
Bulletin of the Technical Committee on

Data
Engineering
March 2000 Vol. 23 No. 1 IEEE Computer Society

Letters
Letter from the Editor-in-Chief .David Lomet 1
Letter from the TCDE Chair .Betty Salzberg 2
Letter from the Special Issue Editor .Elke A. Rundensteiner 3

Special Issue on Database Technology in E-Commerce

Data Mining Techniques for Personalization .Charu C. Aggarwal and Philip S. Yu 4
Personal Views for Web Catalogs. .Kajal Claypool, Li Chen, and Elke A. Rundensteiner10
An Interoperable Multimedia Catalog System for Electronic CommerceM. TamerÖzsu and Paul Iglinski 17
Database Design for Real-World E-Commerce SystemsIl-Yeol Song and Kyu-Young Whang23
End-to-end E-commerce Application Development Based on XML Tools

. .Weidong Kou, David Lauzon, William O’Farrell, Teo
Loo See, Daniel Wee, Daniel Tan, Kelvin Cheung, Richard Gregory, Kostas Kontogiannis, John Mylopoulos29

Declarative Specification of Electronic Commerce Applications .
. .Serge Abiteboul, Sophie Cluet, and Laurent Mignet37

TPC-W E-Commerce Benchmark Using Javlin/ObjectStore .Manish Gupta 43
An Overview of the Agent-Based Electronic Commerce System (ABECOS) Project .. .

. .Ee-Peng Lim and Wee-Keong Ng49

Announcements and Notices

Editorial Board

Editor-in-Chief
David B. Lomet
Microsoft Research
One Microsoft Way, Bldg. 9
Redmond WA 98052-6399
lomet@microsoft.com

Associate Editors

Amr El Abbadi
Dept. of Computer Science
University of California, Santa Barbara
Santa Barbara, CA 93106-5110

Alon Levy
University of Washington
CSE, Sieg Hall, Room 310
Seattle, WA 98195

Elke Rundensteiner
Computer Science Department
Worcester Polytechnic Institute
100 Institute Road
Worcester, MA 01609

Sunita Sarawagi
School of Information Technology
Indian Institute of Technology, Bombay
Powai Street
Mumbai, India 400076

The Bulletin of the Technical Committee on Data Engi-
neering is published quarterly and is distributed to all TC
members. Its scope includes the design, implementation,
modelling, theory and application of database systems and
their technology.

Letters, conference information, and news should be
sent to the Editor-in-Chief. Papers for each issue are so-
licited by and should be sent to the Associate Editor re-
sponsible for the issue.

Opinions expressed in contributions are those of the au-
thors and do not necessarily reflect the positions of the TC
on Data Engineering, the IEEE Computer Society, or the
authors’ organizations.

Membership in the TC on Data Engineering (http:
www. is open to all current members of the IEEE Com-
puter Society who are interested in database systems.

The web page for the Data Engineering Bulletin
is http://www.research.microsoft.com/research/db/debull.
The web page for the TC on Data Engineering is
http://www.ccs.neu.edu/groups/IEEE/tcde/index.html.

TC Executive Committee

Chair
Betty Salzberg
College of Computer Science
Northeastern University
Boston, MA 02115
salzberg@ccs.neu.edu

Vice-Chair
Erich J. Neuhold
Director, GMD-IPSI
Dolivostrasse 15
P.O. Box 10 43 26
6100 Darmstadt, Germany

Secretry/Treasurer
Paul Larson
Microsoft Research
One Microsoft Way, Bldg. 9
Redmond WA 98052-6399

SIGMOD Liason
Z.Meral Ozsoyoglu
Computer Eng. and Science Dept.
Case Western Reserve University
Cleveland, Ohio, 44106-7071

Geographic Co-ordinators

Masaru Kitsuregawa (Asia)
Institute of Industrial Science
The University of Tokyo
7-22-1 Roppongi Minato-ku
Tokyo 106, Japan

Ron Sacks-Davis (Australia)
CITRI
723 Swanston Street
Carlton, Victoria, Australia 3053

Svein-Olaf Hvasshovd (Europe)
ClustRa
Westermannsveita 2, N-7011
Trondheim, NORWAY

Distribution
IEEE Computer Society
1730 Massachusetts Avenue
Washington, D.C. 20036-1992
(202) 371-1013
twoods@computer.org

Letter from the Editor-in-Chief

Election Results for the Chair of the TC on Data Engineering

The TC on Data Engineering held an election for TC chair. Below is the text of a message from NIchelle Schoultz
reporting on the results of the election. I would like to congratulate Betty Salzberg on her re-election as TC chair.

Dear Members of the Technical Committee on Data Engineering:

Betty Salzberg has been elected as the 2000 Chair for TCDE. She was elected by a
unanimous decision, with a total of 8 members voting. If you have any questions,
please feel free to contact me nschoultz@computer.org
Thank you.

Nichelle Schoultz
Volunteer Services Coordinator

About the Current Issue

The world of the world wide web is undergoing explosive growth. An important element of that growth is the
emergence of electronic commerce as a significant factor in the global economy. Indeed, while it is sometimes
hard to understand the stock market, the valuations of companies that have a presence in the e-commerce sector
have exploded, while the stock market valuations of more traditional companies have languished. It does not
take a genius to understand that e-commerce is having and will continue to have an enormous impact the world
economy.

Elke Rundensteiner has assembled a collection of articles for this issue that emphasizes the database technol-
ogy role in e-commerce. Included in the issue are papers from the academic community, industrial research, and
industry. The issue provides a valuable snapshot on what is going on in this rapidly changing world. I’d like to
thank Elke for her fine choice of topic and her very successful effort on this issue. I want to thank her as well for
her efforts throughout her tenure as an editor of the Bulletin.

New Editors

Careful readers will note that the inside front cover now includes our two new editors, Sunita Sarawagi and Alon
Levy. If you have suggestions for the remaining two editorial positions, please send me email at lomet@microsoft.com.

David Lomet
Microsoft Corporation

1

Letter from the TCDE Chair

The ICDE 2000 Conference was held February 29 to March 3 in San Diego. The attendance was 217. The tech-
nical program was praised by many; only 41 of nearly 300 submitted papers were accepted. In addition to the
technical papers, several panels, industrial sessions, demonstrations and poster sessions took place. Highlights
included keynote addresses by Jim Gray of Microsoft, the 1999 Turing award winner, on ”Rules of Thumb in Data
Engineering” and by Dennis Tsichritzis, head of the GMD [German] National Research Center for Information
Technology on ”The Changing Art of Computer Research.”

The best student paper was awarded to V. Ganti, J. Gehrke and R. Ramakrishnan (Univ. of Wisconsin, Madi-
son) for ”DEMON: Mining and Monitoring Evolving Data.” The best paper award went to S. Chaudhuri and V.
Narasayya from Microsoft for ”Automating Statistics Management for Query Optimizers.”

I would like to thank the organizers for working so hard to produce a high-quality technical conference. In
particular, I thank Paul Larson, the general chair and David Lomet and Gerhard Weikum, the program chairs. In
addition, the organizing committee members and the program committee members all contributed to making this
conference an unqualified success.

The next ICDE will be held in Heidelberg, Germany in April 2001. I hope that you will all plan to attend. It
was also announced that the 2002 conference will be in Silicon Valley, California.

The TCDE held an open meeting during the ICDE conference luncheon. These meetings take place yearly at
the ICDE and all TCDE members are invited to attend. One item discussed at this meeting was the participation
with ACM SIGMOD in the SIGMOD anthology. This is a collection of CDROMs being made available to SIG-
MOD members and TCDE members. The SIGMOD members have received the first 5 disks. We are arranging
to mail to ICDE members next fall all the disks (probably about 13) which will be available at that time. These
disks contain proceedings of ICDE, SIGMOD, VLDB,EDBT, PDIS and ICDT conferences and ACM PODS and
IEEE TKDE journals and the Data Engineering Bulletin, among other publications in the database systems area.

Betty Salzberg
Northeastern University

2

Letter from the Special Issue Editor

The Internet has taken over our world in a storm, affecting most aspects of our personal as well as professional
lives. One of the most remarkable phenomenon is how the internet has influenced business, both in terms of how
we conduct business nowadays as well as in terms of opening up novel business opportunities. This has resulted
in a surge of start-up companies filling this new nitch of business opportunities, as well as established companies
re-inventing themselves by reaching out to their business partners (business-to-business e-commerce) and their
customers (business-to-customer e-commerce) in new ways as well as internally streamlining their own business
processes.

In this issue, we now take a look atDatabase Technology in E-Commerce. We study new requirements that
E-commerce applications are posing to database technology (for example, on database design); new tools be-
ing developed for E-commerce applications (for example, XML/EDI tools), as well as presenting examples of
working systems built using these new tools.

The first paper “Data Mining Techniques for Personalization” by Charu C. Aggarwal and Philip S. Yu pro-
vides an overview of techniques used to tailor a system to specific user needs. Their survey compares in particular
collaborative filtering, content based methods, and content based collaborative filtering methods.

A natural complement to this personalization issue is the work by Kajal Claypool, Li Chen, and Elke A. Run-
densteiner on “Personal Views for Web Catalogs”. They illustrate how user preferences or behavior extracted
with one of these mining techniques can be utilized by companies to better serve their customers (and thus them-
selves) by now offering and maintaining personal views to E-commerce catalogs.

The next paper by M. Tamer̈Ozsu and Paul Iglinski also focusses on electronic catalogs, The paper titled
“An Interoperable Multimedia Catalog System for Electronic Commerce” introduces the authors’s project on
developing the infrastructure of multimedia catalogs build over possibly distributed storage systems.

The paper by Il-Yeol Song and Kyu-Young Whang entitled “Large Database Design for Real-World E- Com-
merce Systems” outlines issues faced when designing a database for e-commerce environments based on their
experience with real-world e-commerce database systems in several domains, such as an online shopping mall,
an online service delivery, and an engineering application.

The paper “End-to-end E-commerce Application Development Based on XML Tools” by Weidong Kou,
David Lauzon, William O’Farrell, Teo Loo See, Daniel Wee, Daniel Tan, Kelvin Cheung, Richard Gregory,
Kostas Kontogiannis, and John Mylopoulos describes how newly emerging XML tools can assist organizations in
deploying e-commerce applications. An e-business application framework and architecture are introduced using
a virtual store scenario.

Serge Abiteboul, Sophie Cluet, and Laurent Mignet put forth that “Declarative Specification of Electronic
Commerce Applications” could allow us in the future to develop typical E-commerce applications much more
rapidly. The ActiveView language is sketched as possible candidate for such specifications.

Manish Gupta from Excelon Inc (formerly Object Design Inc.) discusses design considerations of a high
performance high load e-commerce web system. The paper “TPC-W E-Commerce Benchmark Using Javlin/
ObjectStore” includes preliminary experimental results on the TPC-W benchmark.

Lastly, Ee-Peng Lim and Wee-Keong Ng in “An Overview of the Agent-Based Electronic Commerce System
Project” outline issues they have encountered when building business-to-consumer e-commerce systems using
agent technologies.

Elke A. Rundensteiner
Worcester Polytechnic Insitute

3

Data Mining Techniques for Personalization

Charu C. Aggarwal, Philip S. Yu
IBM T. J. Watson Research Center

Yorktown Heights, NY 10598

Abstract

This paper discusses an overview of data mining techniques for personalization. It discusses some of
the standard techniques which are used in order to adapt and increase the ability of the system to tailor
itself to specific user behavior. We discuss several such techniques such as collaborative filtering, content
based methods, and content based collaborative filtering methods. We examine the specific applicability
of these techniques to various scenarios and the broad advantages of each in specific situations.

1 Introduction

In recent years, electronic commerce applications have gained considerable importance because of the impor-
tance of the web in electronic transactions. The Web is rapidly becoming a major source of revenue for electronic
merchants such as Amazon, and Ebay, all of which use some form of personalization in order to target specific
customers based on their pattern of buying behavior.

The idea in personalization in web business applications is to collect information about the customer in some
direct or indirect form and use this information in order to develop personalization tools. Thus, an electronic
commerce site may continue to keep information about the behavior of the customer in some explicit or implicit
form. The two typical methods for information collection at an E-commerce site are as follows:

� Explicit Collection: In this case, the customer may specify certain interests, which reflect his desire of buy-
ing certain products. Example of such methods include collaborative filtering methods in which customers
specify ratings for particular products and these ratings are used in order to make peer recommendations.

� Implicit Collection: In implicit collection, the E-commerce merchant may collect the buying behavior of
the customer. In addition, the browsing or other bahavior may also be captured using the web or trace log.
There are several limitations to the nature of implict collection because of privacy requirements of users.

This paper is organized as follows. In the next section, we will discuss collboarative filtering which is the
technique of using the explicit information in order to make peer recommendations. In subsequent sections, we
will discuss more indirect ways of using data mining techniques on the customer behavior in order to capture
his patterns. Finally, we will discuss an overview of the general applicabilities of these techniques to different
scenaries.

Copyright 2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

4

2 Collaborative Filtering Techniques

In collaborative filtering techniques, the idea is appropriate for e-commerce merchants offering one or more
groups of relatively homogeneous items such as compact disks, videos, books, software and the like. Collab-
orative filtering refers to the notions of multiple users “sharing” recommendations in the form of “ratings”, for
various items. The key idea is that collaborating users incur the cost (in time and effort) of rating various sub-
sets of items, and in turn receive thebenefitof sharing in the collective group knowledge. For example, they can
view predicted ratings of other items that they identify, see ordered lists of items whose predicted ratings are the
highest and so on. The explicit ratings entered by the user are typically done so in some kind of user interface
which we will refer to as a profiler dialog.

The importance of collaborative filtering arises from the fact that the number of possible items at an E-commerce
site is far greater than the number of items that a user can be expected to rate in a reasonable amount of time. In
fact, the catch in collaborative filtering is to give users enough motivation so that a sufficient number of items
are rated. Typically, it is known that given the choice, only1� 2% of the users are likely to rate items, and even
among them only a small number of items can be rated. In order to implement a site in which every user rates
items, E-commerce merchants typically provide incentives such as free email [14] or other products, which may
then be used to elicit greater user behavior. Once a greater level of user behavior has been achieved, the ratings
of various items may be predicted for a given user by creating peer groups. In this case, the idea is to construct
groups of users having a similar behavior and using theiraggregatebehavior in order to predict the ratings for
a given user-product combination which has not been explicitly specified in a profiler dialog [10, 12]. Recent
techniques have also been developed[3] which build peer groups in an even more general way by using groups
of people which have either positively or negatively correlated behavior.

Some examples of useful questions which could be resolved by a recommender system are as follows:

� Show useri the projected rating for itemj, assuming that the item has not already been rated by that user
and assuming that the algorithm is able to meaningfully estimate the item’s rating. If the user has already
rated the item, that item is shown instead.

� Show useri an ordered list of up toM (as yet unrated) items from a subsetI which are projected to be liked
the most, subject to the constraint that each of them has a projected rating of at least some minimum value
r. This subset may be chosen implicitly or explicitly in a number of ways. For example, it may consist of
a set of promotional items.

� Show useri an ordered list of up toM (as yet unrated) items from a subsetI which are projected to be
liked the least subject to the constraint that each of them has a projected rating of at most some maximum
valuer.

� Select an ordered list of up toM users from a subsetJ each of which has a projected rating of at leastr
that are projected to like itemj the most. This is a query which is useful to the E-commerce merchant in
order to generate mailings for specific sets of promotion items.

Even though collaborative filtering is a very effective technique, its shortcomings are clear; it is difficult to collect
a sufficient amount of user feedback to begin with. For such cases, it may be more desirable to pick techniques
which deal with data corresponding to actual user behavior. Such methods are referred to as content based tech-
niques.

3 Content Based Systems

In content based systems, the feedback of other users is not relevant while deciding the recommendations for
a given user. The idea is to characterize the user behavior in terms of hiscontentof accesses; a new attribute

5

START

Feature Selection:

Remove all words

which have less

relevance to customer

buying behavior.

Create pruned product

characterizations

using the reduced

Step 5

feature set.

Create pruned customer

characterizations from

pruned product

characterizations.

Use clustering in

order to create

peer groups

from customer

characterizations.

Use peer groups

in order to make

recommendations for

a given pattern of buying

behavior.

END

Step 1

Step 2

Step 3 Step 4

Figure 1: Content Based Collaborative Filtering

system corresponding to user behavior. For example, while tracking the user behavior at an E-commerce site,
the content of his behavior may refer to the set of text documents which have been accessed by him.

At the same time, the set of products at an E-commerce site may be categorized or clustered based on the
content of the products. For a given user, one may then categorize his behavior by using IR similarity techniques
in order to compare the content of the cluster and the content of user access patterns [4]. The results of this com-
parison may be used in order to make product recommendations. The idea here is to create a content taxonomy
and characterize each user by the content category of the products that he purchased. Similar techniques may be
used in order to make web page recommendations by analyzing the web pages which were browsed.

Content based techniques have the advantages of directness, simplicity, and redundancy of user feedback, but
they lack the sophistication of collaborative filtering systems which analyze the behavior of entire peer groups
for making recommendations. For this purpose, it is useful to examine and analyze the behavior of content based
collaboratuve systems which do not require user feedback; yet use the concept of user peer groups for making
recommendations.

6

4 Content Based Collaborative Filtering Systems

In this section, we will discuss an application of clustering in order to build content based collaborative filtering
systems. Content based collaborative filtering systems are relevant in providing personalized recommendations
at an E-commerce site. In such systems, a past history of customer behavior is available, which may be used for
making future recommendations for individual customers. We also assume that a “content characterization” of
products is available in order to perform recommendations. These characterizations may be (but are not restricted
to) the text description of the products which are available at the web site. The key here is that the characteri-
zations should be such that they contain attributes (or textual words) which are highly correlated with buying
behavior. In this sense, using carefully defined content attributes which are specific to the domain knowledge in
question can be very useful for making recommendations. For example, in an engine which recommends CDs,
the nature of the characterizations could be the singer name, music category, composer etc., since all of these at-
tributes are likely to be highly correlated with buying behavior. On the other hand, if the only information avail-
able is the raw textual description of the products, then it may be desirable to use some kind of feature selection
process in order to decide which words are most relevant to the process of making recommendations.

We will now proceed to describe the overall process and method for performing content-based collaborative
filtering. The collaborative filtering process consists of the following sequence of steps, all of which are discussed
in Figure 1.

(1) Feature Selection:It is possible that the initial characterization of the products is quite noisy, and not all
of the textual descriptions are directly related to buying behavior. For example,stop words(commonly
occuring words in the language) in the description are unlikely to have much connection with the buying
pattern in the products. In order to perform the feature selection, we perform the following process: we first
create a customer characterization by concatenating the text descriptions for each product bought by the
customer. Let the set of words in the lexicon describing the products be indexed byi 2 f1; : : : ; kg, and let
the set of customersj for which buying behavior is available be indexed byj 2 f1; : : : ; ng. The frequency
of presence of wordi in customer characterizationj is denoted byF (i; j). The fractional presence of a
word i for customerj is denoted byP (i; j) and is defined as follows:

P (i; j) =
F (i; j)P

j2All customersF (i; j)
(1)

Note that when the wordi = i0 is noisy in its distribution across the different products, then the values of
P (i0; j) are likely to be similar for different values ofj. Thegini indexfor the wordi is denoted byG(i),
and is defined as follows:

G(i) = 1�
sX

j

P (i; j)2 (2)

When the wordi is noisy in its distribution across the different customers, then the value ofG(i) is high.
Thus, in order to pick the content which is most discriminating in behavioral patterns, we pick the words
with the lowest gini index. The process of finding the words with the lowest gini index is indicated in Step
1 of Figure 1.

(2) Creating Customer Characterizations: In the second stage of the procedure, we create the customer
characterizations from the text descriptions by concatenating the content characterizations of the products
bought by the individual consumers. To do so, we first prune the content characterizations of each product
by removing those features or words which have high gini index. Then we create customer characteriza-
tions by concatenating together these pruned product characterizations for a given customer (Step 3).

7

(3) Clustering: In the subsequent stage, we use the selected features in order to perform the clustering of the
customers into peer groups. This clustering can either be done using unsupervised methods, or by super-
vision from a pre-existing set of classes of products such that the classification is directly related to buying
behavior.

(4) Making Recommendations: In the final stage, we make recommendations for the different sets of cus-
tomers. In order to make the recommendations for a given customer, we find the closest sets of clusters
for the content characterization of that customer. Finding the content characterization for a given customer
may sometimes be a little tricky in that a weighted concatenation of the content characterizations of the in-
dividual products bought by that customer may be needed. The weighting may be done in different ways
by giving greater weightage to the more recent set of products bought by the customer. The set of entities
in this closest set of clusters forms thepeer group. The buying behavior of this peer group is used in order
to make recommendations. Specifically, the most frequently bought products in this peer group may be
used as the recommendations. Several variations of the nature of queries are possible, and are discussed
subsequently.

We have implemented some of these approaches in a content-based collaborative filtering engine for making
recommendations, and it seems to provide significantly more effective results than a content based filtering engine
which uses only the identity attributes of the products in order to do the clustering.

Several kinds of queries may be resolved using such a system by using minor variations of the method dis-
cussed for making recommendations:

(1) For a given set of products browsed/bought, find the best recommendation list.

(2) For a given customer and a set of products browsed/bought by him in the current session, find the best set
of products for that customer.

(3) For a given customer, find the best set of products for that customer.

(4) For the queries (1), (2), and (3) above, find the recommendation list out of a prespecified promotion list.

(5) Find the closest peers for a given customer.

(6) Find the profile of the customers who will like a product the most.

Most of the above queries (with the exception of (6)) can be solved by using a different content characterization
for the customer, and using this content characterization in order to find the peer group for the customer. For the
case of query (6), we first find the peer group for the content characterization of the current product, and then find
the dominant profile characteristics of this group of customers. In order to do so, the quantitative association rule
method [13] may be used.

5 Summary

In this paper, we discussed several implicit and explicit techniques for performing personalization at an electronic
commerce site. The explicit methods for personalization include user-feedback and ratings, whereas the implicit
behavior include the observation of user buying behavior. Each of these techniques have their own drawbacks:

� There are limitations to how much effort a user is willing to put in in order to explicitly provide his pref-
erences using methods such as a profiler dialog. Typical response rates for schemes in which ratings may
be provided on a voluntary basis are only1� 2%. Furthermore, often such information may be too sparse
to be of too much use.

8

� There are limitations to how much one can track user behavior without violating privacy concerns that
many people may have. Often, for E-commerce sits which work without the use of a registration process
have no way of tracking behavior in an effective and acceptable way.

Given the limits on tracking the online user behavior, it is often easier to collect user behavior at a batch level,
since the data collection process is not hindered by the online nature of the user actions. For such cases many
data mining techniques such as associations, clustering, and categorization [1, 2, 5, 6] are known.

References

[1] Aggarwal C. C. et. al. “Fast Algorithms for Projected Clustering.”Proceedings of the ACM SIGMOD Con-
ference of Management of Data, 1999.

[2] Aggarwal C. C., Yu P. S. “Finding Generalized Projected Clusters in High Dimensional Spaces.”Proceed-
ings of the ACM SIGMOD Conference on Management of Data, 2000.

[3] Aggarwal C. C., Wolf J. L., Wu K.-L., Yu P. S. “Horting Hatches an Egg: Fast Algorithms for Collborative
Filtering.” Proceedings of the ACM SIGKDD Conference, 1999.

[4] Aggarwal C. C., Gates S. C., Yu P. S. “On the merits of building categorization systems by supervised clus-
tering.” Proceedings of the ACM SIGKDD Conference, 1999.

[5] Agrawal R., Imielinski T., and Swami A. “Mining association rules between sets of items in very large
databases.”Proceedings of the ACM SIGMOD Conference on Management of data,pages 207-216, 1993.

[6] Chen M. S., Han J., Yu P. S. Data Mining: An overview from the database perspective.IEEE Transcations
on Knowledge and Data Engineering.

[7] www.amazon.com

[8] www.ebay.com

[9] Freund Y., Iyer B., Shapiro R., Singer Y. “An efficient boosting algorithm for combining prefer-
ences.”International Conference on Machine Learning,Madison, WI, 1998.

[10] Greening D., “Building Consumer Trust with Accurate Product Recommendations.”, Likeminds White Pa-
per LMWSWP-210-6966, 1997.

[11] Resnick P., Varian H. “Recommender Systems”,Communications of the ACM, Volume 40, No. 3, pages
56-58, 1997.

[12] Shardanand U., Maes P. “Social Information Filtering: Algorithms for Automating Word of Mouth.”Pro-
ceedings of the CHI’95,Denver CO, pp. 210-217, 1995.

[13] Srikant R., and Agrawal R. Mining quantitative association rules in large relational tables.Proceedings of
the 1996 ACM SIGMOD Conference on Management of Data.Montreal, Canada, June 1996.

[14] www.hotmail.com

9

Personal Views for Web Catalogs�

Kajal T. Claypool, Li Chen and Elke A. Rundensteiner
Department of Computer Science

Worcester Polytechnic Institute
Worcester, MA 01609–2280

fkajaljlichenjrundenstg@cs.wpi.edu

Abstract

Large growth in e-commerce has culiminated in a technology boom to enable companies to better serve their con-
sumers. The front-end of the e-commerce business is to better reach the consumer which means to better serve
the information on the Web. An end-to-end solution that provides such capabilities includes technology to enable
personalization of information, to serve the personalized information to individual users, and to manage change
both in terms of new data as well as in terms of the evolution of personal taste of the individual user. In this work,
we present an approach that allows automated generation of diversified and customized web pages from an object
database (based on the ODMG object model), and automated maintenance of these web pages once they have been
build. The strength of our approach is its superior re-structuring capabilities to producepersonal viewsas well as
its generic propagation framework to propagate schema changes, data updates, security information and so on from
the base source to the personal view and vice versa.

1 Introduction

Internet technologies and applications have grown more rapidly than anyone could have envisioned even five
years ago, with a projection of 127% increase in Web sales for the current year alone
(http:// www.internetindicators.com /facts.html). What started out as static personal Web pages with photographs
to be shared with friends and family or hastily compiled company brochures has quickly culminated into a myr-
iad of sophisticated hardware and software applications. Companies today are moving beyond static information
to provide to their users dynamic and personalized information to create new value for their stake-holders. An
end-to-end solution that provides such dynamic capabilities includes technology to enable personalization of in-
formation, to serve the personalized information to individual users, and to manage change both in terms of new
data as well as in terms of the evolution of personal taste of the individual user.

Consider for example theeToys web site (http: //www.etoys.com), one of the biggest online retailer of toys
for children. Currently,eToys provides a minimum two-level navigation of its web site based onchild’s ageand
toy typecategorization. Sales on toys or thehot toys are shown as separate links and also have an age categoriza-
tion. A user of theeToys site currently navigates individually through each of links. However, a frequent user

Copyright 2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

�This work was supported in part by the NSF NYI grant #IRI 94-57609. We would also like to thank our industrial sponsors, in
particular, IBM for the IBM partnership award. Kajal Claypool and Li Chen would also like to thank GE for the GE Corporate Fellowship
and IBM for the IBM corporate fellowship respectively.

10

of the web site often follows a set pattern of links. For example, a user with a4 year old would be most likely
to look for toys in the age category of4 to 6 . This user may be better served if theeToys web site collated
information on sales, hot toys, and toys such as cars for4 year olds into one web page. Of course, since
this information varies from one individual user to another where one user might target boys and another might
target girls, each user would be best served with apersonal viewof theeToys database. New toys added into the
database should also be reflected in the user’s personal view. Moreover, as the individual user’s tastes change,
the child grows older or the child is no longer interested in cars, thepersonal viewneeds to be adapted to reflect
this change in taste. Given the volume of users, 17 million US households alone (http://www.nua.ie/surveys), a
key in providing for such dynamic behavior is a high degree of automation of both the view definition as well as
the view maintenance process.

Today, technology such ascollaborativeor agent-based filtering[AY00] are often used as mechanisms to
arrive at the personal set of information. We do not look at these technologies per say but assume that one or
more such technologies are available to arrive at the personalized information. We focus instead on actually serv-
ing users personalized information (database views with complex re-structuring capabilities) and on managing
change on already served pages (a generic propagation framework that handles data updates as well as schema
changes) by using and extending existing database (OODB) technology.

Recently research efforts [AMM98, FFLS97, CRCK98] have been made to automate aspects of providing
dynamic views. For example, Araneus [AMM98] is an attempt to re-apply relational database concepts and ab-
stractions to generate web sites. Strudel [FFLS97] instead has introduced a hyper-graph data model to capture
the web structure and an associated web query language, StruQL. However, while these approaches focus on
generating diversified web sites, they do not provide an easy to use mechanism in terms of creating the trans-
formations for building these views. Nor do they look at the issues of maintainability in terms of reflecting the
changing profile or taste, or propagating changes or additions to the existing data set.

Our Re-Web [CRCK98] system is aneasy to use, automatedweb-site management tool (WSMS) based on
the ODMG standard that focuses on building apersonal viewfor each user and, in addition, manages evolution
as well as data changes of thepersonal views. Re-Web can translate database information to web information,
re-structure information at the database level and finally generate web pages from the information in the database.
Exploiting the modeling power of the OO model, we have defined web semantics that allow us to map between
the XML/HTML constructs and the ODMG object model constructs. At the database level we use a flexible
and extensible re-structuring facility, SERF [RCC00] to support complex re-structuring for the creation of new
personal views. To increase the ease of web site management, Re-Web also exploits the notion of a library of
re-usable transformations from SERF [RCC00]. In particular, we define a library of typical Web restructuring
and support a visual tool for building the transformations, further simplifying the web restructuring effort.

To address the maintainability of thepersonal viewswe also propose a generic propagation framework that
can handle the propagation of information such as data updates, schema changes, security information from one
view to another or from the base information to the view. Thus, using this framework we can tackle in an au-
tomated fashion the updatability ofpersonal viewsas and when new data is added to the base or existing data
is updated. Moreover, as the user’s profile changes either by a manual update to the profile or by some filtering
mechanism, the propagation framework can be utilized to evolve the existingpersonal viewaccordingly. Once
a database view is evolved, the adapted web pages are automatically generated by Re-Web.

2 Personal Views

Generating Web Pages: Mapping ODMG to XML. For web site generation, we provide three tiers of web
semantics representations. The top tier is the HTML representation, i.e., the web pages themselves, which include
some visual metaphors and styles. Ideally the users navigate through the whole web site via its HTML pages in a
unique and consistent fashion. The XML representation of the HTML pages forms the middle-layer, an interme-

11

diate translation between the ODMG data model is at the bottom tier and the equivalent loss-less representation
of the HTML web pages.

Figure 1: TheeToys Home Page. Figure 2: The PersonalizedeToys Home Page.

Consider the home page of theeToys web site shown in Figure 1. A simplistic ODMG schema of the Web
site is as depicted in Figure 31. The database schema represents the a set of DTDs at the XML level and a
web-site-structure for HTML pages. The structure of each web page in the given web-site, i.e., theweb-page-
structure at the HTML level and the DTD at the XML level is given by the definition of the respective class. Each
object of a class corresponds to an XML document corresponding class-driven DTD. In our example, the home
page for theeToys web site is modeled after the schema classeToys . Each element of a collection defined for
the object is represented at the web-page level by a URL/URI link to the specific web-page of the correspond-
ing object. Thus, for example, in theeToys class we have a collection of objects of the typeeToysByAge .
For the home page, this collection is represented by the links0-12 months , 2 year , 4 year , etc. Each of
these URLs links to the web-pages0-12 months , 1 year , etc., i.e., the representations of the objects of the
classeToysByAge . Atomic literals such as theString attributes in a class are displayed asweb-items. For
example, text descriptors such as thewelcomeMessage are shown on theweb-pageas plain text. In teh web
generation process we first convert the OODB schema to a set of DTDs and corresponding XML pages and then
apply standard technology such as XSL stylesheets to generate the HTML pages. A synopsis of the web-mapping
from ODMG to XML and ODMG to HTML is given in Table 1.

SERF: Re-Structuring at the Database Level. The strength of our approach lies in the fact that at the database
level, we can exploit existing services such as complex re-structuring to provide the same rich capabilities for the
web pages themselves. A re-structuring or a view desired for the web-site is translated to an equivalent transfor-
mation template at the database level which then is responsible for the production of the schema. The new view
schema is translated using the ODMG to XML mapping (Table 1) to an equivalent XML view.

We provide the SERF framework [RCC00] to enableuser-customizedand possiblyvery complexdatabase
schema transformations thereby supporting aflexible, powerfulandcustomizableway of generating web-pages.
A declarative approach to writing these transformations is to use OQL together with a view mechanism. OQL

1This schema has been fabricated for the purpose of our example here, and does not reflect theeToys schema.

12

ODMG Primitives XML Concepts Web Constructs
Schema set of DTDs Web-site-structure
Type DTD Web-page-structure
Object XML document Web page
OID URI URL
Atomic literal Leaf element Web-item
Struct literal Internal element Structured web-item
Collection of literals Collection of elements List of web-items
Extent of a type XML documents of a DTD Web pages of a web-page-structure

Table 1: Web Semantics Mapping between ODMG, XML and Web Semantics

can express a large class of view derivations and any arbitrary object manipulations to transform objects from
one type to any other type.

Figure 3: The ODMG Schema for the Web-Page in
Figure 1.

Figure 4: The ODMG Schema for the Web-Page in
Figure 2.

Consider, for example that instead of the generic existingeToys home page,eToys desired a home page
more geared towards the individual user, a user who wants to view only the recommended toys for4 year olds
2. Moreover, consider that the user wants to see the brief description of all recommended toys on one web-page
rather than having to click to get to the toys. Figure 2 shows a representation of the personalized web page. To
accomplish this, we create a new view schema at the database level. Thus, instead of having the genericeToys
schema, we have a personalizedPeToys view schema. ThePeToys schema contains information only on the
recommended toys for4 year olds. Moreover, theeToys-MyPersonalView class contains aninlined de-
scription of all the toys along with additional pertinent information. The classToy is stored in a structure. Fig-
ure 4 shows the new view schema while Figure 5 shows the OQL transformation used to accomplish the re-
structuring, i.e., to produce the new view schema.

However, writing these transformations for the re-structuring of the database is not a trivial task as the view
definition queries can be very complex. Similar to schema evolution transformations, it is possible to identify a
core set of commonly applied transformations [RCC00]. For example, flattening a set of objects such that they
appear as a list of web-items rather than a list of URLs is a common transformation that can be applied for different
web site schemas. Thus in our framework we offerre-useof transformations by encapsulating and generalizing
them and assigning a name and a set of parameters to them. From here on these are calledview transformation

2The company would of course need to have a process in place that allows the user to specify a profile or use a filtering mechanism
to generate the profile before they can build these personal web pages.

13

// define a named query for the view
define ViewDef (viewClass)
 select c
 from viewClass c
 where c.age-category = “4year”;

// create view eToys-MyPersonalView from the eToysByAge class
// and create struct structToy from the Toy class

create_view_class (eToysByAge, eToys-myPersonalView, ViewDef(eToysByAge));

create_view_struct (Toy, structToy);

// add an attribute structToy to the view
add_attribute (eToys-MyPesonalView, structToy,

 collection<structToy>, null);

// get all the objects of class
define Extents (cName)

 select c
 from cName c;

// for each of the eToys-MyPersonalView object, find its referred Toy
// objects via the toyFavorites attribute and convert them into a
// a collection of structToy.
define flattenedCollection (object)

 select (structToy)p.*
 from Toy p
 where exists (p in object. toyFavorites);

for all obj in Extents (eToys-MyPersonalView)
 obj.set(obj. structToy, flattenedCollection(obj));

Figure 5: SERF Inline Transformation.

begin template convert-to-literal (Class mainclassName,
 String mainViewName,
 Attribute attributeToFlatten,
 String structName)
{
 // find the class that needs to be flattened given the attribute name
 refClass = element (
 select a.attrType
 from MetaAttribute a
 where a.attrName = $attributeToFlatten
 and a.classDefinedIn = $mainclassName);

 // Create the view class
 create_view_class ($mainclassName, $mainViewName, View ($mainclassName));

 // flatten refClass to a struct
 create_view_struct ($refClass, $structName);

 // add a new attribute to hold the struct
 add_attribute ($mainViewName, $structName, collection<$structName>, null);

 // get all the objects of class
 define Extents (cName)
 select c
 from cName c;

 // convert a collection of objects to a collection of structures.
 define flattenedCollection (object)
 select ($structName)p.*
 from $refClass p
 where exists (p in object.$attributetoFlatten)

 for all obj in Extents ($mainViewName)
 obj.set(obj.$structName, flattenedCollection(obj));

 // remove the attributetoFlatten attribute
 delete_attribute ($mainViewName, $attributeToFlatten);

Figure 6: SERF Inline Template.

templatesor templatesfor short. Figure 6 shows a templated version of the transformation in Figure 5. This
template can be applied toinline the information linked in by a reference attribute (URL at the XML level) into
the parent class (web-page) itself.

We have also proposed the development of a library of such templates. This is an open, extensible framework
as developers can add new templates to their library, once they identify them as recurring. We envision that a
template library could become an important resource in the web community much like the standard libraries in
the programming environment.

Maintenance of Personal Views. Once the personal views are deployed, it is essential to have a maintenance
process in place to provide an end-to-end solution. This is required to handle not only the data updates, for exam-
ple a new toy suitable for4 year olds is added to the database (data update - base to view), but also to deal
with changing tastes, such as the user is now interested in toys for a2 year old in addition to the toys for a
4 year old (schema change - view to base), or to deal with a new feature such as a special 25% sale on popu-
lar items (schema change - base to view). All of this information needs to be propagated from the base schema
to all of the view schemas in the system or conversely may need to be propagated from the view schema to the
base schema. Moreover, with e-commerce there is an additional dimension of security. The personalized views
may contain user-sensitive information and hence unlike the home page should not be visible to the world. Thus
security permissions need to be attached to each personal view. This would often require propagation from the
base to the view in the case where the base is the keeper of all security information, and from the view to the base
in the case of the user wanting additional individuals to share the same web-page.

To allow for the diversity in the type of information and the direction of propagation, we have designed a
rule-based propagation framework as opposed to constructing hard-coded algorithms to handle the same. Rules
for our framework can be expressed using a rule-based extension of OQL, PR-OQL. These rules are specified
for each object algebra node in the derivation tree. They also specify the direction in which the information is
propagated,up from the base to the view ordown from the view to the base. For example, a text message that an-
nounces to the customers a special 25% sale on the top ten toys can be added to the base class via a schema change
add-attribute(eToys, saleMsg, String, ‘‘Special sale on top ten toys’’) . Us-
ing the rules in our framework, this change is propagated to all the defined views in an automated fashion. Figure 7
shows the syntax of the rules defined in our framework while Figure 8 shows a sample rule.

14

define[propagation=re-write] rule ruleNamefor class:
on event
in direction
whencondition(s)
do [instead] action(s)
precedes[rule]+

Figure 7: Syntax of a Rule.

define re-write rule rule1 for project :
on add-attribute(C,a,t,default)
in up
when
do re-write-query(existingQuery, a)&&
propagate-to-derivedNodes
precedesrule3

Figure 8: A Sample Rule.

3 Summary

We have developed a prototype for the Re-Web system, a Java-based system (JDK1.1.8 and Java Swing). We
make use of the LotusXSL and IBM XML parser for the generation of web pages from underlying databases.
The system has been implemented and tested on WinNT and Solaris. Figure 9 gives the general architecture of
Re-Web. The Re-Web system will be demonstrated at Sigmod 2000 [RCC00].

WebGen System

views

Schema
Template
Processor

Graphical User Interface

Web View
Manager

(Lotus XSL Engine)

 Layout
Editor

Template
Editor

Template
Library

XSL Stylesheet
Library

Browser

Browser In
te

rn
et

W
eb

 S
er

ve
r

http

Schema
Viewer

XML Dumper

SERF System

 dumps

editsedits

uses

uses

puts

OODB System

OQL Query
Engine

Object
Repository

(PSE)
 queries

operates on

Schema
Repository/View

Repository

Schema Evolution
Manager

 queries

operates on

Propagation Framework

Figure 9: Architecture of the Re-Web System.

In summary, here we have given an overview of our Re-Web system and its prominent features such as:

� Generation of XML/HTML web-pages from an ODMG schema.

� Personal Views using re-structuring and view capabilities at the database level.

� Maintenance of Personal Views using an extensible rule-based propagation framework.

15

References

[AGM+97] Serge Abiteboul, R. Goldman, J. McHugh, V. Vassalos, and Y. Zhuge. Views for Semistructured
Data. InWorkshop on Management of Semistructured Data, pages 83–90, 1997.

[AMM98] P. Atzeni, G. Mecca, and P. Merialdo. Design and Maintenance of DataIntensive Web Sites. In
EDBT’98, pages 436–450, 1998.

[AY00] C. C. Aggarwal and P.S. Yu. Data Mining Techniques for Personalization. InIEEE Bulletin - Special
Issue on Database Technology in E-Commerce, in this issue.

[CR00] L. Chen and E. A. Rundensteiner. Aggregation Path Index for Incremental Web View Maintenance.
In The 2nd Int. Workshop on Advanced Issues of E-Commerce and Web-based Information Systems,
San Jose, to appear, June 2000.

[CRCK98] K. Claypool, E.A. Rundensteiner, L. Chen, and B. Kothari. Re-usable ODMG-based Templates for
Web View Generation and Restructuring. InWIDM’98, pages 314–321, 1998.

[FFLS97] M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A Query Language for a Web-Site Management
System.SIGMOD, 26(3):4–11, September 1997.

[RCC00] E.A. Rundensteiner, K.T. Claypool, and L. et. al Chen. SERFing the Web: A Comprehensive Ap-
proach for Web Site Management. InDemo Session Proceedings of SIGMOD’00, 2000.

16

An Interoperable Multimedia Catalog System for Electronic
Commerce

M. TamerÖzsu and Paul Iglinski
University of Alberta

fozsu,iglinskig@cs.ualberta.ca

Abstract

We describe our work in developing interoperable smart and virtual catalogs for electronic commerce
which incorporate full multimedia capabilities. Smart catalogs enable querying of their content. The
underlying assumption of our work is that future catalogs that will be used in electronic commerce will
have two characteristics: (a) they will not only contain text and (perhaps) images, but will contain full
multimedia capabilities including audio and video, and (b) these catalogs will not be monolithic, con-
sisting of storage in a single database management system (DBMS), but will be distributed involving a
number of different types of data storage systems. The general approach incorporates multimedia data
management capabilities and interoperability techniques for the development of distributed information
systems. This work is part of a larger project on electronic commerce infrastructure involving multiple
universities and companies in Canada.

1 Introduction

Most of the existing electronic commerce (e-commerce) catalogs (both in business-to-business and in business-
to-consumer e-commerce) are text-based with limited multimedia capabilities, only incorporating still images.
This limits the “shopping experience” of customers. Catalogs should have full multimedia capabilities with the
inclusion of advertisement or training videos and audio “talk-overs”. This enables the incorporation of TV and
radio commercials into the catalogs.

In this paper we discuss our current work in developing catalog servers with multimedia capability. One
identifying characteristic of our work is that catalog servers are developed using database management system
(DBMS) technology. The use of DBMS technology does not require justification for the readers of theData
Engineering Bulletin. However, suffice it to point out that the declarative query capabilities of DBMSs facilitate
the development of smart catalogs that allow sophisticated querying of their content [KW97].

Existing catalog systems are generally proprietary, monolithic systems which store all data in one system.
This is not a suitable architecture for the types of catalog systems that are envisioned in this project. The pro-
posed catalog systems have to store and manage multiple types of media objects (text, images, audio, video, and
synchronized text), as well as meta information about these objects. Moreover, these media objects have differ-
ent characteristics that require specialized treatments. Therefore, in this project we propose an open architecture

Copyright 2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

17

that uses different specialized servers for different classes of media objects and combines them to achieve a mul-
timedia catalog server.

Another characteristic of catalog servers for Internet-based e-commerce is the significant distribution of the
servers. Note that we make the distinction between “Internet-open” and “Internet-based”. The former are systems
which allow access, over the Internet, to catalogs. Most of the existing catalog servers are in this group and they
are either centralized systems or distributed in a small scale. These types of systems would have difficulty in
supporting sophisticated electronic commerce applications such as virtual malls. In this research we investigate
solutions where data are distributed more widely and access is provided over the Internet. These are what we call
Internet-based catalogs.

It is unlikely that all catalogs in an e-commerce environment will follow the same design or that all of the
catalog information will be stored in one catalog server. The environment will include repositories other than
DBMSs while still providing a DBMS interface and functionality. This raises issues of interoperability and the
development of virtual catalogs that “dynamically retrieve information from multiple smart catalogs and present
these product data in a unified manner with their own look and feel, not that of the smart catalogs” [KW97].

In Section 2 we provide an overview of the architectural approach that we have adopted in this research.
Section 3 discusses the structured document database that is part of the catalog server while Section 4 is devoted
to a discussion of the image DBMS. Section 5 presents highlights of on-going work.

2 Architecture

The fundamental architectural paradigm that we use in this research is one of loose integration between system
components. This is reflected both in our development of the individual catalog servers and in the manner that
we federate multiple catalog servers into one e-commerce environment.

A catalog server with full multimedia capabilities requires support for various media: text, still images, video,
audio, VRML objects, etc. Even though there have been attempts to support all of these media types within
a single multimedia DBMS, the end result is generally not satisfactory. The requirements of individual media
are different, their requirements from the underlying storage systems vary and the types of queries that need to
be supported are significantly different. “Monolithic multimedia DBMS” attempts typically treat media data as
blobs without much support for content-based querying and access.

In our work, we take a different approach which is based on the development of individual DBMSs that sup-
port each media type. Thus, we have currently developed a text DBMS [ÖSEMV95,ÖSEMJ97] and an image
DBMS [OÖL+97] and are working on a continuous media DBMS to support audio and video. This raises the
question of the combination of various media types in a complex multimedia object. The paradigm that we use
for complex multimedia objects is that of a multimedia document. In other words, we consider that the individual
media objects (e.g., a text description of a product, its image and a demonstration video clip of the product) to be
organized into a multimedia document with a particular structure. Thus, it is possible to access individual objects
directly as well as accessing them as parts of a larger unit. Figure 1 describes our overall architecture in a very
abstract fashion.

As indicated above, catalog servers for Internet-based e-commerce applications are likely to be distributed
and heterogeneous. Despite some claims that catalog information of multiple vendors will be integrated in one
server, we consider this to be highly unlikely and unrealistic. What will typically happen is that each vendor will
develop its own catalog and will bring it to a federation (e.g., in the form of a virtual mall). They will undoubtedly
be willing to follow certain standards to facilitate access, but they are unlikely to entirely “merge” their catalogs
into a centralized catalog. Thus, the e-commerce environment has to address the classical interoperability issues
that are exacerbated by the dynamism of the environment. An interoperable environment further allows each
vendor to participate in multiple e-commerce federations. Thus, part of our work has been focused on flexible
interoperability environments for large scale distributed systems. This work was conducted within the context of
the AURORA project [ŸOL97, Yan00], but space limitations do not allow us to discuss this aspect of our work.

18

Structured
Document
DBMS

Image
DBMS

Continuous
Media
DBMS

Users Users

Figure 1: Catalog Server Architecture

3 Structured Document DBMS Component

As indicated above, the structured document DBMS [ÖSEMJ97] serves a dual purpose. It stores the catalog
structure information, and thus has “links” to the other components, and it stores the text portion of the catalog.
For the current prototype implementation, we have stored VRML objects as part of this DBMS as well, but the
system stores VRML descriptions as code and does not provide facilities to exercise them.

The document structure is modeled using SGML. It is a client-server, object-oriented system that allows cou-
pling with other servers (in particular continuous media servers) and handles dynamic creation of object types
based on DTD elements.

The system is built as an extension layer on top of a generic object DBMS, ObjectStore [LLO+91]. The ex-
tensions provided by the multimedia DBMS include specific support for multimedia information systems. Some
of the unique features are the following:

1. It supports an extensible type system that provides the common multimedia types. The kernel type system
is divided into two basic parts: atomic type system and element type system. The atomic type system
consists of the types that are defined to model monomedia objects (i.e., objects that belong to a single media
type). This part of the type system establishes the basic types that are used in multimedia applications. The
element type system is a uniform representation of elements in a DTD and their hierarchical relationships.
Each element defined in a DTD is represented by a concrete type in the element type system.

2. The system handles multiple DTDs and documents that conform to these DTDs within one database. The
kernel type system extensibility is partly due to this requirement. This raises interesting type system is-
sues. SGML, as a grammar, is fairly flat but allows free composition of elements. This, coupled with the
requirement to handle multiple DTDs within the same database, suggests that the type system also be flat,
consisting of collections of types (one collection for each DTD) unrelated by inheritance. This simplifies
the dynamic type creation when a new DTD is inserted. However, this approach does not take full ad-
vantage of object-oriented modeling facilities, most importantly behavioral reuse. Instead of a flat type
system, we implement a structured type system where some of the higher-level types are reused through
inheritance. This has the advantage of directly mapping the logical document structure to the type system
in an effective way. Furthermore, some of the common data definitions and behaviors for similar types can
be reused at the discretion of the DTD developer. The disadvantage is that type creation is more difficult.

3. The system is able to analyze new DTDs and automatically generate the types that correspond to the ele-
ments they define. In addition, the DTD is stored as an object in the database so that users can run queries
like “Find all DTDs in which a ’paragraph’ element is defined.” The components that have been imple-

19

Structured Document DBMS

DTD
+

Types
+

Documents

Users

DTD Manager

Type Generator

Instance
Generator

DTD Parser

SGML Parser

DTDs

Marked-up

Documents

SGML Processing DBMS Processing

Figure 2: Structured Document DBMS Processing Environment

mented to support multiple DTDs are depicted in Figure 2. A DTD Parser parses each DTD according to
the SGML grammar defined for DTDs. While parsing the DTD, a data structure is built consisting of nodes
representing each valid SGML element defined in the DTD. Each DTD element node contains information
about the element, such as its name, attribute list and content model. If the DTD is valid, a Type Gener-
ator is used to automatically generate C++ code that defines a new ObjectStore type for each element in
the DTD. Additionally, code is generated to define a meta-type for each new element type. Moreover, ini-
tialization code is generated and executed to instantiate extents for the new element objects and to create
single instances of each meta-type in the specified database. A Dtd object is also created in the database.
This object contains the DTD name, a string representation of the DTD, and a list of the meta-type objects
that can be used to create actual element instances when documents are inserted into the database.

4. The system automatically handles the insertion of marked-up documents into the database. Many systems
have facilities for querying the database once the documents are inserted in it, but no tools exist to automat-
ically insert documents. This is generally considered to be outside the scope of database work. We have
developed tools to automate this process. The SGML Parser accepts an SGML document instance from an
Authoring Tool, validates it, and forms a parse tree. The Instance Generator traverses the parse tree and in-
stantiates the appropriate objects in the database corresponding to the elements in the document. These are
persistent objects stored in the database that can be accessed using the query interface. The parser is based
on a freeware application callednsgmls. The parser was modified and linked to DTD specific libraries to
incorporate the necessary changes.

4 Image DBMS Component

The image objects of the catalog server can alternatively be stored in the document database without content an-
notations or in a separate image DBMS, called DISIMA [OÖL+97, OÖIadC00], with enriched content model
enhancements. The objective of DISIMA is to go beyond similarity-based querying and enable content-based
querying. The system, whose architecture is depicted in Figure 3, stores images and meta-data in an object DBMS
(ObjectStore) and provides a high level declarative query language. The catalog server utilizes DISIMA in man-
aging the images within catalogs. The availability of a full-featured image DBMS as part of a catalog server
enables users to perform catalog searches based on images in addition to text.

DISIMA is composed of the querying interfaces (MOQL and VisualMOQL), the meta-data manager, the im-
age and salient object manager, the image and spatial index manager, and the object index manager. The inter-
faces provide several ways (visual and alpha-numeric) to define and query image data. The data definition lan-
guage (DDL) used for the DISIMA project is C++ODL [CBB+97] and the query language MOQL is an extension

20

Object

Index Manager

Meta-Data

MOQL

Image

ODMG PreprocessorQuery Processor

Object Repository (ObjectStore)

DISIMA API ODMG DDLVisual MOQL

System
User Type Meta-Data

Type System

Meta-
Data

Image
And
Spatial
Index

ger
Mana-

ger
Mana-

Object
Salient

Manager
Salient Object
Image and

Figure 3: DISIMA Architecture

of OQL [LÖSO97]. The DISIMA API is a library of low-level functions that allows applications to access the
system services. DISIMA is built on top of ObjectStore, which is used primarily as an object repository (since
it does not support OQL). The image and salient object manager implements the type system, and the meta-data
manager handles meta-information about images and salient objects [OÖL+97]. The index managers, under de-
velopment, allow integration of user-defined indexes.

In DISIMA, an image is composed of salient objects (i.e., interesting regions). The DISIMA model is com-
posed of two main blocks: the image block and the salient object block. Ablockis a group of semantically related
entities. Thesalient objectblock is designed to handle salient object organization. For a given application, salient
objects are identified and defined by the application developer. The definition of salient objects can lead to a type
lattice. DISIMA distinguishes two kinds of salient objects: physical and logical salient objects. Alogical salient
object (LSO)is an abstraction of a salient object that is relevant to some application. Aphysical salient object
(PSO)is a syntactic object in a particular image with its semantics given by a logical salient object. A PSO has a
shape, which is a geometric object stored in its most specific class [OÖIL99]. The separation of the physical and
logical salient objects allows users to query the database according to either the physical disposition of salient
objects in an image or with regard to their existence.

The image block is made up of two layers:imagelayer andimage representationlayer. We distinguish an
image from its representations to maintain an independence between them. At theimagelayer, the application
developer defines an image type classification which allows categorization of images.

In addition to MOQL as a text-based query language, DISIMA provides a visual querying interface called
VisualMOQL [OÖX+99]. MOQL extends the standard object query language OQL by adding spatial, temporal,
and presentation properties for content-based image and video data retrieval as well as for queries on structured
documents. VisualMOQL implements only the image part of MOQL for the DISIMA project. Although the user
may have a clear idea of the kind of images he/she is interested in, the expression of the query directly in MOQL
is not necessarily straightforward. VisualMOQL proposes an easier, visually intuitive way to express queries,
and then translates them into MOQL.

5 Conclusions

We discussed our current work in developing catalog servers with multimedia capability. The catalog server
uses specialized DBMSs for individual media types and integrates them into a single server. The current version
accommodates text, images, and VRML objects and this version is operational. Continuous media capabilities
are currently being added. In this paper we provided an overview of the existing component systems and the way
they are integrated.

21

There is ongoing work along a number of fronts. First, as indicated above, is the incorporation of continuous
media capabilities. The first prototype of this version will be operational in late spring of this year. The second
line of work is the conversion of the structured document DBMS to support XML rather than SGML. With the
integration of the various component systems, the issue of a unifying query interface becomes important. Our
approach to this issue is to pursue extensions to the MOQL language that we have developed for images and
video access. As part of this research, we have ongoing efforts on XML query languages and their optimization.
We are also developing a distributed version of the DISIMA image DBMS over a CORBA infrastructure. The
distributed version will be demonstrated at the upcoming SIGMOD Conference.

Acknowledgements

This research and the development of the structured document DBMS is supported by by a grant from the Cana-
dian Institute for Telecommunications Research (CITR) under the NCE Program of the Government of Canada.
The development of the DISIMA distributed image DBMS was supported by a strategic grant from the Natural
Sciences and Engineering Research Council (NSERC) of Canada.

References

[CBB+97] R.G.G. Cattell, D. Barry, D. Bartels, M. Berler, J. Eastman, S. Gamerman, D. Jordan, A. Springer, H. Strick-
land, and D. Wade, editors.The Object Database Standard: ODMG 2.0. Morgan Kaufmann, 1997.

[KW97] R. Kalakota and A.B. Whinston, editors.Readings in Electronic Commerce, chapter 11, pages 259–274.
Springer-Verlag, 1997.

[LLO+91] C. Lamb, G. Landis, J. Orenstein, , and D. Weinreb. The ObjectStore database system.Communications of
the ACM, 34(10):50–63, October 1991.

[LÖSO97] J. Z. Li, M. T.Özsu, D. Szafron, and V. Oria. MOQL: A multimedia object query language. InProc. 3rd
Int. Workshop on Multimedia Information Systems, pages 19–28, September 1997.

[OÖIadC00] V. Oria, M.T.Özsu, P. Iglinski, and B. Xu an dE. Cheng. DISIMA: An object-oriented approach to devel-
oping an image database system (demo description). InProc. 16th Int. Conf. on Data Engineering, March
2000.

[OÖIL99] V. Oria, M. T. Özsu, P.J. Iglinski, and Y. Leontiev. Modeling shapes in an image database system. InProc.
5th Int. Workshop on Multimedia Information System, pages 34–40, October 1999.

[OÖL+97] V. Oria, M.T.Özsu, L. Liu, X. Li, J.Z. Li, Y. Niu, and P. Iglinski. Modeling images for content-based queries:
The disima approach. InProc. 2nd Int. Conference on Visual Information Systems, pages 339–346, Decem-
ber 1997.

[OÖX+99] V. Oria, M. T.Özsu, B. Xu, L. I. Cheng, and P.J. Iglinski. VisualMOQL: The DISIMA visual query language.
In Proc. 6th IEEE International Conference on Multimedia Computing and Systems, Volume 1, pages 536–
542, June 1999.

[ÖSEMJ97] M.T.Özsu, D. Szafron, G. El-Medani, and M. Junghanns. An object-oriented sgml/hytime compliant multi-
media database management system. InProc. ACM International Conference on Multimedia Systems, pages
239–249, November 1997.

[ÖSEMV95] M.T.Özsu, D. Szafron, G. El-Medani, and C. Vittal. An object-oriented multimedia database system for
news-on-demand application.ACM Multimedia Systems, 3:182–203, 1995.

[Yan00] L.L. Yan. Building Scalable and Flexible Mediation: The AURORA Approach. PhD thesis, University of
Alberta, Edmonton, Canada, 2000.

[YÖL97] L.L. Yan, M.T. Özsu, and L. Liu. Accessing heterogeneous data through homogenization and integration
mediators. InProc. Second IFCIS Conference on Cooperative Information Systems, pages 130–139, June
1997.

22

Database Design for Real-World E-Commerce Systems

Il-Yeol Song
College of Inf. Science and Technology

Drexel University
Philadelphia, PA 19104

song@drexel.edu

Kyu-Young Whang
Department of EE and CS

Korea Adv. Inst. of Science and Technology (KAIST) and
Adv. Information Technology Research Ctr (AITrc)

Taejeon, Korea
kywhang@mozart.kaist.ac.kr

Abstract

This paper discusses the structure and components of databases for real-world e-commerce systems. We
first present an integrated 8-process value chain needed by the e-commerce system and its associated data
in each stage of the value chain. We then discuss logical components of a typical e-commerce database
system. Finally, we illustrate a detailed design of an e-commerce transaction processing system and
comment on a few design considerations specific to e-commerce database systems, such as the primary
key, foreign key, outer join, use of weak entity, and schema partition. Understanding the structure of e-
commerce database systems will help database designers effectively develop and maintain e-commerce
systems.

1 Introduction

In this paper, we present the structure and components of databases for real-world e-commerce systems. In gen-
eral, an e-commerce system is built by following one of two approaches. The first approach is the customization
approach using a suite of tools such as IBM’s WebSphere Commerce Suite [Shur99]. For example, the Com-
merce Suite provides tools for creating the infrastructure of a virtual shopping mall, including catalog templates,
registration, shopping cart, order and payment processing, and a generalized database. The second approach is
the bottom-up development of a system in-house by experts of an individual company. In this case, the developer
is manually building a virtual shopping mall with mix-and-match tools. In addition, a database supporting the
business model of the e-commerce system must be manually developed.

Whether a developer is using the customization or the bottom-up approach, understanding the structure of
e-commerce database systems will help the database designers effectively develop and maintain the system. Our

Copyright 2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

23

paper is based on our experience of building real-world e-commerce database systems in several different do-
mains, such as an online shopping mall, an online service delivery, and an engineering application.

The major issues of designing a database for e-commerce environments are [BD98, CFP99, KM00, LS98,
SL99]:

- Handling of multimedia and semi-structured data;

- Translation of paper catalog into a standard unified format and cleansing the data;

- Supporting user interface at the database level (e.g., navigation, store layout, hyperlinks);

- Schema evolution (e.g., merging two catalogs, category of products, sold-out products, new products);

- Data evolution (e.g., changes in specification and description, naming, prices); Handling meta data;

- Capturing data for customization and personalization such as navigation data within the context.

In Section 2, we present our view of a value chain needed by the e-commerce system and its associated data
in each stage of the value chain. In Section 3, we first discuss logical components of e-commerce database sys-
tems. We then present the detailed database schema of an e-commerce transaction processing (ECTP) system
and discuss a few database design considerations specific to e-commerce systems. Section 4 concludes our paper
with comments on the roles and future developments of e-commerce database systems.

2 An E-commerce Value Chain and Data Requirements

An e-commerce value chain represents a set of sequenced business processes that show interactions between on-
line shoppers and e-commerce systems. A value chain helps us understand the business processes of e-commerce
systems and helps identify data requirements for building operational database systems. Treese and Stewart
[TS99] show a four-step value chain that consists of Attract, Interact, Act, and React.Attract gets and keeps
customer interest.Interact turns interest into orders.Act manages orders;Reactservices customers. The four-
step chain could be considered as a minimal model for a working e-commerce system.

In this paper, we present a more detailed value chain that consists of eight business processes. The new value
chain integrates steps such as personalization, which is usually performed by a separate add-on product. Figure 1
shows the integrated e-commerce value chain with the eight business processes, their goals and data requirements.

A ttra ct In tera ct T ra nsa ct P a y D el ive r P e rso na l izeS erv iceC u sto m ize

G et a n d
k eep

cu stom er
in terest

A d v er tis in g
a n d

M a rk e ttin g
d a ta

T u rn
in terest

in to
o rde rs

C a ta lo g a n d
co n ten t

m a n a gem en t

M ix an d
m a tch fo r

th e
cu stom er

n eed s

C u sto m er
p ro fi les

C lo se
th e dea l

B -to -B ,
B -to -C ,
a u ctio n ,

ex ch a n ge ,
etc .

F u llfi l l
a n d

d eliv er

R ea l tim e
tra n sa ct io n
p rocessin g
d a ta w ith

cred it ca rds,
d eb it ca rd s

a n d cy b erca sh

G o o ds
a n d

serv ices
a re p a id

S h ip p in g
a n d o rd ers
fu llfi l lm ent

d a ta

F i lter
a n d

m in e
d a ta

W eb
w a reh o u se

d a ta

Track
orders

and
re so lve

prob lem s

O nline
cu s tom er

se rvice
data

Figure 1: An e-commerce value chain with eight business processes.

We call each phase of the value chain a business process in that it is important in its own right and involves signif-
icant complexity. Each business process involves a set of interactions between online shoppers and e-commerce
systems for achieving particular objectives. Each business process will have different data requirements based
on underlying business models supported by an e-commerce system. For example, products, services and users
of e-commerce systems would be different whether the system supports B-to-B, B-to-C, auction, or exchanges.

24

A database designer must fully understand each business process and identify the data requirements needed to
support each business process.

3 Database Schema for E-Commerce Systems

3.1 High-Level Logical Components

A database schema for a real-world e-commerce system is significantly complicated. Figure 2 shows a package
diagram that shows logical components of a typical e-commerce database. The diagram uses the notation of
Package used in UML [BRJ99]. A package in UML is a construct that groups inter-related modeling elements.
In Figure 2, each package contains one or more related tables.

C ustom er
Service an d

Feedback

U ser A ccou n ts,
Session s, an d

Profi les

V en dor -
Specific
Products

Pr ice A gen t

C ata log

Sh opp in g C ar t
O rder , In voice,
an d Paym en ts

In ven tory D el ivery

A D s an d
Prom otion

A D s an d
Prom otion

System D ata

Figure 2: A Package diagram with logical components of e-commerce systems.

PackageUser Accounts, Sessions, and Profiles (UASP)records login ID, password, demographic data, credit
card data, customer profiles, and usage history such as the total number of purchases, the total amount of pay-
ments, and the total number of returns. The package holds customization data, such as particular items to display,
the amount of data to display, and the order of data presentation, and personalization data, such as user purchasing
behavior, statistical data, and reporting data. The package could also be extended to include modules for captur-
ing data for clickstream analysis [KM00]. The UASP package also keeps various user types such as individual
customers, retail customers, user subgroups, buyers, sellers, and various affiliates, depending on the business
model supported by the system.

PackageADs and Promotioninvolves tables that are related to advertising, promotion, and coupons. The
package tracks which promotions are associated with which sessions, and which ADs are displayed in which
sessions.

PackageCustomer Service and Feedbackkeeps tracks of customer feedback data for each user and order such
as type, nature, status, and responses.

PackagePrice Agentcontains data about competitions for each product type. The package allows the system
to search other online websites that sell the same products and ranks the site names in the order of prices. Thus,
the package may not exist if the site does not have any competitive sites in the same domain.

PackageShopping Cartmodels a shopping cart and inventory items in the shopping cart. Note that items in
the shopping cart may or may not be actually ordered. Thus, the various states of the items must be kept track of.

PackageOrder, Invoice, and Payment (OIP)keeps track of actual orders that are transferred from a shopping
cart. The package keeps track of individual order items, discounts, sale prices, commissions, taxes, cancels, and

25

any changes in order states. The package also includes invoice history, payment history, and credit card process-
ing modules.

PackageDelivery includes shipping address, shipping methods and charges.
PackagesInventory, Catalog, andVendor-Specific Productsare closely related.Vendor-Specific-Products

hold the vendor data and products.Inventorylists all the items that are available for sale and their associated
tax data.Catalog is a standardized model that integrates various vendor-specific products in a domain. Since
one vendor could use different terminology and format for the same product,Catalogprotects the actual busi-
ness model from the vendor-specific variations.Catalogplays a buffer betweenVendor-Specific Productsand
Inventory. Catalogalso needs a dynamic catalog management module to accommodate new vendors and new
products that were not considered in advance. Thus, actual implementation of the program is done againstCat-
alog andInventory. Our experience shows that developing a proper schema forCatalog for a domain is most
time-consuming and complex.

PackageSystem Dataholds various system parameters such as server configuration and access control pa-
rameters.

3.2 Schema for E-commerce Transaction Processing Systems (ECTP)

In this section, we present a database schema for an e-commerce transaction processing (ECTP) system that
sells inventory items. Figure 3 shows the ECTP schema and includes some portions from UASP, Order-Invoice-
Payment, Shopping Cart, Inventory, and Delivery packages. Even though a real-world schema would be much
more complicated than the one shown in Figure 3, the schema illustrates a few interesting design considerations
in e-commerce environments. The detailed schema will be different depending on the business rules and mod-
els supported by the site. Note that Figure 3 uses the UML notation. In order to create a relational schema from
Figure 3, we need to add the primary key of the one-side to the many-side as a foreign key.

The proper selection of the primary key is very important. For most tables, we use a system-generated pri-
mary (surrogate) key to avoid dependence on data changes. Smart keys, which have embedded meanings, create
dependency on those data. Thus, changes in those data cause changes in primary keys. All tables in Figure 3 uses
surrogate keys.

Note that in order not to lose any data for the personalization procedure and report generation, there are cases
that we do not declare an attribute, which is the primary key of another table, as a foreign key. For example, table
ORDERITEM will capture attribute INVITEM# from INVENTORY ITEM table in the relational schema. But
we do not declare the attribute as a foreign key. Doing so will cause the referential integrity to be violated when the
INV ITEM# in the INVENTORY ITEM table is deleted. When generating reports in this case, a join between
ORDERITEM and INVENTORY ITEM must use an outer join, rather than a natural join, so that the report
include the order item with the deleted product.

In Figure 3, the relationship betweenOrder andOrderItemis one-to-many. In typical data modeling situa-
tions,OrderItemis modeled as a weak entity ofOrder. Thus, the primary key ofOrderItemwill be a combination
of Order# and a sequence number of items within the order number. However, in this diagram, we created Or-
der Item# as the primary key ofOrderItem. Order# inOrderItemwill simply be a foreign key, without being a
part of the primary key ofOrderItem. This allows the e-commerce system to easily and flexibly handle individual
order items independently ofOrder. If you want to count the number of times an item was placed in order, even
if the order itself was cancelled, this technique becomes useful.

On the other hand,OrderItem Historywas modeled as a weak entity ofOrderItem. In OrderItem History,
the history of eachOrderItemcan be recorded separately. For every traceable entities that could have changes in
states, there must be a weak entity that keeps track of the history of the state changes. This facilitates the handling
of various customer supports at the lowest level of grain. These traceable entities in Figure 3 includeUser Ac-
count, Order, OrderItem, Invoice, Shipping, andPayment. In Figure 3, we showed onlyOrderItem Historyand
Invoice Historyas weak entities.Invoice Historyis a weak entity ofInvoiceand keeps track of all the changes

26

in states of invoices.

U ser S essio n

-session # : N u m b er
-IP A dd : S trin g
-# c lick s : N u m ber
-t im estam p : D a te

S h op p ing C a r t

-ca r t# : N u m ber
-a ct iv e? : B oo lea n
-ex p ire_ o n : D a te

In ven to ry I tem

-inv _ item # : N u m b er
-t it le# : N u m b er
-p r ice : N u m b er
-t im estam p : D a te C a rt D eta il

-sta te : N u m ber
-t im estam p : D a te
-q ty : N u m ber U ser A cco u n t

-a cc# : N u m b er
-ID : S tr ing
-P W : S tr ing
-t im estam p : D a te
-# v isi ts : N u m ber
-# tra ns : N u m ber
-t tl_ tr_ a m t : N u m b er

O rd er

-o rder# : N u m b er
-o rder_ da te : D a te
-to ta l_ a m t : N u m ber
-sta te : S tr ing

O rd er I tem

-o rder_ item # : N u m b er
-q ty : N u m ber

C red it C a rd

-C C # : N u m b er
-C C _ N U M : S tr in g
-h o lde r_ na m e : S tr in g
-ex p ire_ d a te : D a te

A dd ress

-a d dress# : N u m ber
-n a m e : S tr ing
-a d d1 : S tr ing
-a d d2 : S tr ing
-c i ty : S trin g
-S ta te : S tr in g
-z ip : N u m b er

P a ym ent

-p a ym en t# : N u m ber
-a m o u n t : N u m ber
-sta te : S tr ing
-t im estam p : D a te

In vo ice

-inv o ice# : N u m b er
-crea t io n_ da te : D a te

O rd er I tem H isto ry< < W > >

-seq # : N u m ber
-a m o u n t : N u m ber
-sta te : S tr ing
-n o tes : S tr ing
-t im estam p : D a te

b il ling

sh ipp in g

* * 1

1

*

* 1 *

1
*

*

1
*

1

1

1

*

1

1

*

*

1

1

*

1

1

In vo ice H isto ry< < W > >

-inv _ sta te# : N u m ber
-sta te_ d esc : S tr ing
-n o tes : S tr ing
-t im estam p : D a te

*

1

*

*

*

< < W > > rep resen ts a w eak en t ity tow a rd s th e o n e-sid e en t ity .
* m ea ns m a ny .

S h ip p ing

-sh ip p ing # : N u m ber
-sh ip _ m etho d : S tr in g
-sh ip _ ch a rg e : N u m ber
-sta te : S tr ing
-sh ip _ da te : D a te

*

1

*

1 *

1

*

*

1

1

1

Figure 3: A simplified database schema for e-commerce transaction processing.

The relationship betweenInvoiceandUser Sessionallows the system to compute the purchasing rate, which
is the number of sessions that result in an invoice, and eventually an actual order. The relationship betweenOr-
derItemandShippingallows the system to send individual order item to different shipping address.User Account
has a few statistical attributes. Usually they are placed in a separate table. In Figure, we showed them inUser
Accountfor the lack of space.

A typical real-world database schema for e-commerce systems are divided into multiple databases run by
different database instances for several reasons. For example, a static schema such as catalog could be separated
from a more volatile schema such as order processing. This multiple schema approach requires connecting those
separated schemas when processing queries that need to concurrently access those schemas. Thus, this approach
somewhat slows down the performance. However, there are many advantages such as better stability, maintain-
ability, load balancing, and security.

27

4 Conclusion

In this paper, we presented an e-commerce value chain with eight business processes, logical components of
e-commerce databases, and the schema for an e-commerce transaction processing system. Most real-world e-
commerce database schema will have a similar framework as we presented in this paper. Our experience shows
that e-commerce tools can speed up the development, but still lack certain functionality such as partial orders,
back orders, returns, and email notification to users. Therefore, understanding the structure of e-commerce database
systems will help the database designers effectively develop and maintain the system, regardless of the approach
taken.

From the database design point of view, an interesting research issue is what database structures are needed
to support customization and personalization most effectively. For example, how and what data do we need to
capture to build a web warehouse [KM00] for personalization, and then, how do we communicate with users of
systems? The personalization process requires significant resources to capture clickstream data and user behavior
patterns. Readers are referred to the reference [SL99] for a list of typical OLAP queries and data warehouse
design in e-commerce environments.

References

[BRJ99] Booch, G., Rumbaugh, J., and Jacobson, I.,UML User’s Guide, Addison Wesley, 1999.

[BD98] Buchner, A. and Mulvenna, M., “Discovering Internet Market Intelligence through Online Analytical
Web Usage Mining,”SIGMOD Record, Vol. 27, No.4, December 1998, pp. 54-61.

[CFP99] Ceri, S., Fraternalim P., and Paraboschi, S., “Design Principles for Data-Intensive Web Sites,”SIG-
MOD Record, Vol. 28, No.1, March 1999, pp. 84-89.

[KM00] Kimball, R. and Merz, R.,The Data Webhouse Toolkit, Wiley, 2000.

[LS98] Lohse, G.L. and Spiller, P., “Electronic Shopping,”Communications of the ACM, Vol.41, No.7,
1998, pp. 81-88.

[Shur99] Shurety, S.,E-Business with Net Commerce, Prentice Hall, 1999.

[SL99] Song, I-Y. And LeVan-Schultz, K., “Data Warehouse Design for E-Commerce Environments,”Lec-
ture Notes in Computer Science, Vol. 1727, Springer, pp. 374-388.

[TS99] Treese, G.W. and Stewart, L.C.,Designing Systems for Internet Commerce, Addison Wesley, 1998.

28

End-to-end E-commerce Application Development Based on XML
Tools

Weidong Kou
David Lauzon

William O’Farrell
IBM Toronto Lab, Canada

Teo Loo See
Daniel Wee
Daniel Tan

Nanyang Polytechnic, Singapore

Kelvin Cheung
Richard Gregory

Kostas Kontogiannis
University of Waterloo, Canada

John Mylopoulos
University of Toronto, Canada

Abstract

In this paper, we discuss an electronic business application framework and its related architecture. The
framework is presented in the form of a prototype system which illustrates how XML tools can assist
organizations on building and deploying e-commerce applications. The use of the system is presented in
the form of a sample e-commerce application that involves shopping in a virtual store. The framework
allows for customers and service providers to be linked through XML/EDI with back-end applications
and to trigger e-procurement orders which are sent using either XML or EDI messages. Invoice handling
and order tracking are also discussed along with extensions to the proposed architecture that allow for
business process logic to be encoded at the server side, in the form of Event Condition Action scripts.

1 Introduction

E-business has become the focal point in the transformation of key business processes through the use of Inter-
net technologies. By incorporating Internet technologies into core business processes, organizations are able to
integrate back-end software applications and, data base systems into a seamlessly open environment [7], [6]. At
the core of e-business lies electronic commerce or e-commerce, which is defined as commerce activities con-
ducted electronically, particularly over the Internet, from online transactions to streamlined billing and payment
systems.

Recent reports from investment and consulting firms (such as Goldman Sachs and First Data International)
indicate that business-to-business (B2B) e-commerce related revenue over the next five years, can be as high
as one trillion US dollars. E-commerce is with no doubt driving the fast growing digital economy in the new
millennium.

Copyright 2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

29

Figure 1: An e-Commerce Application Demo.

To meet the rapid growth of e-commerce, new technologies have emerged and new standards have been set.
One such standard is XML (extensible markup language) [5] that provides an excellent vehicle to move data be-
tween applications and to allow for a smooth integration of new e-commerce applications from small and medium
enterprises (SME), without requiring too much investment on complex or expensive EDI-based infrastructure.

Key e-commerce application areas such as inventory analysis, sales, accounting, and purchasing are only
part of a larger framework that supports the selection, purchase, and delivery of a product to a customer. This
framework can be modeled as a collection of information flows from one point to the next in the business process
chain.

In this report, we present a prototype infrastructure that allows for the development of end-to-end e-commerce
applications [2] using XML tools, and IBM’s Websphere server environment. The motivation is to design and
develop an architecture that allows different business partners to work together in a flexible way and, to deploy
end-to-end e-commerce applications both in the business-to-business (B2B) and business-to-consumer (B2C)
arena.

2 Prototype System Description and Discussion

A prototype implementation of an end-to-end e-commerce application was demonstrated at CASCON-1999, an
annual conference co-sponsored by IBM and the Canadian National Research Council, in November 8-11, 1999 [2].
This prototype is based on a set of Internet technologies, including IBM XML tools, and Websphere, EJBs (en-
terprise Java Beans), and Java Servlets. The system aims to provide infrastructure for developing e-business
applications by composing distributed web-enabled components.

The proposed environment focuses on typical e-commerce applications (Figure 1), in which multiple shop-
pers can browse a catalogue of an online store, select products, add them to a shopping cart, and place orders.
The system provides integration with the underlying inventory system and, depending on the inventory informa-
tion, a purchase order can be transmitted to a supplier in either XML or EDI (Electronic Data Interchange) 850

30

Figure 2: Flowchart of Shopping Steps And Asso-
ciated XML, XSL, and eBaf Files.

Figure 3: Home Page of the Car Parts Store.

format. The supplier responces can include acknowledgment messages in either XML or EDI 997 format. The
online store can also track orders, bill the shoppers, and contact a transport company for delivery.

The prototype environment was built with IBM XML tools that are currently being developed at IBM [1]
as part of the Electronic Business Application Framework (e-BAF). The e-BAF framework defines files which
contain SQL scripts for an XML Integrator Servlet, data parameters provided by the user and, XSL style sheets
for the presentation of results to the user in HTML.

The flowchart in Figure 2 llustrates each step that a shopper will go through with its associated XML, XSL,
and e-BAF files.

1. Enter the AutoPartsMart Virtual Mall

Figure 3 llustrates the home page of the demo for the Auto Parts Mart. It consists of an HTML page. The
shopper selects the model of the car for which he would like a list of parts.

Upon the selection of the manufacturer, this information is captured in an XML fragment of the form:

<?xmlversion="1.0"?><Input><XMLProject><Directory>\samples\NYPAutoMart
</Directory><EBAFile>Dauto</EBAFile></XMLProject><Fragment><Manufacturer>
Honda</Manufacturer></Fragment></Input>

The fragment is sent to the XML Integrator Servlet running on the WebSphere Application Server. The fragment
consists of the Project directory path for this demo, the e-BAF file which contains the script for the XML Integrator,
and the data fragment that contains the parameters captured from the shopper.

The XML Integrator Servlet parses the information in the XML fragment using the XML4J parser. The LotusXSL
processor executes the script specified in the e-BAF file with the relevant data from the shopper that is captured in
the data fragment. Queries to the database can be captured in the script and the result set is output in XML format
by the XML Integrator Servlet. The final output from the XML Integrator is an HTML page that is composed from
an XSL and an XML file. Refer to Figure 4 below.

The DAuto.EBAF file is parsed by the XML Integrator Servlet. Data such as the selected car model is stored via the
<SessionStore> tag where an SQL Query is made to the PARTS database to retrieve the model for the auto maker,
the accessories sold by the Auto Mart, and the year of the model. The result of the query is captured in an XML file
and the XML Integrator Servlet is then instructed to produce the final HTML file from this XML using the XSL file
specified in the EBAF file. A sample of the HTML file is shown in Figure 5.

31

Figure 4: Input-output relationship of XML/XSL
files and HTML page.

Figure 5: Logical relationship of files for ”Select
Model and Car Part” step.

Figure 6: Screen of “Select Model and Car Part”
Step.

Figure 7: Screen of “Product Summary” Step.

2. Select Model and Car Part

In this step, illustrated in Figure 6, the shopper selects the model of his or her car and the part of interest, based on the
car model data retrieved from the parts database. On clicking the “Submit” button, another XML fragment is sent to
the XML Integrator. The flow (and subsequent flow) is similar to the previous step except that in the e-BAF file, the
data fragments are now different. The processing is specified in the e-BAF file and in this case, it is Items.EBAF (see
Figure 2). In this scenario, two queries have been initiated to the PARTS database in order to retrieve information as
required by the Shopper. The results of the two queries are kept in two separate XML files and the XMLMerge tag
is used to merge both files together. Finally, the information is presented to the shopper on an HTML page from this
merged XML file using the specified XSL file.

3. Search Result

The shopper chooses from the Search Result Page the part that is sought. The part number is captured and inserted
into the fragment and sent to the XML Integrator Servlet. The PartQuery.EBAF file is used for specifying the queries
to the PARTS database for retrieving the details regarding the selected parts. The results are merged together to form
the Product Summary page (Figure 7).

4. Product Summary

The shopper obtains as the result of the process the Product Summary page (Figure 7), which provides the details of
the selected parts and accessories. On clicking the ”Add to Shopping Cart” button, another XML fragment is sent to
the XML Integrator Servlet and the ”Shopping Cart” Page is displayed.

5. Add to Shopping Cart

The shopper selects the number of tires that he wishes to purchase. The sub-total will be calculated for him. On

32

Figure 8: EJB for Information Transmission Be-
tween the Online Store and the Suppliers. Figure 9: X12 850 Message to Supplier.

selecting Check Out, the XML fragment is sent to the XML Integrator Servlet. The Order Form is displayed to the
shopper as shown in the next section with the session data pertaining to his purchase.

6. Fill in Order Form

The Order Form shows the order details that has been provided by the shopper. The form is validated before the order
can be placed. On clicking the ”Place the Order”, the XML fragment is sent to the XML Integrator Servlet, with the
CheckInventory.EBAF in the EBAFile tag.

In the CheckInventory.EBAF, the script uses the<Service> tag to invoke a service, CheckInventory, to perform re-
plenishment of the PARTS database when the quantity-on-hand falls below the reorder level of the product after the
purchase. For the demo, the CheckInventoryservice is implemented as a servlet that loads at startup and it registers it-
self with the XML Integrator’s Service Handler. The CheckInventory Servlet invokes an Enterprise Java Bean (EJB)
on the supplier server of the product when replenishment for the product is required. EJBs are used in this system
to demonstrate how to simplify the process of developing the enterprise-class application systems. With EJBs, one
could concentrate on writing the business logic rather than the complex middle-ware interfaces. Figure 8 illustrates
its usage.

The CheckInventory servlet reads from the database to determine the supplier address. The servlet then instantiates
an EJBComms object (a simple utility class provided for this prototype) and provides it with the supplier node name
and the filename that contains the X12 850 (Purchase Order) stream of data. The transmission is handled by calling
methods of this class, namely, getConnection, activateBean and exitConnection. These methods establish connection
with the postoffice (this can be the supplier itself) and remotely run a method of a session EJB, thereby transmitting
the purchase order information. For persistence, the respective supplier Entity bean is being activated. The post office
session bean will also trigger another connection with the online store to pass back the Functional Acknowledgment
message X12 997.

For the purpose of this prototype, the session bean will provide an asynchronous task to display the messages when
they are received at the respective location. These are shown in Figures 9 and 10, respectively. As this is only a
prototype, no business logic has been developed at the supplier end. The stream of data is not parsed at all and it is
stored directly into the database.

The invoice is prepared for the shopper and displayed as shown in Figure 11.

7. Invoice

The shopper takes note of the Invoice Number for the purpose of order tracking at a later stage. On clicking the “Click
OK’ button (see Figure 11), the XML fragment is sent to the XML Integrator Servlet and the shopper is shown the
HTML page to select the model and car part at the Auto Parts Mart, as a means of indicating to the shopper that he
or she can make another search for another category of part if he or she wishes.

33

Figure 10: X12 997 Message to Buyer. Figure 11: Screen of “Invoice” step.

Figure 12: System Architecture.

3 Future Direction

The prototype presented in the previous section is based on pre-defined e-BAF files and on the XML Integra-
tor. Such an architecture does not provide the kind of flexibility and extensibility which one expects in future
e-commerce environments.

Figure 12 illustrates a generic architecture in which the XML Integrator presented in Figure 4 is replaced
with a script language and a task enactment rule-based inference engine. Hard-coded static invocations to the
various services employed in the prototype system are replaced with a script whereby business logic is encoded
by a set of event-condition-action rules. The task enactment engine allows for rules to be triggered by accepting
incoming events, which in turn may cause any number of rules to be triggered. For each rule triggered, a condition
clause is checked and, if it is satisfied, the respective actions are invoked. In this way business process logic
can be customized in the e-commerce environment to accommodate particular transaction scenaria or particular
customer requirements.

In such an environment, control Integration deals with the composition, localization and invocation of remote
services and components. Control Integration typically involves invoking a remote service. A service is defined

34

informally as a method or program, that is, something that can execute either locally or remotely and may return a
value. An essential point is that services can exist anywhere on a network or the Internet. Moreover, they execute
at the system on which they reside or on a thin-client and they may be implemented in any language and run on
any platform. This is in contrast to other paradigms whereby code is down-loaded and executed on the client
side. Events are implemented as HTTP requests that encode the details of the events in XML format. Each rule
contains components that have several typed parameters along with any other information pertaining to the events
upon which the rules rely. This approach allows for a Web server to be used for capturing the events across the
network and processing these events by a servlet. Another advantage with this architecture is that it allows for
integration with other systems by translating events into a form other environments can use.

<ECAScript name="B2B Example">
<ECARule name="Parts List Query">

<Events> <EventExpr>
<Event name="NeedPartList">

<Param type="ModelName" name="Model" value=""></Param>
<!--Note that "value" will be given a value (an-->
<!--SQL query represented in XML at runtime -->

</Event>
</EventExpr> </Events>
<Conditions> </Conditions>
<Actions>

<Action name="Database Query">
<Param name="Model"></Param> </Action>

<!--The value given above will be used here-->
</Actions>

</ECARule>
<ECARule name="Part out of Stock">

<Events> <EventExpr>
<Event name="NotInStock">

<Param type="PartId" name="Part"></Param> </Event>
</EventExpr> </Events>

<Conditions> </Conditions>
<Actions>

<Action name="PlaceOrder">
<Param name="Part" value = ""></Param>
<Param name="Supplier" value="Toronto Car Parts"></Param>

<!--The first value will be bound at runtime,-->
<!--the second, when the script is read -->

</Action> </Actions>
</ECARule>

</ECAScript>

Figure 13: Example ECA Rules in XML.

The scripting language allows tasks be specified as actions in a rule-based environment that implements the
Event-Condition-Action (ECA) paradigm [4]. The scripts compose remote services in a way that customizes
the business transaction logic in a B2B e-commerce application. XML is used for encoding the ECA scripting
language, an example of which is provided in Figure 13. The service registration system is used for determining
how the actions of this script are invoked. Finally, the rule engine is based on a forward-chaining activation
mechanism that binds rule premises (Events), evaluates conditions and, triggers actions that in their turn produce
new events.

4 Conclusion

In this paper, we first described a prototype system that facilitates e-commerce activities and is based on a set of
Internet technologies, including XML, Java Servlets, EJBs, and IBM Websphere. Currently, we extend the pro-

35

totype architecture to include ECA scripts so that, e-commerce applications can be developed and deployed in a
customizable and extensible way. This leads to further development of a generic architecture using a Rule Engine
to replace the XML Integrator. This new architecture will allow the user to customize e-commerce applications
by encoding as ECA scripts specific business transaction logic.

References

[1] IBM XML Tools, http://www.alphaworks.ibm.com/ and
http://www.ibm.com/developer/xml/

[2] W.Kou, et al, Demo: E-Commerce Application of XML Application Framework for e-Business, CAS-
CON 1999, November 8-11, 1999.

[3] W.Kou and Y.Yesha,E Commerce Technology trends: Challenges and Opportunities, Midrange Com-
puting, Spring 2000, ISBN 158347-009-3.

[4] Mylopoulos, J., Gal, A., Kontogiannis, K., Stanley, M., ”A Generic Integration Architecture for Coop-
erative Information Systems”in Proceedings of Co-operative Information Systems’96, Brussels, Bel-
gium, pp.208-217.

[5] XML Forum http://www.xml.org

[6] H.Ryan et. al eds.Practical Guide to Client Server ComputingCRC Press, USA 1998.

[7] M. Brodie Migrating Legacy Systems, Morgan Kaufman Publishers, 1995.

36

Declarative Specification of Electronic Commerce Applications�

Serge Abiteboul, Sophie Cluet, Laurent Mignet
I.N.R.I.A.-Rocquencourt, France

Email:<firstname>.<lastname>@inria.fr

Tova Milo
U. Tel Aviv, Israel

Email: milo@math.tau.ac.il

Abstract

”Combining the existing semantics of EDI within an XML framework also makes possible large-scale
automation of electronic commerce.”WebWeekXML/EDI Home Page

In this short paper, we consider the use of adeclarative language(theActiveView language) for spec-
ifying electronic commerce applications and, in general, a wide range of distributed applications based
on sharing data and exchanging messages. The fact that the language is declarative allows the fast de-
sign, development and deployment and the flexible maintenance of such applications. The prototypeAc-
tiveView system that we implemented acts as an application generator that produces customizable Web
applications with persistent data and basic workflow management.

1 Introduction

The development of Electronic Commerce applications has benefited from several standards: (i) TheWorldWide
Web as a support for data exchange; (ii) eXtendedMarkupLanguage [7] as a universal means of describing
data; (iii) ElectronicDataInterchange (E.D.I [5]) as a common dictionary for EC data. However, the design,
development, deployment and maintenance of Electronic Commerce applications are still very costly, tedious
and time-consuming tasks even if application generators exist. This is in contrast with an economic context that
pushes for quick response time to market demands.

A similar situation in the seventies led the database community to a declarative query language to access data,
namely SQL. We believe that, similarly for EC applications, the solution to many problems passes via the use
of a declarative query language. Such a language is presented here. The modeling of the data is based on XML
and a query language for XML. We use here [4] but plan to adopt the standard query language for XML when
available. The ActiveView language focuses primarily on what we believe is critical in these applications: the
specification of (i) modes of sharing data and (ii) of communications between the various actors.

To validate the motivating ideas and the language, we implemented the ActiveView system and tested some
EC application. The prototype is based on a three-tier architecture :

� The first tier represents the repository that stores XML data. (XML provides the desired flexibility in terms
of semistructured data modeling [3].)

Copyright 2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

�The present work was supported by the French Ministry of Research within the framework of the R.N.R.T. GAEL project, a joint
project between MatchVision, the L.R.I (Universit de Paris Sud) and INRIA.

37

� The second corresponds to a Java server application;

� The third consists of the end-user interface, based on standard Internet browsers.

A more detailed description of the ActiveView system can be found in [2]. The example used in this paper are
based on a Web catalog application that we demonstrated at VLDB.

The paper is organized as follows. Section 2 introduces the ActiveView applications. Section 3 presents
briefly the language. The last section is a conclusion.

2 Active Views

An ActiveView application allows different users to work interactively on the same data in order to perform a
particular set of controlled activities. Before getting into details, let us illustrate the need to support such appli-
cations by considering an example. An electronic commerce application, say, a virtual store, typically involves
several types ofactors, e.g, customers and vendors. It also involves a significant amount ofdata, e.g. the products
catalog (typically searched by customers) or the products promotion information (typically viewed by customers
and updated by vendors). Observe that each of the actors mayviewdifferent parts of the data (e.g. a customer
can only see his/her own orders and the promotions relevant to his/her category, while vendors may view all the
orders and promotions), each may perform differentactionson the data, and have differentaccess rights. Also,
the requirements forfreshnessof data may differ. E.g. when a new promotion is entered, we may want to im-
mediately refresh the customer screen so that the new promotion becomes visible. On the other hand, we may
decide not to propagate all catalog changes to the user so as not to overwhelm communications with too many
messages. When/if an order is issued, the user has to be notified if the price of some data actually ordered has
been modified.

Each actor in an EC application typically performs severalactivities. E.g. a customer may besearchingthe
catalog,orderingproducts,changinga passed order. Observe that in each of these activities, we may expect to
show a different Web page to the actor that possibly includes only part of the available data and actions for that
given actor. Observe also that actions performed by an actor may initiate other actions. For instance, when a
customer orders a product, we may want to update the stock. Finally, note that it may be interesting to log some
of the actors operations, providing atrace for later analysis or to settle possible disputes.

Functionalities The definition of an ActiveView application consists of:

1. the specification of the persistent application data (some XML document such as the product catalog). This
is often provided by already existing applications;

2. the specification of the application in the active view language, namely AVL. Its compilation generates the
run-time of the application and some default user interfaces.

3. the customization of the default user-interfaces.

Furthermore, it is possible to modify dynamically the application by adding and removingactive rules(see Sec-
tion 3).

As mentioned above, an ActiveView specification is a declarative description of an application. It specifies,
for each kind of actor participating in the application: (i) the available data and operations for the given actor, (ii)
the various activities, and (iii) some active rules. Thus, the general specification of an application is as shown in
Figure 1.

38

ActiveView application applicationname

ActiveView actor-kind1 in application applicationname
view data
methods
activities
active rules...

ActiveView actor-kindn in application applicationname...

Figure 1: AVL general specification

Architecture The ActiveView system uses Axielle, the ArdentSoftware XML repository that provides standard
database support. An ActiveView application consists of several independent clients of the repository commu-
nicating between them and with the repository through notifications. These clients are programmed in Java, and
communicate with the server using the DOM interface [6]. Figure 2 shows the various components of a running
application. As can be observed on the figure, theactive view application manager, controls the activities of the
(possibly many)active viewclients. Active views receive/send remote method invocations from/to the end-users
interfaceswhich runs on standard Web browsers.

In principle, the server, clients and interfaces may run on different machines. Typically, the interface are on
remote systems. The view data is obtained from the repository by check-in/check-out. Repository changes are
not in general immediately propagated to the active view. Mechanisms to allow immediate propagation if needed
are provided. The active view and the interface see the same data.

The ActiveView application manager consists of the following modules:

(i) The update manager receives notifications of changes from the repository. It notifies the appropriate views
of changes they are concerned with. This mechanism is based on a notification mechanism provided by
Axielle.

(ii) The active rule module manages a set of rules specified by the application programmer. These rules are
triggered by events generated by the application such as method firings or repository updates. The rule
mechanism uses the JSDT Protocol developed by Sun Microsystems.

(iii) The tracing module keeps a log of specified events.

Together these modules provide the business intelligence of the application.

An active view is basically an object of our application. In the current version of the system, it is implemented
in Java. An active view is generally related to an actual Web window opened by a user of the system. Some
views independent of any interface may also be introduced, e.g., for bookkeeping. An active view has access to
the repository as well as to some local data (the instance variables of the view object). It reacts to user commands
and may be refreshed according to notifications sent by the application manager. The methods available on a view
depend on the users access rights and may allow him/her to read, load, write, etc. part or the whole the data it
sees.

39

Rules
Manager

Tracing
Manager

XML

(DOM)

Repository
Update

Manager

JSDT Protocol

DOM API

RMI

Axielle Notification

Java applet)
(with Javascrit and

Interface HTML
ActiveViews

Java applet)
(with Javascrit and

Interface HTML
ActiveViews

ActiveView Application Manager

Figure 2: Architecture of an application

3 Activeview Language and User Interface

We describe briefly the language using a simplistic electronic commerce example in which we consider two kinds
of users, namely,CustomersandVendors1. A vendor is mainly in charge of some customers and may interact
with them, e.g., by offering them new promotions. More details on this application may be found in [2].

Data Specification A view may have access to persistent data (that exist independently of the particular actor)
and transient data (that exist only during the actor’s lifetime). The persistent data of a view are defined using
XML-Queries [4] over the repository. Sophisticate access modes are provided. Consider, for instance, theCus-
tomer’sandVendor’sviews of the catalog defined as follows:

let catalog : (CAT)?
be fselect $m.CATS.CAT

from $m in $catalog.METACATS.META
where $m.NAME == ’Musical Instrument’g

with self.? X, X.ARTICLE Y, X.NAME Z
mode deferred readX, immediate readY Z

let catalog : (CAT)?
be fselect $m.CATS.CAT

from $m in $catalog.METACATS.META
where $m.NAME == ’Musical Instrument’g

with catalog.? X, X.ARTICLE Y, X.NAME Z,
Y.PRICE P

mode readX, immediate readY Z, write P

Customer’s catalog definition Vendor’s catalog definition

whereCATstands for category andCATSfor categories. Customers and vendors see the same data except that a
vendor may change the price of a product. The keywordlet introduces some persistent data. (The keywordlocal
for transient data is not used here.) Observe in the example how access modes are specified based on variables
with bindings provided by a query.

1This example is based on the ActiveView Demonstration on VLDB

40

Thewithkeyword permits to specify XML subtrees that are accessible in the view. The possible access modes
arewrite, append, remove, immediate read, or deferred read. They allow to specify whether (some) updates are
allowed and whether when an object is encountered, it should be loaded immediately (i.e., should we load the
subtree rooted at this DOM node) or not.

The monitoring of persistent data changes is supported via two modes. The modes specify which actions
should be taken when data changes are detected. If the keywordslet monitoredare used in place of simplylet, the
view is notified immediately of changes to that particular data. Iflet freshare used, data changes are immediately
propagated to the view.

Rules An actor specification may contain active rules. Rules can also be added and removed dynamically to
modify the behavior of an application, e.g., to introduce a new kind of promotion. Rules [8] are very simple
expressions of the form:

on (local)?<event> (if f<condition>g)? do f<action>g

The events are (remote) methods calls (e.g., switch of activity), operations on instance variables or objects (i.e.,
write, read, append, remove) and change detections. The conditions are boolean XML queries. The actions are
(remote) methods calls, operations on instance variables or objects, notifications or traces. A rule that is specified
aslocal concerns this particular view and no event from or to other views.

As an example, we can introduce a new rule so that a vendor always sees what his/her customer is currently
viewing:

on display(element)
if fsender.name == MyCustomerg
do fself.display(element)g

Methods and Activities Due to space limitations, we will not describe here methods and activities specifica-
tions. In short, methods are defined in Java and are used for instance to do computations (AVL together with
the XML query language should limit the need of Java code to the minimum). Activities are defined by simply
listing the required data and methods (e.g., in thebrowseactivity, we need thecatalogvariable and thesearch
andorder methods).

Users interfaces are currently based on dynamic HTML documents with embedded JavaScript and a Java ap-
plet to communicate with the active view. We plan to switch to XML as soon as XML browsers support the
needed dynamic features. As for now, we generate XML “prescriptions”, i.e., XML documents with application
specific attributes and elements that describe the dynamic features of the document. These prescriptions are then
compiled to dynamic HTML. There is one HTML document per user and per activity of that user. The applet
is built on top of a generic API. In particular, the applet is application independent. The system generates de-
fault interfaces. The application programmer may redefine/customize either the XML prescription files or their
corresponding HTML pages and JavaScripts.

4 Conclusion

The language AVL that is sketched here is supported by the ActiveView system [2]. There are limitations to the
current architecture and prototype:

1. The combined use of JAVA RMI and Web Proxy limits the Web availability of ActiveView applications;

2. the use of one ActiveView Java client per user brings a lot of flexibility but would not scale to thousands
of users;

41

3. the current ActiveView notification mechanism is rather complex. It uses both a database-centered notifi-
cation mechanism from Axielle and JSDT. Although it supports nicely the toy application we developed,
we believe it would not scale to thousands of notifications per seconds.

Acknowledgements A number of people helped implement the ActiveView prototype: Bernd Amann, Sbastien
Ailleret, Frederic Hubert, Amlie Marian, Bruno Tessier, Brendan Hills. We thank Victor Vianu, Brad Fordham,
Yelena Yesha for works with one the author [1] that initiated the present work. Finaly valuable comments were
provided by Sihem Amer-Yahia, Anat Eyal, Jean-Claude Mamou, Jrme Simon and Anne-Marie Vercoustre.

References

[1] S. Abiteboul, V. Vianu, B. Fordham, and Y. Yesha. Relational transducers for electronic commerce. InACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), pages 179–187, New
York, USA, 1998.

[2] Serge Abiteboul, Bernd Amann, Sophie Cluet, Anat Eyal, Laurent Mignet, and Tova Milo. Active views
for electronic commerce. InVLDB’99, Proceedings of 25th International Conference on Very Large Data
Bases, September 7-10, 1999, Edinburgh, Scotland, UK, pages 138–149. Morgan Kaufmann, 1999.

[3] Serge Abiteboul, Peter Buneman, and Dan Suciu.Data on the Web: From Relations to Semistructured Data
and XML. Morgan Kaufmann Publisher, October 1999.

[4] Vincent Aguilera. X-OQL. Technical report, INRIA, Verso Project, 2000.
http://www-rocq.inria.fr/˜aguilera/xoql.html.

[5] Secretariat for federal edi. http://snad.ncsl.nist.gov/dartg/edi/.

[6] W3C. Document object model (DOM). http://www.w3.org/DOM.

[7] W3C. Extensible markup language (XML) 1.0. http://www.w3.org/TR/REC-xml.

[8] J. Widom and S. Ceri.Active Database Systems: Triggers and Rules for Advanced Database Processing.
Morgan-Kaufmann, San Francisco, California, 1995.

42

TPC-W E-Commerce Benchmark Using Javlin/ObjectStore

Manish Gupta
Excelon Corporation

25 Mall Road, Burlingon, MA 01803
manish@exceloncorp.com

Abstract

Considerations during design for high performance and scalability of a typical high load e-commerce
web system using an object database (ObjectStore), a middle tier transaction routing and scheduling li-
brary (Javlin) and standard commercial web servers are described. The TPC Benchmark(TM)- W speci-
fies a set of operations to exercise a workload that includes simultaneous execution of a variety of transac-
tion types, transaction integrity, secure online operations and dynamic page generation. We also present
a subset of preliminary results from a particular implementation to illustrate tuning techniques that are
representative of ObjectStore/Java based implementations.

1 Introduction

As the IDC predicts a figure of up to $1.3 trillion in internet commerce by the year 2003, more businesses are
expecting a new generation of e-Commerce software implementations comprising of reusable modules and tem-
plates rather than custom development in order to reduce total software development costs. The average develop-
ment cost of building an e-Commerce web site has dropped from the $1-$2 million range to the less than $200K
range ([1]).With the explosion such e-Commerce software providers, businesses are naturally asking what imple-
mentations are best suited to their needs and system requirements. It is for this reason that the TPC (Transaction
Processing Council) came up with their new TPC-W benchmark specification ([2]).

The TPC is a non-profit organization that works toward specifications of benchmarks to to serve as a resource
of performance data for database and transaction processing systems. The TPC-W benchmark in particular mea-
sures functionality, performance and robustness of systems designed for transactional web environments includ-
ing business-to-consumer, business-to-business and intranet.

At Excelon Corporation, we have implemented this pecification using a suite of products, including an object
database (ObjectStore) and a middle-tier cache distribution library (Javlin). In this paper we first briefly discuss
why the chosen product line is a good fit for the e-Commerce problem domain and what our goals from the im-
plementation were. We then outline how our system was designed to satisfy requirements of the specification.
Finally we present some preliminary results to illustrate the process of performance tuning.

Copyright 2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

43

2 e-Commerce, ObjectStore and Javlin

The e-Commerce problem domain is one that is highly user-centric, characterized by a multitude, enormity and
wide mix of simultaneous user transactions (browing,searching and ordering). These operations place different
sets of demands on the system used to provide the solution. For example, industrial catalogs may contain tens of
thousands of products, each with several interrelated attributes. Performing high-speed searches on this amount
of interrelated data might be an absolute requirement. Certain businesses require complicated calculations during
order processing, such as computation of taxes and alteration of inventory, which requires high-speed access
to time-series data and real-time computations on this data. The magnitude of customer and business’ data is
typically enormous.Secure transactions and order processing place stringent demands on data consistency and
visibility.

ObjectStore and Javlin’s unique Cache-Forward(TM) architecture for distributing data and processing pro-
vides one way to implement a distributed solution. Object relationships from the application space being stored
as is in the database allows high-speed searches on interrelated data. ObjectStore’s memory-mapped architecture
allows in-memory speed computations on persistent data. Javlin provides distribution of cached persistent data
that is required for scalability. With an already rapidly growing ObjectStore/Javlin customer base, the benchmark
was implemented to characterize high speed and scalable architectures. The results are used to identify prod-
uct deficiencies and performance bottlenecks that are likely to arise in typical development scenarios. Through
this benchmark we can analyze the relative strengths of various configurations (for example, using different web
servers or application servers) and make customer recommendations accordingly.

3 System Requirements

The workload specified in the TPC-W specification attempts to test the e-commerce environment for simulta-
neous on-line sessions via browsers, dynamic web page generation, consistency of web objects, simultaneous
execution of a variety of types of online transactions, transaction ACID properties, data read and update con-
tention and shopping cart persistence through sessions. The application is a retail store on the internet with cus-
tomer browse, search and order scenarios. Starting at the home page of the store, the user (a customer or an
administrator) searches and selects items, retrieves detailed information on them, puts them in a shopping cart,
registers personal information, provides secure payment information, verifies a purchase and updates the item
catalog. The TPC-W precisely specifies the pre- and post-conditions for all use-cases (or “web interactions”),
primary database entity relationships, field definitions, database population requirements and data transparency
rules. There also exist implementation restrictions and lower bounds on performance metrics.

4 Design Overview

We needed a flexible and extensible system that can be used to test various configurations. Given the requirements
of an HTML front-end and HTTP for communication between the system and user, we decided to use a Java-
centric architecture using JavaServer pages for presentation. To meet the scalability requirements we use the
Javlin middle tier library for data distribution. Other than these fixed parameters, it was deemed desirable to
have a system whose architecture can be changed with minimal modifications: for example, introducing another
tier for scalability, or using a different web server or even a different database at the back end.

4.1 System Components

Figure 1 depicts the principal components of a general system we wish to develop with the above goals in mind.
These include an HTTP server to handle requests for static pages and to dispatch requests for dynamic pages

44

to the respective engine; a JSP Engine(s) to handle the generation of dynamic pages; an application server con-
taining beans that handle business logic associated with processing of a particular incoming request; Javlin for
distribution of data caches and scheduling of database transactions; and a database management system such as
ObjectStore.

Figure 1: Figure 1: System Components

System scalability can be achieved by various strategies:
1. HTTP Request Dispatching.A network dispatcher route requests to multiple HTTP servers. Depending on the
vendor, each web server can further route requests for dynamic content to multiple JSP Engines. Architectures
that use sockets (eg. Apache/Jserv) or ISAPI/NSAPI (eg. Netscape IPlanet Server) for communication between
the web server and the JSP Engine lend themselves toward this strategy while in others like WebLogic scaling
would achieved by routing HTTP requests amongst a cluster of servers.
2. Distribution of Processing.Most JSP engines compile the JSP into a servlets that retrieve information needed
for the presentation by invoking methods (local or remote) on application beans. Using remote beans (such as
Enterprise JavaBeans) allows distribution and balancing of request load from the presentation servlets.
3. Distribution of Data and Data Caches.Using ObjectStore allows data to be distributed across multiple databases
and data servers. Further, the cached data accessed by the application beans itself can be distributed using the
Javlin Database transactional requests are routed to different data caches based upon the access type (read vs.
update), nature of the interaction (particular subsystem accessed) and the existing transactional load of caches.

4.2 Implementation

Figure 2: Components for particular implementation using WebLogic Server

45

The current implementation uses beans instantiated in the same Java Virtual Machine as the servlets. These along
with the global transaction coordinator, JSP Engine and Javlin caches reside in the same VM as the WebLogic
Server. System scalability is achieved by HTTP request dispatching, data and cache distribution.

Interactions fall in the following five categories.Browse interactionslike displaying best sellers or latest
products in a particular category, retrieving thumbnails for a random set of (promotional) items occur with very
high frequency and require throughput.Searching items by criteria such as subject, author or title occur with
low frequency, require moderate response time and have relaxed consistency. TheShopping Cart interactions
involve both update operations on cart objects and read access to multiple types of data (customers and items)
but requires very good response time.Ordering interactionscreate order objects with low frequency but require
strict consistency and communication with an external payment gateway.Administrative interactionschange
information about items and users, happen very infrequently but are highly update and compute intensive. We
list a few considerations in the database design to be able to achieve a reasonable mix of all the above interactions.
1.Clustering. Segregating objects in the database allows simultaneous access of unrelated data. For example,
keeping shopping carts in different database clusters avoids contention during simultaneous updates to different
carts.
2.Using non-blocking reads.We use the non-blocking read feature of ObjectStore (which guarantees consistent
but not necessarily up-to-date data) whenever consistency is relaxed or can be achieved by application logic.
For example, all search and browse interactions access items information with somewhat relaxed consistency.
Creation of orders, on the other hand, needs to read latest product and customer information. However, since
this data is rarely modified, we can attain a high read throughput by sendingnotifications to the reader cache on
the occurence of an update. Creation of shopping carts also requires reading consistent information about items.
However, an explicit check for consistency at various stages of the business transaction is possible since this
needs involve only the determination whether the item is valid or not
3.High concurrency collection representations.Multi-tier collections for Order objects and Item objects (the lat-
ter are categorized by Subject, since there is a fixed set of subjects) prevents the container holding these objects
to be a point of contention during creations and updates. This also allows distribution of data.
4. Indexing.All browse and search interactions make use of indexes on the desired criterion. While this allows
faster retrieval, maintenance of these can be non-trivial. Some of these structures such as the index of related
items and best selling items require being update on each order placement.
5.Lazy Update via Inter-cache Messaging.Defering of database updates (such as the index structures mentioned
above) by sending messages across caches improves real-time response requirements. For example while placing
orders, the information about the newly created order is notified to a cache that updates the index structures based
on the latest orders.
6.Data Replication.Shopping carts replicate data about items and customers so that updates and reads of the
cart (which happen more frequently than creation) does not require access to these objects. Since checks for
consistency are made only during order creation (once per lifetime of a cart), synchronization of replicated data
does not become an issue.
7.Improving Transaction Throughput.Batching of database read and update transactions (handled by Javlin)
significantly improves transaction throughput unless atomicity requirements disallow so (such as the order cre-
ation). In the latter case we map business transactions to database transactions but make use of an application
level locking to keep these transactions short.

5 Testing Environment

Our system is still under development though some preliminary tests have been conducted. To drive the sytem for
high throughput and performance, a Remote Browser Emulator component (RBE) was implemented to simulate a
stateful user browser. The results presented in the next section were obtained with the system under test running

46

on an HP-NetServer machine (Four Pentium Zeon 500MHz CPUs, 1 Gb RAM) running Windows NT Server
4.0, WebLogic Server 4.51, Javlin 1.0 and ObjectStore 6.0. The RBEs ran on various NT and Solaris machines.
The database was prepopulatd with 10K items and customers each, 2K orders and 500 shopping carts. Each
measurement interval lasted for about two hours.

6 Current Results

Figure 3: WIPS behavior, browse-only scenario Figure 4: WIPS behavior, shopping/ordering

6.1 Performance Metrics

Response time for each interaction and throughput are sampled during each measurement interval every 30 sec-
onds. Each test is performed for various simulated load profiles from the RBE. A load profile comprises of a
particular browse/shopping/ordering mix and a number of browsers. We also recorded statistics for a system
running with with no database access to provides us with a comparative basis for measuring ObjectStore and
Javlin performance without webserver and JSP overhead.

Two metrics of interest are the response time (RT) for a particular interaction and the number of Web Interac-
tions Per Second (WIPS) as a function of the number of browsers. These two metrics together measure the system
under test for cpu utilization and concurrency behavior. While RT is used to characterize cpu utilization, the be-
havior in the saturation of the WIPS level when sufficiently large number of browsers hit a constant cpu-powered
system determines system concurrency.

6.2 Preliminary Results

Figures 3 and 4 show the WIPS behavior for browsing and ordering profiles respectively. Profiling indicated that
a lot of processing time was spent in garbage collection. Tests with using the HotSpot VM (which evens out
the garbage collection process) and by tuning the system to drastically reduce the string objects indicate great
improvement in overall throughput. The fact that the WIPS actually drops rather than saturates when there is no
optimization for GC implies that excessive GC can severely hamper scalability.

From the response time results for single browsers (Figure 5) we see that, in fact, reducing GC drastically
improves response times browse-only interactions in particular. In fact for some of these interactions there is
hardly any difference in response time when there is no database access. However the amplified difference in the
saturation level WIPS implies concurrency bottlenecks in the system.

47

Figure 5: Response times (with single browser) for various interactions.

7 Summary and Conclusions

The TPC-W lays out a set of specifications that are typical in a real time e-Commerce application. We have built
a system that satisfies these requirements using ObjectStore and Javlin. This paper outlines some of the design
considerations while developing this system. In this process, we have illustrated how to develop a high perfor-
mance and scalable system using various configurations. While results are still preliminary, their inclusion here
illustrates how to use identify system bottlenecks for speed and concurrency. This helps in tuning performance of
not only the implementation but also the product lines (ObjectStore and Javlin) themselves. Our goals from this
implementation have been to direct the development of these products for being able to deliver high performance
applications and to provide customer recommendations for specific architectures.

References

[1] Zona Research, Second generation of electronic commerceAugust 1999.
http : ==www � 4:ibm:com=software=webservers=commerce=servers=secondwave:pdf

[2] Transaction Processing Council,TPC Benchmark W Draft Specification, Revision D-5.1, August 1999

48

An Overview of the Agent-Based Electronic Commerce System
(ABECOS) Project

Ee-Peng Lim, Wee-Keong Ng
Center for Advanced Information Systems

School of Applied Science
Nanyang Technological University

Nanyang Avenue, Singapore 639798, SINGAPORE

Abstract

ABECOS (Agent-Based Electronic COmmerce System) is an ongoing project that investigates the prob-
lems involved in building a large-scale business-to-consumer e-commerce system on the web using agent
technologies. In this paper, we describe the ABECOS’s system architecture and some research problems
studied by the ABECOS research group. Our approaches to apply database techniques to address some
of these E-Commerce problems will also be presented.

1 Introduction

In the 1998 NSF Workshop on Research Priorities in Electronic Commerce[4], e-commerce has been defined
as “sharing business information, maintaining business relationships, and conducting business transactions by
means of telecommunication network.” Under this broad definition, e-commerce has further been classified into
business-to-businessandbusiness-to-consumer. As pointed out by Ozsu in [10], business-to-business e-commerce
activities started as early as in the 1960’s in the form of Electronic Data Interchange (EDI) although the telecom-
munication network adopted by the EDI systems were not Internet-based. In the case of Internet-based EDI [3],
the main research problems include the interoperability between different EDI systems and the efficient and se-
cure transmission of EDI messages on the Internet.

The business-to-consumer e-commerce, in contrast, has only started to pick up recently. Nevertheless, within
a short span of time, it has created many new ways of online retailing on the Internet and has contributed to the
successes of many new “.com” businesses. For example, Amazon.com has now become one of the world’s largest
booksellers, boasted with a customer base of 12 millions[12]. Yahoo.com, besides providing a very successful
web search engine, has been hosting 6000 over online stores selling more than 3.75 million different products.
Despite the huge successes of these “.com” businesses, many issues in the business-to-consumer e-commerce
remain unresolved and require the attention of database researchers.

In the ongoing ABECOS (Agent Based Electronic COmmerce System) project1 at the Center for Advanced
Information Systems (CAIS), we are focusing on research issues related to building a large-scale e-commerce sys-
tem that facilitates Internet shopping using different kinds of agents[13]. ABECOS aims to support a distributed

Copyright 2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1Seehttp://www.cais.ntu.edu.sg:8000/�abecos/

49

marketplace where large number of different products offered by different online stores can be purchased by web
users.

The ABECOS system architecture essentially consists of three types of software agents, i.e.seller agents,
buyer agentsanddirectory agents. Each buyer agent represents a web user and performs the appropriate tasks
to purchase some product(s) specified by the user. In its operations, the buyer agent will emulate some intelligent
behaviors of a typical human shopper in its attempt to find the “best” deal for the user. Here, the measure of a
deal could be determined by the price of the product(s) or the some other criteria specified by the user. To buy a
product from an online store, a buyer agent has to communicate with the seller agent representing the store. The
seller agent has direct access to the product database of its online store and is capable of committing transactions
on behalf of the store. The buyer agent may negotiate with the seller agents of multiple stores before a final
purchase decision is reached. To allow buyer agents to locate seller agents of the appropriate online stores, the
ABECOS system architecture has incorporated directory agents that maintain catalogs of product information in
a summarized form and are capable of recommending the seller agents of appropriate online stores to the buyer
agents based on product specifications provided by the users[9].

In the remaining sections of this paper, we will highlight some database research issues in the context of
ABECOS project.

2 XML Search Capabilities

XML enables online stores to provide their product information in a self-describing and platform-independent
manner to the web users. By marking web documents with well-formed user-defined tags, online stores can easily
structure the document content so that remote e-commerce applications can extract the embedded data for their
use[8]. When XML documents are given to a web browser together with their XSL style sheets(XML Style Sheet
Language), their XML content will actually be presented in HTML format within the browser. Hence, XML is
able to support both the browsing and interoperability needs of e-commerce applications.

In ABECOS, we adopt an XML approach to store both product catalog and online store catalog information
at the directory agent’s web site. Products are first classified into product categories and sub-categories forming
one or more product hierarchies (also known as theisahierarchies). The leaf nodes of the product hierarchies are
XML pages of individual products while the internal nodes are XML pages containing directories of products or
product categories. These XML pages are connected by XML links. The product hierarchies greatly facilitate
web users in navigating the product catalog XML pages and formulating search queries on only products under
some specific category. Beside theisa relationship between product categories and products, there also exists
some other mundane or peculiar inter-relationships between products or product categories. For example, a per-
sonal computer consists of CPU, disk drives, and others as parts. A special mouse device can only be used with a
special keyboard. All product information, product category information and the different types of relationships
between them can be readily represented in XML. Similarly, we can maintain online store catalog information
using XML. In the following, we describe our research efforts in developing a search engine for storing and in-
dexing these XML information.

At present, our research in XML search capabilities focuses on providingstructured queries on text data
embedded in XML pages[5]. Here, structured queries are ones that involvestructure patterns within the XML
pages or across them. For example, a web user may want to look for an IBM personal computer consisting of an
energy saving monitor and an ergonomic keyboard. Such requirement can be translated into a structured search
on the “brand” element within “personal computer” pages that are linked to “monitor” pages containing the terms
“energy” and “saving” in their “feature” elements, and “keyboard” pages containing the term “ergonomic” in their
“feature” elements. This query can be represented as a query graph shown in Figure 1.

To efficiently evaluate the above type of queries on a collection of XML pages, we have developed a suite
of indexes consisting of atag inverted index and aterm inverted index. The former allows us to locate the

50

PC

Brand ”IBM”

Monitor

�
�

�
��	

J
J
J
JĴ

HHHHj

? ?

”saving”
”energy”

”ergonomic”Feature

Keyboard

Feature

Figure 1:A Structured Query Example

start and end positions of tags within XML pages. The latter identifies the positions of terms within XML pages.
Nevertheless, the indexes alone do not directly lead to efficient query evaluation if the structure patterns used in
queries are not properly considered. Hence, coupled with these indexes, we have also developed anincremental
greedyalgorithm to decide the order of evaluating structure patterns in the queries. The algorithm consists of
multiple iterations and in each iteration the query node expected to return the least result is evaluated. The algo-
rithm terminates when it has evaluated all query nodes in the query graph. A prototype implementation of our
proposed XML search engine has been made available on the web athttp://www.cais.ntu.edu.sg:8000/�wires.

3 Product Schema Integration

In the ABECOS e-commerce system, buyer agents and seller agents interact and transact on behalf of sellers and
buyers while directory agents locate seller agents for buyer agents. Since seller agents distinguish themselves
by the products they sell, directory agents use the buyer’s specification of the desired product as a query to find
relevant seller agents. In this case, directory agents no longer use a simple keyword search strategy adopted by
traditional search engines; they use user-supplied product specifications as the search criteria. They compare
the specifications with descriptions provided by different seller agents and return the locations of relevant seller
agents. Once buyer agents obtain these addresses, they communicate directly with each relevant seller agent.
They then query for the details of the products, negotiate prices and complete the deal.

As different sellers use different local product schemas, there is a need to resolve the semantic differences
among local schema attributes. This is an ontology heterogeneity problem. Data integration is a solution to
this problem. Product schema integration is a sub-field of data integration. In the Asilomar report on database
research[1], in J. Gray’s brief essay on database research [2] and in another paper on database research in the
21st century by A. Silberschatzet al.[11], heterogeneous data integration has been identified as one of the major
research directions in the near future. It has also been pointed out that in e-commerce systems, heterogeneous
information sources must be integrated and the integration is an extremely difficult problem. Although signifi-
cant progress has been made in data integration, this problem is by no means solved andname matchingacross
distributed sources is still one of the major problems remaining. Therefore, we need schema management facili-
ties such as directory agents in ABECOS which can adapt to the dynamic nature of heterogeneous data. We may
re-state the problem as a set of basic questions:

� What is the information needed for identifying the correspondence among attributes from heterogeneous
local product schemas? In what form does such information exist?

� What is the algorithm to integrate product schemas? Is it capable of automated integration?

� How can the global schema be maintained?

51

We refer to this problem as theProduct Schema Integrationproblem (PSI)[13, 14].

4 Electronic Brokering

In [7], product brokeringandmerchant brokeringare two types ofelectronic brokering (e-brokering) to be
carried out as part of the buying process. Product brokering refers to helping a web user to determine what product
to buy. Merchant brokering involves helping the user to determine who to buy from. At this point, it is not always
clear if product brokering always comes before merchant brokering. It is however quite certain that users will
always have to start with some selection criteria on some product attributes, e.g. product type, brand, etc..

In our e-brokering research, we model the brokering of products and merchants as adatabase selection prob-
lem. In this database selection problem, we are given a set of user-specified selection criteria on some product
attribute and we have to select from a large number of product databases from different online stores the ones that
are likely to provide the products that satisfy the selection criteria. Once some online stores have been shortlisted
by the user, the selection criteria can be forwarded to the shortlisted stores and be actually evaluated against the
product databases of the stores. The products satisfying the selection criteria from the selected stores are finally
combined and presented to the user for his final buying decision. Based on the above problem formulation, we
seek to answer the following research questions in our e-brokering research:

� What should be the summarized knowledge one should acquire from the product databases such as database
selection can be accurately performed? In this respect, the database selection technique must consider mul-
tiple attributes of different data types in the product databases.

� How do we measure the performance of database selection? The performance measure may possibly be
determined by the end users.

5 Web Site Refreshing

As corporations advertise themselves and sell products through their websites, it is necessary to place the product
and price information on web pages for consumer to browse. These information generally come from a corpora-
tion’s product databases. For a large corporation with multiple websites spread across countries and continents,
coordinating the refresh of information to websites from product databases is a complex task. There are several
complications:

� A website contains information that come from different portions of the product databases. For instance,
a single web page alone may contain different types and amount of information from different parts of the
databases.

� Websites have different refresh frequencies. Pages in the same host machine may also have different refresh
frequencies. Even different parts of the same page have different refresh frequencies.

In order to keep websites up-to-date, an appropriate set of queries must be made to product databases so that
query results can be distributed to refresh the correct websites. Queries must be made regularly so that fresh
information arrive within the refresh frequencies of websites.

A straightforward approach to refresh websites is to gather all the queries required by each website and exe-
cute each of them. However, this method may not work because query results may not arrive within the refresh
frequencies of websites due to the lack of resources (processors). To alleviate this problem, we may use more
computers and resources. However, this option is viable only if financial resources are available.

We observe a characteristic of information hosted in websites: As websites display information for con-
sumers, care is taken not to overwhelm consumers with large amounts of complex information. Generally, infor-
mation is distributed across multiple web pages and aesthetically presented. This has two implications:

52

� Fresh information from several web pages may be obtained by performing a single query to a corporation’s
product database.

� Likewise, a single query’s result may be splitted up and distributed across multiple web pages, thereby
satisfying their information requirements.

Given the information refresh requirements of a set of websites, we must find a suitable set of queries to pose
to product databases so thattimely refreshes are made to websites. Clearly, the query set should be minimal.
We may re-state this problem as a set of basic questions: Given the information refresh requirements of a set of
websites,

� How to determine the feasibility of scheduling a set of queries to satisfy them (i.e., query results arrive
within refresh frequencies)?

� If the query set is non-unique, what is the optimal query set? What optimization techniques are there?

We refer to this kind of problem as the Websites Refresh Problem (WRP)[6]. This problem needs not neces-
sarily occur for a large corporation with multiple geographically dispersed websites. It may also happen within a
single, complex website containing multiple web pages requiring bits and pieces of information to be refreshed
at different intervals from different portions of the corporation’s product databases.

6 Concluding Remarks

In this paper, we gave an overall description of the ABECOS project and the database research problems involved.
The demand for large-scale business-to-consumer e-commerce system has certainly brought about many new
problems that require one or more solution techniques. While solving these research problems, we have started to
develop a ABECOS system prototype to demonstrate the capabilities of buyer agents, seller agents and directory
agents. To allow agent technology to be widely and quickly deployed by the online stores and web buyers, we
are now looking into software toolkits that allow us to create and configure the different types of e-commerce
agents.

References

[1] P. Bernstein, M. Brodie, S. Ceri, D. DeWitt, M. Franklin, H. Garcia-Molina, J. Gray, J. Held, J. Hellerstein,
H. Jagadish, M. Lesk, D. Maier, J. Naughton, H. Pirahesh, M. Stonebraker, and J. Ullman. The Asilomar
Report on Database Research.ACM SIGMOD Record, 27(3), December 1998.

[2] J. Gray. Database Systems: A Textbook Case of Research Paying Off.
URL=http://www.cs.washington.edu/homes/lazowska/cra/database.html.

[3] T. Harding, R. Drummond, and C. Shih.Internet Draft: Requirements for Inter-operable Internet EDI. EDI-
INT Working Group, URL=http://www.ietf.org/internet-drafts/draft-ietf-ediint-req-08.txt, September 1999.

[4] IC2 Institute. NSF Workshop: Research Priorities in Electronic Commerce. Technical report, The Univer-
sity of Texas at Austin, September 1998.

[5] E-.P. Lim, C-.H. Tan, B-.W. Lim, and W-.K. Ng. Querying Structured Web Resources. InACM International
Conference on Digital Libraries, pages 297–298, Pittsburgh, June 1998. ACM Press.

53

[6] H.-F. Liu, W.-K. Ng, and E.-P. Lim. Some Preliminary Results on the Feasibility of Website Refresh
Queries. In10th International Conference on Database and Expert System Applications (DEXA’99), Flo-
rence, August 1999.

[7] P. Maes, R.H. Guttman, and A.G. Moukas. Agents That Buy and Sell.Communications of the ACM,
42(3):81–91, March 1999.

[8] B. Meltzer and R. Glushko. XML and Electronic Commerce.SIGMOD Record, 27(4):21–24, December
1998.

[9] K.-L. Ong, H.-H. Chew, W.-K. Ng, and E.-P. Lim. Calling All Agents, Where Are You? InInternational
Workshop on Information Technologies for Electronic Commerce (ITeC’99), Florence, August 1999.

[10] M.T. Ozsu. Data Management Issues in Electronic Commerce. InACM SIGMOD International Conference
on Management of Data, page 505, Philadelphia, June 1999.

[11] A. Silberschatz, M. Stonebraker, and J.D. Ullman. Database Research: Achievements and Opportunities
Into the 21st Century.ACM SIGMOD Record, 25(1):52–63, 1996.

[12] T. Wolverton. CNET News.Com: Amazon tries on hosting hat, September 29 1999.
URL=http://news.cnet.com/news/0-1007-200-266350.html.

[13] G.-H. Yan, W.-K. Ng, and E-.P. Lim. Toolkits for a Distributed, Agent-Based Web Commerce Sys-
tem. In International IFIP Working Conference on Trends in Distributed Systems for Electronic Com-
merce (TrEC’98), Hamburg, Germany, June 1998. Also appeared at theWeb Development Journalat
http://WebDevelopersJournal.com/articles/ecommerce/yan01.html.

[14] G.-H. Yan, W.-K. Ng, and E.-P. Lim. Incremental Maintenance of Product Schema in Electronic
Commerce—A Synonym-Based Approach. InIEEE 2nd International Conference on Information, Com-
munications and Signal Processing (ICICS’99), Singapore, December 1999.

54

IEEE Computer Society
1730 Massachusetts Ave, NW
Washington, D.C. 20036-1903

Non-profit Org.
U.S. Postage

PAID
Silver Spring, MD

Permit 1398

