
Bulletin of the Technical Committee on

Data
Engineering
June 2003 Vol. 26 No. 2 IEEE Computer Society

Letters
Letter from the Editor-in-ChiefDavid Lomet 1
Letter from the Special Issue Editor .Christian S. Jensen 2

Special Issue on Infrastructure for Research in Spatio-Temporal Query Processing

Amdb: A Design Tool for Access MethodsMarcel Kornacker, Mehul Shah, and Joseph M. Hellerstein3
A Status Report on XXL—a Software Infrastructure for Efficient Query Processing .. .

.Michael Cammert, Christoph Heinz, Jürgen Kr̈amer, Martin Schneider, and Bernhard Seeger12
Generating Traffic Data. .. .Thomas Brinkhoff 19
Synthetic and Real Spatiotemporal DatasetsMario A. Nascimento, Dieter Pfoser, and Yannis Theodoridis26
Generating Dynamic Raster Data . .Theodoros Tzouramanis, Michael Vassilakopoulos, and Yannis Manolopoulos33
Spatio-Temporal Access MethodsMohamed F. Mokbel, Thanaa M. Ghanem, and Walid G. Aref40
Spatio-Temporal Data Exchange StandardsAlbrecht Schmidt and Christian S. Jensen50

Conference and Journal Notices
ICDE’2004 Data Engineering Conference. .back cover

Editorial Board

Editor-in-Chief
David B. Lomet
Microsoft Research
One Microsoft Way, Bldg. 9
Redmond WA 98052-6399
lomet@microsoft.com

Associate Editors

Umeshwar Dayal
Hewlett-Packard Laboratories
1501 Page Mill Road, MS 1142
Palo Alto, CA 94304

Johannes Gehrke
Department of Computer Science
Cornell University
Ithaca, NY 14853

Christian S. Jensen
Department of Computer Science
Aalborg University
Fredrik Bajers Vej 7E
DK-9220 Aalborg Øst, Denmark

Renée J. Miller
Dept. of Computer Science
University of Toronto
6 King’s College Rd.
Toronto, ON, Canada M5S 3H5

The Bulletin of the Technical Committee on Data Engi-
neering is published quarterly and is distributed to all TC
members. Its scope includes the design, implementation,
modelling, theory and application of database systems and
their technology.

Letters, conference information, and news should be
sent to the Editor-in-Chief. Papers for each issue are so-
licited by and should be sent to the Associate Editor re-
sponsible for the issue.

Opinions expressed in contributions are those of the au-
thors and do not necessarily reflect the positions of the TC
on Data Engineering, the IEEE Computer Society, or the
authors’ organizations.

Membership in the TC on Data Engineering is open to
all current members of the IEEE Computer Society who
are interested in database systems.

The Data Engineering Bulletin web page is
http://www.research.microsoft.com/research/db/debull.

TC Executive Committee

Chair
Erich J. Neuhold
Director, Fraunhofer-IPSI
Dolivostrasse 15
64293 Darmstadt, Germany
neuhold@ipsi.fhg.de

Vice-Chair
Betty Salzberg
College of Computer Science
Northeastern University
Boston, MA 02115

Secretry/Treasurer
Paul Larson
Microsoft Research
One Microsoft Way, Bldg. 9
Redmond WA 98052-6399

SIGMOD Liason
Marianne Winslett
Department of Computer Science
University of Illinois
1304 West Springfield Avenue
Urbana, IL 61801

Geographic Co-ordinators

Masaru Kitsuregawa (Asia)
Institute of Industrial Science
The University of Tokyo
7-22-1 Roppongi Minato-ku
Tokyo 106, Japan

Ron Sacks-Davis (Australia)
CITRI
723 Swanston Street
Carlton, Victoria, Australia 3053

Svein-Olaf Hvasshovd (Europe)
ClustRa
Westermannsveita 2, N-7011
Trondheim, NORWAY

Distribution
IEEE Computer Society
1730 Massachusetts Avenue
Washington, D.C. 20036-1992
(202) 371-1013
jw.daniel@computer.org

Letter from the Editor-in-Chief

The Data Engineering Conference: Repeat from March, 2003

The Technical Committee on Data Engineering, in addition to publishing the Bulletin, also sponsors the Data
Engineering Conference, referred to as ICDE (”International Conference on Data Engineering”). The most
recent conference (for 2003) was held in Bangalore, India. The 2004 conference will be held in Boston, MA. A
”Call for Papers” for this conference appears on the back inside cover of this issue.

The Data Engineering Conference is one of three large and prestigous annual database conferences, the
others being SIGMOD and VLDB. It is the IEEE Computer Society’s flagship conference in the database area.
The program for the conference is excellent, the result of a very competitive paper selection process. Because
of the quality of the conference, many of the leading researchers in our field regularly attend the conference.
Further, any paper published in the conference is included in the SIGMOD Anthology’s CD or DVD collection
of database papers. So ICDE papers have a very wide readership.

I hope that many Bulletin readers will submit papers to the Data Engineering Conference, not only in 2004,
but in subsequent years as well. Perhaps I shall have the pleasure of meeting you at the conference, as I very
frequently attend.

The Current Issue

One of the more curious facts about citations in the database literature is that there are more citations to the
original R-tree paper than there are to the original B-tree paper (see the DBLP web cite). There may be a
number of reasons for this, but one of them has to be that it is much harder to assess the strength of an access
method when dealing with multi-dimensional data than it is when dealing with a single dimension. With B-trees,
dealing with a single dimension, it is relatively easy to characterize both storage utilization and query costs. All
regions have at most two neighbors, and all queries partially overlap only with the two neighbors of a contiguous
set of regions. And all B-trees can guarantee minimum storage utilization and are well characterized with respect
to average utilization.

With multi-dimensional data, things are much more difficult. It is harder to divide the data into regions and
each region has more boundaries, hence bordering on more neighbors. Hence there are many more ways to
partition the search space. As well, there are many more ways to query the search space. And, of course, there is
a strong connection between the querying and the search space partitioning. Finally, there is enormous variation
in how data may be distributed over the multiple dimensions. All this makes it much harder to assess how good
or appropriate a multi-dimensional access method is.

The current issue does not introduce new access methods or new query processing techniques. Rather it
seeks to tackle the task of providing an infrastructure in which good research can be done for multi-dimensional
query processing. While it is perhaps too much to hope for that this infrastructure will bring closure to this
area (this is a difficult topic), nonetheless, such infrastructure will make it possible, both for those creating new
techniques and for potential users, to judge the appropriateness of any given method for a given task, and to start
the process of seriously evaluating the strengths and weaknesses of proposed multi-dimensional approaches.
This is essential to progress in our field! I want to thank Christian Jensen, the issue editor for the current
issue, for proposing and following through on this important area. This issue is very important reading for the
multi-dimensional database research community.

David Lomet
Microsoft Corporation

1

Letter from the Special Issue Editor

Aspects of key computing and communication hardware technologies continue to improve rapidly, some at
sustained exponential rates. These developments, including advances in geo-positioning, contribute to making
research in spatio-temporal data management more relevant than ever.

As the field of data management is maturing, emphasis will be increasingly on rigor. For example, it becomes
increasingly important that new contributions be based on the growing body of existing contributions. As other
examples, prototype implementation and rigorous experimental studies will become increasingly important.

The contributions in this issue further state of the art in spatio-temporal query processing, but do so in-
directly. They do not propose new query processing techniques—instead, their focus is to contribute to the
infrastructure for conducting research in spatio-temporal query processing. The terminfrastructure is inter-
preted broadly, thus covering aspects such as publicly available query processing toolkits and implementations
of query processing techniques; real data, synthetic-data generators, and benchmarks; standards; and surveys of
research contributions.

This issue’s first paper, by Kornacker et al., presentsamdb, a graphical design tool for access methods that is
built on top of the so-called Generalized Search Tree abstraction (see the coverage of the GiST indexing toolkit
in the sixth paper). An analysis framework, complete with performance metrics and support for visualization
and debugging, aids the designers of an access method in studying and thus improving their access method. In
the second paper, Cammert et al. cover the eXtensible and fleXible Library (XXL) for efficient query processing
that is being developed at University of Marburg. XXL offers infrastructure that makes it easier to implement
advanced query processing functionality, it offers a framework for meaningful comparisons of access methods,
and it aims to serve as a repository for query processing techniques and use-cases.

When experimentally evaluating query processing techniques, real as well as synthetic data sets are impor-
tant. The former aid in ensuring that a technique under study is subjected to realistic conditions. However,
real data sets may not be available; further, a single real data set is likely to capture only a specific type of use.
In contrast, synthetic data generators allow the generation of data sets with specific properties, thus making it
possible to subject a technique to a wide variety of conditions.

In the third paper, Brinkhoff considers the generation of data sets intended for the testing of query processing
techniques to do with “moving objects.” He covers his own Network-based Generator and Kaufman et al.’s City
Simulator, both of which assume that the object movement, from which the generated data result, is constrained
to a transportation network. The fourth paper, by Nascimento et al., covers three other data generators for moving
objects, GSTD, G-TERD, and Oporto, which do not constrain movement to a network. GSTD generates moving-
point and moving-rectangle data. G-TERD produces sequences of raster images. Being the most elaborate data
generator of the three, it is covered in detail in the fifth paper, by Manolopoulos et al. Oporto generates data
corresponding to fishing-at-sea scenarios. Nascimento et al. also cover several real data sets.

The sixth paper presents a survey of spatio-temporal access methods—methods that index the spatial aspect
together with only the past, with only the current time, and with the current time and the future. In this paper,
Mokbel et al. cover almost 30 methods. (Note also the survey by Agarwal and Procopiuc in last year’s June
issue of the Bulletin.) Mokbel et al. also cover two indexing toolkits: GiST, which concerns B-tree and R-tree
like bounding-region trees, and SP-GiST, which concerns space-partitioning trees.

In the last paper, Schmidt and Jensen cover standards and standardization efforts of general relevance to
spatio-temporal query processing, and of particular relevance to spatio-temporal data exchange.

It is my hope that this issue will be a useful reference to the spatio-temporal data management research com-
munity and will help move spatio-temporal query processing research in the right, rigorous, and experimental
direction.

Christian S. Jensen
Department of Computer Science

Aalborg University, Denmark

2

Amdb: A Design Tool for Access Methods

Marcel Kornacker∗

marcel@cs.berkeley.edu
Mehul Shah

mashah@cs.berkeley.edu
Joseph M. Hellerstein
jmh@cs.berkeley.edu

Abstract

Designing and tuning access methods (AMs) has always been more of a black art than a rigorous disci-
pline, with performance assessments being mostly reduced to presenting aggregate runtime or I/O num-
bers. This paper presentsamdb, a comprehensive graphical design tool for AMs that are constructed
on top of the Generalized Search Tree abstraction. At the core ofamdb lies an an analysis framework
for AMs that defines performance metrics that are more useful than traditional summary numbers and
thereby allow the AM designer to detect and isolate deficiencies in an AM design.Amdb complements the
analysis framework with visualization and debugging functionality, allowing the AM designer to investi-
gate the source of those deficiencies that were brought to light with the help of the performance metrics.
Several AM design projects undertaken at U.C.Berkeley have confirmed the usefulness of the analysis
framework and its integration with visualization facilities inamdb. The analysis process that produces
the performance metrics is fully automated and takes a workload—a tree and a set of queries—as input;
the metrics characterize the performance of each query as well as that of the tree structure. Central to
the framework is the use of the optimal behavior—which can be approximated relatively efficiently—as a
point of reference against which the actual observed performance is compared. The framework applies
to most balanced tree-structured AMs and is not restricted to particular types of data or queries.

1 Introduction

Despite the large and growing number of access methods (AMs) that have been produced by the research
community—and also despite their increasing importance, considering the explosion of data that users find
worth querying—the design and tuning of AMs has always been more of a black art than a rigorous discipline.
Traditionally, performance analyses focus on summaries of observed performance, such as aggregate runtime or
page access numbers, or on performance metrics that express data-specific properties of index pages (e.g., spatial
overlap between the pages of an R-tree [3]). The drawback of aggregate numbers is that they do not provide any
insight into the causes of observed performance. As a result, it is hard to quantify the contribution of individual
design ideas or explain performance differences between competing AM designs, if those deviate in more than
one design aspect. Also, aggregate numbers do not allow AMs to be assessed on their own, because competing
AM designs are needed to put the numbers into perspective. In contrast, data-specific performance metrics like
bounding-box overlap offer some insight into the causes of observed performance, but they require the designer

Copyright 2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

∗This work was supported by NASA grant 1996-MTPE-00099, NSF grant IRI-9703972, and a Sloan Foundation Fellowship. Com-
puting and network resources for this research were provided through NSF RI grant CDA-9401156.

3

to understand their correlation with the true optimization objective, i.e., the minimization of aggregate runtime
or page access numbers. Since such an understanding is agoal of the analysis process, any apriori assumptions
about that correlation are often incorrect and misleading. If the correlation of the data-specific performance met-
ric with the optimization objective is not perfectly clear, using such a performance metric to guide AM design
is problematic.

In this paper we presentamdb, a comprehensive support tool for the AM analysis process. At the core of
amdb is an analysis framework that defines performance metrics that are superior both to aggregate numbers
and data-specific performance metrics. The analysis process is integrated with a collection of modules in an
interactive, easy-to-use graphical environment. Those modules are: a visualization component for the tree
structure and its contents (the latter user-extensible, so it can be adapted to a specific application domain); a
facility for interactive execution of tree searches and updates as well as breakpoints and single-stepping through
those commands, similar to functionality found in programming language debuggers; browsers for viewing
performance numbers derived from the analysis framework. The salient features ofamdb and its analysis
framework are:
Universal Applicability The analysis framework and most of theamdb visualization facilities are independent
of the semantics of the data and queries of the application domain, which makes them universally applicable to
any AM design that is based on the Generalized Search Tree (GiST) abstraction [4]. The analysis framework
treats the workload—a tree and a set of queries—as an input parameter, allowing the designer to tune an AM for
that particular workload.
Better Performance Metrics The analysis framework defines performance metrics that reflectperformance
loss, measured in I/Os and derived from a comparison of observed performance with the performance of a
workload-optimal tree. This tree minimizes the total number of I/Os for the input workload and can be ap-
proximated relatively efficiently. The advantage of these performance metrics in comparison to aggregate I/O
measurements is that they reflect the potential for performance improvement, allowing an AM design to be as-
sessed on its own. The loss metrics are further broken down to reflect the performance-relevant characteristics
of the tree, which gives the designer a clearer understanding of the effects of individual design ideas or the
differences between two competing AM designs.
Fully Automated Analysis The fully automated analysis process executes the user-supplied set of queries,
gathers tracing data, uses that to approximate an optimal tree and computes the performance metrics.
Visualization Integration The analysis framework is integrated intoamdb to the extent that the metrics as
well as tracing information gathered during workload execution are visualized using the data-independent tree
structure visualization facilities. This integration is particularly helpful, because it lets the designer investigate
poorly performing parts of the tree and queries. The analysis framework and the visualization tools are comple-
mentary: the performance metrics highlight the sources of poor performance, thereby focusing the designer’s
attention. The visualization tools are then used to investigate those parts of the tree or those queries which have
been flagged by the performance metrics.

Designing AMs is a creative process.Amdb supports this process with an analysis framework that points out
specific sources of performance degradation and visualization tools for investigating them. The experience we
have gathered so far withamdb justifies our claims about its usefulness: in two AM design projects undertaken
at U.C. Berkeley,amdb was instrumental in quickly locating performance problems in existing AM designs and
verifying that the remedies to those problems worked as intended.

The rest of this extended abstract briefly introduces GiST, which lays the foundation for an understanding of
the breakdown of the performance metrics, and presents an overview ofamdb along with a description of the
analysis framework and its intended usage. In addition, we present a hypothetical example to demonstrate how
the performance metrics are calculated in a workload’s analysis. Please see [6] for a full description ofamdb.

4

2 Generalized Search Trees

A GiST is a balanced tree that provides “template” algorithms for navigating the tree structure and modifying the
tree structure through node splits and deletes. Like all other (secondary) index trees, the GiST stores(key, RID)
pairs in the leaves; the RIDs (record identifiers) point to the corresponding records on the data pages. Internal
nodes contain(predicate, child page pointer)pairs; the predicate evaluates to true for any of the keys contained
in or reachable from the associated child page. A B+-tree [2] is a well known example with those properties:
the entries in internal nodes represent ranges which bound values of keys in the leaves of the respective subtrees.
The predicates in the internal nodes of a search tree will subsequently be referred to assubtree predicates(SPs).

Apart from these structural requirements, a GiST does not impose any restrictions on the key data stored
within the tree or their organization within and across nodes. In particular, the key space need not be ordered,
thereby allowing multidimensional data. Moreover, the nodes of a single level need not partition or even cover
the entire key space, meaning that (a) overlapping SPs of entries at the same tree level are allowed and (b) the
union of all SPs can have “holes” when compared to the entire key space. The leaves, however, partition the set
of stored RIDs, so that exactly one leaf entry points to a given data record.

A GiST supports the standard index operations: SEARCH, which takes a predicate and returns all leaf entries
satisfying that predicate; INSERT, which adds a(key, RID)pair to the tree; and DELETE, which removes such
a pair from the tree. It implements these operations with the help of a set of extension methods supplied by
the access method developer. The GiST can be specialized to one of a number of particular access methods by
providing a set of extension methods specific to that access method. These extension methods encapsulate the
exact behavior of the search operation as well as the organization of keys within the tree.

We now provide a sketch of the implementation of the SEARCH and INSERT operations and how they use
the extension methods.
Search In order to find all leaf entries satisfying the search predicate, we recursively descendall subtrees for
which the parent entry’s predicate is consistent with the search predicate (employing the user-supplied extension
methodconsistent()).
Insert Given a new(key, RID)pair, we must find a leaf to insert it on. Note that because GiSTs allow overlapping
SPs, there may be more than one leaf where the key could be inserted. A user-supplied extension method
penalty()compares a key and predicate and computes a domain-specific penalty for inserting the key within the
subtree whose bounds are given by the predicate. Using this extension method, we traverse a single path from
root to leaf, following branches with the lowest insertion penalty. If the leaf overflows and must be split, an
extension method,pickSplit(), is invoked to determine how to distribute the keys between two leaves. If, as a
result, the parent also overflows, the splitting is carried out bottom-up. If the leaf’s ancestors’ predicates do not
include the new key, they must be expanded, so that the path from the root to the leaf reflects the new key. The
expansion is done with an extension methodunion(), which takes two predicates, one of which is the new key,
and returns their union. Like node splitting, expansion of predicates in parent entries is carried out bottom-up
until we find an ancestor node whose predicate does not require expansion.

Although the GiST abstraction prescribes algorithms for searching and inserting, the AM designer still has
full control over the performance-relevant structural characteristics of the AM. These structural characteristics
are:
Clustering The clustering of the indexed data at the leaf level and of the SPs at the internal levels determines
the amount of extra data that a query needs to access in order to retrieve its result set. An AM design controls
the clustering through thepickSplit()andpenalty()extension methods.
Page Utilization The page utilization determines the number of pages that the indexed data and the SPs occupy
and therefore also influences the number of pages that a query needs to visit. Similar to the clustering, the page
utilization is controlled by thepickSplit()andpenalty()extension methods.

5

2

1

2

3

4

5

6

Figure 1: Amdb User Interface

Subtree PredicatesWhile the size and shape of the indexed data is part of the input, the size and shape of the
SPs are parameters of the design and considerably influence performance. A SP’s task is to describe, or cover,
that part of the data space which is present at theleaf level of its associated subtree (i.e., the perfect SP would
simply enumerate all the data items contained in the leaves of its subtree; of course, this is problematic with
regard to the size of the SPs). We speak of SPexcess coverage if the SP covers more of the data space than is
needed in order to represent the data contained in the subtree. If a SP exhibits excess coverage, it may cause
queries to visit more than the minimum number of pages determined by the clustering and page utilization.

3 A Tour of Amdb

This section describesamdb’s visualization and debugging features (which are presented in greater detail in [7])
and gives an overview of the analysis framework and its intended usage.

Amdb supports access methods developed using the public domainlibgist package which implements
the GiST abstraction.Amdb andlibgist are written in Java and C++ and are portable across many versions
of UNIX as well as Microsoft Windows NT. The software can be downloaded from
http://gist.cs.berkeley.edu/.

3.1 Visualization Functionality

Understanding flaws in an AM design requires inspecting the corresponding tree; thus,amdb provides interac-
tive graphical views of the entire tree, paths and subtrees within the tree, and contents of nodes within the tree.
These are the global view, tree view, and node view, respectively (Fig 1). These views not only help visualize
the tree structure and its contents, but also help visualize profiling data and performance metrics by associating
them with nodes in the tree. Finally, they provide navigation features, which enables designers to drill down to
the source of a deficiency.

The highest-level,global viewprovides a manageable aggregate view of the entire index (Fig 1: 1). This
representation factors out much of the tree structure by mapping it onto a triangle with an adjustable baseline

6

and height. The purpose of this view is to project a user-selected tree statistic or performance metric onto this
abstract display and depict the variation of the statistics across the total tree. The user can choose both a color
map (or palette, Fig 1: 2) and a statistic; the global view assigns colors to the statistical values and renders
the nodes accordingly. Nodes are visually concatenated and merged if necessary with other nodes on the same
level. Thus, the pixel density of nodes increases geometrically with the level. The user can also perform an
approximate drill-down into an area of interest by clicking on it. Subsequently, a path from the root node to a
node in the neighborhood of the specified point will be shown in the tree view, a lower-level view which shows
more detail.

The tree viewshows the structure of the search tree (Fig 1: 3). It offers an intuitive point-and-click interface
for browsing the tree while improving on conventional tree navigation interfaces which become cumbersome for
high fanout trees. In this view, the tree’s nodes are represented by boxes and labeled with a unique number for
reference. Each node is enclosed in a scrollable and stretchable container which displays its direct siblings. This
container (Fig 1: 4) allows users to focus on nodes of interest while bounding the amount of detail displayed.
Any node can be expanded or contracted by clicking on it. When a node is expanded, the container holding its
children is displayed below it with a line linking the two; when contracted, the entire subtree below the node is
removed. Like the global view, the tree view represents a user-selected tree statistic or performance metric by
coloring the nodes. With these features, a user can simultaneously focus on several paths and subtrees of interest
without being overwhelmed by the width of the search tree.

After drilling down from the global view and tree view, the user can investigate the contents of specific
nodes usingamdb’s node view (Fig 1: 5). Since tree nodes contain arbitrary user-defined predicates, the access
method designer must provide a module that displays the node given its contents. Currently,amdb contains a
suite of modules that visualize two-dimensional projections of spatial data. The node view also allows the user
to simulate a split (by calling thepickSplit()extension function) and visualize the results by separating the items
with contrasting colors. In addition to user-defined data visualization,amdb provides a textual description of
the keys, their sizes, and associated pointers.

3.2 Debugging Functionality

The behavior of an AM can be difficult to understand without being able to observe its mechanics. Previously,
only standard programming language debugging tools were available for examininglibgist AMs. Because
these tools are designed for analyzing low level actions, such as a single line of source code, they are cumbersome
for gaining an understanding of how search and update operations behave and interact with the tree.

Amdb allows a designer to single-step through tree search and update commands. Those commands generate
events for various node-oriented actions, such as node split, node traversal,etc., which permits users to step from
event to event. Since manual stepping can become tedious,amdb also supports breakpoints. Breakpoints can
be defined on generic events, e. g., node update, or can be tied to a specific tree node, e.g., update of node
227. When a breakpoint event is encountered, execution is suspended, and the user has an option to single-step
through events or continue until the next breakpoint. Additionally,amdb allows batch execution of commands
via scripts so users can conveniently restore state.

3.3 Overview of the Analysis Framework

The goal of the analysis framework is to explain the observed performance of an AM running a user-supplied
workload. The single ultimate performance number is the total execution time of the entire workload. This total
depends on the number and nature of page accesses, the buffering policy and the CPU time spent examining
pages. For brevity, we concentrate on explaining observed page accesses; please see [6] for a discussion of the
remaining components of the performance equation.

7

In Section 1 we mentioned the deficiencies of the current practice of reporting performance with aggregate
I/O numbers or data-specific metrics. To be effective and universally applicable, an analysis framework should
have three properties: (1) the performance metrics should be data-independent and not be tailored to the seman-
tics of a particular application domain, so that the analysis framework is applicable in the full generality of the
GiST AM design framework; (2) the performance metrics must give an indication of the quality of measured
AM performance in terms of the optimization objective, i.e., minimization of I/Os; (3) the metrics should give
the designer an understanding of the causes of observed performance.

In order to ensure data-independence of the framework, the workload—a tree and a set of queries—is an
input parameter of the analysis and the metrics characterize the performance of an AM specifically in the context
of that workload. Also, the performance metrics directly characterize the observed performance of the workload
execution, namely the page accesses. They are not stated in terms of data or query semantics, and are therefore
data-independent.

Instead of simply reporting the number of observed page accesses, a more meaningful performance metric is
the difference between the number of page accesses in the actual tree and the optimal tree; we call this difference
theperformance loss. The optimal tree is defined as minimizing the total number of page accesses over the entire
workload. In general terms, it is a tree where (a) the data is clustered into leaf nodes to maximize the co-location
of data that is co-retrieved, (b) the nodes in the tree are packed to the desired degree of utilization, and (c)
the subtree predicates only guide the search algorithm to subtrees with query answers. While this hypothetical
tree cannot be automatically synthesized for use, having knowledge of the execution profile of the workload, in
particular the result sets of the queries, allows us to approximate the optimal tree relatively accurately. More
specifically, property (a) can be efficiently approximated via hypergraph clustering [5], and properties (b) and
(c) can be simulated while gathering idealized performance results. The details are presented in [6].

Knowing the magnitude of performance loss is a clear indication of the quality of an AM, expressed in
the units of the optimization objective, I/Os. Moreover, the performance loss shows the potential for perfor-
mance improvement, which cannot necessarily be discovered even when comparing two competing AM de-
signs using traditional performance metrics. We can compute aquery performance loss, which expresses the
difference in the number of I/Os of a query executed against the actual tree and the workload-optimal tree.
Similarly, we can compute anode performance loss, which expresses a node’s contribution to query or ag-
gregate workload performance loss. The analysis framework also defines a number of additionalimplementa-
tion metricsthat characterize aspects of the AM implementation; we refer the reader to [6] for more details.

Optimal Clustering Utilization
Excess

Coverage

Total I/Os

Total Performance Loss
(Excess I/Os)

Figure 2: Decomposition of observed I/Os on a per-
query and per-node basis

Given a particular performance loss, we can further
subdivide it to reflect the fundamental performance-
relevant properties of GiST-based AMs, namely clus-
tering, page utilization and excess coverage loss.Clus-
tering lossspecifies the part of performance loss that
can be attributed to the difference between workload-
optimal and achieved (leaf-level1) clustering in the in-
dex tree;utilization lossspecifies the part that is at-
tributable to node utilization deviating from a target uti-
lization; excess coverage loss specifies the part that is
due to accesses to leaf nodes that contain no relevant
data to a query. All of these subdivisions of perfor-

mance loss are also specified in I/Os—possibly fractions of I/Os; They are summarized in Figure 2. Such a
breakdown of performance loss is more useful than aggregate numbers, because it helps the designer under-
stand the nature of the loss and thereby provides more insight into the causes of observed performance. The
breakdown of the node metrics in particular helps the designer identify anomalies in the tree structure.

1The reason this is restricted to leaf-level clustering is explained in [6].

8

3.4 Using theAmdb Analysis Framework

To useamdb in order to analyze an AM design, the designer constructs an index tree and decides on a set of
queries to run against that tree. Together, these two items constitute thetarget workload. Taking this workload as
input,amdb then runs the analysis that produces the performance metrics described in the previous section. The
analysis process consists of running the queries against the index tree, gathering tracing data such as traversal
paths, and approximating an optimal tree based on the tracing data. Given this optimal tree approximation,amdb
computes the performance metrics for each query and the aggregate workload. These are broken down further
into per-node loss metrics, which are also computed for each query and the aggregate workload. A detailed
description of the tracing data, the nature of the optimal tree and the computation of the performance metrics are
given in [6].

The performance loss metrics express I/Os, not particular application-specific properties of the tree at hand
or the AM design; the metrics can therefore only serve as anindicationof, not an explanation for performance
deficiencies. The explanation of performance deficiencies and a subsequent improvement of the AM design
need to be done by the AM designer, based on an understanding of the semantics of the application domain.
Gaining such an understanding is a creative process, which is helped by theamdb visualization facilities and
their integration with the analysis framework: the performance metrics “flag” those parts of the tree and those
queries that perform badly; the visualization facilities then let the designer navigate those index nodes and
queries and investigate the reasons for their above-average performance loss. Aside from the user-extensible
data visualizations,amdb also gives the designer access to a very comprehensive set of workload statistics,
including per-query aggregate page access numbers, full traversal paths, the amount and specific location of
data retrieved,etc. The performance metrics themselves are quite voluminous—there are three loss metrics for
each query and each node of the tree–which makes it necessary to find good visualizations for them.

The node metrics are visualized by coloring nodes in the global and tree view, so that ill-behaved parts of the
tree can be identified easily without having to browse through each node’s metrics individually. The navigation
and data visualization features of these views let the developer navigate those parts of the tree structure and
examine the data contained therein. The global and tree views are also used to visualize the per-query loss
metrics and trace data on a per-node basis (for example, traversal paths can be visualized very effectively through
node coloring). This tracing data in combination with the visualizations give the developer a very detailed view
of the behavior of each query and are instrumental in understanding poorly performing queries.

Before designing an AM for a particular workload, it is actually instructive to determine whether that work-
load is possibly unindexable, i.e., whether no index structure will be able to outperform a sequential scan on
that workload. Theamdb analysis process produces all the data necessary to perform such a test; the details are
given in [6].

4 Analysis Framework Illustration

In this section, we illustrateamdb’s analysis framework. As a point of comparison, we define the optimal tree
with respect to a search tree’s structural characteristics. Then we show an example calculation of performance
loss at the leaf-leaf level for a single query. The full details of our analysis framework can be found in [6].

4.1 Optimal Tree

The optimal tree is defined by the following characteristics:
No excess coverage,which eliminates page accesses due to overly general SPs – i.e., accesses that retrieve no
items in the query result set.
Target page utilization, which would ideally be 100%, but this is unattainable in practice. Instead, the AM
designer specifies a desired target page utilization, which can be estimated through external considerations,

9

Actual Tree:

X XXXX

Optimal Clustering:

XXX XX

0

7

654

321

Figure 3: Traversal Paths and Optimal Clustering for Example Query

e.g., the existence of a competing AM with a well-known average utilization. This utilization also is used as a
parameter to determine the optimal clustering.
Optimal clustering, which minimizes the total number of “relevant” page accesses. At the leaf-level, those are
accesses to the pages that contain items in the query result set. To construct the optimal leaf level, we partition
the indexed data items so that the total number of leaf accesses is minimized over the workload. This clustering
problem is equivalent to a hypergraph partitioning problem which is provably NP-hard. Thus, to solve this
optimization,amdb relies on HMETIS [5] a tool that implements existing approximation algorithms that work
reasonably well.

A tree with these properties will execute the investigated workload with the minimal number of page ac-
cesses. This tree is only a theoretical construct, since it is generally impossible to construct a tree that achieves
a combination of the optimum in each category. Still, it is possible to approximate this tree along each axis well
enough to infer page access patterns of a workload.

4.2 Performance Loss Breakdown

In this section, we illustrate the breakdown of performance loss at the leaf-level of a hypothetical search tree for
a single query. The aggregate workload, internal-level, and per-node metrics are extensions of these calculations
[6].

Figure 3 serves as a running example throughout the rest of this section. It shows thetraversal treeof a query
(its traversal paths in the index, which form a subtree of the index) which retrieves five data items. This query
accesses four leaves in the actual tree and only two leaves in the optimal tree. The page capacity is four items
(to keep the example simple, data items and SPs are assumed to have the same size) and the target utilization is
75%. Occupied slots are shaded, and the pages in the traversal tree are numbered for reference.

4.2.1 Leaf-Level Performance Metrics

For each query, the performance loss at the leaf level—actual minus optimal leaf accesses—is divided up into
excess coverage, utilization, and clustering loss. Ideally, leaf-level I/Os would visit the same number of nodes
and return the same number of items as in the leaf-level of the optimal tree, and each visited leaf would be
fully packed. Anything short of this is a performance loss. We begin by assigning leaf-level losses that are due
entirely to bad SPs, and then consider the more complex interplay between utilization and clustering in partially
useful leaf I/Os. In the example, the query experiences a performance loss of two leaf accesses when compared
against the optimal tree. We show how to compute the losses in each category for this example.
Excess coverage loss.During query execution, if a leaf node is visited but contains no items in the result set,
we consider the entire leaf I/O to be excess coverage loss, i.e., due to an overly general SP for the leaf. In the
example in Figure 3, leaf 0 is accessed but contains no matching items, and therefore the access counts as excess
coverage loss.

10

Utilization loss. A leaf-level I/O that returns some useful items may contribute to performance loss in two ways.
One way is through underfull leaf nodes. Deviation from the target utilization in the remaining leaves is summed
up as utilization loss. In the example, leaf 2 has a utilization of 50%, which is2/3 of the target utilization of
75%, resulting in a loss of1 − 0.5/0.75 = 1/3. The idea behind this accounting is that if the pages had been
packed more densely, part of the accesses could have been avoided. Note that a page utilization in excess of the
target utilization counts as a negative performance loss, i.e., a performance gain.
Clustering loss. Once we have factored away any utilization loss, the remaining I/Os reflect the performance
of a ”tightly packed” leaf level. Clustering loss is the difference between the conceptually tightly packed leaves
in the index and the corresponding leaves in the optimal tree. In the example, the result set is spread over three
leaves, or8/3 tightly packed leaves. The difference between that and the two leaf accesses in the optimal tree is
2/3, the clustering loss.

To summarize the leaf-level metrics established for the example query: excess coverage loss is one I/O,
utilization loss is1/3 I/Os and clustering loss2/3 I/Os. The sum is two I/Os, which is the total performance
loss that the example query experiences at the leaf level.

5 Conclusion

Amdb’s analysis facilities, in concert with its visualization features, are an invaluable tool for understanding the
performance characteristics of an AM and pinpointing the causes of deficiences. The analysis framework pro-
vides a breakdown of an AM workload’s performance along three axes relevant to tree-based AMs: clustering,
utilization, and the quality of subtree predicates. For each of these categories,amdb reports a performance loss
in I/Os using an approximation to a workload- optimal tree as the basis for comparison. Such a breakdown
provides a better characterization of AM performance than aggregate numbers and is universally applicable to
any AM design based on the GiST abstraction. In [6] we detail how these metrics are computed for an aggregate
workload as well as on a per-node and per-query basis, and we illustrate the use of these metrics on traditional
AMs. Amdb has been instrumental in several experimental design projects for improving the performance of
traditional AMs for specific applications [8, 9]. In [6] we highlight experiences in optimizing bulk-loaded R-
trees for content-based image retrieval tasks, and summarize a user study in which a graduate database class was
asked to improve the performance of AMs on a synthetic dataset.

References

[1] P. Aoki. Generalizing “Search” in Generalized Search Trees (Extended Abstract). InProc. 14th ICDE, 1998.

[2] D. Comer. The Ubiquitous B-Tree.ACM Computing Surveys, 11(4):121–137, 1979.

[3] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. InProc. ACM SIGMOD Conf., 1984.

[4] J. Hellerstein, J. Naughton, and A. Pfeffer. Generalized Search Trees for Database Systems. InProc. 21st VLDB,
1995.

[5] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel Hypergraph Partitioning: Applications in VLSI
Domain. InProc. ACM/IEEE 34th Design Automation Conference, 1997.

[6] M. Kornacker, M. Shah, and J. Hellerstein. Amdb: A Design Tool for Access Methods. Technical Report UCB//CSD-
03-1243, University of California at Berkeley, 2003.

[7] M. Shah, M. Kornacker, and J. Hellerstein. Amdb: A Visual Access Method Development Tool InUser Interfaces to
Data Intensive Systems, Edinburgh, UK, 1999.

[8] M. Thomas, C. Carson, and J. Hellerstein. Creating Customized Access Methods for Blobworld InProc. 16th ICDE,
2000.

[9] M. Thomas and J. Hellerstein. Boolean Bounding Predicates for Spatial Access Methods InProc. DEXA, 2002.

11

A Status Report on XXL—a Software Infrastructure for Efficient
Query Processing

Michael Cammert, Christoph Heinz, J¨urgen Krämer, Martin Schneider, Bernhard Seeger
Department of Mathematics and Computer Science, University of Marburg, Germany

http://www.mathematik.uni-marburg.de/DBS/xxl

Abstract

XXL is a Java library that contains a rich infrastructure for implementing advanced query processing
functionality. The library offers low-level components like access to raw disks as well as high-level
ones like a query optimizer. On the intermediate levels, XXL provides a demand-driven cursor algebra,
a framework for indexing and a powerful package for supporting aggregation. The library is publicly
available under GNU LGPL and comes with a full documentation.

1 Introduction

This paper describes the most important components of XXL, the eXtensible and fleXible Library for efficient
query processing [1, 2, 3]. Multiple reasons have driven the design and implementation of the library:

• Many of the algorithms developed for query processing have been implemented in an ad-hoc manner. The
software design of these algorithms is poor and therefore, their application is quite complicated and limited
to specific (operating) systems. Furthermore, the modification of existing code is more complicated since
the documentation is often not complete or even not available.

• XXL should support experimental evaluations within a uniform testbed that is freely available. It is dif-
ficult to compare two access methods, for example, when the underlying platform is not the same. The
usage of different programming languages and compilers already results in substantial differences in the
runtime. Consequently, most of the comparisons are based on a simplistic computing model where the
number of I/Os is the only criterion.

• A more ambitious goal has been that XXL could serve as a repository for algorithms and use-cases. We
recognized that many algorithms are published in papers, but only a few implementations are freely avail-
able. Wouldn’t it be great to have a collection of algorithms implemented under a uniform framework? At
least in our research group, XXL has served as a repository where the code of our most important research
results is transparently present.

The XXL project started four years ago. One of our first design decisions implied to use Java as the underly-
ing programming language. With respect to our goals mentioned above, we were convinced that the advantages

Copyright 2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

12

of Java will outweigh its disadvantages. In particular, XXL benefits from the rich functionality available in other
Java libraries like the API of the SDK [4] and Colt [5]. We also agreed that the design of the library should be
based on popular design patterns [6]. This improves the readability and reusability of the code, and leads to a
comprehensive documentation. XXL uses design patterns like factory, iterator and decorator. In order to im-
prove code reusability, functional concepts had a strong influence on the design of the library. Java’s anonymous
classes are an excellent mechanism to provide functional abstraction in Java with very little overhead.

Another important aspect of our library is that classes should be well documented and equipped with use-
cases. These are important for inexperienced users to get familiar with the mechanisms and the handling of
the library. A simple use-case is therefore attached to every class in its corresponding main method. For more
complex application scenarios, we also provide use-cases in separate classes.

The rest of the paper gives a brief outline of the functionality of XXL, placing emphasis on the new concepts
that have been developed recently. In Section 2, we first provide an introduction of the basics like our functional
approach, containers and cursors. The principles for query processing like indexing and join processing are
presented in Section 3. Another new important component is our native XML storage. In Section 4, advanced
concepts are presented where metadata has to be taken into account. In particular, we introduce our object-
relational package and show how to provide query optimization within our library.

2 Basic Components

2.1 Functions and Predicates

Functional abstraction is a powerful mechanism for writing compact code. Since functions are not first class
citizens in Java, XXL provides the interfaceFunction which has to be implemented by a functional class. A
new functional object is declared at runtime using one of the following methods:

1. An anonymous class is implemented by extendingFunction and overriding a methodinvoke that
should contain the executable code. An example for declaring a new function is given as follows:

Function maxComp = new Function() {
public Object invoke (Object o1, Object o2) {
return (((Comparable) o1).compareTo(o2) > 0) ? o1 : o2;

}
}

2. The methodcompose of a functional object can be called to declare a new function by composition of
functional objects.

The code of a functional object is executed by calling the methodinvoke with the expected number of pa-
rameters. Note that functional objects in XXL may have a status and therefore, are more powerful than pure
mathematical functions.

Due to its importance in database systems, we decided to provide a separate interface (Predicate) for
Boolean functions. This improves the readability of the code as well as its performance since expensive casts
are avoided. Relevant to databases are particularly predicates likeexist for specifying subqueries and the
predicates for supporting a three-value logic.

2.2 Containers

A container is an implementation of a map that provides an abstraction from the underlying physical storage.
If an object is inserted into a container, a new ID is created and returned. An object of a container can only be

13

retrieved via the corresponding ID. Since a container is generally used for bridging the gap between levels of a
storage hierarchy, mechanisms for buffer management are already included in a container.

There are many different implementations of containers in XXL. The classMapContainer refers to a
container where the set of objects is kept in main memory. The purpose of this container is to run queries fast
in memory and to support debugging. The classBlockFileContainer represents a file of blocks, where
a block refers to an array of bytes with a fixed length. This is for instance useful when index-structures like
R-trees are implemented.

Java does not support operations on binary data and therefore, a block has to be serialized into its object
representation. Java’s serialization mechanism is however not appropriate since it has to be defined at compile
time. It is also too inflexible because there is only at most one serialization method for a class. XXL overcomes
these deficiencies by introducing the classConverterContainer that is a decorated container, i.e., an object
of this class is a container and consists of a container. In addition, this class provides a converter that transforms
an object into a different representation. ABufferedContainer is also a decorator. Its primary task is to
support object buffering in XXL.

In order to run experiments on external storage without interfering with the underlying operating systems,
XXL contains classes that support access to raw devices. There are two possibilities:

1. The classNativeRawAccess offers native methods on a raw device. By usingNativeRawAccess
the classRawAccessRAF extends the classjava.io.RandomAccessFile, which is the storage
interface ofBlockFileContainer.

2. XXL offers an implementation of an entire file system that runs on a raw device. This is able to deliver
files as objects of a class that extendsjava.io.RandomAccessFile. Therefore, an object of the
classBlockFileContainer can store its blocks in files of XXL’s file system.

2.3 Cursor

A cursor is an abstract mechanism to access objects within a stream. Cursors in XXL are independent from the
specific type of the underlying objects. The interface of a cursor is given by:

interface Cursor extends java.util.Iterator {
Object peek();
void update(Object o);
void reset();
void close();

}

A cursor extends the functionality of the iterator provided in the packagejava.util. Thepeek method
reports the next object of the iteration without changing the state of the iteration. A call ofreset sets the
cursor to the beginning of the iteration. The methodclose stops the iteration and releases resources like file
handles. The methodupdate modifies the current object of the iteration.

XXL offers an algebra for processing cursors, i. e., there are a set of operations that require cursors as input
and return a cursor as output. We distinguish among three kinds of cursors:

• Input cursorsare wrappers for transforming a data source into a cursor. For example, XXL provides an
input cursor for transformingjava.sql.ResultSet into a cursor.

• Processing cursorsare the ones that modify the input cursor. Examples for such cursors areJoin,
Grouper, Mapper whose semantics are similar to the ones of the corresponding relational operators.

• Flow cursorsdo not change the objects within the input stream, but they are restricted to change the
underlying data flow. For example, an instance of the classTeeCursor duplicates the input cursor.

14

3 Query Processing

3.1 Indexing

One of the most important packages of XXL isindexStructures that consists of a high-level framework
for index-structures. The purpose of this package is twofold: First, it contains many different index-structures
that are ready-to-use. Second, the implementation of new ones should be simplified.

Let us give an example for using an index-structure like an M-tree [7]:

MTree mTree = new MTree(MTree.HYPERPLANE_SPLIT);
mTree.initialize(getDescriptor, container, minCap, maxCap);

The first step is to call a constructor. In this example we used the one with a parameter where the split strategy
is specified. The second step is an initialization of the M-tree. The first parametergetDescriptor refers to
a functional object that computes a so-calleddescriptorfor a given data item. In case of the M-tree, a descriptor
corresponds to a bounding sphere. Our M-tree is able to manage any kind of objects as long as such a functional
object is available. The next parameter is the container object which is responsible for managing the nodes of the
tree. The other two parameters specify the minimum and maximum number of items within a node. Thereafter,
the tree is ready for receiving operations like insertions and queries.

An implementation of a new index-structure requires a fundamental understanding of our framework that is
a direct implementation of grow-and-post trees [8]. An index-structure is primarily determined by the inner class
Node, which does not only describe the structure of the tree nodes, but also provides essential functionality for
splitting and searching. The main task when implementing a new index-structure is to code a specialized class
for the nodes. For example, a function is required to serialize a node of an index-structure. More details about
the implementation can be found in our Java sources [3], where B-trees are probably the best starting point.

3.2 Join Processing

Joins are among the most important operators in a database system. While relational systems basically rely on
equi-joins, new applications like spatial databases require new types of join predicates. The goal of our join
processing framework was to provide a single implementation with the intention to support a bunch of different
join predicates efficiently. Furthermore, our framework is sufficiently generic to cover both sort-merge joins and
hash-based joins. It keeps a small subset, a so-calledsweep-area, for each input source in main-memory where
the join is processed on. Elements from the input are inserted into the associated sweep-area one by one. After
the insertion of an element, the other sweep-area is checked for join partners. A sweep-area can periodically
reorganized to remove the elements not producing join results anymore.

The interfaceSweepArea is the top class of all sweep-areas in XXL. The most important functionality
looks as follows:

public interface SweepArea {
public void insert(Object o);
public void reorganize(Object curStatus, int id);
public Iterator query(Object o);
...

}

The operations refer to the basic steps of join processing as described above. Note that every input has a unique
identifier which has to be specified when callingreorganize. There is a large number of different classes
that implement the interfaceSweepArea. We refer the interested reader to the documentation of XXL [3].

A join in XXL is called by the following statement:

Iterator it = new Join(input1, input2, HashBagSweepArea.FACTORY_METHOD,
Tuplify.DEFAULT_INSTANCE);

15

The first two parameters refer to the two input sources. The third parameter is a factory method for creating a
sweep-area. In our example, the sweep-area is organized as a hash-table [15]. The last parameter is a functional
object that specifies how to construct the output tuple of the join.

If a user of XXL is interested in implementing a new kind of join, she/he basically has to implement an
appropriate class that satisfies the interfaceSweepArea. This is substantial easier than implementing a join
from scratch.

3.3 Aggregation

Aggregate operations are important in large database systems to deliver a quick overview of the response set.
In contrast to a relational DBMS, XXL supports functions as results of aggregate operations. This allows re-
turning a histogram or other more advanced statistical data structures directly to the user (without producing an
intermediate relation). In the following, we briefly describe the basic structures of our packagestatistics.

This package is based on a generic aggregator cursor that applies a user-defined functions to aggregate the
objects of a given iterator. This cursor returns the intermediate value of the aggregate among the input that has
been consumed so far. The final value can be reported by a call toaggregator.last(), which consumes the entire
iterator. An example of such an aggregator is given below:

Aggregator aggregator = new Aggregator(
new RandomIntegers(100, 50),
new Function () { // the aggregation function

public Object invoke (Object agg, Object next) {
return (agg == null) ? next : maxComp.invoke(agg, next);

}
}

);

In our example, the source consists of 50 random integers in the range [0,100). The anonymous function com-
putes the maximum of two elements whereagg represents the aggregated value up to the previous element of
the input andnext is the current element of the input.

Our statistics package provides different implementations of selectivity estimators with histograms and ker-
nels as well as estimators based on query feedback. We refer the interested reader to our documentation [3], in
order to get more familiar with these concepts.

3.4 XML Storage

XXL contains functionality for processing queries on XML data. In addition to wrappers that transform XML
input into Java objects, XXL also provides a class that implements native XML storage. A brief description of
this class will be given in the following.

The native storage of XXL is an implementation of Natix [9] that performs quite similar to a B-tree. The
basic idea is to keep adjacent nodes of an XML-object physically close to each other in one page of the tree, in
order to support insertions and updates efficiently. An insertion of an XML node first determines the page where
it has to be stored. This might result in an overflow of the page which then has to be split into two. This triggers
a split of the XML document into smaller pieces which fit into pages.

4 Advanced Features

In this section, we present two packages of XXL that goes beyond the pure query processing techniques pre-
sented so far. Both of these packages rely on the availability and maintenance of metadata, whereas the func-
tionality is inherited from the core packages. In order to deliver metadata, a class has to satisfy the interface

16

MetaDataProvider that only offers the methodgetMetaData. The classMetaDataCursor combines
for example the two interfacesMetaDataProvider andCursor.

Relational Connectivity XXL’s package relational offers the functionality for processing on object-relational
data sources. The functionality of the package is similar to the one of cursors, but the operators are enhanced
by the corresponding metadata. In addition, the operators are processing tuples rather than Java objects. Conse-
quently, there are operators for join processing, grouping, projection,. . ..

An important functionality of this package is the availability of wrappers for transforming an object of the
classjava.sql.ResultSet into an object of classMetaDataCursor and vice versa. This enables us to
process data from relational sources directly without storing them in a local database. Database systems like
Cloudscape have increased the functionality of SQL by accepting cursors in the from-clause. This yields an
easy approach to extending the functionality of a database system. In [1], we presented an implementation of a
similarity join in Cloudscape using XXL’s join operator.

Query Optimization The recent version of XXL also includes a query optimizer for transforming relational
operator trees into more efficient ones. In analogy to the optimizer of a DBMS, we first check for semantically
correctness of the operator tree. Then, the optimizer starts transforming the operator tree by using a set of
rules and a cost model. Eventually, the optimizer selects the specific algorithms for the implementation of the
operators.

Since our query optimizer is part of a library, we require metadata being attached to data sources, opera-
tors, algorithms, functions and predicates. For operators, there are the interfacesOperatorInputMetaData
andOperatorOutputMetaData, which extend the functionality ofjava.sql.ResultSetMetaData.
These interfaces include methods that estimate the selectivity of an underlying operator and its costs. Our func-
tional metadata (FunctionMetaData) offer methods that specify the attributes of the input stream. Metadata
on predicates also return an estimation of the predicate’s selectivity. Moreover, the algorithms considered in the
physical optimization step have to deliver metadata like the associated logical operator.

Important to the design of the optimizer was its extensibility and flexibility. In our architecture, it is easy to
add new predicates, operators and algorithms. Moreover, the underlying cost model is not fixed and might be
replaced by a different one. As an extra feature, we support an XML format for queries, i. e. operator trees can
be transformed into XML and vice versa.

5 Related Work

There has been only little work on the design and development of query processing libraries in the database liter-
ature up to date. Most of the work published in the database community presents a system-oriented architecture.

Our work has been largely inspired by the pioneering work of Graefe and his Volcano system [10]. Both,
Volcano and XXL, use a tree-structured query evaluation strategy, represented by algebra expressions, that is
used to execute queries by demand-driven dataflows. Volcano already used so-calledsupport functionsfor
manipulating individual data objects in the dataflow. XXL however goes beyond the functionality of Volcano.
First, it offers a richer query processing infrastructure, many different index-structures and more support for
statistics. Second, XXL also contains wrappers for diverse data sources. Third, the object-oriented design of
XXL allows an easy extension of its functionality.

The work on GiST [11] is closely related to our indexing framework, but GiST is actually a system that is
tightly coupled with its storage system. The focus of GIST is only on index-structures, whereas other function-
ality is missing. It is notable that the grid-file implementation [12] had already great abstraction mechanisms
like iterators.

17

The design of libraries is more related to the area of algorithms and data structures, where libraries like
LEDA [13] are well known. The focus of LEDA is more on data structures for main memory rather than on the
management of very large data sets. Many of the abstraction mechanisms like functional classes are not available
in LEDA. TPIE [14] is designed to assist programmers in writing high performance I/O-efficient programs.
However, the operators of TPIE cannot pass data directly between each other, but have to use a temporary
storage area. In addition, TPIE does not represent a pure library, because it relies on a special memory manager
for organizing the physical memory. This also implies that TPIE is not platform independent.

6 Conclusions and Future Work

XXL is a query processing library implemented in Java that includes the most important ingredients for efficient
query processing. The design of the library was determined by two goals: the functionality of XXL should be
extended easily and XXL should be flexible enough for being customized fast to specific problems. Due to its
powerful methods, XXL is also an excellent platform for experimental work. Coding of new algorithms and
data structures requires substantial less time than beginning from scratch.

XXL is a live project! We are currently working on improving our indexing framework and strive for a
realization of a processing algebra on data streams.

Acknowledgements We are grateful for the great contributions of the other and previous members of the
database group to the current version of XXL. This work has been supported by the German Research Society
(DFG) under SE 553/2-2 and SE 553/4-1.

References

[1] J. van den Bercken, B. Blohsfeld, J.-P. Dittrich, J. Kr¨amer, T. Sch¨afer, M. Schneider, B. Seeger: XXL - A Library
Approach to Supporting Efficient Implementations of Advanced Database Queries. VLDB Conf. 2001: 39-48

[2] J. van den Bercken, J.-P. Dittrich, B. Seeger: javax.XXL: A prototype for a Library of Query processing Algorithms.
SIGMOD Conf. 2000: 588

[3] The XXL Project, http://www.mathematik.uni-marburg.de/dbs/xxl, 2003

[4] JavaTM 2 Platform, Standard Edition, v 1.4.1 API Specification, http://java.sun.com/j2se/1.4.1/docs/api/, 2002

[5] The Colt Distribution - Open Source Libraries for High Performance Scientific and Technical Computing in Java,
http://hoschek.home.cern.ch/hoschek/colt/V1.0.3/doc/index.html, 2002

[6] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns: Elements of Reusable Object-Oriented Software,
Addison Wesley. October 1994.

[7] P. Ciaccia, M. Patella, P. Zezula: M-tree: An Efficient Access Method for Similarity Search in Metric Spaces. VLDB
Conf. 1997: 426-435

[8] D. Lomet: Grow and Post Index Trees: Roles, Techniques and Future Potential. Proc. Symp. on Spatial Databases
1991: 183-206

[9] T. Fiebig, S. Helmer, C.-C. Kanne, G. Moerkotte, J. Neumann, R. Schiele, T. Westmann: Natix: A Technology
Overview. Web, Web-Services, and Database Systems 2002: 12-33

[10] G. Graefe: Volcano - An Extensible and Parallel Query Evaluation System. TKDE 6(1): 120-135 (1994)

[11] J. Hellerstein, J. Naughton, A. Pfeffer: Generalized Search Trees for Database Systems. VLDB Conf. 1995: 562-573

[12] K. Hinrichs: Implementation of the Grid File: Design Concepts and Experience. BIT 25(4): 569-592 (1985)

[13] K. Mehlhorn, S. Näher: LEDA: A Platform for Combinatorial and Geometric Computing. Cambridge University
Press 1999

[14] L. Arge, O. Procopiuc, J. Vitter: Implementing I/O-efficient Data Structures Using TPIE. ESA 2002: 88-100

[15] A. Wilschut, P. Apers: Dataflow Query Execution in a Parallel Main-Memory Environment. PDIS 1991: 68-77

18

Generating Traffic Data

Thomas Brinkhoff
Institute for Applied Photogrammetry and Geoinformatics

FH Oldenburg/Ostfriesland/Wilhelmshaven (University of Applied Sciences)
Ofener Str. 16/19, D-26121 Oldenburg, Germany

http://www.fh-oow.de/institute/personen/brinkhoff/

Abstract

Experimental investigations of spatiotemporal algorithms and data structures demand for generators
that produce realistic data sets. Especially Location-Based Services (LBS) require the simulation of
traffic. In this case, the data sets consist of objects that move within a given infrastructure. In this paper,
two different approaches—the Network-based Generator and the City Simulator—are reviewed. Both
generators for traffic data have a great deal in common, but are different in certain points. In addition,
a short overview on projects using these generators is given.

1 Introduction

Comprehensible performance evaluations are one of the most important requirements in the field of spatiotem-
poral algorithms and data structures. This demand covers the preparation and use of well-defined test data
and benchmarks enabling the systematic and comprehensible evaluation and comparison of data structures and
algorithms.

In experimental investigations,synthetic datafollowing statistical distributions as well asreal datafrom real-
world applications are used as test data or as query sets. The use of synthetic data allows testing the behavior of
an algorithm or of a data structure under exactly specified conditions or in extreme situations. In addition, for
testing the scalability, synthetic data sets are often suitable. However, it is difficult to assess the performance of
real applications by employing synthetic data. The use of real data tries to solve this problem. In this case, the
selection of data is crucial. For non-experts it is often difficult to decide whether a data set reflects a “realistic”
situation or not.

For testing spatiotemporal algorithms and data structures, moving objects are required. Such objects should
model moving persons or driving vehicles. Especially for Location-Based Services, data sets are useful that sim-
ulate traffic. One suitable approach for gettingtraffic dataconsists of (1) a definition of an infrastructure, which
restricts the movement of the objects, and (2) the computation of the moving objects within this infrastructure.
If the infrastructure models a real-world environment, such an approach can be understood as a simulation that
generates synthetic data on top of real data.

In the last few years, several generators for producing spatiotemporal data have been developed [10, 8,
9, 11]. Section 2 of this paper presents two proposals that generate traffic data according to the approach

Copyright 2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

19

mentioned before: the Network-Based Generator by Thomas Brinkhoff and the City Simulator by J. Kaufman,
J. Myllymaki, and J. Jackson from IBM. Section 3 gives a short overview on projects that make use of data
generated by these generators. The paper concludes with a summary and some suggestions for future work.

2 Generators for Traffic Data

2.1 Network-based Generator by Brinkhoff

TheNetwork-based Generatorby Thomas Brinkhoff [1, 2] is based on the observation that objects often move
according to a network. This observation holds, e.g., for road traffic as well as for railway traffic. Air traffic also
follows a network of air corridors and shipping is strongly influenced by rivers, channels, and other waterways.
Herds of animals often follow a (invisible) network during their migration. In consequence, (almost) no objects
can be observed outside of the network. Figure 1 illustrates the graphical interface of the generator.

The generator uses a discrete time model: the whole period is divided byn time stamps. At each time stamp,
new moving objects are generated and existing objects are moved or are deleted because they have reached their
destination. Each moving object belongs to a class that specifies the behavior of the object. For example, the
(maximum) speed is defined by such a class.

Figure 1: Visualization of the Network-based Generator.
The points are the moving objects. The rectangles visual-
ize the external objects. The colors indicate the classes of
roads, of moving objects, and of external objects.

Each edge of the network belongs to an edge
class, which defines the speed limit and the capac-
ity of an edge. If the number of objects travers-
ing an edge at a time stamp exceeds the specified
capacity, the speed limit on this edge will be de-
creased.

Furthermore, so-called external objects can
be generated in order to simulate the impact of
weather conditions or similar influences. There are
external objects, which exist over the whole period,
and others, which are created in the course of the
simulation and are deleted later. External objects
may change their position and their (rectangular)
shape over the time. If a moving object is in the
catchment area of an external object, its speed is
influenced according to the parameters of the class
the external object belongs to.

The computations of the number of new objects
per time stamp, of the start location, of the length
of a new route and of the location of the destina-
tion are time-dependent. This feature allows mod-
eling daily commuting and rush hours. In order to
speed up the computation, the route of an object is
computed once at the time of its creation. How-
ever, the fastest path may change over the time by
the motion of other objects and of external objects.
Therefore, a re-computation is triggered by events
depending on the travel time (in order to simulate
messages of radio traffic services) and on the devi-

ation between the current speed and the expected speed on an edge (in order to simulate the reaction of drivers
in a traffic jam).

20

The Network-based Generator is written in Java 1.1. Its behavior can by influenced by a parameter file as
well as by extending or modifying a set of well-chosen Java classes that are provided as source code. A graphical
user interface allows the setting of parameters and the visualization of the network and of the generated objects.

The network used by the generator is specified by simple text files or by spatial data stored in Oracle Spatial.
The same holds for the output: the reported objects are written to a text file or into a database. The following
example shows a selected part of such output file; each line consists of the type of event, the object ID, the class
of the moving object, the index of the time stamp and the x,y coordinates:

newpoint 0 3 0 20435 19558
point 0 3 1 20455 19688
newpoint 5 0 1 13858 10979
point 0 3 2 20475 19818
point 5 0 2 13800 11627
newpoint 10 1 2 5079 18012
point 0 3 3 20496 19948
point 5 0 3 13504 12223
point 10 1 3 5334 17822
newpoint 15 0 3 13566 20167
disappearpoint 0 3 4 20493 20078
point 5 0 4 13258 12841
point 10 1 4 5981 17832
point 15 0 4 13612 19876

The Network-based Generator can be downloaded from following web site:http://www.fh-oow.de/institute/
iapg/personen/brinkhoff/generator.shtml

2.2 City Simulator by IBM

Figure 2: Visualization of a city plan.

The City Simulator by J. Kaufman, J. Myllymaki, and
J. Jackson [4, 5] is a scalable, three-dimensional model city
that enables the creation of dynamic spatial data simulating
the motion of up to 1 million moving objects (persons). The
data space of the city is divided into different types of places
that influence the motion of the objects: roads, intersections,
lawns and buildings are such places that define together a
city plan. Each building consists of an individual number of
floors for modeling the third dimension. Figure 2 illustrates
a part of a city plan and the moving objects. The dark areas
are buildings that are connected by a grid of roads. The small
points are moving objects; their colors indicate the current
floor.

Moving objects being on a road enter with a user-defined
probability the first floor of a building. Objects on the first
floor may leave the building if they are near a door. They
perform random walks on a building floor or they may move
up or move down from one floor to the next floor depend-
ing on user-defined probabilities if they are near to specific
points (stairs). An object on a road moves with a linear com-
bination of random walk and the drift velocity of the road;

the influence of the drift velocity increases as a moving object gets closer to the center of a road.

21

Figure 3: The floor population histogram visualizes the number of floors and the number of moving objects in
respect to a floor index.

The City Simulator is written in Java 2.0 using the Xerces class library. Several parameters allow controlling
the simulator. The number of objects and the number of time stamps are examples for such parameters. The
parameters are defined by a parameter file and may be re-defined by the input from a graphical user interface.
Other parameters are defined by the city plan. The user interface allows the visualization of the city plan, of the
generated objects, and of the number of objects being on the different floors (see Figure 3).

The output is produced as a text file, which contains a unique object ID, a time stamp, and x,y,z coordinates.
The next example shows some selected lines such a file:

index, time, x,y,z
1, 4840.658295, 819.6,251.4,4.6 # cycle = 320
1, 5266.601442, 817.2,247.8,0.0 # cycle = 350
1, 5879.725107, 807.2,245.6,0.0 # cycle = 390
1, 6176.540532, 804.2,249.0,4.6 # cycle = 410
1, 6327.931518, 805.6,249.6,9.3 # cycle = 420

The city plan is described by an XML file. It contains information about geometries and about the probabil-
ities of movements:

<Road Angle="0.0" Length="470.0" Width="100.0">
<EndPoint1 x="0" y="1050"/>
<EndPoint2 x="470" y="1050"/>
<MotionRules EnterProb="0.1" ExitProb="0.1" VelGradient="2.4"/>

</Road>
<GrassyField Angle="0.0" Length="518.0" Width="506.0">

<EndPoint1 x="481" y="746"/>
<EndPoint2 x="999" y="746"/>
<MotionRules ExitProb="0.1"/>

</GrassyField>
<Building Angle="0.0" Length="518.0" Width="394.0">

<EndPoint1 x="481" y="1298"/>
<EndPoint2 x="999" y="1298"/>
<MotionRules ExitProb="0.1" UpProb="0.03"/>
<Floor Altitude="18" Angle="0" FloorNum="1" Length="518" Width="394">

<EndPoint1 x="481" y="1298"/>
<EndPoint2 x="999" y="1298"/>

22

<MotionRules DownProb="0.03" UpProb="0.03"/>
</Floor>
<Floor Altitude="36" Angle="0" FloorNum="2" Length="518" Width="394">

<EndPoint1 x="481" y="1298"/>
<EndPoint2 x="999" y="1298"/>
<MotionRules DownProb="0.03" UpProb="0.03"/>

</Floor>
</Building>

The Java class representing the city plan can be replaced by a user-specific class fulfilling a specified Java
interface. The download address of the City Simulator is:https://secure.alphaworks.ibm.com/aw.nsf/techs/
citysimulator.

2.3 Discussion

Comparing both generators for traffic data, we can observe several similarities:

• A discrete time model is used.

• The generators are implemented in Java. Compiled class files are provided plus some source code.

• The infrastructure is specified by user-defined files.

• The motion of the objects is computed by a simulation.

• The output is produced as simple text files.

There are some significant differences: While the Network-based Generator is limited to two-dimensional
data sets, the City Simulator supports three-dimensional city plans and computes 3D points. Another difference
concerns the map: The first approach limits the movements of the objects by edges of width 0 whereas the City
Simulator defines areas. As a result, spatial clusters in the shape of lines can by expected by the Network-based
generator, and polygonal clusters using the City Simulator. In the case of the City Simulator, the movement of
the objects is influenced by the rules of the place they are in. In contrast, the Network-based Generator also
considers the possible influence of other moving objects.

3 Applications

This section gives a short overview on projects that are using the presented generators for traffic data.

LOCUS LOCUS [5] is a testbed for dynamic spatial indexing. It supports the DynaMark benchmark specifi-
cation [6]. The City Simulator is a component of the architecture of LOCUS for generating location trace files.
Each record in a location trace file is used for updating the spatiotemporal index. Aftern updates,mqueries like
proximity queries, k-nearest neighbor queries, and sorted-distance queries are executed in respect to the location
of a user. Figure 4 depicts the architecture of LOCUS.

MOX Applications tracking and presenting mobile objects require to be kept informed about new, relocated,
or removed objects fulfilling a given query condition. Consequently, the spatiotemporal database system must
trigger its clients by transmitting the necessary information about such update operations. The query, which
causes this process, is calledcontinuous query. MOX is an architecture for querying XML-represented moving
objects [3]. It especially supports continuous queries. Figure 5 illustrates the architecture of MOX. For testing
the system and for investigating continuous queries, the Network-based Generator has been integrated into MOX.
The objects produced by the generator are inserted into the database, which triggers the affected continuous
queries.

23

Figure 4: Architecture of LOCUS [5]. The City Simulator is one possible component for generating location
trace files.

Figure 5: Architecture of MOX [3]. The Network-based Generator is used for performing the updates in the
database system.

24

Performance Tests The use of the presented generators for experimental evaluations of spatiotemporal algo-
rithms and data structures is just starting. A first example is the investigation of approximations for trajectory
segments by Zhu, Su, and Ibarra [12].

4 Conclusions

Two approaches for generating traffic data – the Network-based Generator and the City Simulator – have been
presented. Both generators allow the simulation of the motion of a huge number of moving objects. They have
been integrated into more complex architectures for testing spatiotemporal queries. However, the number of
investigations using these generators is still quite low. In the next years, the presented generators must prove
their usefulness.

For improving the usability of generators for spatiotemporal data, a (more or less) standardized XML output
format (e.g. defined by using GML 3 [7]) would be helpful. Furthermore, an open exchange forum for providing
maps (i.e. network files and city plans), parameter settings, location trace files, and so on could help to boost the
use of the generators.

References

[1] T. Brinkhoff. Generating Network-Based Moving Objects. In:Proc. 12th International Conference on Scientific and
Statistical Database Management, Berlin, Germany, 2000, pp. 253–255.

[2] T. Brinkhoff. A Framework for Generating Network-Based Moving Objects.GeoInformatica, 6(2):155–182, June
2002.

[3] T. Brinkhoff and J. Weitkämper. Continuous Queries within an Architecture for Querying XML-Represented Moving
Objects. In:Proc. 7th International Symposium on Spatial and Temporal Databases, Redondo Beach, CA, pp. 136–
154, 2001.

[4] J. Kaufman, J. Myllymaki, and J. Jackson. City Simulator.alphaWorks Emerging Technologies, November 2001,
https://secure.alphaworks.ibm.com/aw.nsf/techs/citysimulator.

[5] J. Myllymaki and J. Kaufman. LOCUS: A Testbed for Dynamic Spatial Indexing.Bulletin of the Technical Commit-
tee on Data Engineering, 25(2):48–55, June 2002.

[6] J. Myllymaki and J. Kaufman. DynaMark: A Benchmark for Dynamic Spatial Indexing. In:Proc. 4th International
Conference on Mobile Data Management, Melbourne, Australia, pp. 92–105, 2003.

[7] Open GIS Consortium Inc.OpenGIS Geography Markup Language (GML) Implementation Specification, Version
3.0, January 2003,http://www.opengis.org/techno/implementation.htm.

[8] D. Pfoser and Y. Theodoridis. Generating Semantics-Based Trajectories of Moving Objects. In:Proc. International
Workshop on Emerging Technologies for Geo-Based Applications, Ascona, Switzerland, pp. 59–76, 2000.

[9] J.-M. Saglio and J. Moreira. Oporto: A Realistic Scenario Generator for Moving Objects.GeoInformatica5(1):71–
93, March 2001.

[10] Y. Theodoridis, J.R.O. Silva, and M.A. Nascimento. On the Generation of Spatiotemporal Datasets. In:Proc. 6th
International Symposium on Large Spatial Databases, Hong Kong, China, pp. 147–164, 1999.

[11] T. Tzouramanis, M. Vassilakopoulos, and Y. Manolopoulos. On the Generation of Time-Evoling Regional Data.
GeoInformatica, 6(3):207–231, September 2002.

[12] H. Zhu, J. Su, and O.H. Ibarra. Trajectory Queries and Octagons in Moving Object Databases. In:Proc. ACM
International Conference on Information and Knowledge Management, McLean, Virginia, pp. 413–421, 2002.

25

Synthetic and Real Spatiotemporal Datasets

Mario A. Nascimento1 Dieter Pfoser2 Yannis Theodoridis3

1Department of Computing Science, University of Alberta, Canada,mn@cs.ualberta.ca
2Computer Technology Institute, Greece,pfoser@cti.gr

3Department of Informatics, University of Piraeus, Greece,ytheod@unipi.gr

Abstract

In the context of a spatiotemporal research environment, it is very important to be able to systematically
generate data with predictable characteristics. For instance, it allows one to use the same datasets, or
others similarly characterized, for benchmarking access structures or mining techniques. This paper
presents a survey of existing generators of synthetic spatiotemporal data. It also covers a few real
datasets, which are (at the time of this writing) publicly available for research use.

1 Introduction

While spatial data management and temporal management have been researched since more than 20 years ago
(e.g., [6, 13]), the combination of both as a research topic is younger although just as strong in terms of interest
(e.g., [7]).

Among the many topics which have been explored recently, such as spatiotemporal data modeling and
query languages (e.g., [5]), spatiotemporal data mining (e.g., [11]) and spatiotemporal indexing (e.g., [8]), many
(notably the former two) require the use of datasets in order to be evaluated. Hence the need for an automatic
means to generate datasets in a systematic way and with predictable characteristics. Interestingly, despite the
same need exists for “purely” spatial and temporal data, little work on data generation can be found, e.g., the
a La Carteenvironment for benchmarking spatial joins (http://www.infres.enst.fr/˜bdtest/sigbench/) [4] and the
SpyTimeenvironment for temporal data (http://www.cs.nyu.edu/cs/faculty/shasha/spytime/spytime.html).

Although we also cover some real spatiotemporal datasets, this paper deals mainly with the issue of gener-
ating synthetic spatiotemporal data, with a focus on non-networked based data. (Network-based data generators
are covered in [1] and elsewhere in this issue.) Towards this goal, the paper is structured as follows. Section 2
covers GSTD, to our knowledge, the first web-based, spatiotemporal data generator and its enhancements over
time. Two other systems, G-TERD and Oporto are also reviewed, and all three are compared among themselves.
Next, Section 3 presents some real datasets one could also use. Finally, we give directions for future work in
Section 4.

Copyright 2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

26

2 Spatiotemporal Data Generators

2.1 GSTD

GSTD [16] was initially built upon a few basic yet general principles discussed in [14]. As a result GSTD
currently supports the generation of both points and MBRs (Minimum Bounding Rectangles). The generated
datasets are transaction-time oriented and memory-less (i.e., future events do not depend on past states). Further,
the cardinality of the dataset is assumed to be constant throughout the data generation process.

The following three parameters control the data generation process and allow the generation of a wide variety
of scenarios (we use the same terminology as in [16]):

• Thedurationof an object, i.e., how often (time-wise) a change of its position occurs.

• Theshift of an object, i.e., how fast (or slow) it will move.

• The resizingof an object (applicable only to objects of type MBR), i.e., the shrinking/enlargement of
objects.

For each of those parameters the user can chose a statistical distribution to be followed; the current imple-
mentation supports Uniform, Gaussian and Skewed (Zipfian) distributions. In addition the user can also specify
upper and lower bounds for each of the three parameters.

Finally, GSTD also provides three different ways one can handle the case of points leaving the dataspace of
interest (the unit square): (i) in theradar approach, objects may leave the dataspace of interest and while not
displayed are still considered since they can eventually return (and be re-displayed); (ii) objects can also “bounce
off” the space coordinates in theadjustmentapproach; and (iii) in thetoroid approach, as the name suggests, the
data space is assumed to be toroidal, hence objects never leave it.

Figure 1: Snapshot of two (animated) datasets being dis-
played concurrently

Some enhancements over the original GSTD
algorithm were introduced in [10]. First the idea of
nervousnessis introduced, i.e., varying the object’s
shift. In GSTD’s initial design the changes in the
objects’ shift were to take effect during the whole
simulation lifetime. The introduction of the new
parameter allows it to change its behavior (again
in a systematic way). A second change was the
notion of aninfrastructure, i.e., objects which ob-
struct movement. Infrastructure can be composed
of real objects or synthetically generated MBRs. In
the latter case, MBRs could change their shape/size
and move as well.

Initially developed as a stand alone applica-
tion, GSTD was improved and re-implemented as
a web-based application (available via http://db.
cs.ualberta.ca:8080/gstd; the site also provides
source code for the data generator, so that it can
be run locally.) [15]. Its current version allows one

to generate and to store on the Web server several datasets in each run. One or more of those datasets can be
visualized (in an animated manner) at the same time. The user can download the dataset (in XML format) for fu-
ture use and/or distribution. Note that as long as the users publish the values of the GSTD parameters they used,
anyone can reproduce (and use) exactly the same dataset – this is the chief goal of GSTD, namely, removing the
ad hocnature of evaluating and comparing different systems.

27

To illustrate some of the GSTD features from above, Figure 1 shows a single snapshot of two datasets
(generated separately) being displayed concurrently. One of the datasets exhibits points moving freely (radar
approach) from a central cluster (Gaussian) towards the upper left corner of the dataspace, whereas the other
dataset is a set of moving MBRs, which change shape and size in time.

2.2 G-TERD

The Generator for Time-Evolving Regional Data, G-TERD, (http://delab.csd.auth.gr/stdbs/g-terd.html) differs
somewhat from GSTD in that it generates sequences of raster images [17]. As a separate paper in this issue is
devoted to G-TERD, we cover only its relation to GSTD.

Whereas GSTD is web based, G-TERD is an MS-Windows based application; its source code for the (stand-
alone) data generator is publicly available through the web. The generated data can be visualized (although not
animated as for GSTD) using an accompanying application.

G-TERD allows the user to set more parameters than does GSTD. It supports the statistical distributions
supported by GSTD and a few additional ones. While GSTD generates moving points and MRRs, G-TERD
is able to generate regions of more general shapes, which may, e.g., rotate, enlarge, or shrink. The coloring of
regions is also supported. Like GSTD, G-TERD allows for the specification of obstacles to movement.

GSTD’sradar approach allows objects to leave the dataspace; the viewable area in GSTD is fixed and cannot
be changed. In G-TERD, the dataspace is typically larger than what the user sees, and a so-calledscene-observer
capability allows the user to change point of view, e.g., follow a particular object’s path in time or “fly” over the
dataspace.

2.3 Oporto

The Oporto generator (http://www-inf.enst.fr/∼saglio/etudes/oporto/) [12] was not designed to be as general as
GSTD or G-TERD; instead, it mimics a very specific scenario: fishing at sea. In a nutshell, it models fishing
ships, which leave harbors following shoals of fish while at the same time avoiding storm areas. The shoals of
fish themselves are attracted by plankton areas.

Harbors are static objects, while ships, storms and plankton areas, so-calledbad and good spots, are dynamic
ones. Ships and harbors are modeled as moving and static points, respectively, while spots are MBRs, which can
vary in shape and size, but do not move. In addition, they always grow and subsequently shrink (which may not
be exactly a very realistic assumption). Shoals of fish, on the other hand, can change size, shape and position
over time. The user can model a shore line along with the location of harbors on it.

Unlike GSTD and G-TERD, the underlying model of the Oporto generator is based on the notion of attraction
and repulsion. That is, ships (fish) are attracted by fish (plankton), whereas storm areas repel the ships.

While the authors argue that Oporto is capable of generating datasets representing several scenarios, it seems
to be quite limited when compared to GSTD and G-TERD. Nevertheless, one can argue for the value of being
based on a well known real application. Another limitation when compared to the other generators is its limited
capability of generating data according to different distributions – only the Uniform distribution is supported.

Oporto allows the user to generate and visualize animated datasets using the web (like GSTD) and is also
available as a MS Windows stand alone application (actually two, one for the the generator and another for the
visualizing the results). In Figure 2, the two consecutive snapshots illustrate the motions of two moving objects
(ships), with the former (latter) being attracted by a gray (white, respectively) shoals of fish.

3 Real Spatiotemporal Datasets

Data generators can produce datasets of any size and kind. To empirically evaluate algorithms size is of foremost
importance, but the kind of data eliminates final doubts about the suitability of a method.

28

Figure 2: Snapshots of Oporto’s interface

In the following, we survey a number of available datasets of varying size and kind. All datasets comprise
position samples of moving point objects. They are characterized by the parameters (i) number of moving
objects, (ii) number of position samples, (iii) spatial and (iv) temporal extent. Additional datasets can be found
on the homepage of the author [3]. The visualization of the datasets uses a three-dimensional spatiotemporal
representation [9].

Animal Tracking The tracking of animals is common for many scientific purposes. Two of the larger datasets
that exist are the tracking of seals [19] and turtles [2]. The seal dataset (cf. Figure 3(a)) was obtained by tracking
one animal (“Louise”). It consists of 261 position samples. The spatial extent of the data is 2 and 3.5 degrees
of Longitude and Latitude, respectively. The temporal extent is from May 2002 to March 2003. The position
samples in the dataset are of varying precision. Various degrees of goodness values in the dataset indicate the
reliability of the positional fix. The same site features several other, although smaller datasets from seals, whales,
pinnipeds, etc.

The tracking of a turtle resulted in the dataset visualized in Figure 3(b). It consists of 155 data points. The
spatial extent of the data is 6 and 7 degrees of Longitude and Latitude, respectively. The temporal extent is from
July 2001 to August 2003. No positional precision is indicted in the dataset. The same site contains a total of 11
turtle datasets of similar size.

Hurricanes A large meteorology database provides hurricane tracking data [18]. Figure 4(a) and (b) visualize
the traces of 12 storms recorded in the year 2002. The dataset consists of 365 data points. The spatial extent
of the data is 70 and 50 degrees of Longitude and Latitude, respectively. The temporal extent is from July to
October 2002. The site contains overall storm tracking data from the years starting in 1996 up until the present.

Public Buses The largest dataset in this survey stems from the tracking of public transport buses in the urban
area of the city of Patras, Greece. The dataset is a result of tracking 13 buses using GPS receivers. The dataset
consists of 28619 entries which were obtained by sampling the position of the vehicle at a regular interval of
30 seconds. The spatial extent of the data is 16 and 20 kilometers of Longitude and Latitude, respectively. The
temporal extent is a 24 hour interval. To obtain the dataset, please contact the second author.

29

68.5 69 69.5 70 70.5 71 40

42

44

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

Latitude (North

Longitute (West)

Y
ea

r+
20

00

(a) seal

81 82 83 84 85 86 87 88 20

30

40

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Latitute (North)

Longitude (West)

Y
ea

r+
20

00
(b) turtle

Figure 3: Animal tracking datasets

−110 −100 −90 −80 −70 −60 −50 −40 −30
0

10

20

30

40

50

60

70

Longitude (West)

La
tit

ud
e

(N
or

th
)

(a) spatial projection

−120 −100 −80 −60 −40 −20 0

50

100

7

7.5

8

8.5

9

9.5

10

10.5

Latitude (North)

Longitude (West)

M
on

th
s

in
 2

00
2

(b) spatiotemporal representation

Figure 4: Hurricane dataset

30

2.92 2.94 2.96 2.98 3 3.02 3.04 3.06 3.08

x 10
5

4.224

4.226

4.228

4.23

4.232

4.234

4.236

4.238

4.24

4.242

4.244
x 10

6

Longitude (meters)

La
tit

ud
e

(m
et

er
s)

(a) spatial projection

2.9 2.95 3 3.05 3.1

x 10
5

4.22

4.24

4.26

x 10
6

6

8

10

12

14

16

18

20

22

Latitude (meters)Longitude (meters)

T
im

e
of

 D
ay

 (
ho

ur
s)

(b) spatial projection

Figure 5: Bus dataset

4 Future Work

One clear shortcoming common to all of the above tools is that they can only generate 2D spatiotemporal data.
Although one would not be able visualize the generated data, it would be useful (and not as intuitive) to be able
to generate datasets in higher dimensional spaces.

Such tools could be further improved to allow maintaining a (likely moderated) database of datasets gener-
ated, specially those used in publications. Some published papers simply mention the use of those tools without
specifying details, which makes it hard (if not impossible) for someone to duplicate their datasets, defeating the
very purpose of such tools.

GSTD and Oporto could be extended to allow the user to import real datasets to serve as the data space’s
infrastructure (G-TERD does allow this) and/or allow the user to create those by sketching them in the interface
itself. Another useful enhancement could be to have objects aware of each other, e.g., one cannot get closer (or
farther) than a predetermined distance. (Oporto allows this in the special case of objects belonging to different
classes only.) Note that this would require some kind of embedded spatiotemporal indexing, which could be a
plug-in method provided by the user him/herself.

Indexing trajectories seems to be a topic of growing interest, as such, the above tools could also be extended
to generate trajectories following some particular specification, e.g., be contained within a pre-defined corridor.

Acknowledgments The authors would like to thank and acknowledge the following people who took part
in GSTD’s development over the past years: Jefferson R. O. Silva, Aggelos Kokorogiannis, Giannis Poulakis,
Victor Salamon, and Daniel Mallett. The development of GSTD has been partially supported (at different times
and by different means) by: Chorochronos Project (European Union); FAPESP, CNPq and FINEP (Brazil); and
TRC, NSRC and Nykredit Corp. (Denmark). M. A. Nascimento is currently supported by NSERC Canada. D.
Pfoser’s research is supported in part by the Information Society Technologies programme of the European Com-
mission, Future and Emerging Technologies under the IST-2001-32645 DBGlobe project, and the IXNILATHS
project funded by the Greek General Secretariat of Research and Technology. Y. Theodoridis is also with the
Data and Knowledge Engineering Group at the Computer Technology Institute, Greece (ytheod@cti.gr).

31

References

[1] T. Brinkhoff. A framework for generating network-based moving objects.Geoinformatica, 6(2):153–180, 2002.

[2] Caribbean Conservation Corporation/Sea Turtle Survival League. Sea turtle activity data, Web site:
http://www.cccturtle.org/sat3.htm, 2003.

[3] D. Pfoser. Spatiotemporal datasets, Web site: http://dke.cti.gr/people/pfoser/data.html, 2003.

[4] O. Guenther et al. Benchmarking spatial joinsà la carte. In Proc. of the 10th Intl. Conf. on Scientific and Statistical
Database Management, pages 32–41, 1998.

[5] R.H. Gueting et al. A foundation for representing and querying moving objects.ACM Trans. on Database Systems,
25(1):1–42, 2001.

[6] A. Guttman. R-trees: A dynamic index structure for spatial searching. InProc. of 1994 ACM SIGMOD Intl. Conf.
on Management of Data, pages 47–57, 1984.

[7] C.S. Jensen et al., editors.Proc. of the 7th Intl. Symp. on Advances in Spatial and Temporal Databases, volume 2121
of Lecture Notes in Computer Science, 2001.

[8] G. Kollios et al. Indexing animated objects using spatiotemporal access methods.IEEE Trans. on Knowledge and
Data Engineering, 13(5):758–777, 2001.

[9] D. Pfoser and C. S. Jensen. Capturing the uncertainty of moving-object representations. InAdvances in Spatial
Databases, 6th International Symposium, SSD’99, Hong Kong, China, July 20-23, 1999, Proceedings, pages 111–
132, 1999.

[10] D. Pfoser and Y. Theodoridis. Generating semantics-based trajectories of moving objects.Intl. J. of Computers,
Environment and Urban Systems (Special issue on Emerging Technologies for Geo-Based Applications), 27(3):243–
263, 2003.

[11] J.F. Roddick and K. Hornsby, editors.Proc. of the 1st Intl. Workshop on Temporal, Spatial, and Spatio-Temporal
Data Mining, volume 2007 ofLecture Notes in Computer Science, 2001.

[12] J.-M. Saglio and J. Moreira. Oporto: a realistic scenario generator for moving objects.Geoinformatica, 5(1):71–93,
2001.

[13] R.T. Snodgrass and I. Ahn. Temporal databases.IEEE Computer, 19(3):35–42, 1986.

[14] Y. Theodoridis et al. Specifications for efficient indexing in spatiotemporal databases. InProc. of the 10th IEEE Intl.
Conf. on Scientific and Statistical Database Management, pages 123–132, July 1998.

[15] Y. Theodoridis and M.A. Nascimento. Generating spatiotemporal datasets on the WWW.SIGMOD Record,
29(3):39–43, 2000.

[16] Y. Theodoridis, J.R.O. Silva, and M.A. Nascimento. On the generation of spatiotemporal datasets. InProc. of the
6th Intl. Symp. on Advances in Spatial Databases, pages 147–164, July 1999.

[17] T. Tzouramanis, M. Vassilakopoulos, and Y. Manolopoulos. On the generation of time-evolving regional data.
Geoinformatica, 6(3):207–231, 2002.

[18] Unisys Weather. Atlantic hurricane data, Web site: http://weather.unisys.com/hurricane/index.html, 2003.

[19] WhaleNet. Satellite tagging data, maps and information, Web site: http://whale.wheelock.edu/whalenet-
stuff/stopcover.html, 2003.

32

Generating Dynamic Raster Data

Theodoros Tzouramanis1 Michael Vassilakopoulos2 Yannis Manolopoulos1

1Dept. of Informatics, Aristotle University of Thessaloniki

541 24 Thessaloniki, GreeceE-mails:{theo,manolopo}@delab.csd.auth.gr

2Dept. of Informatics, Technological Educational Institute of Thessaloniki

P.O. Box 14561, 541 01 Thessaloniki, GreeceE-mail:vasilako@it.teithe.gr

Abstract

Benchmarking of spatio-temporal databases is an issue of growing importance. In case large real data
sets are not available, benchmarking requires the generation of artificial data sets following the real-
world behavior of spatial objects that change their locations, shapes and sizes over time. In this report,
a generator for changing raster data, called “Generator of Time-Evolving Regional Data” (G-TERD),
is presented. The basic concepts that determine the function of G-TERD are the structure of complex
two-dimensional raster objects, their color, maximum speed, zoom and rotation-angle per time slot, the
influence of other moving or static objects on the speed and on the moving direction of an object, the
position and movement of the scene-observer, the statistical distribution of each changing factor and
finally, time. In the framework developed, the user can control the generator response by setting several
parameters values.

1 Introduction

Spatio-temporal databases(STDBs) provide a framework for the efficient storage and retrieval of all states of a
spatial database over time. This includes the current and past states and the support of spatial queries that refer
to present and past time points, as well. During the last years many efforts have focused on spatio-temporal
formalism, data models, query languages, visualization and access methods. However, little work has appeared
on benchmarks for STDBs.

The goal of benchmarks in STDBs is to compare the performance of different implementation alterna-
tives. An example of a benchmark is the comparison of space requirements and query execution time of spatio-
temporal access methods (STAMs). In order to evaluate such STAMs, extensive experimentation using real and
synthetic data is required. A good benchmark must correspond to a recognizable, comprehensible real-life sit-
uation. It is important that the results hold not only for a specific environment but in more general settings, as
well. Thus, the user is able to repeat the experiments and come to similar conclusions. Very often, either real
data sets are not available or they cannot be useful for testing extreme conditions. In both cases synthetic data
sets can be generated by some artificial specifications rather than by obeying a real-world behavior.

Copyright 2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

33

Much work has been done towards data generation for benchmarks in prototype and commercial non-spatio-
temporal databases (for example, [4, 5]). These generated data can be used to test different implementations
under various operating conditions. In STDBs, the work on the generation of test data is limited and only a few
innovative papers have appeared in the literature. In [9] the authors present a general approach for the generation
of synthetic scenes of moving points, or rectangular objects. This approach is parameter-driven and does not
support the interaction between objects. In [6], the previous work is extended by introducing new features to the
generation process. In [7] a specialized spatio-temporal data generator, motivated by an application modeling
fishing boats, is proposed, where there exist no, or very few restrictions for the motion: e.g., objects of one type
may be attracted, or repulsed by objects of other classes. Recently, another approach for the generation of test
data, which is motivated from applications in the context of traffic telematics, has been presented [1, 2].

None of these approaches is suitable for benchmarking STAMs for raster data (especially quadtree-based
STAMs, for example, [11, 12]). In this report we review a novel approach for data generation, which is specif-
ically designed for applications stemming from the field of dynamic (time-evolving) raster data [13]. The gen-
erator presented in [13] is called“Generator of Time-Evolving Regional Data”(G-TERD). This software tool
is highly parameterized so that different parameter values may produce spatio-temporal data set distributions
with different characteristics. In this framework, the user can control the behavior of the generator by defining
parameters and statistical models. Such an approach considers the characteristics of a wide range of applications.

In order to make G-TERD available to the user for experimentation purposes, a Web site has been created,
which allows downloading the MS-DOS executable file of the generator, the user documentation and the source
code in C language. The Web site is athttp://delab.csd.auth.gr/stdbs/g-terd.html and pro-
vides, also, a visualization tool (based on Gnuplot 3.7) that runs under MS-Windows. It is offered with sample
data sets obeying different user-defined settings.

The remaining part of the report is organized as follows. Section 2 describes the basic concepts which were
considered during the generator design for continuously changing synthetic raster data. Section 3 describes the
operation of the new generator and some basic programming issues. Section 4 presents example setups and the
sequences of scenes generated. Finally, the last section concludes the report and discusses future work issues.

2 Fundamental Concepts

We assume a two-dimensional workspace, where real coordinates are used (float numbers in C) and that the
space extent on the x- and the y-axis is set by the user. In the sequel, in order to simplify presentation, the values
of coordinates are counted in “units”. With respect to the time domain, we assume that the changing scene lasts
for a period of timeT = [0, tmax). This period is divided in time slots. We further assume that the scene remains
unchanged during a time slot. In other words, time is digitized.

2.1 Objects and sub-objects

The basic data structure of G-TERD is thetime-evolving two-dimensional regional object. Each object consists
of a group of sub-objects which are quadrangles of the same, or different colors. This group of sub-objects, in
general, changes at each time slot. An object, or sub-object may have a static shape, or it can change its spatial
extension with time. The spatial extension of an object is determined by the smallest possible two-dimensional
rectangle, calledMinimum Bounding Rectangle(MBR), that encloses all its sub-objects. The user sets the
maximum size of the object MBR and the maximum size of the sub-object quadrangle.

In order to simulate real-world complex non-rectangular objects (e.g. cars, animals, airplanes, clouds, is-
lands) by an object, some, or all of its sub-objects may be connected and remain connected, for the whole
lifetime of the object.

The number of objects appearing in the scene and the number of sub-objects in an object are dynamic. The

34

objects may be static, or moving towards any spatial direction. The square sub-objects may, also, expand, or
shrink and rotate around their center. For the sake of simplicity, both elastic shocks and plastic crushes between
objects, are not allowed. Instead, there is a possibility that the one object will pass over the other, as if there were
moving in different heights, or there is a possibility that both objects will change moving directions in order to
avoid the crush.

2.2 The Scene-Observer

The scene-observerplays a central role in a time-evolving scene. In real-life, the observer may be a satellite
monitoring the earth surface, a telescope watching the space universe, the field of vision of a video or a photo
camera, the eyes of an onlooker, etc. The scene-observer in G-TERD is a virtual two-dimensional rectangular
window that shifts, zooms and rotates over the scene and films it, by printing one snapshot image per time slot,
for the whole lifetime of the evolution.

The observer’s window side length is user-controlled and it digitizes a workspace portion. The dimensions
of a quadrangle of the workspace that is represented by a pixel of the observer’s window, or in other words, the
size of such a pixel varies according to the zoom-in, or zoom-out factor. The scene-observer may move towards
any spatial direction, or he/she may be static for some periods of time or for the whole scene lifetime. The
observer may shift (“travel”) in a random way over the surface of the predefined workspace, or may follow the
movement of a specific “live” object. Other functions supported are the zoom in-out and the rotation around
the center point of the observer’s window. Using the concept of the scene-observer’s window, a sequence of
multicolored images that can be saved in the disk are produced.

2.3 Change of Spatial Locations, Size, Shape and Color of the Objects

Data objects may change their spatial location, size and/or their shape at different time intervals, according to
the values of their speed, zoom and rotation-angle fields. These fields are measured in units of the workspace
coordinate system per time slot and their domains are bounded by minimum and maximum values set by the
user. There are static, slow and fast moving objects. When an object is static (in slow movement) the speed,
zoom and rotation of all its sub-objects is set at zero (at half the value of the speed, zoom and rotation of the
object). In real-life examples, objects appear gradually in our field of vision. This also holds for objects and sub-
objects in G-TERD. Moreover, sub-ojects may have the same, different, or slightly different colors (following
changes of the intensity of light).

3 The operation of G-TERD

3.1 User-Defined Parameters and Distributions

In G-TERD several parameters may be user-defined in order to let the user control the behavior of the generator
(Table 1). The appropriate definition of these parameters is the simplest technique to control the properties of
the resulting data sets. For instance, by settingspeed min = speed max for both the x- and y- axes, then all
the objects are forced to move in a parallel fashion at the same speed as if they were one object. This is similar
to the movement of birds or military aircrafts flying together, or to the movement of a group of soldiers.

In order to have a generalized tool for benchmarking that simulates classes of real-life applications, several
quantities that determine the operation of this tool must be random variables that obey a specified distribution
among the ones mentioned above. For G-TERD, these random variables are presented in Table 2.

Through careful specification of different distributions for the variables of Table 2, the user can simulate
several interesting scenarios. For instance, by using the exponential distribution with small mean for the speed

35

Parameter Explanation
Xmax workspace length on the x-axis
Ymax workspace length on the y-axis
num timeslots time duration of the changing scene (T = [0, num timeslots))
max num objs maximum number of “live” objects per time slot
max num subobjs maximum number of “live” sub-objects in an object per time slot
num colors number of colors of the color palette
observer side length of the observer’s window side
obj side max maximum side length of object MBR
subobj side max maximum side length of the rectangular sub-object
percent objs static percentage of static objects per time slot
percent objs slow percentage of objects in slow movement, zoom and rotation per time slot
percent objs fast percentage of objects in fast movement, zoom and rotation per time slot

(percent objs fast = 100 − percent objs static − percent objs slow)
speed min[] minimum object speed per time slot positive value on x- (y-) axis: movement to the East (North)
speed max[] maximum object speed per time slot positive value on x- (y-) axis: movement to the East (North)
zoom min minimum object in-out zoom per time slot (−1 ≤ zoom min ≤ 1)
zoom max maximum object in-out zoom per time slot (−1 ≤ zoom max ≤ 1)
rotation min minimum object rotation-angle per time slot
rotation max maximum object rotation-angle per time slot
tmax duration maximum number of time slots that have to elapse before the next

computation of a field value of an object, a sub-object or of scene-observer
live objects at t = 0 number of “live” objects at time slott = 0

Table 1: The user-defined parameters of G-TERD.

and the period of time before the re-computation of the object speed, most of the objects would move slowly
and “nervously” on the workspace, since their speed would change direction very frequently.

Evidently, by properly adjusting the domain value of each variable of Table 2, the user may limit the data
generated from the chosen distribution. For instance, we can consider setting the domain of the zoom value
equal to [-1,0]. This will lead to a scenario where every created object would expand for a while, during the
initialization phase of its creation, and afterwards it will be deleted (“die”) in a very short time. G-TERD can
generate benchmark data for many application domains, given that their data distributions are known. It currently
supports the Uniform, Triangular, Normal, Exponential, Zipf and Poisson distributions.

3.2 Creation and Update of an Object

Initially, the new object location is selected so that its center point is randomly placed in the workspace, accord-
ing to a predefined statistical distribution. The acceptable placement of an object is controlled by a function,
which checks if the selected workspace area is occupied by another object and if the two objects are allowed
to overlap. Afterwards, a decision is made about the number of sub-objects that each object will initially have,
about their color (the same for all sub-objects, or not) and about their speed and rotation-angle per time slot. The
speed and rotation-angle of each sub-object are set randomly, following their domain value and the properties of
the related user-defined distributions. The instance of a sub-object for the next time slot is calculated, for each
speed, zoom and rotation-angle candidate value.

The scenario is not very realistic at the beginning of the data generation. All the sub-objects of the newly
created “live” objects cover a surface of zero size and expand by 1 square unit per time slot. Therefore, to obtain
satisfactory results, the generated data should not be used during awarm-up phase[7]. More details on how
G-TERD implements the warm-up phase and the creation of obejcts in general can be found in [13].

The update procedure of an object starts with the calculation of the new object location and MBR. If all the
sub-objects have the same color and the period of time that this color remains unchanged has expired, a new

36

Variable Distribution Domain
number of “live” sub-objectsobj.live subobjs in user-defined [1, max num subobjs]
an objectobj at the time slot of its creation
initial distribution of the center point of a new object user-defined the workspace
number of new objects per time slot user-defined [0, max num objs − live objects]

number of new sub-objects in an object per time slot user-defined [0, max num subobjs − obj.live subobjs]

deletion time slotobj.endtime of an object user-defined [birth time of the object + 1,num timeslots]
deletion time slotsubobj.endtime of a sub-object user-defined [birth time of the object in which

it belongs + 1,obj.endtime]
color .color of an object or a sub-object user-defined [1, num colors]
speedsubobj.speed of a moving user-defined [speed min, speed max]
sub-object per time slot and spatial axis
zoomsubobj.zoom of a moving sub-object per time slot user-defined [zoom min, zoom max]

with −1 ≤ zoom min ≤ zoom max ≤ 1

rotation-anglesubobj.rotation of user-defined [rotation min, rotation max]
a moving sub-object per time slot
number of time slots that must elapse before the next user-defined [1, tmax duration]
computation of an attribute such as the speed, zoom, color, etc.

Table 2: Variables that are controlled by statistical distributions.

color for all its sub-objects is selected. Otherwise, each sub-object them may change its color, independently.
If the period of time during which the speed, zoom and/or rotation-angle of each sub-object has expired, a new
value is set to the corresponding field. The instance of the sub-object for the next time slot is calculated, for each
speed, zoom and rotation-angle value and a procedure is followed to avoid an undesirable crush.

3.3 Positioning and Output of the Scene-Observer

The shift, zoom and rotation functions of the scene-observer are similar to the corresponding functions of an
object. If the scene-observer follows the evolution of a specific object, then the observer’s speed is proportional
to the distance of the center point of its window from the center point of the object followed. In this case, the
zoom in-out function of the observer takes care of keeping the whole object inside the observer’s window.

The output of the scene-observer is a sequence of multicolored images that can be saved in the disk. For
each pixel in the observer’s window, the algorithm checks if there is any sub-object covering the pixel. In this
case, the sub-object color is recorded in the output. If sub-objects of different objects cover the same pixel of the
observer’s window, then the color of the object, which can pass over any other of the involved objects, appears
in the output image.

3.4 The Main Routine

The input of the algorithm consists of the values and statistical distributions of all the parameters and variables
that appear in Table 1 and Table 2, respectively. During the scene initialization phase at time slott = 0, a user-
defined number of “live” objects is created and located in the workspace. The initialization of the observer’s
window and the output of the first snapshot image of the time-evolving scene follow.

During the main loop phase new object instances are generated. If the deletion time slot of an object has
already been reached and the surface of each of its sub-objects is less than 1 square unit, the object is deleted
from the scene. A random number of new objects at each time slot is also created and placed in the workspace.
The random number of new objects follows a predefined statistical distribution, such as the ones discussed in
subsection 3.1. Finally, the observer’s window is located at another position over the workspace and the output
function prints the snapshot image of the current state of the continuously changing scene.

37

4 A Sample Run

In the following, we give an example of the use of G-TERD. The side length of the scene-observer’s window
is set at 1024 units, the maximum number of live objects per time slot is 70 and the lifetime of the evolution is
101 time slots. The random number of new sub-objects per time slot and their deletion time slot are Uniform.
The same holds for the speed, the color and the period of time that must elapse before the next computation
of an attribute such as the speed, zoom, etc. Finally, the change of the size and shape of the objects/sub-
objects are controlled by the zoom and rotation-angle values per time slot, which are generated by the Triangular
distribution. The scenario in Figure 1 illustrates static objects that are uniformly distributed in a workspace of

Figure 1: Static objects and a scene-observer moving from South-West to North-East.

2000× 2000 units (color versions of these greyscale figures can be obtained via the G-TERD site). The speed
domain value is [10,10] for each axis. Therefore, the scene-observer shifts over the workspace surface at a
constant speed and diagonal orientation, from South-West to North-East. The objects are all created at the initial
time slot, whereas in the sequel the creation of a new object is not allowed, since the distribution of new objects
per time slot was Normal with meanµ=0 and mean square deviationσ=0. No objects are deleted during the
scene lifetime, since the distribution of their deletion time was also Normal with meanµ=100 and mean square
deviationσ=0.

5 Conclusion and Future Work

In this report we reviewed the first approach, the G-TERD generator, for data generation specifically designed
for applications stemming from the field of dynamic (time-evolving) raster data. The basic concepts involved in
the development, operation and use of G-TERD were examined. G-TERD is highly parameterized and flexible,
thus supporting the simulation of a variety of real-world scenarios. The Web site of G-TERD provides access
to the generator, its source code and some illustrative examples. G-TERD offers a framework for creating user-
defined synthetic time-evolving raster data sets that can be used for the experimental comparison of different
STAMs.

In the future, we plan enhancing G-TERD to support a greater variety of distributions, such as skewed
distributions or correlative two-dimensional distributions. Besides, the Web-based interface will be developed
in order to both generate and make it possible to visualize time-evolving synthetic raster data.

38

References

[1] T. Brinkhoff: “Generating Network-Based Moving Objects,”Proc. 12th Int. Conf. on Scientific and Statistical
Database Management, pp.253-255, Berlin, Germany, 2000,

[2] T. Brinkhoff: “A Framework for Generating Network-Based Moving Objects,”Geoinformatica, Vol.6, No.2, pp.153-
180, 2002

[3] O. Guenther, P. Picouet, J.-M. Saglio, M. Scholl and V. Oria: “Benchmarking Spatial Joins A La Carte,”Int. Journal
of Geographical Information Science, Vol.13, No.7, pp.639-655, 1999.

[4] C. Gurret, Y. Manolopoulos, A. Papadopoulos and P. Rigaux: “BASIS: a Benchmarking Approach for Spatial Index
Structures,”Proc. Workshop on Spatiotemporal Database Management, pp.152-170, Edinburgh, Scotland, 1999.

[5] J. Pei, R. Mao, K. Hu and H. Zhu: “Towards Data Mining Benchmarking: a Testbed for Performance Study of
Frequent Pattern Mining,”Proc. 2000 ACM SIGMOD Conf., pp.592, Dallas, TX, 2000.

[6] D. Pfoser and Y. Theodoridis: “Generating Semantics-Based Trajectories of Moving Objects,”Proc. Workshop on
Emerging Technologies for Geo-Based Applications, Ascona, Italy, 2000.

[7] J.-M. Saglio and J. Moreira: “Oporto: a Realistic Scenario Generator for Moving Objects,”Geoinformatica, Vol.5,
No.1, pp.71-93, 2001.

[8] Y. Theodoridis and M.A. Nascimento: “Generating Spatiotemporal Datasets on the WWW,”ACM SIGMOD Record,
Vol.29, No.3, pp.39-43, 2000.

[9] Y. Theodoridis, J.R.O. Silva and M.A. Nascimento: “On the Generation of Spatiotemporal Datasets,”Proc. 6th Symp.
on Spatial Databases, pp.147-164, Hong Kong, China, 1999.

[10] Y. Theodoridis, T. Sellis, A. Papadopoulos and Y. Manolopoulos: “Specifications for Efficient Indexing in Spatiotem-
poral Databases,”Proc. 7th Conf. on Statistical and Scientific Database Management Systems, pp.123-132, Capri,
Italy, 1998.

[11] T. Tzouramanis, M. Vassilakopoulos and Y. Manolopoulos: “Multiversion Linear Quadtree for Spatio-Temporal
Data,”Proc. 4th East-European Conf. on Advanced Databases and Information Systems, pp.279-292, Prague, Czech
Republic, 2000.

[12] T. Tzouramanis, M. Vassilakopoulos and Y. Manolopoulos: “Overlapping Linear Quadtrees and Spatio-Temporal
Query Processing,”The Computer Journal, Vol.43, No.4, pp.325–343, 2000.

[13] T. Tzouramanis, M. Vassilakopoulos and Y. Manolopoulos: “On the Generation of Time-evolving Regional Data,”
GeoInformatica, Vol.6, No.3, pp.207–231, 2002.

39

Spatio-Temporal Access Methods∗

Mohamed F. Mokbel Thanaa M. Ghanem Walid G. Aref

Department of Computer Sciences, Purdue University, West Lafayette, IN 47907-1398
{mokbel,ghanemtm,aref}@cs.purdue.edu

Abstract

The rapid increase in spatio-temporal applications calls for new auxiliary indexing structures. A typical
spatio-temporal application is one that tracks the behavior of moving objects through location-aware
devices (e.g., GPS). Through the last decade, many spatio-temporal access methods are developed.
Spatio-temporal access methods focus on two orthogonal directions: (1) Indexing the past, (2) Index-
ing the current and predicted future positions. In this short survey, we classify spatio-temporal access
methods for each direction based on their underlying structure with a brief discussion of future research
directions.

1 Introduction

Spatio-temporal databases deal with objects that change their location and/or shape over time. A typical example
of spatio-temporal databases is moving objects in theD-dimensional space. Moving objects learn about their
own location via location detection devices, e.g., GPS devices. Then, the objects report their locations to the
server using the underlying communication network, e.g., via wireless networks. The server stores the updates
from the moving objects and keeps a history of the spatio-temporal coordinates of each moving object. In
addition, the server stores additional information to help predict the future positions of moving objects. Typical
queries that are supported by such a server include time slice queries e.g., “Find all objects that cross a certain
area at time t” and window queries “Find all objects that cross a certain area in the time interval[t1, t2]”. Time
slice queries and window queries may ask about the past, current, or future times. Some queries are concerned
only with the past, e.g., trajectory queries “What is the maximum speed of a certain object in the last hour?”
Other queries are concerned only with the future, e.g., moving window queries “Find the objects that intersect
a moving area in a certain time interval”.

Numerous research have been done in developing spatio-temporal access methods as an auxiliary structure
to support spatio-temporal queries. Figure 1 gives the evolution of spatio-temporal access methods with the
underlying spatial and temporal structures. Lines in the Figure indicate the relation between a new proposed
spatio-temporal index structure and the original structure that is based upon.

Copyright 2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

∗This work was supported in part by the National Science Foundation under Grants IIS-0093116, EIA-9972883, IIS-0209120, and
by Purdue Research Foundation.

40

The rest of this paper is organized as follow: Section 2 surveys spatio-temporal indexing methods that index
the past (i.e., index historical spatio-temporal data). In Section 3, we survey spatio-temporal indexing methods
that keep track of the current status of spatio-temporal data. Section 4 surveys the spatio-temporal indexing
methods that help answer queries related to the future. In Section 5, we give an overview of available indexing
toolkits that can help in implementing spatio-temporal access methods. Finally, Section 6 concludes the paper.

2 Indexing the Past

90 91 92 93 94

2+3 R−tree

TB−tree

95 96 97 98 99 00 01 02 03

Hashing

80−89

2−3 TR−tree

STAR−tree

3D R−tree

Spatio−temporal index for the past Spatio−temporal index for the current Spatio−temporal index for the future

Spatial access method Temporal access method

SETI

SEB−tree

VCI

PR−tree

TPR−tree

Overlapped B−tree

HR−tree

Linear Greedy

Kinetic + Duality

SV−Model

PSI

Duality

NSI
STR−tree

R −tree

TPR*−tree

MVB−tree

Overlapped Quadtree

Future Quadtree

EXP

HR+−tree

MV3R−tree

TSB−tree

RT−tree

Quadtree

R−tree

MR−tree

Polynomial Greedy

Bottom−up updates

LUR−tree

PPR−tree

Figure 1: Survey of Spatio-temporal Access Methods

In this section, we are in-
terested in indexing meth-
ods for historical spatio-
temporal data. The size of
the history is continuously
increasing over time. Con-
sider moving objects that
continuously send their po-
sitions. Keeping track of
all updates is almost infea-
sible. Two approaches are
used to minimize the his-
tory size: (1) Sampling.
The stream of data is sam-
pled at certain time posi-
tions. Linear interpolation
may be used between sam-
ple points to form trajec-
tory lines. (2) Update on
change only. Moving ob-
jects send information only
when their data is changed
(e.g., change in speed or
direction). We categorize
the spatio-temporal index-
ing schemes for historical

data into three categories. The first category augments the temporal aspect into already existing spatial ac-
cess methods. The second category manages both the spatial and temporal aspects into one structure. The third
category takes a more radical step by indexing mainly the temporal dimension, while treating the spatial dimen-
sion as second priority. The following sections overview these three categories and their corresponding access
methods.

2.1 Dealing with the Temporal Dimension

In this category of spatio-temporal indexing methods, the main concern is to handle the spatial domain. Dealing
with temporal queries is considered as a secondary issue.

RT-tree [45]: The RT-tree combines the foundation of the R-tree [14] as a spatial access method and the
TSB-tree [24] as a temporal access method. In the RT-tree, a new entry is added to the regular R-tree that
indicates the start and end times of the current object. An RT-tree entry is of the form(id,MBR, ts, te), where

41

id is the object identifier,MBR is the objects minimum bounding rectangle, andts andte give the time interval
in which this object is valid. The RT-tree supports spatial queries as efficient as the regular R-tree. However
time slice queries and interval queries may span the whole tree.

3D R-tree [41]: The 3D R-tree treats time as yet another dimension in addition to the spatial dimensions.
The main idea is to avoid discrimination between spatial and temporal queries. The 3D R-Tree supports both the
temporal and spatial queries, although with performance drawbacks. A main drawback is that timeslice queries
are no longer dependent on the live entries at the query time, but on the total number of entries in the history.

STR-tree [28]:The STR-Tree is an extension of the R-Tree, with a different insert/split algorithm. Leaf
nodes are in the form(id, tid,MBR, o) wheretid is the trajectory identifier ando is the orientation of this
trajectory in the MBR. The main idea of the STR-Tree is to keep spatial closeness and partial trajectory preser-
vation by trying to keep line segments belonging to the same trajectory together while keeping spatial closeness
as the R-Tree. A parameterp is introduced to balance between spatial properties and trajectory preservation.p
indicates the number of levels reserved for trajectory preservation. When inserting a new line segment the goal
is to insert it as close as possible to its predecessor in the trajectory withinp levels. A smallerp decreases the
trajectory preservation, while increasing the spatial closeness.

2.2 Overlapping and Multi-version Structures

In the second category of spatio-temporal indexes, the temporal dimension is discriminated from the spatial
dimensions. The goal is to keep all spatial data that are alive at one time instance together in one index structure
(e.g., the R-tree). The ultimate goal is to build a separate R-tree for each time instance. This approach requires
excessive storage.

MR-tree [45]: The MR-tree employs the idea of overlapping B-trees [6] in the context of the R-tree. The
main idea is to avoid the storage overhead of having separate R-trees for each timestamp. The saving in storage
is achieved by not storing the common objects among consecutive R-trees. Instead, links from different roots
point to the same nodes where all the node entries keep their values over the different timestamps. This idea is
perfect in the case of a time slice query. The search is directed to the appropriate root, and then a spatial search
is performed using the R-tree. However, the performance of time window queries is not efficient. Also, one
major drawback is that many entries can be replicated. Consider the case that only one node entry is changed
over two consecutive timestamps, then all other node entries need to be replicated in two consecutive R-trees.

HR-tree [25]: The Historical R-tree (HR-tree) is very similar to the MR-tree. The HR-tree has a concrete
algorithm and implementation details of using the overlapping B-tree [6] in the context of the R-tree. The same
idea of overlapping trees is applied in the context of quadtrees, where it results inoverlapping quadtrees[43].

HR+-tree [37]: The HR+-tree is designed mainly to avoid the replication of some entries in the HR-tree.
The main reason for having duplicate entries in the HR-tree is that the HR-tree has a condition that any node can
contain only entries that belong to the same root, i.e., ones that have the same timestamp. The HR+-tree relaxes
this condition by allowing entries from different timestamps to reside in the same node. However, the parent of
this node in each R-tree has only access to the entries that belong to the parent’s timestamp. In other words, a
node may have multiple parents, where each parent has access only to a different part of the node.

MV3R-tree [38]: The MV3R-tree is based mainly on the multi-version B-tree (MVB-tree) [5]. The main
idea is to build two trees, an MVR-tree to process timestamp queries, and a 3D R-tree to process long interval
queries. Short interval queries are optimized to check which tree is to be used based on a threshold value.

Greedy algorithms in the PPR-tree [20]:The partially-persistent R-tree (PPR-tree) [21], designed mainly
for bi-temporal databases, is extended to support spatio-temporal applications [20]. However, this would result
in highly dead space. To overcome the dead space, artificial object updates are introduced. An optimal greedy
algorithm [20] is used to find the optimal locations for the artificial updates in linearly moving objects. This
work is extended in [15] to support objects moving using a combination of polynomial functions.

42

2.3 Trajectory-Oriented Access Methods

The third category of spatio-temporal access methods focus on trajectory-oriented queries. Dealing with spatial
queries and gathering spatially closed objects together is of second concern.

TB-tree [28]: The Trajectory-bundle tree (TB-tree) is an R-tree-like structure that strictly preserves trajec-
tories. A leaf node can only contain segments belonging to the same trajectory. As a drawback, line segments
of different trajectories that lie spatially close will be stored in different nodes. The TB-tree grows from left to
right. The left-most leaf node is the first inserted node and the right-most leaf node is the last inserted one. The
TB-tree is an extension of the STR-tree to handle only trajectories.

SETI [8]: The Scalable and Efficient Trajectory Index (SETI) partitions the spatial dimension into static,
non-overlapping partitions. The main observation is that the change of the spatial dimension is limited while
the temporal dimension is continuously evolving. Thus, the spatial dimensions are partitioned statically. Within
each partition the trajectory segments are indexed using an R-tree. Using a good partitioning function results in
having line segments of the same trajectory stored in the same partition. Thus, trajectory preservation is achieved
by minimizing the effect of the spatial dimensions in the R-tree. A segment that crosses the boundary of two
spatial partitions is clipped and is stored twice in both partitions. This may lead to duplicates in the query result.

The SEB-tree [35]:The Start/End timestamp B-tree (SEB-tree) has an idea similar to SETI, where the space
is partitioned into zones that may be overlapped. Each zone is indexed using the SEB-tree that considers only
the start and end timestamps of the moving objects. Each moving object is hashed to its zone. A key difference
over SETI is that there are no trajectories. Instead only two-dimensional points are indexed. By having the
spatial zoning partitioning, two-dimensional points that belong to similar trajectories are kept together.

3 Indexing the Current Positions (NOW)

All previous spatio-temporal indexing techniques assume that all movements are known a priori. Thus, only
closed trajectories are stored. Current positions of moving objects are neither stored nor queried. The issue
of the current positions, or the NOW positions is challenging [10]. In the following, we give an overview of
spatio-temporal index structures that help answer queries about NOW.

The 2+3 R-tree [26]:The 2+3 R-tree aims to index both the current and past information of moving objects.
The main idea is to have two separate R-trees; one for the current two-dimensional points, and the second for
the historical three-dimensional trajectories (two spatial dimensions and one temporal dimension). This idea is
similar to the one proposed in the context of the bi-temporal indexes [21]. Once the current object is updated,
the object trajectory is constructed with its three-dimensional MBR, and is inserted into the three-dimensional
R-tree while being deleted from the two-dimensional R-tree. Depending on the query time, both trees may need
to be searched.

The 2-3 TR-tree [1]: The 2-3 TR-tree has the same idea as the 2+3 R-tree where the 2-3 TR-trees also
keeps two separate R-trees; a two-dimensional R-tree for the current objects, and a three-dimensional R-tree for
the historical data. However, two differences can be distinguished: (1) In the 2-3 TR-tree, the three-dimensional
R-tree keeps track of only the multi-dimensional points but not the trajectories; thus avoids the problem of high
dead space. (2) The 2-3 TR-tree uses the underlying structure of the TB-tree to allow answers for trajectory-
oriented queries.

The LUR-tree [22]: The Lazy Update R-tree (LUR-tree) is concerned only with the current positions of
spatio-temporal objects. No historical data is stored into the LUR-tree. Once an object updates its location, the
object’s old entry is deleted and the new entry is inserted. The LUR-tree aims to handle the frequent updates of
moving objects without degrading the performance of the R-tree index structure. The main idea is that as long
as the new position of the moving object lies inside its MBR, there is no action taken other than updating the
position. Once an object moves out from its MBR, two approaches are proposed: (1) The object is deleted and

43

is reinserted causing the necessary merge and split operations. (2) If the object does not move very far from the
MBR, the MBR can be extended to enclose the new location.

Bottom-up Updates [23]: The bottom-up approach for updating R-trees extends the idea of the LUR-tree.
Several bottom-up approaches are investigated to accommodate the frequent updates of the moving objects.
Examples of these approaches are extending the MBR to enclose the new value and moving the current object to
one of the siblings. To avoid excessive I/O’s while investigating the siblings and parents for updates, a compact
main memory summary structure is introduced.

Hashing [34]: Another approach for keeping only the current information is proposed via hashing. The
space is partitioned into zones that may be overlapped. An object does not update its entry to the database
until it changes its zone. Thus the database always contains an approximated view of the moving object. To
resolve this uncertainty, a filter layer is introduced between the database and the moving objects. The filter layer
contains the exact positions of the moving objects. A range query is transformed into a set of zones. If one zone
is completely enclosed in the range query, then all the zones entries are returned in the query result. However, if
a zone intersects with the range queries, then the zone entries need to be sent to the filter layer to check whether
they satisfy the range query or not.

4 Indexing the Current and Future Positions (NOW and the Future)

In this section, we are concerned about the current and future positions of moving objects. To predict the future
positions of moving objects, we need to store extra information (e.g., the velocity and the destination). The mo-
tion of a moving object in theD-dimensional space is modeled by a reference location�xref = (x1, x2, · · · , xd)
at a reference timetref and a velocity vector�v = (v1, v2, · · · , vd). The predicted location�xt of the moving
object at any instance timet > tref can be computed by�xt = �xref + �v(t − tref). For simplicity, we will
assume that objects move in the one-dimensional space. The object movement is modeled by the linear equation
xt = at + b, wherea andb are constants. Notice thata indicates the constant velocity of the moving object and
b is the starting location of the moving object. Also, we assume that the reference location is computed at time
tref = 0.

4.1 The Original Space-Time Space

By plotting the equationxt = at + b in the two-dimensional space, where the horizontal space represents the
time and the vertical space represents the location, we obtain a set of line segments in the time-space domain.
Then, the problem of indexing future positions is transformed to indexing a set of two-dimensional lines where
spatial access methods can be used [11].

PMR-quadtree for moving objects [40]: Tayeb et al. [40] use the PMR-quadtree [27] as their underlying
spatial access methods for indexing the future trajectories. A key point is that when an update of moving objects
occur, the whole index structure is destroyed and is rebuilt given the new information. To avoid excessive
update operations, the index is rebuilt every∆T time units. In the abstract level, the infinite time dimension is
partitioned into equal size time slices, each with size∆T . For each slice, a new PMR-quadtree is built based on
the motion equation. However, due to the storage limit, only the current PMR-Quadtree is stored.

Generally, using spatial access methods to index the future trajectories has two main drawbacks: (1) Large
amount of dead space due to representing the trajectory by its minimum bounding rectangle. (2) Data is skewed
since all the trajectories have the same end time value.

4.2 Transformation Methods

To overcome the drawbacks of spatio-temporal indexing in the time-space domain, the time-space domain is
transformed into another space. The main idea is that it is easier to represent and query the data in this new

44

space representation.
Duality transformation [19]: Kollios et al. [19] use the duality transformation to transform a line segment

(e.g., trajectory) from the time-space domain into a point in the two-dimensional space. The main idea is to
represent the equationxt = at + b by the two-dimensional point(a, b) in a dual two-dimensional space where
the velocitya is the horizontal dimension and the reference locationb is the vertical dimension. Due to the
highly skewed distribution in thedual space, akd-tree based spatial index (e.g., the LSD-tree [17]) is used
instead of an R-tree. Since R-trees try to cluster data points into square regions, they will split using only the
velocity dimension. However, akd-tree-based index will use both dimensions in splitting. A range query that
is a rectangle in theprimal space-time space is transformed into a polygon query in thedual velocity-location
space. Thus, the algorithm proposed by Goldstein et al. [13] is used to answer range queries.

Duality Transformation with the Kinetic Data Structure [2]: Agarwal et al. [2] use another form of the
duality transformation. A moving object in the two-dimensional space(x, y) is plotted as a three-dimensional
trajectory(x, y, t). The trajectory is projected into the(x, t) and (y, t) plans. Theduality transformation is
applied to both plans. The answer of the range query is the union of two range queries in the two plans. Instead
of having akd-tree-like structure (as in [19]), the so-calledkinetic data structure[4] is used to index the dual
space.

SV-Model [9]: Chon et al. [9] takes a more radical step, where they do not represent a moving object by
its trajectory. Instead, a moving object is modeled by four parameters(s, e, ts, v0) for the starting location,
the destination, the starting time, and the initial velocity, respectively. With the restriction that only two out
of the four parameters can change their values, there are six different combinations to consider. Among these
combinations, the best choice is to consider the starting locations and the velocityv0 as constants. Thus the dual
space will have the starting timets as the horizontal dimension and the destinatione as the vertical dimension.
This model is termed theSV -Model to indicate the constant starting location and velocity. Rectangular range
queries are transformed to polygon queries in thedualspace. Thedualspace is indexed by the SS-tree [44]. The
assumption that all moving objects have the same starting location is handled by normalizing the motion of all
moving objects to start from 0. For the constant velocity constraint, the assumption can be realistic in cases of
highway traffic. In the case where there are velocity variations, the velocity is quantized to discrete values. For
each value, a separate index structure is used.

PSI [29]: Porkaew et al. [29] propose the Parametric Space Indexing Technique (PSI). In the PSI approach,
an R-tree is used to index a(2d+1)-dimensional space, whered dimensions correspond to the reference location
�xref , andd dimensions correspond to the velocity�v, while one dimension corresponds to the time. Object

movement is modeled by a(2d+1)-dimensional trajectory that is enclosed by its minimum bounding rectangle.
The main idea is that the temporal range[ts, te] in which the motion is valid is stored in the index. Also, there is
no notion of global time reference that objects refer to.

In summary, the transformation techniques suffer from three main drawbacks: (1) Thedual space cannot
capture all the information that is originally in theprimal space. (2) There is no guarantee that objects that are
near to each other in theprimal space will still be near to each other in thedual space. (3) Rectangular range
queries in theprimal space are always transformed into polygon range queries in thedual space, which calls for
complicated algorithms for evaluation.

4.3 Parametric Spatial Access Methods

A new trend of spatio-temporal access methods is to index the original time-space with parametric rectangles.
The main idea is to make the bounding rectangles functions of time so that the enclosed moving objects will be
in the same rectangles. In this case, for any time instancet, a snapshot of the index structure can be computed
and evaluated for any query.

TPR-tree [33]: The Time Parameterized R-tree (TPR-tree) employs the idea of parametric bounding rectan-
gles in the R-tree. At the construction time, the TPR-tree builds the so-calledconservative bounding rectangles

45

that enclose a set of moving objects. The lower bound of the conservative bounding rectangle is set to move with
the minimum speed of the enclosed points, while the upper bound is set to move with the maximum speed of
the enclosed points. In this case, the conservative bounding rectangle never shrinks, and is guaranteed to always
contain the enclosed moving objects. To avoid the case where the bounding rectangles grow to be very large,
whenever the position of an objecto is updated, all the bounding rectangles on the nodes along the path to the
leaf at whicho is stored are recomputed.

PR-tree [7]: The PR-tree is similar to the TPR-tree. However, the PR-tree considers the problem of moving
objects with spatial extents that are represented by parametric rectangles. Each parametric rectangle has a time
interval that represents the start time and the end time of its movement. In contrast to the TPR-tree, where
objects are considered moving forever, the PR-tree has the knowledge of the end time of moving objects. Thus a
moving object is represented as a polygon on the space rather than a trajectory. Given the movement end times,
the bounding rectangles of a set of moving objects (represented as polygons) can be computed as the convex
hull of the moving objects.

NSI [29]: The NSI tree is similar to the TPR-tree in the sense that both define parametric bounding rectangles
for moving objects. However, the difference is in the way the bounding rectangle is defined.

VCI R-tree [30]: The main idea of the Velocity Constrained Indexing (VCI) is to add an additional field
vmax to each R-tree node.vmax stores the maximum allowed speed over all objects covered by this node. For
any query at timet, all bounding rectangles are expanded usingvmax. This approach is similar to that of the
TPR-tree in the sense that both trees consider expanding the bounding rectangles over time to contain all the
enclosed objects. However, the underlying model is different. In VCI indexing, there is no need to know the
exact speed of each moving object. Instead, there is a restriction that all moving objects cannot exceed a certain
maximum speed. In the TPR-tree, the exact velocity of moving objects is needed. On the other side, many false
positives appear in the VCI indexing. The VCI indexing is designed specially to handle the issue of the shared
execution of continuous queries.

STAR-tree [31]: The Spatio-temporal Self Adjusting R-tree (STAR-tree) is similar to the TPR-tree, with the
introduction of the notion ofself-adjustment. Whenever the query performance degrades, the STAR-tree adjusts
itself without any input from the user.

REXP -tree [32]: TheREXP -tree is an extension of the TPR-tree to handle moving objects with expiration
times. The main idea is to avoid the drawback that may result for moving objects that do not update their
movement for a long time. To benefit from the expiration time information, theREXP -tree employs a new type
of bounding regions. In addition, theREXP -tree implements a lazy technique for removing expired entries from
the index until the bounding rectangles are recomputed.

TPR*-tree [39]: The TPR*-tree uses exactly the same structure and assumptions as the TPR-tree [33].
Unlike the TPR-tree where it uses the same insert and delete functions of the R*-tree, the TPR*-tree provides a
new set of insertion and deletion algorithms that aim at minimizing a certain cost function.

5 Available Indexing Toolkits

In this section, we give a brief overview of publicly available indexing toolkits that can be used to implement
spatio-temporal access methods.

5.1 GiST: Generalized Search Trees for Database Systems

GiST [16] defines a framework of basic interfaces required to construct a hierarchical access method for database
systems. GiST supports the class of balanced trees (e.g., the B-tree, the R-tree, and the SR-tree [18]). The main
architecture of GiST contains two parts:internal methods andtype-specificmethods. Internal methods are the
common methods to all balanced trees (e.g., search, insert, and delete). Such methods are hard-coded inside

46

GiST, and cannot be altered by the user. Type-specific methods are provided by the user based on the underlying
index structure. Examples of type-specific methods areConsistent, Union, Penalty, andPickSplit. The
reader is referred to [16] for more details.

GiST can be used to support spatio-temporal indexing methods that are based on R-tree-like structures. For
example, the TPR-tree [33] is already implemented [42] using the publically available GiST code [12].

5.2 SP-GiST: A Framework for Supporting the Class of Space-Partitioning Trees

SP-GiST (Space-partitioning Generalized Search Tree) [3] is an extensible database index structure for the class
of space-partitioning trees (e.g., the trie, the k-d tree, the quadtree, and their variants). SP-GiST allows fast
realization of instances of space-partitioning index trees inside a commercial database system.

NodePredicate The predicate to be used in the index nodes of a space-parti-
tioning tree.

KeyType Type of data in the leaf-level of the tree.
NoOfSpacePartitions The number of disjoint partitions produced at each decom-

position.
Resolution
ShrinkPolicy

Limit the number of space decompositions.

BucketSize The maximum number of data items a data node can hold.

Consistent() Boolean function used by the search method as a navigation
guide through the space-partitioning tree.

PickSplit() Boolean function that define a way of splitting the entries
into a number of partitions and returns whether further parti-
tioning should take place or not.

Cluster() This method defines how tree nodes are clustered into disk
pages.

Table 3: SP-GiST Interface Parameters and External Methods

SP-GiST hasinterface parameters
andexternal methodsthat allow SP-GiST
to implement instance indexes of the
class of space-partitioning trees and re-
flect the structural and behavioral differ-
ences among these trees. In addition, SP-
GiST has internal methodsthat reflect
the similarity among space-partitioning
trees for insertion, deletion, and search
that are already implemented inside the
SP-GiST index engine. Table 3 gives the
interface parameters and external meth-
ods of SP-GiST.

Parameters NodePredicate = “left”, “right”, or blank; KeyType =
Point;NoOfSpacePartitions = 2; ShrinkPolicy = Leaf
Shrink;BucketSize = 1;

Consistent(E, q, level) If (level is odd ANDq.x satisfiesE.p.x) OR (level is even
AND q.y satisfiesE.p.y) Return True, else Return False

PickSplit(P, level) Put the old point in a child node with predicate “blank”;
put the new point in a child node with predicate “left” or
“right”; Return False

Table 4: Realization of k-d Tree Inside SP-GiST

The realization of any space-parti-
tioning treeT inside SP-GiST is achieved
by providing the interface parameters
and external methods forT . For ex-
ample, Table 4 gives the realization
of the k-d tree inside SP-GiST. Exam-
ples for the realization of other space-
partitioning trees inside SP-GiST can be
found in [3]. SP-GiST can be used to
implement spatio-temporal indexing that
rely on space-partitioning trees (e.g., [40,
43]). The SP-GiST code is publically
available [36].

6 Conclusion

In this short survey, we presented an overview of existing spatio-temporal index structures. Spatio-temporal
indexing methods are classified based on the type and time of the queries they can support (e.g., the past,
current, and future queries). With the variety of spatio-temporal access methods, it becomes essential to have a
general and extensible framework to support the class of spatio-temporal indexing. One approach is to use the
already existing extensible index structures (e.g., GiST and SP-GiST). Another approach is to develop a special
framework for spatio-temporal indexing to capture the special needs of such class (e.g., the type of queries,
the continuously evolving objects, and the frequent updates). There is still a lot of research work that needs

47

to be investigated in spatio-temporal indexing. Most of the work so far supports selection operators and range
queries. More research is needed to support other kinds of operators (e.g., spatio-temporal join) and queries
(e.g., nearest-neighbor queries).

References

[1] M. Abdelguerfi, J. Givaudan, K. Shaw, and R. Ladner. The 2-3 TR-tree, A Trajectory-Oriented Index Structure for
Fully Evolving Valid-time Spatio-temporal Datasets. InProc. of the ACM workshop on Adv. in Geographic Info.
Sys., ACM GIS, pages 29–34, Nov. 2002.

[2] P. K. Agarwal, L. Arge, and J. Erickson. Indexing Moving Points. InProc. of the ACM Symp. on Principles of
Database Systems, PODS, pages 175–186, May 2000.

[3] W. G. Aref and I. F. Ilyas. SP-GiST: An Extensible Database Index for Supporting Space Partitioning Trees.Journal
of Intelligent Information Systems , JIIS, 17(2-3):215–240, 2001.

[4] J. Basch, L. J. Guibas, and J. Hershberger. Data structures for mobile data. InProc. of the ACM-SIAM symposium
on Discrete algorithms, SODA, pages 747–756, 1997.

[5] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. An Asymptotically Optimal Multiversion B-Tree.
VLDB Journal, 5(4):264–275, 1996.

[6] F. W. Burton, J. G. Kollias, D. G. Matsakis, and V. G. Kollias. Implementation of Overlapping B-trees for Time and
Space Efficient Representation of Collections of Similar Files.The Computer Journal, 33(3):279–280, 1990.

[7] M. Cai and P. Revesz. Parametric R-Tree: An Index Structure for Moving Objects. InProc. of the Intl. Conf. on
Management of Data, COMAD, Dec. 2000.

[8] V. P. Chakka, A. Everspaugh, and J. M. Patel. Indexing Large Trajectory Data Sets with SETI. InProc. of the Conf.
on Innovative Data Systems Research, CIDR, Asilomar, CA, Jan. 2003.

[9] H. D. Chon, D. Agrawal, and A. E. Abbadi. Storage and Retrieval of Moving Objects. InMobile Data Management,
pages 173–184, Jan. 2001.

[10] J. Clifford, C. E. Dyreson, T. Isakowitz, C. S. Jensen, and R. T. Snodgrass. On the Semantics of “Now” in Databases.
ACM Trans. on Database Systems , TODS, 22(2), 1997.

[11] V. Gaede and O. G¨unther. Multidimensional Access Methods.ACM Computing Surveys, 30(2):170–231, 1998.

[12] GiST: http://gist.cs.berkeley.edu/.

[13] J. Goldstein, R. Ramakrishnan, U. Shaft, and J.-B. Yu. Processing Queries By Linear Constraints. InProc. of the
ACM Symp. on Principles of Database Systems, PODS, pages 257–267, May 1997.

[14] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. InProc. of the ACM Intl. Conf. on
Management of Data, SIGMOD, pages 47–57, June 1984.

[15] M. Hadjieleftheriou, G. Kollios, V. J. Tsotras, and D. Gunopulos. Efficient Indexing of Spatiotemporal Objects. In
Proc. of the Intl. Conf. on Extending Database Technology, EDBT, pages 251–268, Czech Republic, Mar. 2002.

[16] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer. Generalized Search Trees for Database Systems. InProc. of the
Intl. Conf. on Very Large Data Bases, VLDB, pages 562–573, Sept. 1995.

[17] A. Henrich, H.-W. Six, and P. Widmayer. The lsd tree: Spatial access to multidimensional point and nonpoint objects.
In Proc. of the Intl. Conf. on Very Large Data Bases, VLDB, pages 45–53, Aug. 1989.

[18] N. Katayama and S. Satoh. The SR-tree: An Index Structure for High-Dimensional Nearest Neighbor Queries. In
Proc. of the ACM Intl. Conf. on Management of Data, SIGMOD, pages 369–380, May 1997.

[19] G. Kollios, D. Gunopulos, and V. J. Tsotras. On Indexing Mobile Objects. InProc. of the ACM Symp. on Principles
of Database Systems, PODS, pages 261–272, June 1999.

[20] G. Kollios, V. J. Tsotras, D. Gunopulos, A. Delis, and M. Hadjieleftheriou. Indexing Animated Objects Using
Spatiotemporal Access Methods.IEEE Trans. on Knowledge and Data Engineering, TKDE, 13(5):758–777, 2001.

[21] A. Kumar, V. J. Tsotras, and C. Faloutsos. Designing Access Methods for Bitemporal Databases.IEEE Trans. on
Knowledge and Data Engineering, TKDE, 10(1):1–20, 1998.

48

[22] D. Kwon, S. Lee, and S. Lee. Indexing the Current Positions of Moving Objects Using the Lazy Update R-tree. In
Mobile Data Management, MDM, pages 113–120, Jan. 2002.

[23] M. Lee, W. Hsu, C. Jensen, B. Cui, and K. Teo. Supporting Frequent Updates in R-Trees: A Bottom-Up Approach.
In Proc. of the Intl. Conf. on Very Large Data Bases, VLDB, Sept. 2003.

[24] D. B. Lomet and B. Salzberg. Access Methods for Multiversion Data. InProc. of the ACM Intl. Conf. on Management
of Data, SIGMOD, pages 315–324, May 1989.

[25] M. A. Nascimento and J. R. O. Silva. Towards historical R-trees. InProc. of the ACM Symp. on Applied Computing,
SAC, pages 235–240, Feb. 1998.

[26] M. A. Nascimento, J. R. O. Silva, and Y. Theodoridis. Evaluation of Access Structures for Discretely Moving Points.
In Proc. of the Intl. Workshop on Spatio-Temporal Database Management, STDBM, pages 171–188, Sept. 1999.

[27] R. C. Nelson and H. Samet. A Consistent Hierarchical Representation for Vector Data. InProc. of the ACM SIG-
GRAPH, pages 197–206, Aug. 1986.

[28] D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel Approaches in Query Processing for Moving Object Trajectories.
In Proc. of the Intl. Conf. on Very Large Data Bases, VLDB, pages 395–406, Sept. 2000.

[29] K. Porkaew, I. Lazaridis, and S. Mehrotra. Querying Mobile Objects in Spatio-Temporal Databases. InProc. of the
Intl. Symp. on Advances in Spatial and Temporal Databases, SSTD, pages 59–78, Redondo Beach, CA, July 2001.

[30] S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G. Aref, and S. E. Hambrusch. Query Indexing and Velocity Constrained
Indexing: Scalable Techniques for Continuous Queries on Moving Objects.IEEE Transactions on Computers,
51(10):1124–1140, 2002.

[31] C. M. Procopiuc, P. K. Agarwal, and S. Har-Peled. STAR-Tree: An Efficient Self-Adjusting Index for Moving
Objects. InProc. of the Workshop on Alg. Eng. and Experimentation, ALENEX, pages 178–193, Jan. 2002.

[32] S. Saltenis and C. S. Jensen. Indexing of Moving Objects for Location-Based Services. InProc. of the Intl. Conf. on
Data Engineering, ICDE, Feb. 2002.

[33] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing the Positions of Continuously Moving
Objects. InProc. of the ACM Intl. Conf. on Management of Data, SIGMOD, pages 331–342, May 2000.

[34] Z. Song and N. Roussopoulos. Hashing Moving Objects. InMobile Data Management, pages 161–172, Jan. 2001.

[35] Z. Song and N. Roussopoulos. SEB-tree: An Approach to Index Continuously Moving Objects. InMobile Data
Management, MDM, pages 340–344, Jan. 2003.

[36] SP-GiST: http://www.cs.purdue.edu/homes/aref/dbsystemsfiles/SP-GiST/index.html.

[37] Y. Tao and D. Papadias. Efficient Historical R-trees. InProc. of the Intl. Conf. on Scientific and Statistical Database
Management, SSDBM, pages 223–232, July 2001.

[38] Y. Tao and D. Papadias. MV3R-Tree: A Spatio-Temporal Access Method for Timestamp and Interval Queries. In
Proc. of the Intl. Conf. on Very Large Data Bases, VLDB, pages 431–440, Sept. 2001.

[39] Y. Tao, D. Papadias, and J. Sun. The TPR*-Tree: An Optimized Spatio-temporal Access Method for Predictive
Queries. InProc. of the Intl. Conf. on Very Large Data Bases, VLDB, Sept. 2003.

[40] J. Tayeb,Ö. Ulusoy, and O. Wolfson. A Quadtree-Based Dynamic Attribute Indexing Method.The Computer
Journal, 41(3):185–200, 1998.

[41] Y. Theodoridis, M. Vazirgiannis, and T. Sellis. Spatio-Temporal Indexing for Large Multimedia Applications. In
Proc. of the IEEE Conference on Multimedia Computing and Systems, ICMCS, June 1996.

[42] TPR-tree: http://www.cs.auc.dk/TimeCenter/software.htm.

[43] T. Tzouramanis, M. Vassilakopoulos, and Y. Manolopoulos. Overlapping Linear Quadtrees: A Spatio-Temporal
Access Method. InProc. of the ACM workshop on Adv. in Geographic Info. Sys., ACM GIS, pages 1–7, Nov. 1998.

[44] D. A. White and R. Jain. Similarity Indexing with the SS-tree. InProc. of the Intl. Conf. on Data Engineering, ICDE,
pages 516–523, Feb. 1996.

[45] X. Xu, J. Han, and W. Lu. RT-Tree: An Improved R-Tree Indexing Structure for Temporal Spatial Databases. In
Proc. of the Intl. Symp. on Spatial Data Handling, SDH, pages 1040–1049, July 1990.

49

Spatio-Temporal Data Exchange Standards

Albrecht Schmidt Christian S. Jensen

Department of Computer Science, Aalborg University, Denmark
{al,csj}@cs.auc.dk

Abstract

We believe that research that concerns aspects of spatio-temporal data management may benefit from
taking into account the various standards for spatio-temporal data formats. For example, this may con-
tribute to rendering prototype software “open” and more readily useful. This paper thus identifies and
briefly surveys standardization in relation to primarily the exchange and integration of spatio-temporal
data. An overview of several data exchange languages is offered, along with reviews their potential for
facilitating the collection of test data and the leveraging of prototypes. The standards, most of which are
XML-based, lend themselves to the integration of prototypes into middleware architectures, e.g., as Web
services.

1 Introduction

It is often important to be able to test new spatial and temporal query processing techniques with real-world
data. This contributes to understanding how the techniques will perform in specific production settings. Over
the years, a number of data sets have become publicly available that, along with synthetic data, can serve as a
basis for experimenting with software prototypes. However, since many of these data sets are only available in
custom formats, a fair amount of domain knowledge is required to make use of them. Recent standardization
efforts, which typically employ XML-based technologies and digital library data exchange formats, aim to
facilitate the communication between applications by specifying data exchange standards. Especially, XML-
based geo-enabled applications can be deployed and enriched with the plethora of query languages, constraint
definition languages, and extensibility opportunities that are part of the standards infrastructure.

This paper surveys spatio-temporal data exchange standardization efforts. They all have different histories
and stem from different sub-communities. They thus come with both advantages and disadvantages in the eyes
of a potential user. The standards not only deliver exact specifications of data structures, but also address meta-
data issues. For example, it is often useful to know the validity, accuracy, and reliability of a measurement or its
origin. In this sense, data exchange standards do not only serve as an exchange mechanism for data structures,
but are also helpful in more advance applications like, e.g., decision support systems.

In particular, we survey the Geography Markup Language [12], which is the foremost candidate for address-
ing the manifold needs of the geographical community. We also survey the Scalable Vector Graphics (SVG)
standard [8]. SVG is an XML-based language for the description and presentation oftwo-dimensionalvector

Copyright 2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

50

and raster data. Next, we cover the ISO Technical Committee 211, which is central to the standardization of geo-
graphic data [1]. The US Federal Geographic Data Committee [3], another active player, is also covered briefly.
At least a handful of other (XML-based) standards exist that do not seem to be driven by large communities, but
are still of interest. For reference and completeness, these are covered briefly.

Generally, we observe a trend towards XML-based standards. A recent book [11] provides a very readable
introduction to data exchange in geographical applications. Many of the XML languages covered in this paper
adhere to the fundamental principle of separating content from presentation: data are encoded according to
semantic criteria without constraining how the data may be presented to a human or consumed by an application.

Sections 2 and 3 cover GML and SVG, respectively. Then the ISO Technical Committee 211 and the Federal
Geographic Data Committee are covered in Sections 4 and 5, respectively. Section 6 presents the “minor”
standards, and Section 7 summarizes the paper.

2 Geography Markup Language (GML)

The Geography Markup Language (GML) [12] is an XML language created under the auspices of the Open GIS
Consortium, whose mission statement is to facilitate the “full integration of geospatial data and geoprocessing
resources into mainstream computing and to foster the widespread use of inter operable geoprocessing software
and geodata products throughout the information infrastructure” [4]. GML, which could be considered the flag-
ship effort in geoprocesssing, is a multi-stage effort that has reached version 3.0. By designing the language in
multiple stages, the standardization body wants to make sure that the language evolves naturally and incorpo-
rates more and more features over time. For example, the so-calledsimplefeatures have been defined and been
integrated in the releases leading up to version 2.0.

GML’s definition is based on XML Schema and tries to take advantage of its full feature set. For example, it
makes it possible for users to tailor the language to their needs by means of XML schema’s extensibility. So it
is possible to incorporate well-defined GML schema fragments into documents that follow a user’s application
schema.

Therefore GML is able to describe a wide variety of geographical objects by combining its built-in data
types, which implement the OGC Simple Features model [4], with the extensibility features of XML. Being an
application of XML, GML is designed to take advantage of the XML standards framework; documents can be
readily transformed into a variety of presentation formats, most notably vector formats and raster graphics such
as maps.

Future versions of GML are planned to include additional aspects. Version 3.0 has added features for tempo-
ral GIS, including time stamps, events, and histories, as well as units of measure and the possibility of grouping
features into layers, to name but a few. But since GML is used in practice and competing standards converge
with it, many users consider it mature at its current stage and take advantage of its features.

For researchers, the advantages of using GML include the availability of test data sets and the incentive to
use the modeling knowledge of the geographic data management community in their prototypes, which can in
turn be more flexibly leveraged by other researchers and industrial partners alike. Due to the strict semantics of
GML, there is also the potential to benefit from the domain modeling that is part of the standard.

3 Scalable Vector Graphics (SVG)

SVG (Scalable Vector Graphics) is a standard developed under the auspices of the World Wide Web Consortium
(W3C) [5]. It defines features and syntax for describingtwo-dimensionalvector and raster graphics in XML. It
is thus primarily oriented towards presentation.

SVG knows three kinds of graphical objects: composite vector elements, e.g., paths that consist of lines and
curves, as well as images and text. The graphical objects can be grouped, styled, transformed, and composited

51

with various operations like nested transformations, clipping paths, alpha masks, filter effects, templates as
well as previously rendered objects. Furthermore, SVG objects can be interactive and dynamic. This is achieved
through event-handlers and a well-defined interface: Care has been taken to ensure interoperability with scripting
languages. To this end, SVG features event handlers for user interaction, e.g., using a mouse-related events like
“onmouseover”, and the SVG Document Object Model for well-defined transformations and manipulations by
means of scripting languages. Additionally, animations can be defined and triggered either declaratively, i.e., by
embedding SVG animation elements into SVG content or by using the aforementioned scripting interface.

SVG comprises a comprehensive list of built-in graphical elements: path, text, rect, circle, ellipse, line,
polyline, polygon, image, and use – a mechanism to reference SVG elements. A particularly important aspect of
SVG drawings isreusability. Through symbol mechanisms, users may build libraries of graphical elements and
re-use them without having to register at a centralized directory. To blend with the other elements of applica-
tions at client-side rendering of presentations, SVG also allows declarative definitions of filters for rasterization.
Additionally, SVG provides sophisticated handling of fonts so that the original text is preserved with respect
to indexing, search, and the graphical appearance intended by the authors. SVG content may be included via a
stand-alone document, inline embedding, references like links, or style sheets.

The benefits researchers get from using SVG in their projects range from software engineering considera-
tions to data re-use and integration opportunities. For example, the time it takes to prototype visual applications
can be significantly reduced by using an SVG viewer instead of a custom-built user interface. Viewers are avail-
able for many different types of devices, including mobile phones, personal digital assistants, and navigators
embeddable in conventional graphical user interfaces. Additionally, the tight integration and interoperability
of the XML standards facilitates the development of robust applications by providing a language glue that is
expressive enough to capture the semantics of the different domain models. For instance, SVG applications can
directly benefit from the availability of meta-information encoded in GML documents. Furthermore, the ability
of SVG to combine different source data, such as raster graphics, vector graphics, and fonts, in a single data
models provides application programmers with a uniform interface and greatly reduces the need to learn and
understand more than one API.

4 ISO/TC 211

ISO is the primary international standards organization for information technology. The ISO Technical Com-
mittee 211, on Geographic information/Geomatics, has as its objective to create standards for “[...] informa-
tion concerning objects or phenomena that are directly or indirectly associated with a location relative to the
Earth” [1]. Because the ISO/TC 211 adopts a service-oriented view of geoprocessing, its standards concern a
wide variety of uses of geographic data, including methods, tools, and services that relate to data management,
acquiring, processing, analyzing, accessing, presenting, and exchanging data. As a result, the ISO 19100 series
standards produced by the ISO/TC 211 go well beyond plain data modeling. Further, GML, which is known as
ISO 19136 in this context, is only one component of this larger series of standards developed under the auspices
of the ISO/TC 211.

The interoperability of standards is of particular interest to the ISO/TC 211. For example, the committee
has to ensure that the standards for position services (ISO 19116), location-based services (ISO 19132/3), and
multimodal services (ISO 19134) integrate smoothly with GML.

The overall aim is to increase the availability, access, integration, and sharing of geographic information, and
to enable interoperability of geospatially enabled computer systems [1] as well as to contribute to the creation of
a community that supports the dissemination of geographic understanding and enables sustained development.

The focus of the ISO/TC 211 on providing an overarching standardization framework has several notable
advantages. The adoption of such a framework is expected to result in lower training costs, better comparability
of results, increased planning safety by relying on a mature foundation as well as the existence of a knowledge-

52

able and experienced community for consulting and collaboration. So planning and implementation will be less
error-prone, and interoperability is achieved more easily. In this sense, the standardized framework is the answer
to many practical questions.

Also, the ISO/TC 211 can be seen as an umbrella intended to cover all areas native to geoprocessing. Con-
sequently, basic familiarity with this effort provides an interesting overview of a multi-faceted research area.

5 Federal Geographic Data Committee (FGDC)

The Federal Geographic Data Committee [3] is a US governmental, inter-agency committee. The FGDC is
central to the effort that develops the US National Spatial Data Infrastructure. New standards are developed
by the FGDC only when there are no existing standards that are suitable for governmental use. A number of
geographic data and metadata standards have been developed and are available online (see [3]).

As part of its objectives, the FGDC aims to enable the simultaneously reduction of data production costs and
improvement of data quality by providing a foundation for sharing geographic data among government agencies.
A complementary goal was to increase data availability, not only to the public sector, but also to academia and
the private sector.

6 Standards for Specific Application Domains

We proceed to cover some efforts that are not part of the “big” standards. All of these standards are XML based.
The three first are early examples of XML being deployed in the transportation industry. In addition to offering
data models, these standards show how domain specialists model different application domains.

POIX (Point Of Interest eXchange Language) POIX [9] is an XML representation for places and routes. It
was proposed by a Japanese consortium interested in motor vehicles, traffic, and road networks; car navigation
systems is the application area of primary interest. The purpose of POIX is to provide markup for both the
locations of an object and location-related information. Examples of location-related information include, e.g.,
opening hours and other descriptions for shopping locations. POIX also provides facilities for handling localized
information such as geodetic or angle units, which may vary from country to country.

NVML (NaVigation Markup Language) NVML (NaVigation Markup Language) [13] is a markup language
for describing navigation information in vehicle information systems. The main objective of NVML is the
description of different types of routes. Examples include routes from a current position to a destination, the
way to a shop from the nearest train station, transportation courses, sightseeing courses, and tour schedules.
Special emphasis is on any-time/anywhere services for a variety of end-user devices.

RWML (Road Web Markup Language) RWML [6] has been being developed at the Civil Engineering
Research Institute of Hokkaido. This language was developed as part of an effort to support smooth and safe
driving under a variety of circumstances. Consequently, RWML includes standard representation syntax for
weather and disaster information as well as for messages and announcements from public services.

G-XML The G-XML effort [2] is also Japanese; it has influenced developments in the context of ISO TC/211
and tries to maintain harmonization with GML as it itself evolves. The goals of the G-XML effort are similar
in spirit to those of many XML applications: creating an encoding of spatial data, thus providing “a method for
freely accessing and using geographic information over the Internet,” according to [2]. GML 3.0 is a G-XML
converged version, which implies that the underlying data models have been aligned.

53

Sensor Modeling Language (SensorML) SensorML [7] aims to implement an XML data exchange language
for geolocating data that stems from dynamic sensors. The objective is to cover most or all types of existing
sensors, including those installed on satellites, aircrafts, ships, land vehicles, and stationary platforms. It covers
means for describing sensor-specific information such as location, rotation, timing, target, sensor geometry, dy-
namics, and radiometry. It also addresses dependencies among variables. SensorML offers database researchers
an overview of a field that so far has been outside the community, and it encourages proper application data
models. Again, the standard enables data sharing and data exchange as well as increased system modularity and
interoperability.

7 Summary

A rich variety of standards that enable the exchange of geographic data exists. Although standardization has
been initiated by committees representing different organizations and communities, in order to serve different
purposes, the broad acceptance of XML appears to have caused many standards committees to join forces, which
has resulted in some consolidation of standards. However, because fundamentally different application domains
exist, such as the description of two- or three-dimensional visualizations and the representation of geographic or
sensor data, a diversity of standards remains.

We briefly surveyed some of the geoprocessing standards that are of special interest to researchers in spatio-
temporal query processing. As part of this, we pointed out in which application domains the standards can be
deployed and what advantages, be it technical, educational, or social, they bring about.

References

[1] ISO TC 211. ISO TC 211 Web Page.http://www.isotc211.org/, 2003.

[2] Database Promotion Center. G-XML – Geospatial-eXtensible Markup Language Version 2.0. available athttp:
//gisclh01.dpc.or.jp/gxml/contents-e/, 2003.

[3] Federal Geographic Data Committee. Metadata.http://www.fgdc.gov, 2003.

[4] Open GIS Consortium. Homepage.http://www.opengis.org/, 2003.

[5] The World Wide Web Consortium. Homepage.http://www.w3c.org, 2003.

[6] RWML Working Group. Road Web Markup Language (RWML). available athttp://rwml.its-win.gr.jp/eng/index.
htm, October 2001.

[7] Open GIS Consortium Inc. Sensor Modeling Language (SensorML). available athttp://stromboli.nsstc.uah.edu/
SensorML/, 2002.

[8] J. Ferraiolo (Editor). Scalable Vector Graphics (SVG). available athttp://www.w3.org/TR/SVG/, 2001.

[9] H. Kanemitsu and T. Kamada. POIX: Point Of Interest eXchange Language Specification. available athttp://www.
w3.org/TR/poix/, June 1999.

[10] Ron Lake. Geography Markup Language (GML) 2.0 – Enabling the Geo-spatial Web. tutorial available athttp:
//gislounge.com/ucon/ucgmlintro.shtml, 2003.

[11] Zhong-Ren Peng and Ming-Hsiang Tsou.Internet GIS: Distributed Geographic Information Services for the Internet
and Wireless Networks. Wiley, 2003.

[12] S. Cox, A. Cuthbert, R. Lake, and R. Martell. Geography Markup Language (GML) 3.0. available athttp://www.
opengis.net/gml/, 2001.

[13] M. Sekiguchi, K. Takayama, H. Naito, Y. Maeda, H. Horai, and M. Toriumi. NaVigation Markup Language (NVML).
available athttp://www.w3.org/TR/NVML, August 1999.

References including URLs are current as of May 21, 2003.

54

Sponsored by the

IEEE Computer Society

CALL FOR PAPERS

20th International Conference on Data Engineering
March 30 - April 2, 2004

Omni Parker House Hotel, Boston, USA
http://www.cse.uconn.edu/cse/icde04

Data Engineering deals with the use of engineering techniques and methodologies in the design, development and assess-
ment of information systems for different computing platforms and application environments. The 20th International Confe-
rence on Data Engineering will be held in Boston, Massachusetts, USA -- an academic and technological center with a variety
of historical and cultural attractions of international prominence within walking distance.

The ICDE 2004 International Conference on Data Engineering provides a
premier forum for:

 sharing research solutions to problems of today's information society;
 exposing practicing engineers to evolving research, tools, and prac-
tices and providing them with an early opportunity to evaluate these;

 raising awareness in the research community of the problems of prac-
tical applications of data engineering;

 promoting the exchange of data engineering technologies and experi-
ence among researchers and practicing engineers;

 identifying new issues and directions for future research and develop-
ment work.

ICDE 2004 invites research submissions on all topics related to data engin-
eering, including but not limited to those listed below:

1. Indexing, access methods, data structures
2. Query processing (standard and adaptive) and query optimization
3. Data Warehouse, OLAP, and Statistical DBs
4. Mining Data, Text, and the Web
5. Semi-structured data, metadata, and XML
6. Web Data Management
7. Middleware, workflow, and security
8. Stream processing, continuous queries, and sensor DB’s
9. Database applications and experiences
10. Distributed, parallel and mobile DB’s
11. Temporal, Spatial and Multimedia databases
12. Scientific and Biological DBs; Bioinformatics

AWARDS
An award will be given to the best paper. A separate award will be given to
the best student paper. Papers eligible for this award must have a (gra-
duate or undergraduate) student listed as the first and contact author, and
the majority of the authors must be students. Such submissions must be
marked as student papers at the time of submission.

INDUSTRIAL PROGRAM
The conference program will include a number of papers and invited
presentations devoted to industrial developments. Send your papers/pro-
posals electronically, clearly marked as industrial track papers, by July 2,
2003 to the Industrial Program Chair.

PANELS
Panel proposals must include an abstract, an outline of the panel format,
and relevant information about the proposed panelists. Send your propo-
sals electronically by July 2, 2003 to the Panel Chair.

ADVANCED TECHNOLOGY SEMINARS
Seminar proposals must include an abstract, an outline, an outline, a des-
cription of the target audience, duration (1.5 or 3 hours), and a short bio of
the presenter(s). Send your proposals electronically by July 2, 2003 to the
Seminar Chair.

DEMONSTRATIONS
Demonstration proposals should focus on new technology, advances in
applying databases, or new techniques. Demonstration proposals must be
no more than four double-columned pages, and should give a short des-
cription of the demonstrated system, explain what is going to be
demonstrated, and state the significance of the contribution to database
technology, applications, or techniques. Proposals should be submitted
electronically by July 2, 2003 to the Demonstration Chair.

SUBMISSION INFORMATION
Research papers must be submitted via
the ICDE 2004 web site in the 8/5"x11"
IEEE camera-ready format, with a 12-
page limit. Further instructions will be
posted on the web site. All accepted pa-
pers will appear in the Proceedings pub-
lished by the IEEE Computer Society.

Abstract Deadline: June 25, 2003
Submission Deadline: July 2, 2003
Notification: September 20, 2003

GENERAL CHAIRS
Betty Salzberg, Northeastern University
Mike Stonebraker, MIT

PROGRAM CHAIRS
Meral Ozsoyoglu, Case Western Reserve
Stan Zdonik, Brown University

LOCAL ARRANGEMENTS
George Kollios, Boston U. (chair)
Betty O’Neil, U.Mass/Boston
Arnon Rosenthal, MITRE Corp.
Donghui Zhang, Northeastern University

PUBLICITY CHAIR
Dina Goldin, U. Conn.

TREASURER
Eric Hughes, MITRE Corp.

PROCEEDINGS CHAIR
Elke Rundensteiner, WPI

INDUSTRIAL PROGRAM CHAIR
Gail Mitchell, BBN

PANEL CHAIR
Pat O’Neil, U.Mass/Boston

SEMINAR CHAIR
Mitch Cherniack, Brandeis University

DEMONSTRATION CHAIR
Ugur Cetintemel, Brown University

AREA CHAIRS
B. Chin Ooi, National U. of Singapore
Joe Hellerstein, UC Berkeley
Dimitrios Gunopulos, UC Riverside
Jiawei Han, Simon Frasier University
Yannis Papakonstantinou, UC San Diego
Mary Fernandez, AT&T
Ling Liu, Georgia Tech
Jeff Naughton, U. Wisc.
Guy Lohman, IBM
Panos Chrysanthis, U. Pittsburgh
Aidong Zhang, SUNY Buffalo
Louiqa Raschid, U. Md.

IEEE Computer Society
1730 Massachusetts Ave, NW
Washington, D.C. 20036-1903

Non-profit Org.
U.S. Postage

PAID
Silver Spring, MD

Permit 1398

