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Letter from the Editor-in-Chief

Updating Bulletin Publishing Infrastructure

Over nine years ago, | became editor-in-chief of the Data Engineering Bulletinfirbtyissue as editor was

in December, 1992. At that time the decision was made to not only publish the Bulletin in hardcopy as had
been done previously, but to also make it available electronically. This was originally done via ftp. A few years
later, web access was added. And a few years after that, the Bulletin became entirely electronically distributed,
mostly via the use of web access. In 1998, the web access was enhanced. The table of contents for each issue
was presented in a web page where clicking on an article downloaded exactly that article to the reader.

Despite the changes cited above, the original electronic publication infrastructure used to create each is-
sue remained virtually unchanged since 1992. In 1992, | prevailed upon Mark Tuttle, currently at Compaq
Cambridge Research Lab, to produce sfilles that would enable me to assemble the bulletin from separately
submitted articles in latex, automatically generating front and back covers, and putting the iableeof con-
tents on the front cover. This infrastructure has served the Bulletin well, creating a very readable and very
attractive publication.

But time moves on. And so did latex. The version upon which the original §ifgle were based, Latex
2.09, is no longer current. Authors using the current version, Latex 2e, could not check out their articles in the
form that would actually appear in the published issue. Neither could issue editors reliably assemble the issue,
and check for problems. So the styikes needed to be updated to work with Latex 2e.

So, at the risk of going to the well once too often, | again asked Mark Tuttle to help me out. Happily,
Mark rose to the challenge. His new and enhanced §itglewere tested using the March issue, though not used
for the version that was actually published since the enhancements were made after March. The ridesstyle
succeeded on that issue. Thus, the current issue (June) has been assembled entirely using thditesntstyle
Mark has created for us. This letter is the most manifest recognition that Mark will receive for his hard work.
So let me say a very specidhank you” to Mark Tuttle for a job very well done!

The Current Issue

Mobile computing is one of the great new application areas that have been made possible by the relentless
advance of hardware technology. And one facet of this is what | have heard referredloca®n awaré
computing. By whatever name one refers to this, a substantial part of what is involved is keeping track of where
people, cars, and various moving objects are at any point in time. And here, fast access to information about
object location is critical since an object may not stay for long in one area, and what might be enormously
important is providing timely access to information that is relevant to an dbjeatrent location.

Thus mobile computing relies heavily on the indexing of moving objects. And that is the subject of the
current issue. Christian Jensen, the issue editor is a great choice for handling this issue exactly because he is
himself actively engaged in research on indexing moving objects. He knows the area well, and further, he knows
well the work of others in this exciting new area. Christian has brought together work from both universities and
industry. As | have stressed many times before, | think one special role of the Bulletin is to provide a window
on what is going on in industry as there are few conventional outlets for learning about industry work. So | want
to thank Christian for éine job in bringing us the June issue on one of the important new directions in database
technology.

David Lomet
Microsoft Corporation



Letter from the Special Issue Editor

We dorit sort twice as fast every 18 months on the same computer. However, processors have on average
improved at about this rate for some four decadasphenomenon known as Motsd_aw, although it is not a

law, but is better characterized as a selfilihg prophecy. Among other kinds of hardware close to the heart

of a database researcher, disks and networks improve at even faster rates than do processors. These and many
other advances in hardware are important drivers for research in software, including data management research.

Highly portable and unobtrusive, wirelessly on-line electronics with sensing capabilities are appearing on
the horizon. This has brought increasing interest to areas such as ubiquitous and pervasive computing, mobile
computing, assistive computing, spatio-temporal databases, sensor-data management, stream data processing,
augmented reality, and ambient intelligence.

In step with applications and services being delivered increasingly to their users via mobile computing
devices, instead of via desk-top computers, new kinds of services with new characteristics become of interest.
Context awareness is particularly important to mobile usersfimddhemselves in a range of different situations,
characterized by diverse, spkcineeds. Location, the capture of which is made possible through increasingly
sophisticated positioning technologies, is an essential aspect of context awareness.

The spedic focus of the present issue of the Data Engineering Bulletin is on a range of aspects of the
indexing of the positions of continuously moving objects.

The positions of moving objects are obtained via some form of sampling, and the past positions of a point
object moving ind-dimensional space are frequently represented as a polyline, a sequence of line segments in
d + 1-dimensional space connecting the time-referenced, sampled positions. firsthmaper, Dieter Pfoser
considers the problem of indexing such trajectories. Focusing also on information relating to the past, Papadias
et al. in the next paper consider indexing in the context of aggregate computation for moving objects.

A somewhat different problem is that of indexing the positions of moving objects from the times their
positions were last sampled and into the future. Here, it is typical to represent the positions of an object by
a linear function. Papadopoulos et al. study the use of duality transforms for the indexing of such positions
of objects moving in one-, so-called 1.5-, and two-dimensional spaces. Agarwal and Procopiuc cover both
problems, surveying moving-object indexing from a computational geometry perspective and thus broadening
this issue to also cover highly relevant results not published in typical database Battetsis and Jensen point
the attention to the need for faster update processing in indices for the current positions of moving objects.

Chon et al. proceed to consider the management of moving-object trajectories. They adopt a partitioning-
based technique in place of indexing. Next, when attempting to develop a practical index with high query and
update performance, empirical performance studies are of essence. Myllymaki and Kaufman describe a testbed
for dynamic spatial indexing, an important piece of infrastructure in this regard. Finally, Kothuri and Ravada
explore the support in the Oracle DBMS for spatio-temporal indexing.

This issue samples research results and also points to challenges in an area with many open problems. It is
my hope that the issue offers a good feel for the breadth of fundamental problems and challenges inherent to
moving-object indexing, and for what it entails to conduct research in this area. | also hope that the issue will
inspire new research on moving-object indexing.

Christian S. Jensen
Department of Computer Science
Aalborg University, Denmark



Indexing the Trajectories of Moving Objects

Dieter Pfoser
Computer Technology Institute
11851 Athens, Hellas
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Abstract

Spoatiotemporal applications offer a treasure trove of new types of data and queries. In this work, the
focus is on a spatiotemporal sub-domain, namely the trajectories of moving point objects. e examine
the issues posed by this type of data with respect to indexing and point out existing approaches and
research directions. Animportant aspect of movement is the scenario in which it occurs. Three different
scenarios, hamely unconstrained movement, constrained movement, and movement in networks are used
to categorize various indexing approaches. Each of these scenarios gives us different means to either
simplify indexing or to improve the overall query processing performance.

1 Introduction

Several application areas contribute to the growing number of different types of spatiotemporal data. For ex-
ample, we are currently experiencing rapid technological developments that promise widespread use of on-line
mobile personal information appliances [12]. Mobility is a concern to many applications and services. One
aspect of mobility is movement and thus the change of location. Applications in this context include emerg-
ing ones such as location-based services, but‘aksssicdl ones such afieet management and the optimal
spatiotemporal distribution of vehicles [1].

Applications such as these warrant the study of indexing mobile objects. In particular, our interest is in
recording the movements of mobile objects, i.e., their trajectories, and indexing those for post-processing (e.g.,
data mining) purposes. Thus, we will not concern ourselves with the indexing of the current positions and the
predicted movements of objects such as treated in, e.g., [14, 15]. The size and shape of an objedixsaften
and of little importance-only its position matters. Thus, the problem becomes one of recording the position of
a moving object across time. The movement of an object may then be represented by a trajectory in the three
dimensional space composed of two spatial dimensions and one time dimension [9].

Typically, access methods are developed having only the data and the queries in mind. However, for trajec-
tory data we can also consider the constraints that the objects in their movement are subjectedftoalfypeci
we may distinguish among three movement scenarios, namely unconstrained movement (e.g., vessels at sea)
constrained movement (e.g., pedestrians), and movement in transportation networks (e.g., trains and, typically,
cars). As we will see in this work, the latter two scenarios allow us to optimize query processing techniques or
to use simpler access methods to index the data.

Copyright 2002 |EEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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The outline of this paper is as follows. Section Zides the basic concepts and indéas the challenges
in indexing trajectories. Sections 3, 4, and 5 point out indexing approaches grouped according to the three
movement scenarios. Finally, Section 6 concludes and points to research directions.

2 On Trajectories and Queries

The central question in this work is how we can ease the task of indexing point-object movements. This section
gives a brief description of the data, the related queries, and the respective indexing challenges.

2.1 Trajectories

A trajectory is the data we obtain by recording the position of a moving point object across time. Consider
the following application context. Optimizing transportation, especially in highly populated and thus congested
areas, is a very challenging task that may be supported by an information system. A core application in this
context isfleet management [1]. Vehicles equipped with GPS receivers transmit their positions to a central
computer using either radio communication links or mobile phones. At the central site, the data is processed and
utilized.

To record the movement of an object, we would have to know its position at all times, i.e., on a continuous
basis. However, GPS and telecommunications technologies only allow us to sample ars @osition, i.e.,
to obtain the position at discrete instances of time, such as every few secofidst. approach to represent the
movements of objects would be to simply store the position samples. This would mean that we could not answer
queries about the objettsmovements at times in-between those of the sampled positions. Rather, to obtain the
entire movement, we have to interpolate. The simplest approach is to use linear interpolation, as opposed to
other methods such as polynomial splines. The sampled positions then become the endpoints of line segments
of polylines, and the movement of an object is represented by an entire polyline in 3D space. The solid line in
Figure 1(a) represents the movement of an object. Space and time coordinates are combined to form a single
coordinate system. The dashed line shows the projection of the movement into the 2D (spatial) plane [8, 9].
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Figure 1: Trajectories: (a) 2+1 Dimensional Space, (b) Approximating Trajectories Using MBBs

In classical spatial databases only position information is available. In our case, however, we have also de-
rived information, e.g., speed, acceleration, traveled distance, etc. Information is derived from the combination
of spatial and temporal data. Further, we do not just index collections of line segribetse are parts of larger,
semantically meaningful objects, namely trajectories. These semantic properties of the ddtacesiria the
types of queries of interest for the data.



Query Type Operation Signature
Coordinate-Based Queries overlap, inside, etc. range
Topological | enter, leave, cross, rangex {segments
Trajectory Queries bypass — {segments
-Based | Navigational| traveled distance, covered {segments — int
Queries Queries area (top or average), {segment} — real
speed, heading, parked | {segments — bool

Table 1: Types of Spatiotemporal Queries

2.2 Queries

The queries of interest for trajectories comprise adapted spatial queries, e.g., range queries of tfi@adorm
all objects within a given area at some time during a given time intevadl queries with no spatial counter-
parts. Here, the so-called trajectory-based queries arefataisisi topological queries, which involve the entire
movement of an object (enter, leave, cross, and bypass)namngational queries, which involve derived in-
formation, such as speed and heading. Table 1 summarizes the query typé©pEnatiori column lists the
operations used for several query types, and 8Bignaturé column presents the types involved. For example, a
coordinate-based query uses the inside operation to determine the segments within frezlspege. The no-
tation { segments simply refers to a set, it does not capture whether this set constitutes one or more trajectories.
It is important to be able to extract information related to (partial) trajectories, 8\nat were the trajectories
of objects after they left Tucson between 7 a.m. and 8 a.m. today, in the next hohi® type of query is
referred to asombined query, since wdirst have to select the respective trajectoriesléft Tucson between

7 a.m. and 8 a.m. today).and subsequently the respective portidghsif the next hour?. More details on
trajectory-related queries can be found in [8, 11].

2.3 Indexing Fundamentals

Trajectories are three-dimensional and can be indexed using spatial access methods. However, there are dif-
ficulties. Trajectories are decomposed into their constituent line segments, which are then indexed. The use
of the R-tree [2] is illustrated in Figure 1(b). The R-tree approximates the data objects by Minimum Bounding
Boxes (MBBs), here three-dimensional intervals. Approximating segments using MBBs proves tdibeirief

Figure 1(b) shows that we introduce large amount3efad spacémeaning that the MBBs cover large parts of
space, whereas the actual space occupied by the trajectory is small. This leads to high overlap and consequently
to a small discrimination capability of the index structure.

Other trajectory indexing problems include trajectory preservation and skewed data growth. Asfifiat the
problem, spatial indices tend to group segments into hodes according to spatial proximity. However, in the
case of trajectories, it is befieial to some queries if the index preserves trajectories, i.e., to group segments
according to their trajectory and only then according to proximity (cf. [11]). The second problem refers to the
fact that trajectory data grows mostly in the temporal dimension. The spatial dimensidnedre.g., the city
limits. Exploiting this property of the data can further increase query performance.

2.4 Movement Scenarios

Depending on the particular objects and applications under consideration, the movements of objects may be
subject to constraints. Spécilly, we may distinguish among three movement scenarios, namely unconstrained
movement (e.g., vessels at sea), constrained movement (e.g., pedestrians), and movement in transportation net
works (e.g., trains and, typically, cars). Unconstrained movement is the scenario mostly asserted in work on
spatiotemporal access methods. However, it hardly represents reality. Constrained movement and movement in



networks represent similar movement scenarios. The former assumes that there exist spatial objects that con-
strain the movement, e.g., when considering the movement of cars, houses, lakes, parks, etc. Movement in
networks is then merely an abstraction of constrained movement. Here, one is only interested in positions of
objects with respect to the network and not with respect to a two-dimensional reference system. For example,
we may expect that many applications will be interested only in the positions of cars with respect to the road
network, rather than in their absolute coordinates. The movement effectively occurs in a different space than for
thefirst two scenarios.

Section 2.3 illustrated the indexing challenges related to trajectories. In exploiting auxiliary information
such as infrastructure and networks, we can improve query performance and simplify indexing. The following
three sections explore indexing and query processing approaches in relation to the three movement scenarios.

3 On Indexing Unconstrained Movement

Unconstrained movement is conceptually the simplest case for trajectory indexing. In the following, we describe
several access methods that are tailored to the requirements of the data and the queries.

3.1 The TB-tree

The TB-tree [11] is an access method that considers the particularities of the data, namely trajectory preservation
and temporal growth, and aims afiefently processing related types of queries.

An underlying assumption for the R-tree is that all inserted geometries are independent. In our context
this translates to all line segments being independent. However, line segments are part of trajectories and the
R-tree only implicitly maintains this knowledge. With the TB-tree, we aim for an access method that strictly
preserves trajectories. As a consequence, each leaf node in the index should only contain segments belonging to
one trajectory. Thus, the index becomes actualiyapectory bundle. This approach is only feasible by making
some concessions to the most important R-tree property, namely node overlap, or spatial discrimination. As
a drawback, spatially close line segments from different trajectories will be stored in different nodes. This,
in turn, increases the node overlap, decreases the space discrimination, and, thus, increases the classical range
query cost. Thus, the TB-tree trades space discrimination for trajectory preservation.
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Figure 2: TB-Tree: (a) Structure, Non-Leaf Level MBB Structure (B) R-Tree and (c) TB-Tree

Employing the above constraints, the TB-tree structure consists of a set of leaf nodes, each containing a
partial trajectory, organized in a tree hierarchy. For query processing, it is necessary to be able to retrieve
segments based on their trajectory ideti Thus, leaf nodes containing segments of the same trajectory are
linked together by a doubly-linked list data structure. This preserves trajectory evolution and overall improves

6



especially the performance of trajectory-based and combined queries. Figure 2(a) shows a part of a TB-tree
structure and a trajectory illustrating the overall data structure. For clarity, the trajectory is drawn as a band
rather then a line. The trajectory symbolized by the grey band is fragmented across six nodes, c1, c3, etc. In the
TB-tree these leaf nodes are connected through the doubly-linked list.

Figures 2(b) and (c) give an impression of the quality of the non-leaf level arrangement of bounding boxes
in the R- and the TB-tree, respectively. The R-tree grouping is dominated by purely spatial characteristics
such as proximity, ignoring the temporal growth of the data. The TB-tree structure is dominated by trajectory
preservation. Since the data is inserted with a growing time horizon, the MBBs exhibit a temporal clustering.

The TB-tree structure is not the only approach to the indexing of trajectories. The following section gives a
brief overview of what other techniques exist.

3.2 Other Approaches

Nasciemento et al. [7] adopt the trajectory model as described in Section 2.1 and investigate the suitability of
multidimensional access methods for trajectory data. They compare the performance of various R-tree versions
for different range-query loads.

Hadijileftheriou et al. [6] dBne an approach to reduce the dead space introduced by MBB approximations
of trajectories (cf. Section 2.3) by introducirigrtificial object updates. They effectively manipulate the
partitioning of a trajectory into segments. A partially persistent tree structure [4, 16] is used to index the data.
This approach generalizes previous work [3] in which it was assumed that the objects move with a linear function
of time, whereas in [6] more complex functions are permitted.

Porkaew et al. [13, 5] examine the indexing of trajectories in native space (cf. Section 2.1) vs. parametric
space. In parametric space, segments of trajectories are represented in terms of a location and a motion vector
In their experimental evaluation, the authors use an R-tree structure as an index for both representations.

Other works further propose access methods that go beyond trajectories towards the indexing of moving spa-
tial shapes in general. These approaches however do not always consider continuous but only discrete changes
e.g., Tzouramanis et al. [17] employ overlapping linear quad-trees to index discretely changing spatial objects.

Tao and Papadias [16] propose a method called MV3R-tree to index the past locations of moving shapes.
Their method combines multi-version B-trees and 3D R-trees to process timestamp and interval queries.

4 On Constrained Movement

We now assert that the movement of objects is constrained by elements iefraswucture.
In terms of data, infrastructure represefhtdack-out areas for movement
and, thus, there are no objects and trajectories where there are infrastructure
ments. However, in the index, approximations of the data are used, which in
duce dead space. Consequently, the areas covered by infrastructure are not eQg
This will incur unnecessary search in the index as well as produce a certain n I
ber of falsely reported answers, which must subsequently be eliminated. BQ
lead to extra I/O operations.
To eliminate this extra I/0, we can use infrastructure in a pre-processing step,
the idea being to not look for objects where there cannot be any? The strategy
we choose is to query the infrastructure to save on querying the trajectory data. _
Overall, this will turn out to be favorable, since the number of infrastructure &ligure 3: A Query Window
ments can be assumed to be very small compared to the trajectory data. FurffEpentation Example
the trajectory data is growing with time, whereas the infrastructure data remains more or less constant.




The general principle is to decompose a given query window based on the infrastructure contained in it. The
intuition is to segment the parts of the query window not occupied by infrastructure into well-shaped rectangles,
i.e., as square as possible. In Figure 3, few but large infrastructure elements are shown as black rectangles, the
possible outcome of such a segmentation process is shown as white rectangles.

The query windows resulting from this segmentation (instead of the large query window ranging over in-
frastructure) are subsequently used to query the trajectory data index. In [10] the conditions under which this
approach is favorable are established.

5 On Movement in Networks

In many applications, movement occurs in a network. When dealing with network-constrained movement, one
is not interested in spatial extents, e.g., the thickness of the road, or the absolute position of the object in terms of
its (x, y)-coordinates, but rather in relative positions with respect to the network, e.g., kilometer 21 of Highway
101.

The space dened by a network is quite different from the Euclidean space that the network is embedded
into. Intuitively, the dimensionality of the networked-constrained space is lower than that of the space it is
embedded in. In the literature, the term 1.5 dimensional has been used.

Modeling movement with respect to a network sirfipk the trajectory data obtained. The two spatial
dimensions are essentially reduced to one. Figure 4 illustrates this principle by showing the same trajectory
in a three-dimensional and a two-dimensional space. A two-dimensional network is reduced to a set of one-
dimensional segments, and the trajectory data is mapped accordingly.

Lowering the dimensionality

of the data reduces the indexing

t t ~ challenge considerably. Off-the-
Q L P // shelf database management sys-

tems typically do not offer three-
dimensional indexes and thus do
(a) (b) not contend with trajectories. Al-

. . K s oo though it is desirable to design
Figure 4: Network Movement: Trajectories in (a) 3D and (b) 2D Spacenew access methods for new types
of data, it may not be attractive in the short or medium term. For example, it took a dozen years before the R-tree
found its way into some commercial database products. Depending on the type of data, it carfic&@btne
use existing access methods by transforming the data. Considering movement in a network is such a transfor-
mation. We can use a simple access method such as a two-dimensional R-tree and this, in turn, allows for an

easy integration of the new type of data into commercial database management systems.

6 Conclusions and Future Work

Spatiotemporal data is emerging from a broad range of applications. In this work, we present selected methods
for the indexing of trajectories, a type of data that stems from recording the movement of point objects. The
existing approaches are grouped accordintitee movement scenarios, constrained movement, unconstrained
movement, and movement in networks. Each of these scenarios can aid the processing of spatiotemporal queries
in different ways. Unconstrained movement is the typical showcase for fiv@tibe of new access methods.
Constrained movement allows us to reduce the extent of query windows. Movement in networks reduces the
dimensionality of the data and thus of the index.

Directions for future work can either be toftlee more dicient and/or more specialized access methods,
or to satisfy existing needs arising from real applications [1]. This can be achieved by trying to handle spa-



tiotemporal data with our current knowledge in connection with the means available from off-the-shelf database
management systems [18].
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Abstract

Spatio-temporal databases store information about the positions of individual objects over time. In
many applications however, such as traffic supervision or mobile communication systems, only summa-
rized data, like the average number of carsin an area for a specific period, or phones serviced by a cell
each day, is required. Although this information can be obtained from operational databases, its com-
putation is expensive, rendering online processing inapplicable. A vital solution isthe construction of a
spatiotemporal data warehouse. In this paper, we describe a framework for supporting OLAP operations
over spatiotemporal data. We argue that the spatial and temporal dimensions should be modeled as a
combined dimension on the data cube and present data structures, which integrate spatiotemporal index-
ing with pre-aggregation. While the well-known materialization techniques require a-priori knowledge
of the grouping hierarchy, we develop methods that utilize the proposed structures for efficient execution
of ad-hoc group-bys. Our techniques can be used for both static and dynamic dimensions.

1 Introduction

The motivation of this work is that many (if not most) current applications require summarized spatio-temporal
data, rather than information about the locations of individual points in time. As an examgie,dtgfervision
systems need the number of cars in an area of interest, rather than their ids. Similarly mobile phone companies
use the number of users serviced by individual cells in order to identify trends and prevent potential network
congestion. Other spatio-temporal applications are by default based on arithmetic data rather than object loca-
tions. As an example consider a pollution monitoring system. The readings from several sensors are fed into a
database which arranges them in regions of similar or identical values. These regions should then be indexed
for the eficient processing of queries such“dsd the areas near the center with the highest pollution levels
yesterday.

The potentially huge amount of data involved in the above applications calls for pre-aggregation of results.
In direct analogy with relational databasedj@&nt OLAP operations require materialization of summarized
data. The motivation is even more urgent for spatio-temporal databases due to several reasons. First, in some

Copyright 2002 |EEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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cases, data about individual objects should not be stored due to legal issues. For instance, keeping the locations
of mobile phone users through history may violate their privacy. Second, the actual data may not be important
as in the trdic supervision system discussed. Third, although the actual data may be highly volatile and involve
extreme space requirements, the summarized data are less voluminous and may remain rather constant for lonc
intervals, thus requiring considerably less space for storage. In other words, although the number of moving
cars (or mobile users) in some city area during the peak hours is high, the aggregated data may not change
significantly since the number of cars (users) entering is similar to that exiting the area. This is especially true if
only approximate information is kept, i.e., instead of the precise number we store values to denote ranges such
as high, medium and low triaf.

Throughout the paper we assume that the spatial dimension &ingst granularity consists of a set of
regions (e.g., road segments in frafsupervision systems, areas covered by cells in mobile communication
systems etc.). The raw data provide the set of objects that fall in each region every timestamp (e.g., cars in a
road segment, users serviced by a cell). Queries ask for aggregate data over regions that satisfy some spatio.
temporal condition. A fact that differentiates spatio-temporal, from traditional OLAP is the lack offjmrede
hierarchies (e.g., product types). These hierarchies are taken into account during the design of the system so
that queries of the fornifind the average sales for all products grouped-by product tgae be diciently
processed. An analogy in the spatio-temporal domain woultfibd the average tra€ in all areas in a 1km
range around each hospital

The problem is that the positions and the ranges of spatio-temporal query windows usually do not conform
to pre-déined hierarchies, and are not known in advance. Another query, for instance, could iimeBm@mer-
gencies, in which case the areas of interest would be arbtendepartments (police stations and so on). In the
above example, although the hierarchies are ad-hoc, the spatial dimerfsted ge., there is a static set of road
segments. In other applications, the spatial dimensions may be volatile, i.e., the regionfresthgranularity
may evolve in time. For instance, the area covered by a cell may change according to weather conditions, extra
capacity allocated etc. This dynamic behavior complicates the development of spatio-temporal data warehouses.

This paper addresses these problems by proposing several indexing solutions. First, we describe spatial
trees suitable for the retrieval of aggregate information at a single timestamp. Then, we deal with static spatial
dimensions focusing on queries that ask for historical aggregated data in a query window over a continuous
time interval. An example would bggive me the number of cars in the city center during the last’hokor
such queries we develop multi-tree indexes that combine the spatial and temporal dimensions. In contrast with
traditional OLAP solutions, we use the index structure tiragehierarchies and we store pre-aggregated data in
internal nodes. Finally, we extend our techniques to volatile regions that change over time.

Depending on the type of queries posed, a spatio-temporal OLAP system should capture different types
of summarized data. Since our focus is on indexing, we assume some simple aggregate functions like count,
or average. In more complex situations we could also store additional measures including the source and the
destination of data, direction of movement and so on. Such information will enable analysts to identify certain
motion and trdic patterns which cannot be easily found by using the raw data. The proposed methods can be
modified for this case. The rest of the paper is organized as follows. Section 2 describes aggregate spatial access
methods, while Section 3 proposes indexing techniques for spatio-temporal data, applicable in the presence
of static regions. Section 4 discusses structures for volatile regions and Section 5 concludes the paper with a
discussion on future work.

2 Spatial Aggregate Structures

A window aggregate query (WA for short) returns summarized information about objects that fall inside the
query window, for example the number of cars in a road segment, the average number of mobile phone users per
city block etc. An obvious approach to answer such queriesfisdoretrieve the actual objects by performing
traditional window queries, and then compute the aggregate function. This, however, entails a lot of unnecessary
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effort, compromising performance. A solution for the problem is to store aggregate information in the nodes of
specialized index structures.

The aggregate R-tree [8] improves the original R-tree [4, 3] towards aggregate processing by storing, in each
intermediate entry, summarized data about objects residing in the subtree. In casecwfrth&nction, for
example, each entry stores the number of objects in its subtree (the extension to any non-holistic functions is
straightforward ). Figure 1a shows a simple example where 8 points are clustered into 3 leafindégs
R3, which are further grouped into a root node The solid rectangles refer to the MBR of the nodes. The
corresponding R-tree with intermediate aggregate numbers is shown in Figure 1b.q Enfyfor instance,
means that 2 points are in the subtree:ofi.e., nodeR;). Notice that each point is counted only once, e.g.,
the point which lies inside the MBRs of boi®, and R is added to the aggregate result of the node where it
belongs ¢;). The WA query represented by the bold rectangle in Figure 1ais processed in the following manner.
First the root R is retrieved and each entry inside is compared with the query recjafygie of the 3 following
conditions holds: (i) the (MBR of the) entry does not intersg(t.g., entryg ) and its sub-tree is not explored
further; (ii) the entry partially intersectg(e.g., entrye,) and we retrieve its child node to continue the search;

(iii) the entry is contained ig (e.g., entrye;), in which case, it stifces to add the aggregate number of the entry
(e.g., 3 stored witle;) without accessing its subtree. As a result, only two node visitar(d ;) are necessary.
Notice that conventional R-trees would require 3 node visits.

R J -
. t
R, . Ry (812 [ey:3 [e3:3 ]
—

B |
| | | |

. R Ry R R

(a) Clustering of points (b) The corresponding aR-tree

Figure 1: An aR-tree example

In summary, the improvement of the aR-tree over the conventional R-tree is that we do not need to visit the
nodes (whose MBRs are) inside the query window, but only those nodes that intersect the edges of the window.
The cost savings obviously increase with the size of the query window, an important fact because OLAP queries
often involve large ranges. Notice, however, that despite the improvement of the aR-tree, query performance
is still sensitive to the window size since, the larger the window, the higher the number of node MBRs that
are expected to intersect its sides. Another structure, the aP-tree [10], overcomes this problem (i.e., the cost
is independent of the query extent) by transforming points to intervals in the key-time plane as follows: the
y-coordinate of the point can be thought of as a key value, while:tbeordinate represents the starting time of
the interval. The ending time of all intervals is the current time (lying on the right boundary of the time axis).
Figure 2a shows the points used in the example of Figure 1a, and Figure 2b illustrates the resulting intervals.

The original query is also transformed since the goal now is to retrieve the number of intervals that intersect
the vertical line segmeny; but notgy. The intervals are stored using a variation multi-version B-trees [1] en-
hanced with aggregate information in intermediate entries. Query processing can be reduced to the vertical line
segment intersection problem optimally solved by the multi-version B-tree, except that here we are interested
in the aggregate number, instead of the concrete ids, of the qualifying objects. This fact differentiates query
processing since we can avoid the retrieval of the actual objects intersgctindg, and the expensive com-
putation of their set difference. The evaluation of [10] suggests that the aP- is faster than aR-tree at the expense
of space consumption, which @(nlogn) (n is the number of records) as opposedXt:) for the aR-tree.

Thewindow-interval aggregate query (WIA for short) is the natural extension of WA queries in the spatio-
temporal domain. In particular, a WIA query; fg;) retrieves historical summarized information about objects
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Figure 2: Transformation of the problem

that fall inside the query window during intervalg;. The next section discusses structures that clciexitly
process such queries.

3 Indexing Static Spatial Dimensions

The most common conceptual model for data warehouses is the multidimensional data view. In this model, there
is a set of numericaineasures which are the items of analysis, for exampi@mber of objects (cars or mobile

phone users). A measure depends on a set of dimendtegi®n and Time, for instance. Thus, a measure is

a value in the multidimensional space which idided by the dimensions. Each dimension is described by a
domain of attributes (e.g. days). The set of attributes may be related via a hierarchy of relationships, a common
example of which is the temporal hierarchy (day, month, year). Figure 3 illustrates a simple case; observe
that although the regions are 2-dimensional, they are mapped as one dimension in the warehousel} Region
contains 150 objects during tffiest two timestamps and this number gradually decreases. The star schema [6]
is a common way to map multi-dimensional data onto a relational database. A main table factlletle)

F, stores the multidimensional array of measures, while auxiliary table®s, ..., D,, store the details of

the dimensions. A tuple i’ has the form(D;|[].key, M[]) where D;[].key is the set of foreign keys to the
dimension tables andl/[] is the set of measures.

aggregate results over timestampstotal sum

369 | 369| 367 364 359 182§
R, 12| 12| 12| 12| 12 60
P3 132 | 127 | 125| 127 | 127 638
regions
R2 75| 80| 85| 90| 90 420
Rl 150 | 150 | 145| 135 130 710
Tl T2 T3 T4 T5 now aggregate results
FACT TABLE over regions

Figure 3: A data cube example

OLAP operations ask for a set of tuples ify or for aggregations on groupings of tuples. Assuming that
there is no hierarchy in the dimensions of the previous example, we identify four possible groupings: i) Group-

of F' on theregion (time) -axis, and iv) the aggregation over all valuegtoivhich is the projection on the origin.
Figure 3 depicts these groupings assuming that the aggregation functiamis The fact table, together with
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all possible combinations of group-bys, composedéta cube [5]. Although all groupings can be derived from
F, in order to accelerate query processing some results may be pre-computed and steted @fzed views.

Since, the spatial dimension has no one-dimensional order we store the table in the secondary memory
ordered by time and build a B-tree index to locate the blocks containing information about each timestamp.
The processing of a typical WIA query employs the B-tree index to retrieve the blocks (i.e., table columns)
containing information aboug and then all regions are scanned sequentially. The aggregate data of those
qualifying ¢, is accumulated in the result. In the sequel, we refer to this approacblasn scanning. An
alternative approach, which achieves simultaneous indexing on both spatial and temporal dimensions, can be
obtained by the generalization of the aR-tree to 3-dimensional $pagarticular, each entry of theaggregate
3DR-tree (a3DR-tree) has the forqr.M BR, r.pointer, r.li fespan, r.aggr(]), i.e., for each region it keeps the
aggregate value and the interval during which this value is valid. Whenever the aggregate information about a
region changes, a new entry is created. Using the example of Figure 3, four entries are requitedifar
for timestamps 1 and 2 where the aggregate value remains 150, and three more entries for the other timestamps
where the aggregate value changes. Although the a3DR-tree integrates spatial and temporal dimensions in the
same structure (and is, therefore, expected to be mdigest than column scanning for WIA queries that
involve both conditions), it has the following drawbacks: (i) it wastes space by storing the MBR each time there
is an aggregate change (e.g., the MBRRpfis stored four times), and (ii) the large size of the structure and the
small fanout of the nodes compromises queficefncy.

In order to overcome these problems, we present a novel multi-tree structuaggtbgate R- B-tree (aRB-
tree), which is based on the following concept: the regions that constitute the spatial hierarchy are stored only
once and indexed by an R-tree. For each entry of the R-tree (including intermediate level entries), there is a
pointer to a B-tree which stores historical aggregated data about the entry. In particular, each R-tree entry
has the form(r.M BR, r.pointer, r.btree, r.aggr|]) wherer.M BR andr.pointer have their usual meaning;
r.aggr|] keeps summarized data abetdccumulated over all timestamps (e.g., the total number of objects in
throughout history), andbtree is a pointer to the B-tree which keeps historical data albo&tach B-tree entry
b, has the form(b.time, b.pointer, b.aggr(]) whereb.aggr]] is the aggregated data féstime. If the value of
b.aggr[] does not change in consecutive timestamps, it is not replicated.

Figure 4a illustrates an aRB-tree using the data of the cube in Figure 3. For instance, the number 710 stored
with the R-tree entryR;, denotes that the total number of objectsiinis 710. Thefirst leaf entry of the B-tree
for R; (1, 150) denotes that the number of objectstjnat timestamp 1 is 150. Similarly tHe'st entry of the
top node (1, 445) denotes that the number of objects during the interval [1,3] is 445. The same information is
also kept for the intermediate entries of the R-tree (ReandRg). The topmost B-tree corresponds to the root
of the R-tree and stores information about the whole space. Its role is similar to that of the extra row in Figure
3, i.e., answer queries involving only temporal conditions.

The aRB-tree facilitates the processing of WIA queries, by eliminating the need to visit nodes which are
totally enclosed by the query. As an example, consider that a user is looking for all objects in some region
overlapping the (shaded) query windgwof Figure 4b during the time interval [1,3]. Search starts from the root
of the R tree. Entry; is totally contained inside the query window and the corresponding B-tree is retrieved.
The top node of this B-tree has the entries (1, 685), (4, 445) meaning that the aggregated data correspond to the
intervals [1,3], [4,5]. Therefore, the next level of the B-tree does not need to be accessed and the contribution of
R5 to the query result is 685. The second root entry of the R-tRgepartially overlaps the query window so
the corresponding node is visited. Inside this node only eRfryntersectsy,, and its B-tree is retrieved. The
first entry of the top node suggests that the contributioR;pfor the interval [1,2] is 259. In order to complete
the result we will have to descend the second entry and retrieve the aggregate \alter simestamp 3 (i.e.,

125). Thefinal result (i.e., total number of objects in these regions in the interval [1,3]) is the sum 685+259+125.

For the following discussion we assume aR-trees as the spatial aggregate structure because the aP-tree cannot be easily generalized
to more than two dimensions.
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Figure 4: Example of aRB-tree

This corresponds to the sum of aggregate data in the gray cells of Figure 3.

If the aggregate data is not very dynamic, the size of structure is expected to be smaller than the data cube
because it does not replicate information that remains constant for adjacent intervals. Even in the worst case
that the aggregate data of all regions change each timestamp, the size of aRB-trees is about double that of the
cube since the leafs (needed also for the cube) consume at least half of the space. Furthermore, aRB-trees
are ben8cial regardless of the selectivity, since: (i) if the query windayy 4;) is large, many nodes in the
intermediate levels of the aRB-tree will be containeddn ¢;) so the pre-calculated results are used and visits
to the lower tree levels are avoided; (ii) H;{ ¢:) is small, the aRB-tree behaves as a spatio-temporal index.

This is also the case for queries that ask for aggregated results fatésegranularity. Next, we extend these
concepts for volatile regions.

4  Indexing Dynamic Spatial Dimensions

In this section we consider that tfi@est granularity regions in the spatial dimension, can change their extents
over time and/or new regions may appear/disappear. Obviously, when the leaf-level regions change, the spatial
tree structure is altered as well. We propose two solutions to this problem by employing alternative multi-tree
indexes.

4.1 The aggregate Historical RB-tree

A simple approach to deal with volatile regions is to create a new R-tree every time there is a change. Assume

that at timestamp 5, regioR, is modfied to R and this update alters the father enityto R;. Then, a new

R-tree is created at timestamp 5, while fivst one dies. In order to avoid replicating the objects that were not

affected by the update, we propose #ggregate Historical R-B-tree (aHRB-tree), which combines the concepts

of aRB-trees and HR-trees [7]. For example in Figure 5a, the two R-trees sharé€'nbdeause the extents of

regionsR; and R, did not change. Each nodim the HR-tree, stores a lifespan, which indicates its valid period

in history. The lifespans of nodesandB are [1,4], while that of” is [1,*), where * means that the node is valid

until the current time. The form of the entries is the same as in aRB-trees excepttfai], keeps aggregated

information about the entry during the lifespan of the node that contains it, instead of the whole history.
Assume that the current time is after timestamp 5, and a query asks for objects in some region overlapping

the query windowgs of Figure 5b during the time interval [1,5]. THegure illustrates the old and the new

versions after the update at timestamp 5. Both R-trees of Figure 5a are visitedfitsttiree, since is inside

2Historical R-trees (HR-trees) [7] decrease the level of redundancy by allowing consecutive R-trees to share common branches.
Although traditional HR-trees do not store lifespans, we need this information in order to record the validity period of aggregate data in
the R-tree nodes and avoid visiting the B-trees.
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Figure 5: Example of aHRB-tree

gs its child node B is not accessed. Furthermore, as the lifespdd @fe., [1,4]) is entirely within the query
interval, we retrieve the aggregate datafwithout visiting its associated B-tree. On the other hand, node
C'is accessedHs partially overlapsy;) and we retrieve the aggregate valuefgf(for interval [1,5]) from its
R-tree entry. Searching the subsequent R-trees is similar, except that shared nodes are not accessed. Continuing
the above example, node is reached and the B-trees Bf and R, are searched, while we do not follow the
pointer of R (to nodeC) asC is already visited.

Notice that independently of the query lengt}),(in the worst case the algorithm will visit the B-trees of
two R-trees. These are the R-trees at the two endg dfhe lifespans of nodes in the trees for intermediate
timestamps ofy, are entirely contained i, so the relevant aggregate data stored with the R-tree entries are
used directly. Furthermore, although in Figure 5a we show a separate B-tree for each HR-tree entry, the B-trees
of various entries may be stored together in a spateieit storage scheme, described [9].

4.2 The aggregate 3DRB-tree

In HR-trees, a node (e.gB) will be duplicated even if only one of its entries (e.f.) changes. This introduces

data redundancy and increases the size of aHRB-trees. The a3DRBggesydte 3-dimensional R-B-tree)

avoids this problem, by combining B-trees with 3DR-trees. Every version of a region is modeled as a 3D box, so
that the projection on the temporal axis corresponds to a time interval when the spatial extents of the region are
fixed; different versions/regions are stored as distinct entries in the 3DR-tree. In particular, a 3DR-tree entry has
the form(r.M BR, r.li fespan, r.pointer, r.btree, r.aggr(]), wherer.M BR, r.pointer, r.btree are déined as

in aRB-treesr.aggr[] stores data overli fespan.* A typical query involving both spatial and temporal aspects
("find the total number of objects in the regions intersecting some wirgddwring a time interval;”) is also

modeled as a 3D box.

Although both aHRB- and a3DRB- trees are aimed at volatile regions they have two important differences:
(i) a3DRB-trees maintain a large 3DR-tree for the whole history, while aHRB-trees maintain several small trees,
each responsible for a relatively short interval. This fact has implications on their query performance. (ii) The
aHRB-tree is aron-line structure, while the a3DRB-tree ®f-line, meaning that the lifespans of its entries
should be known before the structure is created; otherwise, we have to store unbounded boxes inside the 3DR-
tree, which affects query performance severely.

The experimental evaluation of [9] for static spatial dimensions suggests that the cube implementation is
unsuitable in practice due to extreme query cost. aRB-trees consume a fraction of the space required by a3DR-
trees, while they outperform them in all cases except for very short query intervals. Furthermore, unlike a3DR-
trees where all the data must be known a priori, aRB-trees are on-line structures. For dynamic dimensions, the
a3DRB-tree has the best overall performance in terms of size and query cost. Since however, it is an off-line

structure, aHRB-trees are the best alternative for applications requiring on-line indexing.
3To be spedic, the B-trees should be visited only if nodieremains alive after timestamp 5. Otherwise, the aggregate valugs of
and R, for timestamp 5 are stored in E.
“The 3DR-tree structure of a3DRB-trees is similar to the a3DR-tree, but now each version is generated by an extent (rather
than aggregate) change. Thus, there is no redundancy since the storage of MBRs is required to capture the new extent.
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5 Conclusions

Numerous real-life applications require fast access to summarized spatio-temporal information. Although data
warehouses have been successfully employed in similar problems for relational data, traditional techniques
have three basic impediments when applied directly in spatio-temporal applications: (i) no support for ad-hoc
hierarchies, unknown at the design time (ii) lack of spatio-temporal indexing methods, and (iii) limited provision
for dimension versioning and volatile regions.

Here, we provide a ufied solution to these problems by developing spatio-temporal structures that integrate
indexing with the pre-aggregation technique. The intuition is that, by keeping summarized information inside
the index, aggregation queries with arbitrary groupings can be answered by the intermediate nodes, thus saving
accesses to detailed data. ¥\Mst consider static dimensions and describe the basic structure (aRB-tree). Sub-
sequently, we present a generalization of aRB-trees, which supports dynamic dimensions (aHRB-tree). For the
same case, we also develop a solution based on a 3-dimensional modeling of the problem (a3DRB-tree). Our ap-
proach does not aim at simply indexing, but rather replacing the data cube for spatio-temporal data warehouses.

We believe that spatio-temporal OLAP is a new and very promising area, both from the theoretical and
practical point of view. Since this is an initial approach, we limited this work to simple numerical aggregations.

In the future, we will focus on supporting spatio-tempdnaleasureslike the direction of movement. This will

enable analysts to ask sophisticated queries in order to identify interesting numerical and spatial/temporal trends.
The processing of such queries against the raw data is currently impractical considering the huge amounts of
information involved in most spatio-temporal applications

Another interesting area concerns the extension of the proposed techniques to different access methods. For
instance, we could apply the R-tree insertion algorithms of [2] in order to obtain on-line structures based on
3DR-trees. Furthermore, the integration of multi-version data structures may provide on-line methods more
efficient than aHRB-trees. The problem with such methods (and all methods maintaining multiple R-trees) is
the avoidance of multiple visits to the same node via different ancestors. Although various techniques have been
proposed in the context of spatio-temporal data structures, it is not clear how they can be applied within our
framework.
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Abstract

We present techniques to index mobile objects in order to efficiently answer range queries about their
future positions. This problem appears in real-life applications, such as predicting future congestion
areas in a highway system, or allocating more bandwidth for cells where high concentration of mobile
phones is impending. We address the problem in external memory and present dynamic solutions, both
for the one-dimensional, as well as the two-dimensional cases. Our approach transforms the problem
into a dual space that is easier to index. Finally we discuss advantages and disadvantages among the
various schemes proposed in literature for indexing mobile objects.

1 Introduction

Applications providing location-based services, such asidraionitoring, intelligent navigation, and mobile
communications management, fail to be adequately supported by traditional database management systems.
The assumption that data stored in the database remain constant, unless explicitly updated, is the foundation
of a model where updates are issued in discrete steps. On the other hand, the above applications deal with
continuously changing attributes [21, 26], as for example the object locations. If a DBMS were to update such
dynamic attributes every unit of time, it would entail a prohibitively high update overhead.

An elegant solution to address the problem is to use a function of fiftieto abstract the location of a
mobile object. The current location of a moving object at any time instant can then be easily calculated, since
an update has to be issued only when the parametef<bénge (e.g. speed, direction) [21, 25, 14, 17, 1, 3].
Clearly, this approach reduces the update overhead. Nevertheless, it presents novel challenges, such as the need
for appropriate data models, query languages, and query processing and optimization techniques.

This paper considers the problem of indexing mobile objects. We are interested in answering range queries
over the objectsfuture locations. In particular, we presenfieient indexing techniques based on the duality
transformation. Both the one-dimensional (moving on a line) and two-dimensional (moving on the plane) cases
are discussed.

Section 2 provides a formal problem description, while Section 3 describes the duality transformation. The
1-dimensional case is addressed in Section 4. Section 5 introduces the 1.5-dimensional problem, which is a
restricted, yet very interesting, version of the 2-dimensional case. The technique for indexing objects that move
freely in two dimensions is illustrated in Section 6. Related work and discussion pointing out advantages and
disadvantages of the methods that employ indexing techniques in the primal space and the dual space follows in
Section 7. Finally, Section 8 concludes the paper.

Copyright 2002 |EEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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2 Problem description

Consider a database that records the positions of moving objects in two dimensiofisitetarrain. For sim-

plicity, we assume that objects move with a constant velocity vector starting from &ispacation at a spefic

time instant. This is enough for calculating the future position of the object, provided that the characteristics of
its motion remain the same. Objects update their motion information when their speed and direction change.
Moreover, the system is dynamic, i.e. objects may be deleted or new objects may be inserted.

Let P(ty) = [z0,yo] be the initial position at time&,. Then, its v,
position at timet > to is P(t) = [z(t), y(t)] = [zo + ve(t —to),y0 + o >
vy(t — tp)], whereV' = [v,,v,] is its velocity vector. Figure 1 depicts o
the projection of the object trajectories on fliey) plane.

We would like to answer queries of the forffReport the objects_
located inside the rectangle;,, z24] % [y14, Y2,) at the time instants..
betweent,, andty, (Wheret,,, < tigz < tag), given the current
motion information of all objects(This is called thetwo dimensional
MOR query in [14]). Figure 1: Trajectories and query in

We make the assumption that moving objects have velocities(ti?rb) plane.

[Umin, Umagz)- THiS is a realistic assumption; for example objects mov-
ing slower than,,;,, can be considered (for all practical purpoststatic’ and examined separately. Similarly,
in a typical scenario objects have some maximum speed.

N

Time
o3 w2 tig tog

3 The dual space-time representation

Figure 1 corresponds to the straightforward approach of representing a moving object, i.e. by plotting its tra-
jectory as a line in the time-locatioft, y) plane (same fo(t, z) plane). The equation describing each line
is y(t) = vt + a wherew is the slope (velocity in this case) aads the intercept, which is computed using
the motion information. In this setting, also termed as ‘themal’ space, the query is expressed as the 2-
dimensional interval(yiq, y24), (t14, t2¢)], @and it reports the objects that correspond to the lines intersecting the
query rectangle.

The general duality transform maps a hyper-plantom R to a point inR? and vice-versa. For ex-
ample, a line with equatiop(t) = vt + « from the primal plan€t, y) is mapped to a pointv, a) in the dual
plane, where one axis represents the veloeignd the other the intercept(this is called Hough-X transform
in[12]). Accordingly, the 1-d queri(viq, y2¢), (t14, t24)] beCOmes a polygon in the dual space. By using a linear

Yol 1,
Yia

HHHHH

Figure 2: Query on the dual Hough-X plane. Figure 3: Query on the dual Hough-Y plane.

constraint query [8], the quer® in the dual Hough-X plane (Figure 2) is expressed in the following way [14]:
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If v>0,thenQ = C; ACy A C3 A Cy, Where: If v <0,then) = Dy A Dy A D3 A\ Dy, Where:
C1 =92 vmin,Co =0 < Uz Dy =v < —vpin, D2 =02 —Unaz
Cs=a+ toqu > Yiq andCy = a + t1qv < Y2q D3y =a+ t1qv > Yiq andDy = a + toqu < Y2q

A class of transforms with similar properties may be used for the mapping. The problem setting parameters
determine which one is more useful. For example, by rewriting the equatierwt + a ast = %y — 2, we
can arrive to a different dual representation. The corresponding point in this dual plane has coofdirtates
wheren = % andb = —% (called the Hough-Y transform in [12]). Coordinateéepresents the point where the
line intersects the ling = 0 in the primal space. Note that the Hough-Y transform cannot represent horizontal
lines. Similarly, the Hough-X transform cannot represent vertical lines. Nevertheless, since in our setting lines
have a minimum and maximum slope (velocity is boundeduhy,, vmq.]), both transforms can be used.

4 Indexing in one dimension

By using the dual space-time representation, the problem of indexing mobile objects on a line is transformed
into the problem o&implex range searching in two dimensions. In simplex range searching we are givefi a set
of 2-dimensional points, and we want to answércgntly queries of the following form: given a set of linear
constraintsaz < b, find all points inS that satisfy all the constraints. Geometrically, the constraints form a
polygon on the plane, and we wantftad the points in the interior of the polygon. In [14] it was shown that
simplex reporting ind-dimensions with a query time @b (1 + ) 1/O’s, whereN is the number of points,
n = N/B, K is the number of reported points,= K/B, and0 < § < 1, requiresQ(n#(1 ~9)—¢) disk blocks,
for anyfixede.

A corollary of this lower bound is that in the worst case a data structure that uses linear space to answer the
2-dimensional simplex range query and thus the 1-dimensional MOR query, reqifest k) 1/O’s. In [14]
an almost optimal solution based on partition trees [15] was presented. That solution aﬂﬂﬂ\%fé’s—k k)
guery time using linear space, but the hidden constant factor becomes large even fer small

As a more practical approach (with good average query performance), [14] proposed to index the dual
points using a point access method (PAM). Even though PAMs were designed to am#wgonal range
gueries, Goldstein et al. [8] have proposed an algorithm to answer simplex range search using R-trees. This
is accomplished by changing the search procedure of the tree. Apart from the R-tree family, this method can
be applied to other access methods. In particular, [14] suggests using a k-d-tree like structure to index the
1-dimensional problem in the Hough-X (or Hough-Y) space, for an expected logarithmic query time.

A different approach is based ongaery approximation idea using the Hough-Y dual plane. In general,
the b coordinate can be computed at different horizorital= ) lines. The query region is described by

the intersection of two half-plane queries (Figure 3). Tinst line intersects the line = ﬁ at the point
(tig — %27, ;) and the linex = ;' at the point(t;, — %=, ). Similarly the other line that dines

the query intersects the horizontal linegay — 2=~ L _)and(t,, — L2, 1) respectively.

Umaz ' Umaz Umin  Umin

Since access methods are moricednt for rectangular queries, suppose that we approximate the simplex
query with a rectangular one. In Figure 3 the query rectangle willdye— “-=2=, t5, — 41=20) ( L L)].

Umazx Umaz ’ Umin
Note that the query area is enlarged by the &78&9"Y = F which is computed as:

1HoughY +E2floughY

1 v — Ui
EHoughY _ 2 (Ymax min \2 o _ 1
3 oo A o = e |+ L ig = i ) (1)
The objective is to minimizéz°u9hY" since it represents a measure of the extrasi®at an access method
will have to perform for solving an 1-dimensional MOR queff°“9"Y is based on botly, (i.e. where the
coordinate is computed) and the query interfeal, y2,) which is unknown. Hence; indices are kept (where
c is a small constant) at equidistapts. All ¢ indices contain the same information about the objects, but use
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differenty,’s. Thei-th index stores thé coordinates of the data points using= %22z x i,i = 0,...,c — 1.
Conceptuallyy; serves as atobservatioh element, and its corresponding index stores the data as observed from
positiony;. A given 1-dimensional MOR query will be forwarded to the index(es) that mininiizg-shY

Since all 2-dimensional approximate queries have the same rectangl(a—éld;e— the rectangle range
search is equivalent to a simple range search o tteordinate axis. Thus each of théobservatioh indices

can simply be a B+-tree [7]. [14] shows that the query can be answered with bounded error in logarithmic time.

5 The 1.5-dimensional problem

When the mobile objects are restricted to move on a given collection of routes (roads)famtéheerrain, an
interesting case of the general 2-dimensional problem is formed, namely the 1.5-dimensional problem. There
is a strong motivation for such an environment: for the applications we consider, objects (cars, airplanes) move
through a network of predimed routes (freeways, airways).

The 1.5-dimensional problem can naturally be reduced to a collection of 1-dimensional queriec&lyeci
each predined route can be represented as a sequence of connected line segments. The positions of these line
segments are indexed by a standard SAM. The extra cost for maintaining this index is negligible, since: (i) there
are far less routes than moving objects, (ii) each route can be approximated by a small number of line segments,
and, (iii) new routes are not introduced frequently. We apply the techniques for the 1-dimensional case in order
to index the objects moving on a segment of a given route.

In order to answer the two dimensional MOR query, the SAM described abovefidgittie intersection of
the routes with the quety spatial predicate, i.e. the rectan@tg,, z2,4] X [y14, y24). Since each route is modeled
as a sequence of line segments, the intersection is also a set of line segments, possibly disconnected. Eacl
such intersection corresponds to the spatial predicate of an 1-dimensional query for this route. In this setting
we assume that when routes intersect, objects remain in the route previously traveled (otherwise an update is
issued).

6 Indexing in two dimensions

The general 2-dimensional problem (Figure 4) is addressed by decomposing the motion of the object into two
independent motions, one in tlie z) plane and one in the, y) plane. Each motion is indexed separately. Next
we present the procedure used in order to build the index, as well as the algorithm for answering the 2-d query.

6.1 Building the index

We begin by decomposing the motion(in, y, t) space into two motions on the, x) and(¢, y) plane.
Furthermore, on each projection, we partition the ol " N o

jects according to their velocity. Objects with small ve- / / o

locity magnitude are stored using the Hough-X dual trans- . B

form, while the rest of them are stored using the Hough-Y ) PSS

transform, i.e into distinct index structures. o
The reason for using different transforms is that mo-

tions with small velocities in the Hough-Y approach are

mapped into dual point3:, b) having largen coordinates

(n = 1). Thus, since few objects have small velocitiesgigure 4: Trajectories and query fm, y, ) space.

by storing the Hough-Y dual points in an index structure

such an R*-tree, MBR with large extents are introduced, and the index performance is severely affected. On

Y2q.

iq

Xy Foq X e x
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the other hand, by using a Hough-X index for the small velocifestition, we eliminate this effect, since the
Hough-X dual transform maps an objecmotion to thgv, ) dual point.

When a dual point is stored in the index responsible for the dlgjeadtion in one of the planes, i.€., x) or
(t,y), information about the motion in the other plane is also included. Thus, the leaves of both indices for the
Hough-Y partition store the recof@h,, b, n,, b,). Similarly, for the Hough-X partition, in both projections, we
keep the recordv,, a,, vy, ay). In this way, the query can be answered using one of the indices; either the one
responsible for thét, z) or the(¢, y) projection.

On a given projection, the dual points (i(e., b) and(v, a)) are indexed using R*-trees [4]. The R*-tree has
been modied in order to store points at the leaf level, and not degenerated rectangles. Therefore, we can afford
storing extra information about the other projection. An outline of the procedure for building the index follows:

1. Decompose the 2-d motion into two 1-d motions on(the) and(¢, y) planes.

2. For each projection, build the corresponding index structure. To do so, partition the objects according to
their velocity: Objects with small velocity are stored using the Hough-X dual transform, while the rest are
stored using the Hough-Y dual transform. Motion information about the other projection is also included.

In order to pick one of the two projections and answer the simplex query, we use the techniques described next.

6.2 Answering the query

The 2-dimensional MOR query is mapped to a simplex query in the dual space. The query is the intersection
of four 3-d hyperplanes, while the projection of the query(tor) and (¢,y) planes are wedges, as in the
1-dimensional case.

A given a 2-dimensional MOR query, ferst decomposed into two 1-dimensional queries, one for each
projection. Furthermore, on a given projection, the simplex query is asked in both partitions, i.e. Hough-Y (for
fast objects) and Hough-X (for slow objects).

On the Hough-Y plane the query region is given by the intersection of two half-plane queries, as shown
in Figure 3. Consider the parallel lines = ﬁ andn = ——. As illustrated in section 4, if the simplex

Umaz

query was answered approximately, the query area would be enlarged?by¥ =
(the triangular areas in Figure 3). Also, let the actual area of the simplex que}y5¢"Y . Similarly, on the
dual Hough-X plane (Figure 2), l€)°u9X pe the actual area of the query, aiti**9"X be the enlargement.
The algorithm chooses the projection which minimizes the following critegion

E{-IoughY + E;—IoughY

K= EHoughY/QHoughY + EHoughX/QHoughX (2)

Since the whole motion information is kept in the indices, it is used in order to produce the exact result set of
objects. An outline of the algorithm for answering the exact 2-dimensional MOR query follows:

Decompose the query into two 1-d queries, for(the) and(¢, y) projection.

Get the dual query for each projection (i.e. the simplex query).

Calculate the criterior for each projection, and choose the one (sathat minimizes it.
Answer the query by searching the Hough-X and Hough-Y partition, using projection
Put an object in the result set, only if it s&igs the query.

Use the full motion information to do tHdtering "on thefly”.

o0 hswNE

7 Related work and discussion

While intuitive, the space-time representation (on‘tpemal’ space) is problematic, since trajectories corre-
spond to long lines. Long lines arefidult to index eficiently with traditional indexing techniques. Consider for
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example using a Spatial Access Method, such an R-tree [11] or an R*-tree [4]. Here each line is approximated
by a minimum bounding rectangle (MBR). Obviously, the MBR approximation has much larger area than the

line itself. Furthermore, since the trajectory of an object is valid until an update is issued, it has a starting point
but no end. Thus all trajectories expand ftilfinity”, i.e. they share an ending point on the time dimension.

Another approach is to partition the space into disjoint cells and store in each cell those lines that intersect
it [24, 6]. This could be accomplished by using an index such an R+-tree [20], a cell-tree [10], and the PMR-
quadtree [19]. The shortcoming of this solution is that it introduces data replication, since each trajectory
is copied into all cells that intersect it. Moreover, using space partitioning would also result in high update
overhead, since when an object changes its motion information, it has to be removed from all cells that stores its
trajectory.

An interesting alternative for #€ient indexing of mobile objects in the primal space was proposed by
Saltenis et al. [17]. They introduced the time-parameterized R-tree (TPR-tree), which extends the R*-tree. The
coordinates of the bounding rectangles in the TPR-tree are functions of time and, intuitively, are capable of
following the objects as they move. The position of a mobile object is represented by its location at a particular
time instant (reference position) and its velocity vector.

In [3] a main memory framework (kinetic data structure) was proposed and addresses the issue of mobility
and maintenance of ctiguration functions among continuously moving objects. Application of this framework
to external range trees [2] appears in [1].

Other related work considers nearest neighbor queries in a mobile environment [13, 9, 22], time-parameterizec
gueries [23] and selectivity estimation for moving object range queries [5].

An important characteristic of the TPR-tree and the duality transforms is that they have linear space require-
ments. We now illustrate the advantages and disadvantages among these two approaches. Experimental results
for the two dimensional case, between them are presented in [16] and are not included here for brevity.

The performance of the TPR-tree highly depends on the knowledge of the characteristics of the workload.
The average time interval between updated)(and the average length of the temporal part of the queries
(W) have to be given as parameters to the index beforehand. These two paramiétersheehorizond =
UI + W. The TPR-tree is optimized for answering queries whose temporal part lies within this horizon (it
actually provides the best query performance for queries within the horizon [16]). It also recalculates and
updates its time-parameterized MBRs whenever an update is issued. This is necessary for the TPR-tree, since
the size of the bounding regions increases over time. If these parameters are not known in advance (for example
in applications wheré/ or W cannot be easily predicted), [18] has proposed to use the automatic horizon
estimation feature. Nevertheless, the query performance of the TPR-tree worsens.

On the other hand, the duality transform method has larger space requirements, but better update perfor-
mance. In our experiments [16], the duality transform uses about double the space, but has about 45% faster
updates. The query performance was comparable (on average 20% more) for queries inside the horizon, but was
much faster than the TPR-tree performance for queries outside the horizon. However, the duality transforms
cannot easily accommodate 3-d datasets, as the TPR-tree does. This is because, in the three-dimensional sef
ting, the movement of an object would have to be decomposed into three independent movements, one for each
projection on the planeg, x), (¢,y) and(t, z), in order for the dual transformation method to be applied.

8 Conclusions

We examined the problem of indexing mobile objects using dual transformations. We considered both the 1-
dimensional and 2-dimensional cases, and presented external memory indexing techniques, in ficdently ef
answer range queries about the objeétgure locations. An interesting future direction of research is joins
among relations of mobile objects. Furthermore, it would be interesting to study how the mobile’ cdojditis

(i.e. how often updates are issued) affects the performance and robustness of the indexing methods.
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1 Introduction

With the rapid advances in positioning systems, such as GPS, ad-hoc networks, and wireless communication,
it is becoming increasingly feasible to track and record the changing position of continuously moving objects.
Several areas such as digital bdid&ls, air-trafic control, mobile communication, navigation system, and
geographic information systems need the capability to index moving objects, so that various queries on them
can be answered in real time. The queries might relate either to the currdigucation of objects, to a past
corfiguration, or to a future cdiguration— in the last case, we are asked to predict the behavior based on

the current information. However, most existing database systems assume that the data is constant unless it is
explicitly modified. Such systems are not suitable for representing, storing, and querying continuously moving
objects, since, unless the database is continuously updated (at considerable time and resources expense), a que
output will be obsolete. The need for new database technology that can support kinetic applications has given
rise to a large number of questions, fronfideng suitable models and query languages [18, 28] to developing

new engines capable of indexing and querying moving objetitsesitly.

In this paper we discuss the latter line of research, and we review recent advances and remaining challenges.
Since moving objects can be viewed as points moving along algebraic curves, the problem has a natural repre-
sentation in the context of computational geometry. Hence, many results we present here draw heavily on the
rich literature of geometric indexing structures, kinetic data structures, and geometric approximation techniques.

Data representation. Let S = {pi,...,p,} be a set ofn points in R, each moving continuously. Let

pi(t) = (x:(t),y:(t)) denote the position gf at timet, and letS(t) = {pi(%),...,pn(t)}. Letp; = U, (pi(t), 1)

denote the trajectory of over time. We say that the motion Sfis linear if eachx;, y; is alinear function, i.e.,

eachp; is a line inR?, and the motion of is algebraic if each;, y; is a polynomial of bounded degree. For

most of the results discussed in this paper, we assume the moti®mnodbe piecewise linear, i.e., eacly is a
polygonal chain inR®. The trajectories of points can change any time. We assume that the database system is
modified whenever these values change. We will use the temrto mean the current time.

Queries. Anyindexing structure should be able to answer queries based on the current, past, or future positions
of the objects. In the case of future positions, the answepisgdgiction of the query output based on the current

Copyright 2002 |EEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
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Figure 1: Instances of Q1, Q2, and Q3 queries, respectively, with time asakis.

trajectories of the points. In this paper we focus our attention on range-searching and nearest-neighbor queries,
which are déned below.

Q1. Given an axis-aligned rectangiein the zy-plane and a time valug, report all points ofS that lie inside
R attimet,, i.e., reportS(t,) N R; see Figure 1 (a).

Q2. Given a rectangle? and two time value$; < t9, report all points ofS that lie insideR at any time
betweert;, andty, i.e., reporIU?:t1 (S(t) N R); see Figure 1 (b).

Q3. Given a query point € R* and a time valué,, anearest-neighbor query requires reporting the nearest
neighbor ofo in S(t,); Figure 1 (c).

Model of computation. In order to be useful in practice, any proposed method must scale well over large
data sets. Since the data resides on disk, the focus of these approaches is to minimize the data transfer between
disk and main memory, which is likely to be the bottleneck for any system. Most of the results in this paper
will be discussed in thgarallel disk model introduced by Vitter and Shriver [31], which closely models the
way computers handle data. This model assumes that each disk access transmits a contiguousshlodk of
of data in a singlénput/output operation or I/O. The eficiency of a data structure is measured in terms of the
amount of disk space it uses (measured in units of disk blocks) and the number of 1/0Os required to answer a
qguery. Since we are also interested in solutions thabatut sensitive, our query 1/0O bounds are expressed
not only in terms ofV, the number of points i, but also in terms of{, the number of points reported by the
query. Note that we need at legsY/B] blocks to store allV points, and at leagtk’/B]| blocks to store the
output from a range query. We refer to these bounddiasar’ and introduce the notation = [N/B] and
k=[K/B].
General approaches. Two general approaches have been proposed to index moving pointtstpproach,
which we refer to as @me-oblivious approach, regards time as a new dimension and indexes the trajectories
p; of input pointsp;. One can either index the trajectories themselves using various techniques [24, 29], or one
can work in a parametric space [1, 21], map each trajectory to a point in this space, and build an index on these
points. An advantage of a time-oblivious scheme is that the index is updated only if the trajectory of a point
changes or when a point is inserted into or deleted from the index. However, updating a trajectory can be quite
expensive. Since this approach indexes either curvé ar points in higher dimensions, the query time tends
to be large.

The second approach, which we refer tokaetic data structures, builds a dynamic index on the moving
points. Roughly speaking, at any time it maintains an index on the currefigooation of the points. As the
points move, the index is updated. The main observation is that although the points are moving continuously,
the index is updated only at discrete time instances. This approach leads to fast query time, but the main
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disadvantage is that it can answer a query only at the currefigcwation. It can be extended to handle queries
arriving in chronological order, i.e., the time stamps of queries are in nondecreasing order. Using the so-called
persistence technique [15, 27], the index can answer queries on the near future or the neafigasitooms of
points. Another weakness of this approach is the cost associated with updating the index as the points move.
One can combine the two approaches to take advantage of each one. In many applications, suchfias air-traf
control, it is more crucial to answer the queries related to the near futufigiacations (i.e.|, — now| is small)
efficiently and accurately. The idea is to still use time as an additional dimension, but optimize the index for the
time close tonow and store only an approximate representation of the poirfigumations far away fromow.
The index is updated periodically to maintain the above invariant. This approach, which wenealsponsive
indexing, has been used in a number of recent papers [1, 4, 25, 32].
The paper is organized as follows. In Section 2 we review a few geometric techniques that will be useful for
the indexes discussed here. For simplicity,fiwst discuss in Section 3 the above approaches for points moving
on thez-axis. Section 4 reviews the known techniques for range searching amid points moving in the plane.
Section 5 discusses nearest-neighbor queries on moving points, and we conclude in Section 6 by mentioning a
few open problems.

2 Geometric Techniques

In this section we discuss a few geometric techniques, which lie at the heart of many of the indexing schemes
discussed in subsequent sections.

Duality. Duality is a popular and powerful technique used in geometric algorithms [14] and has been used in
indexing moving points [1, 21, 28]; it maps each poini¥#nto a line inR? and vice-versa. We use the following
duality transform (a few other variants also appear in the literature): The dual of a(pgipte ¥ is the line

x9 = ax; — b, and the dual of a line; = ax; + § is the point(a, —f). Leto* denote the dual of an object
(point or line)o, and for any set of objects, let ¥* denote the set of dual objecfs™ | o € ¥}. An essential
property of this transformation is that a popnis above (resp., below, on) a lirkaf and only if the dual pointt

is above (resp., below, on) the dual lipe The dual of a stri is a vertical line segment’, in the sense that a
pointp lies insideo if and only if the dual lings* intersectss*. See Figure 2.

primal

Figure 2: The duals of two points and a strip are two lines and a vertical line segment.

Partition trees. Partition trees, originally proposed by Willard [33], are one of the most commonly used
internal memory data structures for geometric-searching problems [5, 23]. Recently, partition trees have been
extended to the external memory model [2]. l%be a set ofV points inE. A simplicial partition of S

is a set of pairdl = {(S1, A1), (S2,D2),...,(Sr, Ar)}, where theS;’s are disjoint subsets &f, and each

A\; is a triangle containing the points in the corresponding sufjsek point of S may lie in many triangles,

but it belongs to only one subsst The size ofll, here denoted, is the number of subset-triangle pairs. A
simplicial partition isbalanced if each subses; contains betweeW/r and2N/r points. Thecrossing number

of a simplicial partition is the maximum number of triangles crossed by a single line. By extendingddiésou
algorithm to the external memory model, Agarveall. [2] showed that forr = O(B), a balanced simplicial
partitionII for S of sizer and crossing numbep(,/r) can be constructed i@ (nr) expected 1/Os.
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Using simplicial partitions, a partition tréE on S can be constructed as follows: Each naden T is
associated with a subsét, C S of points and a triangle\,. For the root ofT’, we haveS,ot = S and
Aroot = R2. Let N, = |S,| andn, = [N,/B]. We construct the subtree rooted at nadas follows. If
N, < B, thenwv is a leaf and we store all points 6f in a single block. Otherwise; is an internal node of
degreer, = O(B). We compute a balanced simplicial partitidp = {(S1, A1), ..., (Sr,, A, )} for S, with
crossing numbe®(,/r,,) and then recursively construct a partition tigéor each subses;. 7' usesO(n) disk
blocks and can be constructed@{ N logg n) expected 1/0s. For a query triangte all points inS N o can be
reported as follows: we visif’ in a top down fashion. Suppose we are at a nedé v is a leaf, we report all
points of S, that lie insides. Otherwise, we test each trianglg of I1,. If A; lies completely outside, we
ignore it; if A\; lies completely insider, we report all points irf5; by traversing théth subtree ob; finally, if
o crosses)\;, we recursively visit theth child of v. As shown in [1, 2], the query take$(r'/?t¢ + k) 1/Os.
Moreover, a point can be inserted into or deleted from the tré(Ing;, ) expected 1/Os.

Kinetic data structures. Thekinetic data structure (KDS) framework, originally proposed by Basetal. [12],

stores only &combinatorial snapshbof the moving points at any time. Although the points are moving con-
tinuously, the data structure itself only depends on certain combinatorial properties (such as two points in 1D
coincide) and changes only at discrete instants, callents. When an event occurs, we perfornkiaetic up-

date on the data structure. Since we know how the points move, we can predict when any event will occur. The
evolution of the data structure is driven by a globa&nt queue, which is a priority queue containing all future
events. A good KDS is one that strikes a proper balance in maintaining ficzeetiset. On the one hand, the
certificate set should be as stable as possible and not undergo drastic or unnecessarily frequent changes as the
objects move; furthermore, it should be repairable by local operations wheficedes fail. At the same time,

the certficate set has to enable a fast computation of the attribute of interest in order to be useful. See [16] for
an overview of KDS.

Persistence. Many database applications ask for updating the current index while querying both the current
and earlier versions of the index. Tpersistence technique, proposed by Sarnak and Tarjan [27] and generalized
by Driscoll et al. [15], provides a way to adapt KDS so that earlier versions of the index can be queried. The
persistence technique basically stores‘tiferencé between two consecutive version of the index, by keeping
track of the time interval during which an element is really present in the index. A B-tree can be made persistent
as follows [13, 30]. Roughly speaking, each data element is augmented iigrsigan consisting of the time

at which the element was inserted and (possibly) the time at which it was deleted. Similarly, each node in the
B-tree is also augmented with a life span. We say that an element or a naldesiduring its life span. Apart

from the normal B-tree constraint on the number of elements in a hode, we also maintain that a node contains
©(B) alive elements (or children) in its life span. This means that for a given #jrtiee nodes with life span
containingt make up a B-tree on the elements alive at that time. An insertion or deletion in a persistent B-tree
is performed almost like a normal insertion; we omit the details from here. Betlar[13] show that each
update operation take&3(logz n) 1/0s, and thatr update operations requite(v/B) additional disk blocks.

3 One-Dimensional Indexing

In this section we describe the three general techniques discussed in the introduction for indexisgoh set
points moving inR.  For simplicity, we assume that the motion $fis linear, i.e.,p(t) = a;t + b;, where
a;,b; € R, andp; is a line in thezt-plane. LetL = {p; | p; € S}.

Time-oblivious indexing. Tayebet al. [29] proposed an index based on the so-called PMR-quadtrees [26], in
which a square (associated with a node of the quadtree) is split into four subsquares if Btlleastegments
intersect it, and a line segment is associated with every subsquare that it intersects. This approach introduces
substantial data replication and is thus not spafieieft. To reduce the data replication problem, they use
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a time parametet/ and rebuild the entire index at timié. Although this approach does not guarantee any
nontrivial bound on the query performance, it extends to algebraic or piecewise-linear maofiantbbut any
modification.

An index with provable query time can be developed using partition trees, described in Sectioi-2. A
dimensional Q1 query of asks which of the lines i intersect a line segment parallel to thez-axis. Let
P be the set of points dual to the linesin see Section 2. Then the above query is equivalent to reporting the
points inP that lie inside the strip™* dual too. Sinces* can be regarded as an unbounded triangle, a Q1 query
can be answered i@ (n'/?*¢ 4 k) 1/0s, and a point can be inserted into or deleted from the indéXIng; n)
expected I/Os [1, 21]. Agarwat al. [1] also showed that partition trees can also be used to answer Q2 queries
with the same performance bounds. The partition-tree approach can be generalized to handle algebraic motion,
at the cost of increasing the query time, by using the so-called linearization technique [10, 34]. Suppose the
trajectory of each point € S is given by a polynomial of degrel in the time parameter Using linearization,
S is mapped to a saP of points inRP+! and a Q1 query irf is reduced to reporting the points Ffthat lie
inside a(D + 1)-dimensional slab. By preprocessifjinto a higher dimensional partition tree, a query can be
answered usin@ (n!~/(P+1)+e 1 k) 1/Os; see [1] for details.

Chronological queries. The query time can be sigigantly improved if the index is allowed to change over
time and if queries arrive inhronological order, i.e., if the time stamp of the current querytisthen the time
stamp of the future queries is at leggt It is well known that a one-dimensional range query among a set of
static points ifR! can be answered i(log n+k) 1/Os using B-trees. By maintaining B-trees for moving points
using the KDS framework outlined in Section 2, a range query can be answetKtbig n + k) 1/Os. If the
motion of S is algebraic, the index process@$N?) events and the index can be update@ifiogy n) expected

I/Os at each event. Agarwel al. [1] show that the kinetic B-trees can be combined with partition trees to obtain
a tradeoff between query time and the total number of kinetic events. figjpdlyj for a parameteq\, where

N < A < N?, range queries arriving in chronological order can be answered GEing™ /v/A + k) 1/Os,

and an event can be processedifiogz (A/N)) 1/Os, provided the motion of is linear. If the trajectories of
points do not change, the index processes at fAastents.

Time-responsive indexing. As observed in the previous section, the combinatorial structure of a kinetic data

structure isfixed until there is arevent. For kinetic B-trees, an event occurs when two points have the same

value. Using the persistence technique described in Section 2, one can maintain all versions of kinetic B-trees

in a total ofO(n + o/B) blocks, wherer = O(N?) is the number of events processed by the KDS. Kokios

al. [21] used this approach to answer Q1 queries at any tini&loggz n + k) 1/0s. Agarwalet al. [1] showed

that instead of maintaining all versions, one can maintain only a few past and future versions of the kinetic B-tree

so that a query in the near past or future can be answefieteafly. Spedically, they showed tha$ can be

stored in an index of sizé(n) so that a Q1 query can be answerediflog; n + k) 1/0Os, provided there are at

mostN events betweef), andnow. The amortized cost of an event@§logg n) 1/0s. Kollioset al. [22] have

also used persistence to store multiple versions of other indexing schemes, such as R-trees, on moving objects.
Agarwalet al. [1] also described an index that combines partition trees with multiversion kinetic data struc-

tures to obtain an index whose query cost is a monotone functidp -efrnow|. However, they were not able

to prove any bounds on the performance of their index in the worst-case. Subsequently, Adjaaiwid]

proposed another index that provides a bound on the query performance, which is a monotone function of

|t — now|. Since the index is of combinatorial nature, time is measured in terms of kinetic events(t). et

the number of kinetic events that occur (or have occurred) betweenandt. The query bounds then depend

on ¢(t,), the number of kinetic events betweenw andt,. Their index answers a Q1 query at tire with

NB=! < p(t,) < NB?, usingO(B~! + logg n + k) 1/0s, and spend® (log}; n) 1/0s at each kinetic event.

Recently Agarwakt al. [3] improved the query time t® (v B~ + logg n + k) without affecting the update

time.

29



4 Two-Dimensional Indexing

We now discuss how the techniques described in the previous section extend to points md¥inggain,
we first discuss the time-oblivious approach, then the KDS frameworkfiaallly the approaches that combine
them.

Time-oblivious indexing. Pfoseret al. [24] propose two R-tree based schemes for indexing the trajectories
of S, assuming that the motion & is piecewise linear. For a poinf € S, let T'; denote the set of line
segments in the trajectogy, and setl” = | J, I';. Theirfirst index, called the STR-tree, regards each segment
of I' independently and builds an R-tree on them. They propose new heuristics to split a node, which take the
trajectories ofS into account while inserting a new segment into the tree. Since the segments of a trajectory are
stored at different parts of the tree, updating a trajectory is expensive. In the second index, called the TB-tree,
they circumvent this problem by storing all line segments of the same trajectory at the same leaf of the tree.

If the motion of S is linear, the trajectories of points i are a set of lines ifi®. Using the fact that a line
in R? can be represented by four real parameters, Ko#ias. [21] proposed mapping each line to a point in
R* and using four-dimensional partition trees to answer Q1 queries. Agerala[1] developed a considerably
faster index by reducing the problem to 1D, using the following observation: 4im& (zyt-space) intersects
a horizontal rectangl®, parallel to thery-plane, if and only if their projections onto the- andyt-planes both
intersect. We apply a duality transformation to thie andyt-planes, as described in Section 2. Thus, each
moving pointp in the zy-plane induces two static pointg andp? in the dualzt-plane and the duajt-plane,
respectively. For any subsét C S, let P* and PY respectively denote the corresponding points in the dual
zt-plane and the duajt-plane. Any query rectangle (query segments intheandyt-planes) induces two
query stripso® andg?, and the result of a query is the set of poipts S for which p* € o* andp? € ¢¥. See
Figure 3.

=

Figure 3: Decomposing a rectangle query among moving two-dimensional points into two strip queries among static two-
dimensional points, by dualizing the- andyt-projections. A line intersects the rectangle if and only if both corresponding
points lie inside the strips.

Agarwalet al. [1] propose a multi-level partition tree, a general technique that allows one to answer complex
gueries by decomposing them into several simpler components and by designing a separate data structure for
each component, to answer Q1 and Q2 queries. Roughly speaking, they conptroetrg partition treel® for
the pointsP?. Then at every node of 7%, they attach aecondary partition treeZ for the pointsSy, wheres,
is the set of points stored in the primary subtree rooted dthe total space used by the index($én log; n).

A Q1 query is answered in almost the same way as in the basic partition tree. Given two query’ ngs

oY, it first searches through the primary partition t#@efor the points inP* N ¢®. If it finds a triangleA,;
associated with a nodeof the partition tre€l™ that lies completely inside”, it searches in the secondary tree
TY to report all points of?Y N o¥. Agarwalet al. [1] showed that the query také(n!/?** + k) 1/Os and that

the size can be reduced @n) without affecting the asymptotic query time. As in the one-dimensional case, a
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Q2 query can also be answered using within the same bound using multilevel partition trees, and the index can
be generalized to handle algebraic motiortaising the linearization technique.

Chronological queries. Agarwal et al. [1] use the KDS framework on external range trees developed by
Arge et al. [11] to answer Q1 queries on points movinglkh. The external range tree presented in [11] is a
three-level structure. Omitting the details, which can be found in the original paper, we mention that the kinetic
range tree useS(n logg n/(logp logz n)) blocks, and a Q1 query with time starfp= now can be answered
in O(logz n + k) 1/0s. The amortized cost of a kinetic event or trajectory change(isg; 1/ log log n)
I/Os. If the trajectories of the points do not change, the total number of eventéN%). As in the one-
dimensional case, by combining partition trees with kinetic range trees, a tradeoff between query time and the
number of events can be obtained.

Since external range trees are too complicated, a more practical approach is to use the KDS frames+ork on
trees, as proposed in [7]. However, the invariants maintainedialyteee— at each node points are partitioned
into two halves by a line and the orientation of the line alternates between being horizontal and vertical along
a path— are too expensive to maintain for moving points. Agaretadl. [7] propose two variants of kinetic
kd-trees in internal memory model: thpseudo kd-tree, which allows the number of points stored in the two
children of a node to differ by a constant fraction, and therlapping kd-tree, which allows the bounding
boxes of two children of a node to overlap. Both variants answer Q1 queries that arrive in chronological order
in O(N'/2t¢) time, for any constant > 0, processO(N?) kinetic events, and spend only polylogarithmic
time at each event. In contrast to other traditional approaches, which require subtrees to be rebuilt once in a
while and thus generate some expensive updates, the update time in their structure is worst-case as long as the
trajectories of the points do not changefi&ént KDS for maintaining binary space partition trees (also known
as cell trees [17]), which are generalizationg:dftrees have also been developed [6, 8].

Time-responsive indexing. Similar to the one-dimensional case, one can maintain multiversion external ki-
netic range trees in order to answer queries both in the past and the future. AgiaalwEl] describe a method
for maintaining such a structure and show that its siz@(is log; n/(log; log z n)) blocks, and the amortized
cost per event i6)(log% n) 1/0s. A Q1 query can be answerediilogg n+ k) 1/0s, provided there are at most
n/logzn events between and the current time. They also combine partition trees with multiversion kinetic
data structures to obtain an index whose query cost is a monotone functipa-ofow|. A different structure
is proposed in [4]. It answers a Q1 query at tipén O(y/N/Bi(B* ! +1logz N) + k) 1/Os, provided that
the number of kinetic events that occur up to titnés in the interval[ N B~!, N BY]. The bounds were later
improved in [3].

Since the above time-responsive indexing schemes are not practical, it is desirable to kinetize one of the
simpler structures such as &atree. Recall that each nodeof an R-tree is associated with a subsgtof
points and the smallest rectang® containings,. Although the rectangles associated with the children of a
node can overlap, the areas of overlap and the areas of the bounding boxes must be small to expect good query
performance. Maintaining these properties over time is likely to befsgmnitly less expensive than maintaining
the stronger invariants that other indexes (&djtrees) require. Moreover, dtree works correctly even if the
overlap areas are too large, though the query performance deteriorates.

There are two main challenges in extendindiatree to moving points. For stationary points, a rectatigle
can be represented by four real parameters, specifying-thady-coordinates of its bottom-left and top-right
corners. But the smallest enclosing rectangle of moving points changes with time, and its shape can be quite
complex. Figure 4 shows how the shape of the smallest interval containing a set of moving points changes with
time. As proposed in [25, 32], this problem is circumvented by maintaining a rectapgkeeach node such
that R,(t) C R,(t) for all values oft; see Figure 4. Another challenge in extending R-trees is partitioning
the points ofS, among the children of. Unlike the static case, the points have to be partitioned so that the
overlap among the bounding rectangles of the childremisfsmall at all times. A trade-off between the query
performance and the time spent in updating the tree can be obtained.
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Thefirst kineticR-tree, called the TPR-tree, was proposed by Saltetrak [32]. It uses the notion aime
horizon H in order to decide how to build the index at the current time. For example, in order to determine how
the points ofS, should be partitioned among the childrenoit only considers the overlap among the bounding
boxes for the time intervdhow, now + H]. Similarly, it usesH to computeR,. No kinetic events are di@ed,
but the structure is updated due to external events such as changes in the trajectory, which is handled as a point
deletion, followed by a point insertion. If the index is updated frequeRtljis a good approximation aR,,
but otherwiseR,, could be quite large, as evident in Figure 4 (i).

(i)

Figure 4: (i) R(t) is the smallest interval containir(¢). The raysU, L denote the approximation dt(¢) as computed
in [32]. (ii) An g-approximation ofR by polygonal chaing =, ™ as computed in [25].

The second kineti®-tree, called STAR-tree, was subsequently proposed by Procepalc[25]. Unlike
the previous structure, they do not use the notion of time horizon. Instead they use kinetic events to update
the index when the bounding boxes start overlapping a lot. Roughly speaking, if the bounding boxes of the
children of a node overlap considerably, it re-organizes the grand-childremarhong the children af. Using
geometric approximation techniques developed in [9], it maintains a recfangteeach node, which is a close
approximation ofR,. It provides a trade-off between the quality/of and the complexity of the shape &f,.
For linear motion ofS, the trajectories of the vertices Bf, can be represented as polygonal chains. In order
to guarantee thak, C (1 + ¢)R,, trajectories of the corners @, needO(1//z) vertices. (Saltenis [32]
represented the trajectory of each corneRpby a ray.)

Hadjieleftheriouet al. [19] have proposed another kinefit-tree, called PPR-tree, which also relies on
storing an approximation a®, at each node of the tree.

5 Nearest-Neighbor Queries

Given a setS of points inR?, the Voronoi diagram of S is the (maximal) planar subdivision in which the same
point of S is nearest to all the points within a region. By preprocessing the Voronoi diagrairfafpoint-
location queries [14], the point i nearest to a query point can be computditieitly. Although the Voronoi
diagram of a set of moving points can be maintainditiently, no eficient KDS for point-location structure is
known.

Kollios et al. [20] describe a time-oblivious approach to answer nearest-neighbor queries (Q3 queries) for
points moving along the-axis. Although their index does not provide any bound on the worst-case query time,
for linear motion ofS, partition trees can be used to answer a nearest-neighbor qu@(yHﬁ“) I/Os. Using
the STAR-tree structure, Procopietal. [25] describe branch-and-bound procedures that compute both exact
and approximaté-nearest neighbors, for arty> 1. Although there are no theoretical bounds on ttiieincy
of the index, their approach has important practical value. They show through extensive experiments that the
index can be expected to perform well for various data and velocity distributions.
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Observing that the Euclidean metric can be approximated by a polygonal metric whose unit ball is a regular
polygon with few edges, Agarwat al. [1] developed an index for answering@approximate nearest-neighbor
query inR?, which returns a point of whose distance from the query point at tigpés at most(1 + §) times
that to the nearest neighbor. Usifgn /v/3) disk blocks, it answers a query @(n'/?+2 /1/§) 1/Os.

6 Discussion and Open Problems

Uncertainty. One important direction for further research is to incorporate uncertainty in the position and
velocity of the input points. Even though the accuracy of high-end positioning systemdicsestiffor most

kinetic applications, commercially viable applications will have to contend with much lower accuracy systems.
In addition, it is currently impractical to sample with high enough frequency so that all trajectory changes are
noticed and transmitted to the indexing system. Instead, one has to sample the motion and contend with the
accumulation of errors in the data.

Complex queries. Besides range and nearest-neighbor queries, many other types of queries are of practical
interest. For example, report the areas of the highest density at some given time stamp, or detect when the
number of data points in the neighborhood of a query point exceeds a certain threshdidstTinge of query is
important for trafic observation and control, while the second type has applications in location-based services.

Engineering issues. The techniques presented in this paper assume a unique database server that maintains

the index on the kinetic objects. Clearly, the ideas should be extended to distributed databases and also addres:
issues such as concurrency and data recovery. Although the research on both the front-end and back-end aspect
of kinetic databases is still in an early stage, the pace of its evolution suggests that integrated solutions may not

be too far in the future.
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Abstract

Current moving-object indexing concentrates on point-objects capable of continuous movement in one-,
two-, and three-dimensional Euclidean spaces, and most approaches are based on well-known, conven-
tional spatial indices. Approaches that aim at indexing the current and anticipated future positions of
moving objects generally must contend with very large update loads because of the agility of the objects
indexed. At the same time, conventional spatial indices were often originally proposed in settings char-
acterized by few updates and focus on query performance. In this paper, we characterize the challenge
of moving-object indexing and discuss a range of techniques, the use of which may lead to better update
performance.

1 Introduction

Several trends in hardware technologies combine to provide the enabling foundation for a class of mobile e-
services where the locations of the moving objects play a central role. These trends encompass continued
advances in theniniaturization of electronics, irdisplay devices, and inwireless communications. Other trends

include the improvegberformance of general computing technologies and the general improvement jpethe
formance/price ratio of electronics. Perhaps most importanibpsitioning technologies such as GPS (global
positioning system) are becoming increasingly accurate and usable.

The coming years are expected to witness very large quantities of wirelessly on-line, i.e., Internet-worked,
objects that are location-enabled and capable of movement to varying degrees. Example objects include con-
sumers using WAP-enabled mobile-phone terminals and personal digital assistants and vehicles with computing
and navigation equipment. Some predict that each of us will soon have approximately 100 on-line objects, most
of which will be special-purpose, embedded computers.

These developments pave the way to a range of qualitatively new types of Internet-based services, which
either make little sense or are of limited interest in the traditional contefkked-location, PC- or workstation-
based computing. Such services encompasBdm@ordination, management, and wiayding; location-aware
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advertising; integrated information services, e.g., tourist services; safety-related services; and location-based
games that merge virtual and physical spaces.

In location-enabled m-services, moving objects disclose their positional data (position, speed, velocity, etc.)
to the services, which in turn use this and other information to provide fapéanctionality. Our focus is on
location-enabled services that rely on access to the up-to-date locations of large volumes of moving objects.
Due to the volumes of data, the data must be assumed to be disk resident; and to obtain adequate query per-
formance, some form of indexing must be employed. The aim of indexing is to make it possible for multiple
users to concurrently andfafiently retrieve desired data from very large databases. Indexing techniques are
becoming increasingly important because the improvement in the rate of transfer of data between disk and main
memory cannot keep pace with the growth in storage capacities and processor speeds. Disk I/O is becoming an
increasingly pronounced bottleneck.

The techniques that have been proposed for indexing the current and near-future positions of moving objects
are based on spatial indexing techniques, most prominently the R-tree, that were conceived in settings where
updates were relatively few and where focus was on queries. Thereficesréfupdate processing represents a
substantial, and as yet unmet, challenge. Simadiy, without more dfcient update processing the applicability
of moving-object indexing techniques will remain restricted to scenarios with relatively few objects or scenarios
where few updates are needed per object per time unit.

This paper bri#y describes a range of techniques that seem to offer additional opportunities for further im-
proving the update processing capabilities of moving-object indices. We initially describe a setting for moving-
object indexing. Then follows a section that considers six classes of techniques that may be applied to make a
variety of moving-object indices more updaté&ent. A brief summary ends the paper.

2 Problem Setting

The application setting for the problem of moving-object indexing descibed here aims to concisely capture the
complexities of the problem. We have at times opted for a concrete setting as opposed to a very general and
abstract setting.

At the core of the problem setting is a set of so-caliealing objects, which are capable of continuous
movement. We assume that the movements of these objects are embedded in two-dimensional space, meaning
that we ignore altitude. As examples, the moving objects can be pedestrians or people traveling in cars.

We also assume that one or maaevices, each with a database, are available to the moving objects. The
moving objects are capable of communicating wirelessly with the services. Further, the moving objects are
capable of reporting their movement information, including and most prominently their current position, to the
services. This capability is achieved by means of one of a range of geo-location technologies. Indeed, we are
particularly interested in the class of services where a moving object reports its movement information to the
service. Such a location-enabled service records the movement of each object. It may record the past, current,
and projected, future movement.

A servicés record of an objet® movement is inherently imprecise, for several reasons. First, the movement
of an object is captured via some kind of sampling, so that movement information pertaining only to discrete
instances of time is obtained. Movement information pertaining to all other times must be derived via some kind
of interpolation or extrapolation. Second, the movement information in each sample is imprecise [7].

Different geo-location technologies yield different precisions, and the precisions obtained when using a sin-
gle technology also varies, depending on the circumstances under which the technology is used. For example,
the cellular infrastructure itself, the positioning technologies offered by companies such as SnapTrack and Cam-
bridge Positioning Technologies, and GPS and server-assisted GPS offer quite different precisions. And, for
example, GPS technology is dependent on lines of sight to several satellites, which affects the robustness of
the technology. In other words, the accuracy of the positioning is highly dependent on a number of aspects,
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including the usés location.

Different services require movement information with different minimum precisions for them to work. For
example, a weather information service requires user positions with very low precision, while an advanced
location-based game, where the participants interact with geo-located, virtual objects, requires high precision.
Stated in general terms, the highest precision that may be obtained is that offered by the geo-location technology.
One may get close to the highest precision by sampling very frequently. Services that require higher precision
cannot be accommodated. We will assume that a required precision is given by the service under consideration
and that this precision can indeed be achieved. Further, each object is assumed to be aware of the movemenit
information kept for it by the service. The object is then able to issue an update to the service when its actual
movement information deviates by more than the required precision from the semécerd [11].

A set of geo-referenced objects not capable of continuous movement is also part of the problem setting.
Examples include schools, recreational facilities, and gas stations. These objects are pacooité queried
by the services.

It should also be noted that the objects are not simply moving in a perfect, two-dimensional Euclidean space.
Rather, objects are subjected to movement constraints, one category of which consists of objects that block the
movements of objects. For example, a private property and a lake block the movement of a hiker. Another
category consists of infrastructure that intuitively takes the movement of an object to a lower-dimensional space.
For example, cars may be domed to a road network.

The workload experienced by the database at a service then consists of a sequence of updates intermixed with
gueries. The amount of updates is dependent on factors such as the number of objects, the required precision,
the agility of the objects, and the serviseepresentation of the objectsovements. The queries may be range
queries, ranked or unrankédnearest neighbor queries, and reverse nearest neighbor queries, to name but a few.
In addition, these queries may be attached to moving objects, making them moving queries; and they may be
active, meaning that they are evaluated continuously for a time period. It is assumed that the data at a service is
stored on disk and that some kind of indexing is necessary to support the queries issued.

3 Update Techniques

We proceed to explore a range of techniques, the application of which may reduce the processing needed to
accommodate the index updates implied by a workload. These techniques aim to process the individual updates
more eficiently or to reduce the number of updates.

Representing Positions as Functions One approach to reduce the number of updates is to model the position
of an object as a function of time. This reduces the need for updates because a function better estimates the rea
locations of an object for a longer period than does a constant position. An update is heeded when the difference
between the real location of the object and the position believed by the databdsta(dizmse positidh exceeds
the threshold dictated by the services being supported. This is illustrated in Figure 1, where the movement of
a one-dimensional moving point is shown together with linear functions representing theé ohjegement
between the updates. When linear functions are used, for a time #{dhm database position of an object
z(t) = z(t,,) + 0(t,,.)(t —t,,) is described by two parametershe position of the object;(z,,,), as
recorded at the time of the last updag, (¢,,,, < t), and the velocity vectoij(t,,,,), as recorded af, ;.

The velocity vector is théirst derivative of the position function. Similarly, the acceleration vector is the
second derivative of the position. In general, one could empleyl parameters angd-th degree polynomials
to approximate an objeéstmovement, using the Taylor series:

(t - 7fupa,’)Q ) (t - tupd)n

j‘(t) = a_j(tupd) + j,(tupd)(t - tupd) + j‘”(tupa,’) 921 +o j(n (tupd)
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Above, it is assumed that at any point in time, there is one function that models the position of a moving
object in the index. Another direction involves the use of several functions at a time for capturing afsobject
position. Spedically, the time interval during which an objéstposition is modeled may be partitioned into
sub-intervals, and one function may be given for each sub-interval. It is natural to require that the position given
by a function at the end of its interval is equal to the position obtained from the function assigned to the next
interval when applied to the start of this interval. If all functions are linear, a polylimetin-dimensional space
results for an object moving in-dimensional space. This direction may be useful when the path of an object in
a transportation network is known.

Several researchers have explored the use of linear functions for representing and indexing the current and
future positions of moving objects in one-dimensional to three-dimensional spaces [4, 8, 9, 10]. The more
general approaches outlined here have yet to be explored, as does the combined indexing of the past, current,
and future positions of moving objects.

Capturing and Using Expiration Times Independently of how an objéstposition is represented in an index,
the accuracy of the database position and, thus, its utility for any application will tend to decrease as time passes.
When an object has not reported its position to the database for a certain period of time, the database position
is likely to be of little use to the services being supported, and the object is also unlikely to be interested in the
services. The obje position should then simply be discarded from the database and the index.

In this scenario, it is natural to associate an expira-
tion time with each position, thus enabling automatical re-
moval of “expired positions as well afiltering of yet-to-
80 be-removed, expired entries in queries. As a result, the
scheduling of explicit deletion operations and the reporting

pos

70+ | ision threshold . : : :

mprecision fresho of expired objects in query results are avoided.
60+ 2\ When expiration times are associated with object posi-
sod VN tions at the times they are inserted or updated, an opportu-

nity exists for the index used to exploit the expiration times
to obtain more dicient update processing. Indeed, experi-
30 \\ ments with the R*"-tree [10] demonstrate that in order to
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avoid scheduling of explicit deletion operations to remove

‘ R expired objects, expiration times can be introduced in the
10 1 h index structure, upon which the expired index entries can
R R N S be removed in an automatic and lazy fashion. This reduces
ul w2 uw u4 uSCT time the average update costs. While tHe*R-tree introduces
expiration times in the TPR-tree, the proposed technique is

Flgure .l: Apprqmmatlng a Qne-DlmenS|onaI Movr'nore general. It can be used with any other index structure.
ing Object by Linear Functions
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Utilization of Buffering A promising technique for increasing thdiefency of index update operations is to
use the ideas underlying Buffer trees [2], the aim being to remedy thicieeties of transferring blocks with
little useful data between main memory and disk. In a Buffer tree, each node is associated with a main-memory-
sized buffer that buffers the update operations concerning the subtree rooted at the node. The operations buffered
at some tree node are performed in bulk whenever the’addfer becomes overfull. Wit being the number
of (data value, pointer)-pairs thétin a disk block, such bulk operations are almBsimes faster, in amortized
cost, than when performing the operations in the usual fashion. BVitsually being on the order of hundreds,
the performance of update operations may be boosted dramatically.

While some work has been done on buffering in R-trees in the context of workloads that intermix insertions
and deletions [3], the existing Buffer-tree approaches do not allow queries to be performed if there are non-

38



empty buffers. however, workloads that intermix queries and updates is a key characteristic of our application
scenario, where queries should also be answered in a timely, on-line fashion, i.e., it is not acceptable to buffer
gueries the same way insertions and deletions are buffered.

It should be possible to extend the Buffer-tree techniques to support queries that are performed simulta-
neously with insertions and deletions. One approach to achieving this is to organize the buffers as index-like
structures, so that queries can biodéntly performed on the buffers. This may reduce the performance of the
gueries, as they will have to perform additional I/O operations to search the relevant buffers. The goal is to
provide aflexible mechanism, whereby one can tune how much the query performance should fomedaari
order to gain the necessary update performance.

Exploitation of All Available Main Memory  Main memory storage is much faster than disk storage and
becomes increasingly voluminous and inexpensive. Mdreieifit processing of updates against moving-object
indices may be obtained through aggressive use of all available main memory. While buffering tends to result
in the use of more main memory, simply using buffering does not imply that all available main memory is being
utilized in any optimal fashion.

When aggressively using main memory, one may expect much of an inherently disk-based index to reside
in main memory, in a form that is optimized for the particular main memory and processor environment. The
challenge then becomes one of maintaining some parts of an index in its disk-based format and some parts in its
main-memory format. Such main-memory variants of disk-based moving-object indices deserve study.

The areas of main-memory and real-time database management aggressively exploit main memory and may
have ideas to offer. For example, while main-memory page buffers are traditionally organized simply as collec-
tions of pages, main-memory databases employ more elaborate index structures to optimize CPU performance.
Aggressive use of main memory is also seen in an application area such as telecommunications, where there is
a need to record large amounts of real-time discrete events.

Taking Movement Constraints Into Account EXxisting work on moving-object indexing typically assumes
that the underlying objects live in 1-, 2-, or 3-dimensional Euclidean spaces (e.g., [1, 5, 8, 9]).

However, as pointed out earlier, in many situations, some objects constrain the locations of other objects. For
example, the movements of hikers in a forest are constrained by fenced, private properties. As another example,
the movement of a ship is constrained by shallow water and land. These blocking objects do not reduce the
dimensionality of the space in which the objects are embedded. In other application contexts, the locations of
objects are constrained to a transportation network embedded in, typically, 2-dimensional Euclidean space [4].
This in some sense reduces the dimensionality of the space available for moveimeitérm 1.5-dimensional
space has been used. Examples abound. Cars typically move in transportation networks, and the destinations
such as private residences, hotels, and shops may be given locations in transportation networks. Next, folklore
has it that 80-90% of all automobile drivers move towards a destination. This suggests that drivers typically
follow network paths that are known ahead of time.

Moving-object indices should be able to exploit these constraints to obtain better update performance. This
may be achieved by exploiting the constraints to better represent the moving ohljeatons in the indices
and to better estimate the positions of the objects, both of which then lead to less frequent updates.

It should be noted that Euclidean distances are either not the only interesting notions of distance or are not
of interest at all in these settings. Rather, indexing techniques that apply to settings with obstacles or network-
constrained objects must contend with other notions of distance. For some such notions, the distance between
two stationary objects varies over time.

Using Application Semantics It may be observed that mdtiations on moving-object indices have special
properties that may be exploited: most nfaddtions occur in the form of updates that combine deletions with
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insertions, and the newly reported, inserted location for an object is relatively close to its previously reported,
deleted location. In the indexing literature, the insertion and deletion operations are usually considered as
separate operations. However, in our application scenario, most update operations are deletion-insertion pairs.
Processing these pairs as two separate operations results in two descents and two (partial) ascents of the index
tree. For a portion of updates, especially those that change the updated data only slightly, the combined deletion-
insertion operation can be performed in a single descent and a (partial) ascent of the tree, which may save 1/O
operations [6].

4 Summary

With the continued proliferation of wireless networks, visionaries predict that the Internet will soon extend

to many billions of devices, or objects. A substantial fraction of these will offer their changing positions to
the location-enabled services, they either use or support. As a result, software technologies that enable the
management of the positions of objects capable of continuous movement are in increasingly high demand.

This paper argues that although indexing of the current and anticipated, future locations of moving objects is
needed, there exists an as of yet unmet need for mbogesit update processing in moving-object indexing. The
paper then proceeds to describe a number of possible techniques, the use of which may render moving-object
indices increasingly updatefafient.

Many opportunities exist for testing out more sgiedincarnations of the described techniques in the contexts
of concrete indexes. In addition, techniques not described in this paper exist that may also improve update
efficiency. Distributed update processing is one such type of technique. Another promising direction is to
exploit approximation techniques to offer monotonically improving, as-good-as-possible answers to queries
within specfied soft or hard deadlines. This may enable the querying of almost up-to-date data, which in turn
may reduce the need for prompt updates. Yet another direction involves the use of relaxed index properties.
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Abstract

We model a moving object as a sizable physical entity equipped with GPS, wireless communication
capability, and a computer such as a PDA. Furthermore, we have observed that a real trajectory of
a moving object is the result of interactions among moving objects in the system yielding a polyline
instead of a line segment. In this paper, we first choose a partitioning approach to efficiently manage
such trajectory information and devel op a system called RouteManager based on a space-time grid that
manages moving objects in a one-dimensional space. e then extend thisto two-dimensional space. The
time-dependent shortest path problem is an interesting application where such a system can be used.

1 Introduction

Global Positioning System (GPS) has been widely accepted as the technology for locating objects such as
vehicles on a highway or soldiers in a bditéd. One of the features GPS provides, other than locating, is
speed tracking so that we can get speed information without integrating GPS to a speedometer in the vehicle.
Wireless communications technology such as Cellular Digital Packet Data (CDPD) [6] and Mobile IP [12] has
also gained popularity. With these technologies in pléiceling and managing the current locations of moving
objects have become possible. Since keeping track of the location of many, continuously moving objects is hard
to achieve, there are sididant data management problems that need to be addressed. The focus of much of the
research on this issue has been on how to manage location informdimently without updating the location
information every time it moves. One basic and fundamental observation on moving objects is that if a moving
object maintains a constant speed for a certain period, future locations of a moving object can be modeled as
a linear function of time during that period. Then the location information can be managed by maintaining
the parameters of the linear functions instead of constant updating [18, 8, 2]. There is no known alternative to
this approach so far. We also base our research on this observation and make further observations: (1) Moving
objects with a few exceptions follow certain paths such as a route on a highway system. (2) Such paths on which
moving objects move have some physical limitations such as the number of lanes and/or route conditions. (3)
Due to the limitations, a real trajectory of a moving object is a polyline instead of a line segment. In Section 3,
we explain how to manage such polyline information.
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Among many possible applications that could d@nfeom this research i§ime-Dependent Shortest Path
Problems. In transportation application3jme-Dependent Shortest Path Problems, where the cost (travel time)
of edges between nodes varies wiitine, are of signfiicant interest [11]. Trdifc congestion is a huge problem,
especially in metropolitan areas. According to a recent report from the Texas Transportation Institute [17], the
total congestion cost for the 68 major U.S. urban areas in 1999 was $78 billion, and Los Angeles was ranked
first ($12.5 billion) in the congestion cost as well as other congestion measures. In recent years, in order to
avoid trafic congestion a growing number of vehicles are equipped with a navigation system which provides a
shortest path to their destination as well as other features like roadside assistance [1]. The navigation system
uses a digital map, which includes static information such as the distance of a path and the speed limits along
the way. However, such information does ndteet the dynamically changing tfef information, hence could
lead vehicles to incorrect shortest paths. In contrast to this static approach, if there is a way to obtain the cost
in real time and then apply a time-dependent shortest path algorithm, it would result in a better solution for the
shortest path queries. The system we develop in this paper could be used to gather this dynamically changing
information in order to run a time-dependent shortest path algorithm.

In the following section, we discuss why we choose the partitioning approach over the indexing approach to
manage moving object information. Also, more detailed assumptions and observations on moving objects are
given in Section 2. In Section 3, we explain the system we have developed using the partitioning approach. The
system is initially designed in the context of moving objects in a one-dimensional space. Later, in Section 4,
we argue the importance of the time-dependent shortest path problems and describe how we can handle moving
objects in a two-dimensional space using multiple one-dimensional components. We conclude the paper with a
discussion of future direction of research in this area in Section 5.

2 Indexing vs. Partitioning

In general, there are two main paradigms for managing large data sets: the indexing approach and the partitioning
approach. The indexing approach is a bottom up approach where data objects are clustered together and index
structure is built to diciently locate the individual data items. This approach is usually more appropriate for
sparse unstructured data sets. Alternatively, the partitioning approach a priori partitions the data space and uses
simple (often constant time) methods for locating data. This approach is usually more appropriate for uniformly
distributed data with well dened structure [7]. In this section, we discuss why the partitioning approach is more
appropriate for managing moving object information than the indexing approach.

We start by stating in detail some assumptions regarding our model of moving objects. The best example of
moving objects is vehicles on a road although it is not the only example. The moving objects considered are not
particles, meaning that they do not move irregularly such as in a Brownian motion. Instead, they follow a certain
path such as a route on a highway system. This is true with few exceptions such as soldiers ifieldattle
persons in a large opdield. In addition, they are sizable physical entities with the following characteristics:
capable of locating their position, capable of wireless communication, and equipped with a computer such as a
PDA. Although there are several other technologies to locate an object, GPS is by far the dominant technology
and it is getting better and cheaper [4]. As a result, we expect that in the future many (if not all) moving objects,
especially vehicles, will be equipped with a GPS. Wireless communication technologies such as CDPD or IEEE
802.11b can be used together with a PDA or laptop to connect to a control center, which manages data and
answers queries to either moving objects or some other interested party such as advertisers.

Let us now consider how to model moving objéatsrrent and future locations. Future locations of a moving
object can be modeled as a linear function of time if the moving object maintains a constant speed for a certain
period. Therefore, the trajectory of a moving object can be expressed in terms of parameters representing a
linear function. In addition to this linearity, we make further observations on the paths (space) on which moving
objects move: there are physical limitations of paths on which moving objects move such as the number of
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lanes, route conditions, etc. Based on our everyday experience, we can expect that as the number of vehicles in
a section of a route increases, the average speed of the vehicles decreases. This is supported by a report from th
Texas Transportation Institute [17]. The report observed that as the daflg tralume (the average number of
vehicles observed in a day at a location) increases, the average speed of vehicles decreases. Due to this physice
limitation, the trajectory of a moving object is a result of interactions among all moving objects present in the
system. Consequently, the resulting trajectory would be a polyline, a sequence of linear lines. For this reason, if
we are to manage future location information about moving objects on a network of routes, the routes need to be
broken into smaller sections, which then are associated with information such as the number of objects and the
maximum velocity allowed in the section. Regardless of what approaches (indexing or partitioning) are used, we
need at least to maintain such information in each smaller section. Moreover, as we will see in Section 3, there
are times when an insertion of a moving object causes a series of updates of other moving objects in its way.
Therefore, each section needs to be associated with the list of moving objects in the section as well. For these
reasons, we take the partitioning approach in that we partition the domain space into a grid. Each cell in the grid
corresponds to a certain period of time and a section. In addition, each cell is associated with a list of moving
objects and the maximum velocity allowed in the cell. To our knowledge, this approach has not been previously
explored for the management of dynamic objects. In the next section, we explain the space-time partitioning
model and describe how insertion works.

3 Space-Time Grid

In the previous section, we argued that the partitioning approach is more appropriate for managing moving
objects trajectory information. In this section, we summarize the model we have developed [3] for main-
taining dynamically changing information about moving objects assuming that a moving object moves on a
one-dimensional path.

3.1 Data Structures, and Definitions

We assume that each section of a route is associated with a list of moving objects in the section and a prede-
fined function of the maximum velocity at which moving objects can move. This maximum velocity function
associated with a section will return the maximum velocity a moving object can move in the section depend-
ing on the number of moving objects currently in the section. We can derive the function from statistical
data [5]. We partition the domain spadé x Y, whereT corresponds to the time domain aid corre-
sponds to the space domain, into an array of cells suchYthat [y, y1) U ... U [yp—2,Yp—1) U [Yp—1; Ymaz)
andT = [tg,t1) U [t1,t2) U ... U [ty—1,t,), Wheret, = to + AT. A cell g[i, j] is ddined as a rectangle
[tistiv1) X [yj,y;+1), for somet; € T,y; € Y. Note that although time is increasing irfichétely, we only
maintain the information about some préded AT period of time. As time evolves, we shift the time domain
forward. We also assume that on entry to the system, a moving ohjé&ctesponsible to provide initial infor-
mation such as the starting locatios),(the starting time(), the destinationd), and the intended velocity],
which is the maximum velocity at which it intends to move. When a moving objeeppears in the system
providing its initial information, it is inserted into the system as a polyline. Shortly, we will explain how those
information becomes a polyline.

Choosing appropriate data structures is critical to achiefieiefit storage and retrieval of information. We
use the following data structures in the implementation: A linked list with an extra pointer to the last element is
used to represent the polyline corresponding to a moving objaejectory. The entire grid is implemented as
an array of cells, which &tiently supports random accesses to individual cells. An individual cell stores only
the identfiers of intersected moving objects along with the velocity of the moving objects in the cell using a skip
list [15]. Since we do not store the entire information about a moving object in each cell, we need to store it
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somewhere else, which we call @hject Sore. A hashtable is used for the Object Store, which needs to support
frequent random accesses.

Before we explain the insertion algorithm, we introduce a notatiamd a termentry point as follows: If
the corresponding polyline of. intersects with a cely, m is said to intersect witlp and denoted byn > g. An
entry point ofm to a cellg is a point wheren’s corresponding polyline angintersect for thdirst time.

3.2 Object Insertion

We now explain how to insert an objeet into the system. With the initial informatiom = (s, %,e,v), we
find thefirst cellg (skip list) such thatn > g and repeat the following steps: we compute the maximum velocity
allowed ing which depends on the number of moving objects in the cell, and adjissvelocity accordingly.
When there is a velocity change, we add the corresponding entry point to the linked list associatedwhitin
represents a polyline. We théimd the next cell to intersect by computing the entry point to the cell, and insert
its identfier along with the adjusted velocity ingo We repeat these steps until we process the cell to which the
destinatione of m belongs. In that case, we complete the insertion process by insettintp the Object Store,
and return the polyline information ta.

There are, however, cases where one insertion may cause a series of updates. Consider the situation shown
in Figure 1(a) where three moving objec{sy;, ma, m3}, are in the system and a new omey, is about to
be inserted. Assuming that three moving objects is a threshold for moving objects to reduce their velocities
to a certain degree, cejl is about to have three objects so that existing objects as well as the new one will
need to reduce their velocities based on the maximum velocity function associategl. witlrthermore, the
updates ofn; andms cause the cely» to have three moving objects. As a result, another updatezomas
to be executed. Figure 1(b) shows the result of the insertion,0/A moving objectm, in this case is said to
cause a ripple effect. For this reason, we need to check if the number of objeatsaches a threshold, before
inserting a moving object: into g, by checkingf,(|g|) > f,(|g| + 1), wheref,(n) is the maximum velocity
function associated with. If it is true, an algorithm calledRipplelnsert is invoked with a (row, column) pair of
g. Otherwise continue the insertion «f until it is finished.

The Ripplelnsert algorithm works as follows: suppgss thefirst cell whose maximum velocity needs to
be changed because of the insertion of a moving object. The information about all moving objeghen
adjusted according to the new velocity allowedgimnd continue this process with the cells whose time and
location intervals are greater than or equal to those @ther cells need not to be processed since an insertion
would not cause any update to the past and to previous locations. Figure 1 (c) shows the order in which cells are
updated. The details of this algorithm can be found in [3].

44



With the data structures and this insertion algorithm in place, we can process range and k-nearest neighbor
queries [5]. In the query processing algorithms we proposed, the target objects are moving as well as the query
points. We do not consider the case where the target objects are stationary. If so, after getting the future or current
location information of a moving object, the query becomes a traditional query (range or k-nearest neighbors),
for which many algorithms have been proposed.

4 Time Dependent Shortest Paths

In the previous section, we developed a system that manages moving object information assuming that the
moving objects are restricted to move in a one-dimensional space. In the real world, however, this would not be a
realistic assumption. Rather, objects move in a two-dimensional space. More precisely, a moving object follows
a certain path, which can be viewed as a path on a network of one-dimensional lines in a two-dimensional space
[5]. Therefore, we need to extend the system to handle mobility in two-dimensional space. In this section, we
explain the extension of the system and describe how it can be used for time-dependent shortest path problems.

Shortest path problems are among the most studied nefitlawkproblems and one of the most important
application areas is transportation. In transportation applicatidimsg-Dependent Shortest Path Problems,
where the cost (travel time) of edges between nodes variestiwié) are of sigriicant interest [11]. As in
transportation applications, where the cost changes dynamically, the correctness of the shortest path very much
depends upon the correctness of the cost model. For example, typical drivers choose a route based on static
information that, in general, is heavily weighted on the length of the route. Unfortunately, as many drivers
in metropolitan areas are aware, superiority of a route cannot entirely be based on the length of the route. In
particular, current and future condition of routes such as the severity of congestion should play an important role
in determining which route would incur minimum delay. In this case, using only the static informatiiol ta
shortest path is not enough. We need to take other variables into consideration.

In general, the time-dependent cost (normally, travel time) is given arbitrarily [10, 9, 11]. We noticed that this
time-dependent shortest path problem would be an interesting application for the data management of moving
objects. Once we extend the system to two-dimensional space, we will be able to provide the dynamically
changing cost to a time-dependent shortest path algorithm [11] leading many vehicles to real shortest paths.
This will result in better utilization of the road network andieient trafic management.

We now extend the system to a two-dimensional space. Riethat any path in a network of one-
dimensional lines in a two-dimensional space can be divided into subpaths, each of which belongs to a one-
dimensional line. Therefore we can build the two-dimensional system as a network of one-dimensional sub-
systems. The one-dimensional system we developed in the previous section is associated with a route and we
call it the RouteManager. Hence, each RouteManager maintains a local view of the corresponding route. A
local view consists of the dynamically changing cost information for sections on the route. Based on these local
views, a frontend interface to moving objects, PathServer, maintains a global view of the network as a directed
graph. In this directed graph, each section on a route corresponds to an edge. When a moving object appears
in the system, the PathSeniends a time-dependent shortest path on the graph, pushes it into a queue along
with the path information, and returns it to the moving object. The queue is constantly checked by a thread,
DistributionManager. If it is not empty, an element (a pair of an id of a moving object and the corresponding 2D
path) is dequeued and broken into 1D subpaths. The DistributionManager then distributes the 1D subpaths to
corresponding RouteManagers. For PathServer to keep up-to-date information about the routes, each RouteM-
anager constantly sends an updated local view to the PathServer. Then a thread in the PathServer, PathManage!
maintains up-to-date information in the graph structure. Hence, we are able to reuse the system (RouteManager)
we developed in the previous section and take advantage of parallelism. Note that a ripple effect can occur in any
RouteManager after DistributionManager distributes 1D subpaths to the corresponding RouteManagers. Once
a ripple effect occurred, the moving objects affected will arrive at subsequent routes later than the routes antici-
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pate. Due to this, each RouteManager needs to communicate each other exchanging up-to-date information. We
accomplish this by developing a SynchManager with an outgoing queue (OutQ) and an incoming queue (Up-

dateQ). The system is being developed using Java. PathServer and RouteManager are RMI Servers, possibly on
different machines and any other Managers are threads. Figure 2 shows an overview of the system architecture.

5 Conclusion and Future Direction

The moving objects we have modeled in this paper are sizable physical entities following certain paths. Such
paths have certain physical limitations and due to those limitations, the partitioning approach is better than the
indexing approach to manage moving object information. In addition, we have observed that a real trajectory of
a moving object is the result of interactions among moving objects in the system yielding a polyline instead of a
line segment. We then built a system (RouteManager) based on a space-time grid that manages moving objects in
a one-dimensional 1D space. Since in the real world moving objects would move on a two-dimensional network
of one-dimensional lines, we extend the system to two-dimensional space as a network of one-dimensional
components. The time-dependent shortest problem is an interesting application where such a system can be
used. Also, it is of sigriicant interest in transportation applications.

Since Sistla et al. [18] proposed a query model for moving objects, there has been much worfi@tcthis
Most of the early work [19, 21, 13, 8, 16, 2] did not take the following fact into account: the trajectory of a
moving object is the result of the interactions among other moving objects yielding a polyline as a trajectory.
Recently, however, Pfoser et al. [14], Chon et al. [3, 5], and Vazirgiannis et al. [20] worked on the assumption
that the trajectory of a moving object is a polyline. One difference between [14] and [5, 20] is that in [14] the
polyline is the result of recording of a moving objecpast locations and only past information can be queried
instead of the future. We believe that this assumption will be the basis for future research that will address issues
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of managing and querying future locations of moving objects. We also believe that the time-dependent shortest
problem is a very interesting problem. Since several promising approaches have been proposed in the context of
mobile data management, the research community needs to develop ways to evaluate different techniques. Also,
research prototypes need to be build to determine the effectiveness of proposed applications.
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LOCUS: A Testbed for Dynamic Spatial Indexing
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Abstract

We describe an extensible performance evaluation testbed for dynamic spatial indexing that is di-
rectly geared towards Location-Based Services (LBS). The testbed exercises a spatial index with several
query types relevant for LBS proximity queries (range queries), k-nearest neighbor queries, and sorted-
distance queries. Performance metrics are defined to quantify the cost (elapsed time) of location updates,
spatial queries, spatial index creation and maintenance.

The testbed is extensible with new spatial indexing methods, new query generators, and new index
visualization methods. Synthetic but realistic, three-dimensional “ moving object” data is generated with
CitySimulator, a toolkit we have devel oped specifically for LBSresearch and made available on the IBM
alphaWorks devel oper Web site.

1 Introduction

The DynaMark benchmark for dynamic spatial indexing is designed to evaluate the performance of middleware
and database servers supporting Location-Based Services (LBS) [6]. Commonly referrédhtuvieg object
databasesthese systems manage continuously changing data representing the current, past, or future locations
of mobile users. The high update load required of databases supporting Location-Based Sefivies s aeew

set of database requirements driving the need for new performance evaluation criteria. Queries typical of these
systems includéfind current position of user X, find objects within distance Y from user’>and“find 10

nearest objects to user’X.

In this paper, we describe the LOCUS Dynamic Spatial Indexing Testbed that provides a convenient way
to conduct performance experiments on dynamic spatial indexing methods. The testbed was directly motivated
by the need to evaluate the performance of systems supporting LBS applications. The testbed is designed to be
extensible so as to easily include new spatial indexing methods, new location data sources (both simulated and
real), new spatial query types, and new index visualization methods. It has been adapted to several commercial
spatial data management systems as well as prototype systems, and includes a proximity query generator, a k-
nearest neighbor query generator, and a sorted distance query generator for measuring spatial query performance.

The testbed is complemented by CitySimulator, a scalable data source that simulates a three-dimensional
model city. CitySimulator generates realistic location data for large populations of mobile users. Combining
the testbed with simulated location data, one can evaluate the performance of LBS middleware serving up to
millions of moving objects. The system provides a powerful graphical user interface that allows the user to

Copyright 2002 |EEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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control several aspects of the simulation at runtime, includindj¢rédw, trafic congestion, and blocked streets
and routes.

The paper is organized as follows. In Section 2, we review existing literature on location management,
dynamic spatial indexing, dataset generation, and performance benchmarking. In Section 3fyvédsteibe
salient features of the DynaMark benchmark, and then introduce the LOCUS testbed in Section 4. Methods for
analyzing the performance and scalability of spatial data management systems are discussed in Section 5.

2 Related Work

Location-based services build upon two well-established areas of information technology: wireless communica-
tion and spatial data management. While the primary role of wireless communication is to provide a connection
between a mobile subscriber and others, its proper funetimuting of data packets and voice callsequires
knowledge about the position of each mobile subscriber to some degree of accuracy.

New applications for real-time location information are now emerging. These applications are largely driven
by the expanding use of mobile phones, but also the United States Federal Communications Cofsmission
(FCC) mandate that the originating location of all emergency 911 calls from mobile phones in the United States
be determined with some minimum accuracy [3]. Today, mobile phone operators have a choice of half a dozen
technologies for location determination, each with distinct power consumption, handset compatibility, time-to-
firstfix, and in-building coverage characteristics.

A spatial index for location-based services contains a very large number of simple spatial objects (e.g. points)
that are frequently updated. The'saoving object databasepose new challenges to spatial data management
[15]. The workload is characterized by high index update loads and relatively simple but frequent queries (e.g.
range queries). A location update may merely contain the position of a user but it may also include'the user
trajectory (direction and speed over time) [10, 7]. Supporting trajectories adds additional requirements to the
index and query scheme [1]. A location update may also expire at a certain point in time [9] and is inherently
imprecise due to inaccuracies in location determination technologies.

Several benchmarks exist for transaction processing in relational databases (TPC benchmarks), object-
relational databases (BUCKY), and object-oriented databases (OO7), but to our knowledge no standard bench-
marks exist for LBS applications and dynamic spatial indexing. The SEQUOIA 2000 benchmark [11] was mo-
tivated by Earth Sciences and focused on retrieval performance over large datasets of complex spatial objects.
Several spatial access methods were compared in [5], but apart from an initial insertion cost, the benchmark
focused on query performance. A qualitative comparison of spatio-temporal indexing methods appears in [13].

Use of realistic datasets is critical to gaining meaningful data from performance evaluation experiments [2].
Most LBS experiments to date have used spatial data generated by random walks or algorithms using simple
distribution functions. For instance, [5] looked at six random distributions for spatial data: diagonal, sinus, bit,
x-parallel, clusters, and uniform distributions. A few generators have been proposed for creating spatio-temporal
data. The GSTD generator [14] creates data for randomly moving points and rectangles. In [12], GSTD was
extended to account for buildings and otharfrastructural obstructions, but it still allowed objects to move
free of ifluence from other moving objects.

The Oporto toolkit [8] describes an elaborate scheme with moving point objesiiéng boats), moving
extended objects (schools fa$h), stationary extended objects that change size (areas with plenty of plankton
that attractfish, and storms that boats try to avoid), and static extended objects (harbors). Another approach
for creating semantic moving object datasets is described in [9]. The dataset was created by distributing a set
of destinations uniformly in a coordinate space and connecting every pair of destinations with two one-way
roads. Moving objects (cars) are placed on roads randomly and move with a randomly assigned speed until a
destination is reached, at which point a new destination is picked.
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3 DynaMark Benchmark for Dynamic Spatial Indexing

The DynaMark benchmark measures the performance and scalability of a spatial data management system [6].
The benchmark executes a set of standard spatial queries against a set of standard locafitestrRezfor-

mance metrics consist of the cost of updating a'gdecation in the spatial index and the cost of spatial queries
against the index. The spatial queries are motivated by LBS applications but are similar to those found in tradi-
tional Geographic Information Systems (GIS). The difference is that the data being queried is highly dynamic
and the queries are issued extremely frequently and have a dynamic reference poiris (@ces@on).

The size of an individual benchmark run is determined by the number of mobile users contained in the
location tracdile and ranges from 10,000 to one million or above. Our tfdes are generated by CitySimulator,

a toolkit we have developed spgcally for LBS research (see Section 4.4 for details). Each record in the location
tracefile represents a location update that contains the following information: object ID {idemntiobile user),
timestamp (indicates the time when the location was determined or reported by the user), and X, Y, and Z
coordinates of the location. The X and Y coordinates represent the longitude and latitude values of the location,
and Z indicates elevation in meters.

The benchmark dines three types of queries: proximity queries, k-nearest neighbor (kNN) queries, and
sorted-distance queries. These queries are typically centered around the location of a user issuing the request.
A proximity query finds all objects that are within a certain range. The range condition may vary along different
axes hence the query forms a 2D ellipse or 3D ellipsoid depending upon the topological dimension of the space.
Alternatively, the range can be expressed by forming a 2D rectangle or 3D ortho-rhombus.

A kNN query finds thek nearest objects. The query may search other mobile users or it may search stationary
objects such as coffee shops, gas stations, hospitals, etc.

A sorted-distance query lists each object in increasing distance order relative to the reference point. This is
like a k-nearest neighbor query whetas the total number of objects, but the difference is that during query
evaluation the number of objects inspected by the application is unknown (otherwise the system could execute
it efficiently as a kNN query). Also, the result must include distance information.

4 LOCUS Dynamic Spatial Indexing Testbed

The LOCUS testbed provides a convenient way to run performance experiments on spatial data management
systems and yield performance data that conform to the DynaMark benchmarficgptieci. The testbed is

written in portable C and has been tested on several platforms, including Windows, AlX, and Solaris. We are
currently in the process of making the testbed code available on the IBM alphaWorks developer Web site.

4.1 Extensibility

The testbed is extensible with new spatial indexing methods, new query generators, and new index visualization
methods (Figure 1). The testbedfides a C API for each of the extension types, using function pointer arrays
to achieve something analogous to the Jamterfacé concept.

The task of arindexing method extension is to provide a spatial indexing capability and support API calls
such as'create indeX, “delete indeX, “insert index entry, and“search indeX. In Section 4.3 we list several
indexing method extensions that are built into the default testbed. We distinguish between two types of indexing
method extensions: native extensions and adapter extensions. A native indexing method extension implements
the required spatial indexing capability by itself, without relying on a database system. An adapter extension
converts the C API calls to calls in another system, for example SQL statements that run against a database.

A query generator creates one or more spatial queries, typically using the location of an existing user as
a reference. The testbed has three built-in query generators, corresponding to the queryfigpdshgiehe
benchmark: proximity queries, k-nearest neighbor queries, and sorted-distance queries. The parameters needed
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Figure 1: Architecture of LOCUS testbed. Figure 2: Update and quefiow in the testbed.

by the query generators (e.g. the range value in proximity queries or the vatua &NN queries) are dened
in a corfigurationfile. The same query generator code works in all query mod@sedkearlier.

An index visualization method provides a simple way for the testbed to plot an index (e.g. minimum bound-
ing rectangles of an R-tree index) using lines and rectangles, multiple colors or line types, and labels. Several
index visualization methods are built into the testbed by default. “gheplot visualization method produces
files in GIF, Postscript, DXF, and other graphics formats. Using external tools, static GIF images can be con-
verted to animations that show the evolution of the index as a function of timeO&SE' visualization method
outputs STPolygon geometries that can be loaded into any OpenGIS-compatible spatial database and analyzed
with its visual data exploration tools. The testbed also providggeaeri¢ visualization method that outputs
the index geometries as comma-separated values (CSV).

4.2 Update and Query Flow

Figure 2 illustrates the general procdksv of the testbed. The basic principle is that after everypdates to
the index, the testbed rums queries. The process repeats until the entire location fiigckeas been processed,
or until a maximum experiment time has been reached.

The number of updatesand queriesn executed in an iteration depend on tuery mode. In theimmediate
mode, one spatial querynf = 1) is issued after every update & 1), with the position of the update being
used as the reference point. In fiméerleaved mode, the values: andm are cofigured to some value¥; and
Ng, respectively. After processinly;; updates, the testbed rung, queries where for each query a different,
random user is picked as the reference point. Irstiygential mode, the index is'loaded by processing thérst
iteration (initial locations) of the location tradée and then queried bj¢, queries as in the interleaved mode.

The parallel mode executes queries simultaneously with updates. A time parametefispeabi frequency of
queries, and for each query a random user is picked as the reference point.

We generally prefer to run experiments in the interleaved mode because it provides a way to gather con-
sistent, repeatable update and query cost measurements as the index grows and updates are performed. Th
execution plan in the interleaved mode is further illustrated in Figure 3. To minimize the impact of queries on
updates, we conduct two experiments for each population size and indexing method. In an UPDATE experiment,
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Figure 3: Execution plan for updates, queries, and statistics collection in the testbed.

only updates are performed and no queries are executed. This gives us the minimum response time of individual

index updates. In a QUERY experiment, we run updates and queries in the interleaved mode, but only inspect

query performance data. Again, this is to minimize the interference between updates and queries. In Section 4.5
we describe how the independently-measured update and query cost metrics are combined into a total cost es-
timate and extrapolated to different population sizes to estimate maximum population sizes supported by the

system under test.

4.3 Built-In Indexing M ethod Extensions

Most commercial database systems can be extended with a spatial data component, either provided by the vendor
itself or by a third party. Some of the more popular spatial indexing methods these extensions employ include
grid indices, R-trees, and Quadtrees (see [4] for a comprehensive survey). Some commercial solutions also
make use of spackHing curves such as Z-order curves and Hilbert curves. Itis fairly straightforward to use one

of these existing spatial indexing methods for LBS applications. However, most of them were not designed to
support the high update frequencies required by LBS applications. In fact, some of them perform poorly when
faced with dynamically changing spatial data. Clearly, a controlled comparison between various spatial indexing
schemes is required to assure satisfactory performance in LBS applications.

The testbed has been adapted to use most commercial database systems and their spatial extensions, includ-
ing IBM DB2 with Spatial Extender, Informix Dynamic Server with Spatial DataBlade, Oracle 9i with Spatial
Cartridge, and ESRI ArcSDE. We have also developed a generic Z-order indexing method that runs on top of
any SQL database system.

The testbed has also been adapted to work with main-memory indexing methods. Two main-memory exten-
sions are included by default: a naive array extension and a ZB-tree extension. The array extension implements
a combination of a simple array and hash table which work together to record the position of moving objects.
Updates into this data structure are extremely fast but queries obviously perform poorly. In contrast, the ZB-tree
calculates Z-order values in the extension code and stores them in a binary tree. We used a readily available
implementation of binary trees, namely thebavl library that implements several varieties of them. The
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ZB-tree extension stores Z-order values in a right-threaded AVL-tree which performs very well for proximity
gueries (requiring only a left-to-right traversal of the leaf nodes of the tree).

4.4 Location Simulation

Location tracdiles for the testbed are produced by CitySimulator, a complementary tool available for download
at the IBM alphaWorks developer Web site at http://alphaworks.ibm.com. CitySimulator is a scalable, three-
dimensional model city that simulates an arbitrary number of mobile users moving about in a city, driving on
streets or walking on sidewalks and entering buildings, where they move up and dofhwotiseand stay on a

floor some amount of time before returning to the streetsfiamlihg a new place to go to (or even leaving the
city). We typically simulate population sizes ranging from 10,000 users up to 1 million users and use an average
location report periodicity of 30 seconds.

Simulation control parameters allow easy creation of realistic events such as daily commutes. A graphical
user interface allows observation of the simulation. Advanced settings allow exploratiditieinely of indexing
algorithms over daily commute cycles. The output of the simulation can be viewed in real time; output is also
produced as a comma-separated variable (CSV)itextwhich contains a unique person ID, a time stamp, and
spatial coordinates.

Custom city plans can be created as XML documents and imported into the simulator. The simulator also
provides Java interfaces and abstract classes to facilitate extensions capable of generating city plans from, for
example, real GIS data. A Java properfigsallows easy cdiguration of a wide variety of program parameters.

The GUI allows change of parameters affecting motion rules in real time. The simulator also includes an optional
traffic flow model which causes the tfiafflow to take on the characteristics of a compresdihliel. When this
feature is enabled, obstructions to fraflow can cause shock waves or frafams.

Simulated cities are constructed with collections of various Java objects. The high level objects in the
simulation are'Placé and“Persori. Objects of type Building, Road, Intersection, and Floor all extend Place.
Places have several attributes: coordinates, extents, altitditonumber, and pointers to neighboring places.
Places also contain enter and exit probabilities, up down probabilities, drift probabilities (on roads), scatter
probabilities (on intersections), etc.

People move according to rules based on the place they are in. A person on a Huidirdpes a random
walk. At speciic points (stairways) they may move up or down (if not at theftopr or groundfloor respec-
tively) or leave a building (if near a door). A person on a road moves with a linear combinatighooity
= Random Walk Component + Drift Velocity. Hence the magnitude of the drift velocity increases as a person
moves closer to the center of a road. For two-way streets, the direction of the drift velocity changes sign at the
center (so on one side of a road people move North or East, on the other side they move South or West). Road
objects also have orientations that determine if the drift velocity is North/South or East West.

45 Methodsfor Performance Analysis

To estimate the maximum population size supported by a spatial data management sydided aéunction
f(P) = a- P+bto the measured update and query costs of the system. Pardhigtgopulation size and(P)
is the estimated cost of the database update or query for that population size. We then produced a closed-form
equation that relates parameterandb to P ands, where; is the average request interval in a real-time location
tracking application. We assume that the workload consists of a sequence of database requests where a giver
request is an update with probabilifyand query with probability —p. In a system where moving objects report
their location every 5 minutes and every update is followed by a query, the values-a@) andp = 0.5.

In order for a location tracking application to function in real time, it holds that the total number of requests
handled in time period must have a lower overall cost thaitself. The closed-form equation representing this

requirement is? < \/b?/4a? +ip/a — b/2a.
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Figure 4. Actual cost of proximity queries for main¥igure 5: Maximum population size supported by a
memory indexing methods. main-memory ZB-tree.

In Figure 4, we show performance results gathered by the testbed on several main-memory indexing methods
running o a 1 GHz, 1 GB RAM server. The two variations of R-trees we tested performed best on all population
sizes, although with the highest population size (1 million moving objects) the advantage appeared to all but
evaporate. The ZB-tree performed almost equally well, except for the smallest population sizes. As expected,
the naive array/hash table method was 1-2 orders of magnitude more expensive than the other methods.

Figure 5 shows the maximum population size supported by the main-memory ZB-tree method under various
update/query workloads. When the workload consisted of updates only and each moving object reported its
location every 5 minutes, the indexing method could handle roughly 5 million moving objects. The high capacity
was made possible by the low update cost of the ZB-tree shown in our experiments, less than 50 microseconds
per update. The maximum population size dropped quickly as the fraction of queries increased. With a 99%
update ratio, maximum population size was 0.5 million, and with 95% updates it dropped to 0.3 million. With
higher query loads the maximum population size settled at the 100,000 to 250,000 range.

5 Conclusion

We have described the LOCUS testbed for dynamic spatial indexing that is a generic platform for running
controlled performance experiments on any spatial indexing method and query generator. The testbed is easy
to extend with new spatial indexing algorithms and query types. The testbed currently supports three spatial
guery types common to LBS applications, and provides adapters for several commercial database systems and
their spatial extensions. Native indexing methods that do not use a database system, e.g. memory-resident
tree indices, can also be plugged into the testbed. The testbed also provides an index plotting capability for
visualizing the internal structure of a spatial index (e.g. minimum bounding boxes of an R-tree) and producing
portable GIF animations that are useful for analysis and development.

The testbed is complemented by CitySimulator, a scalable, three-dimensional model city that generates
realistic location data for large populations of mobile users. It provides a powerful graphical user interface that
allows the user to control several aspects of the simulation at runtime, includifig fia, trafic congestion,
and blocked streets and routes. A visualization display shows the progress of the simulation in real time. New
city models can be imported as XML documents which describe the layout of the city, including roads, buildings,
and vacant space.
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Abstract

Spatio-temporal indexing has become an increasingly important area of database research. In this paper,
we describe how such data can be indexed using current features of Oracle Spatial such as Spatial
indexing, Linear Referencing System, and Oracle’s function-based indexes. We examine the issues and
limitations of this approach and possible future enhancements. This approach could be used as a first
guide to implement most spatio-temporal applications such as mobile-object tracking.

1 Introduction

With the rapid growth in the wireless industry and the advances in cellular technology, mobility is increasingly
becoming an important aspect of data objects and queries. Consequently, the spatial database research commu-
nity has recently proposed new data modeldingsl meaningful query semantics, and deviséditieht search

and access methods for non-static moving spatial data.

The motion is modeled along the temporal dimension. The notion of the ever-increasing current time poses
a variety of challenges when time and space are combined. We may distinguish between two paradigms for
research contributions: those that concéhnistorical’ or predictable-route data, where the motion is more or
less pre-determined, and those that con€emgoing-motiofi data, where only the current velocity is known.

Since the location of an object needs to be updated after every time instant, on-going-motion data are usually
modeled in parametric space in terms of the time and velocity of an object, which is assumed to be unchanging
(and triggers an update whenever there is a change). Several proposals have been made in the research literature
for indexing such data [4, 9, 11].

However, in most mobile applications, the start and destination of an tbjaction can be pre-determined
using the route computed in the in-car navigation system, and the location of the object at any time can be
estimated roughly by using the speed limits on the route. In other applications, data capturing the past motion of
an object is considered. Several research solutions [6, 10] have been proposed fhistodical motion data.

In this paper, we describe how historical motion data can be indexed using existing technologies of Oracle.
This solution should be reasonablyfieient for most applications, and it extends readily the salient features of
commercial databases, such as backup and recovery, concurrency, and replication, to spatio-temporal data.

Copyright 2002 |EEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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2 Modeling Spatio-Temporal Data

We proceed to brity describe the Oracle Spatial data model and how it supports linear referencing. Spatio-
temporal data can be modeled as a direct application of linear-referenced spatial data.

Oracle Spatial models-2 dimensional spatial data using sdo geometry data type. For the 2-dimensional
case, this data type models all the spatial data typéseateby the Open GIS Consortium (OGC) and caters
to most data occurring in GIS and CAD/CAM applications. The supported spatial data types includes simple
primitive elements such as points, lines, curves, polygons (with and without holes), and complex elements that
are made up of a combination of primitive elements. The ggometry data type is implemented as an Oracle
object datatype. This approach extends all the fienef Oraclés object-relational database technology to
spatial data, including replication.

In the above geometry model, Oracle Spatial allows numerical attributes to be associated with vertices of
a linear feature (a line geometry). That is, in addition to storing a spatial (latitude, longitude) coordinate, each
vertex can also contain two other numerical attributes referred to ametisare attributes. Some transportation
customers use these measure attributes to represent the mile-post markers;anaitions, or speed-limits
when the line string data represents a road network. Whereas indexing is supported on the 2-dimensional spatial
coordinate data, linear referencing system (LRS) functions operate on the measure attributes of the geometry
data. Some LRS functions are listed below. This linear-referencing system combines powerful spatial indexing
capability with functional operations on linear measures and has been very useful in the transportation and other
related industries.

e startmeasure(g) and enaheasure(g): return the starting and ending measure of an LRS geometry seg-
ment, respectively.

e clip_geometry(g, t) (or dynamic segmentation): clips a geometry segment at théespacierval of
measures.

e splitgeometry(g, measure): splits a geometry into two segments afiggetieasure value.

The linear referencing system can be used to support spatio-temporal data in Oracle.
For moving data points, the line string geometry can

model the trajectory of the object and one of the mega-
sure attributes could represent the temporal dimension.
Figure 1 shows an example. Thiest two dimensions

denote the(z, y)-dimensions, and the third dimension
denotes time. Identifying the trajectory of the objegt st
between times 10 and 20 can be performed by calling
the “clipping” function of the spatial linear referencing
system. This model can easily be mioeld to include

the enhancements from partially-persistent R-trees [5]

where a moving objetd trajectory is modeled as differ-_ _ _
ent geometries. Figure 1: Example of a Spatio-Temporal Geometry

Modeled Using an LR$eometry

LRS_Geometry

7 (¢,d,20) End

Time

3 Indexing Spatio-Temporal Data

Although spatio-temporal data can be stored with both the spatial and temporal dimensions together as a single
object, there is no explicit indexing support for spatio-temporal data in Oracle Spatial. However, both spatial
and temporal dimensions can be extracted from the data without replicating the data and indexed using separate
indexes. This approach is described in Figure 2.
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During spatial indexing, the spatial dimensions are implicitly extracted from the spatio-temporal geometry
and used in indexing.

The temporal index, on the other hand, is constructed by explicitly extracting
the temporal aspect of the spatio-temporal geometry. This temporal aspect can
be either a separate geometry, which is indexed by a 1-dimensional spatial
tree index, or it can be the start and end measures of the geometries, which
indexed by “function-based” B-tree indexes. In either case, the function-ba
indexes in Oracle allow indexes to be constructed on functions of column values
(in this case, functions returning the temporal aspect) without explicitly storing
the function values. This means that the spatio-temporal geometry need not be Extract fn.
redundantly stored/replicated, which helps ensure data integrity. Updates need
only be performed on the spatio-temporal geometry column of the database table,
and both (spatial and temporal) indexes are updated automatically by the databaséréfﬂgliﬁr;r]eﬁgra'
engine. 1 ‘

We procced to describe spatial indexes in more detail. Temporal data can be
indexed similarly, using either spatial indexes or by B-tree indexes. ‘

Oracle Spatial indexes 2-dimensional spatial data using either a quadtree or an
R-tree. These indexes are implemented using the extensible indexing framework
of Oracle [1, 7]. This framework allows for the creation of new domain-specffigure 2: Indexing Spatio-
indexes and associated query operators and provides for the integration of ieseporal Data in Oracle
specified query, update and index creation routines inside the Oracle server. To
qguery the constructed spatial indexes, new SQL-level predicates, referredperamrs, are defined. These
operators can be included in the “where” clause of a SQL statement to select data that satisfy a specified predicate
with respect to a specified query window. Such operators are executed using index-associated procedures for
query processing and allow for incremental processing of queries (see [1, 7, 8] for more details). Oracle Spatial
provides the following query operators on 2-dimensional spatial data:

Temporal

e sdafilter query: returns geometries whose index approximations intersect those of the 2-d spatial query
window.

e sdarelate query: returns geometries that interact with a query window. Different types of interaction
(most common being “intersects,” and “inside”), based on the 9-intersection model [2, 3] can be specified.
This operator is equivalent to tI&¥_relate operator of SQL/MM. (Most SQL/MM suggested methods are
available in some form in Oracle Spatial.)

e sdawithin_distance (or within-distance) queries: identify geometries that are within a specified distance
from the query geometry.

e sdann (nearest-neighbor) queries: identify theearest neighbors for a specified query geometry.

Combined with the functions defined in the LRS to operate on the temporal dimension aspect of the geometry,
these operators provide effective query capabilities on spatio-temporal data.

4 Spatio-Temporal Queries

A spatio-temporal query consists of a spatial query window (an arbitrary 2-d geometry) and a time interval.
Alternately, a more complicated query in the form of an LRS geometry where different times are associated with
different vertices, can be specified. However, this is not a common case, and we will discuss these limitations at
the end.

Spatio-temporal queries can be categorized broadly into three categories [6]. Bpatiahrange, temporal-
range queries, data geometries that satisfy both the spatial and temporal ranges are returned. Examples of such
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a query include identifying all cars that pass through a toll-booth during a specified time interval. Second, in
gpatial-range, temporal-knn queries, the: data geometries that satisfy the spatial range and are closest to the
specified time interval are returned. Examples of such a query include identifying the most recent cars that
passed through an accident site. Thirdspatial-knn, temporal-range queries, thé: data geometries that satisfy
the temporal range and are closest to the specified query window in spatial dimension are returned. Examples
of such a query include identifying the closest restaurants for a moving object at the current time.

Next we describe how each of the above three query types could be answered using Oracle Spatial. The
syntax of Oracle Spatial functions used next is simplified for clarity.

Spatio-Temporal Range Query This query is quite easy to implement using the spatial index operators and
the measure functions of LRS. {fis the 2-d spatial window, angl e delimit the time interval, the following
query returns theds of the result geometries. In the query, the selate operator retrieves the geometries that
satisfy the query window and compares their start and end measures with the specified time interval.

select gid fromgeomtab a
where sdo_relate(a.geom q, ‘intersects’)= ‘'TRUE
and sdo_lrs.start_neasure(a.geon) <= e and sdo_I|rs. end_neasure(a. geonm >= s;

Spatial-Range Temporal-knn Query This query is also easy to implement using the spatial index operators

and the measure functions of LRS as follows: First, geometries intersecting the spatial query window are re-
trieved from the database using the gétate operator. Next, the intersecting portions of the resulting LRS data
geometries are obtained using the_gsdi@rsection function. This function uses the query windpw return

the intersecting portions of the resulting data geometries. Then the start and end measures are obtained from
the intersecting LRS geometries. In the next step, using the start and end measures, the temporal-distance tc
the temporal query range is computed. This is possible by using a simple function such as, say, tdisiporal

to compute the minimum distance between query and data geometry temporal end points. Finally, the resulting
geometries are ordered based on the temporal distance, aidndgerest geometries are returned. The SQL
query looks as follows:

select gid
from( select gid,
temporal _dist(s, e, start_neasure(res), end_neasure(res)) t_dist
from( select a.gid gid, sdo_intersection(a.geom q) res
fromgeomtab a
where sdo_rel ate(a.geom q, ‘intersects’) = ‘'TRUE )
order by t_dist )
where rownum <= k;

Spatial-knn Temporal-Range Query This query is evaluated as follows: First, the temporal range is used to
select a set of geometries. The resulting geometries are then clipped using the temporal range endpoints. Next,
the spatial distance between the clipped geometries and the query geometry is computed usingittarsso

function provided by Oracle Spatial. Then the geometries are ordered based on the computed distances of the
clipped geometries to the query geometry. Finally,khmearest data geometries in the above set are returned as
the result. The SQL query looks as follows:

select gid
from( select gid, sdo_distance(q, res) s_dist
from( select gid, clip_geonetry(geom s, e) res
from geom tab
where sdo_rel ate(tenporal _fn(geon),
geonetry_constructor(s,e), ‘inside’ )= TRUE )
order by s _dist )
where rownum <= k;
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5 Issuesand Limitations

Although the presented approach allows for reasonably-efficient indexing of spatio-temporal data, several issues
arise. Since only either a spatial or a temporal index is used in answering the queries, the performance may not be
as effective as having a single combined, spatio-temporal index. Several performance-enhancing proposals exist
that can be implemented in future releases. Next, several proposals also exist to segment each LRS geometry into
multiple parts, thus reducing the MBR-area covered in spatial indexes. These are also likely to be implemented
in future releases. Finally, the temporal dimension can only be modeled as a numerical attribute in the above
model. Although not ideal, translation from date to numerical values can be performed in the application layer.

6 Conclusionsand Future Work

In this paper, we described a model for storing and indexing spatio-temporal data in Oracle. This approach
combines the spatial indexing, linear referencing, and function-based indexes of Oracle to support most types of
gueries on spatio-temporal data. As a consequence, advantages—such as concurrency, recovery, scalability, and
replication—of storing spatio-temporal data in a commercial database are easily extended to spatio-temporal
data. This approach marks the first step to indexing spatio-temporal data in Oracle using existing technology.
Some of the limitations of this approach can be easily removed if both spatial and temporal attributes are treated
together in a combined index and query processing mechanism. Also, indexing spatio-temporal data in para-
metric space may be necessary to cater to some mobile applications. These efficient indexing strategies will be
explored in future releases.
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