
Bulletin of the Technical Committee on

Data
Engineering
December 1998 Vol. 21 No. 4 IEEE Computer Society

Letters
Letter from the Editor-in-Chief .David Lomet 1

Special Issue on Data Replication

Letter from the Special Issue Editors .Divyakant Agrawal and Amr El Abbadi 2
Quorum Systems in Replicated Databases: Science or Fiction? .. .Avishai Wool 3
The Case for Non-transparent Replication: Examples from Bayou.. .

. .Douglas B. Terry Karin Petersen Mike J. Spreitzer Marvin M. Theimer12
Issues in Web Content Replication .Michael Rabinovich 21
Consensus-Based Management of Distributed and Replicated Data .. .Michel Raynal 30
Replication Strategies for High Availability and Disaster RecoveryRobert Breton 38

Conference and Journal Notices
ICDE’2000 Data Engineering Conference .. 44
User Interfaces to Data Intensive Systems.back cover

Editorial Board

Editor-in-Chief
David B. Lomet
Microsoft Research
One Microsoft Way, Bldg. 9
Redmond WA 98052-6399
lomet@microsoft.com

Associate Editors

Amr El Abbadi
Dept. of Computer Science
University of California, Santa Barbara
Santa Barbara, CA 93106-5110

Surajit Chaudhuri
Microsoft Research
One Microsoft Way, Bldg. 9
Redmond WA 98052-6399

Donald Kossmann
Lehrstuhl für Dialogorientierte Systeme
Universität Passau
D-94030 Passau, Germany

Elke Rundensteiner
Computer Science Department
Worcester Polytechnic Institute
100 Institute Road
Worcester, MA 01609

The Bulletin of the Technical Committee on Data Engi-
neering is published quarterly and is distributed to all TC
members. Its scope includes the design, implementation,
modelling, theory and application of database systems and
their technology.

Letters, conference information, and news should be
sent to the Editor-in-Chief. Papers for each issue are so-
licited by and should be sent to the Associate Editor re-
sponsible for the issue.

Opinions expressed in contributions are those of the au-
thors and do not necessarily reflect the positions of the TC
on Data Engineering, the IEEE Computer Society, or the
authors’ organizations.

Membership in the TC on Data Engineering (http:
www. is open to all current members of the IEEE Com-
puter Society who are interested in database systems.

The web page for the Data Engineering Bulletin
is http://www.research.microsoft.com/research/db/debull.
The web page for the TC on Data Engineering is
http://www.ccs.neu.edu/groups/IEEE/tcde/index.html.

TC Executive Committee

Chair
Betty Salzberg
College of Computer Science
Northeastern University
Boston, MA 02115
salzberg@ccs.neu.edu

Vice-Chair
Erich J. Neuhold
Director, GMD-IPSI
Dolivostrasse 15
P.O. Box 10 43 26
6100 Darmstadt, Germany

Secretry/Treasurer
Paul Larson
Microsoft Research
One Microsoft Way, Bldg. 9
Redmond WA 98052-6399

SIGMOD Liason
Z.Meral Ozsoyoglu
Computer Eng. and Science Dept.
Case Western Reserve University
Cleveland, Ohio, 44106-7071

Geographic Co-ordinators

Masaru Kitsuregawa (Asia)
Institute of Industrial Science
The University of Tokyo
7-22-1 Roppongi Minato-ku
Tokyo 106, Japan

Ron Sacks-Davis (Australia)
CITRI
723 Swanston Street
Carlton, Victoria, Australia 3053

Svein-Olaf Hvasshovd (Europe)
ClustRa
Westermannsveita 2, N-7011
Trondheim, NORWAY

Distribution
IEEE Computer Society
1730 Massachusetts Avenue
Washington, D.C. 20036-1992
(202) 371-1013
twoods@computer.org

Letter from the Editor-in-Chief

Our New Financial Plan– For the Last Time

The TC on Data Engineering does not generate enough revenue to adequately fund the Bulletin. As TC Chair
Betty Salzberg explained it in the June issue,“we will no longer be automatically mailing out paper copies of
the Bulletin to all members of the TC. This will cut down on the expenses of the TC without, we hope, causing
undue inconvenience to our members, most of whom will get their copies of the Bulletin through the Bulletin web
page.” This information is included in the Bulletin, as hardcopy distribution is our only sure way to reach all TC
members. If you are unable to access the Bulletin via our web site and want to continue receiving it, youmust
contactTracy Woods, IEEE Computer Society, 1730 Massachusetts Ave., Washington, DC 20036now. This issue
is the last issue that will be sent in hardcopy to all members.

The Bulletin and the SIGMOD Anthology

As most of you undoubtedly know, ACM SIGMOD has undertaken to produce an Anthology CDRom containing
the complete set of SIGMOD and PODS conference proceedings. The Anthology is being edited by Michael Ley,
who has produced a preliminary version for the SIGMOD and DBLP web sites. These sites index all the articles
to be included in the anthology. The index plus full articles will appear on the Anthology CD.

The anthology is an initiative of SIGMOD chair Rick Snodgrass, who envisioned a portable, fully-searchable,
electronic repository of all relevant database conferences and publications. Currently, the Anthology is slated
to include the SIGMOD, PODS, and VLDB proceedings and SIGMOD Record. In addition, the TC on Data
Engineering was happy to agree to have the Bulletin (1993-1998) also included. So, even when you are not “on-
line”, there is no reason to be without full access to these issues of the Bulletin- and of course, to the database
material from the ACM and VLDB. I regard the Anthology project as an incredible plus for our community, and
applaud the efforts of Rick and Michael in making it a reality. It has been a real pleasure to participate in this
collaborative effort of ACM SIGMOD, VLDB and IEEE TCDE and to see the Bulletin included in the anthology.

You can get an early look at the anthology by visiting the SIGMOD web site for it at
http://www.acm.org/sigmod/dblp/db/anthology.html.

This Issue

Database replication has become an increasing exploited technology. It is an important technique for ensur-
ing high availability, and plays an important role in performance of distributed database systems. Commercial
database vendors have supported replication for a number of years. Sybase was one of the earliest in this market,
and the issue contains an article describing its approach. But replication is by no means a ”done deal”. It is still an
area of active research. These include exploiting replication on the web and using it to improve distributed sys-
tems algorithms. And then there is the perennial topic of managing replicas, of how rapidly to propagate changes
to replicated data, and how to sort out which replicas need to be read and/or written. I want to thank Amr El Ab-
badi and Divy Agrawal, who jointly edited the issue, and the authors for producing this interesting and timely
issue containing articles addressing these subjects.

David Lomet
Microsoft Research

1

Letter from the Special Issue Editors

Data replication is one of the oldest and most persistent topics of research in distributed databases. It holds the
promise of solving both problems of fault-tolerance and performance. By replicating the data on remote sites,
failures may occur and users may still be able to access data; alternatively, if a data item is replicated on a local
or nearby site, accesses to that copy are efficient and may involve very low overhead. To obtain these benefits,
however, complex and expensive synchronization mechanisms are often needed to maintain the consistency and
integrity of data. In fact it has often been argued that due to the synchronization overheads and the increased
possibility of deadlock, replication is impractical. Nevertheless, the appeal of replication persists and sometimes
even migrates to commercial industrial products. In this special issue various researchers and practitioners will
address the current state of replication and its promises.

The first paper, written by Avishai Wool, addresses head-on the promise of replication and asks the question:
Is it science or fiction? He explores this question in the context of quorum-based replication and discusses its
potential to solve the problems of managing replicated databases. Avishai explains why quorum systems have
not fulfilled their old promises, but at the same time argues why new technological advances and applications
have brought new requirements that can be addressed by quorums. In fact, he shows that quorum systems may
offer a way to scale up throughput in heavily loaded systems.

Many replicated storage systems have advocated relaxed consistency models to get improved availability,
scalability and performance. Doug Terry, Karin Petersen, Mike Spreitzer and Marvin Theimer discuss the case for
non-transparent replication using the Bayou system. The Bayou system developed at Xerox PARC is an example
of a replicated storage system that was designed to strike a balance between application control and complexity. In
this paper the authors discuss the tension between overburdening and underpowering applications. They discuss
two bayou applications, a calendar manager and a mail reader, and illustrate ways in which they utilize Bayou’s
features to manage their data in an application-specific manner.

The web is a natural context for replication with its increasing scalability and performance demands. Micha
Rabinovich examines various issues that arise in Web content replication, paying special attention to challenges
in dynamic replication. The paper starts with an overview of the current state of replication and caching on the
web. It then proceeds to offer valuable insights into open questions and research issues both from architectural
as well as from algorithmic points of view.

In the next paper, Michel Raynal addresses the problem of atomic commitment in distributed replicated databases.
He shows that solutions to the consensus problem can be very useful in developing solutions to the atomic com-
mitment problem. In particular, he develops a solid theoretical foundation for identifying the minimal assump-
tions a system must satisfy in order to develop non-blocking replica control protocols in spite of process crashes
and asynchrony.

Finally, Bob Breton presents the evolution of a replication system, Sybase’s Replication Server, and discusses
how it supports disaster recovery as well as support for high availability business requirements. In particular, he
discusses the need for replication as a means for disaster recovery in real applications that have very stringent
availability requirements. In the paper he also discusses a number of alternatives for high availability database
architectures and outlines the main risks and benefits of each approach.

Divyakant Agrawal and Amr El Abbadi
UC Santa Barbara

2

Quorum Systems in Replicated Databases:
Science or Fiction?

Avishai Wool
Bell Labs, Lucent Technologies,
Murray Hill, New Jersey, USA

E-mail: yash@acm.org
http://www.bell-labs.com/˜yash/

Abstract

A quorum system is a collection of subsets of servers, every two of which intersect. Quorum systems
have been suggested as a tool for concurrency control in replicated databases almost twenty years ago.
They promised to guarantee strict consistency and to provide high availability and fault-tolerance in the
face of server crashes and network partitions. Despite these promises, current commercial replicated
databases typically do not use quorum systems. Instead they use mechanisms which guarantee much
weaker consistency, if any. Moreover, the interest in quorum systems seems to be waning even in the
database research community.

This paper attempts to explain why quorum systems have not fulfilled their old promises, and at the
same time to argue why the current state of affairs may change. As technological advances bring new
capabilities, and new applications bring new requirements, the time may have come to review the validity
of some long standing criticisms of quorum systems.

Another theme of this paper is to argue that if quorum systems are to play a role in database research,
it is not likely to be for their claimed fault-tolerance capabilities. Rather, more attention should be given
to a somewhat overlooked feature of quorum systems: they allow load balancing among servers while
maintaining strict consistency. Thus quorum systems may offer a way to scale up the throughput of heavily
loaded servers.

1 Introduction

A quorum systemis a collection of subsets (quorums) of servers, every two of which intersect. During the late
70’s and early 80’s, quorum systems were proposed as a basic mechanism for concurrency control in replicated
databases [Tho79, Gif79, GB85, Mae85, Her86]. Informally, a quorum-based replication scheme works as fol-
lows. Data items are timestamped and written to some quorum of servers. In order to read a data item, the reader
accesses the copies held by a (possibly different) quorum of servers, and uses the value with the highest times-
tamp. The quorum intersection property guarantees that at least one server observes both operations, so the reader

Copyright 1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

3

in fact obtains the most up-to-date value. It is easy to see that this approach, coupled with standard two-phase
protocols, ensures that strict consistency can be maintained and that the transactions can be globally serialized.

Quorum systems were attractive to database researchers mainly because they offer a de-centralized approach
that tolerates failures. For instance, quorum-based databases are able to maintain their consistency even in the
presence of network partitions [DGS85] and server crashes (as quantified by their fault-tolerance [BG86]). How-
ever, the quorum approach’s promise of high availability was arguably its most desirable feature, and it certainly
generated a substantial amount of research (e.g., [BG87, ET89, PW95, AW98]). Availability is the probability
that the member servers of at least one quorum are functioning, assuming that the servers crash independently
with a fixed probability, and that the complete database is replicated at every server. Many quorum systems, such
as those of [KC91, Kum91, AE91, RST92, PW97b, PW97a, Baz96], exhibit very high availability, and moreover,
their availability tends to 1 very rapidly as the system scales up and more servers are added.

Despite these features, quorum systems are not in wide-spread use within commercial replicated databases.
As an example, we can consider the Oracle8 product [Ora97], which provides several modes of data replication.
Among these, the only mode that guarantees serializability, called Synchronized Data Propagation, uses a Read-
One-Write-All (ROWA) approach (cf. [HHB96]). Oracle’s product documentation in fact recommendsnot to
use this mode because “: : : it can function only when all sites in the system are concurrently available” [Ora97,
p. 30–26], i.e., it has very poor write-availability. All the other modes of replication supported by Oracle8 es-
sentially take a lazy replication, primary-copy approach, coupled with various heuristics which attempt to detect
and resolve some common conflict scenarios. It is well known that such schemes do not guarantee serializability,
and in fact serializability can only be guaranteed if the data placement graph is acyclic [CRR96].

There are some valid reasons why quorum systems have not yet been used in replicated databases. In the next
section we shall list the more common criticisms, and discuss whether they are still valid today. Then in Section 3
we contrast the situation in the database world with other domains where quorum systems have been successfully
deployed. In Section 4 we suggest that by shifting the focus from fault-tolerance to improved performance, we
can realize that the load-balancing capability of quorum systems has significant, yet overlooked, potential. We
also briefly touch upon some new applications that may benefit from a quorum-based replicated database, and
we conclude with Section 5.

2 Common Arguments Against Quorum Systems

2.1 The Local Read Paradigm

One of the most common arguments against quorum systems is that they require accessing one or more remote
copies for read operations, and that incurring a network delay for reads is prohibitively expensive. If this view is
adopted, we reach thelocal read paradigm:read operations are only allowed to access items that are stored on
the local machine. An immediate consequence is that variants of ROWA become the only allowable replication
schemes, and in particular quorum-based replication is excluded.

However, technological advances are working against this argument, since data networks are improving faster
than disks are. For instance, the bandwidth available on local area networks (LANs) has improved from around
10Mbps to around 1Gbps—a 100 fold increase—over the last decade, whereas disk transfer rates only improved
from about 1Mbps to 10Mbps over the same period. As for latency, network latency is mostly due to protocol
software which improves with CPU speed, whereas disk latency is limited by the mechanics of the seek time and
the disk rotation speed [GR93, pp. 53,59].

In the setting of LANs there should be little doubt that the local read paradigm is no longer justified. In fact,
a “local” read often includes a LAN access anyway, since the client software usually runs on a separate machine
rather than directly on the DB server machine. Moreover, LANs typically have hardware-based broadcast com-
munication primitives, so sending a read request (such as a high level SQL command) to a quorum of servers
can be achieved by a single message. The multiple reads all execute in parallel, thus the reader would not even

4

suffer a substantially longer delay. To some extent, remote reads over a LAN may be reasonable even for main
memory databases [GS92, JLR+94], or if the data is held in the cache; the incurred networking delay would be
more than that of a pure memory access, but still much less than a disk access.

Current wide area networks (WANs) are still somewhat slower than LANs (e.g., 155Mbps for an OC3 line),
and the latency in a WAN depends on the geographical distance and on the number of routers between the end-
points. Nevertheless the argument that networks improve faster than disks still holds. This is especially true in a
private network or a virtual private network (VPN), where quality of service can be guaranteed. So the validity
of the local read paradigm is becoming more questionable in the wide-area setting too.

There is some evidence that at least the database research community may be moving away from the local
read paradigm. Over the last two years we have seen the emergence of several replication schemes in the database
literature, schemes which do not adhere to the local read paradigm quite so strictly. For instance, the protocol of
[GHOS96] includes obtaining locks from remote machines even for read-only transactions, and the protocols
of [BK97] include obtaining read, write, and commit permissions from a replication-graph-manager machine.
These protocols have yet to be implemented in an actual database, but simulations of their performance over
WANs [ABKW98] show that the network is not a bottleneck for either protocol.

We can conclude that while the local read paradigm was a valid objection to quorum-based replication for
many years, its validity is diminishing with time. Remote reads should no longer be considered to be prohibitive
a priori. In many settings they are quite reasonable.

2.2 Reads vs. Writes

Another criticism of quorum systems is that when read operations are much more frequent than write operations,
which is a typical scenario, optimizing the read operations is more important than optimizing the writes [GR93].
In such scenarios the total amount of work incurred by a ROWA approach is claimed to be lower than that of a
quorum-based approach (where total work is measured by the total number of disk accesses or total number of
messages per operation).

Since this is a quantitative issue, we can perform the following back-of-the-envelope calculation. Assume a
system ofn machines, in which writes comprise anfw fraction of the submitted operations and reads comprise
the other1�fw fraction. Then on average a quorum-based approach with read quorums ofr machines and write
quorums ofw machines would incur a total work of

EQuorum = (1� fw)� r + fw � w (1)

per operation. In comparison, a ROWA approach, whether lazy or not, would incur a total work of

EROWA = (1� fw)� 1 + fw � n: (2)

Simple manipulations yield thatEQuorum < EROWA when

fw >
r � 1

n� w + r � 1
; (3)

and if we assume further that read and write quorums have equal size we end with the condition

fw >
r � 1

n� 1
: (4)

So we see that one approach is not universally better than the other. The choice depends not only on the frequency
of write operations, but also on the ratio of read quorum size to number of replicas.

For instance, using Maekawa’s quorum system [Mae85], ifn = 7 andr = w = 3, a quorum-based approach
incurs less work than ROWA when 33% of the operations are writes. Ifn = 13 andr = w = 4 then the crossover

5

point is 25% writes. In general,r = w � p
n for this system, so the frequency of writes needs only to exceed

1=
p
n for the quorum-based approach to be advantageous. Quorum systems with variable-sized quorums, such

as those of [AE91, PW97a], offer the possibility of outperforming ROWA for even lower write rates, by directing
reads to smaller sized quorums, which can be as small asr � log n for both systems.

Clearly, as the number of replicas grows, quorum systems become advantageous for lower write rates. But
even for reasonably small systems and moderate write rates, formula (4) shows that quorum-based systems may
outperform ROWA-based ones according to the total work measure.

2.3 A Reality Check on Availability

The promise of high availability has been an important part in the development of the theory of quorum systems.
However in practice this promise seems not to have materialized as predicted by the theory. The reason is that
several seemingly benign modeling assumptions are made in order to make the analysis of availability tractable.
Unfortunately, these assumptions clash with the reality of network environments in crucial ways. The standard
probabilistic assumptions which underly the definition of availability, as analyzed in [BG87, PW95] and others,
are:

1. Crashes are independent events.

2. The communication network is fully connected and never fails.

3. All the servers have the same crash probabilityp.

Under these assumptions, the availability of a quorum systemQ is the probability of the event that there exists
some quorumQ 2 Q for which all the serverss 2 Q are functioning.

Note that assumption 2 does not in itself conflict with the fact that quorum systems guarantee strict consis-
tency despite partitions [DGS85]. One may hope that assuming perfect communication, for the purpose of avail-
ability analysis, would not change the qualitative predictions of the model. As we shall see, though, this modeling
is problematic.

Assumption 3 (uniform crash probability) simplifies the analysis but is not really crucial. It was shown by
[SB94, AW98] that essentially the same properties hold with or without it, namely that the optimal availability
quorum system is defined by weighted voting, where the optimal weights depend on the individual crash proba-
bilities. If all the servers have the same crash probabilityp this voting system reduces to either a simple majority
voting, which has optimal availability whenp < 1=2 [BG87], or to a monarchy (single server) whenp > 1=2
[PW95].

Assumptions 1 and 2 are not so easily dealt with, as seen from the experiments of [AW96]. These experiments
measured crashes and network connectivity over a period of 6 months, on a system that consisted of 14 machines
on 3 LANs, split between two geographical locations 50 km apart, using Internet (UDP) communications. The
experiments measured application-level “crashes”: Whenever the measuring daemon on some machine could not
function, for whatever reason, a crash was counted.

These experiments show that within a LAN, it is quite reasonable to assume that the communication is perfect—
but the crash independence assumption is misleading. Crashes of machines on a LAN were found to bepositively
correlated, which is explained by a dependence on common file systems, domain name servers (DNS), adminis-
trative staff, power supply, and so forth. Such a positive crash correlation has a dramatic effect on the availability:
In the extreme case, if all the machines crash and revive at identical times, any quorum system will have precisely
the same availability as that of a single server. In fact [AW96] observe that the most highly available machine
on one of the LANs was down 1.25% of the time, yet using a majority-based quorum system with this machine
and 5 others on the same LAN only reduced the unavailability to 1.12%. This is a far smaller boost than that
predicted under the independent crashes assumption.

6

As for WANs, the reverse situation occurs. The experiments of [AW96] show that crash independence be-
tween geographically distant sites is a valid assumption—but that the perfect communication assumption is not.
The experimental system was partitioned into two or more disconnected components during 6.5% of the time.
Thus the portion of the Internet that took part in the study is better modeled by a tree of fully-connected clusters,
where each cluster corresponds to a LAN. In such a non-fully-connected network model, it is known that the
optimal-availability quorum system is completely contained in a single bi-connected component [INK95]. And
indeed the experiments of [AW96] showed that confining the quorum system to 6 machines on a single LAN gave
betteravailability than using all 14 machines and allowing quorums to span the two sites.

Thus the shortcomings of the crash independence and perfect communication assumptions form a double-
edged sword, which severely limits the predictive power of the standard availability model. On one hand, if all
the replicas are placed on a single LAN, crash correlations cancel most of the availability boosting that quorum
systems claim to have. On the other hand, if the replicas are placed in geographically distant sites, network par-
titions have an even more damaging effect.

There are several ways to avoid these problems, but they are typically unpleasant. Crash correlation on a
LAN can be decreased by duplicating and separating all the common resources, such as file systems, DNS, power
supply, etc., which is costly and hard to manage. Network partitions are very hard to control over the public
Internet, since currently nothing can be guaranteed in terms of quality of service. Therefore a high-availability
wide area system would probably need to operate its own private high-connectivity network—again an expensive
prospect. The latter approach is the one taken by some successful systems (see Section 3), but it is hardly within
every organization’s budget.

The conclusion we can draw here is somewhat sobering. If quorum systems are to play a significant role in
the future of replicated databases, it will not be because they offer high availability, but for some other reason. In
Section 4 we shall see one possible such reason, which is the capability of quorum systems to support extremely
high load, in a scalable way, without weakening the database’s consistency.

3 Some Success Stories

3.1 VAX Clusters and Financial Applications

Quorum systems are used deep within the file system of Digital’s OpenVMS operating system, as a basic com-
ponent of the VAX Cluster technology [VMS]. A VAX Cluster of machines will function as long as a quorum
(majority) of the machines are alive and able to communicate with each other. If the live machines in the cluster
do not constitute a connected quorum, they will freeze all activity and wait for a quorum to be re-established.
This assures that a cluster that has been partitioned will not allow access to the same data from multiple, discon-
nected machines, since at most one component of a partition (one that still has a quorum) can write to the data.
This guarantees proper access to files across the entire distributed file system.

The communication networks that are typically used in VAX Cluster systems are either LANs, or FDDI-based
metropolitan-wide networks, running the DECnet communication protocols. Fairly large cluster configurations,
comprising dozens of servers (the limit is 96 machines), are in actual use.

This technology is especially attractive to financial applications, for the following reasons: (i) strict data con-
sistency is crucial; (ii) high reliability is required against disasters such as the 1993 World Trade Center explosion
and the fire at the Credit Lyonnais bank [CL98]; and (iii) large financial institutions are able to bear the cost of
the dedicated communication networks.

Note that the VAX Cluster’s quorum system does not provide a quorum-based replicated databaseper se. The
system supports file-system semantics but does not provide transaction processing. And in fact the rdb database
product, which is now owned by Oracle but originated on Digital’s VMS systems [RDB98], uses the VAX Clus-
ter’s lock manager but does not use a quorum-based replication scheme.

7

3.2 Group Communication Systems

Another successful application of quorum systems is in the context of reliable group communication services such
as Isis [BvR94], Transis [ADKM92], Totem [AMM+95], Horus [vRBM96], and others. These are fault-tolerant
communication middleware subsystems, that provide guarantees on theorder of messages that are delivered to
servers in a group. For instance, such systems are able to guarantee that all the servers in a group receive all the
messages sent to the group in exactly the same order (the so called “total order” guarantee). Group communica-
tion services typically run over TCP/IP or UDP, both in local and wide area settings.

In order to tolerate network partitions while maintaining the ordering guarantees, such systems need to be
able to detect partitions. Once a partition is detected, messages continue to be delivered as usual only in one
network component, called the primary component, and other components are essentially blocked. The primary
component is defined in terms of a quorum system: at most one network component can contain a complete
quorum of servers.

Group communication systems have made their way from the laboratories of academia where they were in-
vented into the commercial world. Critical, real life applications such as the French air traffic control systems
and the Swiss stock exchange now use them [Bir98].

Nevertheless, these systems do not provide transaction processing semantics. Typically they do not even
make their internal quorum system structure visible through their application interface (API), e.g., they do not
provide a “multicast to a quorum” service. However it seems possible to architect a quorum-based replicated
database using reliable group communication as a component.

4 Quorum Systems After All?

4.1 Load Balancing Rather Than Availability

One feature of quorum systems, which has attracted some recent theoretical interest, deals with the notion of
load [NW98]. The crucial observation is that clients can read or write fromanyquorum, and there is a great deal
of freedom in choosing which accessstrategyto use. If the quorum selection strategy is properly randomized,
then each server only needs to handle a small fraction of the incoming operations, yet strict consistency is still
guaranteed.

Specifically, [NW98] shows that for many quorum systems the load on each server can be made as low as
1=
p
n of the operations in ann-server system. This implies that as the system scales up and more servers are

added, the load on each one of them actually decreases. This is in stark contrast to ROWA schemes, where the
load caused by reads can be balanced, but every server sees 100% of the write operations; and adding servers
favors reads even more, but makes matters worse for writes by increasing the write overhead.

The load balancing consideration brings us to the proposal to use quorum systems as performance-enhancing
mechanisms, rather than as availability-enhancing ones. One can envision a quorum-based replicated database,
that consists of many relatively weak servers connected by a high speed LAN or switch, that would provide: (i)
strict consistency (transactional serializability), (ii) shared data item ownership, write anywhere capabilities, and
(iii) and extremely high transaction rates.

This architecture may or may not be more highly available than a single server (depending on how indepen-
dent the failures of the servers can be). However the architecture would be highly scalable, and possibly cheaper
to build than a single monolithic high-end server. Applications that may benefit from such an architecture are
those that have an extremely high transaction rate, and a substantial fraction of writes (say 10–15% for a 50–60
server system, according to formula (4)).

8

4.2 New Applications for Quorum Systems

A different motivation for building quorum-based replicated databases comes from new, large scale, distributed
applications that have intrinsic survivability and security requirements. Such applications include, for instance,
public-key infrastructures (PKI), and national election systems (see [MR98b] for more details). These applica-
tions need to be able to tolerate malicious attacks on the servers; For instance, a vote-counting client needs to be
able to ignore bogus votes that are reported by a compromised voting server.

A natural modeling of malicious servers is that of Byzantine-faulty processes: In a Byzantine failure model,
a bounded number of servers is allowed to send arbitrary messages and not to adhere to the required protocol, yet
the protocol needs to remain correct nonetheless (cf. [Lyn96]). Note that in a Byzantine environment, no single
server can be trusted, so both the local read paradigm and the ROWA approach are unacceptable.

Quorum systems have recently been adapted to mask Byzantine failures in [MR98a], and studied further
in [MRW97]. These so called Byzantine quorum systems provide a mechanism for meeting security require-
ments, since they allow clients to mask out malicious or erroneous responses from servers, while still enjoying
all the properties of “normal” quorum systems, such as strict consistency and excellent load-balancing capabili-
ties.

The Phalanx system of [MR98b] is a software system that uses Byzantine quorum systems to address the
above-mentioned requirements. In its current state it only provides the semantics of shared variables, without
transactional serializability. However it seems possible, and useful, to extend this approach to full transactional
semantics.

5 Conclusions

Quorum systems have been proposed as a tool for concurrency control in replicated databases almost twenty years
ago. Our understanding of quorum system theory has developed into a substantial body of work, but they were
not implemented in actual databases for a variety of valid reasons.

We have seen that technological advances have undermined the validity of some of these reasons. We have
also seen that changing the focus from fault-tolerance to improved performance suggests that quorum systems
may have yet-untapped potential for certain types of applications, and we speculated about a possible architecture
that can capitalize on the load-balancing capability of quorum systems. Finally, we have seen the emergence of
new applications, that benefit from a quorum-based approach.

Thus we can conclude that, at the very least, further research is needed, to test whether the potential of quorum
systems can be brought to fruition in real systems. In particular it would be very interesting to see if transaction
processing can be combined with ideas and techniques from group communication services to build a quorum-
based replicated database.

Acknowledgments

I have had stimulating discussions about quorum systems, and their use in replicated databases (or lack thereof),
with many people. In particular I am indebted to Yuri Breitbart, Amr El-Abbadi, Hector Garcia-Molina, Hank
Korth, Dennis Shasha, Avi Silberschatz, and Michael Rabinovich, for sharing their views with me. I thank Alex
Linetski for giving me a brief under-the-hood introduction to VAX Clusters, and I am grateful to Dahlia Malkhi
for her comments on an early draft of this paper.

9

References

[ABKW98] T. Anderson, Y. Breitbart, H. F. Korth, and A. Wool. Replication, consistency, and practicality: Are these
mutually exclusive? InProc. ACM SIGMOD Inter. Conf. Management of Data, pages 484–495, Seattle, June
1998.

[ADKM92] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A communication subsystem for high availability. In
Proc. 22nd IEEE Symp. Fault-Tolerant Computing (FTCS), pages 76–84, 1992.

[AE91] D. Agrawal and A. El-Abbadi. An efficient and fault-tolerant solution for distributed mutual exclusion.ACM
Trans. Comp. Sys., 9(1):1–20, 1991.

[AMM +95] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, and P. Ciarfella. The Totem single-ring ordering
and membership protocol.ACM Trans. Comp. Sys., 13(4), 1995.

[AW96] Y. Amir and A. Wool. Evaluating quorum systems over the Internet. InProc. 26’th IEEE Symp. Fault-Tolerant
Computing (FTCS), pages 26–35, Sendai, Japan, 1996.

[AW98] Y. Amir and A. Wool. Optimal availability quorum systems: Theory and practice.Inform. Process. Lett.,
65:223–228, 1998.

[Baz96] R. A. Bazzi. Planar quorums. InProc. 10’th Inter. Workshop on Dist. Algorithms (WDAG), Bologna, Italy,
October 1996.

[BG86] D. Barbara and H. Garcia-Molina. The vulnerability of vote assignments.ACM Trans. Comp. Sys., 4(3):187–
213, 1986.

[BG87] D. Barbara and H. Garcia-Molina. The reliability of vote mechanisms.IEEE Trans. Comput., C-36:1197–
1208, October 1987.

[Bir98] K. P. Birman. Talk at Bell Labs, Murray Hill, NJ, October 1998.

[BK97] Y. Breitbart and H. F. Korth. Replication and consistency: Being lazy helps sometimes. InProc. 16th ACM
SIGACT-SIGMOD Symp. Princip. of Database Systems (PODS), pages 173–184, Tucson, Arizona, May 1997.

[BvR94] K. P. Birman and R. van Renesse.Reliable Distributed Computing with the Isis Toolkit. IEEE Computer
Society Press, Los Alamitos, CA, 1994.

[CL98] Credit Lyonnais: VMS clusters’ trial by fire, April 1998. Available from
http://www.success-stories.digital.com/css/cgi-bin/cssextusr/s=sublist?
Customer+Name=Credit+Lyonnais .

[CRR96] P. Chundi, D. J. Rosenkrantz, and S. S. Ravi. Deferred updates and data placement in distributed databases.
In Proc. 12th IEEE Int. Conf. Data Engineering, New Orleans, Louisiana, 1996.

[DGS85] S. B. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in partitioned networks.ACM Computing
Surveys, 17(3):341–370, 1985.

[ET89] A. El-Abbadi and S. Toueg. Maintaining availability in partitioned replicated databases.ACM Trans. Database
Sys., 14(2):264–290, June 1989.

[GB85] H. Garcia-Molina and D. Barbara. How to assign votes in a distributed system.J. ACM, 32(4):841–860, 1985.

[GHOS96] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication and a solution. InProc. ACM SIG-
MOD Inter. Conf. Management of Data, pages 173–182, Montreal, Quebec, 1996.

[Gif79] D. K. Gifford. Weighted voting for replicated data. InProc. 7th Symp. Oper. Sys. Princip., pages 150–159,
1979.

[GR93] J. Gray and A. Reuter.Transaction Processing: Concepts and Techniques. Morgan Kaufmann Publishers,
San Francisco, CA, 1993.

[GS92] H. Garcia-Molina and K. Salem. Main memory database systems: An overview.IEEE Trans. Knowledge and
Data Eng., 4(6):509–516, December 1992.

10

[Her86] M. Herlihy. A quorum-consensusreplication method for abstract data types.ACM Trans. Comp. Sys., 4(1):32–
53, February 1986.

[HHB96] A. A. Helal, A. A. Heddaya, and B. B. Bhargava.Replication Techniques in Distributed Systems. Kluwer
Academic Publishers, 1996.

[INK95] T. Ibaraki, H. Nagamochi, and T. Kameda. Optimal coteries for rings and related networks.Distributed Com-
puting, 8:191–201, 1995.

[JLR+94] H. V. Jagadish, D. Lieuwen, R. Rastogi, A. Silberschatz, and S. Sudarshan. Dali: A high performance main-
memory storage manager. InProc. 20th Inter. Conf. on Very Large Databases (VLDB), 1994.

[KC91] A. Kumar and S. Y. Cheung. A high availability
p
n hierarchical grid algorithm for replicated data.Inform.

Process. Lett., 40:311–316, 1991.

[Kum91] A. Kumar. Hierarchical quorum consensus: A new algorithm for managing replicated data.IEEE Trans.
Comput., 40(9):996–1004, 1991.

[Lyn96] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, San Francisco, CA, 1996.

[Mae85] M. Maekawa. A
p
n algorithm for mutual exclusion in decentralized systems.ACM Trans. Comp. Sys.,

3(2):145–159, 1985.

[MR98a] D. Malkhi and M. Reiter. Byzantine quorum systems.Distributed Computing, 11(4):203–213, 1998.

[MR98b] D. Malkhi and M. Reiter. Secure and scalable replication in Phalanx. InProc. 17th IEEE Symp. on Reliable
Distributed Systems, pages 51–58, October 1998.

[MRW97] D. Malkhi, M. Reiter, and A. Wool. The load and availability of Byzantine quorum systems. InProc. 16th
ACM Symp. Princip. of Distributed Computing (PODC), pages 249–257, August 1997.

[NW98] M. Naor and A. Wool. The load, capacity and availability of quorum systems.SIAM J. Computing, 27(2):423–
447, April 1998.

[Ora97] Oracle8 Server Concepts, release 8.0, chapter 30: Database replication, June 1997. Available fromhttp:
//www.oracle.com/support/documentation/oracle8/SCN80.pdf .

[PW95] D. Peleg and A. Wool. The availability of quorum systems.Information and Computation, 123(2):210–223,
1995.

[PW97a] D. Peleg and A. Wool. The availability of crumbling wall quorum systems.Discrete Applied Math., 74(1):69–
83, April 1997.

[PW97b] D. Peleg and A. Wool. Crumbling walls: A class of practical and efficient quorum systems.Distributed
Computing, 10(2):87–98, 1997.

[RDB98] Oracle rdb information, 1998. Available fromhttp://www.oracle.com/products/servers/rdb
/index.html .

[RST92] S. Rangarajan, S. Setia, and S. K. Tripathi. A fault-tolerant algorithm for replicated data management. In
Proc. 8th IEEE Int. Conf. Data Engineering, pages 230–237, 1992.

[SB94] M. Spasojevic and P. Berman. Voting as the optimal static pessimistic scheme for managing replicated data.
IEEE Trans. Parallel and Distributed Sys., 5(1):64–73, 1994.

[Tho79] R. H. Thomas. A majority consensus approach to concurrency control for multiple copy databases.ACM
Trans. Database Sys., 4(2):180–209, 1979.

[VMS] DIGITAL OpenVMS systems.http://www.openvms.digital.com/ .

[vRBM96] R. van Renesse, K. P. Birman, and S. Maffeis. Horus: A flexible group communication system.Communica-
tions of the ACM, 39(4):76–83, 1996.

11

The Case for Non-transparent Replication: Examples from Bayou

Douglas B. Terry Karin Petersen Mike J. Spreitzer Marvin M. Theimer
Computer Science Laboratory

Xerox Palo Alto Research Center
Palo Alto, CA 94304 USA

Abstract

Applications that rely on replicated data have different requirements for how their data is managed. For
example, some applications may require that updates propagate amongst replicas with tight time con-
straints, whereas other applications may be able to tolerate longer propagation delays. Some applica-
tions only require replicas to interoperate with a few centralized replicas for data synchronization pur-
poses, while other applications need communication between arbitrary replicas. Similarly, the type of
update conflicts caused by data replication varies amongst applications, and the mechanisms to resolve
them differ as well.

The challenge faced by designers of replicated systems is providing the right interface to support
cooperation between applications and their data managers. Application programmers do not want to be
overburdened by having to deal with issues like propagating updates to replicas and ensuring eventual
consistency, but at the same time they want the ability to set up appropriate replication schedules and
to control how update conflicts are detected and resolved. The Bayou system was designed to mitigate
this tension between overburdening and underempowering applications. This paper looks at two Bayou
applications, a calendar manager and a mail reader, and illustrates ways in which they utilize Bayou’s
features to manage their data in an application-specific manner.

1 Introduction

A major challenge faced by designers of general-purpose replicated storage systems is providing application de-
velopers with some control over the replication process without burdening them with aspects of replication that
are common to all applications. System models that present applications with ”one-copy equivalence” have been
proposed because of their simplicity for the application developer [1, 3]. In particular, the goal of ”replication
transparency” is to allow applications that are developed assuming a centralized file system or database to run un-
changed on top of a strongly-consistent replicated storage system. Unfortunately, replicated systems guarantee-
ing strong consistency require substantial mechanisms for concurrency control and multisite atomic transactions,
and hence are not suitable for all applications and all operating environments. To get improved levels of avail-
ability, scalability, and performance, especially in widely-distributed systems or those with imperfect network
connectivity, many replicated storage systems have relaxed their consistency models. For instance, many sys-
tems have adopted an ”access-anywhere” model in which applications can read and update any available replica

Copyright 1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

12

and updates propagate between replicas in a lazy manner [2, 4, 7, 8, 9, 10, 12, 15]. Such models are inherently
more difficult for application developers who must cope with varying degrees of consistency between replicas,
design schedules and patterns for update propagation, and manage conflicting updates. The harsh reality is that
applications must be involved in these difficult issues in order to maximize the benefits that they obtain from
replication. The Bayou system developed at Xerox PARC is an example of a replicated storage system that was
designed to strike a balance between application control and complexity.

This paper presents both the application-independent and application-tailorable features of Bayou along with
the rationale for the division of responsibility between an application and its data managers. Examples drawn
from a couple of Bayou applications are used throughout to illustrate how different applications utilize Bayou’s
features. The applications are a calendar manager and a mail reader. The Bayou Calendar Manager (BCM) stores
meetings and other events for individual, group, and meeting-room calendars. A user’s calendar may be repli-
cated in any number of places, such as on his office workstation and on a laptop so that he can access it while
travelling. Bayou’s mail reader, called BXMH, is based on the EXMH mail reader [20]. BXMH receives a user’s
incoming electronic mail messages, provides facilities for reading messages, and permits the user to permanently
store messages in various folders. The BXMH mail database managed by Bayou may be replicated on a number
of sites for increased availability or ease of access. Each of these two applications interact with the Bayou system
in different ways to manage their replicated data. They demonstrate the need for flexible application programmer
interfaces (APIs) to replicated storage systems.

2 Application-independent Features of Bayou

For most replicated storage systems, the basic replication paradigm and associated consistency model are com-
mon to all applications supported by the system. While it is conceivable that a replicated storage manager could
provide individual applications with a choice between strong and weak data consistency, this made little sense for
Bayou. Bayou was designed for an environment with intermittent and variable network connectivity. In such a
setting, mechanisms to support strong consistency would not be applicable. Therefore, Bayou’s update-anywhere
replication model and its reconciliation protocol, which guarantees eventual consistency, are central to the sys-
tems architecture. These fundamental design choices over which the application has little or no control are dis-
cussed in more detail in the following subsections. Additional application-independent mechanisms for replica
creation and retirement are also briefly described. Features that are within an application’s control, such as con-
flict management, are discussed in Section 3.

2.1 Update-anywhere replication model

Bayou manages, on behalf of its client applications, relational databases that can be fully replicated at any number
of sites. Each application generally has its own database(s). Application programs, also called ”clients”, can read
from and write to any single replica of a database. Once a replica accepts a write operation, this write is performed
locally and propagated to all other replicas via Bayou’s pair-wise reconciliation protocol discussed below. This
”update-anywhere” replication model, depicted in Figure 1, permits maximum availability since applications can
continue to operate even if some replicas are unavailable due to machine failures or network partitions. Thus, it
is particularly suitable for applications that operate in mobile computing environments or large internetworks.
Because each read and write operation involves a single interaction between a client and a replica, the update-
anywhere replication model is also easy to implement and provides good response times for operations.

This replication model was adopted for Bayou because of its flexibility in supporting a diversity of appli-
cations, usage patterns, and networking environments [6]. If replicas are intermittently connected, replicas are
allowed to arbitrarily diverge until reconciliation is possible. If replicas are few and well-connected, the update-
anywhere model is still a satisfactory choice since updates can propagate quickly under such circumstances and

13

Figure 1: Bayou’s update-anywhere replication model.

the replicas remain highly consistent. As described in section 3.1, applications can select reconciliation schedules
that best fit their requirements for how much replicas are allowed to diverge.

Consider the example of a user, Alice, managing her personal calendar using BCM. Alice might keep a replica
of her calendar on her office machine, one on her laptop, and also one on the office machine of her administrative
assistant, Bob, so that her assistant has quick access to her calendar. Alice and Bob’s office machines perform
reconciliation with each other on a frequent basis so that any updates made to the calendar by either of them are
seen by the other with little delay. However, when Alice is travelling, she may update the replica on her laptop
while the laptop is disconnected. Any new meetings added by Alice are not readily available to Bob (and vice
versa). From her remote destination, Alice occasionally connects to her (or Bob’s) office machine via a dial-up
modem to exchange recently added meetings, thereby updating their replicas of the shared calendar.

2.2 Reconciliation protocol and eventual consistency

Bayou’s reconciliation protocol is the means by which a pair of replicas exchange updates or ”writes” [16]. The
protocol is incremental so that only writes that are unknown to the receiving replica are transmitted during recon-
ciliation. It requires replicas to maintain an ordered log of the writes that they have accepted from an application
client or received from another replica via reconciliation. Pair-wise reconciliation can guarantee that each write
eventually propagates to each replica, perhaps by transmission through intermediate replicas, as long as there is
an eventual path between a replica that accepts a write and all other replicas. The theory of epidemics indicates
that, even if servers choose reconciliation partners randomly, writes will fully propagate with high probability [4].
Arbitrary, non-random, reconciliation schedules can be set up by applications if desired as discussed in section
3.1.

Bayou ensures ”eventual consistency” which means that all replicas eventually receive all writes (assum-
ing sufficient network connectivity and reasonable reconciliation schedules) and any two replicas that have re-
ceived the same set of writes have identical databases. In other words, if applications stopped issuing writes to
the database, all replicas would eventually converge to a mutually consistent state. Eventual consistency requires
replicas to apply writes to their databases in the same order. Bayou replicas initially order ”tentative” writes ac-
cording to their accept timestamps, and later reorder these writes as necessary based on a global commit order

14

assigned by a primary server [19].
Fortunately, the machinery for managing write-logs, propagating writes, ordering writes, committing writes,

rolling back writes, and applying writes to the database are completely handled by the Bayou database managers.
Applications simply issue read and write operations and observe the effects of eventual consistency. Applications
can optionally request additional session guarantees that affect the observed consistency [18].

2.3 Replica creation and retirement

Bayou permits the number and location of replicas for a database to vary over time. While the replica placement
policies are under the control of applications as discussed below in section 3.1, the mechanism for creating new
replicas and retiring old ones is application-independent. Bayou allows new replicas to be cloned from any exist-
ing replica. The data manager for the new replica contacts an existing replica to get the database schema, creates
a local database, and then performs reconciliation with an existing replica to load its database and write-log. In-
formation about the existence of the new replica then propagates to other replicas via the normal reconciliation
protocol. This is done by inserting a special ”creation write” for the new replica into the write-log. As this write
propagates via reconciliation, others replicas learn of the new replica’s existence [16].

Retirement of replicas is similar. A replica can unilaterally decide to retire by inserting a ”retirement write”
in its own write-log. The retiring replica can destroy itself after it performs reconciliation with another replica
who will then propagate knowledge of the retirement and of other writes that were accepted by the retired replica.

3 Application-tailorable Features of Bayou

In contrast to the mechanisms for update propagation and eventual consistency, policies and functionalities that
vary amongst Bayou applications include how they deal with update conflicts, where they place replicas, and
which replicas they access for individual operations. Those issues are discussed in this section. Examples taken
from the Bayou applications illustrate how different applications can tailor the Bayou system to meet their specific
needs.

3.1 Replica placement and reconciliation schedule

The choice of where to place replicas and when replicas should reconcile with each other is an important policy
that is under the control of Bayou applications and users. As described above, the mechanism for replica creation
is the same for all Bayou applications. However, the choice of the time at which a replica gets created and the
machine on which it resides is completely determined by users or system administrators. The only condition for
a replica to be successfully created is that one other replica be available over the network.

Similarly, since Bayou’s weak consistency replication model does not require updates to be immediately
propagated to each replica, users are afforded a large amount of flexibility in setting up reconciliation sched-
ules. Experience suggests that such schedules are generally dictated more by the user’s work habits than by the
needs of a particular application. For example, a user who works from home in the evening, may wish his of-
fice workstation to reconcile with his home machine at 5:00 pm each evening, but does not care about keeping
his home machine up-to-date during the day. Also, users and applications often know when are good times or
bad times to reconcile with another replica. For instance if the application is in the process of doing a number
of updates or refreshing its display, it may not want the database to change underneath it. As another example,
a travelling user may dial-in from a hotel room and want reconciliation with the office performed immediately
rather than waiting for the next scheduled time.

15

3.2 Replica selection

Bayou applications generally issue read and write requests without even being aware of which replicas they
are accessing. The Bayou client library, which implements the application programming interface (API) and is
loaded with the application code, chooses an appropriate replica on which to perform a read or write operation.
This choice is based on the availability of replicas, cost of accessing them, and application-chosen session guar-
antees. The Bayou client library automatically adapts to changing network conditions and replica availability.

Originally, Bayou provided no ability for an application to override the replica selections made by the client
library. That is, a Bayou application could not direct its operations to a particular replica. We presumed that most
applications, while concerned with the consistency of the data they read, do not wish to be concerned with the
specifics of which replicas to access. Moreover, we reasoned that applications do not have enough information
about the underlying network connectivity or communication costs to make reasonable decisions about replica
selection. What we failed to recognize initially is that users do, in fact, often know quite a bit about the network
characteristics as well as the capabilities and consistency of various replicas. For instance, Alice might prefer
to access the copy of her calendar that resides on her workstation rather than the one on her laptop, even if the
calendar client application is running on the laptop and both the workstation and laptop replicas are available.
Hence, users occasionally do want to provide hints about which replicas to access.

Also, there are situations in which an application may want control over replica selection. For instance, an
application that supports synchronous collaboration between a number of users, such as a shared drawing tool,
may want all these users to access the same replica so that they share the exact same database state. Replica-
tion may be desired by this application solely for fault-tolerance, that is, so that it can fail-over to a secondary
replica in case the primary fails. Thus, in the second implementation of the Bayou system, we added support for
application-controlled replica selection.

3.3 Conflict detection

An inherent feature of Bayou’s update-anywhere replication model is that concurrent, conflicting updates may
be made by users interacting with different replicas of a shared database. For instance, in the Bayou Calendar
Manager (BCM), Alice and Bob could schedule different meetings for Alice at the same time. Such conflicts
must be dealt with by each application in an application-specific manner.

The definition of what constitutes a conflict varies from application to application and potentially from user
to user. Traditionally, database managers and file systems have pessimistically treated any concurrent writes as
conflicting. However, experience with Bayou applications suggest that not all concurrent writes result in appli-
cation level conflicts. Moreover, writes to separate tuples, which are traditionally viewed as independent, may,
in fact, conflict according to the application. Consider BCM which stores each calendar entry or meeting as a
separate tuple in the database. Without help from the application, the storage system would detect conflicts as
operations that are concurrent at the granularity of either the whole database or individual tuples. If the former,
then any concurrently added meetings would be detected as conflicting; if the latter, then no meetings would ever
conflict since they involve updating different tuples. Neither of these cases reflect BCM’s semantic definition of
a conflict.

In BCM, two writes that add new meetings to a calendar or modify existing meetings conflict if their meetings
overlap in time and involve the same user(s) or conference room. This simple definition of conflicts is readily
supported by Bayou’s application-specific conflict detection mechanism. However, we discovered in practice
that it did not satisfy all BCM users; some users would prefer to allow overlapping meetings not to conflict and
have them scheduled on their personal calendar so they can decide later which meeting to actually attend.

BXMH has a much more complicated model of conflicting operations on a shared mailbox. While BCM
basically has a single type of conflict, BXMH has dozens of potential conflict scenarios. BXMH supports 13
operations on a mailbox: adding a new message, moving a message to a named folder, creating a new folder,

16

renaming a folder, deleting a message, and so on. Each of these operations can conflict with other operations in
various ways. Moreover, when designing this application, we discovered that potential users could not always
agree on which operations conflict under what conditions. The result is that BXMH, through its ”conflict pref-
erences menu”, allows its users to decide what types of concurrent operations should be considered conflicting.
Figure 2 shows one of the many conflict scenarios that appears on the BXMH conflict preferences menu. In this
example, the user is asked to decide whether moving a message from one folder to another conflicts with a con-
current operation that renamed the destination folder and, if so, how the conflict should be resolved.

Figure 2: Sample conflict scenario from BXMH’s conflict preferences menu.

Although BCM and BXMH have very different notions of conflicting operations, they both rely on the same
mechanism to detect their conflicts, namely Bayou’s dependency checks [19]. A dependency check accompanies
each write performed by an application. The dependency check is a way for the application issuing the write to
detect whether the write conflicts with other concurrent writes. Specifically, a dependency check is a query (or
set of queries) and a set of expected results. When the dependency query is run at some replica against its current
database and returns something other than the expected results, the replica has detected a conflict; in this case, the
replica resolves the conflict, as discussed below, rather than performing the given write. Observe that dependency
checks are often specific not only to the application but also to the particular write operation.

For example, if Alice adds a meeting to her calendar from 11 to noon on Friday, BCM creates a dependency
check for this write that queries the database for other calendar entries at this time and expects none. Bob might
concurrently add a conflicting meeting, say at 11:30 on Friday, because his replica has not yet received Alice’s
write. If Bob’s write is ordered before Alice’s, then the dependency check included in Alice’s write will fail.

3.4 Conflict resolution

Strategies for resolving detected conflicts also vary from application to application and user to user. In BCM, a
conflict involving two meetings is resolved by trying to reschedule one of the meetings. The meeting that was
added last according to Bayou’s write ordering is the one that is rescheduled. In BXMH, the resolution depends
on the type of conflict and on the user’s preferences. For example, a user might choose to resolve the conflict in
Figure 2 by moving the message to the renamed folder, by leaving the message in its original folder, by creating
a new folder for the message or by moving the message to some other existing folder.

Merge procedures in Bayou are the means by which applications resolve conflicts. Specifically, each Bayou
write operation actually consists of three components: a nominal update, a dependency check, and a merge pro-
cedure [19]. The nominal update indicates changes that should be made to the application database assuming that
no conflicting writes have been issued. The dependency check, as discussed above, detects conflicts involving
the write. The merge procedure is a piece of application code that travels with the write and is executed to resolve
any detected conflicts. The merge procedure associated with a write can query the executing replica’s database

17

and produces a new update to be performed instead of the nominal update. Since merge procedures are arbitrary
code, they can embody an unlimited set of application-specific policies for resolving conflicts.

An application is free to pass null dependency checks and merge procedures with each write, in which case
the writes issued by the application resemble normal database updates. Importantly, even in the application ig-
nores conflicts, its database is guaranteed to eventually converge to a consistent state at all replicas. Concurrent
updates may cause the application not to see some updates because they are overwritten, but eventual consistency
is preserved.

3.5 Reading tentative data

Bayou gives applications the choice of reading only committed data or data that may be in a tentative state. The
rationale was that some applications may only want to deal with data after it has been committed. Interestingly,
the Bayou applications that have been built to date never select the commit-only option when reading data. This
is because users always want to see updates that they have made, even if the update has not yet been committed.
Bayou indicates which data items an application reads are tentative and which are committed. How the appli-
cation deals with the information varies with the application. BCM uses this information to show tentatively
scheduled meetings in a different color than committed ones. The expectation is that a committed meeting is not
likely to change in time, at least not without the meeting organizer informing the participants explicitly, while
tentative meetings could get rescheduled due to conflicts. So it is important for the user to know which meetings
are tentative and which are not. BXMH, on the other hand, does not distinguish between tentative and committed
data when showing a folder’s content to the user. The user does not really care whether a particular message is
tentatively in a folder as long as the message is successfully displayed when the user clicks on it.

4 Related Work

Early weakly-consistent replicated systems, like Grapevine [2], were intimately tied to particular applications,
like electronic mail and name services. The issue of designing replicated storage systems that effectively sup-
port a number of diverse applications arose when replication was added to conventional file systems and database
management systems. Many of these systems started with the goal of replication transparency but gradually
ended up adding hooks for applications to give input to the replication process.

Replicated file systems like Coda [11] and Ficus [17] present applications with a traditional file system inter-
face but also allow them to install ”application-specific resolvers” to deal with conflicting file updates. Coda has
also recently added ”translucent caching” which hides some caching details from users and applications while
revealing others [5, 14].

In the database arena, Oracle 7 supports weakly consistent replication between a master and secondary repli-
cas or between multiple masters. It permits applications, when specifying their database schema, to select rules
for resolving concurrent updates to columns of a table; each ”column group” can have its own conflict resolution
method [15]. Applications can provide a custom resolution procedure or choose from a set of standard resolvers.

Lotus Notes, like Bayou, utilizes pair-wise reconciliation between replicas and allows its system administra-
tors to specify arbitrary replication schedules [13]. Notes also permits users and applications to manually invoke
reconciliation between two replicas. It detects conflicting updates to a document using timestamps, but has no
support for application-specific conflict resolution; alternative versions can be maintained for documents that are
concurrently updated.

Bayou, since it was not concerned about backwards compatibility or supporting existing applications, could
design a new API that permits more direct application control over various aspects of replication and consistency
management. Bayou’s conflict resolution mechanism, based on per-write merge procedures, is more flexible than
that of other systems, as is its support for application-specific conflict detection.

18

5 Conclusions

Designing an application programming interface (API) for replicated data is difficult since one must balance the
desire for simplicity against the amount of control afforded the application. Simplicity argues for placing com-
mon functionality in the replicated storage system, for presenting a storage model that is as close as possible to
that of a non-replicated system, and for minimizing aspects of the underlying replication state that are exposed
to the application. However, to obtain the maximum benefits from replication, an application needs methods for
cooperating with the replicated storage system in the management of the application’s data. Permitting such co-
operation without requiring the application to assume unnecessary responsibility for the replication process is the
key challenge.

The development of Bayou and its applications has allowed us to explore these issues of interaction between
applications and replicated data managers. In Bayou, data managers take full responsibility for propagating and
ordering updates and ensuring that replicas converge to a consistent state, while applications may control the de-
tection and resolution of update conflicts, create and destroy replicas at convenient times, and set up reconciliation
schedules.

Experience building a number of Bayou applications has confirmed the belief that applications need cus-
tomized control over the replication process. The two applications used as examples in this paper, a calendar
manager and a mail reader, have very different policies for detecting and resolving update conflicts. Addition-
ally, they often want different reconciliation schedules. Interestingly, these choices vary not only between ap-
plications but also among users of the same application. We conclude that ”replication transparency”, while a
laudable goal for supporting legacy applications, is not appropriate for a replicated storage system intended to
support a number of applications in diverse networking environments.

6 Acknowledgments

We are grateful for the contributions of our colleagues and interns who have aided in the design and implementa-
tion of Bayou and its applications including: Atul Adya, Surendar Chandra, Alan Demers, Keith Edwards, Carl
Hauser, Anthony LaMarca, Beth Mynatt, Eric Tilton, Brent Welch, and Xinhua Zhao.

7 References

References

[1] P. A. Bernstein and N. Goodman. An algorithm for concurrency control and recovery in replicated distributed
databases. ACM Transactions on Database Systems 9(4):596-615, December 1984.

[2] A. Birrell, R. Levin, R. M. Needham, and M. D. Schroeder. Grapevine: An exercise in distributed computing.
Communications of the ACM 25(4):260-274, April 1982.

[3] S. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in a partitioned network: A survey. ACM Com-
puting Surveys 17(3):341-370, September 1985.

[4] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart, and D. Terry.
Epidemic algorithms for replicated database maintenance. Proceedings Sixth Symposium on Principles of
Distributed Computing, Vancouver, B.C., Canada, August 1987, pages 1-12.

[5] M. R. Ebling. Translucent cache management for mobile computing. Carnegie Mellon University technical
report CMU-CS-98-116, March 1998.

19

[6] W. K. Edwards, E. D. Mynatt, K. Petersen, M. J. Spreitzer, D. B. Terry, and M. M. Theimer. Designing and
Implementing Asynchronous Collaborative Applications with Bayou. Proceedings User Interface Systems
and Technology, Banff, Canada, October 1997, pages 119-128.

[7] R. A. Golding, A weak-consistency architecture for distributed information services, Computing Systems,
5(4):379-405, Fall 1992.

[8] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication and a solution. Proceedings 1996
ACM SIGMOD Conference, Montreal, Canada, June 1996, pages 173-182.

[9] R. G. Guy, J.S. Heidemann, W. Mak, T.W. Page, Jr., G.J. Popek, and D. Rothmeier. Implementation of the
Ficus replicated file system. Proceedings Summer USENIX Conference, June 1990, pages 63-71.

[10] L. Kalwell Jr., S. Beckhardt, T. Halvorsen, R. Ozzie, and I. Greif. Replicated document management in a
group communication system. In Groupware: Software for Computer-Supported Cooperative Work, edited
by D. Marca and G. Bock, IEEE Computer Society Press, 1992, pages 226-235.

[11] P. Kumar and M. Satyanarayanan. Supporting application-specific resolution in an optimistically replicated
file system. Proceedings IEEE Workshop on Workstation Operating Systems, Napa, California, October
1993, pages 66-70.

[12] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing high availability using lazy replication. ACM
Transactions on Computer Systems 10(4):360-391, November 1992.

[13] R. Larson-Hughes and H. J. Skalle. Lotus Notes Application Development. Prentice Hall, 1995.

[14] L. B. Mummert, M. R. Ebling, and M. Satyanarayanan. Exploiting weak connectivity for mobile file access.
Proceedings Fifteenth ACM Symposium on Operating Systems Principles, Copper Mountain, Colorado, De-
cember 1995, pages 143-155.

[15] Oracle Corporation. Oracle7 Server Distributed Systems: Replicated Data, Release 7.1. Part No. A21903-2,
1995.

[16] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J. Demers. Flexible Update Propagation
for Weakly Consistent Replication. Proceedings 16th ACM Symposium on Operating Systems Principles,
Saint-Malo, France, October 1997, pages 288-301.

[17] P. Reiher, J. Heidemann, D. Ratner, G. Skinner, and G. Popek. Resolving file conflicts in the Ficus file sys-
tem. Proceedings Summer USENIX Conference, June 1994, pages 183-195.

[18] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. M. Theimer and B. B. Welch. Session guarantees
for weakly consistent replicated data. Proceedings Third International Conference on Parallel and Distributed
Information Systems, Austin, Texas, September 1994, pages 140-149.

[19] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer, and C. H. Hauser. Managing update
conflicts in Bayou, a weakly connected replicated storage system. Proceedings Fifteenth ACM Symposium
on Operating Systems Principles, Copper Mountain, Colorado, December 1995, pages 172-183.

[20] B. B. Welch. Customization and flexibility in the exmh mail user interface. Proceedings Tcl/Tk Workshop,
Toronto, Canada, 1995, pages 261-268.

20

Issues in Web Content Replication

Michael Rabinovich
AT&T Labs

180 Park Avenue
Florham Park, NJ 07932
misha@research.att.com

Abstract

Web content replication began as explicit manual mirroring of Web sites. It has since evolved into user-
transparent request distribution among a static set of mirrors. The next step (especially important for
large-scale Web hosting service providers) is dynamic content replication, where object replicas are cre-
ated, deleted, or migrated among Web hosts in response to changing usage patterns. This paper examines
issues that arise in Web content replication, paying special attention to challenges in dynamic replication.

1 Introduction

As commercial interest to the Internet continues to grow, the issues of scalability and performance become in-
creasingly important. According to UUNET, the largest Internet Service Provider (ISP), its network traffic has
been doubling every 100 days [12]. In fact, we are on the verge of another qualitative jump in Internet load levels,
due to the upcoming replacement of slow modem lines, which act as floodgates limiting user access to the Inter-
net, with much faster alternatives like ISDN lines and cable modems. It is unlikely that the brute-force approach
of adding ever increasing network and server capacities would solve the Web scalability problem in a foreseeable
future. Consequently, caching and replication, being the primary tools that address these issues, are fast becom-
ing a focus of attention in both industrial and academic research communities. This paper examines issues in
replication on the Internet and outlines research directions that are both interesting and practically important.

One can distinguish two main environments where replication can be used. One is a stand-alone replicated
Web site; the other is a platform for a large-scale hosting service that hosts Web objects from third-party infor-
mation providers. In the limited-scale stand-alone environment, a brute-force worst case resource allocation can
be feasible. Manual monitoring of demand and decisions on the number and placement of replicas is feasible as
well. Thus, a stand-alone Web site can often use static replication (ormirroring in the Internet parlance).

In the hosting service environment, the waste of the worst-case design would be multiplied by potentially
millions of hosted Web sites; the decision space for replica placement could also become unmanageable. Thus,
dynamic automated replication is needed. According to Probe Research [14], the market for hosting services
will reach $2.5 billion by 2001. This gives an extra imperative to develop appropriate technologies for automatic
dynamic replication of Web objects.

Copyright 1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

21

In general, there are two fundamental questions any replicated system must deal with. One is assigning re-
quests to replicas. The other is deciding on the number and placement of replicas for all objects. These issues
are often studied in isolation, as a server selection problem and a file allocation problem. However, they strongly
influence one another, and in a system with dynamic replication must be studied together.

2 Caching vs. Replication

Being an immature field, the Web has created many terms to denote similar things. In particular, there is some
confusion between caching and replication. To develop an intuition for the difference between the two, I propose
the following distinction.

Caching is storing an object at a place that sees the object anyway in the course of request processing. Exam-
ples include browser cache, proxy cache, server main memory cache. Replication is storing an object at a place
that would not otherwise see the object. Web site mirroring provides an example of replication.

Alternatively, one can say that the difference between a cache and a replica is that a cache routinely sees both
hit and miss requests, while a replica normally sees only hits (except when a request arrives for an object that has
been deleted). In other words, requests flow to the cache regardless of the cache contents, while requests arrive
at a replicated server only if that server is believed to have a replica of the requested object.1

While useful and necessary, caching itself cannot solve the scalability problem of the Web. Indeed, many
objects are not cacheable but replicable. These include dynamic objects with read-only access and personalized
objects (“cookied” requests). In addition, many objects that are updated as a result of accesses are still replicable
because updates commute. A typical example is provided by so called hit metering, where an object maintains a
counter of times it has been accessed.

Another advantage of replication is that it is under full control of the service provider. Thus, issues like copy-
right enforcement, hit metering, data consistency are much easier. Reluctance to deal with these issues leads
sometimes to “cache busting” by content providers, who use various available mechanisms to prevent caching
of their pages. Finally, replicated servers are free to use proprietary protocols that would be more efficient for
moving object replicas between servers or maintaining them consistent, while caches are confined to standards.

3 Mechanisms for Web Request Redirection

Transparent replication entails redirecting a client’s request for a logical object to one of the physical object repli-
cas. To be grounded in reality, any proposal for replication on the Web, must explain the assumed mechanism for
such redirection. Understanding this issue lets one distinguish between approaches that are deployable in practice
from more speculative research ideas (this is not to say that the latter are not valuable).

Accessing a Web resource, e.g.,www.foo.com/home.html , involve the following main steps.

1. The client sends the domain name of the Web site (www.foo.com) to its local domain nameresolver. The
resolver obtains the corresponding IP address by contacting a well-known root of the domain name server
(DNS) hierarchy and ultimately querying foo’s DNS server. The resolver then returns this IP address to
the client.

2. The client sends the request forhome.html to the received IP address. This request follows a router path
on the Internet until it arrives at the Web server, which sends back the requested page.

Let us consider points on the request processing path where the request can be transparently redirected to one
of several replicas of the object, and the tradeoffs involved. (We will not consider non-transparent replication
where users are asked to choose among multiple URLs of the object.)

1Note that replication in the above sense is often called “push caching” or active caching. I find these terms confusing and will not
use them here.

22

3.1 Client Multiplexing

In this approach, the client (Web browser or a proxy server) obtains a set of physical replicas and chooses the one
to send its request to. Three main mechanisms fall into this category.

In the first approach, the DNS server of the service provider returns the IP addresses of servers holding a
replica of the object. The client’s DNS resolver chooses a server among these. To decide, the resolver may issue
probes to the servers and choose based on response times to these probes, or it may collect reports from the the
client on performance of passed accesses to these servers. This approach is used by Bhattacharjee et al [5] and
by Beck and Moore [4]. Its advantage is that no extra communication is added to the critical path of request
processing. There are also several shortcomings. First, the approach relies on clients using a customized DNS
resolver. If this resolver relies on client performance reports, then the client (i.e., browser or proxy) software must
be modified as well. Second, the DNS infrastructure relies heavily on DNS response caching to cope with its load.
Therefore, replica sets cannot be changed frequently without the danger of resolvers using stale replica sets. At
the same time, reducing the caching time may just move the scalability bottleneck to the DNS infrastructure,
provided enough clients adopt the approach. Thus, this approach is most appropriate for static replication.

The second approach relies on Java applets to perform replica selection on the client [21]. The URL of an
object actually points to a Java applet, which embeds the knowledge about the current replica set and the proce-
dure for replica selection. This approach requires no changes to clients. However, unlike the previous approach,
it involves an extra TCP communication to download the applet.

The third approach, proposed by Baentsch et al [3], propagates information about replica sets in HTTP head-
ers. It requires changes to both Web servers and clients (proxy servers in this case) to process extra headers.
Clients must also be modified to implement replica selection.

3.2 IP Multiplexing

A plethora of commercial products offers multiplexing routers. A now-outdated survey can be found at [9]. In
this approach, a special multiplexing router (or a multiplexor) is placed in front of a server farm. The domain
name of the Web site is mapped to the IP address of this router, so all clients send their packets to it. When the
first packet from a client arrives, the multiplexor selects a server in the farm and forwards the packet (and all
subsequent packets in the same session) to this server. The multiplexor also intercepts the response packets and
modifies their headers to contain its IP address rather than that of the server. The multiplexor maintains asessions
database, which records a server chosen for each active communication session. The sessions database is needed
to ensure that, once a server is chosen for servicing a request, all packets from this client in this communication
session go the same server.

This approach uses standard clients and DNS and Web servers. However, by having a focal communication
point, it does not scale geographically. Thus, it is mostly used for load sharing in a server farm on a local-area
network.

An interesting twist on this approach is provided by IBM Network Dispatcher [11]. Its multiplexor selects
servers as before. But servers respond to clients directly, bypassing the multiplexor and using the multiplexor’s
IP address as the sender address. Since most of the data flows from servers to clients, this provides better geo-
graphical scalability, especially from the bandwidth consumption perspective. The latency gain is limited by the
need for client acknowledgements to travel via the multiplexor.

3.3 DNS Indirection

Several domain name server implementations (e.g., the one used in CISCO Distributed Director [6]) allow the
Web site’s DNS server to map a host domain name to a set of IP addresses and choose one of them for every
client query, based on such factors as the query origin and the load of server replicas. The difference with DNS-
based client multiplexing is that choosing a replica occurs at the Web site, not at the client’s DNS resolver. This

23

approach can scale well geographically. Unfortunately, DNS response caching by clients complicates changing
replica sets and controlling request distribution among replicas. At the same time, reducing the lifetime of cached
DNS responses may shift the performance bottleneck to the DNS infrastructure.

In general, DNS system was designed for mostly an append-only database existing mappings between a host
name and an IP address rarely ever changes. In dynamic replication schemes, however, an existing mapping
changes with every change in the set of replicas for a given object.

3.4 HTTP Redirection

HTTP protocols allows a Web server to respond to a client request with a special message that tells the client
to resubmit its request to another server. This mechanism can be used to build a special Web server which ac-
cepts client requests, chooses replicas for them and redirects clients to these replicas. Commercially, CISCO
Distributed Director [6] and WindDance Web Challenger [19] implement this functionality.

An advantage of HTTP-level redirection is that replication can be managed at fine granularity, down to in-
dividual Web pages, whereas other mechanisms postulate the entire Web site as the granule. A disadvantage is
that this mechanism is quite heavy-weight. Not only does it introduce an extra message round-trip into request
processing, but also this round-trip is done over HTTP, which uses the expensive TCP protocol as the transport
layer.

3.5 Anycast

In the next generation of the Internet routing protocol (IPv6), ananycastservice [13] will be supported. Without
getting into the details of the mechanism, this service assumes that the same IP address is assigned to a set of
hosts, and each IP router has in its routing table a path to the host that is the closest to this router. Thus, different
IP routers have paths to different hosts with the same IP address.

There is virtually no overhead for request indirection with anycast, since packets travel along router paths
anyway. However, it assumes very static replica sets (since a change in the replica set would take long time
to reflect in router tables throughout the Internet) and a rigid request distribution (because all requests from a
given client normally go to the same host, chosen based on the network proximity). Advances in research on
active networks[17], where applications can inject ad hoc programs into network routers, may alleviate the last
limitation.

4 Research Issues - Architecture

We have seen that most existing architectures for request indirection lack the flexibility needed for dynamic repli-
cation. HTTP-based redirection might be suitable, but seems too heavy-weight for most cases. Thus, supporting
dynamic replication requires a special highly updateable name service. Such aWeb name servicewould main-
tain amapping databasethat records logical object names and the names of their corresponding physical replicas,
perhaps along with some prior replica usage or performance statistics. The Web name service would use this in-
formation to resolve requests for logical objects into requests to object replicas.

An architecture of such service is an open issue. There are a variety of questions to be resolved. The first
question is whether the intended use is to be an Internet-wide service or specific to particular sites or hosting
platforms. A general Internet-wide name service could be a logical outgrowth of the Uniform Resource Name
(URN) proposal whose goals included adding location independence to the Web naming scheme [10]. Unfortu-
nately, the URN effort was too ambitious for any consensus to emerge, and it has not caught up so far. Reviving
a slimmed-down URN effort, that would concentrate only on location management, would be beneficial for the
Web. A name service for an individual Web site would have very different architecture than a name service for

24

a hosting platform, due to the differences in scale and perspective (e.g., backbone traffic reduction is a major
concern for a hosting platform but is of peripheral interest to a Web site).

To be a little more specific, let us consider a hosting service provided by an Internet Service Provider (ISP).
The main components of such a system are Web hosting servers (hosts for short), the backbone, and gateway
routers through which the platform communicates with the rest of the Internet and with the subscribers of the ISP.
Since gateway routers see all client requests anyway, they are a convenient place to redirect requests to various
hosts that currently have a replica of requested objects. Redirection at these points could be achieved by co-
locating Web name servers on the some LAN with the gateway routers. Requests could be diverted to these
name servers by resolving the DNS name of any hosted Web site to the IP address of the name server that is the
closest to the requester. Alternatively, it could be done by anycast when available. Note that we cannot rely on
the gateway routers themselves to divert requests to their local Web name servers, since there is no guarantee that
all packets comprising the request will come to the same gateway router.

Many important issues need be resolved within this framework. Since we have a replica of the name server
co-located with every gateway router, the number of name server replicas may be high. However, the frequency
of updates to the name server database limits the number of replicas, since updating a large number of replicas
is impractical. In fact, some request distribution algorithms (e.g., round-robin) rely on prior replica usage infor-
mation, which they record in the mapping database and update on every access. This would make name server
replication even more problematic. A possible approach to resolving this dilemma is outlined in [16].

Another important decision is to choose betweeniterativeandrecursiverequest processing. A name server
can either return the physical replica ID to the client and let the client access the replica directly, or it can obtain
and forward the document to the client. The first alternative (which we call iterative, in analogy with the DNS
terminology), reduces the load on the name server and allows clients to cache name resolutions for future use. The
second approach, called recursive, hides the identity (and even existence) of hosts from the clients and eliminates
an extra message exchange with the client.

One more area of interest is caching within this architecture. In the iterative request processing approach,
clients might cache name resolutions for future use. What should be the policies for caching name resolutions?
How to enforce these policies? What is the influence of such caching on request distribution and replica place-
ment decisions? Also, one could further reduce backbone traffic by caching especially hot documents at the name
servers, at the expense of increasing their load. What are the right policies in this respect?

5 Research Issues - Algorithms

As already mentioned, every replicated system must deal with two fundamental issues - distributing requests to
object replicas and deciding on the number and placement of replicas.

5.1 Request Distribution

We already discussed architectural issues in supporting request distribution in Section 4. Let us now consider
algorithms these architectures might run. One can distinguish two main classes of algorithms for request dis-
tribution - feedback and non-feedback algorithms [1]. Feedback algorithms rely on some aggregate metrics ob-
tained from the hosts, e.g., in the form of load reports. Non-feedback algorithms use only information that name
servers obtain from processing prior requests, such as the number of times they assigned previous requests to
various replicas. Examples of non-feedback algorithms include the round-robin request distribution or always
choosing the closest replica for each request.

Feedback algorithms in general can achieve better request distribution. For instance, a feedback algorithm
can take a weighted average of server load and the client-server network distance as a criterion for choosing the
replica for a request. On the other hand, feedback schemes make it difficult to predict the effects of an object

25

migration or replication on request distribution. Indeed, request distribution for an object becomes dependent
on the popularity of many other objects co-located at the same servers, so moving one object may affect request
distribution for other objects and other servers.

Non-feedback algorithms distribute requests “blindly” and are necessarily suboptimal. At the same time,
they de-couple distribution of requests to different objects and make estimating the effects of object relocations
feasible. As a simple example, creating a second replica of an object in the round-robin scheme will reduce the
request rate for the existing replica by half, leaving the request rate for all other objects the same.

Of course, round-robin and always-the-closest are too simplistic algorithms: the former is oblivious to net-
work proximity and is not useful in reducing bandwidth consumption; the latter disregards the load and will con-
tinue to send all requests to an overloaded server no matter how many additional replicas are created, if the re-
quests come from nearby clients. A more sophisticated non-feedback algorithm can combine the rank of replicas
in the round-robin order with the proximity rank to account for both server proximity and load, while retaining
the ability to predict the effects of replication. We described one such algorithm in [16]. However, much more
work needs to be done. In fact, it appears that the best choice is to use a feedback algorithm when the overall
load in the system is low and switch to non-feedback during high-load periods [1].

5.2 Replica Placement

Another important problem is deciding how many replicas of various objects to have and where in the network
to place them. We call this areplica placementproblem. There are number of issues to be resolved.

The most important issue to resolve is the choice between static and dynamic replica placement. Static replica
placement assumes very coarse-granularity decisions that typically involve a systems administrator, based on the
observed access characteristics. With dynamic replica placement, the system constantly monitors access to var-
ious resources and continuously adjusts replica sets for all objects. The choice between these two approaches is
not that obvious. Static placement imposes less stringent requirements for the request distribution algorithm, be-
cause the latter does not have to allow predicting effects of individual object replication or migration. So, a more
efficient request distribution algorithm can be used, which, for the same assignment of replicas to hosts, would
provide better traffic and latency reduction. On the other hand, static placement is error-prone, and can become
infeasible for a large-scale system. Moreover, it does not adjust to changes in access patterns or environment
(e.g., Internet topology). Overall, static placement may be a feasible solution for a large stand-alone Web site,
while dynamic placement seems essential for ahosting service, a platform that hosts Web resources from third
party content providers. Indeed, a scale of a hosting platform can potentially make worst-case resource alloca-
tion of static approaches too wasteful, and the search space for placing replicas too large for a static solution to
be feasible.

Within the static approach, the main issue becomes choosing a good request distribution algorithm (usually
referred to as server selection in this context), which in this case would most likely be feedback-based. Server
selection can use many heuristics, sometimes based on contradicting metrics. The problem here is choosing good
metrics and combining them to arrive at a compromise strategy for server selection. We elaborate more on this
issue in Section 5.3.

For the dynamic approach, request distribution must be considered in combination with the algorithm for
replica placement. The combination must consider load and proximity factors and provide acceptablerespon-
sivenessin adjusting to changes in access patterns. The responsiveness can only be achieved if objects are re-
locateden masse, without waiting to observe effects after each move. This entails being able to predict (or at
least bound) the effects of individual object migrations or replications on request distribution, so that placement
decisions can be made for multiple objects at once, without waiting to observe the effects of each move.

Another issue related to dynamic replica placement is thegranularity of replication. At the finest granular-
ity, the placement of each Web page can be considered separately. The other extreme is to consider placement
of entire Web sites. Various intermediate object groupings are also possible. Finer granularity imposes higher

26

overhead for collecting and maintaining access statistics and for placement decisions. Coarser granularity may
increase the overhead for transferring objects between sites. In some cases of dynamically generated pages, a
group of files, executables, and other environment statemustbe migrated together, since they are used together
for page generation. The cost of tranferring such bundled objects may be high and should be taken into account
in a replica placement algorithm. A language for specifying these bundled objects must be designed. Marimba’s
DRP protocol is an example of work in this direction [8]. In addition to manual bundling of objects, some objects
could conceivably be bundled together automatically based on similarity of access patterns. The policies for (and
the feasibility of) doing this is another issue for future research.

There is also an issue of consistency between replica sets and name service database which maps logical ob-
ject IDs to sets of physical replicas. Changes in replica sets must be reflected in the name service. If the mapping
database of the name service does not agree with actual replica sets, requests may be assigned to non-existent
object replicas. On the other hand, migrating an object and updating the mapping database within a distributed
transaction would interfere with processing client requests by the name service, and is therefore undesirable. A
better approach is to ensure that the replica set specified in the mapping database be always a subset of the ac-
tual replica set. In other words, when a replica is to be deleted, it is first deleted from the mapping database, and
only then physically removed from the hosting server. When a replica is to be created, it is added to the mapping
database only after being successfully created by the hosting server. Migration can be treated as replica creation
followed by replica deletion.

An additional complication is that the name service might have previously directed some requests to the
replica being deleted, and these requests have not yet reached the replica. This situation is especially danger-
ous iterative-style name service, with potentially longer delay between request assignment and request arrival at
the replica. A protocol must be provided for tracking the number of outstanding requests to each physical replica
of each object and for ensuring that a replica is physically deleted only after all such requests have been serviced.

5.3 Replica Ranking

Request distribution algorithms rely on some metrics to discriminate among replicas. Numerous different metrics
have been proposed. Among them, there are Web server load, the latency of a ping message, the response time
of prior Web document fetches, the latency of prior Web document fetches (the difference being that the latter
measures time until the first portion of the data arrives), the network distance (in hops), the geographical distance
(in miles). Some of these metrics postulate a place where request redirection takes place. For instance, latency
and response time metrics depend on network congestion between a host and the requesting client. Thus, they
make sense for a point that lies on the path from the host to the client. As an example, the DNS server of a
Web site of hosting service cannot use ping latencies for choosing replicas because these latencies will measure
network congestion between replicas and the DNS server, not between replicas and the requesting client. Other
metrics, such as host load and distance can be used irrespective of the indirection point. Some metrics, like server
load, require a feedback-based algorithm and complicate prediction of effects of changing a replica set on request
distribution [1]. Finally, in most cases multiple metrics must be combined in some way, e.g., network distance
and server load, in ranking replicas. Choosing a proper metric influences the architecture and algorithm choices
and has a profound effect on performance.

5.4 Replica Consistency

This is the area where much synergy exists with existing database research. All Web objects can be divided into
the following types:

1. Objects that do not change as the result of user access. These objects can be either static HTML pages, or
dynamic pages that retrieve information, i.e., weather reports, or map drawing services.

27

2. Objects in which the only per-access modification involves collecting access statistics or performing other
commuting updates.

3. Objects that be updated as a result of user accesses, and where these updates do not commute.

A majority of Web accesses are to static objects, which can only be modified by their authors but not user
accesses. The rate of author modifications is negligible compared to the access rate, so it should not play role in
replica placement decisions. Replica consistency can be maintained by using the primary copy approach. De-
pending on the needs of the application, updates can propagate from the primary asynchronously to the rest of
currently existing replicas either immediately or in batches using epidemic mechanisms [7]. There are many
ideas in epidemic replication research that are directly applicable to this application, such as determining effi-
ciently which pages need to be copied [15], ensuring the consistency of propagation of multi-page updates [2],
and that any given client sees monotonically increasing object versions [18]. One technical issue that must be
resolved is how the primary copy is chosen, and what guarantees (if any) are provided to avoid choosing multiple
primaries by multiple updaters.

Objects in the second category can still be freely replicated if a mechanism is provided for merging updates
recorded by different replicas. The problem arises if content served to clients includes updateable fields, as is the
case of hit counts appearing in some pages. If the application requires this information to be always current, then
such objects become equivalent to objects in the third category for the purpose of replication.

Objects in the third category can be freely migrated, but their replication strategy must depend on the mix
of read-only and update accesses. While some ideas from database research are clearly relevant to this problem
(e.g., [20]), Web specifics require more work in this area.

6 Conclusions

This paper describes design space and research directions for content replication on the Web. Content replication
is extremely important for Web scalability. Most work to date has concentrated on server selection algorithms
assuming a fixed replica set. While much work still remains to be done in this area, the next big step is exploring
dynamic replication and migration schemes.

Dynamic replication will be especially important for providers ofhosting services, which maintain platforms
for hosting Web content owned by third parties. As the scale of these systems grows, static manual mirroring will
become increasingly wasteful and intractable. Consequently, dynamic replication will be one of enabling tech-
nologies for these systems. A plethora of issues must be resolved in the dynamic replication context, including
request distribution and replica placement algorithms, granularity of replication, combining replica rankings ac-
cording to various metrics, and consistency of control information in the system.

Acknowledgements

I wish to thank Theodore Johnson and H. V. Jagadish for reading a draft of this article and their useful comments.

References

[1] A. Aggarwal and M. Rabinovich. Performance of replication schemes on the Internet. Technical Report
HA6177000-981030-01-TM, AT&T Labs, October 1998. Also available as
http://www.research.att.com/�misha/radar/tm-perf.ps.gz.

[2] D. Agrawal, A. El Abbadi, and R. C. Steinke. Epidemic algorithms in replicated databases. InProceedings
of the 16th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS ’97),
pages 161–172, May 1997.

28

[3] M. Baentsch, L. Baum, G. Molter, S. Rothkugel, and P. Sturm. Enhancing the web infrastructure –
from caching to replication.IEEE Internet Computing, pages 18–27, Mar-Apr 1997. Also available at
http://neumann.computer.org/ic/books/ic1997/pdf/w2018.pdf.

[4] Micah Beck and Terry Moore. The Internet-2 distributed storage infrastructure project: An architecture for
internet content channels. In3rd Int. WWW Caching Workshop, Manchester, UK, June 1998. Available at
http://wwwcache.ja.net/events/workshop/18/mbeck2.html.

[5] S. Bhattacharjee, M. Ammar, E. Zegura, V. Shah, and Z. Fei. Application-layer anycasting. InINFOCOM,
1997.

[6] Cisco Systems, Inc. DistributedDirector. White paper.
http://www.cisco.com/warp/public/734/distdir/ddwp.htm.

[7] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker, Howard Sturgis, Dan
Swinehart, and Doug Terry. Epidemic algorithms for replicated database maintenance. InProceedings
of the 6th Annual ACM Symposium on Principles of Distributed Computing, pages 1–12, August 1987.

[8] The http distribution and replication protocol. A WWW Consortium submission, August 1997.
http://www.w3.org/TR/NOTE-drp.

[9] R. Farrell. Distributing the web load.Network World, pages 57–60, September 22 1997.

[10] Lewis Girod and Karen R. Sollins. Requirements for URN resolution systems. Internet Draft. http://ana-
www.lcs.mit.edu/internet-drafts/draft-girod-urn-res-require-00.txt, June 1996.

[11] IBM Interactive Network Dispatcher. http://www.ics.raleigh.ibm.com/netdispatch/.

[12] Large scale network caches provide more bandwidth for your money. Inktomi Corp. White Paper, 1998.
http://www.inktomi.com/products/traffic/tech/economics.html.

[13] C. Partridge, T. Mendez, and W. Milliken. RFC 1546: Host anycasting service, November 1993.

[14] Probe Research, Inc. http://www.proberesearch.com.

[15] M. Rabinovich, N. Gehani, and A. Kononov. Scalable update propagation in epidemic replicated databases.
Lecture Notes in Computer Science, 1057:207–222, 1996. Proc. of EDBT’96.

[16] M. Rabinovich, I. Rabinovich, and R. Rajaraman. Dynamic replication on
the Internet. Technical Report HA6177000-980305-01-TM, AT&T Labs, March 1998. Also available as
http://www.research.att.com/�misha/radar/tm.ps.gz.

[17] David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie, David J. Wetherall, and Gary J. Minden.
A survey of active network research.IEEE Communications Magazine, 35(1):80–86, January 1997.

[18] D. Terry, A. Demers, K. Peterson, M. Spreitzer, M, Theimer, and B. Welch. Session guarantees for weakly
consistent replicated data. InInt. Conf. on Parallel and Distributed Information Systems, 1994.

[19] WindDance Networks Corp. Webchallenger.
http://www.winddancenet.com/webchallenger/products/frameproducts.htm.

[20] O. Wolfson, S. Jajodia, and Y. Huang. An adaptive data replication algorithm.ACM Transactions on
Database Systems (TODS), 22(4):255–314, June 1997.

[21] Chad Yoshikawa, Brent Chun, Paul Eastham, Amin Vahdat, Thomas Anderson, and David Culler. Using
smart clients to build scalable services. In1997 Annual Technical Conference, January 6–10, 1997. Ana-
heim, CA, pages 105–117. USENIX, January 1997.

29

Consensus-Based Management of
Distributed and Replicated Data

Michel RAYNAL

IRISA, Campus de Beaulieu

35 042 Rennes-cedex, France

raynal@irisa.fr

Abstract

Atomic BroadcastandAtomic Commitmentare fundamental problems that have to be solved when managing dis-
tributed/replicated data. This short note aims at showing that solutions to these problems can benefit from results
associated with theConsensusproblem. Such an approach helps gain a better insight into distributed/replicated
data management problems.

More precisely, this note addresses one of the most important issues one is faced to when designing distributed/replicated
data management protocols, namely, theirNon-Blockingproperty. This property stipulates that the crash of nodes
participating in a protocol must not prevent the non-crashed nodes from terminating the protocol execution. Re-
sults from the Consensus study allow to know theminimal assumptionsa system must satisfy in order its dis-
tributed/replicated data management protocols be non-blocking despite process crash and asynchrony.
Keywords: Asynchronous Distributed Systems, Atomic Broadcast, Atomic Commitment, Consensus, Crash/no
Recovery, Crash/Recovery, Data Management, Non-Blocking, Replicated Data, Transaction.

Asynchronous Distributed Systems

Systems that span large geographical areas (e.g., through Internet), or systems that are subject to unpredictable
loads are fundamentallyasynchronous. This means that it is not possible to assume and to rely on upper bounds
for message transfer delays or for process scheduling delays when one has to implement an application (e.g.,
banking, booking-reservations or point-of-sale commerce) on such a system. This does not mean that timeout
mechanisms do not have to be used. It only means that any value used to set a timer can not be trusted when
this value is given a system-wide meaning. More precisely, as values used by timers do not define correct upper
bounds, the taking of a critical decision by the system or by the upper layer application can not be based on them.
That is why asynchronous distributed systems are sometimes calledtime-freesystems.

When the system, although asynchronous, suffers no failure (an unrealistic case in practice!) it is possible to
compute a consistent snapshot of its state from which consistent decisions can be taken.Consistentmeans here
that the snapshot is a past global state the system has or could have passed through. This uncertainty (has/could
have) is intrinsically due to the asynchrony of the system.

When failures can occur, the situation becomes much more complicated. The combination of failures (whose
occurrences are unpredictable!) and asynchrony create a stronger uncertainty on the system state. Consequently,

Copyright 1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

30

this can make very difficult or even impossible for an observer (e.g., a process of the application layer) to deter-
mine a consistent global state. To address this problem theoreticians have introduced anabstractproblem, namely
theConsensusproblem, which can be instantiated to solve practical problems dealing with globally consistent de-
cision takings. Among those problems, theAtomic Broadcast(AB) problem and theNon-Blocking Atomic Com-
mitment(NBAC) problem are particularly important in the distributed/replicated data management context.

This note briefly discusses the connections of theAB andNBAC problems with theConsensusproblem. More
precisely, theConsensusproblem is used to throw light on these data management problems. It appears that the
knowledge of both practical and theoretical results associated withConsensusprovides basic principles that can
help better understand not only solutions to distributed/replicated data management problems but also their intrin-
sic difficulty. One of the main issues encountered when designing a protocol (that solves such a data management
problem in a failure-prone asynchronous system) concerns itsNon-Blockingproperty. this property states that,
despite the actual but unpredictable pattern of failure occurrences, the protocol must terminate at all non-crashed
nodes. The focus of this note is on thisNon-Blockingproperty. When a protocol works (correctly terminates),
we must understandwhyit does work (correctly terminate). When a protocol does not work, we must understand
why it does not work.Knowing the assumptions that are required for data management protocols to correctly
terminate in failure-prone asynchronous distributed systems is a fundamental issue. These assumptions actually
define the “limits” beyond which a data management problem may not be solved. Such a knowledge should help
researchers and engineers (1) to get a deeper insight into the intrinsic difficulty one has to master when solv-
ing distributed/replicated data management problems, and (2) to state the precise assumptions under which their
particular distributed/replicated data management problem can be solved.

What is the Consensus Problem?

The Problem
In the Consensusproblem, each processpi proposes a valuevi and all non-crashed processes have to decide
on some valuev that is related to the set of proposed values [10]. Actually,vi is theview the processpi has
of (a relevant1 part of) the system state. The consensus imposes one of these views to processes. Its aim is,
despite failures and asynchrony, to provide processes with thesame viewof (the relevant part of) the system
state. After a consensus execution, as processes have the same view of the system state, they can proceed in a
globally consistent way (e.g., by taking identical decisions).

Formally, theConsensusproblem is defined in terms of two primitives:propose anddecide. When a pro-
cesspi invokespropose(vi), wherevi is its proposal to the consensus, we say thatp “proposes”vi. In the same
way, whenp invokesdecide and getsv as a result, we say thatp “decides”v. It is assumed that links are reli-
able and that processes can crash. Moreover, a crashed process does not recover. This is theCrash/no Recovery
model. In this model, a correct process is a process that does not crash2. (Lossy links and process recovery are
addressed below.) The semantics ofpropose anddecide is defined by the following properties:

� C-Termination.Every correct process eventually decides.

� C-Agreement.No two processes (correct or not) decide differently.

� C-Validity. If a process decidesv, thenv was proposed by some process.

While C-Termination defines the liveness property associated with theConsensusproblem, C-Agreement and
C-Validity define its safety property.

1The word “relevant” has to be appropriately instantiated for each particular problem.
2Practically, this means that the process does not crash during the execution of the consensus protocol, or during the execution of the

upper layer application that uses the consensus protocol.

31

About Failures
What is surprising with this apparently simple problem is that it has no solution when processes can crash. This
impossibility result is from Fischer, Lynch and Paterson [10] who have formally shown that theConsensusprob-
lem has no deterministic solution in asynchronous distributed systems that are subject to even a single process
crash failure. Intuitively, this negative result is due to the impossibility to safely distinguish (in an asynchronous
setting) a crashed process from a slow process, or from a process with which communications are very slow.

This impossibility result has motivated researchers to find a set of minimal assumptions that, when satisfied by
a distributed system, makes the Consensus problem solvable in this system. Chandra-Toueg’sUnreliable Failure
Detectorconcept constitutes an answer to this challenge [7]. From a practical point of view, an unreliable failure
detector can be seen as a set of oracles: each oracle is attached to a process and provides it with a list of processes
it suspects to have crashed. An oracle can make mistakes by not suspecting a crashed process or by suspecting
a non-crashed one. By restricting the domain of mistakes they can make, several classes of failure detectors can
be defined. From a formal point of view, a failure detector class is defined by two properties: aCompleteness
property which addresses detection of actual failures, and anAccuracyproperty which restricts the mistakes a
failure detector can make.

Among the classes of failure detectors defined by Chandra and Toueg, the class3S is characterized by the two
following properties. TheStrong Completenessproperty states:Eventually, every crashed process is permanently
suspected by every correct process. TheEventual Weak Accuracyproperty states:There is a time after which
some correct process is never suspected. It has been shown in [8] that, provided a majority of processes are
correct, these conditions are theweakestones that allow to solve the Consensus problem. This means that the
Consensus problem can not be solved in runs that do not satisfy these two properties. Furthermore, while the
completeness property can always be realized by using timeouts, it is important to note that the Eventual Weak
Accuracy property can only be approximated in asynchronous distributed systems3. So, when the Eventual Weak
Accuracy property can not be guaranteed, it is possible that the Consensus problem can not be solved. This means
that the Eventual Weak Accuracy property defines very precisely the borderline beyond which the consensus
problem can not be solved. This is a very important result that can help understand why some protocols (which
can be shown to be instantiations of consensus protocols) work (do terminate) in some circumstances and do not
work (can not terminate) in other circumstances.

It is important to note that several consensus protocols based on unreliable failure detectors of the class3S
have been proposed [7, 19, 25]. They all are based on the rotating coordinator paradigm and proceed in consec-
utive asynchronous rounds. Each round, coordinated by a predetermined process, implements a majority vote
strategy. During a round, the associated coordinator tries to impose a value as the decision value. If the Eventual
Weak Accuracy property is satisfied, there will be a round during which the associated coordinator will not be
erroneously suspected, and this coordinator will succeed in establishing a decision value.

Current Research Efforts
(1) Tradeoff SafetyvsLiveness. The crucial problem when implementing a consensus protocol lies in the fact its
liveness can not be guaranteed in time-free asynchronous unreliable systems. All the previous protocols always
guarantee safety, but their liveness can not be taken for granted. When the Eventual Weak Accuracy property of
the underlying failure detector is not satisfied, they may not terminate. In that case the protocol does not satisfy
the C-Termination property. More precisely, any protocol that requires a failure detector of the class3S may
lose its liveness (i.e., it may not terminate), but will never lose its safety (i.e., if it gives a result, this result is
correct) when the underlying failure detector malfunctions by failing to meet its properties. A current research
effort concerns the design of consensus protocols that trade liveness against safety. In that case, the resulting
protocol always terminates, but there is a price that has to be paid: the safety property is ensured only with some
probability; this probability depends on the density function associated with the random variable representing

3Otherwise, this would contradict the Fisher-Lynch-Paterson’s impossibility result!

32

message transfer delays [6].
(2) Towards More Realistic models. The previous results have been established in a relatively simplistic model,
namely, theCrash/no Recoverymodel. This model assumes that communication is reliable and that a process
that crashes during the protocol execution does no recover.

Research is now focusing on more realistic models in which messages can be lost and processes can recover
during the protocol execution. This is theCrash/Recoverymodel. Current results concerning this realistic model
are : (1) Methods and principles to cope with message loss [2, 4, 9, 15, 20]; (2) Definitions of appropriate failure
detectors [2, 9, 20]; (3) Consensus protocols [2, 20]; (4) The statement of a necessary and sufficient condition on
the use by each process of a local stable storage in which it can save critical state data during its “crash” periods
[2].

The Non-Blocking Atomic Commitment Problem

The Problem
The Non-Blocking Atomic Commitmentproblem (NBAC) has originated from databases, more precisely from
transactions. In a distributed system, a transaction usually involves several participant sites (i.e., several pro-
cesses). At the end of a transaction, its participants are required to enter a commitment protocol in order to com-
mit it (when enough things went well) or to abort it (when too many things went wrong). Each participant votes
YES or NO. If for any reason (deadlock, storage problem, concurrency control conflict, etc.) a participant can
not locally commit the transaction, it votesNO. Otherwise a voteYES means that the participant commits locally
to make updates permanent if it is required to do so. Then, the decision to commit or to abort is determined.
The decision must beCOMMIT if enough participants (usually all) votedYES. It must be ABORT if too many
participants (usually one) votedNO [3, 5, 12].

More formally, NBAC in an asynchronous distributed system, can be defined by the following properties,
where the parameterx is used to capture several instances of the problem within a single definition (x = n
characterizes the classicalAll-or-none NBAC problem, whilex = d(n+1)=2e characterizes theMajority NBAC

problem, wheren is the total number of participants):

� NBAC-Termination. Every correct participant eventually decides.

� NBAC-Agreement. No two participants decide differently.

� NBAC-Validity. This property gives its meaning to the decided value. It is composed of three parts.

– Decision Domain. The decision value isCOMMIT or ABORT.

– Justification. If a participant decidesCOMMIT, then at leastx participants have votedYES.

– Obligation. If x participants voteYES and are not suspected (to have crashed), then the decision
value must beCOMMIT.

The justification property states that the “positive” outcome, namelyCOMMIT, has to be justified: if the result
is COMMIT, it is because, for sure, things went well (i.e., enough processes votedYES). Finally, the obligation
property eliminates the trivial solution where the decision value would beABORT even when the situation is
good enough to commit.

NBAC is a Consensus Problem
Actually theNBAC is a particular instance of the Consensus problem. We provide here a simple protocol that
reducesNBAC to Consensus. Figure 1 describes this reduction when we consider an All-or-noneNBAC problem
(i.e., x is equal to the number of participants).

33

(1) 8 q 2 participantsdo send(vote) end do;
(2.1) wait ((delivery of a voteNO from a participant)
(2.2) or (9 q 2 participants: p suspectsq to have crashed)
(2.3) or (from each q 2 participants: delivery of a voteYES)
(2.4));
(3.1) case
(3.2) a voteNO has been delivered ! view := ABORT

(3.3) a participant has been suspected! view := ABORT

(3.4) all votes areYES ! view := COMMIT

(3.5) end case;
(4) propose(view); decision:=decide; % Consensus execution %

Figure 1: From Consensus toNBAC in Asynchronous Systems

The behavior of every participantp is made of 4 steps. First (line 1),p disseminates its vote to all participants.
Then (lines 2.*),p waits until either it has received aNO vote (line 2.1), or it has received aYES vote from each
participant (line 2.3), or it has suspected a participant to have crashed (line 2.2). Then (lines 3.*), the participant
p builds its ownview of the global state: this view isCOMMIT if from its point of view everything went well (line
3.4), andABORT if from its point of view something went wrong (lines 3.2 and 3.3). Finally (line 4),p participates
in a consensus. After having proposed its local view of the global state (invocation ofpropose(view)), p waits
for the result of the consensus execution (invocation ofdecide) and saves it in the local variabledecision. It
can be easily shown that this reduction protocol satisfies theNBAC-Termination, theNBAC-Agreement and the
NBAC-Validity properties.

This reduction shows that, in asynchronous distributed systems, theNBAC problem4 can be solved each time
the Consensus problem can be solved. Actually, they are equivalent [13]. It is important to note that theNBAC

protocols described in [27] assume a synchronous distributed system: they rely on timeouts to detect participant
crashes. So, due to these timeouts, their termination is always guaranteed. But, if the values used to set timers
reveal to be erroneous (this occurs when they are not correct upper bounds), those protocols can not satisfy their
safety property. In time-free asynchronous systems, the satisfaction of the termination property ofNBAC proto-
cols relies on the fact the underlying failure detectors satisfy the Strong Completeness property and the Eventual
Weak Accuracy property. Basing these protocols on a solution to the Consensus problem help understand the
minimal assumptions that have to be satisfied in order protocols solvingNBAC work. More information on the
relations between theNBAC problem and the Consensus problem can be found in [13, 17, 23].

The Case of Replicated Data
The replication of a data does not change the problem. In that case, theNBAC problem usually requires that a
majority of the replicas agree to commit updates. The appropriate version of theNBAC problem is theMajority
version [5]. The reduction of theMajority NBAC problem to the Consensus problem requires to add an additional
step to the protocol described in Figure 1. Such reduction protocols are described in [14, 16]. This shows that,
although not often claimed in a clear way, theNBAC problem (be it used for committing updates on distinct data

4Note that the definition we have considered for theNBAC problem includes the “suspicion of a participant” notion (see the Obligation
property) which is less precise than the “crash of a participant” notion: due to asynchrony, a participantq can be suspected by another
participantp to have crashed while actuallyq has not crashed. This shows that, in an asynchronous system, the notion of “suspicion of a
participant” is the best approximation we can have for “crash of a participant”.

34

or on copies of a replicated data) is an instantiation of the Consensus problem. This is particularly important as
it allows us to know the exact conditions under which aNBAC protocol is non-blocking.

The Atomic Broadcast/Multicast Problem

An increasing number of works consider anAtomic Broadcast(AB) primitive to disseminate updates to copies
of replicated data [1, 21, 22, 29]. A suite of broadcast primitives has been formally defined in [18].

The Atomic Broadcast Problem
The AB problem is defined by two primitives, namelyA Broadcast andA Deliver. Informally, the effect of
these primitives is to guarantee that processes are delivered messages in the same order. Processes have to agree
not only on the set of messages they are delivered but also on their delivery order. More precisely, theAB problem
is defined by the three following properties:

� AB-Termination. This property is composed of two parts.

– Correct Sender. If a correct process executesA Broadcast(m), then eventually all correct pro-
cesses executeA Deliver(m).

– Delivery Occurrence. If a process executesA Deliver(m), then all correct processes executeA Deliver(m).

� AB-Agreement. If two processesp andq executeA Deliver(m1) andA Deliver(m2), thenp executes
A Deliver(m1) beforeA Deliver(m2) if and only if q executesA Deliver(m1) beforeA Deliver(m2).

� AB-Validity. If a process executesA Deliver(m), thenm has been sent bysender(m) (wheresender(m)

denotes the sender ofm).

As the previous definitions, the definition of what is a “correctprocess” depends on the model we consider.
It has been shown that the Consensus problem and theAB problem are equivalent problems: any solution to one
of them solves the other [7]. So, anyAB protocol designed for asynchronous distributed systems has the same
limitations as a Consensus protocol. AnAB protocol for Crash/no Recovery systems is described in [7] (here, a
correct process is a process that never crash). AnAB protocol for Crash/Recovery systems is described in [24]
(here, a correct process is a process that can crash and recover an arbitrary number of times, but that eventually
recovers and remains “up” long enough for the upper layer application to be able to terminate).

Atomic Multicast
Atomic Multicast to multiple groups (AM) is a primitive particularly useful to manage a set of replicated data.
Actually, each data is replicated on a set of sites; these sites define a replication group. TheAM primitive allows to
reliably send a message to several groups in such a way that (1) all the sites of the destination groups are delivered
the message, and (2) there is a single delivery order for all the messages. This means that if 2 copies (of the same
data or of different data) receivem1 andm2 then they deliver these messages in the same order. When there is
a single group,AM confuses withAB. TheAM primitive has been investigated in [26] from where the following
example is taken.

Let us consider a classical transaction that transfers $1,000 from bank account #1 to bank account #2. To
achieve fault-tolerance, assume that each bank account is replicated on several nodes, and assume that every
replica is managed by a process. Letg1 be the fault-tolerant group of processes that manage bank account #1,
and letg2 be the fault-tolerant group of processes that manage bank account #2. The two operations (withdrawal
and deposit) can be aggregated into a single message by definingm as: (remove$1,000 from account #1; add
$1,000 to account #2). When a process ing1 deliversm, it removes $1,000 from the bank account it manages;

35

when a process ing2 deliversm, it adds $1,000 to the bank account it manages. In this distributed setting, the
money transfer transaction can be expressed as the atomic multicast ofm to the groupsg1 andg2. Either both
of the groups or none of them deliverm. Moreover, if both groups are destination of the same messagesm1 and
m2, they deliver them in the same order. It is easy to see that the total order property of multicast ensures the
serializability of transactions.

An efficient protocol implementing theAM primitive is described in [11]. This protocol is a combination of
consensus protocols with a total order multicast protocol designed by Skeen for failure-free systems [28]. What
is important is that consensus allows to solve the problem in failure-prone systems. The price that has to be paid
is always the same: it is related to the termination property of theAM problem. The knowledge of the Consensus
problem indicates to us which are the assumptions related to the detection of failures that have to be satisfied by
the underlying system for theAM protocol to terminate.

By way of Conclusion

The aim of this short discussion was to show that the Consensus problem has to be considered as a fundamen-
tal problem as soon as one is interested in managing distributed/replicated data despite asynchrony and failure
occurrences. In such a context, one of the main problems consists in ensuring the termination (Non-Blocking)
property of distributed/replicated data management protocols: failed nodes must not prevent non-failed nodes
from terminating.

There are two bad news. The first one is that the Consensus problem has no solution in an asynchronous dis-
tributed system model as simplistic as the Crash/no Recovery model. This means that it is not possible to design
a Consensus protocol that willalwayssatisfy theNon-Blockingproperty in presence of process crashes. The sec-
ond one is that two very important practical problems encountered in the management of distributed/replicated
data (NBAC andAB) can be solved in a given system only when the Consensus problem can be solved in this
system.

The good news is that a deep knowledge of the Consensus problem (i.e., a knowledge of the assumptions
it requires to be solved, and a knowledge of the principles that underlie the protocols that solve it) can provide
engineers with concepts and mechanisms that allow them to master problems encountered in the management of
distributed/replicated data. As indicated at the beginning of this note, when a protocol works, we must under-
standwhy it does work. And, when a protocol does not work, we must understandwhy it does not work. Data
engineering has to be based on both Technology and Science.

References

[1] Agrawal D., Alonso G., El Abbadi A. and Stanoi I., Exploiting Atomic Broadcast in Replicated databases.Proc.
1997 EURO-PAR Conference on Parallel Processing, August 1997, pp. 496-503.

[2] Aguilera M.K., Chen W. and Toueg S., Failure Detection and Consensus in the Crash-Recovery Model.Proc. of
the 12th Int. Symposium on Distributed Computing (DISC’98, ex-WDAG), Andros (Greece), Springer Verlag LNCS
1499 (S. Kutten Ed.), pp. 231-245.

[3] Ö. Babao˘glu and S. Toueg., Non-Blocking Atomic Commitment.Distributed Systems (Second Edition), ACM Press
(S. Mullender Ed.), New-York, 1993, pp. 147-166.

[4] Basu A., Charron-Bost B., Toueg S., Simulating Reliable Links with Unreliable Links in the Presence of Pro-
cess Crashes.Proc. of the 10th Int. Workshop on Distributed Algorithms (WDAG), Springer-Verlag, LNCS 1151
(. Babaoğlu and K. Marzullo Eds), pp. 105-122, Bologna, Italy, October 1996.

[5] Bernstein P.A., Hadzilacos V., Goodman N.,Concurrency Control and Recovery in Database Systems. Addison-
Wesley, Reading, Massachusetts, 370 pages, 1987.

[6] Bollo R., Le Narzul J.-P., Raynal M. and Tronel F., Probabilistic Analysis of a Group Failure Detection Protocol.
Research Report 1209, IRISA, Rennes, October 1998.

36

[7] Chandra T. and Toueg S., Unreliable Failure Detectors for Reliable Distributed Systems.Journal of the ACM,
43(1):225–267, March 1996 (A preliminary version appeared inProc. of the 10th ACM Symposium on Principles of
Distributed Computing, pp. 325–340, 1991).

[8] Chandra T., Hadzilacos V. and Toueg S., The Weakest Failure Detector for Solving Consensus.Journal of the ACM,
43(4):685–722, July 1996 (A preliminary version appeared inProc. of the 11th ACM Symposium on Principles of
Distributed Computing, pp. 147–158, 1992).

[9] Dolev D., Friedman R., Keidar I and Malkhi D., Failure Detectors in Omission Failure Environments.Short paper
in Proc. of the 16th ACM Symposium on Principles of Distributed Computing, pp. 286, August 1997.

[10] Fischer M.J., Lynch N. and Paterson M.S., Impossibility of Distributed Consensus with One Faulty Process.Journal
of the ACM, 32(2):374–382, April 1985.

[11] Fritzke U., Ingels Ph., Mostefaoui A. and Raynal M., Fault-Tolerant Total Order Multicast to Asynchronous Groups.
Proc. 17th IEEE Symposium on Reliable Distributed Systems, Purdue University (IN), pp.228-234, October 1998.

[12] Gray J.N. and Reuter A.,Transaction Processing: Concepts and Techniques, Morgan Kaufmann, 1070 pages, 1993.

[13] Guerraoui R., Revisiting the Relationship between Non-Blocking Atomic Commitment and Consensus.Proc. 9th
Int. Workshop on Distributed Algorithms(WDAG95), Springer-Verlag LNCS 972 (J.M. Hlary and M. Raynal Eds),
Sept. 1995, pp. 87-100.

[14] Guerraoui R., Oliveira R. and Schiper A., Atomic Updates of Replicated Data.Proc. of the 2th European Dependable
Computing Conference (EDCC2), Springer-Verlag, LNCS 1150, pp. 1365-382, Taormina, Italy, October 1996.

[15] Guerraoui R., Oliveira R. and Schiper A., Stubborn Communication Channels.Research Report, Département
d’informatique, EPFL, Lausanne, Switzerland, July 1997.

[16] Guerraoui R., Raynal M. and Schiper A., Atomic Commit And Consensus: a Unified View. (In French)Technique
et Science Informatiques, 17(3):279-298, 1998.

[17] Guerraoui R. and Schiper A., The Decentralized Non-Blocking Atomic Commitment Protocol.Proc. of the 7th IEEE
Symposium on Parallel and Distributed Systems, San Antonio, TX, 1995, pp. 2-9.

[18] Hadzilacos V. and Toueg S., Reliable Broadcast and Related Problems. InDistributed Systems (Second Edition),
ACM Press (S. Mullender Ed.), New-York, 1993, pp. 97-145.

[19] Hurfin M. and Raynal M., A Simple and Fast Asynchronous Consensus Based on a Weak Failure Detector.Research
Report 1118, IRISA, Rennes, (July 1997), 19 pages.

[20] Hurfin M., Mostefaoui A. and Raynal M., Consensus in Asynchronous Systems Where Processes Can Crash and Re-
cover.Proc. 17th IEEE Symposium on Reliable Distributed Systems, Purdue University (IN), pp. 280-286, October
1998.

[21] Kemme B. and Alonso G., A Suite of Database Replication Protocols Based on Group Communication Primitives.
Proc. 18th Int. IEEE Conference on Distributed Computing Systems, Amsterdam, May 1988, pp. 156-163.

[22] Pedone F., Guerraoui R. and Schiper A., Exploiting Atomic Broadcast in Replicated databases.Proc. 4th EURO-
PAR Conference on Parallel Processing, Southampton, September 1998, Springer Verlag LNCS 1470, pp. 513-520.

[23] Raynal M., Non-Blocking Atomic Commitment in Distributed Systems: A Tutorial Based on a Generic Protocol.
To appear inJournal of Computer Systems Science and Engineering, Vol.14, 1999.

[24] Rodrigues L. and Raynal M., Non-Blocking Atomic Broadcast in Asynchronous Crash-Recovery Distributed Sys-
tems.Research Report, IRISA, Rennes, October 1998, 16 pages.

[25] Schiper A., Early Consensus in an Asynchronous System with a Weak Failure Detector.Distributed Computing,
10:149-157, 1997.

[26] Schiper A. and Raynal M., From Group Communication to Transactions in Distributed Systems.Communications
of the ACM, 39(4):84–87, April 1996.

[27] Skeen D., Non-Blocking Commit Protocols.Proc. ACM SIGMOD Int. Conference on Management of Data, ACM
Press, 1981, pp. 133-142.

[28] Skeen D., Unpublished communication. Cited in: Birman K. and Joseph T., Reliable Communication in presence of
Failures.ACM Transactions on Computer Systems, 5(1):47-76, 1987.

[29] Stanoi I., Agrawal D. and El Abbadi A., Using Broadcast Primitives in Replicated databases.Proc. 18th IEEE Int.
Conference on Distributed Computing Systems (IC DCS’98), Amsterdam, May 1988, pp. 148-155.

37

Replication Strategies for High Availability and Disaster Recovery

Robert Breton
Director

Sybase Replication Server Engineering

1 The Business Problem

Businesses are faced with the critical need to ensure the availability of information and continuous operation of
their mission-critical systems in the face of potential failures ranging from hardware losses such as disk crashes
and CPU failures to catastrophic losses to their computing facilities and communications networks. For example,
the Federal Reserve required banks by 1998 to have appropriate disaster recovery procedures in place that would
ensure that business interruptions would not exceed four (4) hours. Most of today’s disaster recovery strategies
are not well suited to meeting such stringent business requirements without suffering significant loss of business
information.

While solutions exist to provide tolerance to component failure, the issue of site loss is often more challeng-
ing, with potentially dire consequences due to both business interruption and loss of information. While remote
backup storage and disaster recovery sites have traditionally satisfied the requirements for disaster recovery for
batch-oriented business systems, they are generally inadequate for protecting the information in on-line transac-
tion processing (OLTP) systems. With the introduction of database replication, continuous duplication of critical
OLTP information to off-site backup facilities without the high latency inherent in tape backup approaches is now
available. Once established, such an environment can be automated to ensure that information is replicated in a
timely manner and the switch to backup systems is accomplished with minimal business interruption.

This paper will look at the evolution of such a replication system, Sybase’s Replication Server, in supporting
disaster recovery and high availability business requirements.

2 Replication Architectures

While the concept of a single federated database offers the advantage of centralized control, the reliance on a
central site often requires compromises in accessibility, performance and local autonomy over the business in-
formation as dependency on the network and central site availability and scalability grows. In decentralized busi-
nesses, the proliferation of distributed computing platforms often means a lack of consistent, timely consolidated
information at the corporate level. While the technology exists to support real-time concurrent updates to multi-
ple systems, the performance impact and availability risks do not often justify its use except in the most critical
business transactions.

Copyright 1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

38

Chicago
Risk

Chicago
Risk

Manager

Zurich
Risk

Zurich
Risk

Manager

Tokyo
Risk

Tokyo
Risk

Manager

Chicago

Zurich

Tokyo

Chicago

Zurich

.
Tokyo

Chicago

Zurich

.
Tokyo

Figure 1: Peer-to-peer replication.

The widespread adoption of clientserver technologies has driven the adoption of more distributed systems
architectures. These distributed systems introduce a number of management challenges requiring new strategies
for ensuring accurate and timely availability of business information. As the same information is often required in
diverse business locations, asynchronous distribution and synchronization satisfies the need to minimize the per-
formance and response time impact of capturing and distributing replicated data while ensuring reliable, timely
delivery to replicate sites. This deferred delivery model ensures that the originating application does not wait for
the replicated data to be delivered, and any interruption in delivery to one location does not interfere with deliver
to other business locations. This provides a high level of information currency, availability and performance,
while lowering the cost of delivery. By supporting customization of information as it is delivered, business in-
formation delivery can often be tailored to the needs of the each business location.

The following example shows a typical peer-to-peer replication architecture enabling each major business
center to manage local information while acting as a backup site to the other locations (see Figure 1). This archi-
tecture ensures7x24 availability of information throughout the world by eliminating reliance on any single site
for information access, while eliminating the dependence on network availability by employing an asynchronous
database transaction replication facility.

3 Replication Server: the Publish and Subscribe Model

In 1993, Sybase introduced the first generation of technology providing asynchronous, reliable distribution of
database changes. Based on a publish and subscribe model, Replication Server utilizes a highly efficient ”push”
architecture, capturing database transactions directly from database recovery logs in near real-time, distributing
to subscribing databases through a multi-tiered routing scheme for efficient network utilization, and reliable deliv-
ery protocols. Selective distribution using content-based constraints enables subscribers to receive only database
changes of interest. By using a ”push” model, latency times between transaction commit at the primary database
and delivery to the replicate are minimized. Through intermediate message queue storage, database change mes-
sages were logged to ensure reliable delivery and recoverability in the event of interruption in the distribution
network. As illustrated in Figure 2 below, database transactions flow through a multi-tiered routing scheme for
network efficiency. Each site may select all or a subset of the rows updated at the primary location, based on the
content of one or more fields within the row.

4 Warm Standby

The goal of Replication Server is to provide publish and subscribe services for reliable delivery of database trans-
actions. Many customers saw the additional advantages in replication to mirror databases for high availability.
Many of the features required to support complex hierarchical distribution and selection publication and subscrip-

39

Replication
Server

Replication
Server

Adaptive
Server

Enterprise

Network
Customer

Application

Figure 2: Multi-tiered routing scheme.

Inbound
Queue

Outbound
Queue

Outbound
Queue

Figure 3: Publish and subscribe model.

tions are less critical in this environment. Because of the simplicity of this requirement, it is possible to simplify
internal processing to enable distribution that is more efficient.

In some environments, it is desirable to support this database redundancy for availability combined with stan-
dard publish/subscribe services. By creating a special implementation in Replication Server 11 to support this
requirement called Warm Standby, administration is simplified as it is no longer necessary to explicit subscribe to
replicated tables. Since the Warm Standby implementation appears as a single logical entity to other replication
participants, the publish and subscribe environment is not impacted by the additional of Warm Standby.

To contrast publish and subscribe replication vs. warm standby, figure 3 outlines the queues utilized in a
standard publish and subscribe model. Transactions from the primary database are first committed to the inbound
queue. Inbound queue transactions are filtered based on destinations and subscription criteria, then reordered and
delivered to the outbound queues in transaction commit order. Finally, outbound queue transactions are delivered
to the replicate databases. In the Warm Standby configuration, there is no need to order transactions or filter
subscription criteria. In this model, transactions flow directly from the inbound queue to the standby configuration
as shown in figure 4. The administrator marks tables to be replicated in the primary database. Subscriptions are
not required to direct transactions to the standby database. The active and standby databases may exchange roles.
This is transparent to other publish and subscribe activity against the active/standby database pair.

40

Inbound
Queue

Standby

Active

Figure 4: Warm Standby configuration.

5 Schema Replication for Warm Standby

The next evolution of Warm Standby addressed the database administration requirements. Replication Server
distributed changes to user-defined tables only. Changes to the structure of tables, security permissions or the
maintenance of other objects in the database (stored procedures, rules, triggers, etc.) remained a manual admin-
istration process.

In Replication Server 11.5, the concept of Schema Replication was introduced. Schema Replication en-
ables the configuration of Warm Standby to encompass distribution of any operation performed on objects in
the database. It also provides a database level configuration command, eliminating the requirement to mark in-
dividual tables as replicated objects. Any new objects created are immediately replicated to the standby site. By
mirroring all database operations, the administration requirements for Warm Standby are drastically reduced.

6 High Availability Alternatives

There are a number of alternatives for high availability database architectures. This section outlines the major
alternatives and the risks and benefits of each approach.

6.1 Hardware-based High Availability Solutions

Hardware and software solutions are available on most platforms to support high availability in a clustered en-
vironment. High availability clusters allow multiple CPUs to share common resources, such as disk drives, and
provide automatic fail-over in the event of a CPU failure. Cluster solutions generally have severe distance limita-
tions that preclude separating the hardware components adequately to mitigate risks associated with geographic
proximity. These include natural disasters, such as fire, floods, tornadoes and earthquakes, and related services
outages such as electricity and telecommunications networks.

Distributed disk arrays are emerging that mitigate the site protection issues by providing asynchronous mir-
roring to physically separate devices for better site protection. While synchronous mirroring satisfy the require-
ment for committed transactions to be preserved upon a disk or CPU failure, they do present various limitations.
Asynchronous mirroring, while extending protection from many site-related failures, has additional risks asso-
ciated with the potential loss of data. A discussion of benefits and limitations of both synchronous and asyn-
chronous mirroring are presented in Table 1.

41

Benefits Limitations
Synchronous disk mirroring with clusters: No
loss of committed database transactions on a CPU
failure.

Cluster fail-over may requires a significant down-
time to perform appropriate restart and recover
operations.

Applications generally do not require awareness
of physical resource changes, such as network
addresses.

Synchronous remote disk mirroring may impact
application performance due to network overhead
to remote disks.

Asynchronous disk mirroring can provide phys-
ical protection by supporting extended physical
distances.

Most database systems require special handling
to properly recover potential I/O loss in Asyn-
chronous distributions.

Clustered CPU’s may be used for other activities
when not providing backup services.

Clustered CPU’s are not available for use against
the same database image.
No protection from data corruption introduced by
the hardware/software.

Table 1: Clusters with high availability disks (RAID/mirroring)

6.2 Software High Availability Solutions

Software high availability solutions are typically support physically separate hardware to provide protection against
site loss. For example, a simple implementation of Cold Standby can be accomplished by periodically restoring
database backup images and rolling transaction logs to a standby site.

For Hot Standby, applications could update multiple systems simultaneously (synchronous updates), using
two-phase commit (2PC) protocols to guarantee transaction integrity. The risk of this type of solution is the poten-
tial business interruption if there is a failure in a participating system. Generally, 2PC applications are appropriate
for very high-value transactions where consistency across multiple systems is more critical than availability.

Warm Standby offers the protection afforded by redundancy, without the availability constraints of synchronous
updates or the time delays of batch-oriented cold backup methods. By providing asynchronous reliable delivery,
applications are minimally impacted by the operation of the Warm Standby software system and the availability
of the standby system. Benefits and limitations of software-level Warm Standby such as Sybase’s Replication
Server are presented in Table 2.

7 Warm Standby Considerations

Since a two-phase commit protocol is not being used to synchronize the standby site with the active site, there
is a possibility that a failed active site has committed a transaction, but the standby site has not received that
transaction. The major advantage replication offers over cold standby methods (such as tape backups) is that
transaction loss due to latency is minimized due to the continuous ”push” architecture.

New procedures may be required to support the switch over to the standby system, since applications may
not be transparently connected to the standby server when a failure occurs. The application can be designed to
re-establish its connection to the appropriate database, or switching middleware may be imposed to support this
function. It makes economic sense to maximize use of the Warm Standby database during non-failover periods
for other business purposes. Warm Standby offers that flexibility as it maintains an online database system. Using
the standby site for applications that generate reports, ad-hoc queries, or perform decision support functions is
ideal. These applications would normally affect the performance of the active site so this offers the potential
to reduce primary site overhead, with some potential impact to the standby. Applications running against the

42

Benefits Limitations
Ability to quickly swap to the standby system in
the event of failure, as standby database is online.

Warm standby system may be ”out-of-date” by
transactions committed at the active database that
have had sufficient time to reach the standby
database.

Warm standby systems can be configured over a
Wide Area Network, providing protection from
site failures.

Client applications may need to be aware of a swap
to the Warm Standby if the active system fails.

Data corruption is not replicated as transactions
are logically reproduced rather than I/O blocks
mirrored.

Logical transaction reproduction incurs more
overhead than I/O block copying.

Originating applications are minimally impacted
as replication takes place asynchronously after
commit of the originating transaction.

Some overhead is introduced in the application
server for transaction capture and delivery to the
replication system.

The warm standby database is available for read-
only operations such as DSS systems, improving
utilization of standby databases.

Network bandwidth, hardware resource require-
ments and software overhead may limit scalability
of software based solutions.

Table 2: Software-level Warm Standby systems.

standby site do need to be cognizant that the data may not be current, but decision-support applications often
tolerate this latency.

In a peak volume OLTP environment, the effects of the Warm Standby database falling farther behind the
active database’s transaction stream must be considered. If the standby site must be operational within five min-
utes, and the standby system falls 30 minutes behind, then replication may not be the optimal solution. If the
standby site is expected to fall 30 minutes behind during peak operations, yet the standby site has one (1) hour to
recover, then using Replication Server to maintain the standby site is feasible. Capacity planning is an important
consideration in the architecture of a standby system to ensure that not only average performance loads can be
achieved, but that peak loads and typical down-time situations can be adequately recovered.

8 Summary

Warm Standby with Replication Server is a significant tool in providing distributed high availability services, af-
fording protection against site failures through asynchronous, wide-area delivery of database transactions. By en-
abling multiple usage of standby systems, replication provides a cost-effective alternative to redundant hardware
that is only utilized for recovery operations. In compliment with traditional hardware high availability solutions,
Replication Server extends support for disaster recovery requirements beyond component failure recoverability
to significantly improve site protection and reduce potential information loss of cold standby solutions.

43

CALL FOR PAPERS The 16th International Conference on

Data Engineering
Tentative Date: Feb. 28 - Mar. 3, 2000

San Diego, CA, USA
Sponsored by

IEEE Computer Society TC on Data Engineering

IEEE

SCOPE
Data Engineering deals with the use of en-
gineering techniques and methodologies in
the design, development and assessment of
information systems for different comput-
ing platforms and application environments.
The 16th International Conference on Data
Engineering will continue in its tradition of
being a premier forum for presentation of re-
search results and advanced data-intensive
applications and discussion of issues on data
and knowledge engineering. The mission of
the conference is to share research solutions
to problems of today’s information society
and to identify new issues and directions for
future research and development work.

TOPICS OF INTEREST
These include (but are not restricted to):

� Advanced Query Processing
� Data Mining & Knowledge Discovery
� Engine Technology (Storage Manage-

ment, Access Structures, Recovery, etc.)
� Multimedia & Digital Libraries
� New Departures (Mobile Agents, Embed-

ded Services, Personalization, etc.)
� New Forms of Data (Spatial, Temporal,

etc.)
� OLAP & Data Warehouses
� Replication, Availability, & Consistency
� System Administration, Ease of Use, and

DB Design
� Web, Distribution, & Interoperation
� Workflow, Transactions, & E-Commerce
� XML & Metadata

IMPORTANT DATES
Abstract submissions (electronic in
Ascii): June 9, 1999

Paper submissions (hardcopy or
electronic): June 16, 1999

Web page has electronic submission details

Panel/tutorial/industrial submissions:
June 16, 1999
Acceptance notification:October 15, 1999

Camera-ready copies:December 1, 1999

ORGANIZING COMMITTEE
General Chair: P.-Å. (Paul) Larson, Microsoft, USA

Program Co-chairs: David Lomet, Microsoft, USA
Gerhard Weikum, Univ of Saarland, Germany

Panel Program Chair: Mike Carey, IBM Almaden, USA
Tutorial Program Chair: Praveen Seshadri, Cornell Univ, USA

Industrial Program Co-Chairs: Anil Nori, Oracle, USA
Pamela Drew, Boeing, USA

PROGRAM VICE-CHAIRS
Advanced Query Processing Data Mining & Knowledge Discovery
Jeff Naughton, Univ of Wisconsin, USA Sunita Sarawagi, IBM Almaden, USA

Engine Technology System Admin, Ease of Use, & DB Design
Hank Korth, Lucent - Bell Labs, USA Arnie Rosenthal, Mitre, USA

OLAP & Data Warehouses Workflow, Transactions, & E-commerce
Jeff Ullman, Stanford Univ, USA Hans Schek, ETH Zurich, Switzerland

XML and Metadata Web, Distribution, & Interoperation
Phil Bernstein, Microsoft, USA Donald Kossmann, Univ of Passau, Germany

Multimedia & Digital Libraries Replication, Availability, & Consistency
Stavros Christodoulakis, Univ of Crete, Theo Haerder, Univ of Kaiserslautern,
Greece Germany

New Forms of Data New Departures (Agents, Mobile, etc.)
Beng Chin Ooi, National Univ of H. V. Jagadish, U Illinois - Urbana-
Singapore, Singapore Campaign, USA

SUBMISSIONS
Paper, panel, tutorial, or industrial-program
submissions must be received by June 16,
1999, 12:00 PM Pacific Time. Paper length
must not exceed 20 pages in not smaller than
11 pt font.

For hardcopy submission, seven (7) copies
should be sent to:
David Lomet
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399, USA
E-mail: lomet@microsoft.com
For electronic submission, please consult the
conference web site at:
http://research.microsoft.com/icde2000.

An abstract of no more than 300 words in
ASCII must be submitted at the conference
web site:
http://research.microsoft.com/icde2000
by June 9, 1999. The abstract submission
must include the title of the paper, authors’

names, an e-mail address of the contact au-
thor, a first and second preference among the
twelve topical areas, and whether the sub-
mission is for the research paper, panel, tu-
torial, or industrial program.

PANELS AND TUTORIALS
The research and industrial track will be
complemented by panels and tutorials. Pro-
posals for each program should be sent to
the same address for paper submissions (see
there) byJune 16, 1999.

INDUSTRIAL PROGRAM
The conference program will include a num-
ber of papers devoted to industrial develop-
ments, applications, and experience in using
databases. Papers intended for this program
should be clearly marked as industrial track
papers at the time of submission.

Conference web site: http://research.microsoft.com/icde2000

44

Call for Papers
User Interfaces to Data Intensive Systems

UIDIS
Edinburgh 5th - 6th September 1999

http://img.cs.man.ac.uk/UIDIS99

Background
Research into user interfaces to databases and other information management systems is often considered to lag behind
research in the underlying technologies. However, in an age where information that is stored anywhere is routinely available
anywhere, the need for effective user interfaces to data intensive systems is certainly as great as ever.
 This workshop, which builds upon the series of workshops in Interfaces to Database Systems (IDS) held in 1992,
1994 and 1996, seeks to bring together researchers in information management systems and human-computer interaction to
exchange ideas and results on how user interfaces to data intensive systems can be made easier to both construct and use. The
two day workshop will be held in Edinburgh, the historic capital city of Scotland, between the Interact and VLDB conferences,
thereby allowing attendees at either of these major international conferences to attend the workshop, and vice versa. UIDIS
will be a limited numbers workshop, to encourage an informal atmosphere and to provide plenty scope for discussion and
debate as well as presentations and demonstrations.

Topics of Interest
UIDIS is intended to be an interdisciplinary forum, and invites papers on all aspects of user interfaces to data intensive
systems. The following list should thus be taken as indicating topics of particular interest, rather than as a filtering
mechanism:
data mining tools interface architectures user-interface development systems
distributed information systems semantic hypermedia user studies
information retrieval model-based interfaces virtual reality
information visualisation multimedia interfaces visual information management
intelligent user interfaces natural language interfaces visual languages
interactive system design query interfaces

Also invited are application papers that can report on experience in medical, scientific, spatial or other challenging domains,
and interfaces to different forms of data-intensive systems, such as databases, design tools, digital libraries, etc.

Submission Guidelines
Papers should be up to 5000 words in length, and should be submitted to the address given below. Demonstration proposals
should be marked as such, and should be submitted as short papers of up to 1000 words. The proceedings will contain both
papers and short reports on demonstrations (it should be assumed that demonstrations will have to be run on stand-alone PCs
unless presenters can bring their own hardware).

Important Dates <provisional>
March 1, 1999 Deadline for submission of papers
May 15, 1999 Notification of acceptance/rejection
June 15, 1999 Submission of camera ready copy

Programme Committee
Ghassan Al-Qaimari Isabel Cruz Peter Johnson Claudia Medeiros
Pete Barclay Alberto Del Bimbo Jessie Kennedy Norman Paton
Tiziana Catarci Max Egenhofer Wolfgang Klas Ben Shneiderman
Matthew Chalmers Carole Goble Ulrich Lang Lisa Tweedie
S.K. Chang Phil Gray Stefano Levialdi Dong-kuk Shin
Richard Cooper George Grinstein John Mariani Jean Vanderdonckt
Maria Francesca Costabile

Contact Details
For further information contact:
Norman Paton
Information Management Group,
Department of Computer Science,
University of Manchester,
Oxford Road, Manchester M13 9PL

OrganisingCommittee
Tony Griffiths
Norman Paton
E-mail: uidis99@cs.man.ac.uk
Tel: +44 (0)161 275 6139
Fax: +44 (0)161 275 6236

IEEE Computer Society
1730 Massachusetts Ave, NW
Washington, D.C. 20036-1903

Non-profit Org.
U.S. Postage

PAID
Silver Spring, MD

Permit 1398

