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Letter from the Editor-in-Chief

The Data Engineering Conference

The Technical Committee on Data Engineering, in addition to publishing the Bulletin, also sponsors the Data
Engineering Conference, referred to as ICDE (”International Conference on Data Engineering”). The most
recent conference (for 2003) was held in Bangalore, India. The 2004 conference will be held in Boston, MA. A
”Call for Papers” for this conference appears on the back inside cover of this issue.

The Data Engineering Conference is one of three large and prestigous annual database conferences, the
others being SIGMOD and VLDB. It is the IEEE Computer Society’s flagship conference in the database area.
The program for the conference is excellent, the result of a very competitive paper selection process. Because
of the quality of the conference, many of the leading researchers in our field regularly attend the conference.
Further, any paper published in the conference is included in the SIGMOD Anthology’s CD or DVD collection
of database papers. So ICDE papers have a very wide readership.

I hope that many Bulletin readers will submit papers to the Data Engineering Conference, not only in 2004,
but in subsequent years as well. Perhaps I shall have the pleasure of meeting you at the conference, as I very
frequently attend.

The Current Issue

Go to any recent database conference and it is immediately clear that the area of query processing over data
streams is a very ”hot” area of research. There are usually at least two sessions devoted to streams, sometimes
more. Why has this area suddenly blossomed? There seem to me to be two very good reasons, both related to the
continuous revolutionary advances in hardware, both increasing performance and decreasing costs. First, users
want their traditional data immediately. They do not want to wait for it to be stored, much less processed and
squirreled away in a data warehouse. Such immediate real time access to data may result in a very substantial
competitive business advantage. Second, much more data is now available from a vast array of devices. Perhaps
most spectacular has been the incredible shrinking size and decreasing cost of sensors (sometimes referred
to as ”smart dust”). These devices produce prodigous amounts of data that need to be captured in real time,
aggregated, and, at times, queried in real time as well.

Data stream work is at a very early stage, and is clearly research. But there is already some industrial
interest, e.g. Intel. And, as with any technology, solving problems and exploring applications can lead to a
dramatic increase in interest and deployment. Johannes Gehrke, our issue editor, works in the area of streams,
and knows the streams community well. The current issue is a very nice cross section of the ongoing work
on streams, which nicely captures the state of this young field. I want to thank Johannes for his fine job in
assembling the issue, and hope that you all enjoy it.

David Lomet
Microsoft Corporation
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Letter from the Special Issue Editor

Traditional Database Management Systems (DBMS) software is built on the concept of persistent data sets that
are stored reliably in stable storage and queried several times throughout their lifetime. For several emerging
application domains, however, data arrives and needs to be processed continuously, without the benefit of sev-
eral passes over a static, persistent data image. Potential applications for data stream management range from
network monitoring, sensor networks, financial data, to the real-time enterprise.

In January 2003, a group of researchers met at Stanford University for an informal workshop to discuss
ongoing and open research questions in query processing for streaming data, and to ponder about the killer
application for a data stream management system. While this special issue is not an official report from the
workshop, at least one of the authors of each invited papers was present at the workshop, and the selection of
papers mirrors some of the exciting work that was presented at the meeting. I encourage the interested reader to
visit http://telegraph.cs.berkeley.edu/swim/ for more information.

This issue starts with overview articles from four groups that are currently building prototype data stream
processing systems. Stan Zdonik, Michael Stonebraker, Mitch Cherniack, Ugur C etintemel, Magdalena Bal-
azinska, and Hari Balakrishnan survey the Aurora and Medusa Projects at MIT, Brandeis University, and
Brown University. Sailesh Krishnamurthy, Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael
J. Franklin, Joseph M. Hellerstein, Wei Hong, Samuel R. Madden, Fred Reiss, and Mehul Shah give us an
update of the latest status of the TelegraphCQ Project at Berkeley. The Stanford STREAM Group — at the writ-
ing of this article consisting of Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith Ito, Rajeev
Motwani, Itaru Nishizawa, Utkarsh Srivastava, Dilys Thomas, Rohit Varma, and Jennifer Widom — describes
the status of their system and ongoing research. Chuck Cranor, Theodore Johnson, Oliver Spatscheck, and
Vladislav Shkapenyuk from AT&T Research give an industry perspective; they survey challenges in the design
and implementation of the Gigascope stream database system specialized for network monitoring.

The issue continues with two articles that cover algorithmic issue in data stream processing. Peter Tucker,
David Maier, and Tim Sheard describe how punctuations — predicates that hold about a data stream — can be
used to improve data stream queries. Yanlei Diao and Michael Franklin describe an XML publish-subscribe
query processor that matches streaming XML data with a large number of continuous queries. We conclude
this issue with an article by Alberto Lerner and Dennis Shasha which discusses a novel architecture of a data
stream system based for data from the financial industry on integrating online stream processing with support
for historical queries over a data archive.

I hope that you find this special issue as enjoying to read as I did, and I thank the authors for their contribu-
tions.

Johannes Gehrke
Cornell University
Ithaca, NY 14853
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Abstract

This document summarizes the research conducted in two interrelated projects. The Aurora project being
implemented at Brown and Brandeis under the direction of Uğur Çetintemel, Mitch Cherniack, Michael
Stonebraker and Stan Zdonik strives to build a single-site high performance stream processing engine.
It has an innovative collection of operators, workflow orientation, and strives to maximize quality of
service for connecting applications. A further goal of Aurora is to extend this engine to a distributed
environment in which multiple machines closely co-operate in achieving high quality of service.

In contrast, the Medusa project being investigated at M.I.T. under the direction of Hari Balakrish-
nan and Michael Stonebraker is providing networking infrastructure for Aurora operations. In addition,
Medusa is stressing distributed environments where the various machines belong to different organiza-
tions. In this case, there can be no common goal, and much looser coupling is needed. Medusa is work-
ing on an innovative agoric infrastructure in which various participants can co-operate in distributed
streaming operations.

Finally, some have questioned whether specialized stream processing software is necessary. They
speculate that conventional data base systems can adequately deal with the needs of stream-oriented
applications. In order to answer this question one way or the other, both groups are working on a stream-
oriented benchmark, called the Linear Road benchmark, which we intend to run on both specialized and
conventional system infrastructure.

1 Introduction

Many people have pointed out the rationale for stream-oriented storage systems. Rather than repeat their ob-
servations, we want to note just two points here. Business intelligence is typically performed by extracting
relevant data from operational systems, transforming it into a common representation, and then loading it into
a data warehouse. Business analysts can then run data mining queries against the warehouse to find informa-
tion of interest, on which to base changes to business practices. Business analysis through warehousing and
Extract-Transform-and Load (ETL) techniques is widely used in large enterprises at the current time. However,

Copyright 2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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Figure 1: The Aurora GUI

warehouses are out-of-date by 1/2 of the refresh interval on average, typically 24 hours. Hence, business analysis
is similarly out-of-date.

A widespread goal is ”the real-time enterprise”, through which business analysis could be done in real time.
Such tactical analysis requires streams of data to be captured from operational systems, combined and then acted
on in real time. Supporting the real time enterprise is one goal of specialized stream processing engines such as
Aurora and Medusa.

A second observation is that micro-sensor technology is declining in cost precipitously. Micro-sensors that
reflect their state to a nearby active device are about the size of a United States dime, and are rapidly converging
on a price less than $0.10. In fact, Gillette just placed an order for 500,000,000 ”dimes”, presumably to put on
each package of razor blades. This and other sensor technology will allow most any object of value to report its
state (including its geographic position) in real time. Such technology will enable a new class of application to
collect and act on real-time streams of state information from objects. We will call these monitoring applications,
and a major focus of stream processing engines is to support such applications.

In the remainder of this paper we discuss two stream processing prototypes, Aurora and Medusa. We begin
in Section 2 with the Aurora engine, then turn in Section 3 to the Medusa network infrastructure. Section 4 con-
tinues with the two different approaches to distributed processing. The first, Aurora*, assumes a tight coupling
between the various machines, while the second, Medusa, is appropriate when the various systems belong to
different organizations. Also discussed in Section 4 is a co-operative study on high availability in stream pro-
cessing systems. Section 5 then turns to the Linear Road benchmark and offers a brief rationale for this work.
The paper concludes in Section 6 with the current state of the two prototypes.

2 The Aurora Stream Processing Engine

The Aurora stream processing engine has five features that distinguish it from other proposals in the same general
space such as [5, 6, 10]. They are a workflow orientation, a novel collection of operators, a focus on efficient
scheduling, a focus on maximizing quality of service, and a novel optimization structure. We discuss each of
these aspects in turn.

2.1 Workflow Orientation

There are two main considerations that led us to build Aurora as a workflow system. First, most monitoring
applications contain a component that performs either sensor fusion or data cleansing. Many sensors (especially
mobile ones) are low power, and therefore noisy. Hence, signal processing must be performed on the resulting
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signal. In addition, it is often necessary to triangulate observations from two different sensors in order to define
the position of an object. Such front-end signal processing can either be part of the stream processing system or
contained in a separate subsystem. Aurora supports signal-processing through powerful programmable operators
that allow users to specialize their behavior on either a tuple-by-tuple or an aggregate (window) basis.

The feeling of the Aurora designers is that both data storage, and real-time processing should be in the
same system, in order to provide optimized system performance. In this way, the number of boundary crossings
between the application layer and the storage/processing layer can be minimized. To facilitate this combination
of function, one must adopt a more general processing model than just a query language.

The second reason has to do with query optimization. When an application designer wishes to add new
capabilities to an Aurora workflow, he merely locates the correct place in the workflow diagram to add the
needed functionality. In contrast, if he submitted one or more SQL commands to an Aurora system, then
Aurora would have to do multiple query optimization in order to construct an optimized composite query plan.
Common subexpression elimination is at the heart of multiple query optimization and is known to be a very hard
problem [12]. The Aurora designers wished to avoid this particular ”snake pit”.

For these reasons, the Aurora application designer is presented with a ”boxes and arrows” GUI through
which he can build his workflow. The boxes in the diagram represent primitive Aurora operators, and the arrows
indicate data flow. A screen shot of the Aurora GUI is shown in Figure 1.

2.2 The Aurora Operators

The primitive Aurora operators (boxes) have gone through several iterations, and will doubtless go through
a few more before they ultimately stabilize. The current collection is defined precisely in [1], and includes
the standard filtering, mapping, windowed aggregate, and join boxes. These operators are found in many other
stream-oriented systems. Aurora extends this collection with four aspects of novel functionality. First, windowed
operations have a timeout capability. If a windowed operation is expecting to operate on three messages, then it
must block until all three are received. It is possible for Aurora to block indefinitely in this situation, for example
if the generator of the missing message has become disconnected from the Aurora system. In order to avoid this
undesirable behavior, Aurora windowed operators can timeout, and produce an output message based on less
than the required number of input messages.

The second feature deals with out-of-order input messages. When there is significant network delay, mes-
sages may arrive in an order not intended by the application designer. Further, since Aurora allows windows on
any attribute, monotonic attribute values cannot be guaranteed. If a windowed operator is expecting to process
all the 9AM messages, then it must wait a little while after receiving a 9:01 message before ”closing” the 9AM
window. A slack parameter on each windowed operator allows this sort of controlled waiting. A simpler (and
less functional) mechanism is presented in [10] to deal with the same problem.

The third novel feature of Aurora operators is extendability. Aggregates, filters, and mapping operators can
all be user-defined. Hence, Aurora is not restricted to a built-in collection of aggregates, as in most SQL systems.
Instead, if an Aurora application designer wishes to have ”third largest” as an aggregate, then he is free to define
it. Aurora closely follows the extendability features in POSTGRES [14] this regard.

Lastly, Aurora implements a novel resample operator. This operator allows interpolation between two values
of a first stream, thereby constructing a message that matches the timestamp of a message in a second stream.

2.3 The Aurora Scheduler

A common misperception about scheduling algorithms is that the cost of running them does not need to be
considered. On the contrary, our initial experimental results from the Aurora engine implementation is that the
CPU cost of running the scheduler is comparable to or exceeds the cost of executing an Aurora operation on an
incoming message [4]. Put differently, if the inner loop of control flow in a stream-based system is:
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(a) Drop-based (b) Value-based

Figure 2: Two QoS Graphs

Run the scheduler to decide which message to process and then
Cause a single box to the execute that message

then the scheduling overheard may exceed the execution cost and an unreasonable (greater than 50%) degra-
dation in performance will be observed. In contrast, the inner loop in Aurora can assemble large trains of
messages and then move them collectively through a substantial number of boxes in the workflow diagram.
Such train scheduling is the only way to keep the overhead of the scheduler from being onerous.

The objective of our train scheduling algorithms is to maximize quality of service, which is the topic of the
next section. We have investigated a collection of heuristic algorithms, having given up long ago on finding
algorithms that are provably optimal according to some metric. Our initial scheduling algorithms are presented
in [3] and their experimental performance in [4]. We expect to continue our heuristic algorithm development
in combination with ongoing experimental studies on our prototype. In particular, we must strive for lower
overhead scheduling strategies that increase the percentage of useful work that an Aurora system can deliver.

2.4 Quality of Service

A fundamental tenet of Aurora is that Quality of Service (QoS) should be maximized in a stream processing
system. Since Aurora is fundamentally a real-time engine, it is obvious that some applications should get better
service than others. In military applications, for example, the task that tracks an incoming missile should get
all possible resources and other less important tasks should face temporary resource starvation. Differential
resource allocation has long been a tenet in real-time systems [11], but has not been utilized in current DBMSs.

The Aurora approach is for each application that receives output messages from the Aurora engine to specify
a QoS graph. Two example graphs are shown in Figure 2. Figure 2(a) shows the utility that the application
receives from varying response times. QoS graphs can also be based on metrics other than response time. For
example, in a heart monitoring application, ”normal” output is much less important than messages that represent
abnormal behavior. In this case, a value-based QoS graph is appropriate as noted on Figure 2(b).

The basic Aurora idea is to have human-specified QoS graphs at the outputs of an Aurora workflow, and
then to infer approximate QoS curves for all interior workflow nodes by ”pushing” the QoS curves ”upstream”
through the operator boxes. The details of this operation for value-based QoS are indicated in [15].

With a derived QoS curve on every arc of a workflow, two activities are possible. First, the scheduler can
make intelligent decisions based on these curves, as noted in the previous section. In this way, unimportant
portions of the workflow can be ”starved” to allow more important ones to get the majority of the resources.

Secondly, in certain Aurora applications, it is acceptable to discard messages in overload conditions. The
rationale is that this behavior is desired in real-time systems. Also there may be lost messages in the sensor
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network when an object goes out of range. Hence, ACID properties may be impossible to achieve anyway. As
such, Aurora can optionally be instructed to shed messages when overloaded. This pruning is accomplished
by adding temporary ”drop” boxes. The purpose of a drop box is to filter messages, either based on value or
randomly, in order to reduce load and provide better overall quality of service at the expense of accuracy.

One assumption that Aurora must make is that applications connected to different outputs in an Aurora
workflow have a common notion of quality of service. As such, it is essential that they come from a single
organization, in which context it is possible to have a common notion of QoS.

2.5 Aurora Optimization

An Aurora workflow is a dynamic object. When new applications get connected to the workflow, the number
of boxes and arcs changes. Also ad-hoc queries that are run just once and then discarded have a similar effect.
In addition, an Aurora workflow may become quite large; after all it is the stream processing activity of all
applications that deal with a collection of sensor inputs.

Contrary to current DBMSs which perform optimization at compile-time by examining most of the possible
ways to execute a given query, Aurora takes a radically different approach. First, it is implausible to exhaustively
examine all (or most of) the possible permutations of the boxes in an Aurora workflow; the computational
complexity is just too high in a large workflow. Second, every time the workflow is changed, this process would
have to be repeated, leading to prohibitive overhead. As a result, Aurora does not examine all possible box
rearrangements, and performs only run-time optimization.

An Aurora workflow has the notion of connection points. These are marked arcs in a workflow to which
additional pieces of workflow can be connected. In addition, connection points also keep a user-specified amount
of history, so that newly added Aurora boxes can examine historical messages if they so choose. Since new boxes
can be added to connection points, they mark places of invariance in an Aurora workflow. The optimizer cannot
reorder boxes by pushing a downstream box through a connection point. This reduces the complexity of the
optimization process. In addition, not all Aurora operators commute as noted in [1]; again limiting the possible
changes to an Aurora network.

While an Aurora workflow is executing, it is the job of the Aurora optimizer to examine small subnetworks
for the possibility of a box rearrangement with better performance. If such a rearrangement is found, then
messages are held on the upstream arcs while the subnetwork is ”drained”. Then the rearrangment can be put in
place and processing resumed.

Notice that this results in an optimizer architecture that implements a ”greedy” algorithm. It has been clearly
shown that such an approach may not produce a globally optimal plan, but we don’t see a way to do better on
large workflows.

3 Medusa Network Infrastructure

Many stream processing applications run on multiple computers in a network. In contrast to several other
projects which have focused on single machine environments, both Aurora and Medusa are actively pursuing
distributed architectures. To facilitate both projects, a common networking infrastructure has been written by
the Medusa group at M.I.T.

This infrastructure performs several functions, as discussed in detail in [7]. First, it supports a distributed
naming scheme so that the output of an Aurora workflow at one site can be named and connected to a named
input node on a second Aurora workflow at a second site. This allows local Aurora workflows to be assem-
bled into larger distributed workflows. In addition, the networking layer multiplexes messages from different
streams onto a much smaller number of TCP/IP connections. This multiplexing cuts down on the number of
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Transport Independent RPC
(XML-RPC, TCP-RPC, Local, Flow-Multiplexer)

Query Processor
(Aurora)
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Queries from
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Events from
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events to/from

other Medusa nodes

Administrative
Commands

DHT
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Figure 3:High-level architecture of a Medusa node. Components asynchronously process messages that arrive through their respective
input queue(s).Brain processes all administrative commands such as creation of new schemas and streams. It receives ad-hoc queries
which it partitions and distributes across other nodes. It also monitors and manages load at runtime by moving operators to and from
other nodes. The local query processor runs an instance of Aurora. The remote queues component is a wrapper around the local query
processor. It forwards events to and from other Medusa nodes and routes events coming from data sources to appropriate locations.
Lookup holds one fraction of the catalog running over a distributed hash-table (DHT) such as Chord [13]. The transport independent
RPC allows clients and Medusa nodes to seamlessly communicate with each other using various transport mechanisms. Within a node,
components also communicate through that layer, but the communication is then a light-weight message exchange between threads.

physical connections between sites and improves efficiency. Similar connection pooling is widely performed by
application servers and current commercial DBMSs. A report on theflow multiplexer is in preparation [9].

A second piece of infrastructure functionality is a collection of distributed catalogs that store the pieces of a
distributed workflow and their interconnections. We are investigating using Chord [13] as underlying distributed
hash-table to assign distinct catalog partitions to Medusa nodes.

A last piece of infrastructure functionality is transport. Basically once a distributed workflow is executing,
this component efficiently delivers messages from an output arc on one machine to an input arc on a second
machine. Figure 3 illustrates the architecture of a Medusa node and the components described above.

4 Distributed Stream Processing

There are two aspects of distributed workflow being investigated. Both groups are refining different processing
models, and they are co-operating on a study of high-availability in a stream-based world. This section discussed
both classes of efforts.

4.1 Distributed Workflow

Both groups are investigating different notions of distributed workflow. The Aurora project is pursuing Aurora*,
which will connect multiple Aurora workflows together in a distributed environment. The basic idea is to push
QoS graphs across site boundaries in a similar manner to the way they are pushed”upstream” on a single host.
This will allow a collection of local schedulers to collectively maximize QoS. In addition, the Aurora optimizer
will be extended so that the process of quiescing, changing and restarting a subnetwork can cross a site boundary.
This will allow cross-site optimization, as well as load balancing across sites. The specific approach is discussed
in [7]. The Aurora* architecture is appropriate where all the hosts on which a distributed workflow is executing
belong to the same organization. In such a single domain it is reasonable to assume that a common notion of
QoS exists across machine boundaries.

In contrast the Medusa group is focused on environments where the hosts belong to different organizations
and no common QoS notion is feasible. This multiple domain situation would be found when multiple organi-
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zations are providing services to an entity, as would be common in a Web services world. It is also typical in
current cell phone environments where multiple providers co-operate to provide roaming.

The Medusa approach to distributed workflow is based on an agoric model. Each participant (host) is
assumed to be an economic entity, that is interested in maximizing local profit. As such, it can enter into
contracts to provide stream processing services for other participants. For example, one participant might have
a geographic database of hotels and a second a similar database of restaurants. A third participant might collect
sensor data from cars moving around a metropolitan area. The third participant could contract with each of the
first two to provide a service to its mobile consumers tofind on demand the hotels within a mile of the consumer
with a first-class restaurant on the premises.

The Medusa approach requires a few assumptions in order to avoid economic chaos. For example, messages
must have positive value, and applying an Aurora workflow to a message must increase its value. The Medusa
group is then focused on refining its contracting model and onfinding properties of the model that are enabled by
certain additional assumptions. One specific focus is onfinding what assumptions are necessary to guarantee that
all participants avoid overload situations. A report on the agoric model and its properties is in preparation [2].

4.2 High Availability

Although some stream processing systems are non-transactional as noted above, there are others, especially in
the realm of the real-time enterprise that require ACID properties. For example, a largefinancial institution is
interested in exploring the use of a stream processing system to route trades forfinancial securities to the best
”desk” for execution. In this world, losing messages is unthinkable. For this reason, Medusa and Aurora are
co-operating in a study of high availability (HA) in stream systems.

The gold standard of HA is the so-called process-pairs model originated by Tandem. Here, an application
(process) is allotted a backup on a second site. Whenever the process reaches a checkpoint, it sends a message
to its partner with state information. If the primary fails, then the partner resumes computation from the most
recent checkpoint, and uninterrupted operation is assured in the presence of a single failure.

If one assumes a distributed workflow of Aurora operators, then one need not adopt a process-pair model.
Instead each site can buffer messages for its downstream neighbor. Only when the message has assuredly exited
from the downstream neighbor, can the buffer be truncated. Hence, a small collection of”queue trimming”
messages mustflow upstream to sites buffering messages. If a site fails then the upstream neighbor can notice
and restart the piece of the Aurora network on a backup site and send a copy of the queued messages to it. When
the dead site resumes operation, the reverse switch can take place. This will achieve resilience from a single
site failure with a minimum of messages. Also, HA operation is”lazy”, i.e. messages are not actively sent to a
backup site until a failure is observed.

As one can readily imagine, a stream-based HA scheme will have slower recovery time than a process-pair
approach because of the lazy nature of the backup. However, run time overhead is noticeably lower. As software
and hardware becomes more reliable, we believe that this tradeoff of longer recovery time for lower run-time
overhead is worth exploring. As such, we have written a simulation model that can explore both kinds of
schemes. We are now exploring the operation of the simulation, and a paper on our results is in preparation [8].

5 Linear Road Benchmark

Several researchers have doubted the need for specialized stream processing engines, speculating instead that
commercial DBMSs will work justfine on stream applications. To resolve this issue, we have designed a
benchmark in co-operation with other stream projects called Linear Road. It simulates collecting tolls on a
collection of expressways, based on the amount of traffic that is using each segment of the expressway. It is
driven by real-time reports of vehicle locations from assumed in-vehicle sensors. During the current semester
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we plan on using this benchmark to test performance of our prototypes against a popular commercial DBMS.
We have invited other stream projects to participate, and Stanford has agreed to also run the benchmark. A report
on this activity is planned for midyear [16].

6 The Prototypes

The Aurora engine consists of about 75,000 lines of C++ code and 30,000 lines of Java for the design-time user
interface. It is operational at this time. We are adding the remainder of the planned features and working on
improving performance in preparation for the Linear Road benchmarking activity. The Medusa infrastructure is
also operational and its integration with the Aurora engine is underway. The Medusa economic model is fairly
robust, and a primitive implementation exists. When integration with Aurora is complete, we will switch over
to using the Aurora engine for local processing. We are also about to begin serious efforts on Aurora*.
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Abstract

We are building TelegraphCQ, a system to process continuous queries over data streams. Although
we had implemented some parts of this technology in earlier Java-based prototypes, our experiences
were not positive. As a result, we decided to use PostgreSQL, an open source RDBMS as a starting
point for our new implementation. In March 2003, we completed an alpha milestone of TelegraphCQ.
In this paper, we report on the development status of our project, with a focus on architectural issues.
Specifically, we describe our experiences extending a traditional DBMS towards managing data streams,
and an overview of the current early-access release of the system.

1 Introduction

Streaming data is now a topic of intense interest in the data management research community. This has been
driven by a new generation of computing infrastructure, such as sensor networks, that has emerged because
of pervasive devices. At Berkeley, we are building TelegraphCQ, a system for continuous dataflow process-
ing. TelegraphCQ aims at handling large streams of continuous queries over high-volume highly variable data
streams. In this paper, we focus on the architectural aspects of TelegraphCQ in its current release; please see
[3] for the details of the novel query execution techniques that underlie the system.

As part of our earlier work [2, 6, 7, 4] in the Telegraph project, we built a system for adaptive dataflow pro-
cessing in Java [1]. Although our research on adaptivity and sharing showed significant benefits, our experience
in using Java in a systems development project was not positive [10]. After considering a few alternatives, we
decided to use the PostgreSQL open source database system as a starting point for our new implementation.
A continuous query system like TelegraphCQ is quite different from a traditional query processor. We found,
however, that a significant amount of PostgreSQL code was easily reusable. We also found the extensibility
features of PostgreSQL very useful, particularly the ability to load user-defined code and the rich data types
such as intervals.

Challenges: As discussed in [3], sharing and adaptivity are our main techniques in implementing a continuous
query system. Doing this in the codebase of a conventional database posed a number of challenges:

Copyright 2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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• Adaptivity: While the TelegraphCQ query executor uses a lot of existing PostgreSQL functionality, the
actual interaction between query processor operators is significantly different. We rely on our prior work
on adaptive query processing with operators such aseddies for tuple routing and operator scheduling, as
well asfjords for inter-operator communication.

• Shared continuous queries: TelegraphCQ aims at amortizing query-processing costs bysharing the
execution [6] of multiple long-running queries. This requirement resulted in a large-scale change to the
conventional process-per-connection model of PostgreSQL.

• Data ingress operations: Traditional federated database systems fetch data from remote data sources
using an operator in a query plan. Typically, such an operator uses user-defined (often“in the factory”)
wrapper functions that fetch data across the network. For a shared query processing system however, it is
vital that all operators are non-blocking, and it is not possible to guarantee this with traditional wrappers.

Status: At the time of writing, we have just completed an alpha milestone– an early access release of Tele-
graphCQ. In its current state, TelegraphCQ supports a DDL statement,CREATE STREAM, that can be used to
create archived or unarchived streams. Sources can register themselves with TelegraphCQ and push data to spe-
cific streams. This data is used to produce tuples using stream- and source- specific wrapper functions registered
in the system. In addition, continuous queries can be registered that work over these streams. The queries can
involve individual streams, joins over multiple streams and joins over streams and tables. The DML for these
queries includes primitive sliding window syntax that supports grouped aggregate operations over these sliding
windows. Please visithttp://telegraph.cs.berkeley.edu for more information.

The rest of this paper is organized as follows. We start with a description of how a user interacts with
TelegraphCQ in Section 2. In Section 3 we present an overview of TelegraphCQ. Next, in Section 4 we show
how user-defined wrappers can be created in the system to interface with external data sources. We conclude
with remarks on future work in Section 5.

2 Using TelegraphCQ

In this section we describe how users and applications can interact with TelegraphCQ. In addition to the full
features of PostgreSQL, interactions with TelegraphCQ involve the following:

• Creating archived and unarchived streams.

• Creating sources that stream data to TelegraphCQ.

• Creating user-defined wrappers.

• Issuing continuous queries.

The streams that are created in the system identify objects that may be queried and data that may be pro-
cessed, and possibly archived. The data sources are independent programs that continually send data to a spe-
cific named stream in TelegraphCQ. For each stream, there is a user-defined wrapper that is registered with
TelegraphCQ and is designed to understand the data sent by the source. Finally, users and applications connect
to TelegraphCQ so that they can issue continuous queries over these streams.

Creating streams: In TelegraphCQ, streams can be created and dropped using the new DDL statements,
CREATE STREAM andDROP STREAM respectively. These statements are similar to those used to create and
drop tables. A requirement in defining a stream is that theremust exist exactly one column of a time type which
serves as a timestamp for the stream. This column is specified with a newTIMESTAMPCOLUMN constraint. For
example, an archived stream of readings of average speeds measured by traffic sensor stations in freeways may
be defined as:
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CREATE STREAM measurements (tcqtime TIMESTAMP TIMESTAMPCOLUMN,
stationid INTEGER,
speed REAL) TYPE ARCHIVED

Creating sources: TelegraphCQ expects that a data source will initiate a network connection with it and adver-
tise the name of the stream for which it undertakes to provide data. More than one source can simultaneously
push data to the same stream. The stream name is identified in thefirst few bytes sent to TelegraphCQ after
establishing the network connection. There are no other restrictions on the format of the stream data, as all
subsequent network operations on the connection are the responsibility of the user-defined wrapper functions
associated with the stream.

Creating wrappers: Each wrapper consists of three user-defined functions (init, next anddone) that are
called by TelegraphCQ to process data from external sources. This is described in more detail in Section 4. The
functions are registered in TelegraphCQ using the standard PostgreSQLCREATE FUNCTION statement. For
example theinit function of themeasurements wrapper should be namedmeasurements init and
can be declared using the following DDL.

CREATE FUNCTION measurements_init(INTEGER) RETURNS BOOLEAN
AS ’libmeasurements.so’,measurements_init’ LANGUAGE ’C’;

Continuous queries: Once streams have been created in the system, users can issue long-running continuous
queries over them. When data streams in, the results get sent to the appropriate issuers. A query is identified as
being continuous if it operates over one or more streams. Such queries do not end until cancelled by the user.
The queries can be simple SQL queries (without subqueries) with an optionalwindow clause. The interval that
is specified as a string in the window clause may be anything that PostgreSQL can convert automatically into an
interval type. The window clause serves to restrict the amount of data that participates in the query over time.
This is particularly important for join and aggregate queries since streams are unbounded. An example query
that involves a stream and a table is:

SELECT ms.stationid, s.name, s.highway, s.mile, AVG(ms.speed)
FROM measurements ms, stations s
WHERE ms.stationid = s.stationid
GROUP BY ms.stationid, s.name, s.highway, s.mile
WINDOW ms [’10 minutes’]

This query joinsmeasurements, a stream of sensor readings withstations, a normal relation. The query
continually reports average speeds recorded by each station in a sliding 10 minute window.

These queries can be submitted to TelegraphCQ usingpsql, the interactive client. Other programmatic
interfaces such ODBC and JDBC can also be used, but the applications using those must submit continuous
queries by declaring named cursors. Otherwise the PostgreSQL call-level interface buffers the results of a query
and blocks until all results have been received.

3 Overview of the system

In this section we present a short overview of the TelegraphCQ system, and show how we leverage the function-
ality of PostgreSQL.

Figure 1 shows the basic process structure of PostgreSQL. PostgreSQL uses a process-per-connection model.
Data structures shared by multiple processes, such as the buffer pool, latches, etc. are located in shared memory.
A Postmaster process forks new server processes in response to new client connections. Amongst the different
components in each server process, theListener is responsible for accepting requests on a connection and return-
ing data to the client. When a new query arrives it is parsed, optimized, and compiled into an access plan that is
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then processed by the queryExecutor component. The components that have only been changed minimally in
TelegraphCQ are shaded in dark gray in Figure 1. These include: Postmaster, Listener, System Catalog, Query
Parser and Optimizer1. Components shown in light gray (the Executor, Buffer Manager and Access Methods)
are being leveraged with significant changes. In addition, by adopting the front-end components of PostgreSQL
we also get access to important client-side call-level interface implementations (not shown in thefigure) such as
ODBC and JDBC.

Our chief challenge in using PostgreSQL is supporting the TelegraphCQ features it was not designed for:
streaming data, continuous queries, shared processing and adaptivity. The biggest impact of our changes is to
PostgreSQL’s process-per-connection model. In TelegraphCQ we have a dedicated process, the TelegraphCQ
Back End (BE), for executing shared long-running continuous queries. This is in addition to the per-connection
TelegraphCQ Front End (FE) process thatfields queries from, and returns results to, the client. The FE process
also serves non-continuous queries and DDL statements. TelegraphCQ also has a dedicated Wrapper Clearing-
House process that ensures that data ingress operations do not impede the progress of query execution.

Figure 2 depicts a bird’s eye view of TelegraphCQ. Thefigure shows (as ovals) the three processes that
comprise the TelegraphCQ server. These processes communicate using a shared memory infrastructure. The
TelegraphCQ Front End contains the Listener, Catalog, Parser, Planner and“mini-Executor”. The actual query
processing takes place in a separate process called the TelegraphCQ Back End. Finally the TelegraphCQ Wrap-
per ClearingHouse is used to host the data ingress operators which make fresh tuples available for processing,
archiving them if required.

As in PostgreSQL, the Postmaster listens on a well-known port and forks a Front End (FE) process for each
fresh connection it receives. The listener accepts commands from a client and based on the command, chooses
where to execute it. DDL statements and queries over tables are executed in the FE process itself. Continuous

1Currently we use the PostgreSQL optimizer to create the plan data structures; we are planning to bypass this step for continuous
queries in future.
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queries, those that involve streams as well as streams and tables, are“pre-planned” and sent via the Query Plan
queue (in shared memory) to the Back End (BE) process. The BE executor continually dequeues fresh queries
anddynamically folds them into the current running query. Query results are in turn, placed in the client-specific
Query Result queues. Once the FE has handed a query off to the BE, it produces an FE-local minimal query
plan that the mini-executor runs to continually dequeue results from its Query Result queue and send back to the
connected client.

Since a continuous query never ends, clients should submit such queries as part of named cursors. We have
added a continuous query mode topsql, the standard PostgreSQL interactive client. In this mode,SELECT
statements are automatically converted into named cursors which can then be iterated over to continually fetch
results.

4 Wrappers

In this section we describe how data from external sources can be streamed into TelegraphCQ. We plan to
support the following kinds of sources:

• Pull sources, as found in“traditional” federated database systems.

• Push sources, where connections can be initiated either by TelegraphCQ (TelegraphCQ-Push) or by the
data source itself (Source-Push).

With pull and TelegraphCQ-push sources, TelegraphCQ connects to the source. In contrast, Source-Push
sources connect to a well-known port of TelegraphCQ, advertise the stream they are“supplying” and commence
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data delivery. In our current release we only support Source-Push sources.
As with traditional federated systems, we use user-defined wrapper functions to massage data into a Tele-

graphCQ format (essentially that of PostgreSQL). In our current implementation, there is a one to one corre-
spondence between a wrapper and a stream, although eventually we will ease this restriction. In TelegraphCQ,
however, the system handles the network interface, and the user-defined wrapper limits itself to reading data off
a network socket.

Since it is expensive to create a fresh process for each data source, we have a single process, the TelegraphCQ
Wrapper ClearingHouse (WCH) that manages data acquisition. The WCH is responsible for the following
operations:

• Accepting connections from external sources, and obtaining the stream name they advertise.

• Loading the appropriate user defined wrapper functions.

• Calling these wrapper function when data is available on a connection.

• Processing result tuples returned by a wrapper according to the stream type.

• Cleaning up when a source ends its interaction with TelegraphCQ.

The WCH accepts connections from new data sources, and based on the stream name the source advertises,
loads and executes the appropriate user-defined wrapper code. Since the single WCH process handles multiple
sources, each network socket, and hence each wrapper function, must be non-blocking.

The wrapper code is called either in response to a data-ready indication on the wrapper’s network socket, or
if there is any data as yet unprocessed by the wrapper. The latter condition can arise, as the wrapper only returns
one tuple at a time, in a manner akin to the classical iterator [5] model. Each call to a wrapper may not even
result in a fresh tuple, as the data required to form a tuple might not be available all at once (e.g. a large XML
document that streams in across many network packets). So user defined wrappers should read data from the
network, buffering it if necessary.

Once the wrapper has enough data to form a tuple, it converts it into the PostgreSQL data types expected
by the target stream. Such conversion often relies on calls to PostgreSQL’s own data conversion and construc-
tion functions, and so the wrapper writers are expected to have at least minimal familiarity with PostgreSQL
datatypes and data manipulation functions. In particular, the wrapper must return data to the system as an ar-
ray of PostgreSQLDatum items that can be used to create a data tuple in the PostgreSQL format. In future
the WCH will be extended to provide both mapping and data conversion services to wrappers to make their
implementation easier, perhaps based on the Potter’s Wheel [8] system.

A wrapper consists of three separate user defined functions:init for initialization, next to produce new
records, anddone for cleanup. They are loaded from a shared library using the PostgreSQL function manager.
Each of these functions take a single argument that is treated as a pointer to aWrapperState structure, and
return a boolean value to indicate success or fatal error. Thenext function returns processed tuples through
a field in theWrapperState. Most wrapper functions will need to maintain their own additional state. This
is done through another privatefield of theWrapperState. Wrapper functions will also typically allocate
and free memory respectively in theirinit anddone functions using the PostgreSQL region-based memory
management infrastructure.

The WCH and wrappers use otherfields to communicate state information and return values. For instance
the wrapper needs to indicate to the WCH that it has as yet unprocessed data and must be called even if its
network connection remains idle.

The final responsibility of the WCH is to make freshly created tuples available to the rest of the system.
This is done by placing the tuples in buffers within the standard PostgreSQL buffer pool (analogous to the way
buffers would be allocated for insertions to a traditional table). In the case of archived streams these areflushed
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to disk as part of the normal buffer manager operation. Subsequently, normal scan operators in the TelegraphCQ
executor fetch these archived tuples and process them. Unarchived streams can be handled in a similar way, the
difference being that dirty buffers are not written out to stable storage. In the current release, however, we use a
separate shared memory queue for unarchived streams.

5 Conclusion and future work

This paper describes the current status of TelegraphCQ, a streaming data management system that processes con-
tinuous queries. This corresponds to an early access release of TelegraphCQ that we completed in March 2003.
After our experience building thefirst version of Telegraph in Java, we chose to extend PostgreSQL, a proven
open source database system that is implemented in the C programming language and runs on a wide variety of
platforms. Starting off with PostgreSQL has helped us quickly ramp up the development of TelegraphCQ. We
have benefited from very many useful features that already exist in PostgreSQL. The main message we have at
this point in the TelegraphCQ project is that it is feasible to build a highly adaptive streaming dataflow system
with shared query processing that uses building blocks from a conventional relational data base. An important
next step is to analyze the performance of our system.

TelegraphCQ is very much a work in progress, and we are actively working on adding more features to the
system. As part of this effort, we are addressing a number of open questions that have arisen. Some of these are:

• Adaptive adaptivity: Adaptivity clearly has a benefit in the hostile environments that streaming dataflow
systems must operate in. These benefits, however, probably come with a concomitant cost. What are these
costs, and is it possible for our system to adapt theamount of adaptivity dynamically ?

• Storage system: In a streaming system, data continuallyfloods in, in a fashion unrelated to the queries in
the system and how they are being processed. When data is no longerorchestrated through the system,
can we revisit the role of the storage manager ?

• Interactions between continuous and historical queries: In TelegraphCQ we currently only support
continuous queries over data streams. In future we plan to support historical queries by running them
separately, say in the TCQ Front End process. However, it is not clear how to process queries that are
combinations of a stream’s newly arriving data and historical data (e.g. combine the last hour’s traffic
sensor data with the average data for this hour over the last year).

• Scalability and Availability: The Flux operator [9] is designed to enhance TelegraphCQ with partitioned
parallelism, adaptive load-balancing, high availability and fault tolerance. The load-balancing work (Lux)
has been validated in simulations from the prior version of Telegraph; the full-featured Flux implementa-
tion in TelegraphCQ is underway.

• Signal/noise streams: To handle overload situations, a number of research groups are considering schemes
that downsample (drop) or synopsize (lossily compress) items in a stream. In this vein, we are exploring
a new algebra that combines both the fully-propagated items and the synopsized components. Our intent
is for this combined approach to provide a characterization of both the signal and noise produced when
downsampling or synopsizing the stream. We are also exploring opportunities for joint optimization of
the fully-propagated query plan and the synopsis plan.
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Abstract

The STREAM project at Stanford is developing a general-purpose system for processing continuous
queries over multiple continuous data streams and stored relations. It is designed to handle high-volume
and bursty data streams with large numbers of complex continuous queries. We describe the status of
the system as of early 2003 and outline our ongoing research directions.

1 Introduction

TheSTanford stREam datA Manager (STREAM) project at Stanford is developing a general-purposeData Stream
Management System (DSMS) for processing continuous queries over multiple continuous data streams and stored
relations. The following two fundamental differences between a DSMS and a traditional DBMS have motivated
us to design and build a DSMS from scratch:

1. A DSMS must handle multiple continuous, high-volume, and possibly time-varyingdata streams in addi-
tional to managing traditional stored relations.

2. Due to the continuous nature of data streams, a DSMS needs to support long-runningcontinuous queries,
producing answers in a continuous and timely fashion.

A high-level view of STREAM is shown in Figure 1. On the left are the incomingInput Streams, which
produce data indefinitely and drive query processing. Processing of continuous queries typically requires in-
termediate state, which we denote asScratch Store in the figure. This state could be stored and accessed in
memory or on disk. Although we are concerned primarily with the online processing of continuous queries, in
many applications stream data also may be copied to anArchive, for preservation and possible offline processing
of expensive analysis or mining queries. Across the top of thefigure we see that users or applications register
Continuous Queries, which remain active in the system until they are explicitly deregistered. Results of contin-
uous queries are generally transmitted as output data streams, but they could also be relational results that are
updated over time (similar to materialized views).
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Figure 1: Overview of STREAM

Currently STREAM offers a Web system interface through direct HTTP, and we are planning to expose the
system as a Web service through SOAP. Thus, remote applications can be written in any language and on any
platform. Applications can register queries and receive the results of a query as a streaming HTTP response
in XML. To allow interactive use of the system, we have developed a Web-based GUI as an alternative way to
register queries and view results, and we provide an interactive interface for visualizing and modifying system
behavior (see Section 4).

In Sections 2 (Query Language and Processing), 3 (Operator Scheduling), and 4 (User Interface) we describe
the most important components of STREAM. In Section 5 we outline our current research directions. Due to
space limitations this paper does not include a section dedicated to related work. We refer the reader to our
recent survey paper [BBD+02], which provides extensive coverage of related work.

2 Query Language and Processing

We first describe the query language and semantics for continuous queries supported by STREAM. The latter
half of this section describes STREAM’s query processing architecture.

2.1 Query Language and Semantics

We have designed an abstract semantics and a concrete declarative query language for continuous queries over
data streams and relations. We model astream as an unbounded, append-only bag of〈tuple, timestamp〉 pairs,
and arelation as a time-varying bag of tuples supporting updates and deletions as well as insertions. Our seman-
tics for continuous queries over streams and relations leverages well-understood relational semantics. Streams
are converted into relations using specialwindowing operators; transformations on relations are performed using
standard relational operators; then the transformed relational data is (optionally) converted back into a streamed
answer. This semantics relies on three abstract building blocks:

1. A relational query language, which we can view abstractly as a set of relation-to-relation operators.

2. A window specification language used to extract tuples from streams, which we can view as a set of
stream-to-relation operators. In theory these operators need not have anything to do with“windows,” but
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in practice windowing is the most common way of producing bounded sets of tuples from unbounded
streams [BBD+02].

3. A set of relation-to-stream operators.

The interaction among these three building blocks is depicted in Figure 2.
We have developed a concrete declarative query language,CQL (for Continuous Query Language), which

instantiates our abstract semantics. Our language uses SQL as its relational query language, its window specifi-
cation language is derived from SQL-99, and it includes three relation-to-stream operators. The CQL language
also supports syntactic shortcuts and defaults for convenient and intuitive query formulation. The complete
specification of our query semantics and CQL is provided in an earlier paper [ABW02]. The interested reader
is referred to ourStream Query Repository [SQR], which contains queries from many realistic stream applica-
tions, including a large number and variety of queries expressed in CQL. A significant fraction of CQL has been
implemented to date, as described in the next section.

2.2 Query Processing

When a continuous query specified in CQL is registered with STREAM, it is compiled into aquery plan. The
query plan is merged with existing query plans whenever possible, in order to share computation and memory.
Alternatively, the structure of query plans can be specified explicitly using XML. A query plan in our system
runs continuously and is composed of three different types of components:

1. Queryoperators correspond to the three types of operators in our abstract semantics (Section 2.1). Each
operator reads tuples from a set of input queues, processes the tuples based on its semantics, and writes
its output tuples into an output queue.

2. Inter-operatorqueues are used to buffer the output of one operator that is passed as input to one or more
other operators. Incoming stream tuples and relation updates are placed ininput queues feeding leaf
operators.

3. Synopses maintain run-time state associated with operators.

STREAM supports the standard relational operators (including aggregation and duplicate elimination),window
operators that compute time-based, tuple-based, and partitioned windows over streams [ABW02], three opera-
tors that convert relations into streams, andsampling operators for approximate query answering. Note that the
queues and synopses for the active query plans in the system comprise theScratch Store depicted in Figure 1.

A synopsis stores intermediate state at some operator in a running query plan, as needed for future evaluation
of that operator. For example, asliding-window join operator [KNV03] must have access to all the tuples that are
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part of the current window on each of its input streams, so we maintain onesliding-window synopsis (typically a
hash table) for each of these streams. On the other hand, simple filter operators, such as selection and duplicate-
preserving projection, do not require a synopsis since they do not need to maintain state. The most common use
of a synopsis in our system is to materialize a relation or a view (e.g., a sliding window). Synopses can also be
used to store a summary of the tuples in a stream or a relation for approximate query answering. For this reason
we have implementedreservoir samples [Vit85] over streams, and we will soon addBloom filters [MW+03].

Figure 3 illustrates plans for two queries,Q1 andQ2, over input streamsR andS. QueryQ1 is a windowed-
aggregate query: it maintains the maximum value of attributeR.A over a sliding window on streamR. Query
Q2 is a sliding-window join query over streamsR andS. Together the plans contain four operatorsSW1, SW2,
Max, andJoin, five synopsesS1–S5, and six queuesq1–q6. SW1 is a sliding-window operator that reads stream
R’s tuples from queueq1, updates the sliding-window synopsisS1, and outputs the inserts and deletes to this
sliding window into queueq3. Thus, queueq1 represents streamR, while queueq3 represents the relation that is
the sliding-window on streamR. Similarly,SW2 processes streamS’s tuples fromq2, updating synopsisS2 and
queueq4. TheMax operator maintains the maximum value ofR.A incrementally over the window onR, using
the inserts and deletes from the window maintained bySW1 . Whenever the current maximum value expires
from the window,Max will potentially need to access the entire window to compute the new maximum value.
Thus,Max must materialize this window in its synopsisS3. However, sinceS3 is simply a time-shifted version
of S1, we can share the data store betweenS1 andS3, as indicated by the dotted arrow fromS3 to S1. Similarly,
the sliding-window synopsisS4 maintained by the join operatorJoin can be shared withS1 andS3, andS5

can be shared withS2. Also, queueq3 is shared byMax andJoin, effectively sharing the window-computation
subplan between queriesQ1 andQ2.

TheAurora system [CCC+02] supports shared queues, used to share storage for sliding windows on streams.
Our system goes a step further in synopsis-sharing, including the ability to share the storage and maintenance
overhead for indexes over the synopses as well. For example, ifMax in Figure 3 computedGroup By R.B,
Max R.A, andJoin used the join predicateR.B = S.B, then it would be useful to maintain a hash-index over
R.B in synopsisS1 which bothMax andJoin could use. We currently support shared windows over streams
where all the window specifications need not be the same, and shared materialized views, which are effectively
common subexpressions in our query plans [CDTW00]. We use novel techniques to eliminate from synopses
tuples that will not be accessed in the future, for example using reasoning based on constraints on the input
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streams [BW02].
Execution of query operators is controlled by a globalscheduler, discussed next in Section 3. The operators

have been implemented in such a way that they make no assumptions about the scheduling policy, giving the
scheduler complete flexibility to adapt its scheduling strategy to the query workload and input stream character-
istics.

3 Operator Scheduling

The execution of query plans is controlled by a global scheduler running in the same thread as all the operators
in the system. (The I/O operations are handled by a separate thread.) Each time the scheduler is invoked, it
selects an operator to execute and calls a specific procedure defined for that operator, passing as a parameter the
maximum amount of time that the operator should run before returning control to the scheduler. The operator
may return earlier if its input queues become empty.

The goals of a scheduler in a continuous query system are somewhat different than in a traditional DBMS.
Some traditional scheduling objectives, such as minimizing run-time resource consumption and maximizing
throughput, are applicable in the context of continuous queries, whereas other objectives, such as minimizing
query response time, are not directly relevant in a continuous query setting, though they may have relevant
counterparts (e.g., minimizing average latency of results). One objective that takes on unusual importance when
processing data streams is careful management of run-time resources such as memory. Memory management
is a particular challenge when processing streams because many real data streams are irregular in their rate of
arrival, exhibiting burstiness and variation of data arrival rate over time. This phenomenon has been observed in
networking [FP95], web-page access patterns, e-mail messages [Kle02], and elsewhere. When processing high-
volume and bursty data streams, temporary bursts of data arrival are usually buffered, and this backlog of tuples
is processed during periods of light load. However, it is important for the stream system to minimize the memory
required for backlog buffering. Otherwise, total memory usage can exceed the available physical memory during
periods of heavy load, causing the system to page to disk and limiting system throughput. To address this
problem, we have developed an operator scheduling strategy that minimizes the memory requirement for backlog
buffering [BBDM03]. This strategy, calledChain scheduling, is near-optimal in minimizing run-time memory
usage for single-stream queries involving selections, projections, and foreign-key joins with stored relations.
Chain scheduling also performs well for queries with sliding-window joins over multiple streams, and multiple
queries of the above types.

The basic idea in Chain scheduling is to break up query plans into disjoint chains of consecutive operators
based on their effectiveness in reducing run-time memory usage, favoring operators that “consume” a large
number of tuples per time unit and “produce” few output tuples. This metric also determines the scheduling
priority of each operator chain. Chain scheduling decisions are made by picking the operator chain with highest
priority among those that have operators that are ready to execute and scheduling the first ready operator in
that chain. Complete details of Chain, proofs of its near-optimality, and experimental results demonstrating the
benefits of Chain with respect to other scheduling strategies, are provided in an earlier paper [BBDM03].

While Chain achieves run-time memory minimization, it may suffer from starvation and poor response
times during bursts. As ongoing work, we are considering how to adapt our strategy to take into account these
additional objectives.

4 User Interface

We are developing a comprehensive interactive interface for STREAM users, system administrators, and system
developers to visualize and modify query plans as well as query-specific and system-wide resource allocation
while the system is in operation.
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4.1 Query Plan Execution

STREAM will provide a graphical interface to visualize the execution of any registered continuous query. Query
plans are implemented as networks ofentities, each of which is an operator, a queue, or a synopsis. The query
plan execution visualizer will provide the following features.

1. View the structure of the plan and its component entities.

2. View specific attributes of an entity, e.g., the amount of memory being used by a synopsis in the plan.

3. View data moving through the plan, e.g., tuples entering and leaving inter-operator queues, and synopsis
contents growing and shrinking as operators execute. Depending on the scope of activity individual tuples
or tuple counts can be visualized.

4.2 Global System Behavior

‘The query execution visualizer described in the previous section is useful for visualizing the execution and
resource utilization of a single query, or a small number of queries that may share plan components. However, a
system administrator or developer might want to obtain a more global picture of DSMS behavior. The STREAM
system will provide an interface to visualize system-wide query execution and resource utilization information.
The supported features include:

1. View the entire set of query plans in the system, with the level of detail dependent on the number and size
of plans.

2. View the fraction of memory used by each query in the system, or in more detail by each queue and each
synopsis.

3. View the fraction of processor time consumed by each query in the system.

4.3 Controlling System Behavior

Visualizing query-specific and system-wide execution and resource allocation information is important for sys-
tem administrators and developers to understand and tune the performance of a DSMS running long-lived contin-
uous queries. A sophisticated DSMS should adapt automatically to changing stream characteristics and changing
query load, but it is still useful for “power users” and certainly useful for system developers to have the capability
to control certain aspects of system behavior. STREAM does or will support the following features:

1. Run-time modification of memory allocation, e.g., increasing the memory allocated to one synopsis while
decreasing memory for another.

2. Run-time modification of plan structure, e.g., changing the order of synopsis joins in a query over multiple
streams, or changing the type of synopsis used by a join operator.

3. Run-time modification of the scheduling policy, choosing among several alternative policies.

5 Directions of Ongoing Research

This section outlines the problems that we are addressing currently in the STREAM project, in addition to
implementing the basic prototype as described above. These problems fall broadly into the areas of efficient
query processing algorithms, cost-based optimization and resource allocation, operator scheduling, graceful
degradation under overload, and distributed stream processing.
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Efficient query processing: Our system needs efficient query processing algorithms to handle high-volume
data streams and large numbers of complex continuous queries. Some of the issues we are addressing in this
area include techniques for sharing computation and memory aggressively among query plans, algorithms for
multi-way sliding-window joins over streams, tradeoffs between incremental computation and recomputation for
different types of continuous queries, and strategies for processing continuous queries efficiently while ensuring
correctness in the absence of time-synchronization among stream sources and the DSMS.

Cost-based optimization and resource allocation: Although we have implemented support for a significant
fraction of CQL in STREAM to date, our query plan generator is fairly naive and uses hard-coded heuristics to
generate query plans. We are now moving towards one-time and dynamic cost-based query optimization of CQL
queries. Since CQL uses SQL as its relational query language, we can leverage most of the one-time optimiza-
tion techniques used in traditional relational DBMSs. Our unique optimization techniques include relocating
window operators in query plans, exploiting stream constraints to reduce window sizes without affecting result
correctness, and identifying opportunities for sharing computation (e.g., common subexpression computation,
index maintenance) and memory (synopses and queues). Apart from choosing plans shapes and operators, a
query optimizer must allocate resources such as memory within and across queries. One of the problems we are
addressing in this area is how to allocate resources to query plans so as to maximize result precision whenever
resource limitations force approximate query results. We are also exploring dynamic and adaptive approaches
to query processing and resource allocation. Our adaptive query processing is less fine-grained thanEddies (as
used in theTelegraph project [CC+03]). Our approach relies on two interacting components: amonitor that cap-
tures properties of streams and system behavior, and anoptimizer that can reconfigure query plans and resource
allocation as properties change over time.

Scheduling: As described in Section 3, the Chain scheduling strategy achieves run-time memory minimiza-
tion, but it may suffer from poor response times during bursts. As ongoing work, we are adapting Chain to
minimize total run-time memory usage for queries under the constraint that the latency of any query-result tuple
must not exceed a given threshold. Another planned extension needed for a complete scheduling strategy for a
DSMS is the intelligent handling of query workloads where synopses and queues do not all fit into the physical
memory available in the DSMS.

Graceful degradation under overload: There could be large intervals of time when input stream arrival rates
exceed the maximum rate at which the DSMS can process its query workload over these streams. As shown
by theAurora system [CCC+02], a general approach to handle such overload situations isload shedding. The
system load is reduced to manageable levels by dropping input tuples selectively so that the overallquality-of-
service given by the system degrades as little as possible [CCC+02]. Ongoing work in our project adopts a
similar approach, using sampling-based techniques to drop input tuples with the goal of minimizing the overall
weighted error in query results incurred during overload situations.

Distributed stream processing: A final important aspect of our long-term research agenda is to incorporate
distributed data stream processing techniques into the STREAM system. Data stream sources are frequently
geographically dispersed, and our experiments and simulations show that processing strategies that take this fact
into account can result in significant savings in computation and communication costs [OJW03, BO03]. We
plan to modify STREAM to function in a distributed environment, incorporating specialized distributed data
processing strategies.
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Abstract

Managing a large scale network requires a network monitoring infrastructure. However, network
monitoring is a difficult application. In response to shortcomings in the readily available tools, we have
developed Gigascope, a stream database system specialized for network monitoring. In this article,
we discuss some of the constraints we faced when developing the Gigascope architecture, Gigascope
applications, and how Gigascope is used.

1 Introduction

Modern communications systems are very complex, involving large amounts of expensive equipment running
complex protocols, and which must be continuously available. Network monitoring is necessary for many
tasks, from finding network bottlenecks to diagnosing network attacks. Researchers at AT&T Labs — Research
perform extensive studies using data derived from network monitoring. These experiences showed that existing
methods of network monitoring and analysis had serious shortcomings.

One common method of network analysis is to gather data from a network tap using tools such astcpdump
or its underlying librarypcap. While this method can provide a great amount of detail for subsequent analysis,
there are many problems (as is discussed in [4]). Because so much data is gathered so quickly, the data gathering
can be performed only for short periods of time. To extend the sampling period, usually only the network
protocol headers are stored, which frustrates analyses which use the application layer headers of the packets (e.g.
web or database transactions on a VPN). The data collection is often lossy (i.e., because of buffer overflows)
necessitating data munging strategies at analysis time. The resulting data set is collected on a server in thousands
to millions of files, and analyzed with hand-crafted programs (for example, Perl scripts). Managing these very
large data sets is difficult — data quality problems are common and metadata is quickly lost. As a result, data
analyses are often not repeatable. There are some other perhaps less obvious problems. For one, moving these
data sets to a central analysis server is very expensive relative to the value of the data. For another, collecting
and storing detailed information about network traffic creates privacy and security problems.

A method at the opposite end of the spectrum is to use one of the commercially available network monitoring
tools. This approach also presents problems, the most significant of which is the lack of flexibility. Commercially
available systems are usually closed, creating data only for their own reporting systems. Making changes to
the reports generally requires negotiation with the vendor and winds up being too slow and very expensive
(especially for high-speed link monitors). Also, these systems are generally expensive (and AT&T has avery
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large network) and run on computers provided by the vendor. However these boxes are often not the most
appropriate devices for the task.

An intermediate method uses aggregated data sets collected by the router. Two common types of data
are SNMP, which collects and distributes a variety of statistics about router usage, and netflow, which is a
summary of all flows (packets from a source to a destination) traversing the router. Because these data sets are
highly aggregated, they present fewer problems with data management and fewer concerns about privacy and
security. However, their coarse nature greatly reduces the range of analyses that can be made. Furthermore,
post-collection data analysis is still made difficult by the loss of metadata and the size and unstructured nature
of the collected data sets.

To improve our ability to perform various network monitoring tasks, we have developedGigascope, a
lightweight stream database specialized for network monitoring applications. Our first deployment of Gigas-
cope occurred in October 2002, and currently (March 2003) we have seven deployments with many more in
negotiations. In this article, we describe the application constraints which guided our choice of architecture, a
brief discussion of the Gigascope system, and a discussion of Gigascope applications and use.

2 Application Constraints

In our design of the Gigascope architecture, we faced a number of constraints which guided our decisions.

2.1 Data Reduction

The single most critical function of a network monitor is to reduce the amount of data flowing through the
system. The earlier the data can be reduced, the less load is placed on the computing system, and therefore
the higher the data rate (or the more complex the query set) that can be supported without data loss. As a side
benefit, the sooner that irrelevant data can be discarded, the less risk of privacy and security problems. Ideally,
the output of the query system is reduced to a small enough size that it can be loaded into a conventional data
warehouse, or even viewed directly.

2.2 Flexibility

To a person in the database community, the need for flexibility is self-evident. But in an application-specific
domain such as network monitoring, flexibility can be a problem. A more flexible system is generally harder
to use, harder to optimize, and easier to abuse than a less flexible system. For example, some systems, e.g. the
FLAME architecture [1], propose distributing executable code modules to accomplish network monitoring, but
this level of flexibility leads to a system which is very difficult to manage. We have no opportunity to perform
critical optimizations and the metadata is lost, leading to problems in the post-collection analysis.

A declarative query language, such as SQL, provides a great deal of flexibility while providing enough
structure to enable allow a wide variety of optimizations. However, for network applications SQL is often
insufficiently flexible, leading to user frustration and to very complex and inefficient expressions for common
network monitoring applications (for example, see the network traffic management queries in [7]). We found that
sacrificing the purity of the query language for increased flexibility is sometimes a good tradeoff (as discussed
below).

2.3 Query Language

It might be surprising to the readers of a database publication but the choice of query language is an issue. Should
it be a standard database language, e.g. SQL, or a special purpose language designed to succinctly and efficiently
express network monitoring queries. Consider the examples of Tribeca [8] and Hancock [2], both of which are
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mostly procedural. In the end we decided that the advantage of using a well-known and well-researched query
language outweighed the advantages to be had from a special purpose language.

2.4 Real Time Processing

A stream database system is inherently “push-based” rather than “pull-based”, meaning that the system must
handle each new packet of data when it is offered, typically by buffering the packet until it can be processed.
If the buffer overflows, the system loses data. If the query system is searching for, e.g. multimedia session
initiations, losing even a single packet can significantly skew the query results. Therefore the system must
incorporate traditionally real-time concerns such as scheduling and buffer sizing.

2.5 Computing Device Selection

Network equipment centers are usually more severe environments than data centers. They are generally small,
so that equipment space is at a premium. The network center might be in a remote location and rarely visited
by a technician. Even in large network centers, access is generally restricted to qualified technicians. In either
case, the equipment must run reliably with only remote maintenance for years. Network centers often have
certification requirements for their equipment, which limits the selection of vendors and models. In many
network centers, only 48 volt power is available (a telephony standard).

2.6 Reliability

The network monitors are often installed in remote or otherwise difficult to access locations, and must operate
for months at a time. One way to ensure reliability is to use reliable server-quality hardware. However, the
software system must also be highly reliable, and as a result we generally have a preference for simplicity in our
software architecture.

2.7 Efficiency

A critical requirement is efficiency. In part, this requirement is dictated by limitations on devices. Space is
usually very limited in network centers: we simply cannot install large computer systems. Cost is another
factor. AT&T has a very large network and very many customers. Saving $10,000 on an host computer becomes
important when you make hundreds or thousands of installations. Also, it is very convenient to be able to monitor
a 100 Mbit/sec network with a laptop. We developed Gigascope to monitor high-speed optical networks, which
can carry millions of packets per second at peak usage. Although modern CPUs operate at gigahertz frequencies,
there are distressingly few CPU cycles per network bit.

2.8 User Resistance

The target user base (network analysts) are often skeptical of using database technology. In part, they are
skeptical because they have not used database tools in the past and are reluctant to change. Also, many attempts
to use databases to query network monitor data have failed in the past. A system that is slow, unreliable, or
inflexible will be quickly discarded. Instead, we need to show that complex applications can be very quickly
developed and that they will be more reliable and have better performance than a hand-crafted system.

3 Gigascope Architecture

We describe the Gigascope architecture more fully in another paper [3], so we give a brief description here and
relate it to the application constraints.
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Gigascope is a lightweight stream database specialized for network monitoring applications. Gigascope
manages streams, or indefinite sequences of tuples. Currently, relations and continuous tables are not supported,
and there are no immediate plans to incorporate them (although there are ways to perform certain foreign key
joins with tables). Applications receive results by subscribing to the stream which is the output of a query.

Stream database systems must incorporate some notion of time in order to unblock operators such as aggre-
gation and join. One method is to make the dbms a continuous query system, so that all results are continuous
tables defined as the result of a query on a recent time window of the input data streams. This approach is
well suited to many continuous monitoring queries, but introduces complications for network monitoring (more
complex query semantics and less efficient query evaluation). The other common method is to make the dbms
a pure stream database – that is, all operators transform input streams into output streams. With a pure-stream
dbms, some explicit notion of time is generally needed. Network analysis queries almost always make explicit
references to timestamps, so this restriction is not a serious complication. Network data generally contains
many types of timestamps and sequence numbers, so Gigascope provides a mechanism for schema annotations
to indicate which stream fields behave as timestamps and how.

By pushing timestamp notations into the base stream schemas and using timestamp-ness imputation (similar
to type imputation) queries such as

Select tb, DestAS, count(*)
From IPV4
Group By time/60 as tb, getlpmid(destIP, ’asn.tbl’) as destAS

are meaningful, as long astime (in this example, a second-granularity timestamp) has been annotated as
being a timestamp.

The GSQL query language is in most respects a restriction of SQL. Some of these restrictions are related to
programming effort – for example, only two-way joins are supported. Other restrictions are related to the need
to find time windows in which to evaluate blocking operators such as aggregation and join. There are also some
language extensions, for example themerge operator, which is similar to aunion except that it merges two input
streams in a timestamp order.

In order to provide the flexibility required for network analysis, GSQL supports user-written functions and
operators. For example, thegetlpmid function performslongest prefix matching, i.e., to find the most specific
subnet matching an IP address. Routers use longest prefix matching when doing route lookup, so many network
monitoring queries must use this function. The source data is the tableasn.tbl, which is downloaded from a
router. The getlpmid function will read this file when the query starts, build a search data structure, and use
this data structure to perform lookups (we have built in the support for this kind of behavior). Network analysts
have written highly tuned and very fast C-language modules to do longest prefix matching, one of which is
now part of the Gigascope runtime library. The ability to use these special functions is a key part of Gigascope’s
flexibility. We note that longest prefix matching is a special kind of join, but its expression in relational operators
would be complex and inefficient.

Many network analyses require that a network protocol be simulated in part or in whole. Examples include
IP defragmentation and multimedia monitoring. To accommodate user-written software, we provide a view
mechanism to incorporate user-defined operators. The operator exports a schema, has source queries, and a
specification of how selections and projections can be pushed into the operator and its source queries. We have
recently added this functionality to Gigascope; and are still experimenting with it.

Gigascope is not a monolithic dbms, instead it operates as a set of cooperating processes. A run-time system
evaluates low-level queries on raw packet sources (this important performance optimization is described in [3]).
The low level queries generate derived data streams that are consumed by one or more processes, which can
be further query processing nodes or application programs. A process which is a query processing node also
generates a data stream, and the level of nesting can continue indefinitely deep. Aregistry process contains a
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mapping from query names to the processes which supply the corresponding stream. To read data from a query,
a process (application program or query processing node) finds the data stream source from the registry, then
contacts the supplying process to subscribe to the data stream. We used this flexible organization to incorporate
user-defined operators.

Gigascope is a compiled query system. When a user submits a set of queries to Gigascope, they are analyzed
and optimized, and a set of C and C++ language modules are generated. These are compiled and linked into a run
time system, and executed. At this point, the user can access the output data streams. Although the approach of
compiled queries places some limits on flexibility, we have found that this approach produces the most efficient
system. In a recent application, Gigascope processed 1.2 million packets per second using a moderately priced
dual 2.4 Ghz rack mount server.

4 Modes of Use

We have made several Gigascope deployments in the AT&T network and at AT&T customer sites, and we have
noticed typical patterns of use. Typically, we define a set of queries, then backhaul the results to a centralized
server, where we ingest the data into a data warehouse. We use the data warehouse to generate reports and
to populate web pages. Gigascope generally reduces the data volumes to a point where data transfer and data
warehouse ingestion costs are quite moderate.

In some occasions, the data volumes are so large, or the backhaul network is so slow, that it is much better
to keep the data warehouse on the network monitor. In this case, we just need to spend a little more money on
the server’s disk drives. The monitor serves web pages, and on demand transfers reports back to an centralized
analysis server.

The procedure of gathering Gigascope output and periodically loading it into a data warehouse has worked
well for our applications. However there is some delay between data generation and data loading. It would be
an interesting experiment to use a continuous query system such as STREAM [6] to monitor Gigascope output.

Another mode of use is to use Gigascope to search for events in a packet stream. We have written a translator
to convert Snort [5] rules into GSQL queries, and have written a trigger processing application to interpret the
results of the queries. However we have made only preliminary experiments with this type of system.

4.1 Applications

We have used Gigascope in a number of different applications, which present their own challenges.

• Network analysis: We have developed a standard query suite to be used for analyzing the health and
status of a network. This data is typically backhauled to a data warehouse then correlated with other
network data, especially BGP (Border Gateway Protocol) data. The resulting reports give a picture on
network health and usage, and correlation with BGP (router) reports often indicates the source of network
problems. We have applied this type of analysis to AT&T’s network, and to current or potential customer
networks.

• Protocol analysis: Applications do not just run on a single machine anymore, these days there are many
instances of applications which run across large numbers of diverse machines. In these kind of applica-
tions, the (wide-area) network is no longer just a dumb pipe, it is a critical part of the properly functioning
system. In a recent application of Gigascope, we helped a customer debug performance problems by
correlating Gigascope’s protocol-level measurements with user experience and with router reports.

• Research: The highly flexible nature of Gigascope makes it well-suited as a research tool. Experimental
analysis code can be quickly grafted into a high speed monitoring system. Currently we are working with
a research team which has developed new algorithms for monitoring the quality of video streams.
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• Intrusion detection: Network intrusion detection can be accomplished by expressing intrusion rules as
GSQL queries and feeding the result streams into a trigger processing application. We have made only
preliminary experiments with this kind of application.

5 Conclusions

Gigascope is an applied industrial research project, and as a result has developed in ways different than other
recent stream database research projects. The GSQL query language is less expressive and the Gigascope archi-
tecture and query processing algorithms are less sophisticated that of, e.g. [6, 9]. However, we have been able to
develop a stream database network monitor which operates at very high speeds, is stable enough for unattended
operation, and which has been deployed for widely diverse applications. To do so, we have made several query
language and architectural innovations, which are more fully described in [3].
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Abstract

In-stream punctuations can be used in a variety of ways to enable applications over data streams. In
previous work, we focused on using punctuations to improve specific query operators, namely blocking
operators and unbounded stateful operators. We report here on our ongoing work in exploiting punc-
tuation semantics. We discuss three applications that illustrate how punctuations can be used. We also
discuss our current focus – deciding when punctuations can be used to improve entire queries. We use a
notion of compactness to characterize the utility of a given punctuation scheme.

1 Introduction

Our previous work has shown that punctuations make a wider range of query operators applicable to data streams
[19]. Queries that involve blocking operators such as group-by and difference can be unblocked using punctu-
ations. Further, punctuations can reduce the state requirements for stateful operators such as join and duplicate
elimination. Punctuations allow users to pose more kinds of queries over data streams.

Much of the feedback on this work can be reduced to two questions: How do punctuations get embedded into
data streams? and What kinds of applications can take advantage of punctuations? We discuss three applications
that address both questions: a temperature monitoring system, a network traffic monitoring system, and an online
auction system. Each application uses punctuations in different ways to answer user queries.

To date, our work has focused on individual query operators. A more significant issue is the effects of
punctuations on an entire query. Certainly, understanding the effects of punctuations on individual operators
helps, but we need a formal way of determining if a set of punctuations can enhance a query over data streams
(or the dual question of which queries are able to take advantage of a given set of punctuations?) For a set
of punctuations to be effective over a stream of data, it must cover designated subspaces of the output domain
using a finite number of punctuations. A set of punctuations is said to becompact if it has this property for all
subspaces of the output domain.

This paper is organized as follows: Section 2 gives a brief background of punctuation semantics and an
overview of related work. In Section 3 we describe three applications that take advantage of punctuations in a
data stream. Section 4 reports on our current effort using compactness to characterize the queries that can exploit
particular punctuations. We conclude in Section 5.
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advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
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2 A Brief Background on Punctuated Streams

In our discussion of data streams, we will useS[i] to mean the firsti elements in streamS, and forj > i,
S[i → j] are the elements inS from i + 1 to j. Note thatS[i] = S[0 → i].

Punctuations denote the end of a subset of data. Therefore, a punctuation can be seen as a predicate over
data in the stream. A data itemt from a stream is said tomatch a punctuationp if t evaluates totrue for the
predicate described byp. We denote this as a function:match(t, p). Further, we say that a data streamS is
grammatical if, ∀i, j ∈ ω.j > i, p ∈ S[i] ∧ t ∈ S[i → j] ⇒ ¬match(t, p). That is, a streamS is grammatical
if no data items inS that match punctuationp come afterp. In our work, we expect streams to be grammatical.

One can imagine many different formats for punctuations. For example, since each is a predicate over data,
it might be represented as a function. We instead represent a punctuation as a series of patterns over attributes
of data items in the stream, as it allows easier manipulation of punctuation. Our patterns are listed in Table 1. A
data item matches a punctuation if the value of each attribute in the data item matches the corresponding pattern
in the punctuation. For example, given a punctuationp =< ∗, [1, 6] >, if t1 and t2 are data items such that
t1 =< 3, 5 > andt2 =< 3, 7 >, thenmatch(t1, p) = true andmatch(t2, p) = false. This scheme is simple,
but has the useful property that the logical ‘and’ of two punctuations is itself a punctuation.

ψ Empty – does not match any values ∗ Wildcard – matches any value
c Constant – matches onlyc {c1, c2, c3} List – matches values in the list
(c1, c2) Exclusive Range – matches values strictly in the range[c1, c2] Inclusive Range

Table 1: Patterns for punctuations

In many cases, the output of a relational operator is determined by values of specific attributes of input data
items. For example, the join operator compares values of join attributes, and group-by arranges data items by
the values of the grouping attributes. It is therefore useful to be able to discuss punctuations that only focus on
specific attributes. For a schemaR over a data stream, we say that a punctuationdescribes a set of attributes
X ∈ R if, for all attributesa ∈ R−X, p(a) = ∗. Consider the group-by operator as an example. Punctuations
that describe the grouping attributes are most useful, since they ensure that all data items for a particular group
have arrived.

2.1 Additional Behavior Due to Punctuations

We initially considered punctuations simply as a way to unblock blocking operators and decrease the amount
of state required by unbounded stateful operators. This vague intuition needed to be formalized into a notion of
correct behavior for operators in the presence of punctuations. To this end, we formulatedpunctuation behaviors
for individual operators. There are three kinds of behaviors:Pass behavior describes the additional data items
that can be output as a result of punctuations.Keep behavior describes the state required for the operator to
continue to process incoming data correctly. (Alternatively, one could talk about purge behavior that describes
the state that is no longer required.) Finally,propagation behavior describes what kinds of punctuation can be
output from an operator. These behaviors define operation beyond normal operator behavior.

Consider for example the following three operators: select, duplicate elimination, and group-by. The select
operator is not blocking – data items that pass the selection predicate are immediately output. Therefore, select
does not have additional pass behavior. Further, select does not maintain any state, and therefore has no addi-
tional keep behavior. The select operator should propagate punctuations, though. In this case, select can simply
output punctuations as they arrive. If the input stream is grammatical, then the output from select will also be
grammatical.

Duplicate elimination is a bit harder. Like select, it does not have additional pass behavior. However, it does
maintain state. In a simple implementation, unique data items are maintained in a hash table. When new tuples
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arrive, they are used to probe the hash table to filter out duplicate values. This hash table will grow without
bound on unbounded input, in the absence of punctuation. When a punctuation arrives, we know that no more
data items will arrive that match it, so any data items in the hash table that match that punctuation can be purged.
The keep behavior here is to retain only data items that have not matched incoming punctuation. Finally, we
want duplicate elimination to propagate punctuations. Like select, punctuations are output as they arrive.

Finally, we consider group-by. Since group-by is a blocking operator, we need additional pass behavior to
output correct results as soon as possible. If the input stream contains punctuations that describe the grouping
attribute set, then group-by can pass results for groups that match the punctuation. Further, since groups that
have been output are complete, we no longer need to keep state for those groups. Thus, the keep behavior is to
retain groups that do not match incoming punctuation describing the grouping attribute set. Finally, group-by
can propagate punctuation stating that no more data items for groups that have been output will appear. Notice
that group-by can only be improved with punctuations that describe the grouping attribute. Other punctuations
are not generally useful (unless they can be combined into useful punctuations).

2.2 Building on Punctuation Behaviors

Punctuation behaviors give us a good, high-level view of how individual operators should process punctuations.
We use punctuation behaviors in two ways: First, we have defined three kinds ofpunctuation invariants [19]
based in set theory to define various behaviors: pass invariants, keep invariants, and propagation invariants.
These invariants define when a punctuation-aware operator is a reasonable counterpart to a relational operator.

The second use for punctuation behaviors is in our framework for stream iterators. Our framework is im-
plemented in the functional programming language Haskell [10], a lazy-evaluation language. We have defined
the general behavior of stream iterators using two generic functions, and provide specific helper functions to the
generic function to define specific iterators. Each punctuation behaviors appears as a specific function to be exe-
cuted on each data item iteratively. Our model allows us to prove that our implementations of punctuation-aware
stream iterators obey the invariants. Proofs for two implementations are available elsewhere [19].

2.3 Related Work

Querying over continuous data streams has become a popular research topic. The Tangram stream query pro-
cessing system by Parker et al. [17] is an early investigation attempting to use database technology on a data
stream. They include in their discussion blocking relational operators such as sort and difference, but do not dis-
cuss how these behave in the presence of continuous streams. Parker also details a model for stream transducers
[16] very similar to our model of stream iterators, though he limits the discussion to unary transducers.

Many data stream systems [2, 3, 7, 8, 14, 21] usewindows over data streams to bound the amount of memory
considered during query execution. Windows define a range of data items to process, where the range is normally
defined by the number of data items or by a timespan. Typically, windows come in two flavors:fixed (or
landmark) andsliding (or moving). In fixed windows, a landmark is defined in the data stream (e.g. every 100th

data item or at the beginning of each hour), and the query is processed over data items from that landmark up to
the current data item. Sliding windows are defined to be a certain size (e.g. the last 100 data items or data items
in the past 10 minutes), and queries are processed over data items from the current one back to the size of the
window. Kang et al. [11] evaluate different join algorithms over sliding windows based on a number of external
factors. Zhu and Shasha [21] add a third kind of window calleddamped windows, where previous sliding
windows are evaluated with the current sliding window at exponentially decreasing weights. Chandrasekaran et
al. [3] discuss a more general window model, in which the start-point and end-point of each window processed
by a query can change over time.

Another common approach to querying over data streams is to maintain a summary of the dataset, and
output approximate results to queries based on that summary. Gilbert et al. [8] use wavelets to approximate data
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streams from cellular telephones. Gehrke et al. [7] use focused histograms to compute approximate, correlated
aggregate values over data streams in a single pass. Dobra et al. [5] also look at “sketch” summaries of data
streams to approximate aggregate queries.

There have been a number of other system issues addressed. The system discussed by Madden and Franklin
[12] implements operators that efficiently combine data from stored (file-based) and streaming sources. Addi-
tionally, they have enhanced their adaptive query processing system [1] to support queries over data streams [6].
Finally, work on the Aurora system [2] investigates optimization tactics for queries over data streams and ways
to intelligently shed load when the system is about to run out of memory.

3 Implementations of Punctuated Streams

Punctuations can be added to applications in various ways. The following examples illustrate three different
methods for embedding punctuations in data streams, and different ways to exploit those punctuations. The
applications are shown in Figure 1.

(a) (b) (c)

Figure 1: (a) Query plan for temperature monitoring in a warehouse. (b) Query plan for monitoring network
packets. (c) Query plan for online auction system.

3.1 Temperature Monitoring in a Warehouse

Consider a warehouse that contains temperature-sensitive merchandise. Temperature sensors are deployed
throughout the warehouse, reporting temperatures at regular intervals to a main system. A query the ware-
house manager might want to pose to the data stream is “Report the maximum temperature at any sensor each
hour.” This simple query can be expressed easily in SQL:

SELECT MAX(tmp)
FROM (SELECT * FROM sensor1

UNION
SELECT * FROM sensor2
UNION
...
UNION
SELECT * FROM sensorn)

GROUP BY hour;

That is, union data from all streams and output the maximum temperature for each hour. Unfortunately, this
query cannot execute over an infinite stream, since group-by will block until it has read all of its input. As we
have discussed, punctuations that mark the end of each group unblock the group-by operator. The query in this
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case is grouping on values in thehour attribute, which is non-decreasing. Each sensor can be designed to emit
punctuations at the end of each hour, and these punctuations will unblock the query.

We have simulated this scenario using the Niagara Query Engine [15]. Temperature reports are generated
by stream source applications built in-house, and sent to Niagara to evaluate the query above. A stream source
is smart enough to know that, when it begins reporting temperatures for a new hour, no reports for the previous
hour will be output from that sensor. Therefore, each stream source embeds a punctuation at the end of every
hour. In Niagara, we modified the union operator to output punctuations only when equivalent punctuations have
arrived from each input. For example, when a punctuation matching hour 4 arrives for some source, union holds
that punctuation in state until a punctuation matching hour 4 has arrived from all sources. When that happens,
the punctuation can be output. The group-by operator maintains a hash table for each group. We modified
group-by to look for punctuations that describe the grouping attribute. When punctuations arrive that describe
the grouping attribute, it outputs its results for that group and removes the group from the hash table.

3.2 Gigascope

The Gigascope application [4] is a flexible network monitor that executes relational-style queries over streams
of network packets. One example query is to report the count of IP packets every 60 seconds. The SQL for this
query is (wheretime is in seconds):

SELECT tb, count(*)
FROM IP
GROUP BY time/60 AS tb

Query operators in Gigascope can take advantage of non-decreasing attributes in the IP stream. When the
tb attribute moves to the next minute, group-by knows it can output results for the previous minute since the
time attribute is non-decreasing. However, there is still a problem. Packets can occasionally be fragmented by
a router in the network path. It is the responsibility of the receiver to put fragmented packets back together.
Fragmented packets are split out from the complete packets and reconstructed. When a packet is completely
reconstructed, it is merged back with the complete packets. However, the merge operation must maintain the
order on time. The problem lies in the rates of the two streams. Fragmented packets are rare, so the fragmented
stream has a much lower rate than the unfragmented one. Since the merge is order-preserving, it cannot simply
output a packet from the faster stream until it is sure there is nothing from the slower stream that should go
before it.

In this example, the operator receiving packets is designed to embed punctuation, marking the end of some
time period based on the most recent timestamp received. The splitter passes the punctuation to both the merge
and the reconstruct operators. The reconstruct operator outputs the punctuation as soon as all fragments with
a timestamp less than the punctuation have been output. Then merge can safely output results from the faster
stream. (We thank Ted Johnson and the Gigascope group for this example.)

3.3 Online Auction Monitoring

For the final example, consider an online auction system such as eBay [6]. This system monitors bids over items
available for auction. One can imagine two streams in this system: one containing new items to sell (theauction
stream) and one containing bids for items for sale (thebid stream). One possible query in this system outputs
legal bids (bids that have not arrived past the end of the auction) for a particular item. The SQL for such a query
is as follows:
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SELECT A.itemname, B.price
FROM Auction A, Bid B
WHERE A.id=B.auctionid AND A.expires > B.datetime

SinceA.id uniquely determines data for a given auction, we can use an extension join [9] to join items
in the bid stream with items in the auction stream, and only output bids that are for non-completed auctions.
The join uses a hash table for items from the auction input, and so requires unbounded state. Punctuations that
denote the end of a specific time period can allow us to purge state from the auction hash table when we know
that no more bids made before the auction expire time will arrive. However, since our system uses the Internet
to pass bids, we cannot rely on values in thedatetime field being in order. In fact, bids may arrive much
later than the auction expiration, even if their datetime value is less than the expires value for the auction. It is
acceptable to adopt a timeout policy for late bids. Bids that were posted before the end of an auction but arrive
beyond some slack time past the end of the auction are ignored.

We use a new operator called thepunctuator for this case, and place it in the query plan between the join
and the bid stream. The punctuator embeds punctuations in the bid stream stating that no more bids will arrive
later than a certain time, where time is the current system time plus the allowable slack time. Since bids may
arrive later than slack time, the punctuator also enforces its punctuations. Here the punctuator filters out all
late-arriving bids. We are currently working on a simulation of this system using the Niagara Query Engine.

4 Defining Compact Covers using Punctuation Schemes

Clearly, some queries can take advantage of particular punctuations and others cannot. In the warehouse ex-
ample we group on the hour attribute. We know that eventually the end of an hour will occur, and can embed
punctuations marking the end of each hour. Punctuations cannot help a query that groups on sensorid, since
there will be no end of reports from a sensor generally. For example, the following query cannot make use of
hourly punctuations:

SELECT sensorid, AVG(temperature)
FROM (SELECT * FROM sensor1

UNION
SELECT * FROM sensor2
UNION
...
UNION
SELECT * FROM sensorn)

GROUP BY sensorid;

Such cases led us to the notion of compact sets [18]. The definition of compactness in analysis suggested a
similar notion for punctuations (though they are not exactly equivalent notions). We say that theinterpretation
I(D, p) of a punctuationp in a dataspaceD is the subspaceS ⊆ D containing data items that match the
punctuation. Clearly,t ∈ D∧match(t, p) ⇔ t ∈ I(D, p). We shortenI(D, p) to I(p) whenD can be inferred
from context. Figure 2(a) shows one possible interpretation of a punctuation.

We first define the notion of a cover in terms of subspaces. LetΣ be a set of subspaces ofD. Given some
subspaceQ ⊆ D, we say thatΣ covers Q if ∀t ∈ Q,∃S ∈ Σ|t ∈ S. Further,Q is compact in Σ if ∃Σ′ ⊆ Σ
such that|Σ′| is finite andΣ′ coversQ. Now, letΘ be a set of subspaces ofD. We say thatΘ is compact inΣ if
∀Q ∈ Θ, Q is compact inΣ.
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A punctuation scheme P = {p1, p2, . . .} is the set of all punctuations that will be emitted from a stream
iterator or stream source. ThenΣP = {I(p)|p ∈ P} is the collection of interpretations of punctuations inP.
Figure 2(b) shows subspaces corresponding to two queries with different groupings. IfP is by hour, by sensor
punctuations, then the query that is grouping on hour is compact forP. However, the query that is grouping on
sensorid is not compact forP. Our goal is to use compactness of subspaces of the output dataspaces (or their
preimages in the input dataspace) to characterize when a punctuation scheme aids a particular operator or query.

(a) (b)

Figure 2: (a) Interpretation of a single punctuation – all reports from a single sensor in one hour (b) The darker
area, containing all data items for a particular hour, can be covered by a finite set of punctuations, and thus is
compact. The lighter area, containing all reports from a specific sensor, cannot be covered by a finite set of
punctuations, and thus is not compact.

5 Conclusions and Future Work

We have shown how punctuations can be used in various applications. We illustrated how punctuations can be
embedded by the stream source, or generated inside the query plan. The warehouse example illustrates how
punctuations can be embedded by the stream source, unblocking queries involving grouping operators. The
Gigascope example illustrates how punctuations can be used to allow progress in the absence of data items on
an input. The auction example illustrates how a punctuation can be used to purge unnecessary state, and how a
punctuation operator can enforce its punctuations in the presence of unreliable inputs. We have also discussed
our current focus of evaluating entire queries relative to a punctuation scheme, using the notion of compactness.
There is much to do to formalize this notion.

There are a number of other directions we can take related to punctuated data stream. One question is, are
there other operator implementations that are normally inappropriate for data streams that can be aided with
punctuations? For example, our work with join has mostly focused on the symmetric hash join [20]. Are there
other join implementations that might perform better with punctuations? Another interesting question involves
tree-structured data such as XML. Our focus so far has been on relational data. There are many interesting issues
in trying to punctuation elements that themselves have elements.
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Abstract

We have developed YFilter, an XML filtering system that provides fast, on-the-fly matching of XML-
encoded data to large numbers of query specifications containing constraints on both structure and con-
tent. YFilter encodes path expressions using a novel NFA-based approach that enables highly-efficient,
shared processing for large numbers of XPath expressions. In this paper, we provide a brief technical
overview of YFilter, focusing on the NFA model, its implementation, and its performance characteristics.

1 Introduction

Today, it is widely agreed that in distributed computing scenarios such as Web Services, data and application
integration, and personalized content delivery, XML is the way that data to be exchanged will be encoded. This
use of XML has spawned significant interest in techniques for filtering XML data. In an XML filtering system,
continuously arriving streams of XML documents are passed through a filtering engine where documents are
matched to query specifications representing data interests of users or applications, and the matched documents
are delivered accordingly. Queries in these systems are expressed in a language such as XPath [4], which is used
to specify constraints over both structure (using path expressions) and content (using value-based predicates).

An earlier project, XFilter [1], pioneered the use of event-based parsing andFinite State Machines (FSMs)
for fast structure-oriented XML filtering. In XFilter, XPath expressions are converted in to FSMs by mapping
location steps of the the expressions to machine states. Arriving XML documents are then parsed with an
event-based (SAX) parser, and the events raised during parsing are used to drive the FSMs through their various
transitions. A query is determined to match a document if during parsing an accepting state for that query is
reached. In XFilter, a separate FSM is created for each distinct path expression and a sophisticated indexing
scheme is used during processing to locate potentially relevant machines and to execute those machines simulta-
neously. The indexing scheme and several optimizations provide a substantial performance improvement over a
more naive approach. The drawback, however, is that by creating a separate FSM for each distinct query, XFilter
fails to exploit commonality among the path expressions, and thus, may perform redundant work.

Based on this insight, we have developed YFilter, an XML filtering system aimed at providing efficient fil-
tering for large numbers (e.g., 10’s or 100’s of thousands) of query specifications. The key innovation in YFilter
is an Nondeterministic Finite Automaton (NFA)-based representation of path expressions which combines all

Copyright 2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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queries into asingle machine. YFilter exploits commonality among path queries by merging the common pre-
fixes of the paths so that they are processed at most once. The resulting shared processing provides tremendous
improvements in structure matching performance over algorithms that do not share such processing or exploit
sharing to a more limited extent. The NFA-based implementation also provides additional benefits including a
relatively small number of machine states, incremental machine construction, and ease of maintenance.

An important challenge that arises due to the shared structure matching approach of YFilter is the handling
of value-based predicates that address contents of elements. We have developed two alternative approaches to
handling such predicates. One approach evaluates predicates as soon as the addressed elements are read from a
document, while the other delays predicate evaluation until the corresponding path expression has been entirely
matched. A further complication that arises in this regard is that of “nested paths”. Since predicates may also
reference other elements in an XML document, we employ a query decomposition scheme to take advantage of
the shared path processing, and use special post-processing to return the final query evaluation results.

The remainder of this paper is organized as follows. The logical model of the NFA-based shared path
processing approach is presented in Section 2. The implementation of the approach and techniques for predicate
evaluation are described in some detail in Section 3. Section 4 discusses related work, and Section 5 presents
conclusions and future work.

2 An NFA-based Model for Shared Path Processing

The basic path matching engine of YFilter handles query specifications that are written in a subset of XPath.1

XPath allows parts of XML documents to be addressed according to their logical structure. A query path
expression in XPath is composed of a sequence of location steps. Each location step consists of an axis, a node
test and zero or more predicates. An axis specifies the hierarchical relationship between the nodes. We focus
on two common axes: the parent-child operator ’/’, and the ancestor-descendent operator ”//”. We support node
tests that are specified by either an element name or the wildcard operator ’*’ (which matches any element
name). Predicates can be applied to address contents of elements or to reference other elements in the document

2.1 An NFA-based Model with an Output Function

Any single path expression written using the axes and node tests described above can be transformed into a
regular expression. Thus, there exists a Finite State Machine (FSM) that accepts the language described by such
a path expression [9]. In YFilter, we combine all of the path queries into a single FSM that takes a form of
Nondeterministic Finite Automaton (NFA). All common prefixes of the paths are represented only once in the
NFA.

Figure 1 shows an example of such an NFA, representing eight queries (we describe the process for con-
structing such a machine in the following section). A circle denotes a state. Two concentric circles denote an
accepting state; such states are also marked with the IDs of the queries they represent. A directed edge represents
a transition. The symbol on an edge represents the input that triggers the transition. The special symbol ”*”
matches any element. The symbol ”ε” is used to mark a transition that requires no input. In the figure, shaded
circles represent states shared by queries. Note that the common prefixes of all the queries are shared. Also note
that the NFA contains multiple accepting states. While each query in the NFA has only a single accepting state,
the NFA represents multiple queries. Identical (and structurally equivalent) queries share the same accepting
state (recall that at the point in the discussion, we are not considering predicates).

This NFA can be formally defined as a Moore Machine [9]. The output function of the Moore Machine here
is a mapping from the set of accepting states to a partitioning of identifiers of all queries in the system, where
each partition contains the identifiers of all the queries that share the accepting state.

1In more recent work we show how to use YFilter to handle more sophisticated queries written in XQuery [6].
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Q1=/a/b
Q2=/a/c
Q3=/a/b/c
Q4=/a//b/c
Q5=/a/*/c
Q6=/a//c
Q7=/a/*/*/c
Q8=/a/b/c

(a) XPath queries (b) A corresponding NFA

a
c

*

b

{Q4}

{Q2}

{Q3, Q8}

{Q6}

{Q5}

{Q7}

c
{Q1}

c

c

b*

*

c

c

Figure 1: XPath queries and their representation in YFilter

Some Comments on Efficiency. A key benefit of using an NFA-based approach is the tremendous reduction
in machine size it affords. It is reasonable to be concerned that using an NFA-based model could lead to
performance problems due to (for example) the need to support multiple transitions from each state. A standard
technique for avoiding such overhead is to convert the NFA into an equivalent DFA [9]. A straightforward
conversion could theoretically result in severe scalability problems due to an explosion in the number states.
But, as pointed out in [8], this explosion can be avoided in many cases by placing restrictions on the set of DTDs
(i.e., document types) and queries supported, and lazily constructing the DFA.

Our experimental results (reported in [5], however, indicate that such concerns about NFA performance in
this environment are unwarranted. In fact, in the YFilter system, path evaluation (using the NFA) is sufficiently
fast, that it is in many cases not the dominant cost of filtering. Rather, other costs such as document parsing
and result collection are often more expensive than the basic path matching. Thus, while it may in fact be
possible to further improve path matching speed, we believe that the substantial benefits of flexibility and ease
of maintenance provided by the NFA model outweigh any marginal performance improvements that remain to
be gained by even faster path matching.

2.2 Constructing a Combined NFA

Having presented the basic NFA model used by YFilter, we now describe an incremental process for NFA
construction and maintenance. The shared NFA shown in Figure 1 was the result of applying this process to the
eight queries shown in that figure.

The four basic location steps in our subset of XPath are ” /a” , ” //a” , ” /*” and ” //*” , where ’a’ is an arbitrary
symbol from the alphabet consisting of all elements defined in a DTD, and ’*’ is the wildcard operator. Fig-
ure 2(a) shows the directed graphs, called NFA fragments, that correspond to these basic location steps. Note
that in the NFA fragments constructed for location steps with ” //” , we introduce an ε-transition moving to a state
with a self-loop. This ε-transition is needed so that when combining NFA fragments representing ” //” and ” /”
steps, the resulting NFA accurately maintains the different semantics of both steps (see the examples in Fig-
ure 2(b) below). The NFA for a path expression, denoted as NFAp, can be built by concatenating all the NFA
fragments for its location steps. The final state of this NFAp is the (only) accepting state for the expression.

NFAps are combined into a single NFA as follows: There is a single initial state shared by all NFAps.
To insert a new NFAp, we traverse the combined NFA until either: 1) the accepting state of the NFAp is
reached, or 2) a state is reached for which there is no transition that matches the corresponding transition of the
NFAp. In the first case, we make that final state an accepting state (if it is not already one) and add the query
ID to the query set associated with the accepting state. In the second case, we create a new branch from the last
state reached in the combined NFA. This branch consists of the mismatched transition and the remainder of the
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(b) Combining NFA Fragments
(a) NFA fragments of
basic location steps

/a :

//a :

/* :

//* :

a

a*

*

*
*

(b1) (b2) (b3) (b4)

a*

b*

a

b
*

a*

b

a

b

*

*

b

*

b

a

b

a

b

Figure 2: NFA fragments for location steps, and examples of merging NFA fragments

NFAp. Figure 2(b) provides four examples of this process.
It is important to note that because NFA construction in YFilter is an incremental process, new queries can

easily be added to an existing system. This ease of maintenance is a key benefit of the NFA-based approach.

3 Implementation of the NFA-based Path Processing

The previous section described YFilter’s NFA model and its logical construction. In this section, we present the
implementation of the NFA approach and describe its execution.

3.1 Implementing the NFA

For efficiency we implement the NFA using a hash table-based approach. Such approaches have been shown
to have low time complexity for inserting/deleting states, inserting/deleting transitions, and actually performing
the transitions [12]. In this approach, a data structure is created for each state, containing: 1) The ID of the
state, 2) type information (i.e., if it is an accepting state or a //-child as described below), 3) a small hash table
that contains all the legal transitions from that state, and 4) for accepting states, an ID list of the corresponding
queries.

The transition hash table for each state contains [symbol, stateID] pairs where the symbol, which is the key,
indicates the label of the outgoing transition (i.e., element name, ’*’ , or ’ε’ ) and the stateID identifies the child
state that the transition leads to. Note that the child states of the ’ε’ transitions are treated specially. Recall that
such states have a self-loop marked with ’*’ (see Figure 2(a)). For such states, (called ” //-child” states) we do
not index the self-loop. As described in the next section, this is possible because transitions marked with ’ε’ are
treated specially by the execution mechanism.

3.2 Executing the NFA

Having walked through the logical construction and physical implementation we can now describe the execution
of the machine. Following the XFilter approach, we chose to execute the NFA in an event-driven fashion. As
an arriving document is parsed, the events raised by the parser drive the transitions in the NFA. The nesting of
XML elements requires that when an ”end-of-element” event is raised, NFA execution must backtrack to the
states it was in when the corresponding ”start-of-element” was raised. A stack mechanism is used to enable the
backtracking. Since many states can be active simultaneously in an NFA, the run-time stack mechanism must
be capable of tracking multiple active paths. Details are described in the following.
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An XML fragment: <a> <b> <c> </c> </b> </a>

Index
{Q1}

{Q3, Q8}

{Q2}

{Q4}

{Q6}

{Q5}

{Q7}

c

7

5

8

c
3

4

c

b
6

c

*

9

11

10

c
12 13

a

1
c

b

*

2
read <a> 

2 

1 

match Q1  

read <b> 

3 9 7 6 

2 

1 

read <c> 

match Q3 Q8  
Q5 Q6 Q4  

5 10 12  
8 11 6 

3 9 7 6 

2 

1 initial 

1 

read </c> 

3 9 7 6 

2 

1 

read </b> 

2 

1 

read </a> 

1 

Runtime Stack 

Figure 3: An example of the NFA execution

Start of Document. When an XML document arrives to be parsed, the execution of the NFA begins at the
initial state. That is, the common initial state is pushed to the runtime stack as the active state.

Start of Element. When a new element name is read from the document, the NFA execution follows all
matching transitions from all currently active states, as follows. For each active state, four checks are performed:
1) The incoming element name is looked up in the state’s hash table. If it is present, the corresponding stateID
is added to a set of ” target states” . 2) The ’*’ symbol is also looked up in the hash table. If it exists, its stateID is
also added to the set of target states. Since the ’*’ symbol matches any element name, a transition marked by it
is always performed. 3) Then, the type information of the state is checked. If the state itself is a ” //-child” state,
then its own stateID is added to the set, which effectively implements a self-loop marked by the ’*’ symbol in
the NFA structure. 4) Finally, to perform an ε-transition, the hash table is checked for the ’ε’ symbol, and if one
is present, the //-child state indicated by the corresponding stateID is processed recursively, according to steps
1-3 above.

After all the currently active states have been checked in this manner, the set of ” target states” is pushed onto
the top of the run-time stack. They then become the ”active” states for the next event. If a state in the target set
is an accepting state, which means it has just been reached during reading the last element, the identifiers of all
queries associated with the state are collected and added to an output data structure.

End of Element. When an end-of-element is encountered, backtracking is performed by simply popping the
top set of states off the stack.

Finally, it is important to note that, unlike a traditional NFA, whose goal is to find one accepting state for an
input, our NFA execution must continue until all potential accepting states have been reached. This is because
we must find all queries that match the input document.

An example of this execution model is shown in Figure 3. On the left of the figure is the index created for the
NFA of Figure 1. The number on the top-left of each hash table is a state ID and hash tables with a bold border
represent accepting states. The right of the figure shows the evolution of the contents of the runtime stack as an
example XML fragment is parsed. In the stack, each state is represented by its ID. An underlined ID indicates
that the state is a //-child.

3.3 Predicate Evaluation

The discussion so far has focused on the structure matching aspects of YFilter. In an XPath expression, however,
predicates can be applied to address properties of elements, such as their text data, their attributes and their
position. We refer to these as value-based predicates. In addition, predicates may also include other path
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expressions, which are called nested paths. Any number of such predicates can be attached to a location step in
a path expression. In this section, we briefly describe the techniques used in YFilter to support the evaluation of
these predicates.

Given the NFA-based model for path-matching, an intuitive approach to supporting value-based predicates
would be to extend the NFA by including additional transitions to states that represent the successful evalua-
tion of the predicates. Unfortunately, such an approach could result in an explosion of the number of states in
the NFA, and would destroy the sharing of path expressions, the primary advantage of using an NFA. Instead,
in YFilter, we use a separate selection operator that evaluates value-based predicates by interacting with the
NFA-based processing of path expressions. Traditional relational query processing uses the heuristic of pushing
selections down in the query plan so that they are processed early in the evaluation. Following this intuition, we
developed an approach called Inline, that processes value-based predicates as soon as the elements in path ex-
pressions that those predicates address are matched during structure matching. We also developed an alternative
approach, called Selection Postponed (SP), that waits until an entire path expression is matched during structural
matching, and at that point applies all the value-based predicates for the matched path.

Nested paths are handled by first decomposing queries into their constituent paths and then inserting all of
these paths into the path matching engine. These paths are matched using the shared path matching approach
described above. Then, we use a separate collection operator to process the matches of constituent paths and
return the final query results. A more detailed description of these techniques is provided in the full paper on
YFilter [5].

3.4 Overview of the Performance Results

We have performed a detailed performance study of our YFilter implementation [5]. In the study, we compared
the performance of the NFA-based path matching approach in YFilter, the FSM-per-query approach used by
XFilter, and a hybrid approach that exploits a reduced degree of shared path processing. We also investigated
the tradeoffs between the Inline and SP approaches to value-based predicates. The results of the studies can be
summarized as follows:

1. YFilter can provide order of magnitude performance improvements over both XFilter and the hybrid
approach. In fact, as discussed earlier, path processing using YFilter is sufficiently fast that in many cases
it is outweighed by other costs for XML filtering such as document parsing and result collection.

2. The NFA-based approach is robust and efficient under query workloads with varying proportions of “ //”
operators and ’*’ operators. This is important because it is these operators that introduce non-determinism
into the path matching process. The NFA-based approach was also shown to perform well using a number
of DTDs with different characteristics.

3. The maintenance cost (i.e., as queries are added and removed) of the NFA structure is small, due to the
incremental construction that an nondeterministic version of a FSM enables and due to the sharing of
structure inherent in the NFA approach.

4. For value-based predicates, the SP approach was found to perform much better than the Inline approach.
The Inline approach suffers because early predicate evaluation cannot eliminate future work of structure
matching or predicate evaluation, due to the shared nature of path matching and the effect of recursive
elements in the presence of “ //” operators in path queries. In contrast, SP uses path matching to prune
the set of queries for which predicate evaluation needs to be considered, thus achieving a significant
performance gain.
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4 Related Work

A number of XML filtering systems have been developed to efficiently match XPath queries with streaming
documents. XFilter [1] builds a Finite State Machine (FSM) for each path query and employs a query index
on all the FSMs to process all queries simultaneously. XTrie [3] indexes sub-strings of path expressions that
only contain parent-child operators, and shares the processing of the common sub-strings among queries using
the index. In [8], all path expressions are combined into a single DFA, resulting in good performance but
with significant limitations on the flexibility of the approach. YFilter and Index-Filter are compared through
a detailed performance study in [2]. MatchMaker [10] is the only published work reporting its performance
on shared tree pattern matching. Using disk-resident indexes on pattern nodes and path operators, it labels
document nodes with all matching queries. I/O invocations limited its matching efficiency. Other related work
includes publish/subscribe systems, such as Xlyeme [7] and Le Subscribe [11]. A common feature of these
systems is the use of restricted profile languages, e.g. a set of attribute value pairs, and data structures tailored
to them for high system throughput.

5 Conclusions

In this paper we have presented a technical overview of the basic structure and value-based matching approaches
of YFilter with a focus on its novel NFA-based approach to shared processing of path expressions. Our work has
shown that the NFA-based approach can provide high-performance XML filtering for large numbers of queries
that contain both structure-based and value-based constraints.

More recently we have been extending YFilter in two important directions. First, we have investigated the
use of YFilter in a more general XML Message Brokering scenario [6]. XML filtering represents the lowest
level of functionality required for XML-based data exchange in a distributed infrastructure. In many emerging
applications in this environment, however, XML data must also be transformed on a query-by-query basis, in
order to provide customized data delivery and to enable cooperation among disparate, loosely coupled services
and applications. To support such transformations, we take the NFA-based path matching engine as the basis,
and develop alternative techniques that push the work of processing path expressions into the engine and perform
efficient post-processing of the remaining portions of queries to generalize customized results. Second, as XML
filtering systems are to be deployed in a distributed wide-area environment, our current efforts are aimed at
studying the deployment of such systems as the foundation of an overlay network that supports content-based
routing of documents and queries and intelligent delivery that allows shared transmission of query results.
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Abstract

Financial trading strategies are based on queries over time-ordered data. The strategies value very
recent data over older data, but require information about older data to avoid making poor decisions.
One can imagine a streaming architecture that keeps a synopsis of older information available for many
possible queries, but this may be too crude - and too expensive – an approximation of the query require-
ments. Instead, we show several fundamental query types for which traders would prefer to issue an ad
hoc query Q and then allow updates to change the answer to Q over time. To make the ad hoc portion
fast, the architecture puts historical data into a well-structured form (organized by security and time)
to support rapid querying whereas recent data is ordered by time alone. Periodically, some of the older
recent data is moved to the historical data structures. The net effect is to allow queries to look at very
recent and less recent data efficiently and only when needed. Several new research issues arise in this
setting.

1 Nature of Financial Data

Consider data coming from trading activities of equities (stocks), in particular electronic trading markets such
as the NASDAQ. Such markets generate large volumes of data, in bursts that can achieve up to 4,200 messages
per second [3]. Those messages present momentary opportunities to make profits if they can be processed in
an appropriate way. Before explaining those strategies, let us consider a slightly simplified example of the
mechanics of trading:

Bob decides to move some savings into company A’s stocks. He calls his broker and places an order to buy
1000 of A’s shares at a maximum price of $12.00. This is called a bid price. Bob’s broker uses the stock market’s
trading system to broadcast Bob’s bid. When it hits the market, the best offer for A’s shares, called its ask price,
is $12.03. Alice wants to sell some of her shares of A. She instructs her broker to sell 1000 of her A’s shares at
market value. When her offer meets Bob’s bid, a trade is done. Each bid, ask, and trade is called a “ tick.” There
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are up to about 100 million ticks per six-and-a-half-hour day. The time series in this context involve prices and
volumes (number of shares) of bids, asks, and trades.

These series can be obtained by a subscriber in distinct levels of detail [6]. Strategies use each level of
detail differently. For instance, applications called Level I are real-time displays of best (maximum) bids, best
(minimum) asks, and the last trade price. Level II displays show more in-depth information by presenting the
top 5 best levels of bids and asks with their respective market participants. Such information is useful because it
can indicate the level and depth of supply and demand.

Those “displays” present real-time summaries of trading activities. Alarms (continuous queries) can be set
to detect very simple conditions, such as when a price is the maximum price of the day. We show in the next
section that the technical analysis of the finance streams involves more complex queries in addition to these
simple alarms.

2 Technical Analysis Strategies

Technical analysis is the activity of making buy/sell decisions based on the time course of a stock, perhaps with
respect to other stocks. Here we give a few techniques used by traders [5].

2.1 Intraday

Intraday trading attempts to uncover momentary opportunities (at most a few minutes old) to make small profits.
Here are some example opportunities:

“Scalper” trading tries to find a tight interval within which the ask and bid prices are currently oscillating and
buys or sells at mid points. For instance, a “scalper” would try to buy A’s share if it were quoted at $11.98, before
Bob’s had the chance to hit the market, if such an ask price were announced. If the “scalper” were fast enough,
he could have even sold these shares to Bob. A human scalper can do a few hundreds of these operations in a
day.

Pairs-trading tries to take advantage of shares that are usually impacted by the same effects. Simplifying to the
essence of the idea, if two stocks tend to differ by no more than $20 and the higher one goes up whereas the
other goes down, then sell the first and buy the second. Sell out when the difference returns to normal.

Note that in the above cases, very recent history (i.e., a few seconds to a few minutes old) is vastly more
important than older history. In the next example not-so-recent data is involved.

“Hammer” discovery. Market Makers are large holders of shares and are thus capable of buying or selling
heavily. Whenever they do so they can exercise some control (their “hammer” ) over the quotes of a given
security. To avoid calling attention to themselves, they partition the volumes they are moving into a number
of small trades to avoid paying more when buying or receiving less when selling. Savvy investors try to infer
such moves by trying to identify any hammer-type movement – which can be diluted over a period ranging
from minutes to hours – and profit from it by bidding against the hammers (e.g., buying when the hammers are
buying).

2.2 Long-Term

At the other end of the continuum of trading strategies come those that consider long periods of price series.
Here are a few examples:
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Crossing averages. Moving averages are capable of smoothing the volatile price curves and exposing underly-
ing optimistic or pessimistic sentiment. For example, whenever a short term trend curve (a moving average over
a few days) climbs above the long term one (a few weeks or months) one, technical analysts will suspect that
the stock will move up soon.

Breakout in support-resistance curves. Some view a trading market as a continuous fight between buyers and
sellers, and attribute to them the power to control the range within which prices oscillate. The basic idea is
that buyers will predominate when the price is cheap enough (at or below its “support level” ) and sellers will
predominate when the price rises above its “ resistance level.” Occasionally, of course, the price exceeds this
range, an event that may be of considerable interest to a trader.

2.3 Characterizing Queries in Technical Analysis

Underlying each trading strategy are queries over the time series. Long-term analysis have little need for intra-
day trading data. A salient aspect about these queries is that fact that they often depend on order (e.g., moving
averages, or deltas of prices on time-ordered series). Therefore, long-term queries can be implemented using
order-dependent query languages over static data. Our language AQuery [1] is an example of such a language.

In turn, intraday data requires several kinds of queries:

• Continuous: every time an element of data such as a quote or a trade arrives, the query has to be re-
evaluated. Typical applications: scalper and pairs trading.

• Periodic queries: Continuous queries over fast-paced streams may overflow an analyst with results that
may not be needed as soon as they are processed. Periodic queries allow data to accumulate for a fixed
amount of time and then issue the query up to the latest time point. A typical application is a query looking
for hammer activity in a given stock. Periodically, perhaps on demand, we want to see if the hammer is
active.

• Ad-hoc: just prior to doing a trade, we may want some longer term analysis. For example, we may have
heard rumors of a hammer and then verify it.

3 A Detailed Query Example

Suppose a trader believes there might be a Hammer trying to acquire shares of ACME, but is not yet sure. He/she
issues an ad hoc query to find out. The query essentially asks whether any market maker has many inside bids
in the recent past. An inside bid is the highest bid at a given time.

If the query were on purely time ordered data, the ACME data would be mixed in with 10,000 other stocks.
This would require a scan of all that data. The query would go much faster, however, if ticks were organized by
stock and then by timestamp within each stock. Such data reorganization is the key to answer our query within
a reasonable amount of time. However, it may not be feasible to do such a reorganization in real-time. Let us
see how a periodic reorganization can be done instead.

Let the ticks’ schema be Ticks(sID, MMID, price, volume, type, timestamp) where sID is a security’s
identifier; MMID, the market maker behind this tick; type is either ’bid’ , ’ask’ , or ’ trade’ ; price and volume are
associated with this tick; and timestamp is the precise instant the tick enters the trading system. We will be using
AQuery, a dialect of SQL that incorporates the notion of order, to show the queries discussed here. We will be
explaining its features at they appear. A more complete reference about that language (its underlying data model
and its optimization) can be found at [1]. AQuery’s formulation of the hammer discovery query looks like:
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WITH
MaxPrice(insideBidPrice, timestamp) AS
(SELECT maxw( range(90,timestamp) , price ), timestamp
FROM Ticks

ASSUMING ORDER timestamp
WHERE timestamp > now() - 30 minutes

AND type = ’bid’
AND sID = ’ACME’)

SELECT MMID, count(*)
FROM Ticks t, MaxPrice mp
WHERE t.timestamp = mp.timestamp

AND t.timestamp > now() - 30 minutes
AND type = ’bid’
AND sID = ’ACME’
AND price = insideBidPrice

GROUP BY MMID

Figure 1: The “Hammer Discovery” query.

The first half of the query computes ACME’s inside bid prices for the last 30 minutes, considering that a bid
has a 90 seconds lifespan1. The WITH is a construct borrowed from SQL:1999 that allows a query to define a
“ local” view [2]. The ASSUMING ORDER clause is AQuery’s and is used to enforce a given sort order after
the FROM clause is processed. Thus, in the first half of the query, Ticks can be assumed to be in timestamp
order. All subsequent clauses in the WITH query can count on and preserve that ordering. AQuery also provides
convenient ways of manipulating date and time data, e.g., the function now() that returns the system’s current
timestamp, or the literal ‘30 minutes’ as a way to express a time value. Finally, AQuery’s semantics is column-
oriented, meaning that instead of having variables that range over collections, an AQuery variable is bound to
an entire collection – an array to be more precise – at once. For instance, the function ‘ range( 90, timestamp )’
is called only once and it is passed the entire column timestamp as its second argument. Range takes a value
v and an ordered vector c whose element type is the same as v’s, and returns a vector rangev,c[i] = w[i] where
w[i] is the minimum index such that c[i] − c[i − w[i]] <= v. In our case, range() returns for each timestamp
t, the number of previous ticks the window should contain if one wanted that window to span from t - 90
seconds up to t 2. The function ‘maxw()’ takes a vector w of window ranges and a vector c and computes
maxww,c[i] = max(c[i−w[i]]..c[i]). The main query identifies the Market Makers that matched any inside bid
at any given point and counts how many times that happened for each distinct Market Maker.

Now, if one issues the hammer discovery query late in the day, available ticks over the last several hours
should be looked at. To make that task efficient, we keep recent and historical ticks in different structures.
We describe those structures as (maybe materialized) views over the stream. Recent data is maintained in a
“RECENT” portion of Ticks, which is defined as a view over Ticks, as seen in Figure 2.

Data arriving at the system is immediately available at the RECENT view. But the latter necessarily have an
“aging” predicate that determines that data must be purged when the aging predicate is false. In TicksRecent,
this predicate is ‘ timestamp => now() - 5 minutes.’ Aged RECENT data is moved to HISTORICAL views. See
Figure 3. Moving the data efficiently is an implementation issue in its own right – when to do it, how to maintain
data while it’s being done and so on. We return to this issue later.

Note that RECENT and HISTORICAL views may organize data differently. In this particular case, they
differ in the way they sort it: whereas recent Ticks are sorted by timestamp, older ones are organized by security
ID and sorted by timestamp for each such ID. Intuitively, to answer the hammer search query, the system would

1A bid’s lifespan can vary depending on several factors, including which system was used to place it and even which time of the day
it was placed [4], so this is a slight simplification.

2Windows in AQuery are mere aggregate function arguments. Some other languages handle them as special language constructs,
confined to specific parts of a query (e.g., valid only in the SELECT clause). We argue in [1] for the benefits of the former over the latter.
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CREATE RECENT VIEW TicksRecent AS
SELECT sID, MMID, price, volume, type,

timestamp
FROM Ticks

ASSUMING ORDER timestamp
WHERE timestamp => now() - 5 minutes

Figure 2: Ticks’ RECENT View

CREATE HISTORICAL VIEW TicksHistorical AS
SELECT sID, MMID, price, volume, type,

timestamp
FROM Ticks

ASSUMING ORDER sID, timestamp
WHERE date(timestamp) = today()

AND timestamp < now() - 5 minutes

Figure 3: Ticks’ HISTORICAL View

break that query into two parts. While the recent part of it would have to select out ‘ACME’ ticks among all
others, the historical part would be able to select a contiguous extent of ‘ACME’ ticks. Because data in the
historical part is more voluminous, it is important that such a query not require a scan of it all. Figure 4 shows
possible query plans for the situation above.
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Figure 4: Plans for the Hammer Discovery Query: (a) Initial Plan (b) Optimized Plan over Stream Data (c)
Optimized Plan over RECENT + HISTORICAL Data

The plan in Figure 4(a) follows the query’s syntax. We abbreviate date(Ticks.timestamp)=today()

AND type=’bid’ AND sID=’ACME’ for p, and maxw( range( 90, timestamp ), price), the inside
bid price, for iBid. Note that some operators in the plan are connected by double arcs. That signifies that
existing order is being maintained by operators. For instance, in the left-side branch of the join, the existing
order of Ticks (over timestamp) is preserved. That is necessary, because the calculation of iBid requires data to
be in timestamp order. After that computation is done the ordering requirement is drop.

The plan can be simplified. The left-hand side of the join is simply computing a new column, iBid. The
join can thus be exchanged for a projection that adds that computed column to the ordered table. The result is
depicted in Figure 4(b).

The performance of that plan grows slower as the stream it is acting upon becomes more dense over time
(i.e., more ticks per second). The top curve on the graph presented in Figure 5 shows that progression. We are
simulating a one-hour-long stream with varying number of ticks per second. The query is required to look at the
last 30 minutes ticks only. But, as said before, ACME ticks are mixed within thousands of others. The cost is
dominated by the evaluation of predicate p. The reorganization of aged data clearly pays off as the second curve
on the graph suggests. But before commenting on those results, let us show how a more elaborate plan can take
advantage of the RECENT and HISTORICAL data organizations.
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Figure 5: Performance Comparison between Figure 4’s plans

The union of RECENT and HISTORICAL ticks contains all the ticks in the original stream. Thus, one
can decompose the original query to use the (materialized) views described before. In our present example, it
suffices to compute iBid over both the views, take the union of the results and then select which Market Makers
matched the inside bids and count how many times per Market Maker. Such a plan is depicted in Figure 4(c).

Such an elaborate plan yields much better performance. Let’s see why. The predicate p should be evaluated
over both RECENT and HISTORICAL data. RECENT has the same organization as the original stream and so
it is expensive to evaluate p over it. But recall that RECENT doesn’ t keep all the data. Here the aging predicate
is discarding data that is 5 minutes old. As a result, there are far fewer rows to look at. Now, those rows go to
HISTORICAL when they age but are ordered there by sID and timestamp. Therefore, the conjuncts of p that find
ACME’s ticks and the desired timespan of ticks can be computed with faster binary searches. That alleviates
most of cost of computing p, as those conjuncts are quite selective. The remaining part of the query concatenates
the results, computes inside bids and so on, as before. The result: not only does the plan (c) in Figure 4 have
a much lower cost than plan (b) – one order of magnitude – but also its time increases slower as a function of
stream density.

Of course, this organization has a price, but if the query density is high enough (or the importance of the
queries is high enough), it is worthwhile.

This data reorganization rationale can be generalized as we discuss next.

4 A Generalized Streaming Architecture

We now describe an architecture that allows the ad hoc queries to be processed using the two data organizations
based on the modules of Figure 6.

Rows arrive as a set of streams. The dynamic router taps into those streams and extracts rows’ elements that
are to be inserted into RECENT views. As its name suggests, the dynamic router is capable of directing a row
to its respective RECENT destination. This module and all the remaining ones depicted in Figure 6 have access
to metadata (catalog) information.

Eventually rows at RECENT views become aged. Whenever that happens – or at strategic moments (e.g.,
low system workload) – the transfer agent is responsible for purging them from RECENT and inserting them
into HISTORICAL views. To avoid concurrent contention, some data may be redundant in the two tables for a
time. In that ways, queries will always find all the necessary data.

Ad hoc queries sent to the system are handled by the ad hoc query processor. This module is responsible

54



stream’s
elements

processor
query
ad hoc

processor
query

continuous
continuous

queries

responses
streaming

ad hoc
queries

responses
one−time

dynamic
router

transfer
agentSYNOPSIS RECENT

HISTORICAL

Figure 6: A Generalized Architecture for Ad-Hoc and Continuous Queries

for breaking down an ad hoc query, which is expressed against an integration schema, into component queries
that can be executed against RECENT and HISTORICAL data. It then creates a synopsis data structure and
passes the query to the continuous query processor so the answer to the query can be maintained as updates
arrive. When the query ceases to be of interest, then the continuous query processor must be informed and stop
processing updates.

5 Summary and Open Problems

Streaming is often viewed as a technology in which one has only one chance to look at data, and limited memory.
Thus viewed, streaming is a useful technology for financial databases. Of the kinds of technical queries we’ve
identified, scalping, and breakout are essentially stream queries.

On the other hand, some queries must be done retrospectively after a short term pattern (e.g. of a potential
hammer) suggests looking at historical data. Because the data required by such queries is ideally ordered by
some other attribute as well as by time, some preprocessing is desirable on most if not all the data. For this rea-
son, we propose a generalized streaming architecture that supports efficient ad hoc queries, but allows classical
streaming on recent data. Its main characteristics are:

1. splitting recent data from better-indexed historical data, where the indexing includes data ordering;

2. streaming techniques for the recent data including running synopses to support the maintenance of query
responses over time;

3. order-aware query optimization for both recent and historical data.

Such an architecture presents two major challenges that we are actively studying:

• Maintaining the historical data in this useful organization without interrupting concurrent queries requires
the avoidance of locks and perhaps the postponement of updates.

• Handing off the processing of continuous queries from the ad hoc query processor to the continuous query
processor.

These challenges are real, but far from insurmountable. We foresee the deployment of high performance,
order-aware, generalized streaming systems to a trading desk near you in the not-too-distant future.
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