents that appear in both retrieved sets;
4.3. Finding relevant connections between the documents in the endpoint clusters and
the documents in the intermediate set;
4.4. Eliminating all documents in the intermediate set that are not part of a connection;
4.5. Clustering and labeling documents left in the intermediate set; the clusters become stepping stones.

5. Visualize and display to users the stepping stones and pathways.

Table 1: Overview of SSP working steps

3 Query Splitting

In this section we explain how we decide if a query has multiple aspects. In general, we employ clustering
algorithms, heuristic rules, and thresholds set to control the splitting. If there is not enough difference between
two clusters, for a given splitting threshold, we call the query a single-aspect one; no splitting is appropriate. On
the other hand, when the difference is sufficient, we have identified a multiple-aspect query, and split it into two
sub-queries.

3.1 Algorithms for Query Splitting

In order to determine how best to split queries, we have devised and implemented three algorithms.

Relevance-Feedback-Based Clustering (RFC). Borodin [7] also believed a user would search for multiple
concepts using a single query. He made good use of relevance feedback information from users, to retrieve more
documents for different concepts. We adopt Borodin’s method here. q0 is a user’s original query. New queries
are generated iteratively as follows.

1. Retrieve the n highest-ranking documents, not previously retrieved, of the current query qi, for relevance
judgment. n is 5 initially.

2. Generate different groups from the documents judged as relevant documents. We put each such pair of
documents, ds and dt, into different groups if
(correlation of ds and dt) <= τ × [(correlation of ds and qi) + (correlation of dt and qi)]/2.
Here the cosine correlation is calculated, with τ as the splitting threshold. So there can be zero (if no
relevant documents are retrieved), one, or multiple groups.
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3. For each group j, get top m words as a new sub-query qji+1 of the current query qi by

qj
i+1 = qi +

∑
(r)/|Rj

i |−
∑

(nr)/|nonRi|, where Rj
i are relevant documents of the group j (if none, then

omit this expression). nonRi are at most two non-relevant documents with highest ranking. r ∈ Rj
i and

nr ∈ nonRi.

4. Repeat the above steps for each newly generated sub-query, if any, but let n be 3 in the first step.

Term-Based Clustering (TC). Based on the observation that the representative terms in a user query might
reflect different aspects, we characterize a query using its expanded term list, considering the top retrieved
documents. The algorithm basically consists of the following steps.

1. Get the top m words from a query, plus the top |R| retrieved documents for the query, using Rocchio’s
query expansion algorithm. That is, q′ = αq + β

∑
(r)/|R| where r ∈ R.

2. Represent each word as a list of documents.

3. Calculate the word distances using cosine correlation.

4. Cluster words using the agglomerative hierarchical clustering algorithm, requiring complete linkage.

5. Cut the cluster tree into groups based on the splitting threshold τ , so that each group represents a sub-
query.

Document-Based Clustering (DC) Similar to Term-Based Clustering, we also propose an algorithm to cluster
a user query based on the diversity of its top retrieved documents. It is like the TC algorithm, but with terms
swapped for documents, and vice versa, except that: we use the top k retrieved documents for a query, and in the
last step we cut the tree into groups based on the splitting threshold τ , and get the top m terms in the centroid of
each group as a sub-query q′. More specifically, q′ = αq + β

∑
(r)/|R|, where R represents the documents in

a group and r ∈ R.

3.2 Term Scoring Functions and Parameter Values

Term scoring plays an important role in every query splitting algorithm. The different term scoring functions
used in the algorithms are: 1) Term Scoring Functions in First Pass Retrieval: For all the approaches, we
used the Okapi BM25 [13] term scoring function in the first pass retrieval. 2) Term Scoring Functions in
Clustering: We also used Okapi BM25 [13] for the dividing groups step (i.e., the second step of RFC), to
weight query terms and document terms. We tried Okapi BM25 [13] and pivoted tfidf (Ptfidf) [14] for weighting
terms in all the clustering parts (i.e., the second step in both TC and DC). 3) Term Scoring Functions in Query
Expansion: For all the approaches, we employed a Kullback-Leibler Distance (KLD) based method [10] for
selecting and weighting expansion terms, with normalization based on dividing by the maximum term weight.

It also is essential to assign values to the parameters properly. Multiple experiments by Carpineto [10] on
TREC 7-8 showed that an increasing number of pseudo-relevant documents decreased the retrieval performance
nearly monotonically. Further, an increasing number of selected terms in query expansion just slightly increased
the retrieval performance. Therefore, we selected m = 20 and |R| = 12 in the TC method, since that combi-
nation yielded good results in [10]. For consistency with the TC algorithm parameter settings, we set k = 24,
since the ideal case in the DC method is to generate two equal-size clusters. In this case, the number of pseudo-
relevant documents in each cluster will be 12, which is the value of |R|. For the same reason, we set m = 10
in the DC method and the RFC method. Further, α = 1.0 and β = 1.5 are commonly used with the Rocchio
algorithm, and so are used in the TC method. For the DC method, we set α = 0.2, since we found α = 1.0
makes two sub-queries very alike, and to a large extent hides their differences.
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Precisionn The minimal value of the rankings, falling within the top n, of each
relevant document retrieved by each sub-query.

Overlapn The maximal value of the rankings, falling within the top n, of each
relevant document retrieved by each sub-query.

Differencen (Precisionn − Overlapn)/Precisionn;
This measure is limited to only two sub-queries generated.
A more complicated measure should be used to compute the difference
among more than two sub-queries.

Pavg The maximum of the Pavg values, as used in TREC, for the sub-queries.
Precisionn average, The total of the values of Precisionn,
Overlapn average, Overlapn, Differencen, or Pavg ,
Differencen average or divided by the number of detected multiple-aspect queries.
Pavg average

Table 2: A new evaluation strategy.

4 Experiments

In order to evaluate the effectiveness of our approach, three kinds of experiments are required: comparing the
three query splitting algorithms in Section 3, evaluating SSP itself, and evaluating the combination of query
splitting and SSP. The third experiment is underway. Also, we will not describe here the evaluation of SSP as an
effective tool to discover connections among documents and topics, since that is detailed in [5]. Nevertheless,
we must recall one of the interesting findings, i.e., that SSP can help users explore many implicit connections
between a query pair. In this paper we focus on the first experiment, so as to generate a good split, based on a
user’s information need, and to provide sub-queries as input for SSP.

4.1 Evaluation Strategy

Since there are no well-known techniques to evaluate the prediction of query difficulty [9], it is hard to apply
widely used evaluation strategies when judging the quality of our query splitting algorithms. Also, though it adds
complexity to the evaluation problem, we must continue our focus regarding query splitting, wherein we detect
poorly-performing queries based on their having the multi-aspect property. Thus, we adopt the requirement of
SSP, whose starting point is query splitting. Accordingly, we claim that the quality of a query splitting algorithm
depends on three factors: retrieval performance, difference between sub-queries, and overlap of sub-queries.

The most important factor deciding the quality of the results of a sub-query is still the number of relevant
documents retrieved. Since the reason to propose a query-splitting algorithm is to improve information retrieval,
it is reasonable not to expect a degradation of retrieval performance when using an algorithm. Regarding the sec-
ond factor, we note that only with enough overlap of sub-queries is it feasible to find the intermediate concepts,
i.e., the stepping stones. Regarding the third factor, we observe that a very small difference among sub-queries
makes building a bridge among them unnecessary, since the sub-query topics can be directly connected and
discussed in a single document to be retrieved by the original query.

We evaluate these three factors based on the retrieval results of the sub-queries. Thus, we make use of the
relevance judgment information available in TREC, and evaluate the three query splitting approaches using a
relevance × rank matrix. Each row in the matrix contains all the relevant documents for a specific query;
each column corresponds to one query splitting approach; and each cell value is the corresponding relevant
document’s rank when documents are retrieved by a sub-query generated when the corresponding approach is
employed. We define the measures in Table 2 based on the matrices.
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Total number Total number Total number Total number
detected by RFC detected by DC and TC detected by TC
at the threshold of 12.5 at the threshold of 1 at the threshold of 200

using Okapi and Ptfidf using Ptfidf
Queries selected 20 14(70%) 20(100%) 16(80%)
manually
Hard queries 17 14(82%) 17(100%) 11(65%)
Union 34 25(74%) 34(100%) 24(71%)
Overlap 3 3(100%) 3(100%) 3(100%)

Table 3: Query split results using different algorithms

4.2 Experimental Setup

Collections and Queries. Our test collection is the one used in the Robust Track of TREC 2004 [15]. Two
sets of queries were chosen from the TREC queries. The first set consists of 17 queries selected due to the
multiple-aspect property pointed out in the analysis in [8, 15]. The other set consists of 20 queries we selected
as likely to have multiple aspects, based on reading the title, description, and narrative. There are three queries
that are common to both sets; thus we have 34 unique queries.

Upper Bound Experiment. Since we do not know in advance what should be the proper splitting threshold
in each algorithm, we ran an upper-bound experiment first using trial-and-error to find the threshold value under
which the corresponding algorithm performs the best. Then we compared the algorithms using their optimal
settings. We evaluated each algorithm’s performance based on the evaluation strategy in Table 2. More specifi-
cally, the metrics are numdetected (the number of detected multiple-aspect queries), pavg , sumn (precisionn +
overlapn + differencen), where n = 20, 30, 50, and 100. We consider each metric to be of the same impor-
tance, so we normalize each one by its total value. The higher the value of each metric, the better the algorithm
performs.

4.3 Findings

Splitting Thresholds. By the upper bound experiment, we identify the optimal settings for each algorithm: 1)
RFC: the splitting theshold τ = 12.5; 2) TC when using Okapi as the term scoring function in clustering: τ = 1;
3) TC when using Ptfidf as the term scoring function in clustering: τ = 200; 4) DC when using Okapi as the
term scoring function in clustering: τ = 1; 5) TC when using Ptfidf as the term scoring function in clustering:
τ = 1. More details are in [17].

Query Splitting Results. We summarized the number of queries split by each algorithm in their optimal
settings in Table 3. At least 70% of the queries that we selected by manually judging the multi-aspect property
are split by all the algorithms. At least 65% of the hard queries identified with multi-aspect property by [8] are
split as well. All the algorithms split all the common three queries. Further, we note that all the algorithms split
at least 24 of the 34 queries (71%).

Comparison of Best Cases of All the Algorithms. In general, the results follow the pattern PRFC > PDC >
PTC , where P stands for performance, as can be seen in Figure 2.

We also measured the performance of retrieval of the original query without a splitting process, and the
refined query with a query expansion (QE) process, using the pavg average, since other metrics are not applicable.
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original QE TC TC DC DC RFC
(w=Okapi,τ=1) (w=Ptfidf,τ=200) (w=Okapi,τ=1) (w=Ptfidf,τ=1) (τ=12.5)

0.157597 0.171934 0.155587 0.156439 0.179454 0.175758 0.26489

Table 4: Comparison of all the best cases with the retrieval performance by original queries without query
splitting and the performance by refined queries with only query expansion (QE) in terms of pavg .
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Figure 2: Comparison of all the best cases on the metrics of pavg , sum20, sum30, sum50, and sum100.

The refined queries are produced using the method in [10], which is also the method to select top terms in all the
query splitting algorithms. The results are shown in Table 4. Considering only the pavg average, the performance
of the TC algorithm is very close to the original query retrieval performance, while the DC algorithm using Okapi
and Ptfidf are 13.9% and 11.5% better than the original query performance. The RFC algorithm is even better,
68.1% over the original query retrieval performance. The refined queries perform 9.1% better than the original
ones, on average, and also are close to the DC algorithm.

When using different term weighting mechanisms, the performance values for the same algorithm are very
close to each other, except concerning the metric sum100. For the DC algorithm, the result when using Okapi
is 5.7% better than when using Ptfidf; for the TC algorithm, the one using Okapi is 6% than when using Pt-
fidf. However, there are more interesting results when we consider the precisionn, the overlapn, and the
differencen, respectively. Table 5 shows the results and reveals a pattern: the TC algorithm gets a rather low
value on the overlap metric, which leads to a relative low result of sumn.

P20 O20 D20 P30 O30 D30 P50 O50 D50 P100 O100 D100

DC(w:Okapi,τ :1) 0.197 0.249 0.153 0.203 0.255 0.160 0.214 0.266 0.153 0.216 0.278 0.152
DC(w:Ptfidf,τ :1) 0.193 0.247 0.172 0.202 0.250 0.159 0.201 0.268 0.154 0.201 0.273 0.137
TC(w:Okapi,τ :1) 0.171 0.068 0.245 0.174 0.051 0.257 0.178 0.041 0.268 0.184 0.037 0.285
TC(w:Ptfidf,τ :200) 0.164 0.069 0.253 0.160 0.057 0.261 0.160 0.045 0.270 0.163 0.034 0.280
RFC(τ :12.5) 0.275 0.368 0.177 0.261 0.386 0.163 0.247 0.380 0.155 0.236 0.379 0.146

Table 5: Comparison of all the best cases on the Pi(precisoni), Oi(overlapi), and Di( differecei) metrics,
where i = 20, 30, 50, 100.
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4.4 Discussion

The term-based clustering and document-based clustering algorithms perform better, if not the best, when all the
queries are split. Even considering the relevance-feedback-based clustering, there is a trend that the performance
is better when more queries are split. More importantly, as can be seen in Table 2, the performance (measured
by pavg) of each algorithm in its optimal settings is not worse, and sometimes is better, than when there is no
splitting. Also, all of these algorithms, except for TC, perform even better than does the refined query resulting
from query expansion. Hence the majority of the query samples we selected are, indeed, multi-aspect queries,
since the splitting process did not hurt performance. We expect that integrating query splitting with SSP will
yield an even better result since SSP can find more relevant documents by means of discovering the connections
within a multi-aspect query.

Relevance-feedback-based clustering is a special variation of the document-based clustering, since its basic
idea is to cluster documents and use a cluster centroid as a sub-query. However, it clusters already-known rele-
vant documents (from relevance judgments) instead of top retrieved documents. Hence much less noise should
be included when representing the aspects of an original query. However, in practice, this kind of relevance in-
formation only can be obtained implicitly or explicitly from users. How to collect such information accurately,
but not intrusively, is still an open question.

In our experiments document-based clustering performed in general better than term-based clustering. As we
pointed out in Section 4.3, the utility of term-based clustering for splitting was poor due to its rather low overlap
metric value. Term-based clustering divides the term candidate representatives for a query so that there are no
overlap terms in the sub-queries of the query, hence decreasing the probability of the overlap of top retrieved
results. On the other hand, the document-based approach clusters the document candidate representatives for the
query and generates sub-queries containing common terms, from a document cluster. Since the query splitting
results are to be fed into SSP, which finds connections between the query parts, we expect that different enough
sub-queries will yield a bigger search space for intermediate concepts as bridges connecting the sub-queries.
Our future experiments on the combination of SSP and document-based clustering and term-based clustering,
respectively, should yield further insight.

The term scoring function used had no significant effect on the algorithm performance, though Okapi results
generally were slightly better than Ptfidf. Consequently, in future work, we will use Okapi as the term scoring
function for clustering (when testing performance on the combination of SSP and query splitting).

5 Conclusions and Future Work

We have studied an approach to handle poorly-performing queries where a possible reason for the poor results
is their multi-aspect property. We have shown the feasibility of splitting this type of queries without decreasing
the retrieval performance.

We plan further experiments to test how much retrieval improvement will result from using SSP, taking the
split results as input. The experiments will consist of automatic runs and user studies. We will run SSP on the
TREC collection, already used in the query-splitting experiment, and will evaluate the results using pavg and
other reasonable measures. It is also important to get feedback from real users with respect to their subjective
impression of the query splitting results. Accordingly, we plan a user study on the split results, and also one on
SSP, with those results as input.
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Abstract

In 2001, Lawrence found that articles in computer science that were openly accessible (OA) on the Web
were cited substantially more than those that were not. We have since replicated this effect in physics.
To further test its cross-disciplinary generality, we used 1,307,038 articles published across 12 years
(1992-2003) in 10 disciplines (Biology, Psychology, Sociology, Health, Political Science, Economics,
Education, Law, Business, Management). We designed a robot that trawls the Web for full-texts using
reference metadata (author, title, journal, etc.) and citation data from the Institute for Scientific Infor-
mation (ISI) database. A preliminary signal-detection analysis of the robot’s accuracy yielded a signal
detectability d’=2.45 and bias β = 0.52. The overall percentage of OA (relative to total OA + NOA) ar-
ticles varies from 5%-16% (depending on discipline, year and country) and is slowly climbing annually
(correlation r=.76, sample size N=12, probability p < 0.005). Comparing OA and NOA articles in the
same journal/year, OA articles have consistently more citations, the advantage varying from 25%-250%
by discipline and year. Comparing articles within six citation ranges (0, 1, 2-3, 4-7, 8-15, 16+ citations),
the annual percentage of OA articles is growing significantly faster than NOA within every citation range
(r > .90, N=12, p < .0005) and the effect is greater with the more highly cited articles (r = .98, N=6,
p < .005). Causality cannot be determined from these data, but our prior finding of a similar pattern
in physics, where percent OA is much higher (and even approaches 100% in some subfields), makes it
unlikely that the OA citation advantage is merely or mostly a self-selection bias (for making only one’s
better articles OA). Further research will analyze the effect’s timing, causal components and relation to
other variables, such as, download counts, journal citation averages, article quality, co-citation mea-
sures, hub/authority ranks, growth rate, longevity, and other new impact measures generated by the
growing OA database.

Copyright 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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1 Introduction

With the advent of the Internet and the Web, more and more researchers are making their research openly
accessible (OA) by self-archiving it online [8, 18] to increase its visibility, usage and citation impact [5, 6, 16].
In 2001, Lawrence reported that OA articles in computer science are cited more. We have since replicated this
OA citation advantage based on a single large central OA archive in physics [10, 11] and have begun testing it
more widely [7]. We here report the generality of this effect across biological and social sciences, using a robot
that trawls the Web for full-texts based on reference and citation data from the Institute for Scientific Information
(ISI) database.

2 Method

Using the reference metadata for 1,307,038 articles published in peer-reviewed journals covered by the CD-
ROM version of ISI’s Science and Social Science Citation Indices (SCI and SSCI), our robot trawled the Web
to estimate how many of the articles did (OA) or did not (NOA) have a full-text version freely accessible on
the web. The 10 disciplines covered were: administration, economics, education, business, psychology, health,
political science, sociology, biology, and law, for 12 years: 1992-2003.

The robot’s search algorithm was the following: (1) Send request to ISI database for metadata of article (first-
author name and article title). (2) Send request (name, title) to: Yahoo, Metacrawler, Vivissimo, Eo, AlltheWeb
and Altavista. (3) Extract external (irrelevant) links. (4) Remove duplicate URLs. (5) Sort URLs to process PDF
and PS files first (probable full-texts). (5) Convert files (PDF, PS, Latex, HTML, XML, RTF, and Word) to text.
(6) Parse files to test for full-text of reference article (name/title in first 20% of text, references in last 20%).
(7) If, in parsing HTML file, title found but not full text, extract and follow links in file further as references
possibly leading to the full text (to depth of 3 levels). (8) Sort articles by discipline/journal/issue/year; calculate
percent OA articles within each; then by discipline/journal; and finally for each discipline. (9) Sort articles by
discipline/journal/issue/year, calculate citation ratio as (OA-NOA/NOA) within each, then by discipline/journal
and finally for each discipline. (10) Exclude data for all journals that are 100% OA (OA journals) from both
the article counts and the citation counts (as we are only doing within-journal comparisons for NOA journals);
exclude data from all single issues that are 100% OA (to eliminate denominators).

3 Signal detection analysis of the robot’s accuracy

To test the robot’s accuracy, we performed a preliminary signal detection analysis [4]. From the 633,410 articles
in Biology we took a sample of 100 articles the robot had called OA and 100 it had called NOA and hand-
checked them for correctness. This yielded four possibilities :Hits (correct positives: OA is called OA), Correct
rejections (NOA is called NOA), False alarms (NOA is called OA) and Misses (OA is called NOA). In a sample
of 100 articles tagged by the robot as OA and 100 tagged as NOA, the Robot had 6 Misses and 19 False Alarms
according to a manual check of its accuracy.

Signal detectability (d’) was found to be 2.45, indicating that the robot was fairly sensitive. The robot’s
bias β = 0.52 indicates some tendency toward false alarms (overestimating OA). If β = 1 the robot is neutral,
favoring neither false alarms nor misses; β > 1 favors misses and β < 1 favors false alarms. As there are in fact
about ten times as many NOA articles as OA articles, this means there is some overestimation of the percentage
of OA articles and hence some underestimation of the size of any OA citation advantage we might find.
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Figure 1: Signal detection Analysis of robots Accuracy. (Graph generated using the applet provided by Wise Project
http : //wise.cgu.edu/sdt/sdt.html)

N=12 r
OA Citation Advantage x Year 0.25 NS
OA Citation Advantage x Total articles 0.21 NS
OA Citation Advantage x %OA articles −0.02 NS
Total articles x Year 0.65 p < 0.01
Total articles x %OA articles 0.31 NS
%OA articles x Year 0.76 p < 0.005

Table 1: Correlation between Year and OA Growth.Significant correlation between year and percent OA articles: %OA
is growing annually. (Total articles is also growing yearly; no other correlations are significant.)

4 Results

Figure 2.a shows the 12-year average for the percentage of OA articles (dark bars) in each of our 10 reference
disciplines, ordered by total number of articles (OA + NOA, with Biology on the high end and Law on the low
end). Percent OA varies from 5%-16%. There is a clear and consistent OA citation advantage (OA-NOA/NOA
calculated within each individual journal issue, then averaged across journals, but not counting issues that had
100% or 0% OA articles) across all the disciplines, varying from 36%-172% (white bars): OA articles have more
citations. Figure 2.b shows that this OA citation advantage is present across all countries (based on 1st-author
affiliation and ordered by total article output).

We now look more closely at the fine-structure of the OA citation advantage and OA growth across time.
Figure 2.c shows pooled results across all the disciplines for total annual articles (OA + NOA, gray curve),
percent OA (black bars, log scale) and percent OA citation advantage (white bars, log scale). Both total articles
and annual percent OA are growing (slowly) from year to year (r=.65 and .76, respectively, Table 1; no other
correlations are significant).

We next look at the time course of total percentage growth in OA (for all 10 disciplines) within specific
citation ranges OAc (c= 0, 1, 2-3, 4-7, 8-15, 16+). Figure 3.a should be read backwards, 2003-1992, because
citations grow with time, older articles accumulating more citations across the years. So it is perhaps not
surprising that the percentage of OA articles among those articles with zero citations, OA0 decreases with
time (at first rapidly, from 2003 till about 1998, and then slowly leveling off). For articles with one or more
citations, the corresponding effect is the opposite, OAc grows (backwards) with time (first rapidly from 2003
till about 1998, then likewise leveling off). But this is not a specific OA effect at all, for the inset shows the
very same pattern is for NOA articles too. The specific OA effect only becomes apparent when we examine the
corresponding ratio OAc/NOAc within each citation range (Figure 3.b).

The OA effect only becomes apparent when we look at OAc/NOAc. This ratio is growing year by year
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Figure 2: (a): Open Access Citation Impact Advantage by Discipline. Total articles (OA+NOA), gray curve; percent-
age OA: (OA/(OA + NOA)) articles, black bars; percentage OA citation advantage: ((OA − NOA)/NOA) citations,
white bars, averaged across 1992-2003 and ranked by total articles. All disciplines show an OA citation advantage. (b):
Open Access Citation Impact Advantage by Country. Total articles (gray curve), percent OA articles (black bars), and
percent OA citation advantage (white bars); averaged across all disciplines and years 1992-2003; ranked by total articles.
(c): Open Access Citation Impact Advantage by Year. Total articles (gray curve), percent OA articles (black bars), and
percent OA citation advantage (white bars): 1992-2003, averaged across all disciplines. No yearly trend is apparent in
the size of the OA citation advantage, but %OA is growing from year to year (see Table 1). Note that percent scale is
logarithmic (to make the OA growth visible).

(Figure 3.b) which means that within each citation range, the percentage of articles that are OA is growing faster
than the percentage of articles that are NOA (correlations are all positive and very high, Table 3). This growth
differential also increases with the citation range, being lowest for uncited articles and highest for articles with
over sixteen citations. This confirms the pattern reported for computer science articles by [15].

If we look at our total sample of 1,307,038 articles across all disciplines and years, we see that 793494
(61%) of them are uncited; of the remaining 513544 (39%), 155265 (12%) have 1 citation, declining to 53838
(4%) with 16+ citations (Figure 4, gray curve). 156845 (12%) of the total articles are OA. Of those, 85794
(55%) are uncited, and their numbers in each higher citation range fall off much the way the totals do (Figure
4, dark curve). However, if we again look at the ratios between the percentages among OA and NOA articles
for each range, c, expressed as (OAc-NOAc)/NOAc (bars in Figure 4), we see that this ratio is positive for
all nonzero citation ranges, beginning at 1 citation (16% OA advantage), peaking at about 4-7 (c. 22% OA
advantage), and falling off again toward 16+ citations (10% OA advantage). This means that the proportion of
articles within each citation range is greater among OA articles than among NOA articles except zero, the most
populace category (61%), where it is NOA articles that have the -12% NOA disadvantage.

In and of themselves, these correlations and temporal patterns cannot determine causality. It is a logical
possibility that the cause of the OA advantage is merely a self-selection bias: that authors tend to self-archive
their better papers (or better authors tend to self-archive their papers) and better papers are simply cited more.
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Figure 3: (a): Yearly OA and NOA in each Citation Range. The yearly percentage (OA c) of the articles with c citations
(c = 0, 1 2-3, 4-7, 8-15, 16+) that are OA (1992-2003). This graph (figure 3.a) should really be read backwards, as citations
increase cumulatively as an article gets older (younger articles have fewer citations). Reading backwards, for articles
with no citations (c=0), the percentage OAc decreases each year from 2003-1992, at first rapidly, then more slowly. For
articles with one and more citations (c > 0), OAc first increases rapidly from 2003 till about 1998, then decreases slowly
1998-1992. Notice that the rank order becomes inverted around midway (c. 1998), the percentages increasing from c=0
to c=16+ for the oldest articles (1992) and the reverse for the youngest articles (2003). The pattern is almost identical
for NOA articles too (see NOAc inset), so this is the relationship between citation ranges and time for all articles, not a
specific OA effect. (b): Yearly Growth of OA Relative to NOA in Each Citation Range. The yearly ratio OA c/NOAc

between the percentage of articles with c citations (c = 0, 1 2-3, 4-7, 8-15, 16+) that are OA and NOA (all disciplines). This
ratio is increasing with time (as well as with higher citation counts, c), showing that the effect first reported for computer
science conference papers by Lawrence (2001) occurs for all disciplines.

This is unlikely to be the sole or even the primary cause of the OA advantage for three reasons, two empirical
and one commonsensical: (1) The first empirical reason is that if the OA advantage were solely a self-selection
bias, it would have to shrink or disappear as the percentage of OA articles approaches 100%. Our sample’s
average percent OA content was low (around 9%), but prior studies in disciplines where the self-archiving
rate is much higher – well over 50% in some areas of physics [10, 11] and near or at 100% in astronomy
and astrophysics [12] – have found OA citation advantages that were of the same size as the ones found here.
(2) The second empirical reason is that OA has also been shown to increase article downloads [1, ?], and
that increased downloads are in turn correlated with increased citations [2, 17, 19]. Causality is more directly
evident there. (3) The commonsensical reason to assume that OA is causal is that access is a necessary (if not
a sufficient) condition for usage and citation, and no researcher’s institution can afford access to anywhere near
all journals [http://www.arl.org/stats/arlstat/]; OA self-archiving supplements that access, increasing potential

N=12 r
O Citations OAc x Year 0.94 p < 0.005
1 Citations OAc x Year 0.60 p < 0.025
2 − 3 Citations OAc x Year 0.10 p < 0.05
4 − 7 Citations OAc x Year −0.36 p < 0.05
8 − 15 Citations OAc x Year −0.74 p < 0.005
16+ Citations OAc x Year −0.93 p < 0.001

Table 2: Correlation between Year and Percent OA in Each Citation Range.Significant correlations between year
and the percentage of OA articles in each citation range, OA c: Percent OA is growing annually (negative correlation) in
the higher citation ranges and shrinking in the lower ones; but the correlation pattern is the same for NOA articles, hence
this is not an OA effect. It just shows that citations increase with time.
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Figure 4: OAc/NOAc Ratio in Each Citation Range (All years, All Disciplines). Ratio of the percentage of articles
with c citations (c = 0, 1 2-3, 4-7, 8-15, 16+) that are OA to the percentage that are NOA (across all disciplines
and years), expressed as a difference from equality (OAc-NOAc)/NOAc. This ratio increases as citation count
(c) increases (r = .98, N=6, p < .005). The percentage of articles with 0 citations is relatively higher among
NOA articles, but it becomes higher among OA articles with 1 citation and higher. This shows that the more
cited an article, the more likely that it is OA. (The gray curve is the total number of articles (OA + NOA) in each
citation range, and the dark curve is the number of OA articles scale for both curves is on right.)

online accessibility to 100%.

5 Conclusion

Research is conducted (and funded and published) in order to be used, applied and built upon. It is for this reason
that citation impact is rewarded by researchers’ institutions and funders [3, 20]. It follows that whatever increases
research access and impact increases benefits to research, researchers, their institutions and their funders. Our
estimate of the current percentage of OA articles in the 10 disciplines tested is between 5% and 15% (mean 9%;
median 7% ; SD 4.26) and that OA is associated with citation impact that is 25% to 250% higher (mean 83 %;
median 77% ; SD 39.49). To extend this benefit to the remaining 85-95% of research, ”publish or perish” needs
to be extended, in the online age, to ”publish and self-archive” so as to maximize research access and impact

N=12 r
O Citations OAc/NOAc x Year 0.94 p < 0.001
1 Citations OAc/NOAc x Year 0.94 p < 0.001
2 − 3 Citations OAc/NOAc x Year 0.96 p < 0.001
4 − 7 Citations OAc/NOAc x Year 0.96 p < 0.001
8 − 15 Citations OAc/NOAc x Year 0.91 p < 0.001
16+ Citations OAc/NOAc x Year 0.87 p < 0.001

Table 3: Correlation between Year and OAc/NOAc Growth Ratio in Each Citation Range. Significant correla-
tions between year (1992-2003) and the ratio OAc/NOAc between the percentage of articles with c citations (c
= 0, 1 2-3, 4-7, 8-15, 16+) that are OA and the percentage with c citations that are NOA (all disciplines). This
ratio is growing annually in every citation range.
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[21]. In addition to the direct impact benefits, as the OA database approaches 100%, many rich new measures of
research usage and impact will become possible, including both citation and download counts, growth curves,
and latencies; co-citation counts; hub/authority ranks, semantic indices [14] and many other online performance
indicators. These will be usable not only for navigation and evaluation, but also for analyzing and predicting
research directions and influences.
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Abstract

Efficiently finding most relevant publications in large corpora is an important research topic in infor-
mation retrieval. The number of biological literatures grows exponentially in various publication data-
bases. The objective of the study in this paper is to fast locate useful publications from large biomedical
document collections based on users’ preferences.

In this paper, a new iterative search paradigm is introduced which integrates biological background
knowledge in organizing the results returned by search engines, and utilizes user feedbacks to filter irrel-
evant documents. A term weighting scheme based on Gene Ontology is introduced to improve similarity
measurement of documents in biomedical domain. A prototype text retrieval system has been built based
on this iterative search approach. Experimental results show that the system can filter a large number of
irrelevant documents while keep most of the relevant documents with limited user interactions.

1 Introduction

Text retrieval is an important problem in information retrieval. Searching for relevant publications from large
literature corpora is a frequent job to biologists and biomedical researchers. With the abundance of biomedical
publications available in digital libraries in recent years, efficient text retrieval becomes a more challenging task.
For example, PubMed [1] now contains over 14 million publications. It is crucial to efficiently and accurately
identify those documents most relevant to users’ interests from such large document collections.

It has been recognized that one limiting factor of the traditional search engine technology is the low precision
of the results returned. When users search by a few keywords, a large number of matched results could be
returned. Users spend a significant amount of time to browse these results to find out those documents they
are truly interested in. Keyword-based search is currently the most commonly employed search strategy in
biomedical digital libraries. The publications returned by keyword searches may not be organized properly,
forcing the users to browse thousands of publications. In most cases, it is impossible for users to manually read
every returned entry, thus leads to loss of many truly relevant publications.

Many efforts have been done to improve the efficiency and effectiveness of literature retrieval in public
domain and biomedical discipline. For example, document ranking is introduced for indexing entries in large
literature collections. PageRank [2] and HITS [3] are both citation-scoring functions for evaluating the impor-
tance of documents. [4] presented a method to rank documents in MEDLINE using the differences in word
content between MEDLINE entries related to a topic and the whole of MEDLINE. On the other hand, text

Copyright 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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categorization has been studied to organize the search results. In [5], a machine learning model based on text
categorization is built to identify high-quality articles in a specific area of internal medicine. SOPHIA [6] is an
unsupervised distributional clustering technique for text retrieval in MEDLINE.

In this paper, a new iterative searching paradigm which aims to solve the above problem by incorporating
biological background knowledge and user feedbacks is proposed. The iterative approach works as follows.
First a set of documents returned by the keywords-based search is organized in a clustering manner, then users
interact with system to provide objective evaluations on a small set of representative documents from these
document clusters. Biological background knowledge descried in a controlled vocabulary is integrated to help
the document clustering process. Next the system takes advantage of user feedbacks to refine the document set
by filtering those user-rated irrelevant documents. Users can stop the iterative search at any time if the number
of remaining documents is small enough for them to review, or the search process terminates automatically if
a pre-defined number of remaining documents is reached. In this system, the number of documents that users
examined is significantly reduced and the size of retrieved document set could also shrink with the help of the
pruning process. This approach is particularly useful when labeling text is a labor-intensive job and when there
is a large amount of results returned for a keywords-based search.

Since our text retrieval system focuses on the biological domain, we believe the background knowledge
in this area could benefit the document clustering process, and add explanatory power to the organization of
documents. The background knowledge we exploit in this paper is Gene Ontology [8]. Gene Ontology is a
structured, controlled vocabulary that describes gene products in terms of their associated biological processes,
cellular components, and molecular functions. We consider Gene Ontology as a hierarchical organization of
biological concepts, and incorporate this hierarchical structure in measuring the similarity between biological
publications. Users’ evaluation on representative documents is utilized to prune the document set. Documents
in clusters whose representatives are evaluated as relevant by users are kept for the next iteration.

Document clustering is one of the research areas most relevant to this paper. In [7] a core ontology WordNet
is integrated in text clustering process as background knowledge. Concepts in the core ontology are compiled
into the representations of text documents. However, their methods may not work for specific biomedical do-
main, and also the formal concept analysis used for conceptual clustering is known to be slow and impractical
in real applications. Therefore, in this paper, a new term weighting scheme based on biomedical ontology is
proposed to improve the similarity metric of biological publications.

The remainder of this paper is organized as the following. In Section 2, the terminology and metrics are
formally defined and the methodology of our system is described in details. Experimental results are presented
in Section 3. Last, we concluded our work in Section 4.

2 System and Methods

We have developed a prototype system to help users to retrieve useful biological literatures from a large amount
of publications. The users will provide the keywords as input and interact with the system during the retrieval
process. In this prototype system, Gene Ontology is utilized as the background knowledge to organize docu-
ments, and the user feedbacks are used to refine the retrieved documents. Finally, the system returns a small
set of documents that are considered as most relevant to users’ preference. In this section, we formally defined
some terminologies. The methodology of our system is described and the three main steps in the system are
explained in details.

2.1 Pre-Processing

In order to improve the response time of the system, pre-processing is done before users interacting with the
system. Every time a document is imported to the database, the pre-processing described below is conducted.
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During pre-processing phase, Gene Ontology, which is originally described in a DAG (directed acyclic
graph), is transformed to a tree hierarchy. If a term has multiple parents, it will have multiple instances in the
transformed GO tree because it has different paths to the root term, which is important for the feature weighting
discussed in a later section. For example, term ”RNA transport”(GO:0050658) has two parent terms: ”nucleic
acid transport”(GO:0050657) and ”establishment of RNA localization”(GO:0051236). Therefore, ”RNA trans-
port” has two instances in the transformed GO tree: one is at level 8 as a child of ”nucleic acid transport”, and
the other one is also at level 6 as a child of ”establishment of RNA localization”.

After the transformation of the Gene Ontology structure, the occurrences of GO terms are collected from
the documents. The synonyms of GO terms defined in Gene Ontology are also considered equally as GO terms
themselves. That is to say, if a synonym of a GO term appears in a document, the GO term is also considered
occurred in the document. For instance, when searching for ”peroxisome targeting sequence binding”, ”PTC
binding” is also searched. By searching all documents, the number of occurrence of each GO term in each
document is collected. Other statistical information are also collected at the same time, such as the length of
every document, occurrence of every other word in each document, etc. Non-informative words, such as ”the”,
”we”, are removed from the documents based on a given English stop-word list.

2.2 Feature Selection and Weighting

Traditionally documents are considered as a bag of words, and are represented by a set of feature words. Feature
selection is the process to select the set of words to represent documents. It benefits the clustering and classi-
fication by reducing the feature space and eliminating noisy features. In our system, the mutual information as
defined in [9] is used as the criteria for feature selection. 2000 words with the most mutual information through-
out all the documents in each iteration are selected as the feature terms. For example, if in the first iteration, the
system returns 5000 documents matching users’ keywords out of 100,000 documents, 2000 words with the most
mutual information in these 5000 documents will be selected as feature words. Besides this, a set of GO terms
is also chosen as feature terms. A feature level is selected in the transformed GO tree, and all distinct GO terms
at this level serve as the feature terms.

The 2000 words with most mutual information and all the GO terms at the feature level in GO tree form
the feature set. In our prototype system, level 8 in Gene Ontology, which contains around 3500 GO terms, is
selected as the feature level.

After obtaining the feature words to represent documents, we construct a vector of real numbers for every
document by assigning each feature term a numerical weight. The weight of a term is dependent on two factors:
the importance of the term throughout all the documents and the strength of the term in a particular document.
Therefore, the weight of term t consists of two parts: the global weight and the local weight. The global
weight(gw) of a term t is defined as |D|

df(t) , where |D| is the total number of documents in database, and df(t) is
the number of documents that contain term t.

A definition of the local weight of a term t in a document d based on Poisson distribution ([10]) is given as
below:

lw(t) = 1/(1 + exp(α × dlen) × γf(t,d)−1) (1)

where α = 0.0044, γ = 0.7, dlen is the length of document d, and f(t, d) is the frequency of term t in d.
For those feature terms obtained by the most mutual information, their weights in a document are just the

multiplication of the global weight and the local weight: tw(t) = gw(t) × lw(t). A more complex weighting
scheme is used for those feature terms from Gene Ontology. The original term weight computed from the above
will be distributed and aggregated based on Gene Ontology structure. The weight of a term not at the feature
level is distributed or aggregated to its ancestor or descendant terms at the feature level. If the term is at a lower
level than the feature level, its weight is aggregated to all ancestors of this term in the feature level. If the term
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is in a higher level than the feature level, its weight is uniformly distributed to its children level by level until the
feature level is reached. After obtaining the term weight vector for each document, the similarity between two
documents is defined as the cosine similarity of their term weight vectors.

Figure1 illustrates an example of the distribution and aggregation process. A part of the Gene Ontology
hierarchy is shown in Figure1. The two numbers beside each term at the feature level are the original weights
computed for a document and the final weights after distribution and aggregation, respectively. If the second
level in this figure is selected as the feature level, then only ”Transport”, ”Secretion” and ”Establishment of RNA
localization” will serve as the feature terms when computing the document similarity. In this case, although the
term ”Establishment of RNA localization” never appears in the document, the weights of its children terms will
be aggregated to the second level. Therefore, term ”Establishment of RNA localization” will gain weight of 0.25
from its children terms ”RNA Transport” and ”establishment of pole plasm mRNA localization”. However, the
weights of ”Amide Transport”, ”Ion Transport” and ”Boron Transport” are not aggregated to the second level,
because their ”Transport” is a substring of its children terms, and the occurrences of ”Transport” has already
been counted. Meanwhile, the weight of term ”establishment of localization”, which locates in the first level, is
distributed uniformly to its children terms. Therefore, the final weight of feature terms ”Transport”, ”Secretion”
and ”Establishment of RNA localization” in this document will be 0.76, 0.16 and 0.33 respectively.

Feature Level

Ion Transport

Transport

Amide Transport Boron Transport RNA transport

Secretion Establishmeng of RNA localization

0 (0.33)

0.24

0.32 0.23 0.11 0.10 0.15

0.68 (0.76) 0.08 (0.16)

Establishmeng of localization

Establishmeng of pole plasm mRNA localization

Figure 1: Distribution and Aggregation of term weights

2.3 Clustering and Representative Selection

Document clustering has been considered as an important tool for browsing and navigating large document
collections. In our prototype system, after users input the keywords to search, a set of documents is returned
from the document corpus by exact keyword matching. To organize these documents in a meaningful way, these
documents are clustered into groups according to their mutual similarities. Traditional document clustering
methods only consider the distribution of words in documents, but ignore the fact that prior knowledge could be
important in organizing the documents. In stead of measuring the document similarity directly by the distribution
of words, our idea is to compile the background knowledge provided by biological lexicon into the similarity
measurement, which is described in the earlier section.

In our system, Bi-Section-KMeans clustering method ([7]) is used for clustering purpose, which has been
shown to perform as good as other clustering algorithm, but much faster than others in document clustering.
Bi-Section-KMeans is essentially a variant of KMeans clustering algorithm, which keeps partitioning the largest
cluster until the desired number of clusters is reached.

After obtaining the document clusters, one representative document is selected from each cluster. In our
prototype system, the centroid document of each cluster, which has the maximum average similarity to all other
documents in the cluster, is chosen as the representative document. The user will review all the representative
documents and rate each one as relevant or non-relevant. In each iteration, documents are clustered and repre-
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sentative documents are selected. The number of clusters is a parameter of the system and can be set by users.
Users will read the representatives and provide their evaluations. The system will use their evaluations to refine
the document set, then reduce the number of documents. Documents in those clusters whose representative
documents are rated as ”relevant” by users are then kept for next iteration. By looking at a small number of
documents in each iteration, users save a significant amount of time from manually reading all search results.

3 Experimental Results

A prototype search system is implemented in Perl based on the methodology proposed in this paper. 100,000
abstracts from PubMed, which are stored as plain text files in a 7200 rpm hard drive, are used to test our prototype
system. These abstracts serve as the document universe in our experiments. In this section, experimental results
are presented to demonstrate the effectiveness and efficiency of our proposed method.

The following experimental method is conducted for evaluating the prototype system. First we search a
set of keywords, referred to as reference keywords, by exact keywords matching, then a set of documents are
returned for this search query. This set of documents are considered as the benchmark and serve as the reference
result set. Then some keywords are removed from the reference keywords to generate a reduced keyword set.
Naturally, the reduced keyword set will result in a larger document set, which is referred to as initial document
set. The system organizes these documents by document clusters, and users will review the representatives
selected from these document clusters in each iteration. Finally the system will return a set of documents after
several iterations. In our experiments, recall is used to evaluate the search performance of our prototype system.
We denote the set of documents obtained by searching reference keywords as Dr and the set of documents our
prototype system returns by taking the reduced keywords as input is denoted as Do. The recall is defined as
|Do∩Dr |

|Dr| .
One reference keywords set used is ”metabolism”, ”expression”, ”regulation”, ”phenotype”, ”protein”,

”mRNA” and ”yeast”. By doing an exact keyword matching on this set of keywords, 300 documents are re-
turned from our testing document universe. Then we use the following three reduced keyword sets: ”regulation,
Phenotype and yeast”, ”metabolism, expression, regulation, Phenotype, protein and mRNA” and ”regulation,
mRNA and yeast” as the input keyword sets of our system. Each of the three reduced keyword sets will result in
thousands of documents by exact keywords matching. In this experiment, the system was set to terminate when
the number of remaining documents reaches half of the initial result document set. The number of document
clusters was set to 10 in each iteration.

The results show that our prototype system can identify over 70% of the benchmark documents while re-
moving thousands of irrelevant documents in several iterations. Since we reduced the size of the result document
set to half, but achieved a recall over 50%, the precision of the results was also improved compared to the initial
results returned by exact matching on the reduced keywords. Similar results were obtained by other keyword
sets such as ”protein, kinase, enzyme, synthetase, DNA and ligase” and ”nucleotide binding, promoter, enzyme,
expression and regulator”. To evaluate the robustness of our system against different input size, we also chose
keyword sets to vary the size of initial document set, which is returned by exact keyword-matching on the re-
duced keyword set. The experimental results show that the recall varied insignificantly around 68%, although
the response time rose with the increase of initial document size.

One parameter of our system is the number of document clusters in each iteration. We tested the performance
of our system under different settings of this parameter. The results show that if the cluster number is not set
too small, the system performed almost steadily, and was able to identify 70% of the reference document set.
The reason for this observation is that a partitioning clustering algorithm is used in our system, and in each
iteration of the clustering process, it only splits the larger cluster. When the size of the larger cluster is not too
large, users tend to have the same evaluations on two clusters split from one larger cluster. Therefore the system
performs robustly when the number of clusters is not set too small. However, the number of clusters can not be
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Table 1: Performance on keyword set
Iterations Response Time Recall

Test Set 1 4 600 s 74%
Test Set 2 5 645 s 69%
Test Set 3 4 570 s 70%

set too large in practice, because this parameter is actually the number of representatives users will review in
each iteration. A reasonable setting of the number of clusters is from 5 to 15.

4 Conclusions

In this paper, a new iterative search paradigm is proposed. In our approach, document clustering is adopted to
organize documents, and the user feedbacks are used to refine the retrieved documents. A new term weighting
scheme is defined based on Gene Ontology, which benefits the document clustering by considering the hierarchy
of biological concepts in the document similarity measurement. By this approach, users review a much smaller
number of representative documents and the system filters a large number of irrelevant documents according
to user feedbacks. A prototype biomedical literature search system has been built upon this iterative search
paradigm. Experimental results demonstrate the effectiveness, efficiency and robustness of our prototype system.
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