
Bulletin of the Technical Committee on

Data
Engineering
September 2001 Vol. 24 No. 3 IEEE Computer Society

Letters
Letter from the Editor-in-Chief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . David Lomet 1
Letter from the Special Issue Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Sarawagi 2

Special Issue on Imprecise Queries

Query Refinement in Similarity Search Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .Kaushik Chakrabarti, Michael Ortega, Kriengkrai Porkaew, and Sharad Mehrotra 3

Multimedia Queries by Example and Relevance Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Leejay Wu, Christos Faloutsos, Katia Sycara and Terry Payne 14

Keyword Search in Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . Arvind Hulgeri, Gaurav Bhalotia, Charuta Nakhe, Soumen Chakrabarti and S. Sudarshan 22

Using Probabilistic Argumentation Systems to Search and Classify Web Sites . . Justin Picard and Jacques Savoy 33
Towards Scalable Scoring for Preference-based Item Recommendation . . . . . . . . Markus Stolze and Walid Rjaibi 42

Announcements and Notices
TCDE Election Notice and Position Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
TCDE Election Ballot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .back cover



Editorial Board

Editor-in-Chief
David B. Lomet
Microsoft Research
One Microsoft Way, Bldg. 9
Redmond WA 98052-6399
lomet@microsoft.com

Associate Editors

Luis Gravano
Computer Science Department
Columbia University
1214 Amsterdam Avenue
New York, NY 10027

Alon Levy
University of Washington
Computer Science and Engineering Dept.
Sieg Hall, Room 310
Seattle, WA 98195

Sunita Sarawagi
School of Information Technology
Indian Institute of Technology, Bombay
Powai Street
Mumbai, India 400076

Gerhard Weikum
Dept. of Computer Science
University of the Saarland
P.O.B. 151150, D-66041
Saarbr̈ucken, Germany

The Bulletin of the Technical Committee on Data Engi-
neering is published quarterly and is distributed to all TC
members. Its scope includes the design, implementation,
modelling, theory and application of database systems and
their technology.

Letters, conference information, and news should be
sent to the Editor-in-Chief. Papers for each issue are so-
licited by and should be sent to the Associate Editor re-
sponsible for the issue.

Opinions expressed in contributions are those of the au-
thors and do not necessarily reflect the positions of the TC
on Data Engineering, the IEEE Computer Society, or the
authors’ organizations.

Membership in the TC on Data Engineering is open to
all current members of the IEEE Computer Society who
are interested in database systems.

The Data Engineering Bulletin web page is
http://www.research.microsoft.com/research/db/debull.

TC Executive Committee

Chair
Betty Salzberg
College of Computer Science
Northeastern University
Boston, MA 02115
salzberg@ccs.neu.edu

Vice-Chair
Erich J. Neuhold
Director, GMD-IPSI
Dolivostrasse 15
P.O. Box 10 43 26
6100 Darmstadt, Germany

Secretry/Treasurer
Paul Larson
Microsoft Research
One Microsoft Way, Bldg. 9
Redmond WA 98052-6399

SIGMOD Liason
Z.Meral Ozsoyoglu
Computer Eng. and Science Dept.
Case Western Reserve University
Cleveland, Ohio, 44106-7071

Geographic Co-ordinators

Masaru Kitsuregawa (Asia)
Institute of Industrial Science
The University of Tokyo
7-22-1 Roppongi Minato-ku
Tokyo 106, Japan

Ron Sacks-Davis (Australia)
CITRI
723 Swanston Street
Carlton, Victoria, Australia 3053

Svein-Olaf Hvasshovd (Europe)
ClustRa
Westermannsveita 2, N-7011
Trondheim, NORWAY

Distribution
IEEE Computer Society
1730 Massachusetts Avenue
Washington, D.C. 20036-1992
(202) 371-1013
nschoultz@computer.org



Letter from the Editor-in-Chief

TCDE Chair Election

I would like to draw your attention to the message on page 50 from Paul Larson, chair of the TCDE Nominating
Committee. The TC will be electing a new TCDE Chair, as Betty Salzberg’s term as Chair ends in December.
The Nominating Committee has nominated Erich Neuhold, the current Vice Chair of the TCDE to run for
Chair of the TCDE. Nominations for TCDE Chair were also solicited from TCDE members. There were no
nominations submitted.

Now I would urge you to participate in the electoral process. While Erich Neuhold is running unopposed,
voting is important as a way to make your intent clear. Having sufficient number of TCDE members voting
helps to ensure that the electoral process works well and results in the outcome that members intend.

The Current Issue

As the database industry, and the database products that are sold by the industry, mature it is clear that simply
answering queries that are precisely stated, and that have precise results, at which our current database systems
excel, does not always meet the needs of users. This is particularly true when the user’s intent is exploratory in
nature. Not only does such a user not wish to provide precision in his request, but such precision may not be
possible at his current state of knowledge. Further, such a user will frequently be willing to trade precise query
results for approximate results, when the approximate results can be delivered much faster than the precise
results.

Sunita Sarawagi, who acted as the editor for this issue, contacted researchers who are active in thefield
of imprecise queries. They have responded to Sunita’s reasonably precise request about work on imprecise
queries by providing papers that report on their recent work or work in progress in this exciting area. Such
work expands on the usual database query processing techniques, exploiting combinations of techniques from
information retrieval, probability theory, and totally new methods. It does not take great foresight to realize that
this field will be one that researchers will be exploring for years to come. Sunita surely deserves our collective
thanks for assembling the current issue, which, with its diverse collection of approaches, helps us all to stay
current in this young and fast movingfield.

David Lomet
Microsoft Corporation
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Letter from the Special Issue Editor

I know not what I want, I want not what I get. ....Rabindra Nath Tagore (translated)

The topic of this special issue isimprecise queries arising where a user does not know how to precisely express
his needs but when presented with mixed results will know what subset he wants and what he does not. The
conventional approach of a one-shot subsetting of results specified through afixed set of predicates will not
work in such cases. The goal of this special issue is to make a compendium of tricks that can be used to answer
imprecise queries. The topic of imprecise queries is different from the popular topic of approximate queries
where the query is exact but the answer is imprecise or approximate.

Two trends in database usage has motivated the need to support imprecise queries in database engines. First
is the increasing complexity of the types of data in the form of images, sound clips, and hypertext documents.
The extent and variety of attributes of these data types make it hard for an end-user to specify exact queries on
them. Second is the growing externalization of databases where an external user querying the data source does
not know (and does not want to know) the exact schematic details of the data. Online retail catalog searches by
end customers is a prime example of this kind of search. A customer would typically like to search the catalog
database using a combination of smart navigation and natural keyword queries without any regard to the physical
schema design.

Several techniques have been proposed tofind relevant data even when a user cannot quantify relevance
through a precise query. Thefirst trick is iterative refinement where the user’s query is composed in multiple
rounds of interaction instead of the traditional one-shot approach of conventional querying. In each round, the
user provides feedback to the system on the subset of answers that he found relevant and optionally modifies
the original query. Another important idea is to exploit a notion of proximity or similarity between objects to
retrieve objects that are close to a set of seed objects that the user found relevant. Finally, to compensate for the
lack of a precise threshold to quantify the relevance data items, the result set is ranked according to a decreasing
order of relevance measured via a user or system-induced scoring function.

In this issue, we present a collection offive articles that covers various kinds of data sources and deploys one
or more of the above set of tricks to support the imprecise world of user queries. Thefirst two papers“Query
Refinement in Similarity Search Systems” by Chakrabarti and Mehlotra, and“ Multimedia Queries by Example
and Relevance Feedback” by Wu, Faloutsos, Sycara and Payne elaborate how the system refines its internal
representation of the user’s query concept through multiple rounds of relevance feedback. The query concept
consists of a weighted set of objects already found relevant, a distance function to measure proximity between
objects, and a function that combines the distances to each of the seed relevant objects. The two papers differ
in the forms of these functions and how they get refined. The third paper“Keyword Searching in Databases by
Bhalotia, Nakhey, Hulgeri, Chakrabarti and Sudarshan discusses how a relational database can be imprecisely
queried using a set of keywords. The answer set returns tuples sorted according to an interesting notion of
proximity spanning multiple relations connected through reference links. The paper also presents an exhaustive
survey of other systems that support keyword search in relational databases, particularly in catalog databases.
The fourth paper,“Using probabilistic argumentation systems to search and classify Web sites” by Picard and
Savoy presents a theoretical framework for how hyperlinks in documents can be used to“spread activation” about
the relevance of documents in a hypertext repository. Thefinal paper“Towards Scalable Scoring for Preference-
based Item Recommendation” by Stolze Rjaibi concentrates on the implementation issues of supporting user
specified scoring functions for ranking products based on user preference.

S. Sarawagi
IIT Bombay
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Abstract

In many applications, users specify target values for certain attributes/features without requiring
exact matches to these values in return. Instead, the result is typically a ranked list of the top k objects
that best match the specified feature values. User subjectivity is an important aspect of such queries,
i.e., which objects are relevant to the user and which are not depends on the perception of the user. Due
to the subjective nature of similarity-based retrieval, the answers returned by the system to a user query
often do not satisfy the user’s information need right away; either because the weights and the distance
functions associated with the features do not accurately capture the user’s perception or because the
specified target values do not fully capture her information need or both. The most commonly used
technique to overcome this problem is query refinement. In this technique, the user provides to the system
some feedback on the “relevance” of the answers to the user’s query. The system then analyzes the
feedback, refines the query (i.e., modifies the weights, distance functions, target values etc.) evaluates it
and returns the new results. In this paper, we provide an overview of the techniques used to construct the
refined query based on the feedback from the user as well as the techniques to evaluate the refined query
efficiently. We present experimental results demonstrating the effectiveness of the techniques discussed
in the paper.

1 Introduction

Similarity-based retrieval is becoming common in many modern-day database applications. Unlike in a tradi-
tional relational database system (RDBMS) where a selection query consists of one or more precise selection
conditions and the user expects to get back the exact set of objects that satisfy those conditions, in similarity
queries, the user specifies target values for certain attributes and does not expect exact matches to these values in
return. Instead, the result to such queries is typically aranked list of the top k objects that best match the given
attribute values. As the following examples illustrate, similarity queries arise naturally in a variety of today’s
applications.

Example 1 (Multimedia Databases): Consider a content-based image retrieval system [13, 24, 15]. Each im-
age is represented using visual features like color, texture, layout and shape [14]. The similarity between any

Copyright 2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

�This work was partially supported by the NSF under grant numbers IIS 0083489, ITR IIS 0086124 and CAREER award IIS-
9734300.
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two images is computed byfirst computing their similarities based on the individual features and then combining
them to obtain the overall similarity. Typically, the user submits an example as the query object and requests for
a few objects that are“most similar” to the submitted example (Query By Example (QBE)). The DBMS ranks
the images according to how well they match the query image, and returns the best few matches to the user in a
ranked fashion, the most similar imagesfirst followed by the less similar ones.

Example 2 (E-commerce): Consider a real-estate database that maintains information like the location of each
house, the price, the number of bedrooms etc [5] (e.g., MSN HomeAdvisor). Suppose that a potential customer
is interested in houses in the Irvine, CA area, with four bedrooms and with a price tag of around 300,000 dollars.
Again, the DBMS should rank the available houses according to how well they match the given user preference,
and return the top houses for the user to inspect. If no houses match the query specification exactly, the system
might return houses in Santa Ana (a city near Irvine) or 2 bedroom houses in Irvine or more expensive houses
as the top matches to the query.

An important aspect of similarity queries is user subjectivity [11, 7]. In Example 1, let us assume that there
are just 2 features: color and texture. LetQ = hQC ; QT i be the query image whereQC = (0:2; 0:4) and
QT = (0:4; 0:5) are the color and texture vectors extracted fromQ (both feature spaces are 2-dimensional). Let
us consider two objects (i.e., images) in the database:A andB. LetAC = (0:4; 0:5) andAT = (0:9; 0:9) while
BC = (0:9; 0:3) andBT = (0:3; 0:4). Assuming the distance functions (DFs) over both the color and texture
features to be Euclidean (all dimensions weighted equally), the distances betweenQ andA with respect to color
and texture areEuclidean(QC ; AC) = 0:15 andEuclidean(QT ; AT ) = 0:45 respectively; those betweenQ
andB areEuclidean(QC ; BC) = 0:50 andEuclidean(QT ; BT ) = 0:10 respectively. Which is one is a better
match toQ? It depends on the user: if similarity with respect to color is more important to the user than that
with respect to texture,A is a better match; otherwiseB is better. The same issue arises in Example 2. Let us
consider the queryQ = hIrvine; 4; 300000i in Example 2 (thefirst, second and third elements are the location,
the number of bedrooms and the price in dollars respectively). Let us consider two objects (i.e., houses) in the
database:A = hIrvine; 3; 400000i andB = hSantaAna; 4; 325000i. Which one is a better match toQ?
Again, it depends on the user. If she is very particular about the location and isflexible about the price,A is
a better match. On the other hand, if she has a limited budget and needs 4 bedrooms,B is better. To return
“good quality” answers, the system must understand the user’s perception of similarity which is captured by the
system using weights and DFs. [6, 3, 16, 5]. At the time of the query, the systemacquires information from the
user based on which it determines the weights and DFs that best capture the perception of this particular user.
Based on these weights and DFs, it then retrieves the top answers byfirst executing ak nearest neighbor (k-NN)
algorithm on each individual feature1 and then“merging” them to get the overall answers [15, 12, 6, 7].

Due to the subjective nature of similarity queries, the answers returned by the system to a user query often
do not satisfy the user’s need right away [16, 3, 20, 9]. One reason is that the starting weights and DFs may not
accurately capture the perception of the user. This happens when the user does not provide enough information
to the system initially, either because it is too burdensome for her to do so or because she does not have a clear
mental model of her exact information need at the beginning of the query. Another reason for unsatisfactory
answers is that the starting examples/target values may not be the best ones to capture the information need (IN)
of the user. The most commonly used technique to overcome this problem is query refinement. In this technique,
the user provides to the system some feedback on the relevance of answers returned, i.e., she specifies which
answers are relevant to her query and which are not [19, 20, 16, 3, 9].2 The system then analyzes the feedback,

1In this paper, we assume that all the feature spaces are metric and an index (called the Feature-index or F-index) exists on each
feature space. A F-index is either single dimensional (e.g., B-tree) or multidimensional (e.g., R-tree) depending on the feature space
dimensionality.

2An alternate way to provide feedback is to explicitly modify the weights and/or the DFs so as to better capture her perception
of similarity [11, 7]. This requires the user to have more domain expertise compared to the example-based feedback; the techniques
discussed in this paper apply to this type of feedback as well.

4



refines the query (i.e., modifies the weights, DFs, target values etc.), evaluates it and returns the new results. The
user can continue refining the query over many iterations until she is fully satisfied with the results.

In this paper, we provide an overview of the techniques used to construct the refined query based on the feed-
back from the user. This includes computing the new query points/values for each feature, the new intra-feature
DFs and the new inter-feature weights. We also discuss techniques to evaluate the refined query efficiently. We
present experimental results demonstrating (1) the effectiveness of the query refinement techniques in terms of
improvement in the the quality of answers returned by the system and (2) the efficiency of the techniques for
evaluating refined queries.

2 Query Refinement Techniques

In a similarity retrieval system, the user poses a queryQ by providing target values of one or more features and
specifying the numberk of matches desired.3 The target values can be either explicitly specified by the user
(as in Example 2) or extracted from the examples submitted by the user (as in Example 1). We refer toQ as the
‘starting’ query. The starting query is then matched to the set of objects in the database and the topk matches are
returned. Subsequent matches can be retrieved incrementally. If the user is not satisfied with the answers, she
provides feedback to the system. Based on the feedback, the system modifies the query representation to better
suit the user’s information need. The‘refined’ query is then evaluated and top results are returned with additional
matches being retrievable incrementally. The feedback process can be continued for several iterations until the
user is fully satisfied. In this section, wefirst discuss the representation of database objects (object model) and
user queries (query model) and formally define the notion of similarity between the query and objects. We then
present the techniques used to construct the refined query based on user feedback.

2.1 Representation of Objects

Let F be the set of features. For example, in Example 1,F = fcolor;textureg. Each objectO in the
database can be viewed as a collectionO = fOF jF 2 Fg of feature vectors whereOF denotesO’s value (a
vector) of featureF . How theOF ’s are obtained fromO (i.e., the feature extraction) depends on the application.
(e.g., in Example 1, special image processing routines are used to extract the color and texture from the image).
We associate a multidimensional feature spaceRF , of dimensionalitydF , with each featureF 2 F and view
OF as a point inRF . In Example 1, we associate a 2-d feature spaceRC with color and a 2-d feature spaceRT
with texture. We can then view the objectA mentioned in Section 1 as the point(0:4; 0:5) in RC and the point
(0:9; 0:9) in RT .

2.2 Representation of Queries

Similar to the object, a queryQ (either starting or refined query) is also represented as a collectionQ =
fQF jF 2 Fg of single feature (SF) queries whereQF denotes the SF query for featureF . TheQF ’s are
obtained fromQ in the same way asOF ’s are extracted fromO. However, unlikeO that is represented using
a single pointOF in each feature spaceRF , QF may consist ofmultiple points inRF . The reason is that dur-
ing refinement, the user might submit multiple examples to the system as feedback (those that she considers
relevant) leading to multiple points per feature space (cf. Section 2.4). We refer to such queries asmultipoint
queries. The user may also specify the relative importance of the submitted examples, i.e., how important each
example is in capturing her information need. To account for that, we associate a weight with each point of the
multipoint query. We now formally define a multipoint query.

3We restrict our discussion to selection queries in this paper.
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Definition 1 (Multipoint Query): A multipoint queryQF = hnF ;PF ;WF ;DF i for featureF consists of the
following information:
� the numbernF of points inQF

� a set ofnF pointsPF = fPF (1); :::;PF (nF )g in thedF -dimensional feature spaceRF
� a set ofnF weightsWF = fwF (1); :::;wF (nF )g, the ith weightwF (i) being associated with theith point
PF

(i) (1 � wF
(i) � 0;�nF

i=1wF
(i) = 1).

� a distance functionDF which, given two points inRF , returns the distance between them. We assumeDF
to be a weightedLp metric, i.e., for a given value ofp, the distance between two pointsS andT in RF is
given by4

DF (S;T ) = [�
dF
j=1�F

(j)(jS[j] � T [j]j)
p
]
1=p

(1)

where�F (j) denotes the (intra-feature) weight associated with thejth dimension ofRF . (1 � �F
(j) �

0;�dF
j=1�F

(j) = 1). DF specifies whichLp metric to use (i.e., the value ofp) and the values of the intra-
feature weights.

The choice ofDF (i.e., the choice of theLp metric) and the intra-feature weights captures the user perception
within the featureF as shown in Example 3.

Example 3: In Example 1, let us consider the distance betweenQ andB with respect to the color feature, i.e.,
Dcolor(QC ;BC). With L2 and equal weights,Dcolor(QC ;BC) is 0:50. If the user weighs thefirst dimension

twice as much as the second,Dcolor(QC ;BC) is
q

2�(0:2�0:9)2+(0:4�0:3)2
3 = 0:58, i.e.,Q andB are not a close

match in the color space. If she weighes the second dimension twice as much as thefirst,Dcolor(QC ;BC) isq
(0:2�0:9)2+2�(0:4�0:3)2

3 = 0:41, i.e., Q andB are a better match in this case than before. The intra-feature
weights thus capture the user’s subjective perception of similarity of color and determine what constitutes a
close match in terms of color and what is not. How the weights are chosen for a user is discussed in Section 2.4.

2.3 Definition of Similarity between Query and Objects

We define similarity using distance functions, similarity being inversely proportional to distance. We start with
the DFs for individual features followed by the overall multifeature DF. The distanceDF (QF ; OF ) between the
multipoint queryQF and an object pointOF (in RF ) with respect to featureF is defined as the aggregate of the
distances betweenOF and the individual pointsPF (i) 2 PF in QF . We use weighted sum as the aggregation
function but any other function can be used as long as it is weighted and monotonic [6].

DF (QF ; OF ) =
nFX
i=1

wF
(i)DF (QF (i);OF ) (2)

For example, let the queryQ consist of multiple points in the color space. LetQC = f2, f(0:2; 0:4); (0:4; 0:1)g,
f0:7; 0:3g, Euclidean (equal weights)g, then,

Dcolor(QC ; BC) = 0:7 �

s
(0:2 � 0:9)2 + (0:4� 0:3)2

2
+ 0:3 �

s
(0:4 � 0:9)2 + (0:1 � 0:3)2

2
= 0:46: (3)

Note that the multipoint query is a generalization of the single point query (the latter is a special case of the
former withnF = 1).

4Note that this assumption is general since most commonly used DF (e.g., Manhattan distance, Euclidean distance, Bounding Box
distance) are special cases of theLp metric. However, this excludes DFs that involve“cross correlation” among dimensions. Handling
cross-correlated functions has been addressed in [22] and can be incorporated to the techniques developed in this paper.
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Once we have determined the individual feature-wise distancesDF (QF ; OF ); F 2 F , we compute the
overall (i.e., multifeature) distanceD(Q;O) between the queryQ and objectO by aggregating the feature-wise
distances:

D(Q;O) =
X
F2F

�FDF (QF ; OF ) (4)

where�F denotes the (inter-feature) weight associated with featureF 2 F (�F � 0;�F �F = 1). While the
intra-feature weights model user perceptionwithin each feature, the inter-feature weights model user perception
between features, i.e., how important the features arerelative to each other. How the weights are obtained for a
particular user is discussed in Section 2.4. The system should return the following setAns(Q) of objects as the
answers to queryQ: Ans(Q) = fOj8O0 2 (DB �Ans(Q)); D(Q;O) � D(Q;O0).

Example 4: In Example 1, let us consider the distance betweenQ and objectsA andB when the two features
are equally weighted, i.e.,�C = �T = 0:5 (assuming Euclidean distance with equal weights for both the fea-
tures).D(Q;A) = Euclidean(QC ;AC)+Euclidean(QT ;AT )

2 = 0:30 andD(Q;B) = Euclidean(QC;BC)+Euclidean(QT ;BT )
2

= 0:30, i.e.,A andB are equally good matches. If color is weighed twice as much as texture,D(Q;A) =
2�0:15+0:45

3 = 0:25 andD(Q;B) = 2�0:50+0:10
3 = 0:37, i.e.,A is a better match. If texture is weighed twice as

much as color,D(Q;A) = 0:35 andD(Q;B) = 0:23, i.e.,B is a better match.

2.4 Computing the weights/DFs based on feedback

As discussed above, we model the user perception using the intra-feature and inter-feature weights and the DFs.
But how do we obtain the right values of the weights/DFs that best capture the user’s perception? One solution is
for the user to explicitly specify the weights. This technique was proposed by Motro and was used in the VAGUE
system [11]. Otherwise, we start with an arbitrary set of weights (e.g., all weights equal).5 We then execute
the starting query and return the best matches to the user. If the user is not satisfied with the answers, either
the starting weights and DFs do not accurately capture the user’s perception or the query points do not properly
capture the user’s information need or both. We now discuss techniques to modify, based on user feedback, the
query points and the weights/DFs so as to represent the user’s information need better.

� Intra-feature Refinement: Within each feature, the system modifies the position of the query point(s)PF in
each feature spaceF 2 F as well as their weightsWF . The intra-feature weights (i.e. the�F j’s in Equation
1) are also modified to better capture the user’s perception within each feature.6 If the query interface is
the explicit attribute value specification interface (as in Example 2), the user can modify the attribute values
explicitly (e.g., modify query fromhIrvine; 4; 300; 000i to hIrvine; 3; 350; 000i). The same is true for
intra-feature weights. If the query interface is QBE, the user submits relevant examples based on which the
system computes the new query points and weights for each feature spaceF 2 F . Two models have been
proposed for the above computation:

� Query Point Movement (QPM): In this model, the relevant examples submitted by the user during feed-
back are represented by a single point in each feature spaceF : the weighted centroid of the points
corresponding to the submitted examples inF (see Figure 1). For example, if A and B are the two rel-
evant examples submitted by the user (cf. Section 1) and A is indicated to be twice as relevant as B,
the single query point for the color space is(2�0:4+1�0:93 ; 2�0:5+1�0:33 ) and that for the texture space is
(2�0:9+1�0:33 ; 2�0:9+1�0:43 ).
The QPM model computes the intra-feature weights forF (i.e. the�F j’s in Equation 1) as follows. Let
�F j denote the standard deviation of the feature values of the relevant examples for featureF along the

5The initial weights can be chosen more intelligently. [1] proposes to collect feedback information provided by different users over
time and use it to determine the best initial weights for the particular user. This technique reduces the number of feedback iterations,
especially for already-seen queries.

6Besides these 2 steps, some researchers have considered cross-correlation among the dimensions inRF [9].
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jth dimension.�F j is assigned the value1�F j
. The intuition is that among the objects considered relevant

by the user, the higher the variance along a dimension, the lower the significance of that dimension.
This approach is used in MARS [19, 21, 20] and also in Mindreader [9]. For each feature space, it chooses
a single query point and reweighs the dimensions so that the sum of its distances from the relevant points
is minimized [9]. With each iteration of relevance feedback, the query point moves moves towards the
relevant points and the distance function is adjusted tofit the distribution of the relevant points.

� Query Expansion (QEX): In this model, the submitted examples are represented bymultiple pointsPF
(calledrepresentatives [16]) in each feature spaceF 2 F , giving rise tomultipoint queries (see Figure
1). The weightwF (i) of any representativeP(i)

F in the multipoint query is proportional to the total weight

of all the objectsP(i)
F represents. For example, if A and B are the two relevant examples submitted by the

user and A is indicated to be twice as relevant as B, one possible choice of representatives is the points
themselves with weights0:67 and0:33 respectively for both color and texture spaces. If the user submits
many examples, a better approach is to select a small number of good representatives to construct the
multipoint query for each feature space. [16] proposes to use a clustering algorithm to cluster the relevant
points in each feature space and use the cluster centroids as representatives for that feature. The weight
of each representative is chosen to be proportional to the number of relevant objects in the corresponding
cluster [16]. The QEX model does not modify the intra-feature weights (i.e. the�F j’s in Equation 1) as
it adjusts the intra-feature distance function by adding new query points (see Figure 1). This model was
proposed in MARS [16, 17, 18].

� Inter-feature Refinement: The system modifies the inter-feature weights (the�F ’s in Equation 4) in order to
better capture the user’s perception across features. If the query interface allows explicit weight specification,
the user can modify the weights directly as in Motro’s VAGUE system [11]. In a QBE environment, the
system automatically derives the inter-feature weights from the relevant examples submitted by the user
[17]. A simple approach is to choose�F to be proportional to the number of relevant examples in the topt
matches with respect to feature F (t is selected by the system) [21]. More the number of top matches of a
feature marked relevant by the user, more important is the feature to this user.
A more advanced approach to determine inter-feature weights was proposed in [17]. For simplicity, let us
assume that the queryQ consists of two features: X and Y. We assume that there exists weights�optX and
�optY such that�optX DX(QX ; OX ) + �optY DY (QY ; OY ) accurately captures the user’s perception of distance
between the query Q and an object O (see Equation 4). The user’s perception can be visualized as a lineLopt

defined by the following equation in the distance space defined over features X and Y (illustrated in Figure
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2,Lopt is the bold line BE):

�optX DX(QX ; OX ) + �optY DY (QY ; OY ) = Æ (5)

Æ is a threshold such that any object with distance belowÆ is deemed relevant by the user. The slope ofLopt

represents the relative importance of the features X and Y.
Let �iX and�iY denote the weights used by the system for theith iteration of feedback. The corresponding
line Li is defined by (Line AD in Figure 2):

�iXDX(QX ; OX) + �iYDY (QY ; OY ) = Æi (6)

Consider the line BD in Figure 2 joining the intercepts made by linesLopt andLi with theX andY axis
respectively. It can be shown that the slope of line BD (i.e.,�CD

BC ) lies in between the slope ofLi andLopt. If
the weights�iX and�iY are modified such that slope of the lineLi+1 corresponding to the(i+1)th iteration is
the same as that of lineBD, the weights will converge to the optimal weights�optX and�optY . This, however,
requires the system to know the slope�CD

BC . Since the system does not knowLopt, it attempts to estimate the
lengths ofBC andCD based on the feedback provided by the user. Note that the system retrieves objects
belowLi during theith iteration (i.e., those in triangle ACD). Only those items belowLopt (i.e., those in
triangle BCE) are considered relevant by the user. So, only those objects in the region BCDF (the shaded
region) will be marked relevant by the user. Based on this observation, [17] proposes different strategies
to estimate the slope�CD

BC . One strategy is to estimate BC by�X = maxO2SDX(QX ; OX) and CD by
�Y = maxO2SDY (QY ; OY ) whereS denotes the set of relevant examples submitted by the user. The
slope of line BD is therefore��Y

�X . The weights�i+1X and�i+1Y are chosen to be

�i+1X =
�Y

�X +�Y
(7)

�i+1Y =
�X

�X +�Y
(8)

Details of other strategies of selecting intra-feature weight can be found in [17].

3 Evaluation of Refined Queries

Once the query points and the weights are determined (i.e., the construction of the refined query is complete),
the refined query is evaluated and the answers are returned to the user. In this section, we discuss techniques to
evaluate refined queries efficiently. A naive way to evaluate a refined query is to treat it just like a starting query
and execute it from scratch. We observe that refined queries are not modified drastically from one iteration to
another; hence executing them from scratch every time is wasteful. Most of the execution cost of a refined query
can be saved by appropriately exploiting the information generated during the previous iterations of the query.
We start with a discussion on techniques to evaluate starting queries and then optimize them for refined queries.

3.1 Evaluation of Starting Queries

One option to evaluate a starting query is to use a sequential scan. This technique is prohibitively expensive
when the database is large. A commonly used approach is to maintain an indexIdxF (called the F-index) for
each feature. For example, in Example 1, we can maintain a 2-d index on color and a 2-d index on texture. The
dimensionality ofIdxF for featureF is dF , i.e., same as the dimensionality of the feature space. Subsequently,
a query can be evaluated using the algorithm (called the merge algorithm) shown in Table 1 [14, 15, 6]. To
compute the next best match to queryQ, the merge algorithm incrementally retrieves the next best matchOF to
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variabletemp : List(sorted);
GetNext(Q)
while (TRUE)do

for each F 2 F

OF = SingleFeatureGetNext(QF );
if O 62 temp

Access full object to obtainOF ;8F 2 F

InsertO, D(Q;O) into temp;
endif

for each F 2 F topdistF=Topdist(QF );
threshold = �F2F(�F � topdistF );
first = thefirst object in temp;
if first:dist � threshold

Removefirst from temp;
return first;

endif
enddo

Table 1: Multifeature query evaluation (The merge algo-
rithm).

variablequeue : MinPriorityQueue;
SingleFeatureGetNext(QF )
while not queue.IsEmpty()do

top=queue.Pop();
if top is an object

return top;
else if top is a leaf node

for each objectOF in top
queue.push(OF , DF (QF ; OF ));

else /* top is an index node */
for each child nodeN in top

queue.push(N,MINDIST (QF , N));
endif

enddo

Table 2: Single feature query evaluation (The
kNN algorithm).

Q with respect to each featureF 2 F (by callingSingleFeatureGetNext(QF ) shown in Table 2), accesses
the full objectO from the database, computes its overall similarityD(Q;O) toQ and inserts it into a sorted list
temp until it is safe to return thefirst objectfirst in temp. It is safe to returnfirst when we are sure that there
exists no unexplored objectO0 with D(Q;O0) � D(Q; first), i.e.,D(Q; first) � threshold (see [6, 12] for
proof).

TheSingleFeatureGetNext(QF ) operation is implemented using the k-nearest neighbor search (k-NN)
algorithm executing on the underlying indexIdxF (see Table 2). It maintains a priority queue that contains
index nodes as well as data objects prioritized based on their distance from the SF queryQF . Initially, the queue
contains only the root node. At each step, the algorithm pops the item from the top of the queue: if it is an
object, it is returned to the caller; if it is a node, the algorithm computes the distance of each of its children from
the query and pushes it into the queue. The distances are computed as follows: if the child is a data object, the
distance is that between the query point and the object point; if the child is a node, the distance is the minimum
distance (referred to as MINDIST [8]) from the query point to the nearest (according to the distance function)
boundary of the node.Topdist(QF ) returns the distance of the top item of the queue fromQF .

3.2 Optimization for Refined Queries

In this section, we present a simple technique to optimize theSingleFeatureGetNext(QF ) algorithm. The
proposed technique can be extended for optimizing the merge algorithm as described in [4].

In the naive approach where a refined query is executed like a starting query, the k-NN algorithm may access
the same nodes ofIdxF from disk multiple times during the execution of a query (during different iterations)
causing unnecessary disk I/O. This is true even when a buffer is used to keep the most recently used disk pages
in memory. We present a simple algorithm (calledfull reconstruction (FR)) that guarantees that a node of the
F-index is accessed from the disk at most once throughout the execution of the query across all iterations of
refinement. We achieve this by caching the contents of each node accessed by the query in any iteration and
retain them in memory till the query ends (i.e., till the last iteration) at which time the cache can be freed and the
memory can be returned to the system. Since the priority queue generated during the execution of the starting
query contains the information about the nodes accessed, we can achieve the above goal by caching the priority
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queue. We assume that, for each item (node or object), the priority queue stores the feature values of the item
(i.e., the bounding rectangle if the item is a node, the feature vector if it is an object) in addition to its id and its
distance from the query. We also assume that the entire priority queuefits in memory as is commonly assumed
in other works on nearest neighbor retrieval [10, 23].

The FR algorithm works as follows. To evaluate the refined query, it‘reconstructs’ a new priority queue
queuenew from the cached priority queuequeueold by popping each item fromqueueold, recomputing the
distance of the item from the refined queryQnewF using the feature values stored, and then pushing it into
queuenew. When all the items have been transferred, the old queue is discarded. We refer to this phase as the
transfer phase. Subsequently, the k-NN algorithm (discussed in Table 2) is invoked withQnewF as the query on
queuenew to retrieve the new answers. We refer to this phase as theexplore phase. The queue gets passed from
iteration to iteration through the reconstruction process, i.e., thequeuenew of the previous iteration becomes
the queueold of the current iteration and is used to construct thequeuenew of the current iteration. Thus, if a
node is accessed once, it remains in the priority queue for the rest of the query and in any subsequent iteration,
is accessed directly from the queue (which is assumed to be entirely in memory) instead of reloading from the
disk. The entire sequence of iterations is managed using two queues and their roles (old and new) get swapped
from iteration to iteration. Further optimizations of the above algorithm (viz., Selective Reconstruction) can be
found in [4].

4 Experimental Evaluation

We now present experimental results demonstrating the effectiveness of the query refinement techniques dis-
cussed in Section 2.4, i.e., how significantly do they improve the quality of answers returned by the system. Due
to space limitations, we restrict the discussion to intra-feature refinement, experiments on the effectiveness of
inter-feature techniques can be found in [17, 21].7 We conducted our experiments on theCOLHIST dataset. It
comprises of 4x4 color histograms extracted from 70,000 color images obtained from the Corel Database (avail-
able online athttp://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeatures.html)
[2, 16]. All experiments reported in this section were conducted on a Sun Ultra Enterprise 450 with 1GB of
physical memory and several GB of secondary storage, running Solaris 2.7.

The effectiveness of multimedia retrieval depends on the subjective judgement of the user. In order to make
our measurements of retrieval effectiveness independent of the user subjectivity, we use system generated ground

7We have omitted the experiments showing the speedup achieved for refined queries by the evaluation techniques discussed in Section
3.2, they can be found in [4].
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truth for our measurements. We choose a pointQC randomly from the dataset as the query point and construct
a graded set of its top 50 neighbors (based onL1 distance)8 We mark the top 10 answers as highly relevant, the
next 15 as very relevant and the last 25 answers as relevant. The above set of answers constitutes the ground
truth or therelevant set Rel(QC) for QC . We construct the starting query by slightly disturbingQC (i.e., by
choosing a point close toQC) and request for the top 100 answers. We refer to the set of answers returned as the
retrieved set Ret(QC). We simulate user feedback by marking those items inRet(QC) that are also in the top
10 items ofRel(QC) as highly relevant, those that are also in the next 15 items ofRel(QC) as very relevant and
those that are also in the last 25 as relevant. Based on the simulated feedback, we construct the refined query
using both intra-feature refinement techniques discussed in 2.4 (QPM and QEX). The query is then evaluated
and the top 100 answers are retrieved which forms the new retrieved set. We repeat the above process for 5
feedback iterations (the starting query is counted as iteration 0).

To measure the effectiveness of the two approaches, we computeprecision andrecall based on the relevant
and retrieved sets:

precision =
jrelevant \ retrievedj

jretrievedj
(9)

recall =
jrelevant \ retrievedj

jrelevantj
(10)

Note that for any query, the relevant set is the same for both approaches but the retrieved sets differ. To construct
the precision-recall graph for a query, we need precision values for various values of recall. We achieve this
by retrieving one point at a time and calculating the precision and recall forjretrievedj = 1, jretrievedj = 2,
..., jretrievedj = 100. Figures 3 and 4 show the precision-recall graphs for query expansion and query point
movement respectively. The measurements are averaged over 100 queries. Figures 3 and 4 show that for both
approaches, the retrieval performance improves from one iteration to the next. In general, QEX performs better
than QPM as QEX can better adjust the distance function to what the user has in her mind. QPM modifies only
the intra-feature weights (�F ’s) but not the functionDF itself. QEX, on the other hand, changes the distance
function, albeit implicitly, by adding and removing points (as shown by the shape of iso-distance contours in
Figure 1) and hence has better adjustment capabilities. Furthermore, QEX can capture local clusters, if present,
in the ground truth while QPM, having the single point representation, ignores the cluster information.

5 Conclusion

Similarity queries are becoming common in many modern-day database applications. Due to the user subjec-
tivity involved in such queries, the answers returned by the system often do not satisfy the user’s need right
away. The most common technique to overcome this problem is query refinement. In this technique, the user
provides to the system some feedback on the relevance of the answers returned. The system then analyzes the
feedback, refines the query (i.e., modifies the weights, distance functions and query values that capture the user’s
information need), evaluates it and returns the new results. In this paper, we discuss techniques to effectively
refine the query based on user feedback. We also describe algorithms to evaluate refined queries efficiently. Our
experiments show that the proposed techniques significantly improve the quality of the answers returned by the
system.

8We use theL1 metric (i.e., Manhattan distance) as the distance functionDF for the color feature since it corresponds to the histogram
intersection similarity measure, the most commonly used similarity measure for color histograms [14, 15].
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Abstract

We describe the FALCON system for handling multimedia queries with relevance feedback. FALCON
distinguishes itself in its ability to handle even disjunctive queries on metric spaces. Our experiments
show that it performs well on both real and synthetic data in terms of precision/recall, speed of conver-
gence, individual query speed, and scalability. Moreover, it can easily take advantage of off-the-shelf
spatial- and metric- access methods.

1 Introduction
Interactive multimedia databases such as Informedia [2, 15] present an intriguing challenge. Museum kiosks,
public media archives, and similar systems require simple interfaces; museum patrons should not need to learn
a query language simply to navigate a catalogue of major exhibits. The obvious user-friendly solution is“query
by example”, augmented by relevance-feedback with which users iteratively improve the specification of their
queries.

One well-known relevance feedback mechanism is that of Rocchio [10, 1]. It is a basic single-query-point
method, in that it produces contiguous hyperspherical isosurfaces in feature spaces centered aroundone query
point. To derive its query point, it linearly combines:

� The query point derived from the last iteration.

� A weighted centroid of the documents already judged relevant.

� A weighted centroid of the documents already judged irrelevant. This term receives a negative weight.

Thus, it takes into account relevance feedback, and therefore should gravitate towards positive examples,
away from negative ones. Setting the weights for the three components may require some experimentation.

Two more single-query-point systems include MindReader [7], and MARS [11, 9, 12, 13]. MindReader
computes the Mahalanobis distance function using the matrix of known positive instances. Since this involves
matrix inversion, it can require a significant number of instances when the dimensionality is high. The Maha-
lanobis space allows MindReader to derive arbitrary hyperelliptical isosurfaces around multiple query points;
these isosurfaces can then be refined when the user adds or removes examples from the desired set. MARS
takes a more traditional approach in which similarities are computed between known positive instances and
candidates, and linearly then combined using user-specified weights.

Copyright 2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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Figure 1: The FALCON relevance-feedback loop, (a) designed for interactive use, and (b) modified for auto-
mated performance testing.

PicHunter [4, 5] provides a Bayesian approach tofinding a particular image. At each iteration, a user selects
zero or more of the presented images. This binary feedback is the only input it uses to develop a probabilistic
model as to which image is the target. PicHunter distinguishes itself in another aspect; it explicitly tries to
minimize the number of subsequent iterations by taking into account expected information gain when choosing
which examples to present to the user, rather than simply always presenting those thought to be closest to the
target.

2 Proposed System: FALCON
Herein we describe the FALCON system. Like the aforementioned systems, it incorporates user feedback in
order to iteratively improve its internal representation of the query concept. The feedback loop is illustrated in
Figure 1(a); Figure 1(b) shows a variation used for non-interactive use during testing, where feedback comes
from pregenerated labels rather than a user. This latter variation will be discussed further with the rest of the
evaluation methodology.

FALCON maintains a current“good set” G consisting of objects that have been labeled by the user as good
examples. Where it differs is in how it usesG to rank candidate objects.

For this, FALCON uses a distance-combining function we call“aggregate dissimilarity”. Givend, a pairwise
distance function the internals of which do not concern us;m distinct good objectsgi; � a tuning parameter we
discuss below; andx, any given candidate, the aggregate dissimilarity ofxwith respect toG is defined as follows.

(DG(x))
� =

(
0 if (� < 0)

V
9i d(x; gi) = 0

1
m �

Pm
i=1 d(x; gi)

� otherwise
(11)

Weights can be included as follows, with weightwi corresponding to good objectgi:

(DG (x))
� =

1Pm
i=1wi

�
mX
i=1

wi(d(x; gi))
� (12)

2.1 Properties of DG
SinceDG is used to measure the probable relevance of objects to return to the user, the exact behavior ofDG is
clearly important. The tunable parameter� has significant effects on the isosurfaces generated byDG , as listed
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Figure 2: Sample contours with two values of�. Both are based on the sameG – three points chosen from one
circular region, two from another.

below.

� DG handles disjunctive queries well when� < 0. If � = �1, thenDG is analogous to a fuzzy OR, in
that it results in the minimum distance. With� 2 (�1; 0), all distances are taken into account but the
bias is towards the lesser ones. Thus, it can generate contours such as shown in Figure 2(a), derived from
a disjunctiveG consisting offive points from two disjoint circular regions.
Disjunctive queries are important, because many queries that may appear simple to people are disjunctive.
One such simple query would be for stocks whose trends resemble V’s or inverted V’s, which might be
useful for a short-term market-timer. Any system that represented queries via a single convex region will
fail to capture the nature of the query, no matter how many positive or negative examples were specified.

� Positive values of� generate fuzzy ANDs. The extreme value of� = 1 results inDG using only the
maximum distance, while values of� 2 (0;1) account for all distances but bias towards the higher ones.
As a consequence, a negative� is a more natural choice for the greaterflexibility via accepting disjunctive
queries.

� DG is undefined at� = 0.

� For � = 2, the isosurfaces ofDG become hyperspheres centered on the centroid ofG [16]. This is
reflected in Figure 2(b), which is identical to (a) except for�. DespiteG corresponding to a disjunctive
query,� = 2 yields concave isosurfaces.

In addition, sinceDG never directly uses features, FALCON is not intrinsically restricted to vector spaces;
theoretically, it could be implemented using completely unrestricted spaces and sequential scanning. A more
practical approach would be to use fast indexing structures; later in this paper we present algorithms for range
andk-nearest-neighbor queries inDG space, and these can take advantage of indices that support single-query-
point versions of the same. Metric spaces– where we lack features, but instead have a symmetric distance
function that obeys the triangle inequality– then become feasible with such indices as the M-tree [3] and Slim-
tree [14].

2.2 User Feedback
Now that we have defined one major componentDG , and therefore know how to rank examples, an obvious
question is how FALCON incorporates user feedback.

Consider a givenG and a pre-determined�. These define DG , and therefore provide a hybrid distance
function for evaluating examples. For any arbitraryk 2 Z+, we can retrieve and present the bestk candidates
to the user based uponDG .

The user may then changeG by selecting one or more candidates to add toG. Likewise, current members of
G can be removed if the user changes his mind. If the weightedDG variation is used, then the user should be
able to alter weights for individual members ofG.
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(a) on the STOCK dataset (b) on the PEN dataset

Figure 3: GUI of FALCON. The top row contains the“good” objects; the bottom row gives the top matches.
The implicit query in (a) is for stock vectors that climbed sharply, then fell, or vice versa; in (b), we seek both
3’s and 6’s. Notice that FALCON handles these disjunctive queries quite well, returning examples of the desired
sets instead of objects that each have slight resemblances to all good objects.

2.3 Algorithms and Scalability
Finding candidates for feedback in an interactive system using a non-trivial database clearly requires fast, scal-
able algorithms. Here, we describe algorithms for performing both range andk-nearest-neighbor queries inDG
space. The latterfits in naturally with the feedback model, and utilizes the former.

Both require range andk-nearest-neighbor queries in the original space, as defined by the pairwise distance
functiond. If d is a distance metric, metric structures such as M-trees [3] and Slim-trees [14] apply; for vector
sets, there are legions of spatial indices with the required properties [6].

Given support for the single-point versions, we can derive versions that operate inDG space using multiple
query points as found inG. These algorithms scale well and are provably correct. For reference, we label these
two algorithms as the“MRQ” (Multiple Range Query) and“k-NN+MRQ” (k-Nearest Neighbor + Multiple
Range Query) algorithms; details and proofs of correctness are in [17] and [16], respectively.

In a nutshell, the MRQ algorithm computes range-queries inDG space byfinding the union of standard
range queries with the same desired radius for each of the“good” objectsgi, followed by filtering viaDG .
Similarly, thek-NN+MRQ algorithm uses multiplek-NN queries centered on eachgi. The results are then used
to overestimate theDG distance to thekth neighbor; given this range, it applies the MRQ algorithm and selects
the topk results as ranked byDG .

2.4 Prototype implementation
Figures 3(a) and (b) shows what a user might see. These screenshots show a prototype operating on two data
sets, STOCK and PEN, both described later. The top row of panels showsG, while the bottom row shows an
excerpt from the database in whatever order is current– sorted according to the previous query; or the original
order if no queries have been executed or the system has been reset.

In both cases, the queries are disjunctive; the STOCK example shows a request for stocks with curves
resembling V’s or inverted V’s, while the PEN example requests both 3’s and 6’s.

3 Experiments
In this section, we present empirical support for the FALCON system. There are three obvious questions that
pertain to relevance-feedback systems in general.

17



1. In terms of quality, how good are the candidates returned by FALCON?

2. In terms of iterations, how quick does the feedback loop converge?

3. In terms of speed, how scalable is FALCON?

In addition, since FALCON has one free parameter�, we ask whether or not there is an optimal value of�;
and what values of� seem to perform acceptably well.

3.1 Evaluation Methodology
The testing cycle differs from the originalflow in two areas, as shown in Figure 1(b).

Thefirst is that feedback is that all instances have already been labeled by a script, rather than a user. Two
major limitations are imposed. One is that only a subset of the data is available for feedback, which should
accelerate convergence— preferably without severely limiting performance. To understand why, consider that
ak-nearest-neighbor query may return a cluster of points close to each other, if such exist. A tight cluster is less
likely to be useful for determining the underlying query concept than an equal number of well-separated points;
and a sample should, in theory, increase the typical separation between candidates.

A second limitation imposed upon automated feedback is that no more than twenty previously unseen in-
stances are selected per iteration. If any of these are positive instances, they get added toG. Otherwise, the
feedback loop terminates.

The second way in which the feedback loop differs is that the method computes precision/recall in order
to quantitatively evaluate performance. For any level of recallr 2 [0; 1], a database of sizen, and a total
of np positive examples, there is a minimum numberne such that the top-rankedt objects among then total
include at leastp = drnpe positive examples. Then, we can say that precision/recall isp

t at r recall. Tracking
precision/recall at multiple levels of recall over a series of iterations measures speed of convergence.

We also measured wall-clock time required for multi-query-point range andk-nearest-neighbor queries,
which are critical to FALCON’s performance. For reference, these tests were performed on a 400 MHz Intel
Pentium II computer with 128 MB of RAM running Linux.

3.2 Data and Parameters
Five data sets were used, each paired with a different query. Four– two low-dimensional synthetic, two high-
dimensional real– were used to measure precision/recall, convergence speed, and sensitivity to�. Real data
received realistic queries; the two synthetic sets tested non-convex and disjunctive queries, respectively. Regard-
ing � sensitivity, we tested with� 2 f�1;�100;�10;�5;�2; 2; 5g.

Thefifth and largest data set was used for scalability testing. For this purpose, most tests used� = �5; a
few range-query tests were run with� = �1, and are labeled accordingly.

2D 50K/RING: The 2D50K data set has 50,000 points in 2-D Cartesian space, uniformly distributed within
the orthogonally-aligned square (-2,-2)-(2,2). The RING query selects points that are between 0.5 and 1.5 units
from the origin as measured by Euclidean distance; 19,734 qualify.

2D 20K/TWO CIRCLES: The 2D20K data set was generated identically to 2D50K except that it has
only 20,000 points. The TWOCIRCLES query accepted points at most 0.5 units away in Euclidean distance
from either (-1,-1) or (1,1); 1,899 qualified.

PEN/PEN 4: The Handwriting Recognition data set was found at the UCI repository [8]. Each of the 10,992
objects is a 16-dimensional vector corresponding to the scaled Cartesian coordinates of eight pen positions
sampled in time as a test subject wrote a digit. The PEN4 query selects vectors corresponding to handwritten
4’s; 1,144 qualified.

STOCKS/FLAT STOCKS: Fifty-one stocks were arbitrarily chosen and their closing prices obtained for
up to the previousfive years. These sequences were split into 1,856 non-overlapping vectors of length 32 and
then subjected to a discrete wavelet transformation. The FLATSTOCKS query accepted stocks with the slope
within [-0.02, 0.02]; 540 qualified. The DWT results fromfive artificial, perfectlyflat price vectors were used
for thefirstG.
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Figure 4: Precision/recall over iterations for two of the queries at� = �5.

COVER: The forest cover database came from the UCI repository [8], and includes 581,012 54-dimensional
vectors, with both discrete and continuous attributes. No split was used since the purpose was not to assess query
accuracy, but instead to measure performance of a single multi-point query. Uniform random sampling without
replacement was used tofindG’s of varying size.

3.3 Experimental Results
A summary of the results follows; for a more in-depth treatment, see [17, 16].

Values of � Accuracy testing showed that� = �2 and� = �5 were both reasonable values with� = �10
not substantially inferior. With�1, the strict MIN function is too strict; and with positive values, disjunctive
queries such as TWOCIRCLES become impossible. No value was optimal for all sets; intuitively, this makes
sense as there is little reason to expect a global optimum over the space of different queries.

Quality and Convergence Figure 4 shows precision/recall for TWOCIRCLES and FLATSTOCKS with
� = �5. The former completes in seven iterations, with excellent precision-recall; the latter nears itsfinal
values after 8-12 iterations, but marginal gains continue for a total of 25. These results are typical; a fairly low
number of iterations generally resulted in good precision at low levels of recall early, with subsequent iterations
converging for the higher levels of recall.

Figure 5 shows average precision/recall values for at multiple values of� with the four data sets used for
accuracy testing. Averages were computed as the mean of precision at each level of recall from 10% to 100%
at 10% intervals; in cases where 20 iterations were not required due to faster convergence,final values are
presented. Notably, negative values of� yield better results, but otherwise the performance is rather insensitive
to the exact value of�. In addition, average precision on a full database can be respectably high even after only
5 iterations of feedback on a randomly chosen subset.

Scalability Figure 6 shows that thek-NN+MRQ algorithm, when backed by an M-tree, performs very well
compared to sequential scanning as the sample size chosen from COVER is varied from 25,000 to 100,000 andk
goes from 5 to 50. In particular,k-nearest-neighbor performance is not nearly as affected by database cardinality
as is sequential scanning. Clearly, the MRQ algorithm, as a significant part of thek-NN+MRQ algorithm, must
itself scale accordingly.
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4 Conclusions
We have described FALCON, thefirst relevance feedback system that can handle disjunctive queries in multi-
media databases. In addition, FALCON has the following desirable properties:

� It can be applied to metric datasets, too, in addition to vector ones.

� It reaches good precision and recall, after few iterations. For instance, with all queries,� = �5 yielded at
least 80% precision at 50% recall with 10 iterations.

� When backed by an indexing data structure, it scales well. For instance,k-NN+MRQ with k = 50 on a
100,000-object set was approximately four times as fast as a sequential scan withk = 5 on a 25,000-object
set.
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Abstract

Querying using keywords is easily the most widely used form of querying today. While keyword searching
is widely used to search documents on the Web, querying of databases currently relies on complex query
languages that are inappropriate for casual end-users, since they are complex and hard to learn. Given
the popularity of keyword search, and the increasing use of databases as the back end for data published
on the Web, the need for querying databases using keywords is being increasingly felt. One key problem
in applying document or web keyword search techniques to databases is that information related to a
single answer to a keyword query may be split across multiple tuples in different relations.

In this paper, we first present a survey of work on keyword querying in databases. We then report
on the BANKS system which we have developed. BANKS integrates keyword querying and interactive
browsing of databases. By their very nature, keyword queries are imprecise, and we need a model for
answering keyword queries. BANKS, like an earlier system called DataSpot, models a database as a
graph. In the BANKS model, tuples correspond to nodes, and foreign key and other links between tuples
correspond to edges. Answers to a query are modeled as rooted trees connecting tuples that match
individual keywords in the query. Answers are ranked using a notion of proximity coupled with a notion
of prestige of nodes based on inlinks, the latter being inspired by techniques developed for Web search.
We illustrate the power of the model and our prototype through examples.

1 Introduction

Querying relational databases using schema-cognizant languages like SQL and querying document collections
by typing arbitrary keywords are the extreme ends of the continuum between structured and unstructured data
access. SQL queries have precisely defined semantics, but demand that the data is organized along a strict
schema which the user understands. Keyword searches do not require the data to follow a schema, except for the
notion of a collection of documents, each being a sequence of delimited tokens. On the other hand, responses to
keyword searches are often imprecise.

Two forces are bridging the gap between these extremes. First, relational databases are increasingly Web
enabled: they need to be accessed and manipulated by non-experts who do not know enough about the schema.

Copyright 2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
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Second, Web documents are evolving fromflat textfiles through HTML and SGML to XML, adding markups
and embedded schema information (albeit irregular) which users would like to exploit to make responses some-
what more precise than with plain keyword matching. Unfortunately, as query languages for relational data
evolve to encompass semi-structured data, they are becoming more complex. On the other hand, many naive
users need a simple way of extracting information, such as keyword queries.

In relational databases, information needed to answer a keyword query is often split across the tables/tuples,
due to normalization. As an example consider a bibliographic database shown in Figure 1. This database
contains paper titles, their authors and citations extracted from the DBLP repository. The schema is shown in
Figure 1(A). Figure 1(B) shows a fragment of the DBLP database. It depicts partial information—paper title and
authors—regarding a paper as stored in the bibliographic database defined above. As we can see the information
is distributed across seven tuples linked through foreign key-primary key links. A user looking for this paper
may use queries like”Sunita Temporal” or ”Soumen Sunita”. In keyword based search, we need to identify
tuples containing the keywords and ascertain their proximity through links.

Inverted indexing techniques used for document search would help infinding proximity amongst the words in
a tuple or a column thereof but will not help infinding proximity between two tuples. This makes inverted index-
based keyword search unsuitable for RDBMS. Similar observations hold for text search in XML documents: the
markup induces a graph whose nodes contain blocks of text. Different query words may match different blocks
or nodes, and the best‘answer’ may be none of the directly matched nodes.

Web search engines and topic directories have also popularized the browsing paradigm for accessing infor-
mation, which is virtually non-existent in the relational and semi-structured data domains. Like HTML pages
connected via hyperlinks, semi-structured data comprises data entities which are nodes in a graph with labeled
edges. The link-based navigation paradigm should therefore be of great use for exploring such databases.

Responses to relational queries aresets of tuples, which may be explicitly ordered by a specified list of
attributes. Thus the“information unit” is a tuple. For document search, the information unit is a document
and the rank of the document in the response list is based on the number of keywords found in the document
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and their proximity within the document. A suitable information unit is much harder to define when a general
graph model is used to represent data entities and relations, because information matching the query may be
split across several tables and tuples due to normalization.

Over the last few years, a uniform model has emerged for representing relational databases as a graph
with the tuples in the database mapping to nodes and cross references (such as foreign key and other forms
of references) between tuples mapping to edges connecting these nodes. Semistructured data maps even more
naturally to a graph model, as do HTML pages connected by hyperlinks. The graph model may be used in
keyword search as follows. Keywords in a given queryactivate some nodes. The answer to the query is defined
to be a subgraph which connects the activated nodes.

In this paper, we present a survey of earlier work on keyword querying of databases, with emphasis on the
development of the above model. We then present the model for keyword search used in the BANKS system
(BANKS is an acronym for Browsing ANd Keyword Search). BANKS ranks answer subgraphs using a notion
of proximity coupled with a notion of prestige of nodes based on inlinks, similar to techniques developed for
Web search engines like Google. BANKS proposes meaningful interpretations for matching query tokens not
only to text attributes, but also to relation and attribute names. Here we are chiefly concerned with meaningful
definitions of responses and their ranking. Efficient query execution strategies for the BANKS model will be
described in a separate paper.

BANKS has been developed in Java using servlets and JDBC. It is a generic system and can be used against
any relational database supporting JDBC, without any programming. (An XML source adapter is planned.) A
demo of BANKS is accessible athttp://www.cse.iitb.ac.in/banks/.

Organization: We survey earlier work on keyword querying in Section 2. Section 3 outlines the BANKS
graph model for representing connectivity information from the database and the model for answering queries
and briefly outlines how the BANKS querying model differs from earlier work. Section 4 briefly describes
how the query model is implemented. We present an overview of the browsing features of BANKS in Section 5.
Section 6 outlines a preliminary evaluation of our system in terms of reasonableness of its answers and feasibility.
Section 7 outlines directions for future work. Section 8 concludes the paper.

2 Previous Work

There are a number of commercial and research prototype systems that support keyword search and browsing in
relational and semi-structured databases. In this section, we survey several of these systems.

Traditional database query languages and tools are not suitable for applications that require keyword search-
ing. Even languages, such as QBE, that have been targeted at relatively inexperienced users require the user to
be aware of the database schema, which is not appropriate for casual users of an information system.

2.1 DataSpot and Mercado Intuifind

The DataSpot system [3] was developed to support database querying using free-form (keyword) queries and
navigation for non-technical users seeking information in complex databases such as electronic catalogs. The
basis for the DataSpot system is a schema-less representation of data which they call a“Hyperbase”. Nodes in
the hyperbase view represent data objects, while edges represent associations. There are two types of edges,
simple andidentification edges. Simple edges represent inclusion, such as attributes values’ inclusion in tuples.
Identification edges correspond to references between objects.

The semantics of keyword queries is described in [12], and in more detail in [13]. Given a keyword query,
an answer is a connected sub-hyperbase that contains the keywords in the query. Each answer has an associated
“location”, which intuitively represents the main object of the answer. Answers have a score, which can be
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computed in one of several ways, but intuitively measures some distance metric on the sub-hyperbase. Several
alternatives are suggested, one of which is an edge count on the sub-hyperbase, possibly with weighted edges,
with weights being determined by node and edge types. Another alternative is to use a node count. The distance
metric used in their preferred approach is based on adding up edge weights, with weights being determined by
the types of the edge, the types of the nodes it connects, and the direction of traversal (from parent to child or
vice versa; see below).

The system administrator can define a set of nodes as“fact nodes”, in which case answers (location nodes)
can only come from the set of fact nodes. Refinement queries, which refine answers from earlier queries, can
also start with an initial set of locations, in addition to keywords.

To find answers, the system performs weighted best-first search from all source nodes (i.e., keyword nodes,
and for refinement queries, location nodes) and each time a fully connected fact node (i.e., a fact node connected
to all source nodes) is found, it is output as an answer, along with the minimal-distance paths from that node
to all the source nodes. Traversal goes away from source nodes, but edges can be followed regardless of their
direction (that is, edges can be traversed forwards or backwards). Edge weights are determined by direction of
traversal, as mentioned earlier. When adding edge weights to paths, the edge weight is divided by the number
of sources to which the edge is connected, so that when adding up path distances, edge weights of edges leading
to multiple sources are not over-counted. Multiple answers may be output, ranked by their score.

Mercado Software, Inc. (www.mercado.com) markets an e-catalog search technology called Intuifind
which (as far as we can understand) uses the DataSpot technique for keyword search, but also allows“parametric
search” on the search results. Intuifind parametric search offers OLAP drill-down type operations based on
parameters such as price, manufacturer and category, to allow the user a more structured way of browsing search
results.

2.2 EasyAsk

EasyAsk is commercial system that provides natural language search (including keyword search) on data stored
in relational databases as well as in text repositories. Our description of EasyAsk is based on white papers on
the EasyAsk system, and on its features, available at the EasyAsk web sitewww.easyask.com.

Consider catalog searching, which is a motivating application for EasyAsk (the system can be used with
other application domains also). Information about items in catalogs can be split across multiple locations, such
as a text description, and at different levels of a product hierarchy in which the item is classified, such as“men’s”
or “formal”. A keyword search on the catalog may contain keywords present in the product description, as well
as keywords present in the catalog hierarchy.

To answer queries, the system crawls the data store ahead of time and constructs a contextual dictionary.
Based on the dictionary, the system decides that certain keywords correspond to values in catalog attributes, and
others correspond to values in text descriptions of products, and generates an appropriate SQL query to answer
a given keyword query.

The EasyAsk system supports a wide variety of features such as approximate word matching, word stem-
ming (allowing it to match, for example, hiker with hiking), synonyms (for example, pants, trousers and slacks),
and other word associations (for example“hunting” with “waterproof” and“outdoors” in the context of clothes).
It also recognizes phrases, and supports comparisons such as“greater than 3 feet” which it translates into ap-
propriate SQL conditions. EasyAsk also mentions that it handles data decoding, whereby users can use normal
words, such as“blue”, even if the word has been coded in a different way, such as“bl”, in the database.

Further details of how EasyAsk handles keyword queries and natural language queries are not publicly
available. Ranking is supported by EasyAsk, but as far as we can make out, only on administrator-specified
criteria such as price, and not on the quality of match with keywords.
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2.3 Proximity Search

Several research prototypes focus on the notion of proximity and efficient ranking or clustering of graph nodes
by proximity.

Goldman et al. [7] were early proponents of using a graph distance-based measure in answering proxim-
ity queries. They generalized the notion ofnear queries in Information Retrieval (where the goal is tofind
documents where query tokens occur lexically close to each other) to a graph data model that can model both
relational and semi-structured data.

They support queries of the formfind find-set near near-set; such a query retrieves objects of the specified
“find set” (e.g. a specified relation) that have short paths connecting them to objects in the near-set (those that
match the specified keywords). The shortest path from objects in the“find set” to each of the objects in the
“near-set” is computed using a distance function that adds up edge weights. The inverse of the distance, scaled
by the weights of the end point nodes, gives the proximity of the objects. The score of an object in thefind set
is computed using its proximity to the near objects by either adding up the proximities, or by other means such
as1��(1� pi), where thepis are the proximities (which range from 0 to 1).

Note that the scores differ from that of DataSpot in that the inverses of distances to the near set objects are
added up, instead of the distances themselves. Also, there is no significance to the actual paths, and only the
objects in thefind set are returned.

Web search provides another natural application where the best response may comprise a graph of connected
pages rather than a single page. Li et al. [9] couch this problem in terms of Steiner trees connecting pages that
match individual keywords. In their formulation, the graphs are not directed, and unlike DataSpot, pages and
edges are not typed.

Proximity search is closely related to clustering. The connections between densely connected clusters in
graphs and spectral properties of their adjacency matrices is well-established [8]. Clustering techniques for
graphs and hypergraphs can be used to derive notions of distances between categorical data, and thereby to
support proximity search between objects with categorical attributes [6].

Many Information Retrieval systems use thesauri and lexical networks to bridge the gap between imprecise
user queries and the database by padding the query with synonyms and usingis-a hierarchies (e.g., horse is a
mammal). Such support needs to be hand-crafted into IR systems. In a graph framework, such as that used in
DataSpot or BANKS, a network of metadata or linguistic relations can be regarded as simply augmenting the
graph being queried with a richer set of connections.

2.4 Other Approaches

Sarda and Jain [14] describe a system called Mragyati to perform keyword search and browsing on databases.
They generate SQL queries to retrieve results matching the given keywords. Queries can involve more than one
relation, and are generated based on the database foreign-key structure and on the relations/attributes that are
matched by the given keywords. Results can be ranked based on user specified criteria, or based on the number
of foreign key references to the primary key (if any) of the answer tuples. The system provides mechanisms
for handling synonyms and coding mechanisms used to store values in the database. Although supported in the
model, the current implementation does not handle queries with paths of length greater than two, presumably
because of the extra effort needed to analyze keywords and database connections to generate required queries.
The system also generates hyperlinks in the results, to enable browsing.

Maserman and Vossen [10] describe an approach to keyword searching on databases, but their approach
is restricted tofinding all keywords in a single tuple, with no notion of links and proximity. They generate
statements in an SQL extension called Reflective SQL, which is then translated to SQL.

Florescu et al. [5] propose an extension of the XML-QL query language to include keyword search, but their
approach requires the use of a complex query language such as XML-QL.
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2.5 Browsing

There has been a substantial body of work on browsing of relational databases and object oriented database.
Although browsing is not part of keyword searching per se, the results of a keyword search can often be inter-
preted only as starting points from which the userfinds required information by browsing. Work on browsing
of databases include Dar et al. [4], Carey et al. [2], and more recently work by Shafer and Agrawal [16], which
describes a system for integrated querying and browsing of relational data. Querying is carried out by interac-
tion with form controls, rather than by keyword search. Munroe and Papakonstantinou [11] describe BBQ, an
interface for browsing and QBE style querying of XML data.

3 Database and Query Model

In this section we describe how a relational database is modeled as a graph in the BANKS system. First we
evaluate various options available and describe the model we adopt informally and then formalize it.

3.1 Informal Model Description

We model each tuple in the database as a node in the directed graph and each foreign key-primary key link as an
edge between the corresponding tuples. This can be easily extended to other type of connections; for example,
we can extend the model to include edges corresponding to inclusion dependencies, where the values in the
referencing column of the referencing table are contained in the referred column of the referred table but the
referred column need not be a key of the referred table.

In general, the importance of a link depends upon the type of the link i.e. what relations it connects and on
its semantics; for example, in the bibliographic database, the link between thePaper table and theWrites table
is seen as a stronger link than the link between thePaper table and theCites table. Conceptually this model is
similar the one described in [13] although there are some differences in the details.

To find answers, we need to traverse links backwards and we make this explicit by creating a backward
link for each initial link. We model the weight of a backward link generated from a forward link as directly
proportional to the indegree of the source node of the backward link (i.e. the referenced node). Since the
proximity between the nodes connected by a link is inversely proportional to the link weight, the proximity for
a referenced node to its referencing nodes is inversely proportional to the indegree of the referenced node. This
notion is formalized in Section 3.2 These definitions are motivated by the intuition that“fans know celebrities
better than celebrities know their fans.” As another example, in a students’ course registration database, if there
are many students registered for a particular course, the proximity of two students due to the course is less than
if there were fewer students registered. A forward edge from a student to a course and a back edge from the
course to a student would form a path between each pair of student in the course, and assigning a higher weight
to back edges in the case where more students take the course ensures that the paths are longer.

Informally, an answer to a query is a subgraph containing nodes matching the keywords and just by looking
at the subgraph it is not apparent as to what information it conveys. We need to identify a node in the graph as
a connecting node which connects all the keyword nodes. We consider an answer to be a rooted directed tree
containing a directed path from the root to each keyword node. We call the root node aninformation node. The
weight of the tree is proportional to the total of its edge weights. We may restrict the information node to be
from a selected set of nodes of the graph; for example, we may exclude the nodes corresponding to the tuples
from a specified set of relations, in a manner similar to [13].

We incorporate another interesting feature, namely node weights, inspired by prestige rankings such as
PageRank in Google [1]. With this feature, nodes that have multiple pointers to them get a higher prestige. In our
current implementation we set the node prestige to the indegree of the node. Higher node weight corresponds to
higher prestige. E.g., in a bibliography database containing citation information, if the user gives a queryQuery
Optimization our technique would give higher prestige to the papers with more citations.
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3.2 Formal Database Model

In this section we define the formal graph model for representing the database. It consists of:

Vertices: For each tupleT in the database, the graph has a corresponding nodeuT . We will speak interchange-
ably of a tuple and the corresponding node in the graph.

Edges: For each pair of tuplesT1 andT2 such that there is a foreign key fromT1 to T2, the graph contains an
edge fromuT1 to uT2 and a back edge fromuT2 to uT1 (this can be extended to handle other types of
connections).

Edge weights: In our model, the weight of a forward link along a foreign key relationship reflects the strength
of the proximity relationship between two tuples and is set to 1 by default. It can be set to any desired
value to reflect the importance of the link (low weights correspond to greater proximity).

Let s(R1; R2) be similarity from relationR1 to relationR2 whereR1 is the referencing relation and
R2 is the referenced relation. The similaritys(R1; R2) depends upon the type of the link from relation
R1 to relationR2 and this is different than the actual edge weights. It is set to infinity if relation R1
doesn’t refer relationR2. Consider two nodesu andv in the database. LetR(u) andR(v) be the resp.
relations they belong to. Further, letINv(u) be the indegree ofu contributed by the tuples belonging
to relationR(v). Note that from nodeu to nodev we may, conceptually, have two edges, one forward
edge which depends upon the similaritys(R(u); R(v)) and a backward edge which depends upon the
similarity s(R(v); R(u)) andINv(u). In the current implementation the forward edge weight is set to
s(R(u); R(v)) and the reverse edge weight is set to[s(R(v); R(u)) � INv(u)] and the actual edge weight
is the minimum of the two as defined below:

b(u; v) = min(s(R(u); R(v)); s(R(v); R(u)) � INv(u))

The weight of a backward link generated from a foreign key relationship is directly proportional to the in-
degree of the source node (i.e. the referenced node). Since the proximity between the nodes connected by
a link is inversely proportional to the link weight, the proximity from a referenced node to its referencing
nodes is inversely proportional to the indegree of the referenced node.

Node weights: Each nodeu in the graph is assigned a weightN(u) which depends upon the prestige of the
node. In our current implementation we set the node prestige to the indegree of the node.

3.3 Querying Model

We now present our model for answering keyword queries. Let the query consist ofn search termst1; t2; : : : ; tn.
The query is (conceptually) answered as follows:

� For each search termti in the query wefind the set of nodes that are relevant to the search term. Let us call
the setSi. And letS = fS1; S2; S3; : : : ; Sng. A node is relevant to a search term if it contains the search
term as part of an attribute value. Nodes may also be relevant through metadata (such as column, table or
view names). E.g., all tuples belonging to a relation namedAUTHOR would be regarded as relevant to the
keyword‘author’.

� An answer to a query is a rooted directed tree containing at least one node from eachSi. Note that the
tree may also contain nodes not in any of theSis and is therefore a Steiner tree. The relevance score of an
answer tree is computed from the relevance scores of its nodes and its edge weights. (The condition that
one node from eachSi must be present can be relaxed to allow answers containing only some of the given
keywords.)
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� Given an answer with keyword matching nodes(si;1; si;2; : : : ; si;n) the relevance of the answer is com-
puted using the edge and node weights as follows:

AnswerRelevance(si) = wn

"P
j N(si;j)

N

#
+ wp

�
1P
Ek

�

where theEi’s are the weights of the edges in the answer tree,N is the maximum node weight sum
across all elements ofS, andwn andwp are weights used to control the relative importance given to node
weights and proximity. These combining weights are ad-hoc, but appear to be inescapable in all related
systems that we have reviewed [7, 17]. Reasonable choices can be made if sample queries with relevance
judgments are provided to‘train’ the system [15].

The minimum Steiner tree problem is a special case of the problem offinding answers of maximum rele-
vance, so the problem offinding the best answers is also NP-Complete. We therefore settle for heuristics
to construct answer trees of high relevance. These are discussed in Section 4.

3.4 Relation of BANKS to Earlier Work

BANKS is closely related to DataSpot [3, 12, 13]. In particular, the model of query answers as rooted trees
corresponds to the DataSpot model, where the roots are called fact nodes. The details of the underlying graph
formalism, however, differ. BANKS currently works on a model where only references, which correspond to
equivalence edges in DataSpot, are explicitly represented. Since edges in our model can have attributes such as
type and weight, we can model containment (as in DataSpot and in nested XML) simply as edges of a new type.
(We are currently working on adding XML support to BANKS.) The BANKS technique of assigning weights
to back edges, based on indegrees, has no counterpart in DataSpot, as also the node weight mechanism used
in BANKS. The use of node weights based on prestige has proved critical in Web search, and our anecdotal
evidence shows their importance in the context of database search as well. BANKS also takes the effect of
metadata queries into account, which is not made explicit in DataSpot.

Unlike [9], BANKS (like DataSpot) can exploit the semantically richer set of links available from foreign
keys and other constraints in the structured (relational) or semistructured (XML/OEM) setting, which is largely
missing in graphs formed by HTML documents.

4 Implementation Approach

Our heuristic solution is based on Dijkstra’s single source shortest path algorithm. We assume that the graph
fits in memory. This is not unreasonable, even for moderately large databases, because the in-memory node
representation need not store any attribute of the corresponding tuple other than the RID. As a result the graphs
of even large databases with millions of nodes and edges canfit in modest amounts of memory. We will be
looking into external memory based applications as a part of our future work.

Given a set of keywords,first wefind, for each keyword termti, the set of nodes,Si, that are relevant to the
keyword. In the current implementation, we search only for exact matches, and to facilitate this we build a single
index on values from selected string-valued attributes from different tables. The index maps from keywords to
(table-name, tuple-id) pairs.

Let relevantNodes = S1 [ S2 [ : : : [ Sn be the relevant nodes for the query. We concurrently run
jrelevantNodesj copies of the single source shortest path algorithm, one for each node inrelevantNodes as
source. We run them concurrently by creating an iterator interface to the shortest path algorithm, and creating
multiple instances of the iterator.

The important distinction of this approach is that the single source shortest path algorithm traverses the graph
edges in reverse direction. The idea is tofind a common vertex from which a forward path exists to at least one
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node in each setSi. Such paths will define a rooted directed tree with the common vertex as the root and the
corresponding keyword nodes as the leaves. The tree thus formed is a connection tree and root of the tree is the
information node.

We create a single source shortest path iterator for each keyword node. At each iteration of the algorithm,
we need to pick one of the iterators for further expansion. We pick an iterator whose next vertex to be output is
at the least distance from the source vertex of the iterator (the distance measure can be extended to include node
weights of nodes matching keywords). We keep a list of all the vertices visited for each iterator. Consider a set
of iterators containing one iterator each from setSi. If the intersection of their visited vertex lists is non-empty,
then each vertex in the intersection defines a connection tree. The result set may contain multiple result trees
with same keyword nodes but different root nodes. We eliminate duplicates, keeping only the root which gives
maximum relevance weight.

5 Browsing
The BANKS system provides a rich interface to browse data stored in a relational database and is well integrated
with the search facility. The browsing system automatically generates browsable views of database relations,
and of query results, by using two mechanisms: foreign key relationships and nesting of data using a mechanism
similar toGROUP BY in SQL. For every attribute that is a foreign key, a link is created in the display to the
referenced tuple. In addition, primary key columns can be browsed backwards, tofind referencing tuples,
organized by referencing relation (a specific referencing relation can be selected by the user).

Each table displayed comes with a variety of tools for interacting with data. Apart from direct schema
browsing we support operations like sorting data on a specified column, restricting the data by a predicate
on a column, projecting away a column, taking join with the referenced table by clicking on a foreign key
column, data nesting wherein only the distinct values of a column specified are displayed, etc. Controls for these
operations can be accessed by clicking on the column names in the table header.

Note that all the hyperlinks are automatically generated by the system and no content programming or user
intervention is needed. Each hyperlink is really an SQL query which is executed when a user clicks on the links.

Another important feature aretemplates; templates provide several predefined ways of displaying any data.
Templates must be customized by specifying various information (depending on the template); a customized
template is given a hyperlink name and is then available to users for browsing.

6 Experience and Performance
We have implemented BANKS using servlets, with JDBC connections to an IBM Universal Database. We have
experimented with two datasets: One is the DBLP Bibliography database shown in Figure 1. We converted a
dump of DBLP into structured relational format and ran BANKS on this data. There are 124,612 nodes and
319,232 edges in this graph. The other one is a small thesis database. IIT Bombay’s database of Masters and
Phd dissertations are available in relational format; these are input to BANKS.

A system like BANKS may be evaluated along (at least) two measures: quality of the results and speed.
Unfortunately, neither is easy to characterize. There are no agreed-upon benchmarks for evaluating proximity-
or prestige-base ranking algorithms in this domain. To work around this, we selected data sets that academics
and database researchers are familiar with and can relate to, at least w.r.t. the schema. This makes the discussion
of results more meaningful, albeit qualitative. While we can compare the different heuristics with each other
on the quality of their answers, it is not clear what is an“optimal” answer to compare against. Eventually, user
experience counts, which is what led us to releasing the search facility on a Web site.

We give a few examples of queries on the bibliographic database. For the query“Mohan”, C. Mohan came
out at the top of the ranking, with Mohan Ahuja and Mohan Kamat following. This was due to the prestige
conferred by thewrites relation which had many tuples for these authors. The query“transaction” returned Jim
Gray’s classic paper and the book by Gray and Reuter as the top two answers.
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The query“soumen sunita” returned only one answer: a tree containing a node corresponding to the paper
“Mining Surprising Patterns Using Temporal Description Length” as the information node. This paper has
Soumen and Sunita as co-authors and the tree has the two correspondingauthor tuples as leaf nodes and two
writes tuples– connecting the two author tuples to the paper tuple– as intermediate nodes.

The query“sunita olap” returned some interesting results– the part of DBLP we had loaded had no paper
by “sunita” with “olap” in its title, but the system found several papers with“olap” in the title that cited or were
cited by papers authored by“sunita”. Several of the resultant papers by“sunita” were on OLAP even though
the word was absent in the title. A useful extension would be to differentiate between papers that cite papers
by “sunita” and papers cited by papers by“sunita”. We could, for instance, provide a way to select an answer
corresponding to one of these forms (at the level of the database schema) and ask for more answers of that form.

The BANKS system supports metadata queries. For example, the query“thesis sudarshan” returns all thesis’
advised by Sudarshan (in addition to thesis’ written by a Sudarshan, if there had been any).

Currently loading the DBLP database takes 2 minutes, and about 100 MB of memory, but we expect this
to decrease greatly with a better tuned Java or C implementation. Once the database graph is loaded, queries
usually take a second or so to get thefirst answer, and a few seconds to get all answers (up to some relevance
cutoff) on the DBLP database. Our prototype implementation clearly demonstrates the feasibility of using a
system such as BANKS for moderately large databases.

7 Extensions and Future Work

Several extensions are possible to our model. A keyword in a tuple/relation-name may not be exactly equal to
a search term but instead be a synonym to it. The BANKS model is easily extendible to allow scaling down of
node weights to account for approximate match or synonyms. Synonyms are particularly useful in the context
of matching metadata. Performance issues caused by metadata keywords matching large numbers of nodes are
being addressed in BANKS.

The model can be easily extended to support predicate of the formattr:[op]value, e.g.“author:Sudarshan,
year:>2000”. We want to allow user-defined rankings for temporal and other ordered domains. E.g., one may
search forconcurrency recent requiring a paper about concurrency published“recently”.

For a given set of keywords, there may not exist a reasonable cost tree that includes one node corresponding
to each keyword. In such a situation a tree including only some of the keywords may be useful. In our current
implementation we set the node prestige to the indegree of the node. We can incorporate a full-fledged eigen-
analysis as in Google/PageRank so as to facilitate prestige transfer (a form of spreading activation), wherein
nodes pointed to by heavy nodes become heavier. We are also considering several additional functionalities in
the user interface such as ways of getting answers with a tree structure (form) similar to a chosen answer, and of
getting summaries as answers. We plan to apply our current and later proximity algorithms to XML/OEM.

8 Conclusions

Many Web sites are becoming database-centric, and manually creating interfaces for browsing and querying
data is time consuming. Systems supporting keyword search on relational data reduce the effort involved in
publishing relational data on the Web and making it searchable. Examples of the types of data that could be
published with keyword search support include organizational data, bibliographic data and product catalogs.
We surveyed several approaches to keyword search on databases. We have developed BANKS, an integrated
browsing and keyword querying system for relational databases. BANKS has many useful features which allow
users with no knowledge of database systems or schema to query and browse relational databases with ease.

Acknowledgments: We wish to thank B. Aditya, Urmila Kelkar, Megha Meshram and Parag for implementing
some parts of the BANKS system and for their help with loading the databases.
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Abstract

As the amount of information stored on the web increases at an amazing pace, it gets harder for
search engines to retrieve the needed information. Recently, attention in the web community has focused
on the use of hyperlinks to help index and organize information. Several methods have been suggested
to take account of the knowledge induced by hyperlinks, with different objectives in mind. In this pa-
per, we focus on three of them: improving document ranking, estimating the popularity of a web page,
and extracting the most important hubs and authorities related to a given topic. Using probabilistic ar-
gumentation systems, a technique for dealing with uncertain knowledge which integrates propositional
logic and probability theory, we show how all these techniques can be modeled in a unified logical
framework. This allows comparisons of the different methods for using hyperlinks and illustrates some
of their weaknesses based on some experiments.

1 Introduction

Traditional techniques for indexing automatically documents must be reviewed in the context of the Internet.
For example, web pages may vary from a few words to megabytes. Moreover, the assumption that the words
contained in a document are good indicators of the underlying semantics is not as much verified as in document
collections: people who write web pages may have specific objectives in mind, and use tactics to influence the
ranking of search engines, called”spamming” or ”the search engine persuasion problem” [Mar97]. Finally, the
well-known problems of polysemy and synonymy are aggravated on the web: in a click, one canfind commercial
information, scientific papers, data repositories, propaganda or the web pages of friends.

To compensate the difficulties with indexing and retrieving information, many search engines are also of-
fering hierarchical classifications. These classifications were created and maintained manually. However the
cost of such a manually-based organization of information does not make it a viable option at long term be-
cause web pages change continuously and new categories or”cyber communities” appear everyday on the web.
And as reported in [Mar97],”repositories are now themselves resorting to search engines to keep their database
up-to-date”.
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1.1 Hypertext links

The difficulties with searching and organizing the web have led researchers to investigate other sources of knowl-
edge. Recently, attention has focused on one of them: the few billion hypertext links which”glue” the Internet
together. The web would after all not exist without these links, which are the paths which lead to information.
Indeed, browsing is for many users an usual way tofind ”nearby” information [Mar97].

Recent experiments seem to indicate that hyperlinks can be very valuable in locating or organizing infor-
mation. They have been suggested: (1) to enhance an initial ranking of documents [Sav94], (2) to compute an
estimate of a web page popularity [BL98], or (3) tofind the most important hubs and authorities for a given topic
[Kle98, Bh98, CdBD99]. It seems that each of these techniques is based on some underlying, sometimes partly
implicit hypothesis, on the type of knowledge which can be induced by the presence of a hyperlink between two
pages. For example, when they are used to estimate the popularity of a web page, hyperlinks can be interpreted
in the following way:”if a document is cited by a popular page, then it is possibly popular itself”. This type of
knowledge can easily be captured by propositional logic, if some measure of uncertainty is associated.

1.2 Outline of this paper

Probabilistic argumentation systems are a convenient technique for dealing with uncertain knowledge, by com-
bining propositional logic with probability theory. In this paper, we will show how the techniques mentioned
in the previous section can be described in this unified framework. This allows comparisons of the methods,
highlights some previously unseen weaknesses and leads to new methods using hyperlinks.

Section 2 will introduce the probabilistic argumentation systems, which have already been applied to infor-
mation retrieval (IR) in hypertext [Pic98]. Sections 3, 4 and 5 will describe techniques to handle hyperlinks in
order to improve document ranking, estimate the popularity of a web page, and extract the most important hubs
and authorities related to a given request. We will see how probabilistic argumentation systems can be used
to deal with the uncertain knowledge induced by the hypertext structure for the same purposes. Section 6 will
present some experiments with the model developed for improving an initial ranking of documents and the last
section will conclude this paper.

2 Probabilistic argumentation systems

In this section, we make a short introduction to probabilistic argumentation systems (PAS). There is much more
about PAS than what is shown here. For a detailed overview of PAS, the reader is referred to [HKL99]. However,
this tutorial should be sufficient to understand their application in this paper.

2.1 PAS

Propositional logic is one of the simplest and most convenient ways of encoding knowledge. An apparent
drawback is that propositional logic seems to be unsuitable for taking account of uncertainty. However, uncer-
tainty can be handled rather easily by adjoining particular propositions calledassumptions. Assumptions are
propositions which state the unknown conditions or circumstances upon which the facts and rules depend. If
an assumption is known to be true, then the fact or rule which depends on it holds. Otherwise, nothing can be
deduced from this fact or rule.

For example, let propositionD1 denote”documentd1 is relevant to the information need”. PropositionD1

can be either true or false. There might be some uncertainty associated to this fact, for example it may depend
on the reliability of the search engine which has retrieved it. By using an assumptiona1 denoting the uncertain
conditions under which the factD1 holds, the uncertainty can be captured by:a1 ! D1

1. Similarly, uncertainty

1For reading commodity, assumptions will be denoted by lowercase letters, and other propositions by capital letters
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in rules can also be captured by assumptions. For example, suppose that documentsd1 andd2 concern similar
subjects such that in some cases, they are both relevant to the same information need. These conditions which
do not always apply can be captured by the following:l12 ! (D1 ! D2), whereD2 means”documentd2
is relevant”, andl12 denotes the uncertain circumstances under which the ruleD1 ! D2 applies. We will in
general prefer the following equivalent notation for uncertain rules:D1 ^ l12 ! D2.

Most applications also require a numerical assessment of uncertainty. The numerical aspect of uncertainty
is obtained by assigning probabilities to assumptions. For example, if for the uncertain ruleD1 ^ l12 ! D2,
the conditionl12 is known to hold with probability 0.3, then we may write:p(l12) = 0:3. Note that this is
conceptually different from assigning a probability to the whole logical sentence(p(D1 ! D2) = 0:3), as is
done in other frameworks for integrating uncertainty with logic.

Given a knowledge base composed of uncertain facts, rules or conditions modeled with logical formulas
containing assumptions, we are interested infinding which symbolicarguments support or discard a given
hypothesish. A symbolic argument is a conjunction of literals of assumptions which, if added to the knowledge
base, makes the hypothesis true. We will then compute thesymbolic support of h given by the knowledge base
�, denotedsp(h; �), which contains the disjunction of all symbolic arguments which allow to deriveh if added
to the knowledge base. We may also want to evaluate the reliability of the support given by arguments, using
probabilities assigned to the assumptions. We will then compute thedegree of support dsp(h; �) = p(sp(h; �)),
the probability that the hypothesish is supported by the knowledge base�.

2.2 An example

For example, consider the following knowledge base:

� = (a1 ! D1) ^ (a2 ! D2) ^ (D1 ^ l12 ! D2) (13)

Remark that a knowledge base can always be represented as a conjunction of rules, facts, and more generally
clauses. We are interested infinding the arguments for hypothesisD2 given by�. It is easily seen thata2 is an
argument forD2, because(a2 ! D2) ^ a2 j= D2. The same way,(a1 ^ l12) is another argument forD2. Thus,
the symbolic support given by the knowledge base forD2 is computed in the following way:

sp(D2; �) = a2 _ (a1 ^ l12) (14)

The following probabilities are assigned to the assumptions:p(a1) = 0:4; p(a2) = 0:25; p(l12) = 0:3. What
is the probability that the support holds? In order to make an exact computation, independence assumptions
must be made, e.g.,p(a1 ^ a2) = p(a1) � p(a2), p(a1 ^ :a2) = p(a1) � (1 � p(a2)), etc. The degree of support
of D2 given by the knowledge base,dsp(D2; �), is:

dsp(D2; �) = p(sp(D2; �)) (15)

= p(a2 _ (a1 ^ l12)) (16)

= p(a2 _ (a1 ^ l12 ^ :a2)) (17)

= p(a2) + p(a1) � p(l12) � (1� p(a2)) (18)

= 0:34 (19)

The passage from Equation 4 to 5 in the previous equations comes from the logical equivalence:A _ B =
A _ (B ^ :A). Next sections will show how the notions on PAS presented here can be applied to deal with the
knowledge induced by the hypertext structure.

35



3 Using hyperlinks to modify document score and rank

3.1 Spreading activation in hypertext

The implicit reasoning made in the spreading activation (SA) technique is the following: a link from a document
d1 to a documentd2 is an evidence that their content is similar or related, such that ifd1 is relevant to a given
request,d2 may also be relevant. From an initial ranking of documents produced by a search engine, the
hyperlinks can be used to enhance the ranks of the documents linked to the best ranked documents. For example,
if d2 is linked tod1 which is rankedfirst, thend2 should be placed at a better rank.

The general scheme works as follows. The retrieval engine computes an initial retrieval status value (RSV)
or score for each document based on its similarity with the queryq. The RSV of documentd is then updated by
adding a fraction of the RSV of itsm neighbors through a certain number of cycles. The neighbors can linked
by incoming but also outgoing links. Suppose that documentd has neighborsd1 to dm. The RSV ofd at cycle
i+ 1 is computed by the following:

RSV (d0) = score(d; q) (20)

RSV (di+1) = RSV (di) +
mX
j=1

�j �RSV (dij) (21)

The parameter�j can be seen as the degree of certainty regarding the evidence provided by the link from
dj to d. It can be afixed value according to the link type2, or may vary according to a measure of similarity
between the documents and the query [Sav97]. We may also repeat this propagation scheme through a certain
number of cycles under the assumption that”friends of my friends are my friends”. However, the number of
cycles is often limited to one: more than one cycle is usually harmful to retrieval effectiveness [Sav97].

Several problems can be found with SA approach: there is no theoretical background guiding the choice of
the number of cyclesc or the value of the parameter�j. Moreover, evidence may propagate more than once if
there are cycles in the network.

3.2 Improving document ranking with PAS

Based on the PAS approach, we will also attempt to improve document ranking using the hypertext structure.
But instead of propagating document scores, we will seek all symbolic arguments supporting the relevance of a
document. In a second phase, probabilities are assigned to the assumptions and the degree of support given by
the arguments is computed. Finally documents are returned to the user by decreasing degree of support.

For each documentdi, let us denote propositionDi as:”documentdi is relevant”. If a document is retrieved
by the retrieval system, this is evidence in favor of that document’s relevance. Let assumptionai denote,”the
retrieval system has correctly retrieved documentdi”. Then for each document in the collection, we have:

ai ! Di (22)

For a given query, we may adjust the probability of the assumptionp(ai) to the rank at whichdi is retrieved
(p(aijrank)), and setp(ai) = 0 if di is not retrieved. In practice, wefit a logistic regression on the rank for a set
of training queries [SP01].

In a second step, we want to use the hypertext structure to improve this initial ranking. For each link fromdi
to dj, we induce the knowledge that, under some conditionlij , the relevance ofdi implies the relevance ofdj .

2We may consider links of various types: hypertext links, citation, nearest neighbor, etc. Moreover, links can be distinguished by
their orientation (incoming, outgoing), because this orientation may affect the amount of information about relevance contained in the
link.

36



The assumptionlij may denote the conditions under which the link implies relevance in the present context. We
have then:

Di ^ lij ! Dj (23)

We may thenfind the arguments supporting the relevance of each document. As an example, take a collection
containing documentsd1; d2; d3. There are links fromd2 to d1 and fromd3 to d1. The following knowledge
base is generated:

� = (a1 ! D1) ^ (a2 ! D2) ^ (a3 ! D3) ^ (D2 ! D1) ^ (D3 ! D1) (24)

We find for the support ofD1:

sp(D1; �) = a1 _ (a2 ^ l21) _ (a3 ^ l31) (25)

Here,d1 has three symbolic arguments. For a real query, one may want a numerical evaluation. The degree
of support ofD1 is:

dsp(D1; �) = p(sp(D1; �)) = p(a1) + p(a2 ^ l21 ^ :a1) + p(a3 ^ l31 ^ :a1 ^ :(a2 ^ l21))

= p(a1) + p(a2) � p(l21) � (1� p(a1)) + p(a3) � p(l31) � (1� p(a1)) � (1� p(a2) � p(l21))

For a given query, one needs to give values to thep(ai)’s according to the rank ofdi, and probabilities for
the linksp(lij). It is interesting to notice that the hypertext structure, interpreted logically, has been integrated
in the computing formulas for the degree of support of each document. This way, the computations can be done
very fast. Section 6 will show some experiments comparing the SA approach to the PAS model developed in
this section, and demonstrate how probabilities can be computed in practice.

4 Estimating the popularity of a web page

4.1 PageRank

The PageRank algorithm [BL98] considers that users have an absolute preference among web pages: it assumes
that the more a web page is visited, the more it is appreciated by the users. To measure this popularity, a
reasonable assumption is that the preference of users is reflected in the hypertext structure: a link toward a web
page is often an indication that this page is acknowledged by the author as a good source of information. A
simple way to implement this idea would be to count the number of times a web page is cited. Microsoft’s
home page, surely one of the most visited page on the web, is cited more than 23 million times in Altavista’s
index (probably much more in reality). However, each link should not be treated equally, since its impact also
depends on the popularity of the parent node: a page cited only a few times but which is in Yahoo!’s index would
certainly be quite visited. Thus the popularity of a page also depends on the popularity of the pages that cite it.

Such a popularity measure is used in the Google search engine to boost the scores of the documents, in-
dependently of the query. This algorithm is criticized because it biases the access to information [LG99]. The
”perverse” effect of PageRank is that it will push popular pages to get even more popular, and new or unknown
(unlinked) web pages to stay unknown. As said in [Mar97],”visibility is likely to be a synonym of popularity,
which is completely different than quality, and thus using it to gain higher score is a rather poor choice”. To our
advice, the frequency at which a page is visited by all the users of the web is not necessarily an indicator of its
relevance to a user who has its own preferences, cultural background, etc. The PAS modeling offers a clean way
to take account of these a priori user preferences.
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4.2 PAS and personalized ”popularity” measure

Suppose that for each user, it is possible to compute some personalized”popularity” measure. For example,
each user may define a profile (e.g., a set of keywords, a set of web pages defined by a bookmarks list), such
that, for each page on the web, we can assign a probabilityp(ai) based on its similarity with the user profile.
We would like to refine thisprior knowledge by taking account of the hypertext structure. Let us definePi as
”documentdi corresponds to the user’s interest”. Then for each document, there is some conditionai under
whichdi corresponds to the user’s interest which is denoted as:

ai ! Pi (26)

The probabilityp(ai) can be initially computed bases on the user profile, and then updated by keeping track
of the pages visited. For each link fromdi to dj , we induce that, under some conditionlij , the relevance ofdi
implies the relevance ofdj to the user’s interest. We have then:

Pi ^ lij ! Pj (27)

Note that the symbolic support that a document belongs to the favorite pages is the same as the support that
it will be relevant. In our model, each user will have the same symbolic arguments supporting the popularity of
each document. If an equal probabilityp(ai) is assigned to each document, it is assumed that the user has no
preference and this case corresponds to the PageRank model. However if the user gives some hints allowing to
compute personal a priori probabilitiesp(ai) or eventually link probabilities (e.g., by inspecting user bookmarks
lists), it will be possible to have a personal ranking for this user.

5 Finding hubs and authorities

5.1 Kleinberg’s algorithm

In many cases, the user does not know what exactly he/she is looking for, and is rather interested in having good
starting points for browsing. Given a general topic sufficiently represented on the web (e.g.,”human rights”,
”MP3”), it is possible to distinguish two types of potentially relevant pages:authorities andhubs. Authorities
are pages containing high quality and exhaustive information on a topic, and hubs are pages containing links to
the authorities, thus giving access to the relevant information. The web is very rich in central pages, fan sites
and other classifications of resources, and those can be very helpful for automatic classification of information.

How can wefind hubs and authorities? The assumption made by Kleinberg [Kle98] is that a good authority
is a page which has links from many good hubs, and a good hub is a page which has links towards many good
authorities. The algorithm has some similarity with PageRank model in that the quality of a page depends
recursively on the quality of the neighbors, although here the links are followed in both directions. The idea of
Kleinberg’s HITS algorithm [Kle98] is to consider a root set (e.g., 200 documents), containing the most likely
relevant pages found with a search engine in response to a given query. This root set is expanded with all
documents which point to or are pointed by these pages, to form the base set in which authorities and hubs will
be found. Then the connectivity of this base set is used as follows tofind the best hubs and authorities. For each
documentdp in the base set, a hub scorehp and a authority scoreap are computed. Both initial scores are set
to 1. Then the hub and authority scores are updated iteratively by, respectively, the sum of authority scores of
pages cited bydp, and the sum of hub scores of the pages citingdp. The updating equations are:

hp =
X

dp!di

ai; ap =
X

di!dp

hi (28)
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wheredp ! di means that there is a link fromdp to di. It can be shown that both scores will converge if
they are normalized after each iteration. The exact scores are not so important, since the user is presented with
a ranked list of hubs and authorities.

It is argued that the algorithm has an”objective” justification because itfinds some intrinsic properties of a
set of linked pages [Kle98, CdBD99]. However, we believe there are some weaknesses in this algorithm. One is
that a base set has to be chosen for a given topic, from which the hubs and authorities will be selected. Although
it is argued in [Kle98] that the method is robust (i.e. gives similar results) for different base sets, the choice of a
particular base set is nonetheless purely heuristic. Another is that the initial ranking of documents is not used as
prior evidence, while clearly an initially better ranked document has more chances to be relevant, and certainly
more chances to be a good hub or authority.

5.2 A model for computing hub and authority scores

Given a user’s request and a documentdi, propositionHi denotes”documentdi is a good hub” andAi denotes
”documentdi is a good authority”. Unlike Kleinberg’s algorithm, we consider that there is initial evidencehi
thatDi is a good hub, andai that it is a good authority.

hi ! Hi; ai ! Ai (29)

As in Kleinberg’s algorithm, we make the assumption that if a documentdi is cited by a good hubdj , then
this is evidence thatdi is a good authority. We have then:

Hj ^ fji ! Ai (30)

Similarly, if a good authoritydi is cited by a documentdj , then this is evidence that thatdj is a good hub:

Ai ^ gij ! Hj (31)

For each hyperlink fromdj to di, there will be two rules generated:(Hj^fji ! Ai); (Ai^gij ! Hj). From
this knowledge base�, one can compute for each documentdi, the symbolic support from� that it is a good hub
and a good authority,sp(Hi; �) andsp(Ai; �). Then, for a given topic, different probabilities are assigned to the
assumptionsp(ai) andp(hi), and eventually to the assumptionsfij andgij , which can befixed or depend on
some similarity value with the topic. The numerical degrees of supportdsp(Hi; �) anddsp(Ai; �) will be the
hub and authority scores of documentdi for this topic. Note that compared with Kleinberg’s algorithm, there
is no need to determine a base set, which is here the same for all topics. For different topics, only the assigned
probabilities will change.

6 Experiments with the model for spreading activation

In this subsection, we present our experiments done on the CACM and Trec’8 web test-collections. The CACM
test-collection (3.2 MB) contains 3,204 documents and 50 requests with their associated relevance judgments.
The web Track collection, denoted WT2g, contains around 250,000 pages (2.3 GB) extracted from the web and
owns 100 requests with their relevance assessments. The retrieval effectiveness is given by the average precision
at 11 recall values computed by the TRECEVAL software, the most used evaluation measure in IR.

6.1 Probabilities estimates

The set of symbolic operations is the following:

� Convert each link fromdi to dj toDi ^ lij ! Dj .
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Type of link SA PAS PAS vs. baseline PAS vs. SA
Citing 0.266 (0.3) 0.267 +5.57% +0.01%
Cited 0.261 (0.4) 0.273 +7.83% +4.11%

Table 3: Average precision on the CACM test-collection

� For each documentDi, compute the supportsp(Di; �).

� Put the support of each document in disjoint form using Heidtmann’s algorithm [Hei89]. Convert this
disjoint form to a directly usable formula for computing the degree of supportdsp(Di; �).

At this point, all the logical operations are done. A learning phase is also necessary to assign probabilities
to the assumptionsp(ai) andp(lij). For thefirst ones, a set of training queries is used tofit a logistic regression
to compute the probability of relevance given the page rank. The probabilities of link assumptions can be static
or may depend on some similarity value between the link and the search topic. For these experiments, we will
only consider static probabilities. They can also be estimated on a set of training queries [Pic98].

When a query is processed, the only operation remaining to compute is the degree of support for each
documentdi, dsp(Di; �).

6.2 Experiments

For the CACM collection, links were considered separately in the forward direction (citing) and in the backward
direction (cited). For each document, arguments of order three and less were computed, and the symbolic support
was put in disjoint form with Heidtmann’s algorithm.

The basic retrieval process was done using a classical retrieval system based on the cosine similarity measure
and this baseline average precision is 0.253. In Table 3, comparisons were made between PAS and this baseline,
and PAS and spreading activation (SA). The results shown for SA are the best ones obtained for a range of
values of the parameter�, which wasfixed for all links of a certain type. This best� value is depicted between
parenthesis in Table 3. For the PAS model, arguments of length three or less (at most three links assumptions)
were computed.

For the WT2g collection, ten different weighting schemes were used (okapi-npn, ..., bnn-bnn), to produce
ten different rankings of documents (for details see [SP01]). Table 4 depicted the retrieval effectiveness using
only the best incoming links, the best outgoing links, and both. There are slight but generally not significant
improvements over the baseline.

These results demonstrate that PAS can compete with an established technique such as SA. Also, indirect
neighbors can be considered without depreciating performance, at least for one test collection. For citing links,
there is no average difference in retrieval effectiveness, while for cited links, the difference is nearly significant.
However, for SA there is no understanding of the parameters involved, while in the PAS framework, parameters
are the probabilities of the links which have a clearer meaning both from a statistical and a logical viewpoint.

7 Discussion

In this paper, we have shown how various approaches using hyperlinks in order to search and organize the web
can be modeled using a single theoretical framework. Experiments have validated the approach when links are
used to improve an initial ranking. Experiments for computing hub and authorities, and a personalized popularity
measure have not been conducted yet because due to the fact that building a good quality test-collection is
a very costly and demanding task. But the IR community is tackling the task of building good quality web
test-collections, and experiments should be possible in a next future.
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Model Baseline Best incoming Best outgoing Combined
okapi-npn 0.267 0.267 (0.00%) 0.267 (0.00%) 0.267 (0.00%)
lnu-ltc 0.234 0.239 (+2.18%) 0.240 (+2.65%) 0.239 (+2.10%)
atn-ntc 0.257 0.260 (+1.44%) 0.261 (+1.52%) 0.260 (+1.32%)
ntc-ntc 0.138 0.139 (+0.14%) 0.139 (+0.14%) 0.138 (0.00%)
ltc-ltc 0.136 0.138 (+0.88%) 0.138 (+0.88%) 0.138 (+0.88%)
lnc-ltc 0.107 0.108 (+0.65%) 0.109 (+1.49%) 0.107 (+1.31%)
lnc-lnc 0.072 0.074 (+2.35%) 0.073 (+1.38%) 0.073 (+1.52%)
anc-ltc 0.082 0.084 (+2.31%) 0.087 (+5.59%) 0.084 (+2.79%)
nnn-nnn 0.071 0.072 (+0.56%) 0.072 (+0.42%) 0.070 (-0.98%)
bnn-bnn 0.096 0.100 (+4.18%) 0.101 (+5.02%) 0.099 (+3.56%)

Table 4: Average precision on the WT2g test-collection

Because several methods have been suggested to use hyperlinks for different purposes, there is a real need for
a formal framework to allow analysis and comparisons between them. We have shown one possible framework
here based on propositional logic for translating intuitions into knowledge. With the use of PAS, we have gained
some insights on those intuitions: for example, the similarity between the computation of popularity measures
and improving an initial ranking have been shown, and we have seen how some heuristic aspects of Kleinberg’s
algorithm could be described.
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Abstract

Preference-based item recommendation is an important technique employed by online product cata-
logs for recommending items to buyers. Whereas the basic mathematical mechanisms used for computing
value functions from stated preferences are relatively simple, developers of online catalogs need flexible
formalisms that support the description of a wide range of value functions and map to scalable imple-
mentations for performing the required filtering and evaluation operations. This paper introduces an
XML language for describing simple value functions that allow emulating the behavior of commercial
preference-based item recommendation applications. We also discuss how the required scoring opera-
tions can be implemented on top of a commercial RDBMS, and present directions for future research.

1 Introduction
Online product catalogs are the Internet equivalent to the paper catalogs used by mail-order retailers and compo-
nent suppliers to present their products to individual customers in business-to-business contexts. Similar to their
paper counterparts, they present information about product features and possible uses. In addition to this, online
catalogs can provide up-to-date information about availability and prices computed for the individual customer.
A second advantage of online catalogs is that they can provide buyer decision support functionality and give
recommendations for items in the catalog.

First-generation online catalogs only provide static HTLM pages arranged in a hierarchy. Here terminal
pages describe individual products, and intermediary category pages provide the navigational links to lower-
level product category pages and terminal product pages. First-generation online catalogs do not provide any
item recommendation or decision support. On the contrary, if a buyer needs to compare a group of items that
are not directly listed in a predefined category page, then the buyer has to invest a considerable amount of work
to first identify all the relevant product pages, then print the pages or manually extract the relevant information
into a single document, andfinally compare the information to determine the bestfit.

The inclusion of applications for feature-based item retrieval into online catalogs helps reduce this problem.
These applications facilitate the task of identifying the relevant products. They provide buyers with a product-
class specific form that lets them specify requirements regarding the item features. Thus, a user looking for a
PC can specify, for example, that she is interested in buying a PC with a Pentium II processor and at least 10 GB

Copyright 2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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of hard-disk space. When receiving the query, the retrieval application scans the product database and returns a
list of products that match the request. Some online catalogs also added side-by-side tables that list features of
user-selected items in a single comparison table– thus relieving users from having to compile this information
manually onto a single page. However, feature-based item retrieval is only of limited help if the number of
products that meet the buyer’s base requirements is large and if sorting the list according to a single item feature
(such as price) is not sufficient because the buyers soft preferences consider more than a single attribute [11].
Thus, a buyer who receives a long list of PCs that all match her base requirements has to inspect each item to
determine which of these computers best matches her soft preferences. An alternative to manual inspection is
to go back to the original query and enter more restrictive requirements. While being faster, such a strategy can
lead to the exclusion of items that would be bestfits [9].

Applications for preference-based item recommendation have been developed to address this problem. In
addition to allowing buyers to specify their hard requirements, they also let buyers express their“soft” prefer-
ences. The information about the requirements and preferences is then used to compile a value function that is
used to evaluate and sort items. A number of commercial applications for preference-based item recommenda-
tion exist. In the next section we discuss the user experience these systems provide. We then present a simple
XML representation scheme that allows specifying the range of value functions that need to be constructed by
the recommendation applications discussed. We also introduce an XML-based rule language that supports the
explicit representation of how user-provided information is mapped to modifications of the basic value function.
Finally we discuss issues related to the scalability of the scoring mechanisms that perform the preference-based
item evaluation.

2 Commercial Applications for Preference-based Item Recommendation
Commercial applications for preference-based item recommendation such as PersonaLogic (personaLogic.com),
Active Buyer Guide (www.activeBuyersGuide.com), and the PuchaseSource system developed by Frictionless
(www.frictionless.com) all work in three phases. After an initial phase of preference elicitation, they use the
elicited information to construct the value function. This function is then used to evaluate and sort the items,
andfinally display the resulting list to the user. Below we discuss each of these phases in more detail.

2.1 Preference Elicitation
The basic mechanism for preference elicitation is exemplified by PersonaLogic. Here preference elicitation is
performed by a sequence of dynamic web pages. Often the elicitation starts with a page prompting users for some
high-level profile information. For example, the PersonaLogic recommendation application for computers1

provides an initial dialog that elicites how buyers intend to use the computer. Buyers are asked how often they
intend to use the computer for word processing, games, desktop publishing, communication, and education.

From these initial inputs, the PersonaLogic applications derive recommendations and default settings for
some of the feature-related requirements and preferences. For example, from the fact that a buyer wants to play
games frequently the PersonaLogic computer recommendation application derives the requirement for a fast
processor.

In the next elicitation phase (which often spans multiple screens) all user preferences and requirements
relating to item features are elicited. Thus, the PersonaLogic computer recommendation application lets buyers
enter information such as the minimum memory requirements and the importance of having an integrated DVD
drive.

1This application, which was available until late 2000, currently (August 2001) is no longer accessible. Persona-
Logic was acquired by AOL in mid 2000. However, at AOL a number of PersonaLogic applications still are accessi-
ble; for example a dog recommendation application, a pet recommendation application, and a career recommendation applica-
tion can be accessed at www.aol.personalogic.com/?product=dogs,aolcom, www.aol.personalogic.com/?product=pets,aolcom, and
www.aol.personalogic.com/?product=career,aolcom respectively. We have started an archive of screen-shots of such disappearing rec-
ommendation applications at the following URL: www.zurich.ibm.com/mrs/recArchive/
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Finally, in the last elicitation step, the relative importance of the different preferences is elicited. Thus, the
PersonaLogic computer recommendation application elicits the relative importance of having a bigger hard-
drive, a faster processor, more RAM, a lower price, more multimedia features, and being from a preferred
manufacturer. Similar strategies for preference elicitation are also used by the Frictionless recommendation
component. Active Buyers Guide extends this basic preference elicitation procedure by providing additional
help in setting the relative importance of preferences. Instead of asking buyers to explicitly provide information
about the relative importance of preferences, buyers are presented with a sequence of pairwise comparisons of
hypothetical items that only differ in two features. The buyer is then asked to provide information whether, and
to which degree, she prefers one of the items.

Allowing buyers to specify base requirements and preferences is consistent with the disjunctive model of
decision making observed in the marketing literature [6] that assumes consumers use some base requirements
to eliminate purchase alternatives and an additive multi-attribute evaluation function to evaluate the remaining
alternatives.

2.2 Value Function Construction
We were not able tofind anyfirst-hand public information that describes how commercial applications construct
the value function from the elicited preference information. However, from the information elicited and the
evaluation that items receive, it seems possible to emulate the evaluation behavior of these applications with a
scoring mechanism that interprets afiltering expression and a simple Multi-Attribute Utility Theory (MAUT)
value function [5]. The general form of a simple MAUT function that combines the evaluations of individual
features of a given itemI as a weighted sum isU(I) =

P
jWj �Uj(Fj(I)), whereUj(Fj(I)) is the evaluation of

featurej of item I andWj is the weight assigned to this feature. In such a framework the elicited requirements
are used to compile thefiltering expression. The elicited buyer preferences determine how item features are
evaluated, i.e. how values of featurej (returned byFj(I)) are mapped to an evaluation between 0 and 1 by
the evaluation functionsUj(Fj(I)). The elicited buyer preferences also determine the relative weight of feature
evaluations (i.e.Wj).

2.3 Result Presentation
After thefilter expression and the valuation function have been constructed, they are applied to the set of items by
the scoring mechanism. The scoring mechanism inspects the feature values of each item. It determines whether
the item matches any of thefiltering clauses, determines the evaluation of each of the item features, and computes
the overall evaluation as the weighted sum of the feature evaluations. After this operation has been performed for
each item, thefiltered list of evaluated items is displayed to the user. All the preference-based recommendation
applications supply buyers with a list of items sorted by their evaluation. However, the applications differ in
the amount of information they provide to users for determining thefit of the item with the preferences stated.
PersonaLogic provides the least support in that it hides the absolute quality offit by always assigning the best
fitting item an evaluation of 100%– which might be surprising to users thatfind 100% items lacking with respect
to some important preferences. Active Buyers Guide, on the other hand, provides an absolute score that is less
than 100% for the best item if it does not completely match the stated buyer preferences. Moreover, for each
item it lists the values of features the buyer has expressed special interest in. It also highlights some special
plus and minus points about each of the items. This facilitates a rapid inspection of the main item features. The
Frictionless PurchaseSource system provides users with the most detailed information on thefit of items to the
stated requirements and preferences2 : For each item the user can see a summary page that lists graphically how
well the item satisfies each of the stated requirements and preferences.

2Note that the Frictionless PurchaseSource application currently (August, 2001) is no longer available. We hope to include screen-
shots also from this application in our recommendation applications archive.
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2.4 Preference Revision
After inspecting the list of evaluated items, users have the option to return to the preference elicitation stage of
the dialog, and revise some of their stated requirements and preferences. However, none of the recommendation
applications discussed here support a close integration of item inspection and preference revision, as it is possible
in some research systems [11]. They also do not support critiquing of returned items and their feature values as
suggested for systems performing evaluation-oriented provisioning of product information [4].

3 An XML Representation for Simple Value Functions
In the preceding section, we argued that the evaluation behavior of commercial applications for preference-based
item recommendation can be emulated with scoring mechanism that evaluates a database of items according to
a filtering expression and a simple MAUT value function. We have devised an XML representation schema that
allows suchfiltering expressions and simple MAUT value functions to be represented in an integrated fashion.
An example XML representation of a simple value function is shown in Figure 1.

<criteria rootId="root">
               <criterion id="Price" importance="50" must="false" attribute="Price">

               </criterion>

               </criterion>
              <criterion id="CDWriter" importance="5" must="false" attribute="CDWriter">

               </criterion>

               </criterion>
               <criterion id="root" importance="100">
                                     <subCriteria>

</criteria>
               </criterion>
                                     </subCriteria>

               </criterion>

               <criterion id="RAM" importance="25" must="false" attribute="RAM">

               <criterion id="Speed" importance="25" must="false" attribute="Speed">

   

                       <symEval sym="8X">.75</symEval>

               <criterion id="HD Size" importance="25" must="false" attribute="HD">

                                                     <Criterion  ref="Price"/>
                                                     <Criterion  ref="Speed"/>

                                                     <Criterion  ref="CDWriter"/>
                                                     <Criterion ref="RAM"/>

                                                     <Criterion  ref="HD Size"/>

                       <numEval valUnit="$" val1="0" eval1="1" val2="5600" eval2="0"/>

                        <numEval valUnit="mhz" val1="300" eval1="0" val2="1600" eval2="1"/>

                       <numEval valUnit="MB" val1="32" eval1="0" val2="512" eval2="1"/>

                       <symEval sym="12X">1</symEval>

                       <symEval sym="none">0</symEval>
                       <symEval sym="2X">.25</symEval>
                       <symEval sym="4X">.5</symEval>

                       <numEval valUnit="GB" val1="0" eval1="0" val2="50" eval2="1"/>

Figure 1:Example of XML-based specification of a simple MAUT value function

Using this representation language, a MAUT value function is represented as a tree of evaluation criteria.
A criterion is either a terminal or a combination criterion. Terminal criteria (such as Price and CDWriter in
Figure 1) have a set of evaluation specifications as sub-elements that specify how numeric and symbolic values
of features should be evaluated. Numeric evaluation specifications (i.e., thenumEval sub-elements of criteria)
allow specifying how the numeric values of the corresponding item feature should be mapped to an evaluation
between 0 and 1. In thenumEval specification the“val1” value specifies the starting point of a linear function
and“val2” the end-point; the“eval1” value specifies the evaluation at the starting point“val1” and“eval2” the
evaluation at the end of the interval. ThesymEval sub-elements of criteria specify how symbolic values are
mapped to evaluations. Thus, for example, in the criterion CDWriter in Figure 1 the evaluation specification
< symEvalval = "8X" > :75 < =symEval > implies that items with a value of“8X” for their CDWriter
feature will receive an evaluation of 0.75 for the CDWriter criterion. In addition to thenumEval andsymEval
evaluation specificationsnumReject andsymReject elements can also be included. These elements (not shown
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in Figure 1) allow hard requirements to be specified for items. Thus, items that match these reject clauses will
not be included in the result set. The scoring mechanism interpreting the XML specification has to compute
the evaluation and reject values independently. Combination criteria such as“root” combine the evaluation
and reject values of their sub-criteria into single evaluation and reject values. Scoring mechanisms interpreting
the XML specifications compute the evaluation as the weighted sum of the sub-node evaluations using the
“importance” attribute of criteria as the weighting factor. Reject information is propagated in such a way that if
an item is rejected according to one sub-criterion that has the attribute“must” set to true, then the item is also
rejected according to the super-criterion. Criteria where“must” is set to false onlyflag items as unsatisfactory
without rejecting them.

4 Explicit Representation of Value Function Adaptation Rules
Value function construction from user input can be done by a program that interprets the user input and generates
the value function specification. However, we believe that it is advantageous to make explicit the relationship
between user input and configuration of the value function. This way the relationship remains easier to under-
stand and easier to maintain. We have therefore created an XML-based rule language that allows specifying
how the base value function should be adapted based on user input. Figure 2 shows an example of a set of
modification rules. The proposed language for criteria modification includes actions for setting, increasing, and
decreasing criteria importance. It also includes means to add reject conditions to criteria. In our experiments
with this language in the context of utility-based generation of sales interviews [10], we found it sufficiently
expressive to represent how a basic value function is to be adapted to reflect the preferences of the individual
buyer. In particular, in our examples we did not encounter a need to dynamically change the hierarchy of criteria
that make up the value function.

<rules>
          <rule ID="games">
                         <if><answer question="gamer">yes</answer></if>
                         <then><incImportancePerc criterion="Graphics Card">50</incImportancePerc></then></rule>
          <rule ID="price1">
                         <if><answer question="price">over $300</answer></if>
                         <then><setImportance criterion="Price">0</setImportance></then></rule>
          <rule ID="price2">
                         <if><answer question="price">up to $1500</answer></if>
                         <then><addNumValueReject criterion="Price" from="1501" to="5600"/></then></rule>
</rules>

Figure 2:Example of XML representation of value function adaptation rules

5 Towards Scalable Scoring for Preference-based Item Recommendation
As the set of input items to which the scoring mechanism has to apply the evaluation function becomes larger,
the performance of the scoring mechanism becomes increasingly critical. Users are not willing to wait too
long before they can access the list of recommended items being generated. Stand-alone scoring mechanisms
are likely to opt for implementing sophisticated algorithms and techniques to address this performance issue.
Given that the set of input items is likely to be stored in a relational database a question arises. Can the scoring
functionality (or at least some part of it) be delegated to the database system (DBMS)? We argue that the answer
to this question is an unequivocal yes. Most commercial database systems such as IBM’s DB2 UDB allow
users to write their own extensions to SQL. In DB2 UDB a user-defined function (UDF) can be used to write
extensions to SQL. By expressing the evaluation function as a UDF (or a set of UDFs), the scoring mechanism
can be expressed as an SQL query and therefore take full advantage of the DBMS’ query processing engine.

Below we give a simple example to illustrate how UDFs can be used to help express the scoring functionality
as an SQL query. Suppose that the Price, Speed, RAM, CDWriter, and HDSize information are represented in a
database table called“Product” and that a user is interested in obtaining a set of PC recommendations based on
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the preferences specified in Figure 1.
To express the evaluation function for the“Price” attribute as a UDF two simple steps are required. Thefirst

is to write the actual code that implements the evaluation function. In an example the code is written in JAVA
but other programming languages such as C and C++ are also supported. The second step is to register the UDF
to the database and associate the JAVA code (written in thefirst step) with it. This is easily accomplished using a
CREATE FUNCTION SQL statement [14]. When the UDF is invoked by the database system, the code written
in step 1 is executed. Figure 3 lists the piece of JAVA code that implements the evaluation function of the Price
attribute according to the preferences set in Figure 1.

import COM.ibm.db2.app.*;
class EvaluationUDF extends UDF
{
       public double PriceEval (double price, double val1, double val2)
       {
               /*
               * Get the slope and end point of the line segment that includes the
               * 2 points (val1, 1) and (val2, 0)
               * The line segment equation is y = a * x + b;
               */

}

               double a = 1 / (val1 − val2);
               double b = −val2 / (val1 − val2);
               /*
               * Return the evaluation for this price
               */
               double eval = a * price + b;
               return (eval);
       }

Figure 3:Evaluation function implementation as a JAVA UDF for the Price attribute

The evaluation functions for the Speed, RAM, CDWriter, and HDSize attributes can be expressed as UDFs
in the same way as the Price attribute. Let SpeedEval, RAMEval, CDWriterEval, and HDSizeEval denote the
UDFs for the Speed, RAM, CDWriter, and HDSize attributes respectively. Having expressed the evaluation
functions as UDFs, the scoring functionality can be easily expressed using the following SQL query :

SELECT Product ID, Price, Speed, RAM, CDWriter, HDSize,(50 * PriceEval (Price, 0, 5600) + 25 * SpeedE-
val(Speed, 1600, 300) + 25 * RAMEval(RAM, 512,32) + 5 * CDWriterEval(CDWriter) + 25 * HDSizeE-
val(HDSize)) AS Score
FROM product
ORDER BY Score

The above query shows that the score of each product is computed as a weighted sum aggregation of the
Price, Speed, RAM, CDWriter and HDSize attributes. The weight of each attribute is as specified by the “Im-
portance” field in Figure 1. Rather than having the weights hard-coded in the above query, a better alternative
is to store the weights in a separate database table (called ATTRIBUTEWEIGHT for example) and modify
the above query to read these weights from the table ATTRIBUTEWEIGHT. Having the weights stored in a
separate table provides more flexibility because users are likely to modify these weights while searching for the
product that suits them best. The ATTRIBUTEWEIGHT table can be implemented using just two columns: A
string to indicate the fully qualified attribute name and an integer to represent the weight of that attribute. The
following UDF (written in SQL this time) can be used to return the weight of a given attribute :

47



CREATE FUNCTION weight (attribute-name char(30)) RETURNS integer
LANGUAGE SQL READS SQL DATA NO EXTERNAL ACTION DETERMINISTIC
RETURN SELECT weight FROM attribute weight WHERE attribute weigth.attribute-name = weight.attribute-
name

The SQL query that implements the scoring functionality can then be modified as follows to use this new UDF :

SELECT Product ID, Price, Speed, RAM, CDWriter, HDSize,(weight(”product.Price”) * PriceEval (Price, 0,
5600) + weight(”product.Speed”) * SpeedEval(Speed, 1600, 300) + weight(”product.RAM”) * RAMEval(RAM,
512,32) + weight(”product.CDWriter”) * CDWriterEval(CDWriter) + weight(”product.HDSize”) * HDSizeE-
val(HDSize)) AS Score
FROM product
ORDER BY Score

By expressing the evaluation function as a UDF (or a set of UDFs) the scoring mechanism can be expressed
as an SQL query and therefore take full advantage of the DBMS’ query processing engine. The performance
benefit of using this approach can be significant when the set of input items to which the scoring mechanism
needs to apply the evaluation function becomes large. However, the benefit of improved performance has to be
weighted against the actual effort needed to create these UDFs, register them, and write the appropriate SQL
statements to call them. Therefore, we are currently investigating ways to automatically perform the described
compilation steps from the XML criteria specification given.

Also, other authors have developed schema for preference-based item scoring and discussed how to map
them onto relational database queries. In [1], Agrawal and Wimmers proposed a mechanism for represent-
ing and combining preferences that is based on a relational representation. Here preferences are described in
database tables that mirror the structure of item tables and have an additional “score” column containing the
evaluation of items. A wildcard symbol can be used instead of an item feature value to facilitate a concise
description of preferences that are independent of certain item feature values. A special symbol (instead of a
score between 0 and 1) is used to indicate the rejection of items. Combination of preferences is done through
a combination function that is implemented as external function. However, in our opinion, the proposed mech-
anism for preference representation is not sufficiently expressive to handle the range of value functions used
by preference-based recommendation applications. In particular, it seems unclear how numeric evaluation rules
should be represented in an efficient manner. Also, it seems that in the proposed scheme an item either receives
an evaluation or is rejected. However, most recommendation applications compute rejection and evaluation in-
formation independently from each other. The work of Hristidis et al. [7] extends the work of Agrawal and
Wimmers [1] by illustrating how materialized views can be used to increase the efficiency of DB-based scor-
ing. Although the idea of using materialized views is certainly attractive, their preference representation schema
suffers from the same limitations of expressiveness as that of Agrawal and Wimmers [1].

6 Beyond Simple Value Functions
In the preceding section we discussed how the proposed XML language for simple MAUT value functions
could be mapped to scalable scoring mechanism using relational database techniques. We also argued that other
proposals for implementing preference functions on top of relational databases are not sufficiently expressive
to cover the range of value functions needed by applications for preference-based item recommendation in
online product catalogs. However, the introduced XML preference function representation language is also
limited in its expressiveness. Although we believe that it covers the value functions that most preference-
based item recommendation applications need to construct, we have already experienced practical situations that
required custom extensions. For example, extensions are needed to allow preferences regarding values other than
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numbers and symbols (e.g. dates) to be expressed. Extensions are also needed to deal flexibly with situations in
which items have multiple feature values. Finally, the simple scoring scheme also does not cover situations that
require items to be classified into more than the two standard classes of “not rejected” and “rejected” items. We
have started to experiment with extended value function representations to find the best way to combine easy
specification of simple scoring functions with expressive means for extending and customizing the base scoring
functionality.

Eventually such extensible value function representations and the associated scoring mechanisms should also
be able to deal with more complex value functions that have been explored by recent research on item represen-
tation and evaluation. For example, in [8] Lukacs studied mechanism for scoring items with under-specified item
values (such as a travel time that “might be between 20 and 30 minutes”). FIPA [13] and Willemot et al. [12]
propose to describe spaces of configurable items as constraint satisfaction problems. In addition, Chajewska et
al. [2], and Chin and Porage [3] explored mechanisms for dealing with situations in which no reliable informa-
tion is available regarding the preferences (i.e. weights and feature evaluation functions). The development of
description languages that support easy and expressive specification of such complex value functions remains
future work. Increasing the scalability of a scoring mechanism by performing the scoring operations within
the framework of a relational database system is likely to remain a valid approach to increase the scalability
of scoring mechanisms even for these more complex situations. Experiments and empirical evaluations will be
needed to further explore this space.
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Technical Committee on Data Engineering
Election of Chair for 2002-2003

The Chair of the IEEE Computer Society Technical Committee on Data Engineering (TCDE) is elected for a two-year
period. The mandate of the current Chair, Betty J. Salzberg, terminates at the end of 2001. Hence is time to elect a Chair
for the period January 2002 to December 2003. Please vote using the ballot on the next page.

The Nominating Committee, consisting of Masaru Kitsuregawa, Paul Larson, and Betty Salzberg, is nominating Erich
Neuhold for the position as Chair of TCDE. Erich’s position statement and a short biography are included below. The
Committee invited nominations from members of the TCDE but has received no other nominations.

Paul Larson, Nominating Committee Chair

ERICH NEUHOLD
Professor, Department of Computer Science

Darmstadt University of Technology
Wilhelminenstrasse 7
D-64283 Darmstadt

Germany
neuhold@darmstadt.gmd.de

Position Statement

If elected I hope to continue the excellent work of Betty Salzberg.
The Technical Committee on Data Engineering publishes a newsletter, the Data Engineering Bulletin and sponsors the

ICDE (International Conference on Data Engineering) and the associated workshop RIDE (Research Issues in Databases).
In addition it will continue to work with SIGMOD to make the ICDE proceedings and other relevant publications available
on CD-ROM and the SIGMOD archive.

I will continue Betty’s work to increase the presence and active participation of industrial members of ICDE and I will
also work on establishing more joint events with data base societies and action groups in other countries. Database research
has had a tremendous influence on DB technology and has gained continuously by feedback from the practitioners. Such
cooperation has to be strengthened wherever possible. One of the possibilities here is to explore ways to broaden ICDE by
either industry oriented tracks or associated workshops that gear to the practitioners and users and feed back their problems
and experiences to the research community. I will try to achieve this goal by working closely together with the ICDE
Steering Committee.

Biography

Erich Neuhold is Professor of Computer Science at Darmstadt University of Technology and Director of the GMD In-
stitute for Integrated Publication and Information Systems (IPSI) also in Darmstadt, Germany. He has been Professor at
the University of Stuttgart and the Technical University of Vienna and he has also worked in research and management
positions for IBM and Hewlett Packard both in Europe and the USA. His areas of expertise in databases include distributed
databases, object-oriented databases, databases for the internet (e.g. semi-structured data and XML), information retrieval,
information visualization and their applications in digital libraries, cultural heritage and e-commerce.

He has published four books and about 180 papers. His work has appeared, among others, in the VLDB Journal,
Information Systems, Acta Informatica and in many conferences as, for example, VLDB, ICDE, MMDB, ADL and DL.
He has served in all capacities on many conference committees and was PC Chair and General Chair of ICDE.

He is the current Vice Chair of the IEEE TCDE and the Chair of the ICDE Steering Committee and also a member of
the JCDL at ECDL Steering Committees. He is a Senior Member of IEEE.
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