
Bulletin of the Technical Committee on

Data
Engineering
December 1999 Vol. 22 No. 4 IEEE Computer Society

Letters
Letter from the Editor-in-Chief .David Lomet 1
TC on Data Engineering: Election of Chair for 2000-01 .. .Paul Larson 2
TC on Data Engineering Election Ballot . 3
Letter from the Special Issue Editor .Amr El Abbadi 4

Special Issue on Retrieval and Maintaince of Summary Data

Approximate Query Answering using HistogramsViswanath Poosala, Venkatesh Ganti, Yannis E. Ioannidis5
The Role of Approximations in Maintaining and Using Aggregate ViewsDaniel Barbará and Xintao Wu 15
Some Approaches to Index Design for Cube ForestsTheodore Johnson and Dennis Shasha22
Data Cubes in Dynamic Environments . .Steve Geffner, Mirek Riedewald, Divyakant Agrawal and Amr El Abbadi31
On Sampling and Relational Operators .Surajit Chaudhuri and Rajeev Motwani41

Conference and Journal Notices
ICDE’2000 Data Engineering Conference. .back cover

Editorial Board

Editor-in-Chief
David B. Lomet
Microsoft Research
One Microsoft Way, Bldg. 9
Redmond WA 98052-6399
lomet@microsoft.com

Associate Editors

Amr El Abbadi
Dept. of Computer Science
University of California, Santa Barbara
Santa Barbara, CA 93106-5110

Surajit Chaudhuri
Microsoft Research
One Microsoft Way, Bldg. 9
Redmond WA 98052-6399

Donald Kossmann
Lehrstuhl für Dialogorientierte Systeme
Universität Passau
D-94030 Passau, Germany

Elke Rundensteiner
Computer Science Department
Worcester Polytechnic Institute
100 Institute Road
Worcester, MA 01609

The Bulletin of the Technical Committee on Data Engi-
neering is published quarterly and is distributed to all TC
members. Its scope includes the design, implementation,
modelling, theory and application of database systems and
their technology.

Letters, conference information, and news should be
sent to the Editor-in-Chief. Papers for each issue are so-
licited by and should be sent to the Associate Editor re-
sponsible for the issue.

Opinions expressed in contributions are those of the au-
thors and do not necessarily reflect the positions of the TC
on Data Engineering, the IEEE Computer Society, or the
authors’ organizations.

Membership in the TC on Data Engineering (http:
www. is open to all current members of the IEEE Com-
puter Society who are interested in database systems.

The web page for the Data Engineering Bulletin
is http://www.research.microsoft.com/research/db/debull.
The web page for the TC on Data Engineering is
http://www.ccs.neu.edu/groups/IEEE/tcde/index.html.

TC Executive Committee

Chair
Betty Salzberg
College of Computer Science
Northeastern University
Boston, MA 02115
salzberg@ccs.neu.edu

Vice-Chair
Erich J. Neuhold
Director, GMD-IPSI
Dolivostrasse 15
P.O. Box 10 43 26
6100 Darmstadt, Germany

Secretry/Treasurer
Paul Larson
Microsoft Research
One Microsoft Way, Bldg. 9
Redmond WA 98052-6399

SIGMOD Liason
Z.Meral Ozsoyoglu
Computer Eng. and Science Dept.
Case Western Reserve University
Cleveland, Ohio, 44106-7071

Geographic Co-ordinators

Masaru Kitsuregawa (Asia)
Institute of Industrial Science
The University of Tokyo
7-22-1 Roppongi Minato-ku
Tokyo 106, Japan

Ron Sacks-Davis (Australia)
CITRI
723 Swanston Street
Carlton, Victoria, Australia 3053

Svein-Olaf Hvasshovd (Europe)
ClustRa
Westermannsveita 2, N-7011
Trondheim, NORWAY

Distribution
IEEE Computer Society
1730 Massachusetts Avenue
Washington, D.C. 20036-1992
(202) 371-1013
twoods@computer.org

Letter from the Editor-in-Chief

Changing Bulletin Editors

The Bulletin practice is to appoint editors for two years. Each editor is responsible for producing two issues,
one per year, during that time. Among the current editors, Surajit Chaudhuri and Donald Kossmann have now
completed their two issues and are due to “retire”. Our profession depends on hardworking volunteers for the
vitality of publications like the Bulletin. So I would like to thank both Surajit and Donald for their hard work
and very successful results. Producing high quality issues of the Bulletin is not an accident. It is the result of the
work of very capable issue editors.

I am now delighted to announce the appointment of two new editors, Sunita Sarawagi and Alon Levy. Sunita
and Alon both have outstanding research reputations.

Sunita Sarawagi is currently on the faculty in the School of Information Technology at IIT Bombay. She has
done research in data warehousing, OLAP, data mining and tertiary storage. Her career began as a UC Berkeley
student, following which she went to the IBM Almaden Research Center. Sunita was co-author of a paper that
received a 1998 SIGMOD best paper award.

Alon Levy is a Seattle neighbor of mine as he is on the faculty of the Computer Science and Engineering De-
partment at the University Washington. Alon’s expertise includes data integration, web-site management, semi-
structured data, query optimization, and the interaction of databases with AI. He is a graduate of Stanford and
was on the technical staff at ATT Bell Labs. In June he co-founded a company building tools for XML data.

This Issue

Databases are increasingly used for data analysis. When done ”on-line”, this is referred to as OLAP, a field that
has become increasingly important over the past five or more years. The data cube is an important part of OLAP
work, but by no means the only part. The current issue looks at how summary data can be maintained and re-
trieved, which is surely relevant in a very broad and important way to data analysis, including the data cube.

In a certain sense, most of the work that is reported in the current issue is related to performance. Users want
to summarize data so that they can browse it, explore it, understand it. The work reported here is mostly about
how this summarizing can be done efficiently. Were efficiency not an issue, the functionality would not require
much more than a relational database. But performance is, of course, critically important. Indeed, we need real
insights in this area, where approximation and sampling play a frequent role in making summarization feasible.

Amr El Abbadi,the issue editor, has gathered for this issue a diverse collection of techniques that address the
retrieval and maintenance of summary information. These include histograms, sampling, incremental maintence
of cubes and more. This material will become increasingly important in the future as data analysis becomes even
more pervasive. I want to thank Amr for assembling this issue, which well represents some of the most promising
techniques in this important area.

David Lomet
Microsoft Research

1

TC on Data Engineering: Election of Chair for 2000-01

The Chair of the IEEE Computer Society Technical Committee on Data Engineering (TCDE) is elected for a two-
year period. The mandate of the current Chair, Betty J. Salzberg, terminates at the end of 1999. Hence is time to
elect a Chair for the period January 2000 to December 2001. Please vote using the ballot on the next page.

The Nominating Committee, consisting of Paul Larson, Erich Neuhold, Masaru Kitsuregawa, and Meral Oz-
soyoglu, is nominating Betty J. Salzberg for a second term. The Committee felt that it was in the best interest of
the TCDE that Betty continue for another term and, hence, decided not to nominate additional candidates.

BETTY J. SALZBERG

Biography Betty Salzberg is a Professor of Computer Science in the College of Computer Science at Northeastern Uni-
versity in Boston. Her Ph.D. was in Mathematics at the University of Michigan. Her areas of expertise in database
systems include access methods, concurrency and recovery and on-line reorganization.

She has published in the ACM Transactions on Database Systems, the VLDB Journal, Information Systems, Acta
Informatica and Computing Surveys. She has written two textbooks on database systems. Her work has appeared in
IEEE ICDE, ACM SIGMOD and VLDB conferences. Her research has been funded by the NSF since 1988 and she
has also received grants from Digital Equipment Corporation and Microsoft.

Professor Salzberg is the current chair of the IEEE TCDE and served as an associate editor of the IEEE Data Engi-
neering Bulletin in 1996-97. She has served several times on the program committees of the VLDB conference, the
SIGMOD conference and the IEEE ICDE conference. In 1998, Professor Salzberg chaired the organizing committee
for the NSF Workshop on Industrial/Academic Cooperation.

Position Statement The Technical Committee on Data Engineering publishes a newsletter, the Data Engineering Bulletin,
and sponsors the ICDE (International Conference on Data Engineering) and the associated workshop RIDE (Re-
search Issues in Data Engineering). These are the main tasks of the committee.

In addition, in the last two years, we have cooperatedwith ACM SIGMOD in making available the ICDE proceedings
and the Bulletin on CDROM. The CDROM, which also contains SIGMOD and VLDB proceedings, will be available
for TCDE members for free. It is inevitable that people with the same interests (TCDE and SIGMOD) will want to
share information. Whether they belong to the IEEE or ACM or both, people working in the database industry or on
database research want the same access to journals, conferences and newsletters covering their speciality. This is a
trend I see continuing and one which our TC must encourage by collaboration with our counterparts in the ACM.

Another trend of which we are all aware is web-based communication. The TCDE has increased our presence on the
web. Our newsletter is now almost wholly web-based and we have a Technical Committee web page with versions
in English, Chinese, Japanese and Malaysian and with sites in Japan and Europe (Norway) as well as America. The
American page is at http://www.ccs.neu.edu/groups/IEEE/tcde/.

In my last position statement, I suggested that there be more of an industry presence in the IEEE TCDE. The work-
shop I proposed to the NSF on industrial/academic cooperation in database systems took place in October 1998 and
its webpage is available at http://www.ccs.neu.edu/groups/IEEE/ind-acad/. Three of the eight people on the TCDE
executive board are from industry. One of the co-program chairs and the general chair of ICDE 2000 and the keynote
speaker and several of the other members of the organizingcommittee are from industry. As continuing chair, I would
try to increasingly involve industry people more in the TCDE and in its conference, ICDE. Since research in database
systems is not purely theoretical, it suffers without the infusion of experience and information practitioners are able
to supply.

The Nominating Committee and the entire TC Executive Committee urge you to vote and to return your ballot
to the IEEE Computer Society address given on the ballot on the following page.

Paul Larson
Chair of the Nominating Committee

2

ELECTION BALLOT

TECHNICAL COMMITTEE ON
DATA ENGINEERING

The Technical Committee on Data Engineering (TCDE) is holding an election for Chair. The
current term of Betty J. Salzberghas expired. Please mail or fax in your vote.

BALLOT FOR ELECTION OF CHAIR
Term: (January, 2000 - December, 2001)

Please vote for one candidate.

ÿ Betty Salzberg

ÿ ____________
(write in)

Your Signature:__

Your Name:___

IEEE CS Membership No.:_______________________________
(Note: You must provide your member number. Only TCDE members who are Computer Society
members are eligible to vote.)

Please fax or mail the ballot to arrive by January 25, 2000 to:

nschoultz@computer.org
Fax: +1-202-728-9614

IEEE Computer Society
Attn: Nichelle Schoultz

1730 Massachusetts Avenue, NW
Washington, DC 20036-1992

RETURN BY January 25, 2000

3

Letter from the Special Issue Editor

In this special issue, we address some recent, state-of-the-art, approachs for querying, approximating, estimating
and maintaining large data sets. In many of these cases, users would like to start with summary or approximate
answers that would guide them in the direction of their quest. This approximate answer may be useful in itself, or
may be a first step to more detailed and more specific drill down queries. Large data sets are often characterized
by multiple attributes that refer to various characteristics of the data. As a result, large collections of data are
often summarized in a data cube, which has frequently been used for OLAP applications. Many of the papers in
this special issue specifically address the issue of approximating and maintaining information in large data cubes.

Poosala, Ganti and Ioannidis have been involved in an effort to build an efficient data analysis system called
Aqua. In the first paper they describe how to use histograms to approximate queries when precise answers are
not necessary and early feedback is helpful. Given the exploratory nature of many OLAP applications, precise
answers often result in answers of no particular interest to the users. However, for approximate answers, users
need to be provided with some measure of confidence in the answers. Hence, in this paper, histograms are en-
hanced to provide quality guarantees on the approximate answers. Furthermore, the authors provide an efficient
technique for selecting histograms that result in the most accurate answers while using small amounts of space.

In the second paper, Barbara and Wu describe how Quasi-Cubes can be used to compress data cubes and
provide approximate answers with guaranteed bounds on the errors. They also discuss a variety of applications
that would benefit from such approximate answers inclulding data marts (light-weight data warehouses), and
approximate data mining. In such data mining applications, exploratory data analysis tries to determine which
factors have the most influence on the data values. Alternatively, decision trees can be used as a classification
technique to forecast characteristics of various data items. In such applications fast approximate answers have
the potential of resulting in significant benefits in efficiency.

Johnson and Shasha address the problem of maintaining large data cubes. In particular, they present a new
storage structure called cube forests. They present algorithms for the querying and updating of cube forests and
also describe how to perform batch updates. An implementation of cubes forests is described and a simulation
study using the TPC-D benchmark shows the significant reduction of costs for batch updates.

Geffner, Riedewald, Agrawal and El Abbadi describe two alternative approaches for storing data cubes. These
approaches present a tradeoff between the cost of querying versus the cost of updating. In the relative prefix sum
approach query cost is kept constant but updates are proportional to the square root of the size of the cube. This
approach is useful for applications where queries are the dominant application, but the data still needs to be up-
dated. In the second approach, the dynamic data cubes, both queries and updates are have logarithmic cost, which
makes this data structures especially appropriate for speculative, what-if analytical processing applications.

Chaudhari and Motwani propose using sampling as a method for estimating query results. In fact, they argue
that for many data mining and OLAP applications, sampling must be supported on the result of an arbitrary query,
not just on the data itself. For this purpose, they explore the major impediments to implementing sampling as a
primitive relational operation. They demonstrate that auxiliary information such as histograms can be leveraged
to facilitate efficient sampling.

The papers in this issue represent on-going research and implementation efforts. They pose several open
and interesting problems and hence I hope this special issue will lead to more research and investigations in this
increasingly significant area. Current applications range from traditional databases to OLAP and data mining and
potentially are useful in diverse domains such as digital libraries, biological computing, as well as enviromental
and economic applications.

Amr El Abbadi
UC Santa Barbara

4

Approximate Query Answering using Histograms

Viswanath Poosala Venkatesh Ganti Yannis E. Ioannidis
poosala@lucent.com vganti@cs.wisc.edu yannis@cs.wisc.edu

Bell Laboratories Department of Computer Sciences Department of Informatics
Lucent Technologies Univ. of Wisconsin-Madison Univ. of Athens

Murray Hill, NJ, USA Madison, WI, USA Athens, Greece

Abstract

Answering queries approximately has recently been proposed as a way to reduce query response times
in on-line decision support systems, when the precise answer is not necessary or early feedback is help-
ful. In this article, we explore the use ofprecomputed histogramsfor approximate answering of aggregate
queries. Histograms are used by most database systems for selectivity estimation within their optimizers.
However, the use of histograms for approximate query answering raises several novel issues, which are
addressed in this article. We present ahistogram algebrafor efficiently executing complex SQL queries
on histograms within a DBMS without requiring any changes to the DBMS internals. We enhance his-
tograms to estimate the quality of the approximate answers. Finally, we present an efficient technique for
selecting a provablynear-optimalset of histograms on the data cube, which minimizes the space needed
when an upper bound on errors is given.

1 Introduction

The users of decision support applications pose very complex queries to Database Management Systems (DBMSs),
which take a long time to execute. Given the exploratory nature of such applications, many of these queries end
up producing no result of particular interest to the user. Much wasted time could have been saved if users were
able to quickly see anapproximate answerto their query, and only proceed with their complete execution if the
approximate answer indicated something interesting.

Several techniques have been proposed for providing approximate answers using statistical summaries of the
data, such as samples, histograms, and wavelets. In this article we focus on histograms, which have the advan-
tages of being present in almost every commercial DBMS and being reasonably accurate (for selectivity esti-
mation). There are also two different ways to present approximate answers: theonline aggregationapproach
constantly refines the answer using larger and larger sets of statistics of the data until the accurate answer is ob-
tained [8], whereas theprecomputationapproach presents a small number of discrete approximate answers (typi-
cally, just one) by using precomputed summaries of the data [1]. The precomputation approach has the advantage
of being faster in providing an answer because only the small summary data has to be processed at run-time; on
the other hand online aggregation has the flexibility of refining the answers. However, it is possible to deploy

Copyright 1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

5

a precomputation approach without requiring any changes to the DBMS, while online aggregation requires new
query processing and data access strategies to be implemented in the DBMS. Based on these trade-offs, we use
precomputed histograms in our work1.

In this paper, we investigate the above approach to approximate query answering and present two different
ways of using histograms for this purpose. Though histograms have been widely used in databases, their usage
has been mostly restricted to selectivity estimation [15, 9, 19, 12, 14]. The use of histograms for approximate
query answering brings up several novel issues to fore, which form the main focus of this article. Our contribu-
tions are summarized below.

� Efficient Query Execution: We propose storing histograms as regular relations in a relational DBMS and
appropriately translating regular database queries into equivalent queries on the histograms so that approx-
imate query answers can be obtained using the same mechanism as exact query answers. To this end, we
define ahistogram algebrathat can be used for this translation.

� Quality of Answers: In order to provide any confidence to the user in using an approximate answer, a
measure of the quality of the answer must also be provided. Unlike sampling-based techniques which often
provide a confidence measure for this purpose, traditional histogram-based techniques do not offer any
error measures. Hence, we enhance histograms to provide quality guarantees on the approximate answers.

� Histogram Selection: Given the limited resources for storing summaries, it is important to choose his-
tograms that result in the most accurate answers to queries while using small amounts of space. Presum-
ably, a common situation in an approximate query answering system is where the user specifies a bound
on the errors in the answers and demands minimal space usage. We provide an efficient greedy technique
for selecting a near-optimal set of histograms on the data cube when an error bound is given.

Due to space limitations, we omit our experimental study from this article, and refer the reader to other papers
for those

This work constitutes a part of our efforts to build an efficient data analysis system called Aqua [1]. In this
system, we store the statistics (histograms and samples) as relations in the DBMS and rewrite the user query
posed on the original relations as a query on the statistics relations. The rewritten query is then submitted to the
DBMS for execution. This middleware architecture, coupled with the provision of standard ODBC interfaces,
enables Aqua to be easily deployed between almost any front-end querying system and backend DBMS. More
details about the Aqua system can be found in [1].

Next, we provide a background on histogram techniques.

2 Histograms

In this section, we summarize standard histogram-based techniques for approximating the data in a database [19,
18]. First, we present some useful definitions.

Thevalue setVi of attributeXi is the set of values ofXi that are present inR. LetVi = f vi(k): 1 � k � Di g,
wherevi(k) < vi(j) whenk < j. Thespreadsi(k) of vi(k) is defined assi(k) = vi(k + 1) � vi(k), for
1 � i � Di. (We takesi(Di) = 1.) Thefrequencyfi(k) of vi(k) is the number of tuples inR with Xi = vi(k).
The areaai(k) of vi(k) is defined asai(k) = fi(k) � si(k). Thedata distributionof Xi is the set of pairs
Ti = f (vi(1); fi(1)); (vi(2); fi(2)); : : : ; (vi(Di); fi(Di)) g. Typically, real-life attributes tend to haveskewed
data distributions, i.e., they may have unequal frequencies and/or unequal spreads.

A histogramon an attributeX is constructed by using apartitioning ruleto partition its data distribution into
� (� 1) mutually disjoint subsets calledbucketsand approximating the frequencies and values in each bucket in

1It may also be possible to perform online aggregation using histograms, however that is outside the scope of this article.

6

some common fashion. In particular, the most effective approach for values is theuniform spreadassumption
[19], under which the attribute values in a bucket are assumed to be placed at equal intervals between the lowest
and highest values in the bucket. The most effective approach for frequencies is to approximate the frequencies
in a bucket by their average (uniform frequency assumption). Example 1 illustrates the above concepts.

Example 1: The following table shows how each parameter defined above is instantiated for a hypothetical at-
tribute.

Quantity Data Distribution Element
Value 10 60 70 80 85 100
Frequency 100 200 600 200 80 200

Spread 50 10 10 5 15 1
Area 5000 2000 6000 1000 1200 200

Consider a 3-bucket histogram on this attribute with the following bucketization of attribute values:f 10 g, f 60; 70 g,
f 80; 85; 100 g. The approximate distribution captured by this histogram looks as follows.

Quantity Data Distribution Element

Approx. Value 10 60 70 80 90 100
Approx. Frequency 100 400 400 160 160 160

Conceptually, one can “expand” a histogram into a relation containing the approximate attribute values as
its tuples, with each tuple appearing as many times as the approximate frequency of that value. We call this the
approximate relation(ApproxRel) of that histogram.

Histograms can also be built on multiple attributes together, by partitioning the joint distribution of the at-
tributes into multi-dimensional buckets and using extensions of the uniform frequency and spread assumptions.
It is also possible tocombinetwo histograms on different sets of attributes to obtain a single histogram on the
union of those two sets by making theattribute value independence assumption. All of these details are given
in [18]. In practice, there may be several one- and/or multi-dimensional histograms on a relationR. For simplic-
ity of presentation, we assume in the rest of the paper that there is a single (multi-dimensional) histogram on a
relation computed under the above assumption.

Given the mechanisms of approximation within a histogram, it is clear that the accuracy of the approximation
is determined by which attribute values are grouped together into each bucket. Several partitioning rules have
been proposed for this purpose. For example, in anequi-widthhistogram, all buckets are assigned value ranges
of equal width; in anequi-depthhistogram, all buckets are assigned the same total number of tuples. In earlier
work, we have introduced several new classes of histograms and identified a particular class of histograms, that
we callV-Optima(V,A), which performs the best in estimating the selectivities of most kinds of queries. In aV-
Optimal(V,A)histogram, buckets are formed such that the sum of the weighted variances of the areas within the
buckets is minimized (the weights being the number of values in that bucket). Recall thatareacaptures both the
frequency and value domains. By trying to group together similar frequencies and spreads, the V-Optimal(V,A)
histogram ensures that the uniform frequency and spread assumptions do not cause much errors.

With respect to storage, each bucket in a histogram keeps the following information: the total number of
tuples that fall in the bucket (tot), and for each dimensioni, the low and high values (loi; hii) and the number
of distinct values (counti) in that dimension (the subscripts are dropped for single-dimensional histograms). For
the purpose of this work, we store histograms as regular relations in the database with each bucket forming a
tuple. For ease of explanation in later sections, we also include additional set of columns: the average spreads
along each dimension (spi = hii�loi

ui�1
) and the average frequency for the bucket (avg = tot

u1u2:::ud
). In the rest

of the paper, the termhistogramrefers to the histogram relation described here. For illustration, we present the
histogram relation for the histogram given in Example 1:

7

lo hi count tot sp avg

10 10 1 100 0 100
60 70 2 800 10 400
80 100 3 480 10 160

3 Approximate Query Answering using Histograms

There are essentially two different ways to use histograms for approximate query answering, roughly correspond-
ing to the relational and multi-dimensional OLAP approaches. They are described below.

Relational Approximation: In this approach, histograms are used to approximate the data in the relation
(as explained in the previous section). Queries on the data are answered based on the approximate relations cap-
tured by the histograms. The key issue in relational approximation is the efficient execution of queries. This is
addressed in Section 4.

Data Cube Approximation: In this approach, histograms are used to approximate the OLAPdata cubeand
aggregate queries on the data cube are answered from the “approximate data cube”. A data cube is essentially
a hierarchy of multi-dimensionalsub-cubes, where each sub-cube describes the aggregate distribution of data
in a subset of dimensions [6]. The axes of the sub-cube contain the distinct values in each of thedimensional
attributes; and the cells contain the aggregate (sum, max, min, etc) value of one of themeasured attributesin
the relation. Anapproximate sub-cubehas the same structure as the original sub-cube, but with approximate
values on the cells and the axes. In particular, we obtain the approximation by building a histogram on the multi-
dimensional distribution represented by the sub-cube, i.e.,the dimensions form the value domains and the cell
values are treated as their frequencies.

We illustrate this using the following example.

Example 2: Consider theLINEITEM table in the TPC-D database and three of its attributesSupplier id
(S) , Customer id (C) , andPart id (P) . Figure 1 shows the tuples in an exampleLINEITEM table.
Figures 2 and 3 show the sub-cubes corresponding to applyingSUMaggregate onf P; S g andf P g respectively.
In Figure 4, a trivial approximate sub-cube forf P; S g is shown, which is obtained by replacing all the measure
values by their average (= total (54)/count (6)), i.e., using a single bucket histogram.

P S C Q

100 200 300 1
100 200 301 7
100 201 300 3
100 201 301 9
101 200 302 11
101 202 300 23

Figure 1:f P; S; C g

S
P 200 201 202

100 8 12 0
101 11 0 23

Figure 2:f P; S g

P
100 101

20 34

Figure 3:f P g

S
P 200 201 202

100 9 9 9
101 9 9 9

Figure 4: Approxf P; S g

Note that any query on the original sub-cubef P; S g can also be answered, albeit inaccurately, from the ap-
proximate sub-cube. In order to answer all queries on the data cube, one needs to approximate the entire data
cube while using small amount of space. This is addressed in Section 6.

4 Query Execution on Histograms

In this section, we develop techniques for automatically translating SQL queries on original relations into SQL
queries on histogram relations. These techniques are used in the relational approximation approach described
above.

8

First, we define the notion of providingvalid approximate answersto a query using histograms. LetApproxRel(H)
be the approximate relation corresponding to a histogramH on relationR (Section 2). Then, we believe that the
following definition captures the intuition behind an approximate query answer based on histograms.

Definition 1: Consider a queryQ operating on relationsR1::Rn, and letHi be the histogram onRi. Thevalid
approximate answerforQ andfHig is the result of executingQ on ApproxRel(Hi) in place ofRi, for 1 � i � n.

An obvious way to derive the valid approximate answer is as follows: first, compute the approximate re-
lations of all the histograms on the relations in the query; next, execute the queryQ on these relations. For a
1-dimensional histogramH, its approximate relation can be computed using the following SQL query ,called
Expand.sql 2.

SELECT(H:lo+ IC :idx �H:sp)
FROMH; IC ; IA
WHEREIC :idx � H:ct & IA:idx � H:avg;

Here,H is the histogram stored as a relation andIA, IC are auxiliary relations, each with a single attributeidx.
RelationIA (resp.,IC) contains the integers1; 2; ::; A (resp.,1; 2; ::; C), whereA (resp.,C) is the largestaverage
frequency(resp.,count) in the buckets ofH. Essentially, this query usesIC to generate the positions of values
within each bucket and then uses thelow andspreadvalues of the bucket to compute each of the approximate
values, under the uniform spread assumption. Then, it usesIA to replicate each value based on its frequency.

However, this approach is inefficient because ApproxRel(Hi) may have as many tuples asRi itself, thus
defeating the whole purpose of approximate query answering. Hence, we describe a far more efficient approach
for computing valid approximate answers, which executes directly on histograms:

1. Obtain avalid translationQ0 of Q, which would at the end of these three steps yield avalid approximate
answer(described next).

2. ExecuteQ0 onfHig to obtain a result histogramHres

3. Compute ApproxRel(Hres) usingExpand.sql

Since most of the query processing takes place on small histogram relations, this approach is clearly very efficient.

4.1 Translations for Non-Aggregate Queries

These queries are equivalent to relational algebra expressions involving justselection, projection, andjoin oper-
ations. A queryQ in this category is translated as follows:

1. Construct an operator treeT of select, project, andjoin operations that is equivalent toQ.

2. Replace all the base relations inT by their corresponding histograms to obtain another treeT 0.

3. Starting from the bottom ofT 0, translate each operator into an SQL query that takes one or two histograms
from the operator’s children and generates another histogram as output.

The translations for various query operators are described below.

� Equality Selection (�A=c): Equality selection is translated into the following queryQ=:

2It is straightforward to generalize it so that it works with a multi-dimensional histogram, but it becomes quite complex without of-
fering any new insight, so we do not present it.

9

SELECTc; c; 1; avg
FROMH
WHERE(c � lo) & (c � hi) & (mod(c� lo; sp) = 0);

� Range Selection(�A�c): Range selection is translated into the following queryQ�:

SELECT* SELECTlo, lo+ sp � b c�losp c; b c�losp c; avg
FROMH [FROMH
WHEREhi � c; WHERE(lo � c) & (hi > c);

� Projection (�A): Assuming duplicate elimination, projection is translated into the following queryQ�:

SELECTlo; hi; count; 1
FROMH;

Assuming no duplicate elimination, projection is just the identity query (i.e., selecting all tuples from the
histogram relation with no changes).

� Equi-Joins (R1 ./R1:A=R2:B R2): Let Hi be the histogram on the joining attribute ofRi, andNi be the
largest count in the buckets ofHi. Join is translated into a sequence of two queries,Q1./ andQ2./

3. The
first query (Q1./) computes the frequency distribution of the approximate join result by joining the approx-
imate frequency distributions ofH1 andH2. It assumes the existence of two auxiliary relations of integers
IN1

andIN2
defined in the same fashion asIC described earlier.

SELECT(H1:lo+ IN1
:idx �H1:sp) asv, H1:lo aslo1, S:lo aslo2,H1:avg �H2:avg asnavg

FROMH1;H2; IN1
; IN2

WHERE(H1:lo+ IN1
:idx �H1:sp = H2:lo+ IN2

:idx �H2:sp) &
(IN1

:idx � H1:count) & (IN2
:idx � H2:count);

The second query (Q2./) converts the result of queryQ (say,Q1R) into a histogram by appropriate group-
ing.

SELECTmin(v);max(v); count(�); navg
FROMQ1R
Group By lo1; lo2; navg;

4.2 Aggregate Queries

In general, an aggregate queryQagg can be viewed as computing aggregates over some of the attributes in the
result of a non-aggregate queryQ. Hence, a valid translation forQagg consists of a valid translation forQ pro-
ducing a histogramH, followed by an aggregate-specific SQL query onH computing a single bucket histogram
containing the aggregate value. These queries are given in Table 1 for the most common aggregate operators.
Here,bsum is the sum of all the values in a bucket, i.e.,(avg � count � (lo+ sp�(count�1)

2)).
It has been shown that the techniques presented here result in orders of magnitude faster execution than ob-

taining the exact answer [10].

3In our implementation, we make this scheme more efficient by running another simple query in the beginning to identify overlapping
buckets in the histograms and then executingQ1./ andQ2./ for each pair of overlapping buckets.

10

distinct COUNT SUM AVG MAX MIN

SELECT SUM(count) SELECT SUM(bsum) SELECT SUM(bsum)
SUM(count) SELECT MAX(hi) SELECT MIN(lo)

FROMH ; FROMH ; FROMH ; FROMH ; FROMH ;

Table 1: Queries to Compute Aggregate Values from Histograms

5 Quality of Answers

An important requirement of any system providing approximate answers is a quality measure on the answers and
a way to estimate this measure when the actual answer is not available. Histograms can be supplemented with
additional information in order to estimate the error in an approximate answer. Here, we describe the estimation
of errors for data cube approximation; similar approach can be taken for relational approximation.

Consider a group-by query applying an aggregate operator on a sub-cube with dimensionsS. The error in
estimating the result over a single group in the answer is the absolute difference between the actual and approx-
imate aggregate values over that group. And, when the actual and approximate answers have the same set of
groups, the error in answering the entire query is the sum of errors over all the groups in the result4. We describe
a simple way to compute anupper boundon this error for thesumoperator below. Similar techniques can be
derived for other aggregate operations as well.

Let f b1; ::; bn g be the set of buckets in the histogram used in answering the query. With each bucketbi, we
also maintain the maximum difference (mi) between the actual and the average measured values aggregated onS
in that bucket. Then, the maximum error contributed by bucketbi to the query is simplymi�MIN(ni; ti�ni),
whereni is the number of values in the bucket that satisfy the query predicate andti is total number of values in
the bucket. The total error in answering the query is computed by adding the contributions from all the buckets.

6 Histogram Selection for Data Cube Approximation

Recall that the data cube consists of a set of sub-cubes. An obvious approach for approximating the data cube
is to build a histogram on each sub-cube. We call this thedirect approach. However, this requires considerable
amount of space because the number of histograms needed is exponential in the number of dimensions of the fact
relation. Fortunately, since a histogram on a sub-cubeS also contains information on any of its sub-sets, sayP,
we can use a histogram onS to provide an approximation forP by projecting it onto the attributes inP. We call
this theslicing approach.

In view of the above alternatives for approximating a sub-cube, two natural questions arise: i) which his-
tograms should be built and how much space should be allocated for each? and, ii) given a set of histograms
computed on the data cube, which histogram should be used to answer a query on a sub-cube? First, we define
two error metrics which are useful in answering these questions.

Definition 2: LetS 0 be an approximate sub-cube of the sub-cubeS. For a tuplet, letA(t) be the measure value
from S, andA0(t) its measure value fromS 0. We define thesub-cube error (ES) of S 0 as the average relative
error between all the actual and the approximate measure values present in the sub-cube. That is5,

ES = �t2S
A(t)�A0(t)

MAX(A(t); 1) � jSj
4When the answers contain different sets of groups, one can use theMAC error that we devised in [10] for capturing the difference

between any two sets of numbers - in this case the actual and approximate answers. However, we are still working on techniques for
estimating this error when the actual answer is not known.

5we divide by the maximum of1 and the actual value to handle the case where actual result is0.

11

Definition 3: Thedata cube error(E) is themaximumof the sub-cube errors of all the sub-cubes in that data
cube.

E =MaxS22U (ES)

Then, for a given set of histograms on a data cube, we use the histogram that approximates a sub-cube with the
least sub-cube error for answering queries on that sub-cube. The allocation of space among the histograms is
addressed next.

We refer to a particular allocation of space among histograms as ahistogram configuration. We developed
techniques to identify histogram configurations that minimize the space needed when the error is upper-bounded.

Definition 4: For a given upper bound� on the data cube errorE (Definition 3), the�-optimalconfiguration is
the configuration that requires the least amount of space while resulting in an error of at most�.

Earlier research on optimization problems similar in nature to this problem has shown many of them to be
NP-Hard [13, 7]. Though the complexity of our specific problem has not yet been established, there is a strong
likelihood that it may not have an efficient solution. However, we have shown in [16] that the identification of
the�-optimalconfiguration is upper-bounded by theminimum weighted set coverproblem (MWSC). There, we
adapted the standard greedy algorithm used for computing an approximation to the minimum weighted set cover
to provide an efficient heuristic for the current problem. The configuration generated by this algorithm requires
an amount of space that is bounded within a factor of that required by the optimal configuration. This algorithm
is described next.

We use the notion of a data cube lattice [7], which contains a vertex for each sub-cube and an edge fromu to
v if v is a subset ofu. Each nodev in the lattice is associated with a “marking;”v is marked to indicate that the
sub-cube associated with it is not yet approximated with the required accuracy�. To start with, no histogram is
built on any sub-cube, and all nodes are marked. Next, we define some terms used in the algorithm. Letu andv
be two nodes in the lattice ande = ~uv be a directed edge in the lattice.

� ApproxError(e; �): This is the sub-cube error in approximating the sub-cubev using a histogram of� buck-
ets onu. It is calculated by actually building a histogram with� buckets on the sub-cubeu and computing
the sub-cube error (Definition 2).

� weight(e): This is the least value of� such that ApproxError(e; �) is less than or equal to�.

� benefit(e): This is the number ofmarkedchildren ofu that can be answered within an error� by allocating
weight(e) buckets to the histogram onu. That is, the additional number of sub-cubes that can be approx-
imated within� due to the allocation of additional buckets.

The algorithm is given below.

Algorithm 6.1: GREEDY(double �) f
/* � is the bound on the data cube error */

for every edgee in the latticedo
compute weight(e) by computing ApproxError(e; �) for increasing values of�.

while (some of the vertices are stillmarked) do f
Pick an edgee = ~uv with the largestbenefit to weight ratioand allocate a space ofweight(e) to u.
Unmark all the childrenw of u with ApproxError(uw;weights(e)) � �.
Update the benefits of the affected edges. /* Only those edges incident onv are affected by selectinge */

g
g

12

7 Related Work

There has been significant amount of recent work on providing approximate answers toaggregate queriesusing
precomputed statistics, such as, samples [1], histograms [17, 16], and wavelets [20]. Much of the work pre-
sented here on data cube approximation and histogram selection first appeared in [16]. Approximate answering
of non-aggregate queries was addressed in [10], where a numerical measure for comparing set-valued answers
was defined. Online aggregation [8], described earlier, constitutes another style of sampling-based approximate
query answering wherein the answers are continuously refined till the exact answer is computed.

Histograms have been studied extensively for application in selectivity estimation in query optimizers [12,
14, 15]. In our earlier work, we have identified several novel classes of histograms to build on one or more
attributes [19, 18] and also proposed techniques for their efficient computation [11] and incremental mainte-
nance [5]. We recently extended histograms for selectivity estimation in spatial databases [2]. Much of the work
presented in this article on query algebra for histograms has appeared in [10].

8 Conclusions

In this article, we have described various histogram-based techniques for providing approximate answers to ag-
gregate queries. Histograms have been traditionally used for selectivity estimation. Their use for approximate
query answering brings up several issues: efficient query processing, quality guarantees, and histogram selection
being the three key issues addressed here. We have presented general solutions for all three issues, thus estab-
lishing the usability of histograms for this new problem.

References

[1] S. Acharya, P. Gibbons, V. Poosala, and S. Ramaswamy. Join synopses for improving approximate query answers.
Proc. of ACM SIGMOD Conf, 1999.

[2] S. Acharya, V. Poosala, and S. Ramaswamy. Selectivity estimation in spatial databases.Proc. of ACM SIGMOD Conf,
1999.

[3] T. Cormen, C. Leiserson, and R. Rivest.Introduction to Algorithms. The MIT Press, Cambridge, MA., 1989.

[4] M. Garey and D. Johnson.Computers and intractability. W. H. Freeman and Co., 1979.

[5] P. B. Gibbons, Y. Matias, and V. Poosala. Fast incremental maintenance of approximate histograms.Proc. of the 23rd
Int. Conf. on Very Large Databases, August 1997.

[6] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational aggregation operator generalizing group-
by, cross-tabs, and sub-totals.Proc. of IEEE Conf. on Data Engineering, pages 152–159, 1996.

[7] V. Harinarayanan, A. Rajaraman, and J. Ullman. Implementing data cubes efficiently.Proc. of ACM SIGMOD Conf,
pages 205–216, 1996.

[8] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation.Proc. of ACM SIGMOD Conf, 1996.

[9] Y. Ioannidis and V. Poosala. Balancing histogram optimality and practicality for query result size estimation.Proc.
of ACM SIGMOD Conf, pages 233–244, May 1995.

[10] Y. Ioannidis and V. Poosala. Histogram-based techniques for approximating set-valued query-answers.Proc. of the
25th Int. Conf. on Very Large Databases, 1999.

[11] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. Sevcik, and T. Suel. Optimal histograms with quality
guarantees.Proc. of ACM SIGMOD Conf, 1998.

[12] R. P. Kooi. The optimization of queries in relational databases. PhD thesis, Case Western Reserve University, Sept
1980.

13

[13] S. Muthukrishnan, V. Poosala, and T. Suel. On rectangular partitionings in two dimensions: Algorithms, complexity,
and applications.7th International Conference on Database Theory, January, 1999.

[14] G. Piatetsky-Shapiro and C. Connell. Accurate estimation of the number of tuples satisfying a condition.Proc. of
ACM SIGMOD Conf, pages 256–276, 1984.

[15] V. Poosala.Histogram-based estimation techniques in databases. PhD thesis, Univ. of Wisconsin-Madison, 1997.

[16] V. Poosala and V. Ganti. Fast approximate answers to aggregate queries on a data cube.International working con-
ference on scientific and statistical database management, 1999.

[17] V. Poosala and V. Ganti. Fast approximate query answering using precomputed statistics.Proc. of IEEE Conf. on
Data Engineering, 1999.

[18] V. Poosala and Y. Ioannidis. Selectivity estimation without the attribute value independence assumption.Proc. of the
23rd Int. Conf. on Very Large Databases, August 1997.

[19] V. Poosala, Y. Ioannidis, P. Haas, and E. Shekita. Improved histograms for selectivity estimation of range predicates.
Proc. of ACM SIGMOD Conf, pages 294–305, June 1996.

[20] J. S. Vitter, M. Wang, and B. R. Iyer. Data cube approximation and histograms via wavelets.CIKM, pages 96–104,
1998.

14

The Role of Approximations in Maintaining and Using Aggregate
Views

Daniel Barbaŕa and Xintao Wu
George Mason Universityk

Information and Software Engineering Department
Fairfax, VA 22030 Email:fdbarbara,xwug@gmu.com

Abstract

Techniques for approximating the data cube have been the object of much research lately. In this pa-
per, we present a summary of Quasi-Cubes, a technique that allows to compress data cubes while keep-
ing guaranteed bounds for the errors made when querying the approximate versions, regardless of the
distribution of the underlying data. We also present a suite of applications that can benefit from using
Quasi-Cubes, among them some in the area of data mining.

1 Introduction

Data cubes [9] are a widely used data abstraction for aggregates of multidimensional data. A cube is simply a
multidimensional structure that contains in each cell an aggregate value, i.e., the result of applying an aggregate
function to an underlying relation that consists of a series of attributes known as dimensions and one or more
attributes known as measures. For instance, for a retail sales dataset with dimensionsday, store andproduct
and measuresales, each cell of the data cube would contain the total sales for a combination of the values of the
dimensions. At the finest level of aggregation (known as the core cuboid), cells would contain sales for specific
days, stores and product values, e.g.,January 1st, NewY ork, andshoes. At other levels of aggregation cells
would contain combinations of proper subsets of the dimensions, e.g., total sales ofshoes in theNewY ork store
(for all the “days”). The different levels of aggregation, or cuboid, form a lattice, such as the one presented in
Figure 1, with the core cuboid being the one at the bottom of the lattice and the cuboid with the coarser level
of aggregation (i.e., the one that contains a single cell with the total value of sales) at the top (ALL). Tools that
implement data cubes allow users to ask a variety of queries whose answers are summaries of the data for a subset
of the dimensions of the dataset (e.g., “what were the total sales ofshoes for the first quarter of 1999?”).

As it is the case in most database systems, the tradeoff between space and time plays a crucial role in data
cube implementations. If one materializes all the possible cuboids, in order to be ready for any query posed by
the users, the space needed to store the materializations grows enormously, but the queries are answered very fast.
If one does not materialize anything, but takes the “lazy” approach of computing the aggregates on demand, the

Copyright 1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

kThis work has been supported by NSF grant IIS-9732113

15

day, store, product

day, store day, product store,product

day store product

ALL

Figure 1: Lattice for the data cube with dimensionsday; store; product.

demand for space is reduced considerably at the expense of long delays to get the answers. Data cubes can be
prohibitively large: consider the previous example with 1,000 stores, 10 years (3,650 days) and 20,000 prod-
ucts. Materializing just the core cuboid would require storage for 73 billion aggregate values. Even if the data is
sparse (not all aggregates are present) and only 1 % of the cells have values, we would still need space for 0.73
billion cells. If we add the cells for other cuboid and the fact that in many cases users want to see aggregates
for all the elements on the hierarchy of dimensions (e.g., the values on the dimensionday might be viewed by
month, quarter, year and so on), the space demands grow considerably. On the other hand, users of data cube
technology demand fast answers to their queries, so they can quickly find areas of interest within the cube space
and investigate trends and patterns in them. This tradeoff forces the designer to choose carefully which cuboids
provide the most efficient choices for materialization. Strategies to select a subset of cuboids are presented in
[11]. These techniques aim to control the space used in materialized cuboids while keeping the response time
within acceptable limits.

Alternatively, researchers have begun to investigate ways to compress the data cube in such a way that only
a fraction of the space taken by the whole cube is needed [1, 3, 4, 7, 20, 22]. Since the compression techniques
are lossy, one can only provide approximate answers to the queries posed to the data cube. On the other hand,
the queries can be answered without incurring into much disk I/O, so the response time is considerably smaller
than the one experienced in uncompressed data cubes. Of all these techniques, ours [3, 4, 7] is the only one that
allows the designer to establish guarantees for the errors incurred in the answers in such a way that the errors
are kept below a predefined threshold,regardless of the distribution of the data. (All the other techniques can
guarantee error levels, but they vary with the underlying data distributions and cannot be fixed by the designer.)
We achieve that by insisting in retaining cells of the cube whose values, when recreated by the decompression
algorithms differ from the real values in more than the tolerated threshold. That way, our compressed cubes, or
Quasi-Cubesare composed by models used to estimate cells and a set of “outlier” values, or retained cells, that
if estimated would incur in errors whose magnitude exceeds the predefined threshold.

In this paper we present a brief summary of our Quasi-Cube technique along with a list of possible applica-
tions that go beyond simply providing approximate answers to aggregate queries. Information about the project
in which this paper is based can be found in [5]. The paper is organized as follows. In Section 2 we briefly sum-
marize how Quasi-Cubes are implemented (more details can be found in [3, 4, 7]). Section 3 lists the applications
enabled by this technology. Finally, Section 4 offers some conclusions.

16

2 Quasi-Cubes

We model regions of the core cuboid and employ these models to estimate the values of the individual cells. The
reason to focus on the core cuboid is simple: the error guarantees for queries to the core cuboid hold for any other
cuboid in the lattice. (In practice, the errors incurred when aggregating estimated cells of the core cuboid decrease
dramatically because they tend to cancel each other.) As we stated in the introduction, to avoid incurring in large
errors by the estimation, we retain all the cell values whose estimations are farther away from the real value by
more than a pre-established threshold. This threshold becomes the guarantee of the approximate answer has.
(As we will show later, many answers are, in reality closer to the real answer than what the threshold predicts.)
We store the model parameters (for each modeled region of the cuboid) along with the retained cells to process
the queries. The choice of models, although important because some models produce a better fit than others, is
orthogonal to the Quasi-Cubes idea. We have experimented with two types of models: linear regression [4] and
loglinear models [7]. (For a review of data reduction models see [2].)

The issues involved in compressing the cube, giving approximate answers to the queries and evaluating our
technique can be summarized as follows:

� Selecting chunks of the core cuboid that will be described by models (regions of the core cuboid that are
sufficiently dense). We do this by dividing the core cuboid space, usually starting with a regular grid and
classifying the chunks into three types:

1. Dense chunks, which are candidates for modeling.

2. Empty chunks, i.e., sub-spaces that do not contain any data cells and can be discarded.

3. Sparse chunks, which contain very few cells. Cells in these types of chunks are retained without
attempting to model them.

� For each chunk to be modeled, computing the model parameters based on the data contained in the chunk
and then, based on the estimated values compute for each non-zero cell in the chunk the estimation error
and determine if the cell needs to be retained.

� Organizing the model parameters and retained cells to efficiently access them when processing queries.

Dividing the core cuboid in dense chunks is of outmost importance. Dense chunks render better-fitting mod-
els which in turn results in a higher compression rate. Moreover, finding enough dense chunks is the key to a
good compression rate. Fortunately, most datasets in practice are skewed, i.e., the non-empty cells are clustered
in regions of the core cuboid. However, finding these sub-spaces is far from trivial. So far, we have taken the ap-
proach of dividing the core cuboid in a regular grid, identifying potentially dense chunks, and subdividing those as
needed until a sufficiently dense region is found. We are currently experimenting with techniques to “re-shuffle”
the order of the rows in some (or all) dimensions to increase the density of regions. (For some type of dimen-
sions, e.g., categorical attributes such asproduct in our example, it is irrelevant in which order the values are
kept, while for some others, such astime, the original order must be preserved.)

Computing the models is a step whose implementation depends, of course, on the choice of models. (Details
of how to efficiently model chunks of data using linear regression can be found in [4]; for loglinear models, see
[7]; for kernel estimations see [20], and for wavelets [22].)

The dense chunk descriptions are organized as blocks of data containing the model description, parameter
values, outliers and and index (we index either non-empty cells or empty cells, depending on which set is smaller).
These descriptions are smaller than the data they characterize and thus, many of them can be brought to main
memory at once. Indexing of the chunks can help in quickly finding which chunks are needed to answer a query.

17

3 Applications

In this section we list the applications that are enabled by Quasi-Cubes.

3.1 Approximate query answering

Of course, this is the idea that motivated cube compression in the first place. A range query over the cuboid can
be decomposed as the union of several disjoint queries, each spanning a chunk in the cuboid. That being the case,
for each one of the disjoint sub-queries there are two possibilities:

� The sub-query completely includes its respective chunk. In this case, the answer of the sub-query can be
immediately obtained from the chunk description, which also contains the aggregated value of all the cells
in the chunk. Notice that this value is free of error and that the answer to this sub-query does not require
retrieving any of the values in the retained list of cells for the chunk or estimating any of the cells values.

� The sub-query covers the respective chunk only partially. In this case, we need to estimate or retrieve (from
the list of retained cells) the individual cell values and aggregate them.

In larger queries, i.e., aggregates over large portions of the core cuboid, many sub-queries span complete
chunks and therefore, the running time is sped up considerably. Our experiments [7] show a considerable gain
in execution time for approximate queries when compared with the same queries posed over the uncompressed
cube.

3.2 On-line aggregation

On-line aggregation [10], is the process by which one can streamline the computation of more refined answers
to the queries as the user is looking at the current estimate. The aim of this method is to reduce the latency of
the query, by offering answers long before the final, correct answer is computed. With Quasi-Cubes, there is a
relatively easy way to implement this: using different error thresholds, classify the data intoerror bins, each bin
corresponding to an error level. This leads to a series of chunk descriptions, corresponding to each error lever.
To produce the first estimate, only the data in the highest-error chunk description needs to be brought from disk;
to refine the answer, successive bins are brought to memory.

Hellerstein et al. in [10], proposed to implement on-line aggregation by incrementally sampling the base
relations that underlie the data cube. Other researchers [1] have shown that taking samples on the base relations
leads to problems such as the lack of uniformity in the likelihood of cells appearing in the answer. The work
in Join Synopses [1] attempts to remedy this by sampling the actual joins. However, a common problem with
techniques that use sampling is that the samples must be refreshed periodically to avoid showing bias in the query
answers. Our approach, on the other hand, does not exhibit any of these problems.

3.3 Supporting query answering in update periods.

While the data warehouse is being updated, the system is usually made unavailable for query answering. (Doing
otherwise may create consistency problems in the answers or slow the updating considerably.) For that reasons,
researchers [14, 17] have been investigating ways of reducing the window of time needed for performing updates
in the warehouse. However, as organizations become more global, shutting down the querying system at any time
of the day becomes a difficult proposition.

Quasi-Cubes can help in enabling approximate query answering while the actual data cube is being updated.
The answers will, of course, be approximations of the state of the cube before the update, but for many cases
this will be an acceptable tradeoff. Notice that since the Quasi-Cube description (chunk descriptions) can be

18

maintained decoupled from the actual data in the cube, the users will be accessing a separate database while
the warehouse is being updated. (Of course, this application would not support data cube compression and it
assumes that space is not a problem.) The Quasi-Cube descriptions need, of course, to be updated (we have
shown inexpensive ways to do this in [7]), but this can be done after the warehouse update has finished (then the
query processing can be redirected back to the real cube).

3.4 Lighter Data Marts

The chunk descriptions can be made to map areas of the core cuboid that correspond to data which is of interest
to a particular division in the organization. These sub-cubes are commonly known as Data Marts, and many
commercial tools made provisions to export the Data Mart to remote clients. Using the Quasi-Cube technology,
these Data Marts can be made extremely “light,” with respect to the space they occupy in the remote client at the
expense of providing only approximate views of the relevant data. (More refined views can always be obtained
by going to the data warehouse.) This idea is very much in line with the opinion of some data mining experts
who claim that the trend should be in exporting models and not data to the clients [8].

3.5 Approximate Data Mining

The ultimate goal of building a data cube is to extract knowledge from the data stored in it. To this end, we
are currently investigating data mining techniques that can benefit from the usage of Quasi-Cubes. The idea is
to perform mining in the compressed form of the data, thereby getting the mining task to complete quickly at
the expense of having approximate results. We present here two examples of techniques that we are actively
investigating.

3.5.1 Exploratory Data Analysis

Exploratory Data Analysis (EDA) [12, 13, 21] is a suite of widely used techniques that aim to determine which
factors have the most influence on data values in a multi-way table, or which cells in the table can be considered
anomalous with respect to the other cells. EDA is performed without any a-priori hypothesis in mind: rather
it searches for “exceptions” of the data values relative to what those values would have been if anticipated by
an statistical model. This statistical model fits the rest of the data values rather well and can be accepted as a
description of the dataset. When applied to multidimensional tables, EDA also uncovers the attribute values that
have the greatest effect on the data points. As pointed out by [19], these exceptions can be used by an analyst
as starting points in the search for anomalies, guiding the analyst work across a search space that can be a very
large.

At any level of aggregation, data cubes can be viewed asmulti-way tables, that can be subjected to EDA.
Two traditional ways of performing EDA in tables aremedian polishandmean polish[12]. Both methods try to
fit a model (additive or multiplicative) by operating on the data table, finding and subtracting medians (means)
along each dimension of the table. Starting with one dimension, the method calculates the median (mean) of each
“row” 1 and subtracts this value from every observation in the row. Then, the method moves to the next dimension
and uses the table resulting from the previous operation to find medians (means) in each row and subtract them
from the entries in this row. Of course, doing that changes the medians (means) on the previous dimension rows.
The process continues with each dimension and iteratively cycles through the set of dimensions. In principle,
the process continues until all the rows in each dimension have zero median (mean), hence the number median
(mean) polish. (In practice, the process stops when it gets sufficiently close to that goal.) One gets two kinds of
information from this process. First, one gets theeffectthat each row in each dimension has on the model, given
by the algebraic sum of the medians (means) that have been subtracted in that row at every step. Secondly, one

1we use the term “row” to refer to the set of cells in the hypercube which share the same attribute value for one of the dimensions

19

getsresidualsin each cell of the table, which tell us how far apart that particular cell is from the value that would
have been predicted by the model being fit.

It has been pointed out that the main drawback of the mean polish method is its lack of resistance to outliers
(i.e., cells that do not fit the model well). This lack of resistance manifests itself specially when “holes,” e.g.,
missing cells, are present [12]. This is particularly troublesome for data cubes, which are usually sparse (i.e.,
not every cell has a value). On the other hand, median polish, being more resistant to outliers and holes, is very
adversely affected by holes which increase substantially the number of iterations needed by the process [12].
Increasing the number of iterations can drastically impose enormous I/O demands (by requesting many passes
over a large dataset) and therefore render the process impractical for large data cubes. Previous work in using
EDA for data cubes [19] has chosen to use mean polish, precisely for being less demanding on the number of
iterations needed to finish.

We have implemented a method of performing median polish in a Quasi-Cube which uses the chunk descrip-
tions instead of the cube data to perform the polishing of the medians. The results, reported in [6] show that the
quality of the results obtained by this method is extremely good, while at the same time the method outperforms
the running time of doing median polish on the data itself, allowing the user to perform EDA in cases where the
cost of using the standard procedure (over the real data) would be prohibitive.

We are currently investigating extensions of this work such as the obtaining joint influences of more than one
attribute value and performing non-parametric tests in the data [23].

3.5.2 Decision Trees

Decision trees [15] are a classification technique, used to forecast membership for a multidimensional data point.
For instance, a decision tree could be trained to identify “risky” and “good” customers from multidimensional
descriptions of people who apply for loans. Nodes in a decision tree involve testing a particular attribute, usually
comparing the attribute value with a constant. The decision tree needs to be trained by using a data set in which
each multivariate record has a label indicating the class it belongs to. The classical implementation of decision
trees (C4.5 [16]) is meant to be used with memory-resident data sets. An implementation, named SPRINT, de-
signed for large data sets is reported in [18]. SPRINT uses a combination of clever data structures that make it
possible to manage disk-resident data sets. These data structures have to be recreated at every step of the training
phase, using the disk-resident data set. SPRINT can still experience a large I/O activity for large data sets, due to
the need of swapping the tables in and out of main memory. We are currently investigating the use of our compres-
sion technique to make the decision tree training step scale with large sets. The idea is to drive algorithms such
as SPRINT not with the data set itself, but with compressed versions of it. The class or label attribute becomes a
dimension of the Quasi-Cube. Once that is done, the decision of what is the question to be asked in the next node
of the tree can be answered (approximately) by using the chunk descriptions, instead of going to the data itself
(like SPRINT does). A caveat, though, is that as one goes deeper in the tree, the queries that are needed to fill
the tables become more and more fragmented, using a larger number of chunk descriptions (i.e., they partially
intersect a large number of chunks in the core cuboid). When the time to bring lots of chunk descriptions (I/O
time) and estimate cells (CPU time) exceeds that of using the data in the cube (mostly I/O), we need to switch to
use the cube data. So, at some level in the creation of the tree, one needs to switch from driving SPRINT from the
Quasi-Cubes to driving it from the actual data, and the decision must be done solely on the basis of the increase in
chunk processing time. Nevertheless, we expect a significant improvement on the running time of the algorithm
due to the effect of the upper levels of the tree (which actually need the bulk of the data to be fetched, since as
we go down the tree, the queries become more and more restrictive).

20

4 Conclusions

We have presented in this paper an overview of Quasi-Cubes, a technique that allows the designer of data cubes
to compress the data and still maintain guaranteed bounds for the errors made in querying the cube. We have also
presented a list of applications that can substantially benefit from the use of approximations.

References

[1] S. Acharya, P.B. Gibbons, V. Poosala, and S. Ramaswamy. Join Synopses for Approximate Query Answering. In
Proceedings of the ACM SIGMOD Conference, Philadelphia, PA, June 1999.

[2] D. Barbará, W. DuMouchel, C. Faloutsos, P.J. Haas, J.M. Hellerstein, Y. Ioannidis, H.V. Jagadish, T. Johnson, R. Ng,
V. Poosala, K.A. Ross, and K.G. Sevcik. The New Jersey Data Reduction Report.Data Engineering Bulletin, 20(4):3–
45, December 1997.

[3] D. Barbará and M. Sullivan. Quasi-Cubes: A space-efficient way to support approximate multidimensional databases.
Tech. Report, Dept. of Information and Software Systems Engineering, George Mason University, 1997.

[4] D. Barbará and M. Sullivan. Quasi-cubes: Exploiting approximations in multidimensional databases.SIGMOD
Record, 26(3), September 1997.

[5] D. Barbará. Quasi-Cubes: Exploiting Approximations in Multidimensional Data Sets. http://www.ise.gmu.edu/ dbar-
bara/quasi.html.

[6] D. Barbará and X. Wu. Using Approximations to Scale Exploratory Data Analysis in Datacubes. InProceedings of
the 1999 ACM SIGKDD Conference, San Diego, CA, August 1999.

[7] D. Barbará and X. Wu. Using loglinear models to compress data cubes. Tech. Report, Dept. of Information and
Software Systems Engineering, George Mason University, 1999.

[8] U. Fayyad. Data mining techniques. Tutorial at Very Large Databases Conference, New York, 1998.
[9] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data Cube: A Relational Aggregation Operator Generalizing

Group-By, Cross-Tab, and Sub-Totals. InProceedings of the Intl. Conference on Data Engineering, New Orleans,
1996.

[10] J.M. Hellerstein, P.J. Haas, and H.J. Wang. Online Aggregation. InProceedings of the ACM SIGMOD Conference,
Tucson, Arizona, May 1997.

[11] V. Harinarayan, A. Rajaraman, and J.D. Ullman. Implementing Data Cubes Efficiently. InProceedings of the ACM-
SIGMOD Conference, Montreal, Canada, 1996.

[12] D.C. Hoaglin, F. Mosteller, and J.W. Tukey.Exploring Data Tables, Trends and Shapes. Wiley, 1985.
[13] D.C. Hoaglin, F. Mosteller, and J.W. Tukey.Understanding Robust and Exploratory Data Analysis. Wiley, 1986.
[14] W. Labio, R. Yerneni, and H. Garcia-Molina. Shrinking the Warehouse Update Window. Tech. Report, Computer

Science Dept., Stanford University.
[15] J.R. Quinlan. Introduction of decision trees.Machine Learning 1(1): 81-106, 1986.
[16] J.R. Quinlan.C4.5: Programs for machine learning.Morgan Kaufmann, San Francisco, 1993.
[17] N. Roussopoulos, Y. Kotidis, and M. Roussopoulos. Cubetree: Organization of and Bulk Incremental Updates on the

Data Cube. InProceedings of the ACM SIGMOD Conference, Tucson, Arizona, May 1997.
[18] J.C. Shafer, R. Agrawal, and M. Mehta, SPRINT: A Scalable Parallel Classifier for Data Mining. InProceedings of

the Very Large Databases Conference, Mumbai (Bombay), India, Sept. 1996.
[19] S. Sarawagi, R. Agrawal, and N. Meggido. Discovery-driven Exploration of OLAP Data Cubes. InProceedings of

Conference on Extending Data Base Technology, pages 168–182, 1998.
[20] J. Shanmugasundaram, U. Fayyad, and P.S. Bradley. Compressed Data Cubes for OLAP Aggregate Query Approxi-

mation on Continuous Dimensions. InProceedings of the ACM-SIGKDD Conference, San Diego, CA, August 1999.

[21] J.W. Tukey.Exploratory Data Analysis. Addison Wesley, 1977.
[22] J.S. Vitter and M. Wang. Approximate Computation of Multidimensional Aggregates of Sparse Data Using Wavelets.

In Proceedings of the 1999 ACM-SIGMOD Conference, Philadelphia, PA, June 1999.
[23] T.H. Wonnacott and R.J. Wonnacott.Introductory Statistics. Wiley, 1990.

21

Some Approaches to Index Design for Cube Forests

Theodore Johnson Dennis Shashay

johnsont@research.att.com shasha@cs.nyu.edu
AT&T Labs – Research New York University

Abstract

Data cubes greatly facilitate data analysis by allowing the simple expression and fast evaluation of com-
mon data analysis queries (roll up, drill down, slice by, etc.). Data cubes are most useful as an interactive
data analysis tool, a fact that has motivated considerable data cube storage research. However, loading
new data into some of these storage structures can be very expensive. We have developed a storage struc-
ture,cube forests, that stores the data cube in one or more indices. In previous papers, we have discussed
the design and querying of a cube forest. In this paper, we describe an implementation and a technique
for batch updates.

1 Introduction

Data in a warehouse is often viewed as multidimensional [2]. The attributes of a relation are classified as either
dimension or measure attributes. The dimension attributes classify the object that the tuple represents, while the
measure attributes represent the unique properties of the object. Often, several attributes represent successively
refined classifications of the object. These attributes are considered to be a single hierarchical dimension.

A common relational representation of multidimensional data is the star schema. Each dimension is repre-
sented by a separate dimension table, and contains the unique values of the dimension. The warehoused data is
represented by a central fact table, which contains foreign keys that link the fact table to the dimension tables,
and also the measure attributes.

Star and snowflake schemas are useful for extracting individual tuples from a data warehouse, but often users
prefer to browse and analyze summaries of the date. A convenient method for representing these summaries is
by adata cube, i.e., a collection of aggregates at all levels of granularity [6]. The name “data cube” is derived
from a way to visualize the multidimensional aggregate, e.g. a 3-dimensional data cube.

A data cube ond dimensions is defined by2d group-by queries. A special value,ALL, is used to represent the
full cube and all subcubes in a single table. A typical query on a cube specifies a subcube to query, and a restriction
on the range on the dimensional attributes. For example, one might ask for weekly sales in New Jersey of clothing
during 1998. The cube structure encourages users to explore interesting features of the data. For example, a user
might roll up the query by asking for sales in the United States, ordrill down by asking for daily sales.

Copyright 1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

yWork partly supported by NSF grants IRI-9224601 and IRI-9531554

22

1.1 Data Cube Storage

Data cubes have become popular in part because they promise fast interactive results. As we have defined the data
cube, all results have been computed, so a query is often just a matter of retrieving the data from the cube. How-
ever, the data cube might become very large, increasing storage costs and also data retrieval times. Alternative
data cube storage architectures have been proposed to speed up access times and/or reduce storage costs.

1.1.1 ROLAP

One approach to storing a data cube is to use a conventional relational DBMS. This type of database is termed
a ROLAPdatabase (Relational On-Line Analytical Processing). The multidimensional view of the data may be
on the fact table (which is often stored in order to answer ad-hoc queries), or on the most refined collection of
aggregates in the data cube (i.e., grouped by every dimension), thebase subcube. These tables usually have many
indices built on them, e.g., one for each dimension.

One problem with a ROLAP approach is that the base table can be very large, and user queries are often at a
relatively high level of aggregation. In [3], the author gives an example of a six dimensional database whose base
table contains 122 million rows and occupies 17 Gbytes. Many aggregation queries would require accessing the
entire table (because the indices are not clustered), and take a very long time to complete.

1.1.2 Molap

The highly structured nature of a multidimensional database suggests that a specialized storage structure might
have better performance than a ROLAP database. In [6], the authors suggest storing base subcube data in a multi-
dimensional array. However, the multidimensional array representation of a data cube has two weaknesses. First,
good performance generally depends on the array being main-memory resident. Sarawagi and Stonebraker [12]
evaluate a collection of techniques for efficient secondary storage of large multidimensional arrays. The basic
problem is to chop the array intochunks, which are small subarrays that can fit into a block of memory.

Another weakness of the multidimensional array representation of a data cube is that the base subcube is likely
to besparse. One approach is to create a hybrid storage structure that uses multidimensional arrays wherever the
data is dense. In [3], Colliat described the storage structure of the Essbase multidimensional database. Essbase
engineers observed that in many data sets, some collections of dimensions are dense (every cell is filled) while
other collections of dimensions are sparse (only a few combinations of the sparse dimensions exist in the fact
table). Essbase uses the sparse attributes for indexing, and stores the dense attributes and the aggregates values
in a multidimensional array. The index on the sparse dimensions is usually small enough to be memory resident,
and the multidimensional arrays are usually compact enough to be fetched with one disk read. Another hybrid
array based storage structure divides the multidimensional array into chunks, but stores the chunks differently
depending on whether they are dense (e.g., 40% or more of the cells are filled) or sparse [5, 13].

1.1.3 Hierarchical Storage

In addition to ROLAP and MOLAP data base storage, alternative structures have been proposed, which we sum-
marize here. Each makes use of hierarchical decompositions of the data in some way.

In [8], Ho et al. propose structures for computing range aggregates over multidimensional data . They assume
that the dimensional attributes are (or can be mapped to) contiguous integers, and that the base subcube is dense.
At every cell in the multidimensional array, they compute the prefix sum over the base subcube. By the principle
of inclusion-exclusion, any range sum can be computed inO(2d) time, ford dimensions.

A disadvantage of the prefix sum approach is that a single update to the data cube requires that a very large
number of prefix sums be updated. In [8], a hierarchical structure is proposed to reduce the extent of this problem.
More aggressive approaches are presented in [1, 4].

23

Roussoupolos et al. propose an R-tree based method for data cube storage, which they term thecubetree
[11, 10]. They extend the attribute range of each dimension with an ALL attribute, and store the aggregates in
an R-tree. The method of packing an R-tree can have a significant effect on performance.

2 Cube Forests

In [8, 9], Johnson and Shasha describe an index structure that stores the full data cube directly in a search struc-
ture. To simplify the discussion, suppose our data is a single denormalized table whose attributes come fromd
dimensions denoting orthogonal properties (e.g., as above, product, location, time, organization, and so on). Each
dimension c is organized hierarchically intonc dimensional attributesAc1; Ac2; :::; Acnc whereAc1 is the most
general attribute (e.g., continent) andAcnc is the most specific (e.g., school district). Thus, the denormalized rela-
tion looks like this:R(A11; A12; :::; A1n1 ; A21; A22; :::; A2n2 ; : : : ; Ad1; Ad2; :::; Adnd ; value attributes). Here
the value attributes are those to be aggregated, e.g., sale price, cost, value added, or whatever. This relation is
denormalized becauseAij ! Aik whenj > k, thus violating third normal form. (The key isA1n1A2n2 :::Adnd .)

We first presentcube forests, in which every dimension consists of a single attribute, and then present the
hierarchically split cube forest, in which dimensions are hierarchies of attributes. While our presentation uses a
single aggregate value, our structure applies unchanged to multiple aggregates over multiple values.

2.1 The Basic Structure

The instantiationof a cube treeis a tree whose nodes are search structures (e.g. B-trees or multidimensional
structures). Each node represents an index on one attribute (or a collection of attributes). Parent nodes store
aggregate values over the values stored in their children. A cube tree is specified by itstemplate, which shows
the (partial) order in which the attributes are indexed. Let us consider the simple example illustrated in Figure 1.
Suppose that we index a tableR first onA, then onB, then onC. The template for the cube tree is the listA-B-C,
and we call this type of cube tree alinear cube tree. Theinstantiationis shown on the right side of Figure 1. The
quantity inside each leaf node is the sum of theV attribute for a specificA, B, C value. At the next level up the
quantity inside a node is the sum of theV attribute for a specificA, B combination. At the very top, we have the
sum ofV over the entire relation.

A B C V

1 3 1 1
1 3 1 2
1 3 7 3
12 2 3 4
12 2 3 5
12 2 7 6
12 3 7 7
12 8 9 8

A

B

C

36

6

6

3 3

30

15 7 8

6 9 7 8

1 12

3

1
7

2 3 8

7 3 7 9

Figure 1: A cube tree template and its instantiation. Circled numbers represent the sum of V (i) over the entire
relation (at the root, depth 0), (ii) for particular A values (depth 1), (iii) for particular AB combinations (depth
2), (iv) for particular ABC combinations (depth 3 or leaf level). Note that the instantiation is a tree even though
the template is linear.

We note that the index in our example is “cooked” to simplify its presentation. Since the relation is small,
we can represent an attribute in the template as one level in the index. For a large relation, we need to define a

24

strategy for implementing an index structure based on the template. For this section, we will assume that each
attribute in the template corresponds to a separate index (for example, a B-tree). In Section 4, we present details
of an implementation.

An interior node may have several children. In this case, each entry in a leaf of an index in the instantiation
corresponding to the node has a pointer to a subindex for each template child of the node. This second feature
leads to a tree topology for the template as shown in the left side of Figure 2.

3
6

1

6

3

7 1
3

B C

A
C

B

Root

A
12

30

36

B C

2 3 8
8

7
3

9 8
9

13

B C

15 7

2 3 8

3 1 7 9

36

15

7
6 9

13 8

3 10 8

B

C

Root

Figure 2: A cube forest template and its instantiation. Note that each A value in the instantiation of the left tem-
plate has both B children and C children.

2.2 Full Cube Forests

We would like to be able to construct a cube forest in which any point query can be answered by searching for
a single node. Afull cube forestfor d dimensions is defined recursively, using two copies of the full cube forest
for d� 1 dimensions. An example of a full cube forest is shown in Figure 3.

A

A

B

B B

B

C

C C

C

C

C C

CZ

Figure 3: A full cube forest on the four attributesZ, A, B, C.

25

3 Hierarchically Split Cube Forests

Each dimension in the data cube can be hierarchical. For example, the data dimension For example, the date
dimension can be specified by year, month, or day with a one-to-many relationship from year to month and month
to day. Instead of treating each attribute as a separate dimension, we define a fullh-split forestby “splitting”
the dimension nodes the full cube forest. An example is shown in Figure 4. This construction may seem to be
inefficient, but the full h-split forest has far fewer nodes and takes much less space than a full cube forest that
treats all attributes as orthogonal.

C3

C2

C1

C3

C2

C1

C3

C2

C1 C1

C2
C3C1

C2
C3

B2

B1

C1

C2
C3C1

C2
C3

B2

B1

C1

C2
C3C1

C2
C3

B2

B1

C1

C2
C3C1

C2
C3

B2

B1

C3

C2

C1A1

A2

A3

Figure 4: Template for a hierarchically split cube forest on 3 dimensions (A, B, and C).

Given a collection ofd dimensions, there ared! possible cube forests. Furthermore, these cube forests can
bepruned(eliminating branches of easily computed aggregates) to reduce storage and update costs. Cube forest
design is discussed in detail in [8, 9].

4 Cube Forest Data Structures

An efficient implementation of a cube forest requires tight integration between the forest structure and the update
and query algorithms. In this section, we describe the data structures used to implement a cube forest.

The design of the cube forest data structures is as follows. Suppose that we are given cube forest template
F . We design an index on each treeT 2 F . Given a h-split tree templateT , we choose a path from the root ofT
to be thespineof the tree. The spine defines a composite index, the keys of which are the attributes of the nodes
in the spine concatenated together. In our examples, the spine is the longest root-to-leaf path in the tree. The
spine partitions the h-split template, creating several subtrees. A spine is found for each subtree, and the process
continues until all template nodes are in some spine.

Suppose that an index instantiates a spine on attributes(A1; A2; : : : ; An). For every key(a1; a2; : : : ; an) that
is inserted into the tree, let us define theith subkey, denotedski, to be the prefix consisting of(a1; a2; : : : ; ai).
If the template node corresponding toAi has children other thanAi+1, then we need to associate a set of subtree
pointers with subkeyski. If the node corresponding toAi is not aggregate pruned, we need to associate an aggre-
gate value withski. We define aneffective leaffor subkeysk = (a1; : : : ; ai) to be the place in the index where
information associated with the subkey (subtree pointers and aggregate values) is stored. The index invariant
that defines the location of an effective leaf forsk should hold true at a single place in the index, and this place
should be on the search path to any keyk whose subkey issk.

26

We build our spine index from a B-tree. We place an effective leaf for subkeysk at the highest level in the
B-tree (closest to the root) wheresk is a subkey of a separator1 in a node, or a key in a leaf (to simplify the
discussion, we will regard keys in leaves as separators). If there is more than one such separator, we place the
effective leaf at the rightmost separator whose prefix issk (one can also use the leftmost separator, the logic
will be symmetric). This definition of the location of an effective leaf ensures that any insert operation for a key
whose prefix issk will encounter the effective leaf on the path to the leaf. Effective leaves might move during
restructuring (as we will describe), but all such movement is local (i.e., some effective leaves will migrate from
the split node and its new sibling to the parent, and some effective leaves in the parent might move). So, we are
assured that inserts can be performed efficiently.

An example is shown in Figure 5. The tree template contains attributesA, B, C, andD. We create a spine
(indicated by the solid line connecting template nodes) on (A, B, C). The template nodeD is in a separate par-
tition, and its spine is simply (D). Since the edgeA�D is not a spine edge, we draw it as a dashed line. To the
left, we show the resulting index on a small sample of data. Note that the key for the index consists of the values
of the attributes in the spine catenated together.

To avoid clutter, we do not show where the aggregates are stored, but we illustrate the location of effective
leaves by identifying where the pointers to indices onD are stored. The two separator keys in the root are effective
leaves for the subkeysa = 2 anda = 4, respectively. We note that these separator keys are also effective leaves
for the subkeys (a = 2; b = 7), (a = 2; b = 7; c = 3), (a = 4; b = 3), (a = 4; b = 3; c = 14), and the required
aggregate information is stored in those effective leaves. The leftmost child of the root has an effective leaf for
a = 1 in its middle entry (i.e., the rightmost separator key with subkeya = 1). The rightmost entry in this leaf
is not an effective leaf for the subkeya = 2, because this effective leaf can be found in the parent. Note that an
insert of a key with subkeya = 2 might be directed to this leaf, or to its right sibling. In either case, the insert
operation will encounter the effective leaf fora = 2, which is stored in the parent node.

The reader will notice that even in Figure 5, there is a significant amount of redundancy in the keys. Simple
prefix compression techniques can lead to significant space savings in the spine trees.

A

B

C

D

a=2
b=7
c=3

a=4
b=3
c=14

inf

a=1
b=2
c=6

a=1
b=21
c=12

a=2
b=7
c=3

a=2
b=7
c=9

a=4
b=3
c=14

…...

index on D

index on D

index on D

Figure 5: A B-tree index that supports a h-split tree.

1Theith separator in a B-tree node is a key that indicates which keys can be found thei� 1st subtree as opposed to theith subkey.

27

4.1 Insertion Algorithm

The algorithm for inserting a key value into the index uses the B-tree insertion algorithm. However, two addi-
tional tasks must be performed – updating aggregate values at all effective leaves whose subkeys are prefixes of
the insertion key, and preserving the effective leaf location invariant. We will assume that an effective leaf for
subkeysk is located in the highest noden in the tree where a separator keyk with subkeysk appears, and at the
rightmost such separator if more than one separator has subkeysk in n.

The first task is to update all aggregates associated with a subkey on the descent into the index. We define
the following variables:

n Number of key values that comprise the aggregate key.
curr eff leaf Length of the subkey of the next effective leaf to match
r record that is being inserted into the cube forest.
key Aggregate key derived fromr for the index.
v Value attributes ofr.
node Index node currently under examination.
node.num children Number of separator keys in this node.
node.separator[i] key value that separates key values in subtreesi andi+.
node.eff leaf[i][j] Data associated with the effective leaf whose subkey is the lengthj prefix of

node.separator[i]. This includes aggregate values and subtrees corresponding to subtree
branches of thejth node of the spine (if any).

node.child[i] Child node ofnode.

We assume that all keys stored in subtreenode.child[i] have key values less than or equal tonode.separator[i]
(leaf nodes do not include the arraynode.child[..]). In the code fragment, we assume that we have already de-
termined thatnode.separator[k] is the separator with the smallest value larger than or equal tokey. If node
is a non-leaf node we navigate tonode.child[i], otherwise we insertkey into the index ifkey is not equal to
node.separator[k].

The code fragment can be summarized as follows. Letski be the subkey ofkey of lengthi. To ensure that we
find the highest node in the index whereski occurs, we search for as many subkeys ofkey as possible at every
node in the search path. We do not need to match previously found subkeys, and ifski does not appear in the
node, thenski+1 does not appear in the node. Ifskcurr e� leaf appears in the node, then it will be a subkey of at
least one ofnode.separator[k-1] andnode.separator[k]. If the prefix ofnode.separator[k] is skcurr e� leaf ,
then the effective leafcurr eff leaf is located at the highest indexj such that the prefix ofnode.separator[j] is
skcurr e� leaf . Otherwise, if the prefix ofnode.separator[k-1] is skcurr e� leaf , then the index of the effective leaf
curr eff leaf is k-1. If we find the effective leaf, we update associated aggregate with the value attributes, and
we insertr into each subtree associated with the effective leaf.

Because of pruning, a subkey of lengthimight not have any information associated with it, and thus will have
no effective leaf. In this section, we will search for the effective leaf ofski, but any operations on the effective
leaf are null, and no effective leaf is actually stored. This convention simplifies the presentation of the algorithm.

When we reach the leaf,l, we insert an entry forkey into l only if key is not already present inl. If we insert an
entry forkey in l, we need to attach all effective leaves located at the entry forkey. These are all of the effective
leaves numberedcurr eff leaf throughn. Initializing the effective leaf consists of initializing the aggregate value
with v (if any), creating all subindices of the effective leaf (if any) and insertingr into them. Finally, we must
preserve the invariant that effective leaves are located at the rightmost position where the separator contains the
subkey. So for all subkeys ofkey of length less thancurr eff subkey, we need to search for effective leaves to
the left of the position wherekey was inserted. If we find effective leaves for subkeys ofkey, we transfer their
location to the location ofkey. We can speed up the search process by observing that the effective leaf forski�1

28

done = false;
while(not done)f

found effleaf = false
if(key matches node.separator[k] on the subkey of length curr eff leaf)f

found effleaf = true
set efl idx to be the largest index j such that key matches node.separator[j] on the
subkey of length curr eff leaf

gelsef
if((k > 0) and (key matches node.separator[k-1] on the subkey of length curr eff leaf)f

found effleaf = true
efl idx = k-1

g
g
if(found effleaf is true)f

add v to the aggregate value stored in node.eff leaf[efl idx] (if any)
For every subtree st in node.eff leaf[efl idx]

insert r into st

curr eff leaf ++
if(curr eff leaf > n)f

done = true
g

gelsef
done = true

g
g

Figure 6: Find all effective leaves that match key in this node.

must be located at or to the left of the location of the effective leaf for subkeyski, and if the effective leaf forski
does not exist inl, then the effective leaf forski�1 does not exist inl.

If a key insertion causes a node to split, the usual restructuring operations are performed. In addition, the
effective leaf location invariant must be maintained. The key value that is promoted to the parent is the rightmost
separator in the left sibling of the pair of nodes that results from the split. All effective leaves are promoted along
with the separator (key) value. If there is an effective leaf for subkeyski of the promoted separator in the right
sibling, then it should be promoted to the newly inserted separator. The optimizations for finding these separators
are the opposite of those described in the previous paragraph (i.e., substitute “right” for “left”). The separator
that is inserted into the parent node might now contain a rightmostski for an effective leaf in the parent. These
effective leaves must be moved to the newly inserted key, and the optimizations for performing this migration
are the same as that described in the previous paragraph.

5 Cube Forest Batch Update Algorithms

Our batch update algorithm for inserting tuples into the forest works as follows. Given a set of tuples to insert,
we partition the tuples into subsets that can be processed in main memory (perhaps only one partition). For each
partition, we insert the tuples of the partition into each index that comprises the forest.

To insert a batch of tuples into an index, we first sort it on the spine attributes of the index using an in-memory
sort. For each tuple in the batch, we descend the index until the last effective leaf is found. We do not perform any
processing with the effective leaves that are found, instead we make note of the location of the effective leaves. If
necessary, we insert the spine key (and initialize any new effective leaves) and perform restructing. If an effective
leaf for the recently inserted key changes location during restructuring, we note its new location. We compare

29

every subkey of the recently inserted tuple against the corresponding subkey of the next tuple in the batch. If a
subkey of the current tuple matches the subkey of the next tuple, we defer the update of the aggregates and the
non-spine subtrees (if any). Otherwise, we perform all deferred aggregate updates for the associated effective
leaf, and for all of its subtrees. We perform the subtree updates by a recursive call to the batch insert algorithm.

6 Experimental Results

We implemented a prototype h-split forest to test the practical value of our ideas. We tested the implementation
using a 600,000 tuple database derived from the TPC-D benchmark. Building the unpruned largest index in the
cube forest index by inserting tuples one at a time requires more that 5,000,000 I/Os. However, the batch insert
algorithm (using 30 memory buffers and a page size of 1K bytes) needs only 960,000 I/Os with a batch size of
10,000 tuples (400,000 I/Os with a batch size of 100,000 tuples), and occupies 62 Mbytes of storage.

7 Conclusions

Cube forests are an attractive alternative for the storage and indexing of a data cube. In a full cube forest, point
cube queries of the form “Find the sales of all Mustangs in New England in the first quarter of last year” is an-
swered in a single index lookup yielding sub-second response time. We have presented an implementation for
cube forests based on B-tree indexing. We showed that the implementation has efficient batch update algorithms.

References

[1] C.-Y. Chan and Y. Ioannidis. Hierarchical cubes for range-sum queries. InProc. 25th Intl. Conf. Very Large Data
Bases, pages 685–686, 1999.

[2] S. Chaudhuri and U. Dayal. On overview of data warehousing and OLAP technology.ACM SIGMOD Record,
26(1):65–74, 1997.

[3] G. Colliat. OLAP, relational, and multidimensional database systems.ACM SIGMOD Record, 25(3):64–69, 1996.

[4] S. Geffner, D. Agrawal, A. El Abbadi, and T. Smith. An efficient approach for querying dynamic data cubes. InProc.
IEEE Intl. Conf. Data Engineering, pages 328–335, 1999.

[5] S. Goil and A. Choudhary. An infrastructure for scalable parallel multidimensional analysis. InProc. 11th Intl. Conf.
Scientific and Statistical Database Management, pages 102–111, 1999.

[6] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational aggregation operator generalizing group-
by, cross-tab, and sub-totals. InProc. IEEE Intl. Conf. on Data Engineering, pages 152–159, 1996.

[7] C.-T. Ho, R. Agrawal, N. Megiddo, and R. Srikant. Range queries in OLAP data cubes. InProc. ACM SIGMOD
Conf., pages 73–88, 1997.

[8] T. Johnson and D. Shasha. Hierarchically split cube forests for decision support: description and tuned design. Dept.
of Computer Science tr727, New York University, www.cs.nyu.edu, Nov. 1996.

[9] T. Johnson and D. Shasha. Some approaches to index design for cube forest.IEEE Data Engineering Bulliten,
20(1):27–35, 1997.

[10] Y. Kotidis and N. Roussopoulos. An alternative storage organization for ROLAP aggregate views based on cubetrees.
In Proc. ACM SIGMOD Conf., pages 249–258, 1998.

[11] N. Roussopoulos, Y. Kotidis, and M. Roussopoulos. Cubetree: Organization of and bulk incremental updates on the
data cube. InProc. ACM SIGMOD conf., pages 89–99, 1997.

[12] S. Sarawagi and M. Stonebraker. Efficient organization of large multidimensional arrays. InProc. IEEE Intl. Conf.
Data Engineering, pages 328–336, 1994.

[13] Y. Zhao, P. Deshpande, and J. Naughton. An array-based algorithm for simultaneous multidimensional aggregates.
In Proc. ACM SIGMOD Conf., pages 159–170, 1997.

30

Data Cubes in Dynamic Environments

Steven P. Geffner Mirek Riedewald Divyakant Agrawal Amr El Abbadi

Department of Computer Science
University of California, Santa Barbara, CA 93106y

Abstract

The data cube, also known in the OLAP community as the multidimensional database, is designed to pro-
vide aggregate information that can be used to analyze the contents of databases and data warehouses.
Previous research mainly focussed on strategies for supporting queries, assuming that updates do not
play an important role and can be propagated to the data cube in batches. While this might be suffi-
cient for most of today’s applications, there is growing evidence that modern interactive data analysis
applications will have to balance update and query costs. Two techniques for maintaining data cubes
in dynamic environments are described here. The first,Relative Prefix Sums(RPS), supports a constant
response time for ad-hoc range sum queries on the data cube, while at the same time greatly reducing the
update costs compared to prior approaches. The second, theDynamic Data Cube(DDC), guarantees a
sub-linear cost for both range sum queries and updates.

1 Introduction

A data cube or multidimensional database ([7] [4] [1]) is constructed from a subset of attributes in the database.
Certain attributes are chosen to bemeasure attributes, i.e., the attributes whose values are of interest. Other at-
tributes are selected asdimensionsor functional attributes. The measure attributes are aggregated according
to the dimensions. For example, consider a hypothetical database maintained by an insurance company. One
may construct a data cube from the database with SALES as a measure attribute, and CUSTOMERAGE and
DATE OF SALE as dimensions. Such a data cube provides aggregated total sales figures for all combinations
of age and date. Range sum queries are useful analysis tools when applied to data cubes. A range sum query sums
the measure attribute within the range of the query. An example is to “Find the total sales for customers with an
age from 37 to 52, over the past three months”. Queries of this form can be very useful in finding trends and
in discovering relationships between attributes in the database. Efficient range-sum querying is becoming more
important with the growing interest in database analysis, particularly in On-Line Analytical Processing (OLAP)
[3].

Ho et al. [8] have presented an elegant algorithm for computing range sum queries in data cubes which we call
thePrefix Sum(PS) approach. The essential idea is to precompute many prefix sums of the data cube, which can

Copyright 1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

yThis work was partially supported by NSF grants IIS 98-17432 and IIS 99-70700

31

1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

80

8 290

P

3 8 9 11 13 17 23 26 29

10 18 21 29 39 50 57 62 69

12 24 29 40 53 67 78 88 102

15 29 35 51 67 86 99 117 133

19 35 42 61 80 103 123 142 161

21 40 50 75 95 126 151 171 191

25 49 61 93 114 154 182 205 229

27 55 69 103 127 168 205 229 256

32 64 81 116 143 186 224 257

1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

80

8 6

3 5 1 2 2 4 6 3 3

7 3 2 6 8 7 1 2 4

A

2 4 2 3 3 3 4 5 7

3 2 1 5 3 5 2 8 2

4 2 1 3 3 4 7 1 3

2 3 3 6 1 8 5 1 1

4 5 2 7 1 9 3 3 4

2 4 2 2 3 1 9 1 3

5 4 3 1 3 2 1 9

Figure 1: The original array (A, left) and the cumulative array used for the Prefix Sum method (P , right)

then be used to answer ad hoc queries at run-time (see Figure 1). The Prefix Sum method permits the evaluation of
any range-sum query on a data cube in constant time. The approach is mainly hampered by its update cost, which
in the worst case requires rebuilding an array of the same size as the entire data cube. [6] describes a technique
that considerably improves the update performance compared to PS, but still provides a constant range sum query
cost. The main idea is to control the cascading updates. The Hierarchical Cubes techniques [2] generalize this
idea by offering the user different tradeoffs between update and query cost. The only technique that provides
guaranteed sub-linear update and range query cost is the Dynamic Data Cube [5].

In some problem instances, update cost is not a significant consideration. There are, however, many current
and emerging applications for which reasonable update cost becomes important. In Section 2 we discuss some
dynamic scenarios. Then in Section 3 the Relative Prefix Sum and the Dynamic Data Cube techniques are pre-
sented. Section 4 concludes this article.

2 Why Do Updates Matter?

Update complexity is often considered to be unimportant in current-day data analysis applications. These sys-
tems are oriented towards batch updates, and for a wide variety of business applications this is considered suffi-
cient. Nevertheless, the batch updating paradigm, a holdover from the computing environment of the 1960’s, is
tremendously limiting to the field. The Prefix Sum method is a good example of present-day cutting-edge data
cube technology. Any range sum query can be answered in constant time. During updates, however, it requires
in the worst case updating an array whose size is equal to the size of the entire data cube. It is easy to see that,
even under batch update conditions, this model is not workable for many emerging applications (e.g., what if the
size of the data cube were a terabyte?).

There is no doubt that OLAP applications typically have to deal with updates. Data warehouses collect con-
stantly changing data from a company’s databases; digital libraries and data collections grow with an increasing
rate. But isn’t it good enough if those updates can be efficiently processed in batches? Why instantly propagating
each update to the data cube? Why not just collect all updates during the day and then apply them overnight when
nobody uses the data collection? There are several arguments.

� For some applications, it is desirable to incorporate updates as soon as possible. Batch updating unneces-
sarily limits the range of choices. While some applications do not suffer in the presence of stale data, in
many emerging applications, e.g. decision support and stock trading, the instant availability of the latest
information plays a crucial role.

� OLAP meansinteractivedata analysis. For instance, business leaders will want to construct interactive
what-if scenarios using their data cubes, in much the same way that they construct what-if scenarios using
spreadsheets now. These applications require real-time (or even hypothetical) data to be integrated with

32

A4A3A2A1Q

+-= -

Figure 2: A geometric illustration of the two-dimensional case: SUM(Q) = SUM(A1) - SUM(A2) - SUM(A3) +
SUM(A4)

historical data for the purpose of instantaneous analysis and subsequent action. The fact that there are sig-
nificant impediments to updates in popular data cube techniques prevents these and many other emerging
applications from being deployed.

� Batch updates incur another serious handicap. Even though theaveragecost per update might be small,
performing the complete batch of updates takes a considerable amount of time. During this time the data
in the data cube is generally not accessible to an analyst. The greater the amount of updates, the worse the
situation can get. Finding a suitable time slot for thisupdate windowbecomes increasingly harder when
businesses demand flexible work hours and 24 hour availability of their data. Also, data collections that
are accessible from all over the world (e.g., for multinational companies) do not follow the simple “many
accesses during daytime, no accesses at nighttime” pattern.

By reducing the barriers to frequent updates in very large data cubes, new and interesting applications become
possible; traditional applications can profit from greater flexibility and 24 hour availability of the data. With
growing data collections and a growing demand for interactive analysis of up to date data, traditional approaches
like batch updates and re-computation of the complete data cube can not be regarded as sufficient any more for
an increasing number of applications.

3 Two Dynamic Data Cube Approaches

In the following, two data cube techniques for dynamic environments are presented. Compared to the Prefix Sum
technique [8] they trade query efficiency for faster updates. Both make use of the inverse property of addition by
adding and subtracting region sums to obtain the complete sum of the query region, in the same manner as the PS
method. As Ho et al. point out, the technique can be applied to any operator� for which there exists an inverse
operator	 such thata� b	 b = a (e.g., COUNT, AVERAGE, ROLLING SUM, ROLLING AVERAGE).

LetA denote the original array,d its dimensionality andn the number of possible indexes (attribute values)
for each dimension1. (y1; : : : ; yd) describes a singlecell, i.e., a point of the multidimensional data space. Without
loss of generality we assume that(0; : : : ; 0) is the point of the array with the smallest index in each dimension.
Then the sum for an arbitrary range query can be obtained as the result of combining (adding/subtracting) up to
2d range sums of the form SUM(A[0; : : : ; 0] : A[x1; : : : ; xd]). Figure 2 illustrates the calculations for a two-
dimensional data cube. With SUM(A[y1; : : : ; yd] : A[z1; : : : ; zd]) we refer to the aggregate sum of all cells
enclosed in the bounding box described by(y1; : : : ; yd) (“upper left” corner) and(z1; : : : ; zd) (“lower right” cor-
ner). The “upper left” corner of a hyper-rectangle, i.e., the point of the rectangle with the smallest index in each
dimension, will be referred to as theanchorof that hyper-rectangle. Since an arbitrary range sum can be obtained
as the combination of up to2d (which is independent of the size of the range) range sums for ranges anchored at
(0; : : : ; 0), we will only focus on handling those ranges.

1Choosing a single parametern is done for the sake of clarity and results in simpler formulas. Our techniques, however, are not
restricted to data cubes with domains of equal sizes.

33

x2

y2

1 2 5 6 743

2

3

4

5

6

7

80

8

1

0

x1

y1

1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

80

8

V

1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

80

8

Figure 3: Calculation of overlay values as the sum of the cells in the shaded area on arrayA

3.1 The Relative Prefix Sum Approach

The Relative Prefix Sum (RPS) method [6] provides constant-time queries with reduced update complexity (com-
pared to the Prefix Sum technique), and is suitable for applications where constant time queries are vital but up-
dates are more frequent than the Prefix Sum method will allow. The main idea behind RPS is to control the
cascading updates that lead to poor update behavior.

The RPS method makes use of two components: anoverlay(OL) and arelative-prefix(RP) array. The over-
lay partitions arrayA into fixed size regions called overlay boxes. Overlay boxes store information regarding the
sums of regions of arrayA preceding them.RPcontains relative prefix sums within regions defined by the over-
lay. Using the two components in concert, we construct prefix sums “on the fly”. We first describe the overlay,
then describeRP.

3.1.1 Overlay

We define an overlay as a set of disjoint hyper-rectangles of equal size, further on calledoverlay boxes, that com-
pletely partition arrayA into regions of cells. For clarity, and without loss of generality, let the length of the
overlay box in each dimension bek. The size of arrayA isnd, thus the total number of overlay boxes isdn=ked.
The first overlay box is anchored at(0; : : : ; 0). Let overlay boxB be anchored at(b1; : : : ; bd). B is said to
covera cell(x1; x2; : : : ; xd) in arrayA if the cell falls within the boundaries of the overlay box, i.e., if for alli:
bi � xi < bi + k. A single cello of an overlay boxaggregatesa cella of arrayA outside the overlay box, if the
value ofo depends ona’s value. Each overlay box corresponds to an area of arrayA of sizekd cells. The values
stored in an overlay box provide sums of regions outside the box. In the two-dimensional example in Figure 3
the cells in the top row and the leftmost column contain the sums of the values in the corresponding shaded cells
of arrayA (those overlay cells aggregate the respective cells in the shaded area). The other cells covered by the
overlay box are not needed in the overlay, and would not be stored.

In general only overlay cells in the “upper left” surfaces are needed, i.e., in those surfaces that contain the an-
chor cell. More formally, overlay boxB anchored at(b1; : : : ; bd)aggregateskd overlay cellsO = (o1; : : : ; oi; : : : ; od),
namely those cells that satisfy for each dimensioni: bi � oi < bi + k. Among those overlay cells, only
kd � (k � 1)d are used, namely those where a dimensionj exists, such thatoj = bj (compare to the two-
dimensional example). The anchor cell(b1; : : : ; bd) stores the value

(
b1X

a1=0

: : :
bdX

ad=0

A[a1; : : : ; ad])� (
b1X

a1=b1

: : :
bdX

ad=bd

A[a1; : : : ; ad])

(the sum of all cells inA[0; : : : ; 0] : A[b1; : : : ; bd] excluding(b1; : : : ; bd)). For an overlay cellOwhere for exactly

34

one dimensionj oj > bj and for all other dimensionsi oi = bi the value is calculated as

(
b1X

a1=0

: : :

bj�1X
aj�1=0

ojX
aj=bj+1

bj+1X
aj+1=0

: : :
bdX

ad=0

A[a1; : : : ; ad])

�(
b1X

a1=b1

: : :

bj�1X
aj�1=bj�1

ojX
aj=bj+1

bj+1X
aj+1=bj+1

: : :
bdX

ad=bd

A[a1; : : : ; ad])

In general the value stored in a used overlay cellO = (o1; : : : ; od) is

(
u1X

a1=l1

: : :
udX

ad=ld

A[a1; : : : ; ad])� (
v1X

a1=m1

: : :
vdX

ad=md

A[a1; : : : ; ad])

where for all dimensionsi:

� if oi = bi: li = 0; ui = bi;mi = bi; vi = bi

� if oi > bi: li = bi + 1; ui = oi;mi = bi + 1; vi = oi

Intuitively the first sum includes all cells that fall into the hyper-rectangleA[0; : : : ; 0] : A[o1; : : : ; od], and that
are not aggregated by another overlay cell whose coordinates can be obtained by replacing some of theoi that
are greater thanbi by bi (e.g., in Figure 3V ’s coordinates(3; 6) can be obtained by replacingx2’s x-coordinate 5
with the corresponding overlay anchor coordinate 3, thereforex2’s summation in x-direction has to range from
(3+1) to 5). The second term subtracts the values of those cells that fall into overlay boxB and should therefore
not be included in the summation (in Figure 3 forx2 the values in cells(4; 6) and(5; 6) have to be subtracted).

3.1.2 Relative Prefix Array (RP)

The relative prefix array (RP) is of the same size as arrayA. It is partitioned into regions of cells that correspond
to overlay boxes. Each region inRPcontains prefix sums that are relative to the area enclosed by the box, i.e., it is
independent of other regions. More formally, given a cellRP[i1; : : : ; id] and the anchor cell location(v1; : : : ; vd)
of the overlay box covering this cell, the value stored inRP[i1; : : : ; id] is SUM(A[v1; : : : ; vd] : A[i1; : : : ; id]).

3.1.3 Query and Update Operations

The range sum for any query anchored at(0; : : : ; 0) can be obtained by adding the corresponding values stored in
the overlay and inRP. The overlay values andRPare therefore sufficient to provide the region sums required by
the method illustrated in Figure 2. Figure 4 shows the two data structures for our example array. For instance to
calculate the value for SUM(A[0; 0] : A[7; 4]) we have to addOL[6; 3], OL[7; 3], OL[6; 4] andRP[7; 4], resulting
in 4 accesses and returning 142.

In general, a query for SUM(A[0; : : : ; 0] : A[z1; : : : ; zd]), i.e., a query that sums the values of all array
cells up toZ = (z1; : : : ; zd), accesses exactly one value inRP and some values in the overlay boxBZ that
coversZ. Let BZ be anchored at(b1; : : : ; bd). Then all overlay cells inBZ that together aggregate the range
A[0; : : : ; 0] : A[z1; : : : ; zd], excluding the cells covered by overlay boxBZ , must be accessed. These are all
cellsX = (x1; : : : ; xd) that satisfy for all dimensionsi: xi = bi or xi = zi, excluding cell(z1; : : : ; zd) which is
not a used overlay cell. Intuitively all overlay cells have to be accessed whose coordinates can be obtained from
Z by replacing one or more of thezi with the correspondingbi. In total2d � 1 overlay cells must be accessed.
The overall cost for a query anchored at(0; : : : ; 0) therefore sums to2d. Since an arbitrary range sum query can
be computed by adding/subtracting the results of at most2d of these queries, the overall worst case query cost

35

1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

80

8

RP

3 8 9

10 18 21

12 24 29

2 4 8

8 18 29

11 24 38

6 9 12

7 12 19

11 21 35

3 5 6

7 11 13

9 16 21

5 8 13

8 14 23

14 21 38

2 10 12

9 18 23

14 24 30

4 9 11

6 15 19

11 24 31

7 8 17

9 13 23

10 17 29

3 6 10

12 16 23

13 26 39

1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

80

8

0 0 0

0

0

9 0 0

12

20

17 0 0

33

50

12 12 17

0

0

46 13 27

7

15

97 10 24

17

40

21 19 29

0

0

86 20 51

8

20

179 20 40

14

32

OL

Figure 4: OverlayOL and arrayRPwith overlay boxes drawn for reference (computed for arrayA)

*

1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

80

8

0 0 0

0

0

9 0 0

12

20

17 0 0

33

50

12 12 17

0

0

46 13 27

7

17

97 10 24

17

42

21 21 31

0

0

88 20 51

8

20

181 20 40

14

32

OL 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

80

8

RP

3 8 9

10 18 21

12 24 29

2 4 8

8 18 29

11 24 38

6 9 12

7 12 19

11 21 35

3 5 6

7 11 13

9 18 23

5 8 13

8 14 23

14 21 38

2 10 12

9 18 23

14 24 30

4 9 11

6 15 19

11 24 31

7 8 17

9 13 23

10 17 29

3 6 10

12 16 23

13 26 39

Figure 5: Effects of an update to cell(1; 5) (marked with a star)

is 4d. For a certain data cube its dimensionalityd is fixed, i.e., we obtain a worst query cost that is constant and
independent of the size of the query range.

Determining the update cost requires a more detailed analysis. We first illustrate the update process on our
two-dimensional example array (Figure 5). LetA[1; 5] be updated with the value 5 (replacing the former value
3) and letB be the overlay box anchored at(0; 3), i.e., the box that covers(1; 5). In RPonly cells covered byB
that reside to the lower right of(1; 5) including the cell itself, have to be updated (shaded area inRP). In OL, for
overlay boxes in the same row asB to its right, the corresponding column values are affected ((3; 5) and(6; 5)),
similar for the overlay boxes in the same column asB below it. Finally the anchor cells(3; 6) and(6; 6) have to
be updated as well. In Figure 5 the affected overlay cells are shaded.

To keep the description of the general case simple, we assume thatk, the side-length of an overlay box, evenly
dividesn, the side-length of the data cube. LetZ = (z1; : : : ; zd) be the updated cell andBZ be the overlay box
anchored at(b1; : : : ; bd) that coversZ. The cost of an update toZ is the sum of the cost of updating the overlay
cells and the cost of updatingRP. Regarding the relative prefix sum arrayRP, only cells inside overlay boxBZ

can be affected by the update. To be more precise, only those cells inBZ whose indexes are each at least as great
as the corresponding index ofZ are to be updated, resulting in a worst case cost ofkd.

Next we describe which overlay cells need to be updated. In general, these are all overlay cells that includeZ
in their aggregation. Let for each dimensioni: Si = fbi+k; bi+2k; bi+3k; : : : ;n�kg. IntuitivelySi contains the
coordinates of the anchors of the affected overlay boxes (the boxes to the “lower right” ofBZ in two-dimensional
terminology) in thei-th dimension. Let for each dimensioni: Ti = fzi; zi+1; zi+2; : : : ; bi+(k�1)g. This set
intuitively contains the coordinates of the affected overlay cells inside a certain overlay box (the cells to the “lower
right” of Z in two-dimensional terminology) in thei-th dimension. Then the overlay cellsO = (o1; : : : ; od) that
need to be updated are those that satisfy

8i : oi 2
(

Si , if zi = bi
Si [Ti , otherwise

and do not belong to overlay boxBZ . In the example of Figure 5 the sets becomeSx = f3; 6g, Tx = f1; 2g,

36

Sy = f6g andTy = f5g. Sincezx = 1 > 0 = bx andzy = 5 > 3 = by the affected overlay cells are all cells
(ox; oy) whereox 2 f1; 2; 3; 6g andoy 2 f5; 6g, minus(1; 5) and(2; 5) which fall into the same overlay box as
(1; 5).

Obviously the greatest number of affected overlay cells results from choosingzi 6= bi andzi as small as
possible2. Si has at mostn=k � 1 elements,Ti can have up tok � 1 elements3. Since there are at most(n=k �
1 + k � 1) = (n=k + k � 2) possible values for each dimension, there are at most(n=k + k � 2)d overlay
cells that satisfy the above formula. Among those,(k � 1)d cells fall into overlay boxBZ

4. Altogether(n=k +
k � 2)d � (k � 1)d overlay cells must be updated in the worst case. Note, that this bound is tight, since it is
met for an update on(1; : : : ; 1). Forn=k � 2 the cost of updating the overlay cells determines the worst overall
update cost. Therefore the worst update cost is obtained when cell(1; : : : ; 1) is updated, resulting in a cost of
(n=k + k � 2)d � (k � 1)d + (k � 1)d = (n=k + k � 2)d. This value is minimized fork =

p
n. The worst

update cost therefore is O(nd=2) (compare to O(nd) for the PS technique).

3.2 The Dynamic Data Cube (DDC)

The Dynamic Data Cube [5] provides sub-linear performance (O(logd n)) for both range sum queries and updates
on the data cube. The method supports dynamic growth of the data cube inanydirection and gracefully manages
clustered data and data cubes. The DDC method utilizes a tree structure which recursively partitions arrayA
into a variant of overlay boxes. Each overlay box will contain information regarding relative sums of regions of
A. By descending the tree and adding these sums, we will efficiently construct sums of regions which begin at
A[0; : : : ; 0] and end at any arbitrary cell inA. To calculate complete region sums from the tree, we again make
use of the inverse property of addition as illustrated in Figure 2. We will first describe the overlay box variant,
then describe their use in constructing the Dynamic Data Cube.

3.2.1 Overlay Variant

For the DDC we define an overlay as before, i.e., as a set of disjoint hyper-rectangles (hereafter called ”boxes”)
of equal size that completely partition the set of cells of arrayA into non-overlapping regions. However, these
overlay boxes differ from those in RPS in the values they store and in the number of overlay boxes used to par-
tition the data space. Referring to Figure 6,S is the subtotal cell, whilex1, x2, x3 are row sum cells in the first
dimension andy1, y2, y3 are row sum cells in the second dimension. Each box stores exactlykd � (k � 1)d

values; the other cells covered by the overlay box are not needed in the overlay, and would not be stored. Values
stored in an overlay box provide sums of regionswithin the overlay box. Figure 6 demonstrates the calculation
of those values. The row sum values shown in the figure are equal to the sum of the associated shaded cells
in arrayA. Note that row sum values are cumulative; i.e.,y2 includes the value ofy1, etc. Formally, given an
overlay box anchored atA[i1; i2; : : : ; id], the row sum value contained in cell(i1; i2; : : : ; j; : : : ; id) is equal to
SUM(A[i1; i2; : : : ; id] : A[i1; i2; : : : ; j; : : : ; id]).

3.2.2 Constructing the Dynamic Data Cube

Overlay boxes are used in conjunction with a tree that recursively partitions arrayA. We now describe its con-
struction (Figure 7). The root node of the tree encompasses the complete range of arrayA. It forms children by
dividing its range in each dimension in half. It stores a separate overlay box for each child. Each of its children
are in turn subdivided into children, for which overlay boxes are stored. This recursive partitioning continues
until the leaf level. Thus, each level of the tree has its own value for the overlay box sizek; k is n=2 at the root

2The choice ofzi determines the value ofbi. The smallerzi, the smallerbi, i.e., the more elements inSi.
3This is becausezi 6= bi, i.e.,zi � bi + 1.
4These are all cells where8i : oi 2 Ti.

37

y1

y2

x3 S

y1

y2

y3

Sx1 x2 x3

y1

y2

y3

Sx1 x2 x3

y1

y2

y3

Sx1 x2 x3

y1

y2

y3

Sx1 x2 x3

1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0

Figure 6: Partitioning of arrayA into overlay boxes and calculation of overlay values

Level 2 (root), k=4

35

10

54308 61

24

47

31

15

342612 52

42

48

Level 0 (leaves), k=1

3 5

7 3

1 2

2 6

2 4

8 7

6 3

2

2 4

3 2

2 3

1 5

3 3

3 5

4 5

2 8

4 2

2 3

1 3

3 6

3 4

1 8

7 1

5 2

4 5

2 4

2 7

2 2

1 9

3 1

3 3

9 1

16 66

48

33

15

352915 51

40

29

11

1

8

1810

3

113

6

115

5

113

Level 1, k=2

6

2110

9

127

6

146

9

196

6

116

4

134

9

156

9

134

7

164

8

1512

10

144

6

1612

Figure 7: Dynamic Data Cube (computed for the data in arrayA[0; 0] : A[7; 7])

of the tree, and is successively divided in half for each subsequent tree level. We define the leaf level as the level
whereink = 1. Whenk = 1, each overlay box contains a single cell; since a single-cell overlay box contains
only the subtotal cell, the leaf level contains the values stored in the original arrayA.

Overlay box values are stored in special structures to guarantee the sublinear query and update times. For two-
dimensional overlays (i.e.,d = 2) we do not store the values of an overlay box in arrays. Instead a hierarchical
structure is used (Bc-tree, see [5]) that has an access and update cost of O(log n). For higher dimensional data
cubes (d > 2) we make the observation that the surfaces containing the overlay values of ad-dimensional overlay
box are(d�1)-dimensional. Thus, the overlay box values of ad dimensional data cube can be stored as(d�1)-
dimensional data cubes using Dynamic Data Cubes, recursively. The recursion stops ford = 2.

3.2.3 Query and Update Operations

The range sum for any query anchored at(0; : : : ; 0) is obtained by only accessing overlay values. We describe
this process for a query SUM(A[0; : : : ; 0] : A[z1; : : : ; zd]), i.e., a query that sums the values of all array cells
up toZ = (z1; : : : ; zd). The query process begins at the root of the tree. The algorithm checks the relationship
of cell Z and the overlay boxes in the node. When an overlay box coversZ, a recursive call to the function is
performed, using the child associated with the overlay box as the node parameter (i.e., the algorithm descends the
tree for that case). WhenZ comes before the overlay box in any dimension (i.e., has a smaller index than each cell
covered by the overlay box in that dimension), the query region does not intersect the overlay box, and therefore
this box does not contribute a value for the sum. WhenZ comes after the overlay box in every dimension (i.e.,
has a greater index than each cell covered by the overlay box in every dimension), the query includes the entire
overlay box, and the box contributes the subtotal to the sum. Otherwise the cell is neither before nor after the
box, i.e., the query area intersects the overlay box, and the box contributes the corresponding overlay value (a
row sum value in two-dimensional terminology) to the sum.

38

added outside the

bounds of the

current root.

8

10

4

44

3 5

7 3

4 0

0 0

all boxes that cover the new cell.

Overlay values are calculated for

3 5 *4

7 3

A new cell (*) is

8

1810

*

3 5

7 3

*4

A new root node is created.

Level 0 (root) Level 1 (new root) Level 1

Level 0 (former root) Level 0 (new leaves)

18

Figure 8: Example for the growth of the Dynamic Data Cube (shaded areas do not store values)

Since overlay boxes at the same tree level are non-intersecting, at most one child will be descended at a tree
level. The contribution of overlay boxes that intersect the query area but do not coverZ is obtained by accessing
a single overlay value. There are at most2d � 1 overlay boxes in a node that can have this property. In sum at
most(2d � 1) log2 n = O(log n) overlay values are accessed. Due to the recursive way of storing the overlays,
accessing a single overlay value costs O(logd�1 n), resulting in an overall query cost of O(logd n) (for details
see [5]).

To perform an update on cellZ the DDC tree has to be descended in a way similar to the query process. Even
though the cells of an overlay box store cumulative values, the balanced query/update cost of the Bc-trees (for
d = 2) together with the recursive way of storing higher dimensional boxes result in a worst case update cost of
O(logd n) (for details see [5]).

3.2.4 Dynamic growth of the cube

Neither the Prefix Sum (PS), nor the Relative Prefix Sum (RPS), nor the Hierarchical Cubes (HC) [2] methods
address the growth of the data cube. Instead, they assume that the size of each dimension is known a priori. For
some applications, however, it is more convenient and space efficient to grow the size of the data cube dynam-
ically to suit the (size of the) data. For instance, an attribute might have a large domain, but the data cube only
contains non-empty cells that can be addressed by a much smaller range of values for that attribute. Take for ex-
ample astronomical databases where new telescopes allow discovering stars in greater distance; or commercial
applications where new products and customers are added or deleted from time to time.

The PS, RPS and HC methods would store each single cell in non-populated areas, wasting a huge amount
of space. The Dynamic Data Cube, on the other hand, could start by building the smallest data cube that contains
all non-empty cells. As soon as a cell is inserted that lies outside the current data cube, the data cube “grows”
into the required direction. New roots are created successively, each time doubling the size of the data cube in
each dimension, until the new root encompasses the new cell. This update process is incremental, i.e., the old
tree structure appears unchanged as the descendent of the new root (see Figure 8 for a simple example). Only one
overlay box at each tree level is affected by an update; therefore, we will create only one child node and overlay
box per tree level during this process.

This incremental construction of the Dynamic Data Cube is naturally suited to clustered data and data that
contains large, non-populated regions. Where data does not exist, overlay boxes will not be instantiated; thus,
the Dynamic Data Cube avoids the storage of empty regions. Since overlay boxes are self-contained, there is no
cascading update problem associated with adding a new cell. The Dynamic Data Cube allows graceful growth
of the data cube in any direction, making it more suitable for applications which involve change or growth. Note
that the PS and RPS techniques could be augmented by methods to handle a data cube growth by appending rows.
Handling growth inanydirection, however, will be very costly.

39

4 Conclusion

In the near future an increasing number of applications will require or be enabled by providing fast and frequent
updates on data cubes and avoiding long down-times of the data analysis tools. Together, the RPS and DDC
methods offer a range of options for implementing data cubes in such dynamic environments. The Dynamic Data
Cube provides balanced sub-linear performance for queries and updates. It is suitable for dynamic environments
where queries and updates are both frequent; where data cubes are very large; where data is clustered and sparse;
and where the data can grow in any direction relative to the original data (i.e., updates are not append-only). The
Relative Prefix Sum technique does not offer this flexibility, but has its merits for applications that do not deal
with frequent updates but require fast answers within a guaranteed time limit.

The obvious disadvantage of our methods compared to PS and HC is the usage of additional space. While
PS and HC require exactly the same amount of storage as the original data cube (O(nd)), RPS and DDC need
to store the overlay values. In the case of RPS the storage overhead is provably within small bounds. Since each
overlay box of sizekd storeskd�(k�1)d values, the ratio of RPS’s total storage requirements to the requirements
of the original data cube is2 � ((k � 1)=k)d, i.e., less than2. Ford = 4 andk = 100 RPS uses only4% more
storage. In the case of DDC it is obvious that the lowest tree levels consume the most storage. By deleting a
certain number of those levels, one can trade off query speed for storage space, or conversely bring the DDC
within delta of the storage required by the Prefix Sum method (for details see [5]). Also, in the case of DDC the
worst case storage overhead will only occur for dense data cubes. For empty chunks whole subtrees will not be
created, saving a considerable amount of space for practical applications.

We are currently developing new techniques that apply the basic ideas of the presented approaches to high-
dimensional and sparse data sets.

References

[1] R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimensional databases. InProc. 13th ICDE, 1997.

[2] C.-Y. Chan and Y. E. Ioannidis. Hierarchical cubes for range-sum queries. InProc. 25th VLDB, 1999.

[3] E. F. Codd. Providing OLAP (on-line analytical processing) to user-analysts: An IT mandate. Technical
report, E. F. Codd and Associates, 1993.

[4] The OLAP Council.MD-API the OLAP Application Program Interface Version 5.0 Specification, September
1996.

[5] S. Geffner, D. Agrawal, and A. El Abbadi. The dynamic data cube. InProc. EDBT, 2000. To appear.

[6] S. Geffner, D. Agrawal, A. El Abbadi, and T. Smith. Relative prefix sums: An efficient approach for querying
dynamic OLAP data cubes. InProc. 15th ICDE, 1999.

[7] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh. Data
cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-totals.Data Mining and
Knowledge Discovery, pages 29–53, 1997.

[8] C. Ho, R. Agrawal, N. Megiddo, and R. Srikant. Range queries in OLAP data cubes. InProc. ACM SIGMOD,
1997.

40

On Sampling and Relational Operators

Surajit Chaudhuri Rajeev Motwani
Microsoft Research Stanford University

surajitc@microsoft.com rajeev@cs.stanford.edu

Abstract

A major bottleneck in implementing sampling as a primitive relational operation is the inefficiency of
sampling the output of a query. We highlight the primary difficulties, summarize the results of some recent
work in this area, and indicate directions for future work.

1 Introduction

Data warehouses based on relational databases are becoming popular. The investment in data warehouses is tar-
geted towards developing decision support applications that leverage the massive amount of data stored in data
warehouses for a variety of business applications. On Line Analytical Processing (OLAP) and data mining are
tools for analyzing large databases that are gaining popularity. Many of these tools serve as middleware or appli-
cation servers that use a SQL database system as the backend data warehouse. They communicate data retrieval
requests to the backend database through a relational (SQL) query. On a large database, the cost of executing such
ad-hoc queries against the relational backend can be expensive. Fortunately, many data mining applications and
statistical analysis techniques can use a sample of the data requested in the SQL query without compromising the
results of the analysis. Likewise, OLAP servers that answer queries involving aggregation (e.g., “find total sales
for all products in the NorthWest region between 1/1/98 and 1/15/98”) can significantly benefit from the ability
to present to the user an approximate answer computed from a sample of the result of the query posed to the rela-
tional database. It is well-known that for results of aggregation, sampling can be used accurately and efficiently.
However, it is important to recognize that whether for data mining, OLAP, or other applications,sampling must
be supported on the result of an arbitrary SQL query, not just on stored relations. For example, the preceding
example of the OLAP query uses a star join between three tables (date, product, and sales).

This paper is concerned with supporting random sampling as a primitive operation in relational databases.
In principle, this is easy — introduce into SQL an operationSAMPLE(R; f) which produces a uniform random
sampleS that is anf -fraction of a relationR. While producing a random sample from a relationR is not entirely
trivial, it is a well-studied problem and efficient strategies are available [15]. However, these techniques are not
effective if sampling needs to be applied to a relationR produced by a queryQ rather than to a base relation.
It seems grossly inefficient to evaluateQ, computing the entire relationR, only to throw away most of it when
applyingSAMPLE(R; f). It would be much more desirable and efficient topartially evaluateQ so as to generate
only the sample ofR.

Copyright 1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

41

For this purpose, it suffices to consider the case where we are given a query treeT with SAMPLE(R; f) only
at the root. In this setting, it seems plausible that tremendous gains in efficiency can be achieved by “pushing” the
sample operation down the tree towards the leaves, since then we would be feeding only a small (random) fraction
of the relations (stored as well as intermediate relations) into the query tree and thereby minimizing the cost of
query evaluation. To this end, we need to be able to “commute” the sample operation with standard relational
operations.

There has not been much past work on supporting sampling as an operation for the end-user of a database
system. While random sampling has been proposed and used in many different ways in databases [14, 15], the
main focus has been on the use of random sampling for the purposes of estimating query result size, aggregate
values, and parameters for query optimization [16, 13, 10, 11, 7, 6, 3].

2 Difficulty of Sampling and Possible Solutions

In this section we elucidate some of the main difficulties in efficiently implementing sampling in a relational
system and suggest some avenues for circumventing these difficulties.

2.1 Join

We focus primarily on developing a technique for commuting sampling with asingle join operation, since we
could apply this technique repeatedly to push down the sample operator from the root to the leaves of a join tree.
We establish that it is not possible to produce a sample of the result of even a single join from random samples
of the two relations participating in the join, and show how we can leverage database statistics to circumvent this
impossibility result.

Example 1: Suppose that we have the relations

R1(A;B) = f(a1; b0); (a2; b1); (a2; b2); (a2; b3); : : : ; (a2; bk)g;

R2(A;C) = f(a2; c0); (a1; c1); (a1; c2); (a1; c3); : : : ; (a1; ck)g:
That is,R1 is defined over the attributesA andB; amongst itsn1 = k + 1 tuples, one tuple has theA-valuea1
andk tuples have theA-valuea2, but all have distinctB-values. Similarly,R2 is defined over the attributesA
andC; amongst itsn2 = k + 1 tuples,k tuples have theA-valuea1 and one tuple has theA-valuea2, but all
have distinctC-values. Observe that their join overA, J = R1 ./ R2, is of sizen = 2k and hask tuples with
A-valuea1 andk tuples withA-valuea2.

Assume that we wish to choose a random sample. Consider a random sampleS � J . We expect that roughly
half of the tuples inS haveA-valuea1, and roughly half of the tuples inS haveA-valuea2.

Suppose we pick random samplesS1 � R1 andS2 � R2. It is quite unlikely thatS1 will contain the tuple
(a1; b0), or thatS2 will contain the tuple(a2; c0). Thus, given the samplesS1 andS2, it is impossible to generate
a random sample ofJ = R1 ./ R2 for any reasonable sampling fraction. Note that this conclusion holds even if
we allow (say)S2 to be all ofR2 but require thatS1 be apropersubset ofR1. In fact, in all these cases we would
expectS1 ./ S2 to be empty.

This suggests thatSAMPLE does not commute with join sinceSAMPLE(R1; f1) ./ SAMPLE(R2; f2) may not
even contain any non-trivial size subset ofJ , and so further computation or sampling from it cannot be used to ex-
tract a sample ofJ . We formalize this intuition as follows. Suppose we are given samplesS1 = SAMPLE(R1; f1)
andS2 = SAMPLE(R2; f2). Given onlyS1, S2, and any desired set of statistics forR1 andR2, but without di-
rect access to the tuples inR1 andR2, we are required to produce a sampleS = SAMPLE(R1 ./ R2; f) for some
value off > 0. The theorem below states the extremely negative result implicit in Example 1 — even when we

42

are givenarbitrarily large samplesfromR1 andR2, as well asarbitrarily detailed statistics, it is still not possible
to generate anynon-emptyrandom sample ofR1 ./ R2

Theorem 1: Suppose that at least one off1, f2 is strictly less than 1. Then, it is not possible to generate the
sampleS = SAMPLE(R1 ./ R2; f) from S1 andS2 for anyf > 0 whereS1 = SAMPLE(R1; f1) andS2 =
SAMPLE(R2; f2).

Despite this strong negative result, it is still possible to exploit the power of sampling. Our key observation
is that given some partial statistics (e.g., histograms) on one of the operand relations, we can use the statistics
to bias the sampling from the second relation in such a way that it becomes possible to produce a sample of the
join. We devise a variety of sampling schemes based on these observations, improving the state-of-the-art for join
sampling. In the context of a join tree, our work shows that it is possible to push down the sampling operation to
oneof the two operand relations. At the same time, our negative results above show that it is inherently difficult
to achieve greater efficiency by pushing sampling down tobothoperands of a join in a query tree.

For the rest of the discussion, we will need to use some notation. Assume that the two relationsR1 andR2

are of sizen1 andn2, respectively, and that we are interested in an equi-join with respect to an attributeA. We
denote the domain of the attributeA byD. For each valuev 2 D, letm1(v) andm2(v) be the number of distinct
tuples inR1 andR2, respectively, that contain valuev in attributeA.

Observe that the impossibility of commutingSAMPLE with join does not preclude the possibility of some-
how obtainingSAMPLE(R1 ./ R2; f) from non-uniform samplesof R1 andR2. To better understand this point,
consider the tuplet = (a1; b0) 2 R1 and its influence onR1 ./ R2. Whilem1(a1) = 1, the setJt(R2) has size
m2(a1) = k. Thus, even though a random sample ofR1 is unlikely to pick up the tuple withA-valuea1, half of
the tuples in the joinJ haveA-valuea1. This suggests that we sample a tuplet 2 R1 of join attribute valuev with
probability proportional tom2(v), in the hope that the resulting sample is more likely to reflect the structure ofJ .
This is the basic insight behind most of our strategies in [4]. As an example, consider the Frequency-Partition-
Sample strategy [4], based on the insight that the naive sampling strategy performs badly only when the average
frequency of attribute values is high enough to make the join size significantly larger than the size of the operand
relations. The idea is to partition the operands into two subrelations, one with the high-frequency values and the
other with the low-frequency values. For the low-frequency values, we can use the naive sampling strategy, but
for the high-frequency values we need to develop more refined approaches as this is precisely the set of values
for which computing the full join is expensive.

The preceding discussion suggests that we sample tuples fromR1 based on frequency statistics forR2. This
leads us to a natural classification of the problem and applicability of sampling techniques based on availability
of indexes and statistics on operand relations. We remark that the sampling strategy due to Olken et al [14, 15]
applies only to the case where indexes and statistics are available on both operands of the join. In contrast, our
hybrid sampling technique does not need a full index onR2 but merely some partial statistics (on the high fre-
quency values).

The preceding discussion was primarily concerned with the issue of sampling from a single join operation.
We now turn to the question of implementing sampling as a primitive relational operation in the context of a join
tree. Suppose we have a queryQ generating a join treeT with a sampling operation applied to its resultR. The
earlier negative results state that it is essentially impossible to push down the sampling operation to both operands
of a join operation, shedding some light on the difficulty of dealing with linear and arbitrary join trees. Consider
sampling fromQ = (R1 ./ R2 ./ R3) - we cannot just select a uniform random sample ofR1 ./ R2 but have to
pick a non-uniform sample whose distribution depends on the statistics ofR3. But then, what about pushing the
sampling further down the tree toR1? Now, we will have to sample fromR1 using statistics for bothR2 andR3.
In principle, this can be done (e.g., using multidimensional histograms onfR1; R2g), since the operand relations
are all base relations and their statistics can be precomputed. However, such requirements provide a high bar on
being able to exploit sampling “on-the-fly”, i.e., on ad-hoc queries.

43

Finally, consider the important special case where the query consists offoreign keyjoins, e.g.,R1 1 R2

whereR2 is the dimension (referenced) table. In such cases, each tuple fromR1 joins with at most one tuple in
R2. This allows us to uniformly sampleR1 to create a sample forR1 1 R2. Unfortunately, in most cases, such
queries would contain selection conditions onR2. As the next subsection shows, presence of selections limits
our ability to use sampling.

2.2 Select and Group By

Since most queries involve selection conditions, it is important to study the interaction of sampling with selection.
The main insight here is that if the selectivity of a query is low, then it dramatically and adversely impacts the
accuracy of sampling-based estimation. Consider a simple queryselect count(*) from lineitem. Suppose we wish
to use sampling to approximate the query result. Consider a sample where each tuple is included with probability
p (the sampling fraction). If the numbern of tuples in the table is large, then the expected number of tuples in the
sample (i.e.,np) is large and we know from Chernoff bounds [12] that the actual number of tuples in the sample
is very close to the expected value with very high probability. As a result, we can accurately estimate the size of
the table from the sample.

Suppose, however, we were faced with the following query:select count(*) from lineitem where city = “Palo
Alto” . Letns be the number of tuples that satisfy the selection condition in the query. Ifns is not large enough,
then the expected value of the number of tuples from the sample that satisfy the selection condition (i.e.,nsp) is
low and the variance is large compared to this expected value. In that case, we will incur a large error in query
estimation based on the number of sampled tuples passing the selection condition. This intuition is formalized in
the following theorem due to Chaudhuri, Datar, Motwani, and Narasayya [5] where we show that the relative error
for a query is proportional to the inverse square root of the selectivity of the conditions in the query. Therefore, we
need a significantly larger sample for queries with low selectivity. Earlier work has not satisfactorily addressed
this issue. Acharya et al [1] maintain samples of varying size and use different samples for different queries.
This requires estimating the selectivity of a query accurately. If we underestimate the selectivity, we will end
up using a bigger sample than required, thereby decreasing efficiency. On the other hand, if we overestimate
the selectivity, we will end up using a smaller sample and incurring a loss in accuracy. Likewise, the technique
adopted by Hellerstein et al [9] will fail to obtain good confidence bounds unless we have looked at a large part
of the relation. Thus, low selectivity is a serious problem that limits the use of sampling as a robust technique.

Although we have focussed exclusively on Selection, a careful reader will note that the effect ofGroup Byis
no different from that of selection since the effect of Group By is to create multiple selection queries that differ
by virtue of their qualifying values on the grouping attribute. Therefore, similar issues as has been studied for
Selection arises.

2.3 Select Distinct

We now turn to the problem of estimating the number of distinct values in a column of a table. Our objective
is to provide estimation for such aggregates without scanning the entire table. A natural idea is to use a random
sample of the data. Unfortunately, we [3] proved that large errors are unavoidable for estimates derived only
from uniform random samples unless the sample size is very close to the size of the table itself. Indeed, we have
generalized this result and proved a stronger negative result for the the most general possible class of estima-
tors that, instead of being restricted to merely a random sampling, are allowed to useany(possibly randomized)
strategy to select a sequence ofr values to examine in the the input table. Such estimators could even pick a se-
quence ofr tuplesadaptively, i.e., pick the next tuple to examine based on the values of the previously-examined
tuples. This explains the observation by Haas et al [8] that no known estimator behaves well on all data distri-
butions primarily because their performance is sensitive to the skew of the data. Indeed, our lower bound on the
error stems in part from the difficulty in distinguishing between low-skew and high-skew data. In fact, the proof

44

hinges on the inability to distinguish between two specific scenarios: one where there are few distinct values of
very high frequency, and another where there a few high-frequency values together with a large number of very
low-frequency values (thus having a large number of distinct values). The first scenario has low skew with few
distinct values and the second one has high skew with a large number of distinct values. The following theorem,
due to Charikar, Chaudhuri, Motwani, and Narasayya [2], states that any possible estimator must incur large error
on at least one of these two scenarios.

Theorem 2: Consider any (possibly adaptive and randomized) estimatorbD for the number of distinct valuesD
that examines at mostr rows in a table withn rows. Then, for any
 > e�r, there exists a choice of the input
data such that with probability at least
,

error(bD) �
s
n� r

2r
ln

1

:

Our error bounds seem to be close to the errors observed in real experiments, even though our results give
worst-case bounds and the data in the experiments may have had special structure that could have been used to
obtain better estimates. However, in [2], we were also able to provide a robust estimator that has an error bound
that matches the lower bound above.

2.4 Aggregation

So far we have restricted our focus to queries that count the number of tuples, e.g.,select count(*) From salestable.
However, in many cases, we are interested in other aggregating functions in addition tocount, e.g.,select sum(sales)
from salestable. For such aggregates, any skew present in the data may have a severe impact on use of sampling.
The following example is instructive.

Example 2: Suppose we have10; 000 tuples of which 99% have value 1 in the aggregate column, while the
remaining 1% of the tuples have value 1000. Consider using a uniform random sample of size 100 to estimate
the average value of the column over all tuples. It is quite likely that the sample would not include any tuple
of value 1000, leading to an estimate of 1 for the average value. On the other hand, if perchance two or more
tuples of value 1000 were to be included in the sample, then our estimate of the average value would be more than
20.98. In either case, the estimate would be far from the true value of the average which is 10.99. It is only in the
case where we get exactly one tuple of value 1000 in the sample that we would obtain a reasonable estimate of
the average value. But the latter event has probability 0.37, therefore with high probability we would get a large
error in the estimate.

As in the above example, a skewed database is characterized by the existence of certain tuples that are de-
viant from the rest with respect to their aggregate value. We refer to these tuples asoutliers. We observe that
we cannot afford to miss these outliers in the sample. It should be noted that the presence of these tuples in the
wrong proportion in the sample would also lead to large errors in the estimate of a query’s result. In Datar, Mot-
wani, and Narasayya [5], we show that the relative error is proportional to the ratioCMAX=CAV G, whereCMAX

andCAV G are the maximum and average values in the data set. This ratio increases with the skew in the data.
Not surprisingly, the approach to handle such skew is to identify tuples that are outliers [5]. The earlier work
of Acharya et al [1] does not address this issue. In the work of Hellerstein et al [9], they assume that the aggre-
gate attributes are not skewed and the experiments reported in their paper are over grades data where there is not
much variation. The confidence intervals provided with their estimate could be severely affected by the presence
of skew.

45

3 Practicality of Sampling

Random sampling is an attractive data-reduction operation that reduces the cost of executing complex ad-hoc
queries on large databases. But the preceding discussion shows that there are non-trivial barriers to implementing
sampling as a relational operator. While the techniques we reviewed are able to circumvent some of these barriers,
the goal of pushing sampling down to the leaf nodes of a complex query tree requires a substantial increase in the
sample size to keep the error within bounds. In effect, sampling the results of an ad-hoc query is an inherently
difficult and unsolved problem. Our work has demonstrated that auxiliary information such as histograms can
be leveraged to facilitate efficient sampling. It remains an interesting question to determine what other auxiliary
information may be employed for this purpose and more broadly for computing approximate answers to relational
queries.

References

[1] S. Acharya, P. Gibbons, V. Poosala, and S. Ramaswamy. Join Synopses for Approximate Query Answering. InProc.
ACM SIGMOD Conference,1999.

[2] M. Charikar, S. Chaudhuri, R. Motwani, and V. Narasayya. Towards Estimation Error Guarantees for Distinct Values.
Submitted for publication, 1999.

[3] S. Chaudhuri, R. Motwani, and V. Narasayya. Using Random Sampling for Histogram Construction. InProc. ACM
SIGMOD Conference,pages 436–447, 1998.

[4] S. Chaudhuri, R. Motwani, and V. Narasayya. On Random Sampling Over Joins. InProc. ACM SIGMOD Conference,
pages 263–274, 1999.

[5] S. Chaudhuri, M. Datar, R. Motwani, and V. Narasayya. Overcoming Limitations of Sampling for Aggregation
Queries. Submitted for publication, 1999.

[6] S. Ganguly, P.B. Gibbons, Y. Matias, and A. Silberschatz. Bifocal Sampling for Skew-Resistant Join Size Estimation.
In Proc. ACM SIGMOD Conference,pages 271–281, 1996.

[7] P.J. Haas, J.F. Naughton, and A.N. Swami. On the Relative Cost of Sampling for Join Selectivity Estimation. In
Proc. 13th ACM PODS,pages 14–24, 1994.

[8] P.J. Haas, J.F. Naughton, S. Seshadri, and L. Stokes. Sampling-based estimation of the number of distinct values of
an attribute. InProc. 21st VLDB,pages 311–322, 1995.

[9] J.M. Hellerstein, P.J. Haas, and H.J. Wang. Online Aggregation. InProc. ACM SIGMOD Conference,pages 171–182,
1997.

[10] W. Hou, G. Ozsoyoglu, and E. Dogdu. Error-Constrained COUNT Query Evaluation in Relational Databases. In
Proc. ACM SIGMOD Conference,pages 278–287, 1991.

[11] R.J. Lipton, J.F. Naughton, D.A. Schneider, and S. Seshadri. Efficient Sampling Strategies for Relational Database
Operations.Theoretical Computer Science116(1993): 195–226.

[12] R. Motwani and P. Raghavan.Randomized Algorithms.Cambridge University Press, 1995.

[13] J.F. Naughton and S. Seshadri. On Estimating the Size of Projections. InProc. Third International Conference on
Database Theory,pages 499–513, 1990.

[14] F. Olken and D. Rotem. Simple random sampling from relational databases. InProc. 12th VLDB,pages 160–169,
1986.

[15] F. Olken.Random Sampling from Databases.PhD Dissertation, Computer Science, University of California at Berke-
ley, 1993.

[16] G. Piatetsky-Shapiroand C. Connell. Accurate estimation of the numberof tuples satisfying a condition. InProc. ACM
SIGMOD Conference,pages 256–276, 1984.

46

CALL FOR
PARTICIPATION

The 16th International Conference on

Data Engineering
Holiday Day Inn on the Bay, San Diego, CA, USA

February 29 - March 3, 2000
Sponsored by

IEEE Computer Society TC on Data Engineering

IEEE

THE CONFERENCE

Data Engineering deals with the use of engineering techniques and
methodologies in the design, development and assessment of infor-
mation systems for different computing platforms and application en-
vironments. The 16th International Conference on Data Engineering
will continue the tradition of being a premier forum for presentation
of research results and advanced data-intensive applications and dis-
cussion of issues on data and knowledge engineering. The mission of
the conference is to share research solutions to problems of today’s
information society and to identify new issues and directions for fu-
ture research and development work.

TECHNICAL PROGRAM HIGHLIGHTS

Keynote Speakers
� Jim Gray, Senior Researcher, Microsoft Research, 1999 Turing

Award winner
� Dennis Tsichritzis, Chairman, Executive Board of GMD German

National Research Center for Information Technology

Research Paper and Poster Sessions
� Time series� Transactions and workflow� Query processing�
Mobile and embedded systems� Storage and process optimization�
System administration� Data warehousing� Heterogeneous queries
� New trends in data mining� Association rules and correlations�
Spatial and temporal data� High-dimensional data� Internet, perfor-
mance and systems management� New applications� OLAP, DW
and data mining

Industrial Sessions
� Fast and reliable database engines� OLAP and data warehousing
� Java, Internet and databases� XML and databases� Main memory
and small footprint databases

Panels
� Is E-business a new wave for database research� Data mining –
niche market or killer app?� Object/database standards soup� XML
+ databases = ?

CONFERENCE VENUE

The conference will be held at Holiday Inn San Diego On The
Bay, 1355 N. Harbor Dr., San Diego, CA 92101, USA. Phone: +1-
619-2323861. Toll-free: +1-800-8778920. Fax: +1-619-2324924.
E-mail: hi-sandiego@bristolhotels.com. Best location in ”America‘s
finest city” - that is where you will find Holiday Inn San Diego
On The Bay. The 600 room high-rise hotel lies at the foot of
downtown on the waterfront, close to everything there is to see and
do in beautiful San Diego. Contemporary accommodations and
exceptional service when you check into Holiday Inn San Diego On
The Bay, located harborside designed for both business travelers and
vacationers. Please visit the conference Web site for additional travel
information.

TUTORIAL PROGRAM

1. Web information retrieval , Monika Henzinger (Google Inc),
Feb 29, 2000

2. Mobile and wireless DB access, Panos K. Chrysanthis, Evaggelia
Pitoura (Univ. of Pittsburgh, Univ. of Ioannina), Feb 29, 2000

3. Data mining with decision trees, Johannes Gehrke (Cornell
Univ.), Feb 29, 2000

4. Directories: Managing Data for Networked Applications,
Divesh Srivastava (AT&T Research), March 2, 2000

5. Indexing High-Dimensional Spaces, Daniel Keim, Stefan Berch-
told (Univ. of Halle, stb gmbh), March 2, 2000

FURTHER INFORMATION

The advanced program and information regarding conference regis-
tration and accommodation are available at the ICDE’2000 Confer-
ence Web Site:http://research.microsoft.com/icde2000.
ICDE’2000 will be preceded by the 10th IEEE Workshop on Re-
search Issues in Data Engineering: Mobile Data Management, Febru-
ary 27-28, 2000. For details, please visit the workshop Web site:
http://www.cs.umbc.edu/ride2000.

ORGANIZING COMMITTEE

General Chair: P.-Å. (Paul) Larson, Microsoft, USA
Program Co-chairs: David Lomet, Microsoft, USA

Gerhard Weikum, Univ of Saarland, Germany
Program Vice-chairs:

Phil Bernstein, Microsoft, USA
Stavros Christodoulakis, Univ of Crete, Greece
Theo Haerder, Univ of Kaiserslautern, Germany
H. V. Jagadish, Univ of Michigan, USA
Hank Korth, Lucent - Bell Labs, USA
Donald Kossmann, Univ of Passau, Germany
Jeff Naughton, Univ of Wisconsin, USA
Beng Chin Ooi, Nat’l Univ of Singapore, Singapore
Arnie Rosenthal, Mitre, USA
Sunita Sarawagi, IIT Bombay, India
Hans Schek, ETH Zurich, Switzerland
Jeff Ullman, Stanford Univ, USA

Steering Committee Chair: Erich Neuhold, GMD-IPSI, Germany
Panel Program Chair: Mike Carey, IBM Almaden, USA
Tutorial Program Chair: Praveen Seshadri, Cornell Univ, USA
Industrial Program Co-Chairs: Anil Nori, Asera, Inc, USA

Pamela Drew, Boeing, USA
Demo/Exhibits Chair: Ling Liu, Georgia Tech, USA
Publicity Chair: Qiang Zhu, Univ of Michigan, USA
Financial Chair: Roger Barga, Microsoft, USA
Publication Chair: Vijay Kumar, U Missouri - Kansas City, USA
Local Arrangements: Yannis Papakonstantinou, UCSD, USA

Chaitan Baru, San Diego Supercomp. Center

IEEE Computer Society
1730 Massachusetts Ave, NW
Washington, D.C. 20036-1903

Non-profit Org.
U.S. Postage

PAID
Silver Spring, MD

Permit 1398

