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Letter from the Editor-in-Chief

Bulletin Related Items

Apologies are in order for the long delay in publishing this issue. There are a number of things that have happened
recently that have affected theData Engineering Bulletinand are at least partially responsible for the delay. Let
me discuss these in turn.

Web Distribution In addition to distributing the Bulletin via ftp, the Bulletin can now be accessed electronically
on the web. I want to thank Toby Lehman of the IBM Almaden Research Center for initiating this move
to the web and for authoring the original web page (which has since evolved). The URL for the Bulletin’s
web site is “http://www.research.microsoft.com/research/debull”. The home page contains instructions on
how to down load issues of the Bulletin. Most TC members should find the web page easier to use than
ftp.

IEEE Copyright Policy The IEEE had not, in the past, required copyright transfer for Bulletin articles. Now
authors will be expected to sign a copyright transfer form. Part of the copyright agreement is that IEEE
permission is now required before articles can be made accessible through third party web channels, i.e.
pages not maintained by the author, his organization, or the IEEE. A possible inference is that this is an
effort to protect IEEE paper journals. A better strategy, I believe, is for the IEEE determine how to bring
technical information to its members at the lowest possible cost by exploiting the web. That may require
eventually abandoning paper journals.

Financial Status As in 1995, the IEEE Computer Society has generously provided the resources needed to pub-
lish the Bulletin in hardcopy. One might well ask, given web accessibility, why hardcopy is needed. There
are two short term answers.

1. Many readers outside of the United States do not have access to the internet, and hence to the web.
Over time, this number should drop rapidly, but this is still a problem.

2. Many authors like to see their work in hardcopy. I believe that as electronic publication becomes
more common, that this issue will fade as well.

So the Bulletin continues for now with hardcopy distribution. And we are grateful to the Computer Society
for supporting this.

About this Issue

The current issue is on a topic of growing importance in the database field. It is the integration of new forms
of data into traditional relation database systems. The issue focuses in particular on text and its retrieval. If the
database field is to continue to prosper, and indeed, if databases are to have an important long term role, then they
need to support vastly more of the world’s data. And most of this data is not formatted, much less formatted as
relations. Thanks to Eliot Moss for assembling this issue.

David Lomet
Microsoft Corporation
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Letter from the Special Issue Editor

This special issues of Data Engineering reflects the growing interchange between the database an information
retrieval (IR) communities, stimulated by the increasing desire to handle text and other media in overall database
/ information systems. The particular collection of papers was obtained by inviting submissions from participants
of a recent workshop on integrating text and databases, held in conjunction with the SIGIR ’95 conference. While
I cannot claim that they represent the entire state of the art, I hope you find them interesting and stimulating.

As you will see, there are interesting issues at every level of system conception and implementation: data
model, query model, query processing, internal data organization, transaction model, overall system architecture,
etc. The first four papers concern themselves with different ways of modeling and obtaining combined database
and IR functionality, using different system architectures, models, etc. The last paper explores transaction models
for combined database / IR systems. In any case, I hope you find them interesting, useful, and stimulating of new
ideas for research or commercial systems. In my view this is an important emerging area that will receive much
more attention in the future.

Eliot Moss
University of Massachusetts at Amherst
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Models for Integrated Information Retrieval and Database
Systems

Norbert Fuhr�

University of Dortmund, Germany

Abstract

In this paper, we show that there is a mismatch between information retrieval (IR) and database (DB)
concepts, and we devise solutions for this problem. DB oriented approaches have to distinguish be-
tween the logical and the content structure of objects, and should also consider the layout structure. Data
independence—not regarded in IR before—can be achieved by using the notion of vague predicates. Since
IR is based on uncertain inference, data models with uncertainty are required for an integrated IR-DB
system. For this purpose, we present a probabilistic relational algebra. As extensions, probabilistic Dat-
alog yields a more expressive query language, whereas a probabilistic nested relational model is more
appropriate for modelling document structures.

1 Introduction

In the classical view of the information retrieval (IR) and databases (DB) fields, databases contain formatted data
(or facts), while IR systems deal with unformatted data, i.e., texts. For formatted data, powerful data models and
query languages have been developed, whereas for texts, robust text analysis (e.g., stemming) methods, term
weighting, and retrieval models based on uncertain inference have been the focus of research. In addition, due
to the rather different application environments, the DB field has developed methods for coping with database
integrity, security, concurrency, and recovery. In IR, these topics have become an issue only recently. From
this point of view, there is little overlap between the two fields, and so there is no common basis from which
an integration could be started. In fact, current commercial solutions for IR-DB-integration offer very poor IR
functions, since they are based on Boolean retrieval. Thus, they ignore the intrinsic vagueness and uncertainty
of IR.

In this paper, we will show that due to the small overlap between the two fields, there is a mismatch of con-
cepts, since fundamental concepts from one field simply do not exist (yet) in the other. Specifically, the DB field
should consider that documents have logical, layout, and content structure. The concept of data independence is
new to IR. Viewing IR as uncertain inference requires data models with uncertainty. These issues and possible
solutions are described in detail in the following sections.

Copyright 1996 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

�E-Mail: fuhr@ls6.informatik.uni-dortmund.de
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2 Conceptual modelling of objects

In [MRT91], conceptual modeling of multimedia documents is discussed. In electronic publishing, one distin-
guishes between the logical and the layout structure of documents. For example, for document type “letter”, there
is a logical structure containing sender, recipient, salutation, several paragraphs, closing, and signature. The lay-
out structure may consist of several rectangular regions placed on the top, the bottom, centered or flush left or
right on a page. However, the logical and the layout structure are not sufficient for performing IR on document
bases. For this reason, content structure is added, which permits the representation of the meaning of documents.
For example, a letter may belong to the conceptual document type “offer”, consisting of frame (with sender and
recipient) and body, where the latter is a set of product infos with name, description, and price.

In [Fuhr92b], this approach is extended from documents to all kinds of database objects. It is claimed that
for databases comprising a large number of different object types, there is a need to support all three types of
structures.

Typically, the DB field deals only with thelogical structure of objects. There are powerful data models for
representing a broad range of possible object structures, for retrieving and manipulating these structures. Re-
cently, there has also been increasing interest in data models supporting the complex logical structure of text
documents (e.g., [Loef94]). However, the more complex the logical structures, the greater the need for consid-
ering the content structure. For example, assume that we have an object-oriented DBMS as part of a CASE tool.
In a bank application, the software manager might search for all modules affected by a new tax law. Since the
modules were developed with different tools and in different programming languages, their logical structure will
vary greatly; even two modules performing the same task may have very different logical structure. As another
example, consider an environmental information system where a user seeks information about the pollution of
ground water with nitrate. There may be text documents, maps, and relations containing relevant information. A
traditional DBMS forces the user to ask specific queries for each type of object.

Generally speaking, if there is a large number of object types, then there is a need for supporting queries that
are independent of specific logical structures. This leads to the introduction of a content structure of objects.
Below we describe some characteristics of the content view.

The major task of thecontent structure is to offer a unified view over a large number of object types with
varying logical structures. In general, this goal cannot be achieved without sacrificing precision. A major reason
for different logical structures is the variety of objects to be modelled. If we want to map different logical struc-
tures onto a single content structure, then we will lose precision. This can affect details of the (logical) structure
as well as the values stored within this structure. A simple example for this process is text indexing: Whereas a
document may have a complex logical structure, most IR methods represent its content by a simple set of terms
with associated weights. As another example, in materials databases, the properties of a certain material also de-
pend on the product form (e.g., bar, tube, or sheet metal) and on form-specific parameters (e.g., thickness of sheet
metal). In seeking materials with certain properties, it should be possible to query without specifying additional
parameters first (because these parameters are mostly material-specific).

In most applications, the content structure is derived from the logical structure—similar to a view in a database.
Generally, updates to the content view are not possible, since it is not clear how such an update should affect the
logical structure. For example, if we want to add a certain term to a document’s content view, how should its
logical structure change to reflect the new content structure?

In this context, the most important problem is the definition of the mapping from the logical structure to the
content structure. For the case of text documents, this has been (and is still) a major issue of IR research. Here
a very simple data model has been used for the content structure, and the mapping involves mainly statistical
methods. For other types of objects, more complex data models will become necessary, in order to cover at least
certain aspects of the logical structure.

Looking at thelayout structure, we raise the issue of whether or not there should be a layout structure for
objects in general. With classical data models, there was no need, since generic output formats were sufficient.
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However, for complex objects, CAD applications, or in geographic information systems, the presentation of ob-
jects is an important issue. Currently, this problem has to be solved in the application programs. But we think
that the layout structure can and should be integrated in the database, providing object-type-specific presentation
mechanisms. As a simple example, in object-oriented systems (e.g., Smalltalk), there exisits a “print” method for
most object classes, but with different implementations in different classes (by means of method overloading).
For an implementation of the layout view, this method should become more flexible, e.g., allowing for displaying
only certain parts of an object, or different presentations depending on the display context.

Recent studies in the field of IR and human-computer interaction have shown that small changes in the lay-
out have a significant impact on the performance of humans when using such a system (e.g., [All94]). When
databases with complex object structures are used in an interactive mode, layout structure will also be an impor-
tant issue.

For retrieving objects, queries may specify conditions on all three structures of objects. Assume that we have
an office information system; a query about information concerning computer equipment would relate to the con-
tent structure, a search for the last letter from Miller & Co. refers to the logical structure, and looking for a letter
with two tables on the first page concerns the layout structure.

3 Data independence in IR

Physical and logical data independence are fundamental concepts in the DB field, leading to three levels of data
organisation (physical, logical, and external). Unfortunately, data independence is a concept totally unknown
in IR. Here the IR task is subdivided into (document) indexing and retrieval. In fact, the former task does ex-
actly what the term “indexing” also means in the DB field: creation of an index (for concepts extracted from
documents). This index supports efficient processing of typical IR queries. However, IR systems only allow
for queries that can be processed this way. Thus, there is no physical data independence in these systems! In
[Fuhr96], we describe some problems where this approach falls short even in typical text retrieval systems: search
for full word forms vs. stemming, noun phrase search, and treatment of compound words.

Clearly, implementing logical data independence in IR systems would mean that a query may contain condi-
tions irrespective of the presence of an index for processing them, as long as there are means for evaluating the
conditions on the database, e.g., by scanning all documents. The query formulation should also be independent
of the presence of an index—in contrast to some commercial IR systems that provide scanning capabilities, but
not in a form that yields physical data independence.

In [Fuhr96], we describe an approach to implementing data independence in IR systems. As an underlying
concept, we present data types with vague predicates. In the usual IR systems, the concept of data type does not
show up explicitly, mainly because there is only one data type: text. However, in real IR applications, there is
an obvious need to cope with different data types to allow queries referring not only to the semantic content of
documents, but also to other attributes such as author, journal title, or publication year. Most commercial systems
are based on Boolean logic, and thus they can use data types with comparison operators as in DB systems. But IR
systems consider the intrinsic vagueness of query formulations—a user may be uncertain about the spelling of an
author’s name, or when he requests documents from this year a paper from last December may also be relevant.
For this problem, the concept of vague predicates was proposed in [Fuhr90]. Here a query condition consists
of an attribute name, a predicate, and a comparison value (e.g., AUTHOR� ‘Meier’). For a specific attribute
value (e.g., ‘Maier’) the vague predicate yields an estimate of the probability that the condition is fulfilled from
the user’s point of view—instead of a Boolean value as in DB systems. In [Fuhr92a], we showed how vague
predicates can be integrated into a (probabilistic) IR system.

More formally, a data typeD is a pair(jDj; PD), wherejDj is the domain andPD = fp1; : : : ; png is a set
of (vague) predicates, where each predicate is a functionpi : jDj � jDj ! [0; 1]. Some of the predicates may be
Boolean, i.e., restricted to the setf0; 1g.
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Here are a few examples of data types in IR systems. For text, usually there is a single predicate “contains”,
taking a single word or phrase as the comparison value, with the comparison based on stemming. Names require
a strict predicate for equality, and it would be useful to have two vague predicates, for phonetic similarity (e.g.,
based on Soundex codes) and string similarity (e.g., based on trigrams). For dates or numeric values, there could
be strict and vague versions of the usual comparison operators=, <, >, etc.

For multimedia IR, vague predicates are even more important, since term-based approaches can hardly be
used in such an environment; instead, similarity of values (i.e., vague equality) plays a major role. [Fal96] de-
scribes a rather general approach for dealing with similarity of multimedia data types such as time series or im-
ages, along with an access structure that allows for efficient processing.

Given this concept of data types with vague predicates, the specification of the conceptual level of IR systems
is straightforward. Here documents have attributes of certain data types, for which vague predicates are provided.
The implementation of the vague predicates—whether by a simple inverted list, complex access structures, or by
scanning—is a matter of internals of the IR system.

Based on this implementation of the conceptual level of the IR system, one can provide different views on
a collection of documents (using standard DB techniques), e.g., for data security or for monolingual views of a
multilingual database.

4 Data models for IR-DB systems

Having formulated the basic concepts common to IR and DB systems, we can undertake the major task: devel-
oping data models (and query languages) for integrated IR-DB systems.

In the logical view of databases, computing the answer to a queryq means finding all objectso that imply the
query, i.e., for which the logical formulaq  o is true. If one takes the same approach for document retrieval,
then a documentd should be retrieved in response to a query ifq  d can be shown to be true. In fact, this is
exactly what Boolean retrieval does. However, since IR must deal with vagueness and imprecision, this approach
is not adequate. Thus, it is argued in [Rijs86] that IR should be regarded as an uncertain inference process. Using
probability theory as a basis, Rijsbergen claims that document retrieval is equivalent to computing the probability
P (q  d) for a documentd.

Comparing the two types of inference, one can see that uncertain inference as used in IR is just a general-
ization of the inference used in DBMS. So an integration of IR and DB on the logical level appears feasible.
However, this view just sets the frame for a set of possible solutions. In order to arrive at a model that can be
implemented and also satisfies the needs of typical applications, one has to take a data model from the DB field
and generalize it so that it also comprises probabilistic inference.

4.1 A probabilistic relational algebra

In [FR96b], we present a probabilistic relational algebra (PRA) generalizing standard relational algebra, suitable
as the basis of an integrated IR-DB system. Below, we briefly describe PRA.

Unlike similar approaches, PRA is based on intensional semantics, which is the key to a probabilistic data
model that is a real generalization of relational algebra. Probabilities are introduced in the relational model in the
following way: Let �R denote an instance of an ordinary relation, and� a tuple from the corresponding domain.
Then we have either� 2 �R or � 62 �R. In probabilistic relations, we assume that� is associated with a binary
stochastic event�, where� = true if � 2 �R, and� = false otherwise. So we regard the probability� = P (� 2 �R)
as additional information belonging to a tuple in a probabilistic relation. We distinguish between basic events
and complex events. The actual database relations (hereafter called base relations) contain only basic events,
identified by so-called event keys. Complex events (denoted by event expressions) are Boolean combinations
of basic events. They are formed as a by-product of relational operators. By keeping track of the basic events
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leading to a tuple in a derived relation, we implement intensional semantics. Thus, for example, in PRA the
equalityR\S = R� (R�S) holds, whereas extensional semantics approaches (that only manipulate the tuple
weights) would yield different results for both sides of the equation.

DocTerm
� � DocNo Term

DT(1, IR) 0.9 1 IR
DT(2, DB) 0.7 2 DB
DT(3, IR) 0.8 3 IR
DT(3, DB) 0.5 3 DB
DT(4, AI) 0.8 4 AI

Figure 1: Example probabilistic relation

So a tuplet of a probabilistic relation is a triple(�; �; �) wheret:� is the data tuple containing the values for
the different attributes,t:� gives the event expression, andt:� is the probability of the event being true. For base
relations,t:� is given explicitly, whereas for derived relations, it is computed fromt:� as the probability of the
corresponding Boolean expression of the basic events being true. An example probabilistic relation representing
probabilistic document indexing is given in Figure 1.

� � Term
DT(1, IR)_ DT(3, IR) 0.98 IR
DT(2, DB)_ DT(3, DB) 0.85 DB
DT(4, AI) 0.8 AI

Figure 2:�Term(DocTerm)

� � DocNo
DT(1, IR) 0.9 1
DT(2, DB) 0.7 2
DT(3, IR)_ DT(3, DB) 0.9 3

Figure 3:�DocNo(�Term=’IR’ (DocTerm)) [�DocNo(�Term=’DB’ (DocTerm))

Now the five basic operations of relational algebra are redefined in PRA such that in addition to the manipu-
lation of the attribute values, we also form Boolean combinations of the event expressions of the tuple involved:
For union and projection, the disjunction of the corresponding event expression is formed, cartesian product leads
to the conjunction of the event expression, and for difference, we form the conjunction of the first argument and
the negation of the second argument; the selection operation does not change the event expressions of the tuples
selected. For example, Figure 2 gives the result of projecting DocTerm (DocNo, Term) onto the attribute Term,
and Figure 3 shows the answer to a query asking for documents about IR or DB.

In order to compute the probabilities of result tuples, the inclusion-exclusion formula ([Bill79, p. 20]) is ap-
plied. In addition, we need assumptions about the stochastic independence or dependence of the basic events.
In the examples shown above, we have assumed that the basic events are independent of each other. This as-
sumption is reasonable in most situations—many IR models are based on the same assumption. Another broad
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DY
� � DocNo Year

DY(1,1980) 0.8 1 1980
DY(1,1981) 0.2 1 1981
> 1.0 2 1990
DY(3,1985) 0.4 3 1985
DY(3,1986) 0.4 3 1986
DY(3,1987) 0.2 3 1987

Figure 4: A probabilistic relation for the imprecise attribute Year

GT
� � A Year

GT(1991,1993) 0.1 1991 1993
GT(1992,1993) 0.3 1991 1993
GT(1993,1993) 0.6 1991 1993
> 1.0 1994 1993
> 1.0 1995 1993
> 1.0 1996 1993

Figure 5: A probabilistic relation for the vague predicate~>

range of applications can be handled by regarding certain events as being disjoint of each other. For example,
imprecise attribute values can be handled this way. Therefore, we model these values as probability distributions
over the corresponding domain. As an example, the probabilistic relation DY depicted in Figure 4 shows some
documents for which the publication year is not known precisely: document 1 was published either in 1980 or
1981, document 2 certainly in 1990 (> denotes the certain event here) and document 3 in 1985, 1986, or 1987.
Events belonging to the same document are disjoint from each other, but events from different documents can be
regarded as being independent. For example, the PRA expression�DocNo(�YEAR>1985(DY)) searches for num-
bers of documents published after 1985; as result, we get the event expression (DY(3,1986)_ DY(3,1987)) for
DocNo=3 , with a probability of0:4 + 0:2 = 0:6.

In the examples given so far, we have used the traditional view of text indexing, which is less suitable for a
data model that addresses the conceptual level. Now we show how vague predicates can be handled in PRA. We
only give an intuitive explanation here; a more formal treatment can be found in [FR96b].

As a simple example, assume that a person searching for relevant articles published after 1993 may also be
interested in a highly relevant paper published one or two years before. In principle, any vague predicatepi:jDj�
jDj ! [0; 1] can be modelled by means of a probabilistic relation with two attributes for the arguments and the
tuple probability giving the result of the predicate. Figure 5 shows some tuples of the relation for the example
from above. Given this relation, it is obvious that we could express a vague selection condition like “Year~>
1993” on relation R by the PRA expression R1 �Year(�A=1993(GT)).

Mostly, the relation corresponding to a vague predicate will not be given explicitly; rather, it will be specified
implicitly by means of an internal function of the DB system.

With the different features as described above, PRA extends relational database systems for coping with un-
certainty and vagueness. It is the first model of this kind for which all equivalences from ordinary relational alge-
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bra hold. Due to the latter fact, we can exploit the connection between relational algebra and relational calculus:
We use the same transformation process from calculus to algebra but apply the algebraic expression to proba-
bilistic relations. So we have a probabilistic relational calculus that yields probabilistic relations as answers.

PRA only forms a starting point for the development of data models for integrated IR-DB-systems. In the DB
field, the shortcomings of the relational model are well known. From the IR point of view, the expressiveness of
relational algebra is not sufficient for advanced applications, and even for simple document structures, the data
modelling capabilities are inappropriate. Below, we present two approaches addressing these issues.

4.2 Probabilistic Datalog

New IR applications require inferential capabilities that are not available with relational algebra. In [Fuhr95a], we
show that hierarchical document structures, hypertext documents, or retrieval employing terminological struc-
tures such as thesauri raise the need for recursive query languages.

Given PRA, Datalog is a suitable candidate for such a query language. In [Fuhr95b], a probabilistic version
of Datalog is presented. We only want to mention the major ideas of this approach here.

Probabilistic Datalog is an extension of stratified Datalog (e.g., [Ull88]). On the syntactic level, the only
difference is that with ground facts, a probabilistic weight may also be given, e.g.:

0.7 docterm(d1,ir). 0.8 docterm(d1,db).
These ground facts represent the probabilistic relations of PRA. Rules and queries are the same as in ordinary
Datalog. So a query looking for documents both about IR and DB can be expressed as

?- docterm(X,ir) & docterm (X,db).
As an example involving recursion, consider retrieval in hypertext structures, where we have directed links

between single documents (or nodes). Assume these links also have probabilistic weights, e.g.:
0.5 link(d2,d1). 0.4 link(d3,d2).

The idea behind these weights is this: If we have a link from D1 to D2, and D2 is about a certain topic, then
there is a certain probability that D1 is about the same topic. This probability is given by the weight of the link
predicate. Now we can formulate the rules

about(D,T) :- docterm(D,T).
about(D,T) :- link(D,D1) & about(D1,T).

Due to the recursive definition, a document also may be about a term if it is only indirectly linked to another
document indexed with this term. Thus, the query

?- about(X,db).
would return three documents, namely d1 with probability 0.8, d2 with probability0:5 � 0:8 = 0:4 and d3 with
probability0:4 � 0:5 � 0:8 = 0:16.

The evaluation of probabilistic Datalog programs can be performed in the same way as with ordinary Datalog.
The only differences are the construction of event expressions for result tuples during the evaluation process and
the final computation of the tuple probabilities.

4.3 A probabilistic NF2 model

As a step towards increased data modelling capability, we developed a probabilistic nested relational model (prob-
abilistic non-first-normal-form, or pNF2 for short) [FR96a]. Using the NF2 model (instead of flat relations) for
IR has been proposed by several authors, e.g., [SP82].

As an example, consider the pNF2 relation shown in Figure 6. According to the type of probabilistic events
and the (in)dependence of tuples in a pNF2 relations, we distinguish between deterministic, disjoint, and inde-
pendent relations. Here BOOK is a deterministic relation with a deterministic subrelation AUTHOR. PRICE rep-
resents an imprecise attribute value, thus it is a disjoint (sub-)relation. INDEX is an independent relation which
gives a set of probabilistic index terms for each book.
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BOOK

� � BNO YEAR
PRICE

� � VAL

INDEX
� � TERM

AUTHOR
� � NAME

B> 1.0 1 92
B>P1 0.6 30
B>P2 0.4 25

B>I1 0.9 IR
B>I2 0.8 DB

B>A> 1.0 Smith
B>A> 1.0 Jones

B> 1.0 2 93 B>P3 1.0 29
B>I3 0.9 AI
B>I4 0.8 DB

B>A> 1.0 Miller

B> 1.0 3 92
B>P4 0.7 28
B>P5 0.3 25

B>I5 0.9 DB B>A> 1.0 Jones

B> 1.0 4 90
B>P6 0.5 32
B>P7 0.5 28

B>I6 0.9 DB B>A> 1.0 Jones

Figure 6: Relation BOOKdet(BNO, YEAR, PRICEdisj (VAL), INDEX ind (TERM), AUTHORdet (NAME))

IRDBBOOKS

� � BNO YEAR
PRICE

� � VAL

INDEX
� � TERM

AUTHOR
� � NAME

B> ^

B>I1
^

B>I2

0.72 1 92
B>P1 0.6 30
B>P2 0.4 25

B>I1 1.0 IR
B>I2 1.0 DB

B>A> 1.0 Smith
B>A> 1.0 Jones

Figure 7: Selection

The operations of pNF2 are similar to those of other NF2 models. Thus, we have the PRA operators plus
nesting and unnesting. Further, in selection formulas, set comparison and element test may be used as predicates.
As an example of selection, consider a search for books about IR and DB:

IRDBBOOKS = �[’DB’ 2 INDEX ^ ’IR’ 2 INDEX](BOOK)

= �[f’DB’,’IR’ g � INDEX](BOOK)

In the latter formulation, the constant set represents a deterministic relation. The result depicted in Figure 7 also
illustrates the interpretation of probabilities in this model: Here tuple probabilities in inner relations are condi-
tional probabilities with respect to the event expressions of the “surrounding” outer tuples. For this reason, the
indexing weights of the terms IR and DB both have changed to 1.0, since the original events already affect the
probability of the corresponding document tuple.

BL30
� � BNO PRICES

B>^ B>P2 0.4 1 25
B>^ B>P3 1.0 2 29
B>^ B>P4 0.7 3 28
B>^ B>P5 0.3 3 25
B>^ B>P7 0.5 4 28

Figure 8: Unnest followed by selection

Without further operators, a disadvantage of NF2 algebras is that in general operations on inner relations
cannot be performed without prior unnesting. This leads to rather complex expressions. For example a query
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looking for books with a price less than $30 must be formulated as follows:

BL30 = �[PRICES< 30](�[PRICE:PRICES](�[BNO,PRICE](BOOK)))

BL30A

� � BNO
PRICE

� � VAL

B>^ B>P2 0.4 1
B>P1 0.0 30
B>P2 1.0 25

B>^ B>P3 1.0 2 B>P3 1.0 29

B>^ (B>P4_
B>P5) 1.0 3

B>P4 0.7 28
B>P5 0.3 25

B>^ B>P7 0.5 4
B>P6 0.0 32
B>P7 1.0 28

Figure 9: Unnest with duplicated attributes, followed by selection

However, in the result some books occur multiple times (see Figure 8), and we do not see all possible prices of
a book. These problems can be overcome only by duplicating attributes first (for which we use the colon symbol
in the projection list), and a final projection on the relevant attributes (see Figure 9):

BL30A = �[BNO,PRICE](�[PRICES< 30](�[PRICE0:PRICES]

(�[BNO,PRICE,PRICE:PRICE0](BOOK))))

In order to overcome these problems, nested NF2 algebras have been proposed (e.g., [SS86]). For this pur-
pose, the pNF2 algebra supports path expressions as an additional parameter for all operators. In addition, we
also allow for path expressions in selection formulas, which we call selection paths. Thus, the last query from
above now can be expressed as

BL30A = �[/PRICE(VAL<30)](BOOK):

Here /PRICE denotes the selection path. This feature allows existential quantification over relation-valued at-
tributes. Universal quantification is achieved by negating the selection path (and the comparison condition, of
course). For example, the following asks for books dealing with IR only:

IRONLY = �[/INDEX(TERM=’DB’) ^ INDEX 6= ;](BOOK) = �[INDEX=f’IR’ g](BOOK):

5 Conclusions and outlook

In this paper, we have devised major concepts for the integration of IR and DB systems. From the DB point of
view, a clear distinction between the logical and the content structure of documents or objects in general should be
made, and the layout structure should be considered, too. Clearly, IR mainly has focused on the content structure,
so both fields have to broaden their view in this respect.

For IR systems, the implementation of physical data independence is essential in order to avoid a mismatch
between DB and IR concepts.

Since IR uses uncertain inference, we need data models with uncertainty for an integrated IR-DB system. As
a basic model, we have developed PRA. Probabilistic Datalog yields a more expressive query language, whereas
the pNF2 model is more appropriate for modelling document structures.
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Clearly, using object-oriented (OO) models for integrated IR-DB systems is the next step. The approach
described in [HW92] focuses on the behavioral aspects of IR objects, but does not address the issue of uncertain
inference. OO modelling of multimedia objects is used by many authors from the DB field, but the uncertainty
issue is hardly ever mentioned.

Our further work will use the pNF2 model as a starting point for the development of an OO data model with
uncertainty. As a major extension to other OO models, we also consider inheritance on attributes (see [Fuhr96]),
which is essential for performing networked IR. A related topic is the development of an OO retrieval logic. In
traditional IR approaches, the unit to be retrieved is always fixed—namely documents as a whole. With com-
plex document or hypermedia structures, determining the relevant units to be returned in response to a query is
a completely open problem so far.
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Abstract

In this paper, we present the approach of FIRE to utilizing an object-oriented Database Management
System (DBMS) for Information Retrieval (IR) purposes. First, a comprehensive overview of previous
attempts to use DBMSs for implementing IR systems is given. Next, differences between DBMSs and IR
systems, with regard to indexing and retrieval, are discussed. In addition, some shortcomings of DBMSs
with regard to supporting IR systems are pointed out. Then, an overview of FIRE, which is designed as
a reusable IR framework, is given and its approach presented in more detail. Special attention is given
to the design and implementation of an IR-index and how retrieval efficiency can be improved by using
the optimization facilities of the underlying object-oriented DBMS.

1 Introduction

Due to recent advances in Information Technology and Telecommunications, more and more information is pro-
duced and distributed by electronic means. Instead of plain ASCII texts, information is increasingly encoded in
different forms, e.g., as graphs, tables or formatted texts. These developments impose additional requirements on
the management and retrieval of information. Whereas in the past the focus in Information Retrieval (IR) was on
text, which was mostly considered to be unstructured, today’s IR systems have to face information which usually
consists of structured and unstructured parts and which may be composed of different media.

We observe further changes in the flow and distribution of information. In the past, the user of an IR sys-
tem was typically a passive consumer of information gathered at the special sites of professional information
providers; while nowadays a user is often both an information consumerand an information provider, e.g., in
a corporation’s document management system. Hence, data management issues like persistent storage of data,
concurrency control, and recovery after failures are gaining importance, and IR systems must cope with these
issues.

Developing techniques for the indexing and retrieval of heterogeneous information units is a demanding topic
genuine to the IR domain. In contrast to this, data management issues have already been investigated extensively
by the Database (DB) community, which has also developed theories and techniques applied in productive sys-
tems. Rather than ‘reinventing the wheel’, it is natural for developers of IR systems to try to profit from the results
of the DB community by basing IR systems on Database Management Systems.

Copyright 1996 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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In this paper, we report on our experience utilizing a Database Management System (DBMS) for IR purposes.
Section 2 reviews previous attempts to use DBMSs for implementing IR systems. In Section 3, we discuss differ-
ences between IR systems and DBMSs with regard to indexing and retrieval, and point out some shortcomings
of DBMSs with regard to supporting IR systems. Finally in Section 4, we sketch our IR framework, which we
call FIRE, and present our approach for using the functionality of an object-oriented DBMS in an IR system. The
paper concludes with some remarks on future work.

2 IR Systems Based on DBMSs

2.1 Relational DBMSs

A first approach to use a DBMS for IR purposes is to consider IR as a DB application. This has been proposed,
for instance, by Macleod & Crawford [Mac83], Blair [Bla88], and Smeaton [Sme90]. Common to these pro-
posals is that the IR systems are based on a relational DBMS, and SQL is used as retrieval language. These IR
systems do not store full documents, but bibliographic references to documents; these usually provide the title of
the document represented, the names of the authors, an abstract, some content descriptors, and the details about
the date and location of the publication.

This approach of making use of a DBMS has received major criticisms. One factor that has been criticized
especially, e.g., by Schek & Pistor [Sch82], is that the relational DB model represents information in a rather
unnatural way by a set of tables (relations). Further, SQL queries tend to be rather complex and difficult to un-
derstand; see for instance the examples given in [Mac91]. In addition, retrieval may be quite computationally
expensive, especially when information from different tables has to be combined by a ‘join’ operation.

A severe shortcoming of this approach is the restriction to reference retrieval. This restriction is not so much
voluntary as a matter of the underlying relational DB model. The relational model requires the fields of a record
to be of a fixed length, thus making it difficult for a relational DBMS application to manage information units
such as ordinary texts, which usually vary in length. (Of course, there are work-arounds like follow-up records,
but such work-arounds make the modeling of information even more awkward.) A second severe shortcoming
is that SQL in its basic form is restricted to exact matching. An exact match is appropriate for many DB applica-
tions, especially when information is structured to a high degree and the vocabulary used is rather fixed. In most
IR applications however, information units like texts are significantly less structured and the vocabulary used is
usually unrestricted. Correspondingly, users of IR systems find it far more difficult or even impossible to issue
a query which successfully delivers all information relevant to a given information need, but excludes irrelevant
material. Therefore, more advanced approaches to IR abandoned the exact matching paradigm and find instead
the pieces of information whichbest matchthe user’s query by applying weighting schemata. The user receives
as result aranked listwhich is sorted by the assumed probability that a piece of information is suited to answer
the user’s information need.

Several attempts have been made to provide better DB support for the development of IR systems by extend-
ing the relational model, or by adding new features to SQL. To provide more natural external views of informa-
tion, Schek & Pistor [Sch82] have proposed a generalization of the relational model which allows nested relations.
Lynch & Stonebraker [Lyn88] have introduced abstract data types, which make the formulation of content-based
search conditions more convenient, although retrieval is still based on the exact matching paradigm. An exten-
sion of SQL allowing a ‘similar-to’ comparison operator has been proposed by Motro [Mot88]. Furthermore,
various approaches have been developed for dealing with uncertain information, for instance by Garcia-Molina
& Porter [Gar90].
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2.2 Coupling an IR System with a DBMS

A different approach to making use of a DBMS for IR purposes is to couple an IR system with a DBMS. Croft et al.
[Cro92] attempted a loose coupling between the IR system INQUERY and IRIS, a prototype version of an object-
oriented DBMS. They chose an object-oriented DBMS since the object-oriented model allows one, in contrast
to the relational model, to store complex textual information in a quite natural way. The IR and the DB system
are coupled externally by a control module. There are links from the information units stored by INQUERY to
the corresponding textual objects of the IRIS database. The integrated system provides the functionality of both
underlying systems. Thus, the user may issue content-based queries as well as DB queries. However, a severe
problem of this coupling approach is that information is stored twice, by the IR system as well as by the DBMS.
This may cause consistency problems when information is modified. Furthermore, there is no full integration of
content-based queries and DB queries.

Gu et al. [Gu93] have chosen an alternative way to couple an IR system with a DBMS. They have embedded
the functionality of the IR system INQUERY into the relational DBMS Sybase. Furthermore, they have extended
SQL by a function which takes an INQUERY query as input and allows one to choose the INQUERY database
to be consulted for evaluating the query. This system avoids storing information twice: textual information is
stored and managed by the IR system and other kinds of information by the DBMS, which also provides pointers
to the textual information stored and managed by the IR system. The main drawback is that two different ap-
proaches for managing and retrieving information are used, which makes the management of information more
difficult. Further, the best match retrieval paradigm is restricted to textual information, whereas an application
of this retrieval paradigm to other kinds of information would be highly desirable, as for instance pointed out by
Fuhr [Fuh92].

2.3 Object-oriented DBMSs

Bearing in mind the shortcomings of the relational model, it has been proposed to use other models, more ap-
propriate than the relational DB model, as a basis for developing IR systems; e.g., an array model [Mac87] or an
object-oriented DB model [Har92p]. The object-oriented DB model is especially appealing, since object-oriented
technology is maturing and the first commercial systems are already available.

The object-oriented approach has also been adopted for developing our IR framework FIRE. The framework
is implemented using ObjectStore [Lam91], a commercially available object-oriented DBMS. In ObjectStore,
persistence is not part of the definition of an object, but a matter of allocation at the time of object creation (‘per-
sistence by allocation’). Thus, objects of the same type can be allocated persistently as well as transiently. Fur-
thermore, it makes essentially no difference whether we deal with a transient or persistent object. These features
of ObjectStore enable us to design and implement an IR system in a problem-adequate way, mostly neglecting
data storage details. Thus the developer of an IR system can rely on the DBMS’s means for persistent storage,
concurrency control, recovery after failure, etc., without having to accept severe restrictions, as experienced from
relational DBMSs.

Object-oriented DBMSs provide a useful basis for the development of IR systems, yet could support IR sys-
tems even further with regard to performance issues. ObjectStore, for instance, allows one to improve retrieval
efficiency by building specialized indexes and by optimizing queries. However, indexing and retrieval in an
IR system differ in certain aspects from indexing and retrieval in a DBMS, as described in the following sec-
tion. Consequently these facilities cannot be used directly for IR purposes. Modifying the core functionality of
a DBMS for exploiting these facilities is not in the range of a regular user of a DBMS, thus we cannot expect
a solution from the DB side — at least not in the short term. Yet, the optimization facilities of object-oriented
DBMSs can be utilized in IR systems by a proper design on the IR side, as is shown in Section 4.
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3 Some Differences between IR Systems and DBMSs

3.1 Index

The term ‘index’ is used both by the DB community and by the IR community, however with different meanings.
While the function of a DB-index is to improve performance, an IR-index typically also provides additional data.
In detail, we can observe the following differences:

� A typical IR-index is an inverted file with index entries, each consisting of a key representing a feature
derived from a source and a set of postings. A posting may include information about the frequency of
the given feature within the source, or may specify its position within the document in more detail. A DB-
index, however, only maintains the paths to the objects where an attribute has a certain value.

� In an IR application, information about the characteristics of the collection represented by an index is re-
quired when computing the relevance of an information unit to a user’s query. An example of such infor-
mation is the maximum frequency of a term in a collection of texts or the mean value and standard deviation
of a set of numbers. Since a DB-index serves only to optimize access, no such collection information is
needed.

Due to the differences, typical IR-indexes are not supported by DBMSs. Optimized access to information —
as is done by a DB-index — is, however, crucial for implementing efficient IR systems. Thus, how we can use
DB-indexes to build IR-indexes is an open research problem.

3.2 Retrieval

A typical DBMS provides a retrieval interface which allows one to check whether two values are equal, and to
determine whether a value is smaller or greater than another value. Usually such queries can be optimized, e.g.,
by instructing the DBMS to create and maintain appropriate indexes.

Advanced IR systems are supposed to support approximate (‘best’) matching. Unfortunately, approximate
matching is not supported by DBMSs. This is a severe shortcoming, since approximate matching is far more
time-consuming than exact matching, and therefore demands optimization facilities. To deal with the additional
complexity, we urgently need specially tuned matching methods and techniques to avoid a linear search through
an index. These methods and techniques should ideally work hand in hand with available DBMS techniques.

3.3 Indexing and Retrieval Functionality

In the case of a conventional IR application, i.e., one which is not based on a DBMS, the application developer
has to provide all the indexing and retrieval functionality needed. Developing an IR system on top of a DBMS
might save design and implementation effort, since DBMSs already provide indexing and retrieval functional-
ity. The task of the application developer would then be to choose appropriate functionalities and to instruct the
DBMS correspondingly. In order to index a set of objects for instance, the application developer would have
to state which object attributes are to be indexed in which way, and to select the index structures best suited for
the attribute values. Indexes would then be set up automatically under control of the DBMS. Unfortunately, the
options provided by DBMSs do not cover the full range needed for IR applications and do not allow one, for
instance, to index a text directly in a traditional IR manner using the indexing mechanisms of a DBMS. Thus,
we need to investigate how we can use indexing and retrieval functionalities of object-oriented DBMSs for IR
purposes.
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Figure 1: Overview of the most important classes of FIRE’s object model

4 The Approach of FIRE

4.1 An Overview of FIRE

FIRE is designed to facilitate the development of IR applications and to support the experimental evaluation of
indexing and retrieval techniques. In addition, the framework is supposed to provide basic functionalities for
several media and should end up as a flexible and extensible tool that can be used for developing a wide range of
IR applications. FIRE is an acronym for ‘Framework forInformationRetrieval Applications’. It is developed
in cooperation with the IR group at the Robert Gordon University, U.K.

The design and implementation of FIRE are based on an object-oriented approach. The object model of FIRE
defines the basic IR concepts and supplies functionalities that support the realization of an IR application. This
section gives a short overview of FIRE focusing on the most essential classes of FIRE’s object model. A more
comprehensive description of FIRE’s design and object model is given in [Son95].

FIRE represents documents by a set of features (or attributes). Note that the term document is used here in
a broad sense: documents may consist of structured and unstructured parts and may be composed of different
media. The classReprInfoUnit(see Figure 1) models documents in a generic way. It defines methods which
provide information about the modeling of a document representation as well as methods for accessing the fea-
tures of a document representation. In addition,ReprInfoUnitand its subclasses are responsible for organizing
the indexing and retrieval of documents of the respective type.

Concrete subclasses ofReprInfoUnitdefine how documents of a certain type, e.g., books, tables, etc., are
represented in an application. When dealing with text for instance, a new subclass ofReprInfoUnitmay be intro-
duced, consisting of features likeTitle, Authors, TextBody, andPublicationDate. The modeling of concrete types
of documents is not part of FIRE’s object model as this is an application-specific task. Nevertheless, the frame-
work supports the application developer in this task. The classInfoObjectElementand its subclasses provide a set
of data types like string, integer, person name, date, set, and list (cf. Figure 1), which are intended to be used for
the application-specific modeling of documents. If needed, the application developer may extend this set of data
types by adding new subclasses.InfoObjectElementhelps to reduce the effort for developing an IR application
by providing an associated interface for indexing an information unit, determining the similarity of two units,
etc. Further, this branch of the class hierarchy supports a uniform representation of document components, e.g.,
the author of a book is specified in the same way as the author of a chart table.

The classIndexis the implementation of a typical IR-index, which not only manages a set of indexing features
derived from a collection of documents but also provides information for calculating the probability of relevance
of information units to the user’s query. The classIndexis a generic class, which solves general tasks but does
not provide specific IR functionality. The latter is supplied by concrete subclasses ofIndex like Index-IDFand
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Index DB-Collection

IndexingFeature

Figure 2: Structure of the classIndex

Index-2Poisson, which implement particular weighting schemata (see [Har92m] for an overview of weighting
schemata).

In the following two sections, we discuss the design and implementation of an IR-index in FIRE more com-
prehensively. First, we present the design of the classIndexwith focus on IR related issues. Then, we discuss
some details ofIndexwhich support an efficient evaluation of queries and enable us to exploit the optimization
facilities of the underlying DBMS.

4.2 Design of an IR-Index

An Indexbasically consists of a set ofIndexingFeatures (see Figure 2). In addition, it may be associated with zero
or more objects of the typeDB-Collection, whose purpose is explained in the next section. AnIndexingFeature
consists of a feature, e.g., a normalized word from a text, and a source specification. The latter is essentially a
reference to the document from which the feature has been derived. In addition, anIndexingFeaturemay specify a
position within the source. Positional information is needed for indicating to the user why a particular information
unit has been retrieved, which is done by ‘highlighting’ the relevant pieces of the unit. Furthermore, weighting
schemata may use positional information, e.g., it may be assumed that words occurring in a heading are more
important than words in regular paragraphs. Finally, anIndexingFeatureis associated with the indexing method
that has been used for deriving the feature. Information units may be indexed in many different ways, and in
many cases more than one method can be applied for indexing a particular unit, e.g., weak or strong stemming
when indexing textual units. For consistency reasons, it is important that allIndexingFeatures of anIndexhave
been derived by the same method. Hence, FIRE associatesIndexingFeatures with the indexing method applied,
and checks whether theIndexingFeatureto be added to anIndexis compatible with the ones previously added.

The classIndexdefines a set of operations and methods (see Figure 3), which provide a uniform interface
independent of any particular retrieval model. The methodaddIFsof Index incorporates a set ofIndexingFea-
tures into anIndex. The adding of features does not cause any updating activities like sorting theIndexor re-
calculating indexing weights. Updates have to be invoked explicitly by anupdatemessage. We chose to sep-
arate the processes in order to avoid unnecessary computations, for instance, sorting anIndexagain and again
when indexing a whole collection of documents. The classIndexalso provides a method, calledgetIFsOf, for
determining theIndexingFeatures which have been derived from a particular source. By the methodretractIF-
sOf, theIndexingFeatures referring to a given set of sources can be retracted, whereas the methodclear removes
all IndexingFeatures from anIndex. Finally, the methodretrieveserves for retrieving information by evaluating
single query conditions. The results of the evaluation are passed to the query document, which is aReprInfoUnit
object. The query document invokes appropriate methods for combining the results and for computing the scores
(‘Retrieval Status Values’, RSVs) indicating the estimated relevance of an information unit to the user’s query.

FIRE supports an approximate matching on different data types. It allows one, for instance, to retrieve docu-
ments which cover a particular topic with a high probability and to retrieve documents which have a similar author
name or a similar publication date. As discussed before, an approximate matching may be quite time consum-
ing. In order to compensate computing efforts, anIndexobject may be instructed to support particular matching
methods. This can be done by an authorized user at run-time via the methodsupportMatchers. Also, previous
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Index

addIFs(features: IndexingFeatures): Boolean
update(): Boolean
getIFsOf(source: IO-Address):  IndexingFeatures
retractIFsOf(sources: IO-Addresses): Boolean
clear(): Boolean
retrieve(condition: QueryCondition): BasicRetrievalResults
supportMatchers(names: Strings): Boolean
getSupportedMatchers(): Strings

Figure 3: Operations and methods ofIndex

Index-IDF

getNumberOfSources(): Integer
getMaxFreqOfAnyIndexingFeature(): Integer
getMaxFreqOfIndexingFeature(f: IndexingFeature): Integer
getFreqOfIndexingFeature(f: IndexingFeature, s: IO-Address): Integer
getIndexingWeightOfIndexingFeature(f: IndexingFeature, s: IO-Address): Real

Figure 4: A concrete subclass ofIndex

instructions may be overwritten by new ones. Note that anIndexalways allows one to use any matching method
applicable to the given type ofIndexingFeatures, but performs supported methods more efficiently. The details
of the optimization of the matching process are fully encapsulated by the classIndex. This is advantageous as it
avoids bothering the user with optimization details.

The subclasses ofIndex implement particular weighting schemata. They define additional methods which
calculate the information required by the respective weighting schema. Figure 4 shows an example subclass of
Indexwhich implements a version of the ‘Inverse Document Frequency’ (IDF) weighting schema.

The subclasses ofIndexare not specialized to a particular type of indexing features. Hence, they can be used
in different contexts and the application developer needs to define a new subclass only if an additional weighting
schema is to be supported.

4.3 Improving Retrieval Efficiency

An Indexmay be associated with zero or more objects of the classDB-Collection(see Figure 2). ADB-Collection
serves to improve retrieval efficiency. It exploits the optimization facilities of the DBMS and may support ap-
proximate matching methods.

An object of the classDB-Collectionconsists of a collection ofIndexEntrys. An IndexEntryis composed
of a key, which may be of any type, and a set of pointers to theIndexingFeatures of anIndexwhich yield the
same key. (Thus,IndexEntrys have essentially the same structure as entries of an inverted file.) The key of an
IndexEntryis derived from the correspondingIndexingFeature, and may have the same value as the feature or
may be assigned some code for optimizing access. The interface ofDB-Collection, which is depicted in Figure 5,
is similar to the interface ofIndex. However,DB-Collectionis internally concerned withIndexEntrys rather than
IndexingFeatures. The derivation ofIndexEntrys from IndexingFeatures is invoked byDB-Collection.

A DB-Collectionutilizes the query optimization facilities of the underlying DBMS by instructing the DBMS
to create an appropriate DB-index for the given collection ofIndexEntrys. Since the DBMS does not index docu-
ment representations but collections ofIndexEntrys, we can apply IR indexing techniques without being restricted
in any way by the DBMS. Nevertheless, we can take advantage of the DBMS’s facilities for optimizing the evalu-
ation of queries. As a further advantage, FIRE does not need to provide any specialized index structures (B-trees,
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DB-Collection

addIFs(features: IndexingFeatures): Boolean
update(): Boolean
retractIFs(features: IndexingFeatures): Boolean
clear(): Boolean
xMatch(feature: IndexingFeature): IndexingFeatures
setMatcher(name: String): Boolean
getMatcher(): String
setOptionsDB-Index(options: String): Boolean
getOptionsDB-Index(): String

Figure 5: Interface ofDB-Collection

hash tables, etc.) as well as query optimization strategies, but can rely on ObjectStore’s means.
In addition,DB-Collectionserves to optimize approximate matching. When we try to find the objects of a

collection which are similar to a given object, we have to consider all objects. This is in contrast to an exact
matching where search can be restricted in most cases, e.g., by a binary search in an ordered index. To reduce
complexity, FIRE allows one to perform the approximate matching in arestrictedform, which is a combina-
tion of an exact and an approximate matching. In this matching mode, a key is generated in a first step for the
IndexingFeaturegiven with the query condition. Such a key may be for instance a phonetic code for a person
name. Then the correspondingDB-Collectionis consulted and itsIndexEntrys looked-up to determine theIndex-
ingFeatures for which the same key has been generated. Finally, a full approximate matching is performed with
the selectedIndexingFeatures. Note, anIndexmay support more then one approximate matching method at the
same time by creating differentDB-Collections. This is useful, since different retrieval situations may require
different matching methods. In the case no appropriateDB-Collectionexists for the matching method to be per-
formed, theIndexdoes the look-up itself, of course in a less efficient way, by going through the associated set of
IndexingFeatures.

The derivation of keys fromIndexingFeatures is a matter for the matching algorithms, since they know best
how to build appropriate keys. Also, the matching algorithms determine which kind of DB-index is most appro-
priate for the resulting keys. In FIRE, matching algorithms are represented by specialized classes rather than by
methods of other classes. This design decision allows the user to browse through the class hierarchy in order to
see which matching algorithms are available and how they are to be used; see [Son96] for further details. The
classes implementing particular matching algorithms are subclasses of an abstract class calledMatcher, which is
depicted in Figure 6. The important features of this class with regard to the current topic are the methodkeyfor
deriving keys fromIndexingFeatures (or InfoObjectElements) and the attributeOptionsDB-Collectionfor spec-
ifying the DB-index options to be applied for supporting a particular matcher.

The design of the classMatcherand its subclasses eases the optimization of approximate matching meth-
ods. It is fully sufficient to instruct anIndexto support certainMatcher(s). Knowing the names of the matching
algorithms to be supported, theIndexitself can gather the necessary details by asking the properMatcher(s).

Conclusions

In this paper, we have reviewed previous attempts to use DBMSs for implementing IR systems and pointed out
some shortcomings of DBMSs with regard to the support of IR systems. Furthermore, we have presented FIRE’s
approach for using the functionality of an object-oriented DBMS in an IR system. FIRE allows one especially

� to represent complex heterogeneous information in a natural way,
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Matcher

TypeInfoObjectElement: String
TypeDB-Collection: String
OptionsDB-Collection: String

key(o: InfoObjectElement): Object
key(o: IndexingFeature): Object
match(o1: InfoObjectElement, o2: InfoObjectElement): Real
match(o1: IndexingFeature, o2: IndexingFeature): Real
keyMatch(o1: InfoObjectElement, key1: Object, o2: InfoObjectElement): Real
keyMatch(o1: IndexingFeature, key1: Object, o2: IndexingFeature): Real
restrictedKeyMatch(o1: IndexingFeature, key1: Object, o2: IndexingFeature, r: IO-Addresses): Real

Figure 6: ClassMatcher

� to utilize the query optimization facilities of the underlying DBMS for IR purposes, and

� to reduce the complexity of an approximate matching.

In the near future, we will perform experiments to quantify the effect of the DBMS’s optimization facilities in IR
applications and to test the performance of the restricted approximate matching.
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Abstract

Information is a combination of structured data and unstructured data. Traditionally, relational database
management systems (RDBMS) have been designed to handle structured data. IR systems can handle
text (unstructured data) very well but are not designed to handle structured data. With present day in-
formation being a combination of structured and unstructured data, there is an increasing demand for
an IR-DBMS system that incorporates features of both IR and DBMSs. We discuss a framework that in-
corporates powerful text retrieval in relational database management systems. An extended SQL with
probabilistic operators for text retrieval is defined. This paper also discusses an implementation of the
probabilistic operators in SQL.

1 Introduction

The state of the art is that much information, especially multi-media, is represented as a combination of both
structured and unstructured data. Structured data comprises data types like integer, real, fixed-length string; un-
structured data comprises text, images, audioetc. Structured data has been efficiently stored and retrieved us-
ing relational database management systems (RDBMS). Text, an unstructured component of information, has
been traditionally stored and retrieved using Information Retrieval (IR) systems. RDBMSs use exact matching
to retrieve data. while IR systems use approximate matching. IR systems are not suitable for structured data and
RDBMSs are not suitable for unstructured data. RDBMSs have the additional advantage of addressing the issues
of concurrency, recovery, security and integrity, while most IR systems don’t. The gap between structured and
unstructured components in data has been recently narrowed (e.g.,medical information systems, pharmaceutical
systems) and has demanded a system that incorporates the features of both RDB and IR systems.

Our goal is to add powerfultextretrieval capabilities to an RDBMS using the relational framework and SQL.
Regular boolean operators are used on the non-text attributes and probabilistic operators are used on the text

Copyright 1996 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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attributes. The probabilistic answers are converted into boolean values and later combined with the results of the
non-text component of the query. The final result set is ranked on the probability (belief) that a record is relevant
to the text query.

We have an existing information retrieval system INQUERY [2]. We are experimenting on implementing
the same retrieval strategy in a relational database management system, DEC Rdb. Such an implementation will
add powerful text retrieval capabilities to an RDBMS, facilitating the construction of IR systems that have all
the features we get from an RDBMS (concurrency, recovery,etc. ) [1]. This paper discusses the issues, our
experiences and status.

2 Integrating IR and RDBM Systems

Integrating IR and RDBMS could be viewed at different levels:

� a loosely-coupled IR/RDBMS system, and

� a tightly-coupled IR/RDBMS system.

2.1 Loosely-coupled IR/RDBM system

A loosely-coupled IR/RDBMS system can be viewed in different ways:

� IR system as an application of RDBMS,

� A Hybrid of IR and RDBM systems, and

� Using RDBMS for storing IR data structures.

2.1.1 IR System as an Application of RDBMS

We could build an IR system as a RDB application without any major modification to the existing RDBMS [6].
These applications are based on “exact matching”, and query evaluation is “boolean” in nature. Probabilistic
evaluation of queries is very effective fortext retrieval. Blair [1] uses the concept of probability for ranking the
records. The inability of such systems to handle fuzzy queries results in an IR system with poor retrieval perfor-
mance (lowprecisionandrecall). Also, IR data structures tend to vary in size greatly, and thus the application
would be inefficient.

2.1.2 A Hybrid Approach

A hybrid IR/DB system utilizes both an IR and DB system. Anembedded full integrationis proposed by Guet al.
[5]. This approach proposes the use of two distinct systems, an IR system (INQUERY) and RDBMS (Sybase).
The inverted lists for thetext fields in the RDBMS tables are stored in INQUERY. An extended SQL (ESQL)
is proposed which has both boolean and IR operations. A form-based IR interface is provided for the end users
and the user’s intention is interpreted into a program described by a query language called ESQL which is an
extension of SQL. The ESQL program is then translated to a standard SQL program and an INQUERY query
by aparser and interpreter. The INQUERY query is sent toProcINQUERY- an INQUERY version which can
be invoked as a procedure, and output the information about ranked textual data into Sybase. The SQL query
is then sent to Sybase which searches the corresponding data based on the outputs of the ProcINQUERY. The
disadvantages of such an approach are that we use two different systems, and we lack flexibility in combining
IR and boolean parts of the query. This motivates us to develop an RDBMS system which does not make use of
any IR system, but instead, stores all the IR data structures in the RDBMS and implements all the IR operators
in SQL itself. Section 3 explains our approach to achieve the above mentioned goal.
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2.1.3 Using RDBMS for storing IR data structures

Information retrieval systems index unstructured text into aninverted indexor inverted file[8]. For each term
a separate index is constructed that stores the record identifiers, or document identifiers, forall the records con-
taining that term. With an inverted index, the record set corresponding to a given query formulation is easily
determined. The identifiers for all retrieved items can be obtained by extracting from the inverted index the list
of record identifiers corresponding to each query term and combining these record identifiers appropriately. For
supporting probabilistic retrieval the term statistics are also stored along with record identifiers. In order to sup-
port complex query operators likephraseor proximity, the locations of each occurrence of the term in a record
are also stored (proximity information). The number of tuples of an inverted file is huge when compared to the
number of documents or records they represent. Thus the number of tuples in an inverted file will be the number
of unique terms in the documents times the average number of terms in a document. As stated by Blair [1], any
discussion of database management system implementation must address the controversial issue of processing
speed. Traditional beliefs tend to hold that relational systems trade flexibility of query and database structuring
for reduced processing speeds. In order to overcome this bottleneck, we sacrificed some flexibility and reduced
the number of tuples to the number of unique terms in the collection or documents database. The term statistics
and the proximity information are stored in abinary objector blob. We used the INQUERY information retrieval
system and DEC Rdb RDBMS for this experiment. The following paragraphs discuss the lessons learned from
this implementation.

Rdb was used to store all of INQUERY’s file-based data structures (inverted file,dbfile, and term dictionary).
The inverted list file contained term ids and their inverted lists. Thedbfile contained document indices necessary
for providing user interface functions in the API. In this implementation, Rdb did not know the internal structure
of the inverted list and thedbfile. The encoded inverted list anddbfile information was stored in Rdb as blobs.
An SQL-based interface was used between INQUERY and Rdb. There was an overhead in this implementation
for INQUERY to decode the blob and extract the required information. Other than the query language, all the
other features like concurrency control, recovery,etc. , (refer Section 1) of an RDBMS were exploited without
sacrificing performance during document indexing and query evaluation.

2.1.4 Results ofBlob Implementation

The results from theblob implementation are compared with thekeyfileimplementation of INQUERY in Table 2.
Keyfileis a B-tree package which is used in INQUERY to store all its data structures. The experiments were done
on a DEC Alpha running OpenVMS with 80 Mbytes of main memory. DEC Rdb V 6.0 was used. Several test
databases with different characteristics were used to analyze the performance of the keyfile and Rdb versions of
INQUERY. Table 1 shows the characteristics of the test databases used. Table 2 shows that the elapsed time of
the Rdb version is in the same order of magnitude as that of the keyfile version and we get all the advantages of
using an RDBMS.

2.2 Tightly-coupled IR/RDBM system

Different approaches have been proposed for a tighter integration of IR and RDBM systems [4, 7, 1, 9]. All
these methods suggest implementing a new system incorporating the proposed theories. Scheket al. [9] propose
an extension to the relational model allowing Non First Normal Form (NF2) relations. They propose extensions
to relational algebra with emphasis on new “nest” and “unnest” operations, which transform between first normal
form relations andNF2 ones. This allows the attribute domains to be sets and sets of sets, suitable for IR (e.g.,
list of words as a single attribute).

Fuhr [4] proposes a probabilistic relational model which combines relational algebra with probabilistic re-
trieval. He proposes a special join operator implementing probabilistic retrieval. This model retrieves not only
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Table 1: Characteristics of test databases

Attribute Database
cacm arman wsj89

Raw data 3 Mbytes 10 Mbytes 39 Mbytes
Number of documents 3204 628 12380
Number of unique words 5942 31838 68058
Total number of words 383182 907668 5451898
Number of transactions 112599 388066 2606670
Number of queries 50 50 50
Average number of words per query 7 94 94

Table 2: Resources used by INQUERY v1.6 on different test collections

Collection
Performance Metric cacm arman wsj89

Keyfile Rdb Keyfile Rdb Keyfile Rdb
Buffered I/O count 98 154 124 226 125 233
Peak working set size 4896 31072 6496 32120 17616 40960
Direct I/O count 345 406 1813 937 12595 3544
Peak page file size 19040 81760 20656 85072 329286 106496
Page faults 314 3174 424 4239 1193 21704
Charge CPU time (seconds) 9 12 20 66 111 163
Elapsed time (seconds) 15 22 40 85 221 246

documents but also any kind of objects. Further, probabilistic retrieval provides implicit ranking of these ob-
jects. Fuhr argues that with independence assumptions, the relational model is a special case of this probabilistic
relational model.

The above approaches demand a new design of the DBMS. This is expensive and would satisfy only IR re-
quirements. Instead we propose a method in which the probabilistic retrieval can be done in the existing relational
framework and also suggest ways to implement special join operations using SQL. Section 3 explains how IR
data structures can be stored in an RDBMS so that SQL can be used on them to support probabilistic operators
and special joins.

3 Adding TextRetrieval Capabilities to RDBMS

The two main issues that must be addressed in order to add IR capabilities to an RDBMS are the storage of IR
data structures and query language support for IR operators. We observe from Section 2.1.3 that the blob imple-
mentation to store IR data structures in RDBMS is quite effective. Since our framework proposes to implement
IR operators using SQL, we have a requirement that the data structures be accessible through SQL, obviously
a table. If IR data structures are stored as regular tables, then it leads to poor data storage and retrieval perfor-
mance.. To solve this problem,Cooperative indexing[3] can be used for efficient storage and retrieval. In this
approach, the IR components of the system define what is extracted from documents (text attributes) along with
the related index structure, and the database system provides efficient access to the index. The cooperative index
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can be accessed, like any regular table, through SQL. Our main focus here is to provide support for IR operators
in the query language and a method to evaluate such complex queries.

3.1 Retrieval Model

Our text retrieval framework is based upon a type of Bayes net called adocument retrieval inference network
[10, 2] (which is used in INQUERY). The inference net has two componentsi.e., the document network and the
query network. The document network represents the content of the text and the query network represents the
need for information. This framework creates a document network for thetextattributes, creates a query network
for thetextcomponent of the query, and uses the network to retrieve records that satisfy thetextquery. The result
from the text and the non-text query components are combined to obtain the final result.

The document network is created automatically by mappingtextattribute onto content representation nodes,
and storing the nodes in an inverted file for efficient retrieval. For each term a separate index is constructed that
stores the record identifiers, term statistics and term position information forall the records identified by the term.
This information is stored in a relational table, say INVLIST (TERM, DOC ID, TF, MAX TF, PROX), where
TF is the term frequency, MAXTF is the maximum term frequency and PROX is the position information.

3.2 Extending SQL to Support IR Operators

Text retrieval is based on partial matching and inference and thus returns scores (beliefs) as answers. These beliefs
represent the relevance of a particular document (record) to the query. The traditional SQL operators are not
suitable for handling beliefs since SQL operators are boolean in nature. Thus, additional text handling operators
need to be added to SQL, as well as methods to combine the results from such operators with the traditional
boolean operators. An extended SQL (ESQL) is defined as follows to supporttextretrieval. The ESQL will have
a non-text component and a text component. The non-text component uses the regularWHEREconditions and
operators of SQL. The following probabilistic operators [10, 2] are supported in the text component:

PAND: Probabilistic (“fuzzy”)andof the terms in the scope of the operator.

POR: Probabilisticor of the terms in the scope of the operator.

PNOT: Probabilisticnegationof the term in the scope of the operator.

PSUM: Value is the mean of the beliefs in the arguments.

PWSUM: Value is the mean of the weighted beliefs in the arguments.

Here it is assumed that all the probabilistic operators are localized to a subtree of an ESQL query. An example
ESQL query on a table DOCUMENTS (DOCID, DATE PUBLISHED, AUTHOR, TEXT) to get records about
“operating system design” and published after “04/30/90” will be:

Example 1:

SELECT DOC_ID
FROM DOCUMENTS
WHERE DATE_PUBLISHED > ’04/30/1990’

AND TEXT_QUERY( TEXT CONTAINS ’operating’
PAND ( TEXT CONTAINS ’systems’

POR TEXT CONTAINS ’design’) );

The query tree for the text component of the query in Example 1 is shown in Figure 1(a).
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Figure 1: (a) Text query tree (b) Belief lists at different nodes

3.3 Query Evaluation

An ESQL parser is used to divide the query intotextandnon-textcomponents. The non-text component is eval-
uated using regular SQL statements. The text component is evaluated using SQL statements with external func-
tions. External functions are used to support IR operators. The result set from such an evaluation has record
identifiers and belief scores. The result set is sorted in the descending order of belief scores. A threshold is ap-
plied to the result set for the text component. The threshold can be either the topn records or records greater than
a specific threshold (say 0.4). Finally, the result set from the non-text component is used as a filter to generate
the final result set.

A query network is created from thetextcomponent of the user query. In this section we show how thetext
component of the query can be evaluated using SQL and later combined with the non-text component. The query
evaluation can be term-at-a-time or record-at-a-time.

3.4 Term-at-a-Time Processing

In term-at-a-time processing, each node in the query tree is evaluated for all documents or records. We evaluate
the tree bottom up, as follows.

3.4.1 Generating belief lists at the leaf nodes

Belief lists are generated for each leaf node. A belief list is a list of record identifiers and associated belief values
at a given node, as well as default beliefs and weights. Node belief scores are calculated [10, 2] and normal-
ized using the statistics stored in the inverted list (INVLIST table). Belief lists can easily be generated from
INV LIST in SQL. External functions [12] are used to calculate the belief scores. The belief lists at the leaf
nodes for Example 1 are shown in Figure 1(b).
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Figure 2: Special Join operation

3.4.2 Evaluating probabilistic operators

The probabilistic operators in the query tree are evaluated with a bottom-up strategy. Each operator is evaluated
by executing a special join operation (different for different operators) on the belief lists of its children. A special
join is achieved in two steps:

� A full outer join [12] of the two belief lists of the children is done, replacing all the NULLs with a default
belief value, such as 0.4.

� Combine the two belief values for each record using the formula for each operator [10]:

1. POR:1� (1� b1)(1� b2)

2. PAND:b1 � b2

3. PNOT:1� b1

4. PSUM:
�
b1+b2
2

�

5. PWSUM:
�
(w1b1+w2b2)w

w1+w2

�
wherew1 andw2 are weight associated with the child nodes.

This is also implemented using external functions.

The output of the special join is again another belief list. By evaluating all the nodes, bottom-up, we will finally
have a belief list at the root, which is a list of record identifiers and belief values. The special join operation for
POR node in Example 1 is shown in Figure 2.

3.4.3 Generating the final result set

The non-text component of the ESQL query is later applied as a filter on the result set of the previous step to
obtain the final result set. The belief values in the belief list are used to rank order the result set. TheORDER BY
clause in SQL can be used to rank order the records. The number of records in the result set is restricted by either
using athresholdon the belief value or by using thetop n records. If threshold is used, then aWHEREclause
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like BEL > 0.3 can be used, whereBEL is the belief for this document. If the topn strategy is used, then a
condition likeLIMIT TO n ROWScan be used.

The SQL statement for evaluating the text component of the ESQL query of Example 1 is as follows:

SELECT DOC_ID, (1 - (COALESCE(T1.B1, 0.4) * COALESCE(T2.B2, 0.4)))
FROM ((SELECT DOC_ID, BEL(TF, MAX_TF, DOC_FREQ)

FROM INV_LIST
WHERE TERM = ’system’ ) AS T1 (DOC_ID, B1)

FULL OUTER JOIN
(SELECT DOC_ID, BEL(TF, MAX_TF, DOC_FREQ)

FROM INV_LIST
WHERE TERM = ’design’ ) AS T2 (DOC_ID, B2)

) AS T4 (DOC_ID, B4);

HereBEL() is an external function which calculates the belief score for a record.

3.5 Record-at-a-Time Processing

In contrast to term-at-a-time processing, where each query node is evaluated for all the records, in this method
the entire query tree is evaluated for each record. This can be better because it avoids the expensive special joins.
The non-text query is used as a filter to obtain the record set on which the text query is evaluated. For each record
in the filtered record set, we do the following:

Step 1: Calculate the belief value for all the leaf nodes (query terms) for this record. The belief value is calcu-
lated from the inverted list (INVLIST) as discussed in Section 3.4.

Step 2: Evaluate the entire query tree for this record. All the probabilistic query operators are implemented
as external functions [12]. These external functions take two belief values as their arguments and return
another belief value. Thus these external functions can be nested. Since nesting can be done, the entire
query is easily implemented. If b1, b2 and b3 are the belief scores for a specific record (sayDOCID =
ID 1) at the leaf nodes for Example 1, the text component is evaluated as shown in the SQL statement
below. HerePANDandPORare external functions. It should be noted that b1, b2, and b3 are themselves
SQL statements which calculate belief scores from the term statistics stored in INVLIST.

Step 3: A threshold is applied on the final belief b (e.g.,b> 0.5) to convert the probability into a boolean result
similar to the method of Guet al. [5].

SELECT DOC_ID FROM DOCUMENTS
WHERE DOC_ID = ID_1
AND PAND (b1, POR (b2, b3)) > 0.5
AND DATE_PUBLISHED > ’04/30/1990’;

The result set is ranked in the descending order of belief using theORDER BYSQL clause to obtain the final
result. The SQL statement for the entire ESQL query is:

SELECT DOCUMENTS.DOC_ID,
PAND ((SELECT COALESCE (BEL(TF, MAX_TF, DOC_FREQ), 0.4)

FROM INV_LIST
WHERE TERM = ’operating’
AND DOCUMENTS.DOCID = INV_LIST.DOCID
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), POR ((SELECT COALESCE (BEL(TF, MAX_TF, DOC_FREQ), 0.4)
FROM INV_LIST
WHERE TERM = ’system’
AND DOCUMENTS.DOCID = INV_LIST.DOCID

), (SELECT COALESCE (BEL(TF, MAX_TF, DOC_FREQ), 0.4)
FROM INV_LIST
WHERE TERM = ’design’
AND DOCUMENTS.DOCID = INV_LIST.DOCID

))) AS BEL
FROM DOCUMENTS;

This SQL statement would generate a table ofDOCID andBEL for all the documents in the DOCUMENTS
table. It should also be noted here that theDOCFREQin the above SQL statement is again an SQL statement
like

SELECT COUNT(*) FROM INV_LIST WHERE TERM = ’operating’;

Even though both theterm-at-a-timeandrecord-at-a-timeapproaches return the same result set, the latter
has an advantage in speed since there are no JOIN operations, which tend to be expensive. More optimization
can be added in Step 2, by choosing a small set of records to evaluate the query on, depending on the operators
in the query.

3.6 Evaluating PROXIMITY Operators

PROXIMITY operators are those which rely on the the relative positions of the terms in a document. Some ex-
amples of PROXIMITY operators [2] are

P#n: A match occurs whenever all of the arguments are found, in order, with fewer thann words separating
adjacent arguments. For example A P#3 B matches “A B”, “A c B” and “A c c B”.

PHRASE: Value is a function of the beliefs returned by the P#3 and PSUM operators. The intent is to rely upon
full phrase occurrences when they are present, and to rely upon individual words when full phrases are rare
or absent.

Evaluating proximity operators is much more complicated than evaluating the simple operators explained in ear-
lier sections. These operators requireproximity listsfor evaluation. A proximity list contains statistical and prox-
imity (term position) information by document for a particular term. The proximity lists should be instantiated at
the term nodes of the proximity operator nodes and propagated upwards. The proximity lists are converted into
belief lists before being propogated to simple operators. Proximity lists are transformed into belief values using
the information in the list, and are combined using weighting or scoring functions. Belief lists may be computed
from proximity lists but the reverse derivation is not possible. Creating, merging, and transforming proximity
lists can all be implemented partly as external functions and partly in SQL.

4 Conclusion

An RDBMS can handle text more efficiently by storing inverted lists of the text fields in cooperative indexes,
and SQL can be used to support IR operators. An extended SQL can be defined with additional IR operators.
A pre-processor can be designed to transform the ESQL query into the corresponding SQL query. Performance
completely depends on how efficiently cooperative indexing is implemented. More efficient implementations
can be done by modifying the SQL engine to support the probabilistic operators. In this paper, we have assumed
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that there exists only one text field, but there can be any number of text fields, with one cooperative index for
each text field. The corresponding cooperative index should be selected during ESQL processing. With such
a system, both structured and unstructured data can be handled efficiently and effectively without designing a
totally new system. We are presently looking at allowing probabilistic operators anywhere in the query without
the restrictions that they occur together, and the impact of such a design on precision and recall.
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Abstract

Requirements of modern Hypermedia Document Systems include support for structured documents and
full DBMS and IRS functionality.1 An objective of DBMSs is to store and facilitate updates of highly
structured and typed data. In conventional IRSs, however, documents are perceived as flat. Uncertainty,
on the other hand, is a principal notion in the IRS context. In order to combine the advantages of both
DBMSs and IRSs we have coupled the IRS INQUERY with the OODBMS VODAK. To model document
structure, we have chosen SGML. SGML documents are stored in the OODBMS, and additional full text
indexing is done by the IRS. The coupling consists of OODBMS classes encapsulating the IRS function-
ality. As SGML elements are modeled by database objects in an object oriented framework, queries can
be modeled by means of methods—including content based queries.

1 Introduction

Due to the proliferation of information highways and digital libraries, administering very large hypermedia doc-
ument bases is becoming more and more important. Existing systems do not yet provide all the functional-
ity needed by the information systems of the future. As an example, consider the MultiMedia Forum (MMF)
[Sue+94], an interactive online journal from our institute. There are different ways in which articles of this jour-
nal may be accessed: via the table of contents of a particular issue, by means of navigation, or by means of specific
database queries. In more detail, queries may refer to document characteristics, e.g., all press releases may be
selected. As MMF-documents are SGML documents ([Bry88]) that conform to a proprietary document-type def-
inition, this is feasible. Database functionality is essential, because the document stock may be modified by the
editors concurrently with other access operations. Moreover, one would like to be able to formulate one’s infor-
mation needs with a certain degree of vagueness with regard to document content. The content may be either in
textual form or of a continuous media type.

In this article, we describe the approach we have taken to build a system incorporating these characteristics.
Some of the concepts described here are dealt with in [VAB96] in greater detail.

Copyright 1996 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1In this article, we use the following abbreviations: DBMS= Database Management System, IRS= Information Retrieval System,
OODBMS= Object Oriented Database Management System, SGML= Standard Generalized Markup Language.
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1.1 IRS and OODBMS Features

In this section we briefly summarize some of the main IRS and OODBMS features relevant for Hypermedia Doc-
ument Systems. IRSs manage sets of independent documents called “collections”. In most IRSs documents are
seen as a list of words. No inner structure (e.g., hierarchies of chapters, sections, and subsections) is supported.
Collections are mapped to an index structure (often an inverted list of words), which is usually stored within the
file system. Indexing is a complex process, where, e.g., word stemming and thesauri are used. An IRS query
usually consists of terms (words) and is against the documents in a collection. During query processing, the IRS
computes relevance values for each document. The result is a ranked list of documents that are supposed to be
relevant to the query. A central aspect of IRSs is that uncertainty is taken into account in index structures, in
queries, and in the matching process during query processing.

OODBMSs can store highly structured data. According to [Atk+89], features of an OODBMS are persis-
tence, concurrency control, recovery, and declarative access (from the DBMS perspective); complex objects,
object identity, encapsulation, types and classes (including inheritance), and extensibility (from the OO perspec-
tive).

1.2 Analysis of Hypermedia Document System

The following properties should be supported by a hypermedia document management system:

(1) Support for structured documents: The document model should include support of hierarchies and hyper-
links.

(2) Support of full DBMS functionality.

(3) Support of IRS functionality: Regular expression search in text documents is not sufficient.

With regard to (1), document standards such as SGML [Bry88], HyTime, ODA, etc., have been developed.
With regard to (2), DBMSs are commercially available. OODBMSs allow management of documents with com-
plex structure [BAN94], such that (1) and (2) are addressed simultaneously.

When considering requirement (3), there is an important difference from the other requirements. Standard-
ization, which is a major issue with the first two cases, is not possible in this particular context. Namely, a formal
definition of the semantic interpretation of document content cannot be given. Rather, there is a variety of ap-
proaches with regard to automatic interpretation of documents, not just one correct way of extracting information
extraction from text. If other media types, such as images, video, or audio, come into the fray, the situation is
aggravated. In consequence, when building an integrated system, the architecture must be flexible enough to sup-
port eventual replacement of the retrieval component. Combining the three basic requirements leads to a further
important property.

(4) Integration of the features mentioned so far. While all of requirements (1), (2), and (3) should be met, this
should not give rise to unnatural restrictions on a logical level. Beyond that, efficiency of the implemen-
tation should not be traded for full integration on the logical level. The particular semantics of the data
model and access operations for more efficient processing must be exploited by the system.

1.3 Handling SGML Documents with OODBMSs

The objective of the HyperStorM (‘Hypermedia Document Storage and Modeling’) project is to build an object-
oriented database application framework for structured document storage [ABH94, BAN94].

Documents’ database-internal representation reflects their logical structure. In principle, there is a database
object corresponding to each logical document component (e.g., one object corresponding to the title-element,
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Figure 1: Building Blocks of the Coupled System

one to the abstract, another one to the introduction, etc.). The database objects corresponding to a document’s
elements make up a hierarchy. Text or raw data of other media types is contained in the leaf objects. For each
element type from the DTD, there is a corresponding so-called element-type class. Its instances are the database
objects corresponding to the respective elements. With our database application, there is no restriction to a par-
ticular set of document types; rather, documents of arbitrary types can be administered without giving up the
element-type information. In [ABH94] it is described how to insert a document-type definition and correspond-
ing documents into the database.

2 Our Coupling Approach

We have applied our coupling approach to the SGML framework described in the previous section. The integra-
tion of an IR-component with the OODBMS requires careful design of the interface between the IR component
and the OODBMS. On the one hand, it must not restrict the generality of the approach, on the other hand, it must
allow for efficient implementation.

Our approach allows the creation of arbitrary IRS collections, e.g., a collection which consists of paragraphs,
whereas another collection consists of sections. Object-oriented mechanisms are used to obtain a database ob-
ject’s textual representation and relevance values.

Combined structure- and content-oriented queries are done within the OODBMS query language.

2.1 General Design Decisions

We have chosen to focus on aloose couplingbetween the OODBMS and the IRS for the following reasons: a)
it allows for a greater flexibility with regard to the IRS paradigm used; and b) it can be implemented with less
effort. The advantages of a tight coupling are a) increased performance, b) higher degree of concurrency, and c)
easier handling of updates.

Another important decision has been to let the OODBMS be the control component. The application pro-
grammer has access only to the OODBMS. Access to the IRS is indirect via the OODBMS. The advantages are:
a) full OODBMS functionality, e.g., with respect to the query language, does not have to be reimplemented; and
b) kernel manipulations in both the OODBMS and IRS are avoided.

The overall architecture is shown in Figure 1. The application-, SGML-, and coupling schema are OODBMS
schemata. An OODBMS schema consists of class definitions. Information about the SGML schema can be found
in [ABH94]. It defines the framework for storing SGML documents. The application schema models the gen-
eral environment for documents, e.g., document containers and application semantics. A short overview of the
coupling schema is given in the next section.
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2.2 The Coupling Schema

The coupling schema essentially provides two classes:IRSObject andCOLLECTION.ClassIRSObject is used
as a base class for each application specific class whose instances may be subject to content-oriented queries (on
their textual representation). Instances of the database classCOLLECTION correspond to one IRS collection.
This is similar to [HaW92]. The number of IRS collections in use is arbitrary. Two basic methods ofCOLLEC-
TION are:

� indexObjects(specQuery: DBQuery) creates an IRS index using the text of the database objects which
are specified through database queryspecQuery.

� findIRSValue(IRSQuery: STRING, obj: IRSObject) returns the IRS value for the parameter object with
regard to the parameter query.

Each document element type is a subclass of the database classIRSObject. Basic methods ofIRSObject
are:

� getText() returns an object’s textual representation. It is used byindexObjects; its implementation is
application-specific and must be provided by the application programmer.

� getIRSValue(c: COLLECTION, IRSQuery: STRING) returns the relevance value of the target object
for a given IRS context (a document collection) and an IRS query.

2.3 Creation and Usage of IRS collections

As we have described, SGML documents are stored in the OODBMS. On a logical level, each SGML element
is represented by one database object. To incorporate IRS functionality, IRS collections have to be created from
the OODBMS data. In other words, a mapping from database objects to IRS documents is needed.

One purpose of the mapping is the assignment of relevance values (returned by the IRS as a result of an IRS
query) to database objects. An efficient strategy is to assign exactly one IRS document to each database object.
Most IRSs, including INQUERY, allow the storage of attributes along with the IRS document. We use that feature
to store the object identifier (OID) of a database object directly with the IRS document. Then it is easy to retrieve
the OIDs from the IRS documents.

The second purpose of the mapping relates to the creation of the IRS collection. Within an object oriented
environment, it is easy to provide each database object with the functionality to create ‘its’ IRS document. The
open question is: Which parts of possibly large documents should become IRS documents? Some answers are
(see [VAB96]):

� Each SGML document becomes an IRS document. The disadvantage is that granularity is coarse with
potentially big documents. No information can be obtained about the relevance of document elements,
e.g., chapters or paragraphs.

� Each document element of a specified element type becomes an IRS document. This approach is used in
most coupling approaches, e.g., [CST92, GTZ93].

� Each leaf node of a document becomes an IRS document (finest granularity).

� One might want to have IRS documents of approximately the same size [Cal94].

� In some cases, one might want to support the processing of certain query types. For instance, this might
be accomplished by choosing a fine-grained granularity for documents or document components written
by authors which are referenced frequently.
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<MMFDOC>
<LOGBOOK> ... </LOGBOOK>
<DOCTITLE>Telnet</DOCTITLE>
<ABSTRACT></ABSTRACT>
<PARA>Telnet is a protocol for ...</PARA>
<PARA>Telnet enables ...</PARA>

</MMFDOC>

MMFDOC1

PARA1 PARA2Paragraphs

MMF documents

Telnet is a protocol ... Telnet enables ...

...

Figure 2: Sample SGML Document and its Internal Representation

� An objective may be to keep update mechanisms simple.

If one wants to furnish each document element with IR functionality, problems occur with hierarchically
structured text. Consider the fragment in Figure 2 of an MMF document. On the right hand side the logical
structure of this fragment is depicted, which essentially is the database-internal representation: If indexing is at
the document-level (the complete text of each document becomes an individual IRS document), content-based
queries referring to individual paragraphs cannot be evaluated. This can be avoided by additionally inserting the
textual representation of each paragraph into the IRS collection. Then, however, the same text is stored at least
twice within the IRS.

A general solution for the mapping problem cannot be given. However, the application programmer can be
furnished with a flexible mechanism to define the granularity of IRS documents. The mechanism consists of
two steps: identifying the database objects (IRSObject instances) which should be represented within an IRS
collection, and specifying the textual representation of each selected database object.

Identifying the database objects is done through an arbitrary database query (thespecification query), which
is a parameter of theCOLLECTION instance methodindexObjects. COLLECTION instances are created by
the application. They are used as retrieval context during query processing. It heavily depends on the application
semantics which objects are selected to make up a collection - some criteria were given above.

The textual representation of each database object is identified by thegetText method ofIRSObject, which
has to be implemented by the application programmer.getText is invoked for each object identified by the spec-
ification query. The results are stored within a file, which is indexed by the IRS, making up the IRS collection.
The application programmer is free to decide which text is returned bygetText: it could be the complete text
stored in properties of theIRSObject instance, parts of that text, manipulated text, or even text which is derived
from related objects. To provide more flexibility, thegetText method is parameterized, so that the textual repre-
sentations can depend on a given parameter, and different representations can be defined for different collections.

The specification query and the implementation of thegetText methods determine the degree of text redun-
dancy within the IRS collections. If the application programmer decides to create two collections, and the textual
representations overlap, there will be redundancy in the IRS index. To avoid redundancy our approach supports
the derivation of relevance values from known values, so that a collection at the finest level (normally the leaf
objects within an object hierarchy) will be sufficient. This is described in full detail in [VAB96].

The result of theindexObjects() method call is an IRS collection. With each IRS document the object’s OID
is stored. On the right hand side of Figure 3 the OODBMS content is shown (shadowed rectangle). It consists
of database classes (ellipses), including the coupling classesIRSObject andCOLLECTION. Domain specific
classes areChapter andParagraph, which are derived fromIRSObject. Database instances are depicted as
bullets. The result of the specification query of oneCOLLECTION instance is represented by the shadowed
area, which includes threeChapter instances and oneParagraph instance. The textual representations of those
four objects are stored in the IRS collection on the left hand side of the figure.
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2.4 Examples of Mixed Queries

Mixed queries combine structural and content oriented access. The framework is given by the OODBMS query
language. VODAK supports OQL (Object Query Language), which is an object oriented extension of SQL. The
IRS query part is formulated as arguments of theIRSObject methodgetIRSValue. The examples are based on
MMF documents.collPara is a collection of MMF paragraphs.

“Select all paragraphs and their lengths having an IRS value greater than 0.6 for IRS query ‘WWW’
”:

select p, p -> length() from p in PARA
where p -> getIRSValue (collPara, ’WWW’) > 0.6;

“Select the title of each MMF document created in 1994 that contains a paragraph element relevant to
‘WWW’, immediately followed by one relevant to ‘NII’ ”:

select d -> getAttributeValue (’TITLE’) from d in MMFDOC, p1 in PARA, p2
in PARA

where d -> getAttributeValue (’YEAR’) = ’1994’ and
p1 -> getNext() = p2 and
p1 -> getContaining (’MMFDOC’) = d and
p1 -> getIRSValue (collPara, ’WWW’) > 0.4 and
p2 -> getIRSValue (collPara, ’NII’) > 0.4;

3 Application Issues

First we indicate how the coupling approach can be applied to non-textual data. Improved query expressiveness
and the application to the WWW are issues we are currently dealing with.
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3.1 Applying the Coupling Approach to Non-Textual Media Types

Though we have focused on the problems of structured text documents, our coupling is not limited to those.
A practical approach to facilitate information retrieval from images or other multimedia data in documents, for
instance, is to have as IRS documents the text fragments that reference the image [CrT91], [DuR93]. The method
getText for image objects would return exactly this text.

To give another example, consider an audio segment which can be mapped to text by a speech recognition
program. This text can be used for retrieval. ThegetText method derives this text during the indexing process.

It is even possible to use the same approach for coupling retrieval systems for non-textual data. For example,
for image data, an IRS that can build image indexes can be used. The database system passes an image (instead
of a text) to the retrieval system, which returns a set of matching images.

3.2 A New Kind of Query Formulation and Evaluation?

The coupled system (ideally) allows the user to retrieve the relevance value of each object of his/her modeling
domain (as assumed by the IRS), and to use an arbitrary way of combining relevance values with each other
and with structured data. Particularly if hierarchical structures are modeled, this opens opportunities which go
beyond those of current IRSs.

Consider a user who is searching for a description of how to use FTP with a WWW browser. With a standard
IRS, the user has to submit terms like “WWW” and “FTP” as a query. The result is a list of IRS documents.
Matching documents might include 30 page documents which describe network problems (one chapter about
WWW, another about FTP) and which do not match the information need of the user. The following query is
more likely to select relevant documents; it can be formulated with our system: Return paragraphs relevant to
“FTP”, which belong to a chapter (or another container object) relevant to “WWW”. Although the user can formu-
late such queries with our coupling approach, a formal model for this kind of query is an open issue. In standard
IRSs the combination of terms (e.g., boolean or probabilistic) is possible and is logically evaluated against single
documents. In contrast, our approach allows one to combine different query terms with structural features. A
query can be given as a pattern for a relevance graph that represents a document structure where the nodes are
related with individual IR queries. The query result is not only a single relevance value for each retrieved docu-
ment (like in IRSs), but a relevance graph. Those IR queries are evaluated against whole document structures or
substructures. Similarity matches between query graphs and document graphs is an interesting open issue.

Our future work is to formalize the queries on hierarchically structured documents, and to define or evaluate
an appropriate semantics.

3.3 The World Wide Web

Searching for information in the WWW is a difficult task. Numerous search engines try to support it. Most of
those search engines are based on simple pattern matching algorithms and do not achieve the functionality of
modern IRSs. Moreover, most search engines have a very restricted query interface: complex queries concerning
the content and the structure of Web pages cannot be formulated.

WWW server data usually consists of HTML files, stored in the file system. Unfortunately, HTML tags do
not have appropriate semantics. In many cases, the tags are used for layout reasons, and do not carry any par-
ticular semantics. This severely restricts the benefit of using structural features when searching documents. On
the other hand, we see that database solutions become available on the WWW. HTML documents are generated
from an internal document representation (e.g., SGML) on-the-fly, providing consistent document structures for
large document collections.

Using an expressive query facility might help in the (well-known) case of re-finding information. Many
people knowwhatHTML document they are searching for, and can often remember some subtle layout details

40



(e.g., “there was a list of at least five bullets, and the second item was bold”). Here the structural search can en-
hance content-oriented search in a useful manner. That kind of application is independent from the consistency
of HTML tags.

In contrast to the well-known centralized search engines (e.g., Lycos, Alta Vista), we plan to design and im-
plement a non-centralized search engine, where each WWW server handles its own index. We see the following
benefits from a non-centralized search engine: a) the documents of all participating WWW servers are covered;
b) the index is always up to date; and c) distributed query processing is enabled. An example of an established
information system using non-centralized indexes is Hyper-G ([AKM94]). Nevertheless, there remain important
open issues with non-centralized search engines, e.g., the query must be distributed to several WWW servers.
Index buffering might be necessary if queries are against a large number of WWW servers. Those indexes might
be installed on Internet hosts. A drawback of index buffering is increasing index update costs.

Important parts of such a non-centralized search engine are realized by our SGML database. A prototype
exists, connected to the WWW, including a WWW search interface. We are investigating mechanisms for dis-
tributed querying and index replication which might improve performance.

4 Conclusions

In this article we have described our approach to realize a system providing the integrated functionality of an
OODBMS and an IRS. In the introduction, we have argued that there should be some flexibility with regard to
the retrieval paradigm, and this is best met with a loose coupling. Likewise, instead of the OODBMS VODAK
that we have used for the implementation, another OODBMS having the characteristics described in [Atk+89]
can be used. We have pointed out the problems that arise when such a coupling is realized. Further, we believe
that our approach is rather flexible, for the following reasons: (1) Arbitrary database objects making up an IRS
collection can be chosen. (2) The text forming a database object’s textual representation can be chosen freely.
(3) The way a database object’s relevance value is derived from other objects’ relevance values can be defined
freely.

The following issues remain for future investigation: Relevance feedback has not yet been examined. Un-
certainty is not yet adequately considered within the database component of the coupling. Beyond that, we are
interested in finding appropriate formulae for calculating an object’s relevance value from its subobjects’ rele-
vance values. We believe the formula depends on the underlying retrieval paradigm.

Finally, the issue of query optimization in this particular context has to be investigated. As the information-
retrieval component is quite fast, in principle it seems worthwhile to generate query-evaluation strategies where
information-retrieval subqueries are evaluated first. However, rules for the query optimizer and an appropriate
cost model have not yet been specified.
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Abstract

A relational database (DB) management system is extended by the SPIDER Information Retrieval (IR)
system to provide IR operations on data stored in the DB system. The IR data stored in the IR system
is obtained by analyzing the objects in the database. This derived data is needed for advanced IR op-
erations such as relevance ranking and relevance feedback. It is kept consistent with the DB data by
triggers and by a synchronization process. Our architecture is based on a loosely-coupled integration
which is scalable to a large extent. We developed a new, more powerful transaction model for the IR sys-
tem where serializability of schedules can be relaxed because the transactions have special properties.
Furthermore, the ability to abort transactions is not required in the case of updates of the IR index. We
present SPIDER’s transaction manager which takes advantage of these properties. We also describe a
query optimization strategy to achieve an optimal trade-off between retrieval effectiveness and update
efficiency.

1 Introduction

The usefulness of an Information Retrieval (IR) system is bounded by the usefulness of the data collection to
which it is providing access [Rij79, pp.145]. The usefulness of a data collection is often related to the number of
transactions that are performed on the collection. The more transactions performed, the more the data collection
reflects the latest facts, which are usually considerably more valuable than old facts. As a consequence, frequently
changing data stored in database (DB) systems is often more valuable than the (almost) static data stored in IR
systems.

The integration of IR systems and DB systems is therefore of great practical interest. There are, however,
hard research problems to be solved. These problems can be categorized into five classes: architectural problems,
problems related to concurrency control and transaction management, problems related to retrieval models and
query languages, performance problems, and access control.

Architectural problemsare reflected by the numerous attempts to build an IR system on top of a DB system
that failed because of unsatisfactory retrieval and update efficiency resulting from this approach [Sme90, CST92,
HW92]. Efficient weighted retrieval requires special data structures to have fast access to a large amount of small
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pieces of information. Such access structures are not very well supported by DB systems because they are de-
signed for general-purpose use. Recently, a first attempt to provide access structures dedicated to IR in a relational
DB system has been proposed in [DDS+95].

DB systems provide the so-called ACID properties which ensure the quality of the data to a certain extent
[GR93]. To improve the performance,transactionsare executed in parallel such that the ACID properties are
always guaranteed. IR methods are probabilistic in their nature, and as a consequence, it is acceptable to not
fulfill completely the ACID requirements in favour of efficiency improvements. Relaxing the ACID properties
is also investigated in the areas of distributed systems [Gar83], and advanced transaction models for long-lived
activities [Elm92].

Data modelsare usually based on Boolean algebras [CH80] whereasIR modelsare usually based on proba-
bility spaces or vector spaces which do not satisfy the axioms of a Boolean algebra. Attempts to integrate data
models and retrieval models are described in [BGP90] and [Fuh90]. In addition to this basic modelling problem,
there is the problem of how to take into account the DB schema when evaluating IR queries. The DB schema may
contain information that is useful to distinguish between objects that are relevant and objects that are irrelevant
to the user. IR methods taking into account the DB schema are proposed in [Fuh92] and [Sch93].

Various approaches have been proposed to accelerate the evaluation of IR queries [BL85, Per94, KMSS96].
The more recent methods achieve a highperformanceby computing approximate results rather than exact results.
As mentioned, in probabilistic IR, slightly inexact results are acceptable whereas in most DB applications exact
results are required.

Theaccess controlof a DB system ensures that users see only that subcollection they are allowed to see. They
must not learn about the existence of objects outside of this subcollection. Current IR models assume one global
data collection that is accessible by everybody. Incorporating access control into an IR system is rather difficult
because the ranking order may reveal information about the existence of an object that the user is not allowed to
see.

In this paper, we present the new system architecture and the new transaction model of the SPIDER retrieval
system [Sch93]. We use a loosely-coupled integration of the SPIDER IR server with a relational DB system
to provide advanced IR operations such as relevance ranking and relevance feedback on data stored in the DB
system. The IR server is highly optimized to this tasks in terms of retrieval effectiveness and retrieval efficiency
which is rather difficult to achieve when building an IR system on top of a DB system. Our approach is not aligned
to a specific DB system. An already existing DB environment (consisting of a DB server and some applications)
can be extended by IR functions without affecting the existing DB applications. Furthermore, our architecture
is highly scalable and hence, suitable for very large, distributed data collections. The performance of a single
SPIDER IR server is further improved by a new transaction model where serializability of schedules is relaxed
and the ability to abort update transactions is not required. By relaxed serializability, IR query evaluations are
executed immediately using all of the data stored so far in the IR server even if there are uncompleted update
transactions. We show how updates in the IR server have to be arranged such that query evaluation transactions
yield reasonably ranked lists from partially inserted (or partially deleted) objects. In addition, the transaction
manager of the SPIDER IR server optimizes the schedules in the SPIDER retrieval system with respect to retrieval
effectiveness and with respect to update efficiency. In this paper we do not address recovery from system or disk
crashes.

The paper is organized as follows. In Section 2, we describe the loosely-coupled integration of the SPIDER
IR system with a relational DB system. In Section 3, we define what are the transaction on the IR index and in
Section 4, we present the transaction concept of the SPIDER IR server together with the corresponding optimiza-
tions. Finally, we summarize the paper in Section 5.
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Figure 1: SPIDER’s System Architecture.

2 System Architecture

In the SPIDER approach, there exists a DB server and an IR server that operate completely independent of each
other in the case of read operations (see Figure 1). In the case of modifications, the DB data and the IR data (i.e.,
the IR index) are synchronized by a process called synchronizer.

TheDB servermanages a set of relations in the usual way. We assume that the DB administrator defined a set
of retrievable items which we calldocuments. The current set of documents is denoted byD = fd0; :::; dn�1g.
A documentdj may be a tuple of a relation or of a view. In either case, a documentdj is identified by a unique
identifier ID(dj) consisting of the primary key of the tuple and the name of the relation (or the view) to which
the tuple belongs.

The IR servermanages an access structure called IR index. TheIR indexcan be considered as the precom-
puted results of primitive queries. A general query is evaluated efficiently by combining the results of the prim-
itive queries that constitute the general query.

TheIR clientsaccept queriesqwhich are indexed to obtain the corresponding query descriptions~q. Indexing a
query (as well as indexing a documentdj) is usually a fully automatic process where statistical information about
the distribution of the indexing features (e.g., stemmed words) is determined. For details about indexing see for
instance [SM83]. The result of an indexing process consists of a set of weighted features which is represented
by a feature vector (~q or ~dj) where every indexing feature is assigned a dimension. After indexing the query,
the IR client sends the corresponding query description~q to the IR server which computes so-called Retrieval
Status ValuesRSV (q; dj) = �(~q; ~dj) where~q and~dj denote the query and document descriptions and� denotes
a retrieval function which matches the query and document descriptions. The IR server returns a ranked list of
documentsdj that are ordered in decreasing order of their retrieval status values. Such lists may also contain
subsumptions of the documents (e.g., titles) that can be presented to the user immediately without accessing the
DB server. While viewing the ranked list a user can inspect documents by loading them from the DB server.

The IR index is synchronized with the DB data by triggers. Because in most of today’s DB systems, triggers
cannot call external procedures (for good reasons, e.g., security reasons), we use an internalupdate tableto keep
track of the DB updates. The triggers insert a tuple into the update table whenever a document has been inserted,
deleted, or modified. The update table as well as the triggers have to be added to the database at the outset when
the DB server is extended by the SPIDER retrieval system. The tuples in the update table consist of document
identifiersID(dj) and information about the kind of the update ofdj . Thesynchronizerperiodically reads the
update table. If there are new entries in the update table, the synchronizer performs the corresponding actions as
shown in Figure 2.
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loop
check update table for a new entryuk
if new entryuk (corresponding to a documentdj) detected then

case kind of update(uk) was
insertion: load new documentdj from DB server

index documentdj to obtain description~dj
insert(ID(dj); ~dj ; title(dj)) into IR server

deletion: delete all information of the document withID(dj) from IR server
modification: load modified documentdj from DB server

index newdj to obtain description~dj
replace~dj andtitle(dj) of the document withID(dj) in the IR server

end case
delete entryuk from the update table

else sleept seconds
end if

end loop

Figure 2: Pseudo-program of the Synchronizer.

It is possible that loading a documentdj by the synchronizer fails because it has already been deleted after
its insertion or modification. In such a case, the update table must also contain an entryu0k corresponding to
the deletion ofdj because the execution of triggers is part of the DB transactions [SQL95]. If the synchronizer
encounters such a situation, it immediately continues withu0k (i.e., the deletion ofdj) and upon completingu0k it
deletes bothuk andu0k from the update table. We omitted these cases in the pseudo-program for easier readability.

This kind of synchronization introduces a delay between the update of a document in the database and the
time when it is retrievable through the IR server. The delay depends on how frequently the synchronizer is polling
the update table.

The advantages of the loosely-coupled integration of the SPIDER IR system with a DB system are summa-
rized as follows. (a) It is possible to extend an already existing (operational) DB environment consisting of many
DB applications and possibly several DB servers by IR functions (best-match retrieval, document analysis, sup-
port for interactive searches) without affecting the existing applications. (b) The IR system may incorporate more
sophisticated query evaluation techniques (e.g., similarity thesauri, automatic query expansion, etc.) and useful
document inspection tools like highlighting words of the query or passage retrieval [MS94] which are difficult to
build into a DB server. (c) The throughput of query evaluations and updates within a single IR server is optimal
because the IR server’s work is reduced to a minimum: indexing documents and IR queries is performed outside
the IR server by the synchronizer (if necessary several synchronizers) and by the IR clients. (d) The proposed
system architecture is scalable to a large extent to improve the performance.

Some issues are still open for discussion: what is the architecture of the integration when more than one
IR server is involved? The IR index could be replicated or split in different ways [TG93]. Such configurations
improve the throughput and response times of IR query evaluations (and updates) but it is still unclear how the
partial results of different IR servers have to be merged together [VGJ95] and how the IR servers are coordinated
[CM95].

3 Transactions on the IR Index

In the IR server, two types of activities occur: either an IR query has to be evaluated or the IR index has to be
updated according to changes in the DB server(s). In this section we define how these activities are embedded in
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the transaction concept of the overall system.
An IR search is usually an iterative process of evaluating IR queries and inspecting the documents of the

ranked list. After some document inspections the IR query may be reformulated or extended by relevance in-
formation and then evaluated again and so on. Regarding this process as a single transaction it can be long (it
may even be continued over several days) with many documents involved, in particular, the documents used for
relevance feedback. Moreover the users may not want to explicitly state the end of their searches. Thus, it is
impractical to lock all involved documents for the period of the IR search. We, therefore, commit IR searches
after each query evaluation or document inspection. The price of this relaxation is the following. First, it is pos-
sible that a document appears in a ranked list but when the user tries to access the document, it cannot be loaded
anymore because it has been deleted meanwhile. A similar situation is modification of a document after query
evaluation, but the content of the document will probably not be much different and it may still be relevant to
the user’s query. Second, documents marked for relevance feedback may also be deleted or modified before the
query with the feedback information is evaluated. Depending on the application, these situations can be handled
in different ways, e.g., by simply displaying a message to the user. Below we will refer to the evaluation of a
single query in the IR server as anIR evaluation transaction.

The result of an IR evaluation transaction is a ranked list consisting of document Id’s, Retrieval Status Values
(RSVs) and possibly document subsumptions (e.g., titles). The RSVs are estimates of probabilities that the doc-
uments are relevant to the IR query. Since estimates naturally introduce errors (namely the deviations between
the estimates and the unknown probabilities) we can also accept errors by the transaction manager as long as
they are within certain limits. Our transaction manager allows the computation of RSVs from partially inserted
document descriptions. For most retrieval methods, the resulting (partial) RSVs are always smaller than or equal
to the correct RSVs derived from the complete document descriptions. If a partial RSV is much smaller than the
full RSV it looks as if the document is not available yet. On the other hand, deleted documents, whose descrip-
tions are not yet removed completely, are eliminated from the ranked lists before finishing the query evaluations.
Hence, partially deleted documents never appear in a ranked list of documents.

Inserting, deleting, or modifying a document entails updating the DB data (DB update transaction) as well as
updating the IR index (IR update transaction). Because indexing a document usually needs all of its content, it
has to take place entirely after the DB update transaction but of course before the IR update transaction. Hence,
the DB update transaction has to be executed completely before the IR update transaction.

Once the DB update transaction is committed, there is no reason to allow a user to abort the corresponding
IR update transaction. Remember that IR update transactions are controlled by the synchronizer process and not
by users. As we will show in Section 4.2, deadlocks, and integrity violations cannot cause aborts because they
are avoided completely by our transaction manager. Aborting IR evaluation transactions is no problem because
query evaluations are read-only transactions, and hence, they need no undo actions.

4 Transaction Manager of the SPIDER IR Server

The transaction manager of the SPIDER IR server is based on a specific access structure of the IR index. There-
fore we first describe SPIDER’s access structure which supports several of the most effective retrieval methods
and a fast query evaluation algorithm.

4.1 Retrieval Model — Access Structure

The access structure of the IR index depends on the retrieval method (what IR data is to be stored) and on the re-
trieval algorithm (how is the IR data accessed). The primary goal of an IR search is a high retrieval effectiveness.
We compared several retrieval methods that performed very well at the latest TRECs (Text REtrieval Confer-
ences) [Har96, Har95, Har94]. At TRECs, different IR research groups run their retrieval methods against a large
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collection of textual data. Looking at some successful ad-hoc methods [CCB94, CCG94, RWJ+95, BSM96], the
following IR data that can be precomputed (and stored) has been used:

n number of documents
ff('i; dj) feature frequency of feature'i within the documentdj (number of occurrences of'i within dj)
df('i) document frequency of feature'i (number of documents containing'i)
len(dj) length of documentdj (number of features or words, or the length of the description vector)

Fast retrieval algorithms usually work oninverted posting lists, i.e., the(ID(dj); 'i; ff('i; dj))-tuples are
stored by feature, not by document Id. Then the retrieval algorithm accesses only postings of query features. A
further acceleration is achieved by sorting the postings of a feature by descending feature frequencies. Because
a user is usually interested in the beginning (top) of the ranked list only, the RSVs of documents ranked very
low do not have to be computed. The usual approach is to process high feature frequency postings first, and to
abort the processing when some condition becomes true [Per94, BL85, KMSS96]. From these requirements we
derived a model of an access structure and the necessary operations on it.

IR index 7�!Globals, Documentsf:::; ID(dj); :::g, Featuresf:::; 'i; :::g
Globals 7�! n, other global values
ID(dj) 7�! non-inverted postingsf:::; ('i; ff('i; dj)); :::g, len(dj), other per-document information
'i 7�! inverted postingsf:::; (ID(dj); ff('i; dj)); :::g, df('i), other per-feature information

The curly braces denote a set of elements. In the case of the inverted lists, the postings are sorted firstly by
feature frequencies and secondly by document Id’s. We store non-inverted postings to guarantee correct dele-
tion of all inverted postings of a document and to support relevance feedback [Roc71] and a similarity thesaurus
[SK92].

4.2 Transaction Concept Based on Steps

We adopt the notion ofsemantic typesandstepsdefined in [Gar83]. Transactions are classified into a set of se-
mantic types. Every transaction is divided into subsequences of actions called steps.

In our case we have the four semantic typesT ins (insertion of a new document),T del (deletion of a document),
Tmod (modification of an existing document), andT eval (query evaluation). In contrast to Garcia-Molina, we re-
quire that steps of a single IR update transaction (of typeT ins , T del , or Tmod ) and steps of different IR update
transactions always commute. Commutativity is achieved by encapsulating the adjustment of global values and
per-feature information into steps. In this way, astepwise serialschedule facilitates interleaving IR update trans-
actions without using costly locking mechanisms. A stepwise serial schedule represents an execution in which
all steps are performed as indivisible units. Most importantly, deadlocks, and integrity violations (lost updates,
dirty reads, and unrepeatable reads) are avoided completely because of the commutativity of the steps.

In detail the steps of IR update transactions are defined in the following. The stepsB are performed for every
feature of a document.

T ins stepA: insert per-document information (~dj , len(dj), ...) and
adjust global values (n, ...)

stepsBins : insert the posting(ID(dj); ff('i; dj))) into the inverted list of'i and
adjust per-feature information (df('i), ...)

T del stepA: delete per-document information (~dj , len(dj), ...) and
adjust global values (n, ...)

stepsBdel : delete posting(ID(dj); ff('i; dj))) from the inverted list of'i and
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adjust per-feature information (df('i), ...)

Tmod stepA: replace per-document information (~dj , len(dj), ...) and
adjust global values (n, ...)

stepsBdel : delete old posting(ID(dj); ff('i; dj))) from the inverted list of'i and
adjust per-feature information (df('i), ...)

stepsBins : insert new posting(ID(dj); ff('i; dj))) into the inverted list of'i and
adjust per-feature information (df('i), ...)

How to divide IR evaluation transactions (of typeT eval ) into steps depends very much on the retrieval method
and on the evaluation algorithm. Additionally, evaluation steps do not commute with steps of IR update transac-
tions in general. However, integrity violations (dirty reads and unrepeatable reads) following from interleaving
steps of evaluation transactions and steps of update transactions are admissible because of the probabilistic nature
of the RSV computations (see Section 3).

4.3 A Simple Scheduler for IR Transactions

The transaction manager of the SPIDER IR server consists of a serial scheduler for steps. Because we use a fast
retrieval algorithm [KMSS96] where inverted posting lists are processed in parallel, we perform query evalua-
tions as single, short steps. Postings that have to be inserted into or deleted from the inverted lists are managed
by maintaining atodo list. The todo list contains the postings and the corresponding actions (see Figure 3).

loop
check for new transaction requests (non-blocking accept)
if new transactionT then

casetype(T ) is
T eval : compute RSVs and return the ranked list (single step)
T ins : perform stepA of T ins

put all postings ofdj into the todo list for insertion
T del : read (non-inverted) postings ofdj

markdj as deleted such thatdj is not ranked anymore
perform stepA of T del

put all postings ofdj into the todo list for deletion
Tmod : read old postings ofdj

perform stepA of Tmod

put all old postings ofdj into the todo list for deletion
put all new postings ofdj into the todo list for insertion

end case
end if
rearrange the todo list as described in Section 4.4
process some postings of the todo list (stepsB)

depending on the workload and on the length of the todo list
end loop

Figure 3: Pseudo-program of the IR Server.

Because the query evaluations can be performed between two steps of update transactions and no locks are
maintained, the RSV computations may be based on partial document descriptions only, and hence, the schedules
produced by this scheduler are not serializable. By storing per-document information and adjusting global values
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before inserting the postings of a document into the inverted lists, it is the case for most retrieval methods that
the partial RSVs are not larger than the RSVs computed from the full document descriptions.

Serial scheduling has the advantage that no locking mechanism, and hence, less work overhead is necessary.
Moreover, the processing of the todo list can be optimized with respect to the correctness of evaluation transac-
tions and with respect to the efficiency of modifications (see Section 4.4).

4.4 Optimizing Query Evaluations and Updates in the IR Server

The todo list, holding postings that have to be inserted into or deleted from the inverted lists, can be optimized
having the following objectives in mind:

1. In the case of insertions, those postings that are already inserted into the inverted posting lists should result
in the best possible RSV estimations to optimize retrieval effectiveness.

2. In the case of deletions, those postings that are still stored in the inverted posting lists should result in very
low RSVs to avoid unnecessary computations (deleted documents are cancelled from the ranked lists).

3. In the case of modifications, those postings that are already replaced in the inverted posting lists should
result in the best possible RSV estimations to optimize retrieval effectiveness. Postings that do not change
at all should not be deleted and reinserted.

4. Postings of the same feature can be collected and processed in common. By so doing, the inverted list of
a feature is updated with much fewer disk accesses than by inserting or deleting each posting individually.

The first three cases can be handled by processing those postings of the todo list first that contribute most to
the RSVs. If we do not know exactly the contribution of a posting to an RSV without accessing the document
frequency of the feature and maybe even more information, the decision of which posting to process next may
be based on the feature frequency only. Thus, high frequency postings would be processed first. Of course, this
is not optimal because a high feature frequency does not necessarily mean a high contribution to the RSVs, but
it is a reasonable and simple approximation. The RSVs that have been computed based on the inverted lists are
approximations of the correct RSVs. These approximations can be further improved by incorporating postings
which are in the todo list and belong to documents of the ranked list.

The fourth objective is aimed at grouping those postings in the todo list which are inserted into or deleted
from the same inverted list. In this way disk access is minimized. There is a trade-off between long todo lists
that support well this kind of grouping versus short todo lists that improve the approximations of the RSVs. We
would like to emphasize that the optimization strategy can be adapteddynamicallyto the workload and to the
ratio between evaluation and update transactions.

5 Summary

The loose coupling makes it easy to extend any commercial database system with information retrieval function-
ality as long as the database system provides the concept of triggers. The impact of the extension on an existing
database environment is very little except for the synchronizer’s polling activities.

The detailed knowledge about the semantic of IR transactions leads to a transaction model where serializabil-
ity of schedules is relaxed and update transactions need not be abortable. As a result the “Isolation” of transactions
in the IR server is relaxed while the other three ACID properties (Atomicity, Consistency, and Durability) are still
satisfied.

The steps of update transactions are inserted into the todo list. Query evaluations and IR index updates are
optimized by rearranging the entries of the todo list. The optimization strategy can be adapted dynamically de-
pending on the current requirements.
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