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Letter from the Editor-in-Chief

About this issue

To a very large extent, the problems of commercial data processing have been solved by relation database systems.
But there is a vast array of non-formatted data that has yet to be captured within systems that are capable of high
speed storage and retrieval. Even text data, which has a longer history than relational databases, is mostly not
captured by database systems and its retrieval and update pose significant problems.

This issue focuses on video (or continuous media) data, how to organize it on disk, how to deliver it to clients,
how to index it, etc. So called ”video on demand” has received much press coverage. This issue explains some
of the underlying technology that makes it possible. Shahram Ghandeharizadeh has assembled four articles for
your reading pleasure, describing several aspects of the technology. I am sure you will find this of real interest,
and I thank Shahram for pulling it together for us.

State of the Bulletin

Once again, through the generosity of the IEEE Computer Society, we are distributing another issue of the Data
Engineering Bulletin. And once again, we do not know whether this will continue in the next year, now 1996.
I will keep you posted on the funding status via emailings. I hope we can avoid some of the confusion that sur-
rounded this year’s funding.

We are in the process of setting up a home page to make the Bulletin available on the web. I had hoped that
I could report in this issue that the site is up and running. Unfortunately, it is still under construction as I have
been distracted by other events. My revised plan is to make the site usable as a source for issues of the Bulletin
by late January, 1996. I will send an announcement to the membership of the TC when the web site comes on
line.

We continue to make the Bulletin available electronically via the Microsoft FTP server. The procedure for
this is to log on to

ftp.research.microsoft.com

as ”anonymous” and give as your password your email address. Change directories as follows-

cd pub
cd debull

You can then do a ”dir” or ”ls” to determine what files are present. Read the README file in the debull
directory for more complete information.

Having selected the issue you wish, and the format you desire, select the appropriate file with the ftp ”get”
command, e.g.

get sept95-letfinal.ps

to have the file delivered to your system. The files are all in postscript so you will need a postscript viewer
and/or printer to be able to read them.Note that the files now come with the file type “.ps”.

David Lomet
Editor-in-Chief
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Letter from the Special Issue Editor

If “object-oriented” was the buzz word of the 1980s, “multimedia” is almost certainly emerging as the catch
phrase of the 1990s. A multimedia information system manages complex data types such as images, audio and
video clips, 3-D objects, structured presentations consisting of 3-D objects (e.g., animation), etc. One does not
have to search long to find tens of books on a variety of topics related to multimedia. While one book might focus
on how to generate a multimedia document using a specific software package, another might focus on the concept
of fair-use and its complexities with the introduction of multimedia documents. Why is there so much excitement
about multimedia? From the users’ perspective, the excitement is due to the ability of these systems to convey
information naturally by exercising our audio/visual senses (a picture says a million words). Moreover, they
provide tools that enable a user to generate valuable data with ease. From a technical perspective, these systems
are worth investigating because their requirements push the current technology (both hardware and software) to
its limits. The focus of this issue is on techniques to realize a multimedia information system.

A multimedia information system should meet several criteria. First, a user requesting the display of either
an image or a video clip should not be forced wait for a long time. Ideally, the wait time should be a fraction
of a second. Second, the data is valuable and many users might want to access it simultaneously. Due to its
value, many complex social, cultural and legal issues arise with the use of data, e.g., copy-right, fair-use, etc.
The ignorance of these topics by this special issue should not be interpreted as their lack of importance. To the
contrary, the technical researchers can play a pivotal role in this arena. Third, the volume of available data is
already overwhelming and is continuing to increase. While browsing techniques are effective, query processing
techniques are needed to enable a user to pose queries to locate relevant information. Fourth, some of the data
types, namely the continuous media data type (audio, video), require their data to be delivered at a pre-specified
bandwidth in support of their display. If the system does not render the data at the pre-specified rate, the user
might observe disruptions and delays. With audio, for example, delays would turn a music clip to a collection
of random noises (the impact of delays on video is less disruptive). Avoiding such delays is a challenging task
because (1) continuous media data types are large in size, e.g., a two hour movie might be several gigabytes in
size, and (2) resources (e.g., memory, disk bandwidth) must be scheduled intelligently. And finally, the design
of a system should be both economically viable andscalable. By scalable, we mean that the system should be
able to grow as the performance requirements of an application changes. To illustrate, assume a data provider
that supports 100 simultaneous users accessing a terabyte of data with an expected delay of 0.1 second. If the
demand on this system grows such that the vendor desires to support 1000 simultaneous users, the vendor should
be able to increase the amount of available resources proportionally to meet the new demand.

The focus of this special issue is on the design of a multimedia storage manager that realizes the listed re-
quirements. While the first three papers of this issue focus on techniques to support continuous display of video
objects, the fourth paper by Christos Faloutsos describes a general purpose technique to search multimedia doc-
uments by content. The first paper by Ozden, Rastogi and Silberschatz analyzes striping as a technique to realize
a scalable server. It explains the storage requirements of video objects to motivate the use of magnetic disks for
realizing an economical system. The second paper by Golubchik, Lui and Muntz describes techniques to share
the retrieval of either an audio or a video clip (termed a stream) from disks among multiple displays in order to
increase the number of simultaneous users serviced. The third paper by David Andersen focuses on the VCR
functionalities and how they can be realized using MPEG encoding technique.

While this issue focuses on stream-based video, structured video1 is starting to emerge as an important re-
search direction. With structured video, a video clip consists of a sequence of scenes. Each scene consists of a
collection of background objects, actors (e.g., 3 dimensional representation of Mickey Mouse, dinosaurs, lions),
light sources that define shading, and the audience’s view point. Spatial constructs are used to place objects that

1S. Ghandeharizadeh, Stream-based Versus Structured Video Objects: Issues, Solutions, and Challenges. InMultimedia Database
Systems: Issues and Research Directions, Editors: S. Jajodia and V.S. Subrahmanian, Springer Verlag, 1995
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constitute a scene in a rendering space while temporal constructs describe how the objects and their relationships
evolve as a function of time. The structured video provides adequate information to support both effective query
processing techniques and re-usability of information. Structured video raises a host of research topics worth in-
vestigating: How is the data presented at a physical level? How should the system represent temporal and spatial
constructs to enable a user to author complex relationships (e.g., chasing, hitting)? What are the specifications
of a query language that interrogates the temporal and spatial relationships between objects? What techniques
should be employed to execute queries? What indexing techniques can be designed to speedup the retrieval time
of a query? How should a system employ content-based retrieval techniques proposed for stream-based video to
construct its structured presentation? These novel research directions require further investigation.

I want to conclude by thanking the authors for both contributing quality articles to this issue and serving
as reviewers for each others manuscript. In addition, I want to thank David Lomet for providing me with the
opportunity to put together this special issue and generating the final draft of this issue using Latex.

Shahram Ghandeharizadeh
Computer Science Department

University of Southern California
Los Angeles, CA 90089
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Disk Striping in Video Server Environments

BanuÖzden Rajeev Rastogi Avi Silberschatz

AT&T Bell Laboratories
600 Mountain Ave.

Murray Hill, NJ 07974

Abstract

A growing number of applications need access to video data stored in digital form on secondary storage
devices (e.g., video-on-demand, multimedia messaging). As a result, video servers that are responsible
for the storage and retrieval, at fixed rates, of hundreds of videos from disks are becoming increasingly
important. Since video data tends to be voluminous, several disks are usually used in order to store the
videos. A challenge is to devise schemes for the storage and retrieval of videos that distribute the work-
load evenly across disks, reduce the cost of the server and at the same time, provide good response times
to client requests for video data.

In this paper, we present schemes that are based on striping videos (fine-grained as well as coarse-
grained) across disks in order to effectively utilize disk bandwidth. For the schemes, we show how an
optimal-cost server architecture can be determined if data for a certain pre-specified number of videos
is to be concurrently retrieved. The schemes provide good response times in environments in which the
number of concurrent client requests is not much larger than the number of videos that can be concur-
rently retrieved by the server.

1 Introduction

In recent years, we have witnessed significant advances in both networking technology, and technologies involv-
ing the digitization and compression of video. It is now possible to transmit several gigabits of data per second
over optic fiber networks. Also, with compression standards like MPEG-1, the bandwidth required for the trans-
mission of a video is as low as 1.5 Mbps. These advances have resulted in a host of new applications involving
the transmission of video data over networks. Examples include video-on-demand, on-line tutorials, training and
lectures, multi-media messaging, interactive TV, games, etc.

One of the key components in the above applications is thevideo serverwhich is responsible for the storage
and transmission of videos. Depending on the application, a video server may be required to store hundreds of
videos, and may be required to concurrently transmit to clients, data for a few hundred to a few thousand videos.
Furthermore, the data for every video must be transmitted at a fixed rate depending on the compression technique
employed (for MPEG-1, the rate is about 1.5 Mbps).

Due to the voluminous nature of video data (a 100 minute long MPEG-1 video requires approximately 1.125
GB of storage space), and the high cost ($40/MB) ofrandom access memory(RAM), storing videos in RAM is
prohibitively expensive. A less expensive way of storing videos is to utilize disks, which are much cheaper than
RAM (storage on disks costs less than $1/MB). Thus, a video server would be more cost-effective if it relied on
disks instead of RAM for the storage of videos. However, modern disks have limited storage capacity (1 GB-9
GB) and relatively low transfer rates (30 Mbps - 60 Mbps). As a result, in order to be able to store hundreds of
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videos as well as support the retrieval of hundreds of videos concurrently, a video server would need to store the
videos on several disks. Schemes for laying out the videos on multiple disks are crucial to distributing the load
uniformly across the various disks and thus, utilizing the disk bandwidth effectively. For example, certain videos
may be more popular than others, and a naive approach that stores every video on an arbitrarily chosen disk could
result in certain disks being over-burdened with more requests than they can support, while other disks remain
idle.

Another characteristic of disks is that they have a relatively high latency for data access (typically between
10-20 ms). As a result, if very little data is retrieved during each disk access, then the effective transfer rate of the
disk is much lower, and thus the number of videos that can be concurrently retrieved is much less. On the other
hand, retrieving large amounts of data during each disk access reduces the impact of disk latency and increases
the throughput of the disk. However, beyond a certain point, increasing the amount of data retrieved is not cost-
effective. The reason for this is that in order to buffer the large amounts of data retrieved, a large amount of
RAM is required, and this results in an increase in the cost of the server. What is needed, is an effective method
for computing the optimal amount of data to be retrieved during a disk access that reduces the cost of retrieving
data per video. Thus, the challenge is to design a low-cost video server that can transmit several videos at the
required rate concurrently, utilize the disk bandwidth effectively, and provide low response times to requests for
videos.

In this paper, we present schemes based on fine-grained as well as coarse-grained striping in order to distribute
the workload evenly across disks. For each of the schemes, we compute the optimal amount of data to be retrieved
during each disk access that maximizes the number of videos that can be concurrently transmitted. We show that
the schemes based on coarse-grained striping can concurrently retrieve data for more videos than those based
on fine-grained striping. For the schemes, we determine the optimal-cost server architecture that supports the
concurrent retrieval of data for a certain pre-specified number of videos. For coarse-grained striping, we present
a starvation-free scheme that minimizes the wasted disk bandwidth when servicing client requests.

Due to space constraints, we do not present the proofs of our theorems; these can, however, be found in [3].

2 System Model

The video-serveris a computer system containing one or more processors, RAM, and multiple disks to store
videos. Videos are stored on disks in compressed form and need to be displayed at a certain rate, denoted by
rdisp. The server is connected to clients via a high speed network over which videos are transmitted at the rate
rdisp. We denote byli, the length (in bits) of a videoVi.

Clients make requests for videos to the server which maintains arequest list. Each of the entries in the request
list contains an identifier for the requested video (e.g., name) and the set of clients who have requested the video.
Requests are added to the request list as follows. If an entry for the requested video is already contained in the
request list, then the client is simply added to the set of clients in the entry. If, on the other hand, an entry for
the requested video is not contained in the request list, then a new entry containing the video and the client is
appended to the end of the request list.

In general, it is not possible to service client requests immediately upon arrival since videos reside predom-
inantly on disk, and they need to be retrieved into RAM before being transmitted to a client. In this paper, we
present schemes that the server employs in order to determine the set of videos to be concurrently retrieved from
disk at any given time. For each of the videos being retrieved concurrently, the server allocates a certain amount
of buffer space in RAM, and retrieves portions of the video into the buffer at certain time intervals such that the
entire video is retrieved at a raterdisp. The size of the portions retrieved depends on the scheme; thus, the server
transmits videos to clients without loading the entire video into RAM. To start a video, a certain initial amount
of the video data must be retrieved into RAM. Once this is accomplished, the transmission of the video to all
the clients with outstanding requests for the video can commence. We refer to the continuous transfer of a video
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Figure 1: System architecture for VOD services.

Inner track transfer rate rdisk 45 Mbps
Settle time tsettle 0.6 ms
Seek latency (worst-case) tseek 17 ms
Rotational latency (worst-case)trot 8.34 ms
Total latency (worst-case) tlat 25.5 ms
Cost Cd $1500
Capacity 2 GB

Figure 2: Disk Parameters for a Commercially Available Disk

from disk to RAM at raterdisp, as astream.
For the development of the schemes, it is important to understand the characteristics of disks, which we now

describe. Data on disks is stored in a series of concentric circles, ortracks, and accessed using a disk head. Disks
rotate on a central spindle and the speed of rotation determines the transfer rate of disks. Data on a particular
track is accessed by positioning the head on (also referred to asseekingto) the track containing the data, and then
waiting until the disk rotates enough so that the head is positioned directly above the data. Seeks typically consist
of a coast during which the head moves at a constant speed and a settle, when the head position is adjusted to the
desired track. Thus, the latency for accessing data on disk is the sum of seek and rotational latency. In the table
of Figure 2, we present the notation and values employed in the paper for the various disk characteristics (the
values are for a commercially available disk). In this paper, we assume thatrdisp < rdisk, for the videos.

As mentioned earlier, a video server that stores hundreds of videos would require a large number of disks
to hold the video data. A naive storage scheme in which an entire video is stored on a single disk could result
in an ineffective utilization of disk bandwidth. The reason for this is that not all videos are accessed with the
same frequency; clients may request to view certain videos more often than others, thus causing certain disks
to be busy while others, with less frequently requested videos, remain idle. Also, unless a video is replicated
on several disks, the number of concurrent streams of the video that can be supported is bounded above by the
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bandwidth of the disk storing the video.
In this paper, we store videos usingdisk striping, a popular technique in which consecutive logical data units

(referred to asstripe units) are distributed among the disks in a round-robin fashion [1,4,5]. Disk striping, in
addition to distributing the workload uniformly across disks, also enables multiple concurrent streams of a video
to be supported without having to replicate the video.

3 Related Work

A number of schemes for retrieving video data continuously from disks have been proposed in the literature.
Most of them, however, only consider the problem of retrieving videos from a single disk, and do not address the
issue of evenly distributing the workload in the case that multiple disks are employed to store the videos.

Among striping-based schemes,staggered stripingwas proposed in [1] to utilize disk bandwidth effectively
for both high bandwidth (that is, those for whichrdisp � rdisk) as well as low bandwidth (those for whichrdisp <
rdisk) videos with different rate requirements. For the high bandwidth videos, each video object is divided into
subobjects and each subobject is further declustered acrossd

rdisp
rdisk

e disks, from which it is retrieved in parallel.
The data for a subobject on a disk is referred to as afragment, and the distance between disks containing the first
fragment for consecutive subobjects is referred to as thestride. The authors show that by choosing the stride
to be relatively prime with respect to the number of disks, the workload can be uniformly distributed across the
disks. The authors also show that a fragment size of about 2 cylinders wastes only 10% of the bandwidth, and at
the same time provides a reasonable display latency time.

The striping schemes and results presented in [4,5] are more general, and are not specifically tailored for
video server environments in which workloads typically comprise of accesses (to large files) that are sequential
in nature, and have timing requirements.

4 Fine-grained Striping

In fine-grained striping, the striping unit is typically a bit, a byte or a sector [4]. Thus, if there arem disks, then
every retrieval involves all them disk heads, and them disks behave like a single disk with bandwidthm � rdisk.
This striping technique is used in the RAID-3 data distribution scheme [5]. In the following subsections, we
describe a scheme for retrieving data for multiple concurrent video streams in case fine-grained striping is used
to store videos.

4.1 Servicing Requests

In the fine-grained striping scheme, the server maintains aservice listthat is different from the request list, and
contains the videos for which data is being retrieved. The server retrieves data for the videos in the service list in
rounds, the number of bits retrieved for a video during a round beingd. Thed bits retrieved for a video during
a round follow thed bits retrieved for the video during the previous round. The value ofd is computed based
on the amount of RAM,D, and the number of disks,m, such that the number of concurrent streams that can
be supported is maximized. In addition, it is a multiple ofm � su, wheresu is the stripe unit size (we describe
the method used for computingd at the end of this subsection). A video can thus be viewed as a sequence of
portions of sized; each portion can further be viewed as a sequence of sub-portions, each of sizem � su. Each
sub-portion is striped across them disks; the stripe units contained in a sub-portion are at the same position on
their respective disks. In addition, stripe units on a disk, belonging to consecutive sub-portions of a portion, are
stored contiguously on the disk one after another.

At the start of a round, the server sorts the videos in the service list based on the positions of the tracks on disk,
of thed bits to be retrieved for each video. It then retrievesd bits from disk for each of the videos in the order
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of their appearance in the service list. Note that sorting the videos ensures that the disk heads move in a single
direction when servicing videos during a round. As a result, random seeks to arbitrary locations are eliminated
(this is similar to the known C-SCAN disk scheduling algorithm [6]). Since the time to transmitd bits of video is
d

rdisp
, in order to ensure that data for every video is retrieved at raterdisp, we require every round to begindrdisp

after the previous round. As a result, we require the time to service videos during a round to never exceedd
rdisp

,
the duration of a round. Since, during a round, disk heads travel across the disk at most twice, and retrieving
data for each video, in the worst case, incurs a settle and a worst-case rotational latency overhead, we require the
following equation to hold (assuming thatV1; V2; : : : ; Vq are the videos in the service list):

2 � tseek + q � (
d

m � rdisk
+ trot + tsettle) �

d

rdisp
(1)

At the start of a round, before the server sorts the videos in the service list, it adds videos at the head of the
request list to the service list as long as Equation 1 holds for videos in the service list after each of the videos
is added (videos that are added to the service list are deleted from the head of the request list). For every video
added to the service list, a buffer of size2 � d is allocated. Thed bits for the video are retrieved into the buffer
during successive rounds. Transmission of a video’s bits to clients is begun only at the end of the round in which
the firstd bits of the video have been retrieved into it’s buffer. The reason for this is that since new videos may
be added to the service list, and videos are sorted at the start of each round, the times (relative to the start of a
round) at which thed bits for a video are retrieved, in two consecutive rounds, may not be the same. Thus, by
ensuring that a video’s buffer contains at leastd bits at the start of each round, we ensure that bits for the video
can be transmitted at a raterdisp irrespective of when during the round the nextd bits are retrieved for the video.
Finally, a video is deleted from the service list at the end of the round in which all the data for it has been retrieved.
The above approach to retrieving data for videos is similar to thedisk multitaskingscheme proposed in [2] and
thestreamingRAID scheme proposed in [7].

We now address the issue of computing a value ford based on the amount of RAM,D, and the number of
disks,m, such that the number of concurrent streams that can be supported is maximized. From Equation 1, it

follows that, for a given value ofd, the maximum number of streams that can be supported is
d

rdisp
�2�tseek

d
m�rdisk

+trot+tsettle
.

Thus, sincerdisp < m � rdisk, as the value ofd increases, the number of streams that can be supported also
increases. However, since the buffer per stream is2 � d and the total buffer requirements must not exceedD,
increasingd beyond a certain value results in a decrease in the number of streams. Thus, the value ofd that
supports the maximum number of streams, can be obtained by solving the following equation:

2 � d � ( d
rdisp

� 2 � tseek)

d
m�rdisk

+ trot + tsettle
= D

Let dcalc be the maximum value ford due to solving the above equation. Letqcalc =

dcalc
rdisp

�2�tseek

dcalc
m�rdisk

+trot+tsettle
be

the maximum number of streams that can be supported withd = dcalc. Note that2�dcalc �qcalc = D. The problem
is thatdcalc may not be a multiple ofm�su. For all values ofd greater thandcalc, the maximum number of streams

is D
2�d ; on the other hand, for values ofd less thandcalc, the maximum number of streams is

d
rdisp

�2�tseek

d
m�rdisk

+trot+tsettle
.

Thus, the optimal value ford is eitherd dcalcm�sue�m�su or b dcalcm�suc�m�su depending on which of the following two

is greater: (1) D

2�d
dcalc
m�su

e�m�su
or (2)

d
rdisp

�2�tseek

d
m�rdisk

+trot+tsettle
with d = b dcalcm�suc�m�su.

Thus, ifD = 2 Gb andm = 50, then the optimal value ford is 7.1 Mb, and the maximum number of MPEG-
1 streams that can be supported is 139 (the values for disk parameters are those presented in Figure 2 andsu is
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Figure 3: Cost of Server as a function of Number of Disks

chosen to be 512 bytes). For simplicity, in the schemes presented in this section and later in the paper, video
streams are begun only based on the availability of disk bandwidth. As a result, we selectd to beb dcalcm�suc �m � su.
The schemes can be extended to take into account even the availability of buffer space, in which case, an optimal
value ford can be selected as described above. However, we do not discuss these extensions in this paper.

4.2 Designing an Optimal-cost Video Server

Ideally, the architecture of a video server must be such that it can support a certain pre-specified number of con-
current streams and its cost is as low as possible. In the following, we compute the amount of RAM,D, and the
number of disks,m, that a video server must be configured with if it is to supportQ concurrent streams, and its
cost is to be optimal.

Let Cr denote the cost of RAM per Mb andCd be the cost of a single disk. For a given value ofm, the

minimum amount of RAM required to supportQ streams is2 �Q � d, whered = d d̂
m�sue�m�su and

d̂ =
(Q � (trot + tsettle) + 2 � tseek) �m � rdisk � rdisp

(m � rdisk �Q � rdisp)

is the minimum value ofd required to supportQ streams, obtained as a result of solving Equation 1. Thus,D =
2 �Q � d, andC(m), the minimum cost of the server for a givenm, is

C(m) = Cr � 2 �Q � d+ Cd �m

Substituting ford in the above equation, we obtain the following value forC(m).

C(m) = Cr � 2 �Q � d
(Q�(trot+tsettle)+2�tseek)�rdisk�rdisp

su�(m�rdisk�Q�rdisp)
e�

m � su+ Cd �m

From the above cost equation, it follows that it may not be cost-effective to architect the server with the mini-
mum number of disks required to supportQ streams (that is,m is such thatm�rdisk > Q�rdisp � (m�1)�rdisk).

The reason for this is that the size of the buffer per stream,2 �d, is inversely proportional tordisk�
Q�rdisp

m . Thus,

atm =
Q�rdisp
rdisk

, the buffer size is infinity, and subsequent increases in the number of disks,m, cause the size of
the buffer per stream to decrease; the decrease in the buffer size is larger for smaller values ofm. Thus, since
RAM is more expensive than disks, the reduction in the cost of the buffer for the streams due to increasing the
number of disks beyondQ�rdisp

rdisk
, could more than offset the cost of the additional disks. In Figure 3, we show
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how the cost of the server,C(m), that supports 1000 MPEG-1 streams varies with the number of disks,m (the
values for disk parameters are those presented in Figure 2,Cr is $5/Mb, andsu is 512 bytes). As the number of
disks increases, initially the cost decreases due to the large decreases in buffer sizes. However, beyond a certain
number of disks, the cost of an additional disk exceeds the decrease in the cost of RAM as a result of the decrease
in buffer sizes, and thus the cost of the server increases.

Our goal is to compute the value ofm for whichC(m) is minimum, subject to the constraint thatm >
Q�rdisp
rdisk

.

We begin by computing the value ofm for whichC(m)without thed es, which we denote bŷC(m), is minimum.
Solving d

dm (Ĉ(m)) = 0, we obtain the following value form, which we denote bymcalc, that satisfies the
constraint and at whicĥC(m) is minimum.

Q � rdisp
rdisk

+

s
2 �Q3 � Cr � r2disp � (trot + tsettle) + 2 � tseek

Cd � rdisk

Since d
dm ( d

dm (Ĉ(m))) > 0 atm = mcalc, it follows that for increasing values ofm beyondmcalc and

decreasing values ofm belowmcalc (and aboveQ�rdisp
rdisk

), the value ofĈ(m) increases. The optimal value ofm
for whichC(m) is minimum can now be computed as follows.

We refer to values ofm for which Ĉ(m) = C(m) as breakpoints. At increasing breakpoints beyondmcalc,
the value ofC(m) increases. Furthermore, in between two successive breakpoints beyondmcalc, the value of
C(m) increases linearly withm. As a result, the optimal value ofm is bounded above bydmcalce. Furthermore,
since for a given value ofm,C(m) is always greater than or equal tôC(m), the lower bound for the optimal value
ofm can be obtained as follows. LetCdcalce be the value ofC(m) atm = dmcalce. By solvingĈ(m) = Cdcalce,

two values ofm for which Ĉ(m) = Cdcalce are obtained. One of these is to the right ofmcalc, and the other is

to the left ofmcalc, which we denote bymleft. SinceĈ(m) increases to the left ofmleft andC(m) is at least as
high asĈ(m), the optimal value ofm is an integer in the interval betweenmleft anddmcalce for whichC(m) is
minimum.

The optimal value ofm for a server that supports 1000 MPEG-1 streams is 88. The amount of RAM required
is 43.3 Gb and the cost of the the server is $348,689. Also, the value ford is 21.6 Mb, and the duration of a round
is 14.4 s.

5 Coarse-grained Striping

In coarse-grained striping, the size of stripe units is much larger; it is the amount of data typically retrieved during
contrast to fine-grained striping in which all disk heads are involved in data retrieval during each access, in coarse-
grained striping, usually, only a single disk is involved. For large requests and for sequential accesses to data,
coarse-grained striping distributes the workload evenly among the various disks. This striping technique is used
in the RAID-5 data distribution scheme [5]. In the following subsections, we present a scheme for retrieving data
for multiple concurrent video streams in case coarse-grained striping is used to store videos.

5.1 Servicing Requests

In the coarse-grained striping scheme, the size of a stripe unit isd, the number of bits retrieved for a video during
each round (we show howd is computed in the next subsection). Every video is assumed to have a length that
is a multiple ofd1. The various videos are first concatenated to form asuper-video. Consecutive stripe units
of sized belonging to thesuper-videoare then stored on them disks in a round-robin fashion. We denote the
disk on which the first stripe unit of a videoVi is stored bydisk(Vi). Note that, with the coarse-grained striping

1This can be achieved by appending advertisements or padding videos at the end.
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scheme, for two different videosVi andVj , disk(Vi) may be different fromdisk(Vj). We now describe schemes
for servicing client requests when videos are laid out using coarse-grained striping.

In contrast to the fine-grained striping scheme, in the coarse-grained striping scheme, a separate service list
is maintained for every disk. The service list for a disk contains the videos for which data is being retrieved from
the disk during the current round. The data for a video is retrieved into a buffer of size2 � d for the video. As
before, at the beginning of a round, the videos in each service list are sorted based on the positions of the tracks
on disk, of thed bits to be retrieved for each of the videos during the round. Following this, thed bits for videos
in the service list for every disk are retrieved from the disk in the sorted order. Furthermore, data for videos in
different service lists is retrieved in parallel. As a result, in order to retrieve data at a raterdisp, since rounds must
begin at intervals of d

rdisp
, for every service list (letV1; : : : ; Vq be the videos in the service list), we require the

following equation to hold:

q � (
d

rdisk
+ trot + tsettle) + 2 � tseek �

d

rdisp
(2)

At the end of a round, videos for which no more data needs to be retrieved are deleted from the service lists.
Following this, the service list for every disk is set to the service list of the disk preceding it – the data to be re-
trieved for a video in the service list being thed bits in the video that follow thed bits retrieved for the video in
the previous round from the preceding disk. Thus, data for a video during successive rounds is retrieved from
successive disks. Also, at the end of the round in which the firstd bits have been retrieved for a video, transmis-
sion of data to clients that requested it is begun. The above approach to storing and retrieving data is similar to
the staggered striping scheme for low bandwidth objects, proposed in [1].

We now present schemes that address the issue of when to begin retrieving data for videos in the request list
or alternately, when to insert videos contained in the request list into the service list for a disk. All of the schemes
are employed by the server just before the service lists are sorted at the beginning of a round, and after the service
list for every disk is set to that of its preceding disk, at the end of the previous round. Note that ifq is the number
of videos serviced at a disk during a round, then theunutilized(also referred to aswastedor available) bandwidth
on the disk, during the round, is at leastdrdisp � q � ( d

rdisk
+ trot + tsettle)� 2 � tseek.

The simplest scheme is to perform the following action for every request in the request list, beginning with
the first request.

If for the requested videoVi and the videos contained in the service list fordisk(Vi), Equation 2
holds, then the request is deleted from the request list and added to the service list fordisk(Vi).

The problem with the scheme is that, even though it utilizes the disk bandwidth fairly well, certain requests in
the request list may never be serviced; thus causing them to wait forever.

Example 1: Consider a server with 100 disks numbered 0 through 99. Consider videosV1; : : : ; V999, each of
which begins at disk 0 and terminates at disk 99, and videoV1000 that begins at disk 50. Now, suppose a request
for videoV1000 arrives at a time when the bandwidth of all the disks is being used to retrieve data for videos
in fV1; : : : ; V999g. Furthermore, suppose that additional requests for videos infV1; : : : ; V999g keep arriving at
the server. Every time data retrieval for a video infV1; : : : ; V999g completes, bandwidth is available on disk 0.
Thus, sincedisk(V1000) = 50 while videos infV1; : : : ; V999g begin at disk 0, the above scheme would allocate
the available bandwidth to one of the videos infV1; : : : ; V999g, for which a request is contained in the request
list. 2

A variant of the above scheme that adds a video to a service list only after videos preceding it in the request
list have been added to service lists, eliminates the above problem. However, a problem with the approach is that
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1. For every reserved list and free list entrye, e(1) is set to(e(1)+ 1) mod m; (thus, the disk in each entry
is set to the disk following it).

2. For every video for which the lastd bits were retrieved in the previous round from diski, we add the
bandwidth available on disk(i + 1) mod m to the free list as follows. Two variables,cur entry and
cur disk are maintained;cur entry is initially set to the first entry in the reserved list andcur disk is set
to (i+ 1) modm.

(a) If cur entry is nil, then add d
rdisk

+ trot+ tsettle to the available bandwidth of the free list entry for
cur disk, and go to Step 3.

(b) If dist(cur disk; disk(cur entry(2))) is less thandist(cur entry(1); disk(cur entry(2))), then the
values ofcur entry(1) andcur disk are swapped.

(c) cur entry is set to the next entry in the reserved list. Go to Step 2(a).

3. Once all the available disk bandwidth has been added to the free list, it is then reserved for requests in
the request list as follows.

(a) If the request list is empty or for every disk, the available bandwidth in the free list entry for the
disk is less than d

rdisk
+ trot+ tsettle, go to Step 4. Else, setcur video to the video contained in the

first request in the request list, and delete the request from the request list.

(b) Let diskj be the disk for which available bandwidth in the free list is at leastd
rdisk

+ trot + tsettle,
anddist(j; disk(cur video)) is minimum. Append(j; cur video) to the end of the reserved list.

(c) Decrement d
rdisk

+ trot + tsettle from the available bandwidth for diskj in the free list. Go to
Step 3(a).

4. For all entriese in the reserved list such thate(1) = disk(e(2)), deletee from the reserved list and insert
e(2) into the service list fore(1) (the data to be retrieved fore(2) is the firstd bits).

Figure 4: A Starvation-free Scheme

it could result in disk bandwidth being unnecessarily wasted. In the server of Example 1, suppose that at the start
of a round, there are outstanding requests for videosV1 andV1000 (the one forV1 preceding the one forV1000 in
the request list), and bandwidth is available only on disks 50 and 98. With the modified scheme, sinceV1 can be
added to the service list of disk 0 only when bandwidth becomes available on disk 0 (after two rounds),V1000
cannot be added to the service list for disk 50 even though bandwidth is available on it. Thus, the bandwidth on
disk 50 is wasted.

In the following, we present a scheme that prevents requests from starving and at the same time, utilizes disk
bandwidth effectively. In order to prevent starvation, the scheme reserves available disk bandwidth for videos
based on the order in which they appear in the request list. The assignment of reserved disk bandwidth to videos
is such that the amount of disk bandwidth that is wasted is minimized. The scheme requires two additional data
structures to be maintained. One of the data structures is a list of (disk,video) ordered pairs which stores infor-
mation about the disk on which bandwidth for a video is reserved. We refer to this list as thereserved list. The
other data structure utilized by our scheme is afree list, which stores information relating to the available band-
width on each disk; the free list entries are (disk, available bandwidth) ordered pairs. For each reserved and free
list entry e, e(1) ande(2) denote the first and second elements ofe, respectively. We assume them disks are
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numbered 0 throughm� 1. The distance from diski to diskj is denoted bydist(i; j). If i � j, thendist(i; j)
is simply j � i; elsedist(i; j) is m � i + j. Note thatdist(i; j) may not be equal todist(j; i). The distance
between the disk on which available bandwidth is reserved for a videoVi anddisk(Vi) is the number of rounds
for which d

rdisk
+ trot + tsettle portion of a disk’s bandwidth would be unutilized due to videoVi. It is also the

number of rounds after which data retrieval forVi is begun. The available bandwidth for each disk in the free list
is d

rdisp
� 2 � tseek initially. The reserved list is initially empty.

The scheme, for inserting videos from the request list into service lists at the start of a round just before ser-
vice lists are sorted, is as shown in Figure 4. In Step 1, the bandwidth available on a disk is set to the bandwidth
available on the disk preceding it. It may be possible that for newly available bandwidth on disk(i+1) modm
(due to the completion of data retrieval for a video on disk i), swapping it with the disk assigned to some video
in the reserved list could result in better bandwidth utilization. Thus, in Step 2, for a videoVj in the reserved list,
if disk (i + 1) mod m is closer todisk(Vj) than the disk currently assigned toVj , then disk(i + 1) mod m is
assigned toVj. The available bandwidth on the disk that was previously assigned toVj is then similarly assigned
to some subsequent video in the reserved list; the assignments are repeated until the end of the reserved list is
reached. In Step 3, available bandwidth in the free list is assigned to requests at the head of the request list, and
finally, in Step 4, videos in the reserved list for which data retrieval can begin, are added to the service lists. The
following example illustrates the actions performed by the various steps of the scheme.

Example 2: Consider the server in Example 1 with 100 disks and videosV1; : : : ; V1000. Suppose, at the start of
a round, sayr0, the request list contains requests for videosV1 andV1000 (the one forV1 preceding the one for
V1000), the reserved list is empty, and the only disks with available bandwidth greater than or equal tod

rdisk
+

trot + tsettle in the free list are disks 30 and 48. Due to Step 3, sincedist(48; disk(V1)) < dist(30; disk(V1))
(disk(V1) is 0),(48; V1) is first appended to the reserved list, followed by(30; V1000). Suppose, during roundr0,
data retrieval for videoV2 completes at disk 99. At the start of roundr0+1, the available bandwidth on disk 0 is
added to the free list as follows. During the first iteration of Step 2, sincedist(0; disk(V1)) < dist(49; disk(v1)),
cur disk is set to 49 and the first reserved list entry becomes(0; disk(V1)). During the second iteration, since
dist(49; disk(V1000)) < dist(31; disk(V1000)), cur disk is set to 31 and the second reserved list entry becomes
(49; V1000). At the end of Step 2, drdisk + trot + tsettle is added to the available bandwidth of the free list entry
for disk 31. Due to Step 4, sincedisk(V1) = 0, V1 is inserted into the service list for disk 0 at the start of round
r0+1; furthermore, sincedisk(V1000) = 50, V1000 is inserted into the service list for disk 50 at the start of round
r0 + 2. 2

Note that, in Step 2, since a videoVi in the reserved list is not re-assigned to a different disk unless the disk is
closer todisk(Vi), data retrieval for no video in the request list is delayed forever; thus, the scheme is starvation-
free. Also, the scheme incurs very little overhead. The availability of new disk bandwidth results in a comparison
being performed for every entry in the reserved list. Furthermore, the addition of a request into the reserved list
requires a comparison with every disk entry in the free list (in order to determine the closest disk with the required
available bandwidth).

We next show that the assignment of available bandwidth to videos in the reserved list due to the scheme
results in as good or better disk utilization than any other assignment of the available disk bandwidth to the same
videos. Note that, for an entrye in the reserved list,dist(e(1); disk(e(2))) is the number of rounds that bandwidth
for a stream is wasted. Thus, we show that the scheme minimizes the wasted bandwidth by showing that the sum
total ofdist(e(1); disk(e(2))), for all entriese in the reserved list, is less than or equal to the total distance due
to any other assignment of videos in the reserved list to disks with available bandwidth in the reserved and free
lists. We begin by showing that the following invariant always holds.
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For every entrye in thereservedlist, for all disksk contained in (1) entries followinge in the reserved
list, and (2) entries in the free list such that the available bandwidth is at leastd

rdisk
+ trot + tsettle,

the following is true:dist(e(1); disk(e(2))) � dist(k; disk(e(2))).

The above invariant is trivially preserved when an entrye is appended to the end of the reserved list in Step 3,
since among disks with available bandwidth in the free list,dist((e1); disk(e(2))) is minimum. When bandwidth
on a disk becomes available, every iteration in Step 2 of the scheme also preserves the invariant, and in addition,
the following property: for entriese precedingcur entry, dist(e(1); disk(e(2))) � dist(cur disk; disk(e(2))).
We show that Step 2(b) preserves both the invariant and the property. The invariant and property is preserved
for all entriese precedingcur entry as a result of Step 2(b), since before Step 2(b),dist(e(1); disk(e(2))) �
dist(cur disk; disk(e(2))) anddist(e(1); disk(e(2))) � dist(cur entry(1); disk(e(2))), and the only action
that Step 2(b) can perform is swapcur entry(1) andcur disk. Furthermore, since due to Step 2(b),
dist(cur entry(1); disk(cur entry(2))) can only decrease, anddist(cur entry(1); disk(cur entry(2))) �
dist(cur disk; disk(cur entry(2))) at the end of Step 2(b), the invariant and property are preserved forcur entry.

We now show that for any two entries(i; Vj) and(k; Vl) in the reserved list ((i; Vj) preceding(k; Vl)), as-
signing diski toVl and diskk toVj does not cause the total distance to decrease. The reason for this is that, due to
the invariant,dist(i; disk(Vj)) � dist(k; disk(Vj)), and since distances between disks are linear, it follows that
dist(i; disk(Vj)) + dist(k; disk(Vl)) � dist(i; disk(Vl)) + dist(k; disk(Vj)). The following theorem, thus,
follows from the above invariant.

Theorem 1: Consider an arbitrary assignmentA of videos in the reserved list to disks with available bandwidth
in the reserved and free lists (A(Vi) is the disk assigned to videoVi). The sum ofdist(A(Vi); disk(Vi)) for all
videos assigned inA is greater than or equal to the sum ofdist(e(1); disk(e(2))) for all entriese in the reserved
list. 2

5.2 Determining the Optimal Stripe Unit Size

We now address the issue of determining an optimal value ford such that the number of concurrent streams that
can be supported by the server is maximized. For a given value ofd, the maximum number of streams that can be

supported by each disk is
d

rdisp
�2�tseek

d
rdisk

+trot+tsettle
, the maximum value forq obtained as a result of solving Equation 2

(and by the server, it ism times the amount). Furthermore, since the buffer per stream is2 �d, and the total buffer
requirements cannot exceedD, the optimal value ford can be obtained by solving the following equation:

2 �m � d � (

d
rdisp

� 2 � tseek
d

rdisk
+ trot + tsettle

) = D

Let dcalc be the maximum value ofd obtained as a result of solving the above equation. Letqcalc be the
maximum number of streams that can be supported by each disk ford = dcalc. Note that2 �dcalc � qcalc �m = D.
The problem is thatqcalc may not be an integer. As a result, the maximum number of concurrent streams that can
be supported by the server isbqcalcc �m. Thus, since the RAM required to supportbqcalcc �m streams may be
substantially less thanD, if ddcalce is the minimum value ofd in order to supportdqcalce streams from a disk, then
by choosing the value ofd to beddcalce, it may be possible for the server to support a larger number of concurrent
streams. Sinceddcalce � dcalc, if d = ddcalce, then the maximum number of streams that can be supported by the
server isb D

2�ddcalce
c. Depending on which ofbqcalcc �m or b D

2�ddcalce
c is greater, the value ofd is set to eitherdcalc

or ddcalce.
Thus, ifD = 2 Gb andm = 50, then the optimal value ofd is .9 Mb, and the maximum number of streams

that can be supported is 1011. This is almost 7.5 times the maximum number of streams that can be supported by
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Figure 5: Cost of Server as a function of Number of Disks

the fine-grained striping scheme for the same values ofD andm. The reason for this is that the latency overhead
per data access for the fine-grained scheme ism times the overhead per data access for the coarse-grained scheme.
As a result, the value ofdcalc computed for the fine-grained scheme. is larger than that computed for the coarse-
grained scheme.

For simplicity, in the schemes presented in this section and later in the paper, video streams are begun only
based on the availability of disk bandwidth. As a result, we selectd to bedcalc. The schemes can be extended to
take into account even the availability of buffer space, in which case, an optimal value ford can be selected as
described above. However, we do not discuss these extensions in this paper.

5.3 Designing an Optimal-cost Video Server

We next address the issue of architecting an optimal-cost video server that supports a certain pre-specified num-
ber,Q, of concurrent streams. If the server hasm disks, then in order to supportQ streams from them disks,d
must be such that data fordQme concurrent streams can be retrieved from each of the disks. Thus, from Equation 2,

it follows thatd =
(dQ

m
e�(trot+tsettle)+2�tseek)�rdisk�rdisp

rdisk�dQ
m
e�rdisp

, and the minimum amount of RAM required,D = 2 �Q �d.

As a result, the cost of the server, in terms of the number of disks, obtained as a result of substituting ford in
Cr � 2 �Q � d+ Cd �m is as follows.

C(m) =
Cr�2�Q�(dQ

m
e�(trot+tsettle)+2�tseek)�rdisp

1�dQ
m
e�
rdisp

rdisk

+ Cd �m

In Figure 5, we show howC(m) varies with the number of disks,m, for a server that uses coarse-grained
striping and is required to support 1000 MPEG-1 streams. An optimal integral value form at whichC(m) is
minimum, subject to the constraint thatm >

Q�rdisp
rdisk

, can be computed as described earlier in Section IV.
The optimal value ofm for a server that supports 1000 MPEG-1 streams is 44. The amount of RAM required

is 3.08 Gb and the cost of the server is $81,404. Thus, the cost of the server when coarse-grained striping is used
to store videos is almost a quarter of the cost if fine-grained striping is used to support 1000 MPEG-1 streams.
Also, the value ofd is 1.5 Mb and the duration of a round is 1s.
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I/O Stream Sharing for Continuous Media Systems

Leana Golubchiky John C.S. Luiz Richard Muntzx

Abstract

Recent technological advances have made multimedia on-demand services, such as home entertainment
and home-shopping, feasible. One of the most challenging aspects of such systems is providing access ei-
ther instantaneously or within a small and reasonable latency upon request. In this paper, we discuss var-
ious data sharing techniques which reduce the aggregate I/O demand on the multimedia storage server
and thus improve its overall performance.

1 Introduction

Recent technological advances in information and communication technologies have made multimedia on-demand
services, such as movies-on-demand, home-shopping, etc., feasible. Information systems today can not only store
and retrieve large multimedia objects, but they can also meet the stringent real-time requirements of continuously
providing objects at a constant bandwidth, for the entire duration of that object’s display. Already, multimedia
systems play a major role in educational applications, entertainment technology, and library information system.

An example of a video-on-demand storage server is depicted in Figure 1; such a server archives many objects
of long duration, e.g., movies, music videos, educational training material, etc. The storage server consists of a
set of disks (D1 : : : DN ), a set of processors (P1 : : : PK), buffer space, and a tertiary storage device. The entire
database resides on tertiary storage, and the more frequently accessed objects are cached on disks. It is reasonable
to assume that a request for an object must be serviced from the disk sub-system; the size of the objects (on the
order of4:5 GB for a100 minute MPEG-2 encoded movie) precludes them from being stored in main memory,
and the long latency and high bandwidth cost of tertiary storage1 precludes objects from being transmitted directly
from tertiary devices. If the requested object is not disk-resident, then it has to be retrieved from the tertiary store
and placed on disks before its display can be initiated2; this could result in one or more objects being purged from
disks, due to lack of space. A disk-resident object can be displayed by scheduling an I/O stream and reading the
data from the appropriate disks.

One of the most challenging aspects of such systems is providingon-demandservice to multiple clients si-
multaneously, thus realizing economies of scale; that is, users expect to access objects, e.g., movies, within a
small and “reasonable” latency, upon request. We define the latency for servicing a request as the time between

yDepartment of Computer Science, Columbia University (leana@cs.columbia.edu). This research was supported in part by the IBM
graduate fellowship and was partially done while the author was a graduate student at UCLA.

zDepartment of Computer Science, The Chinese University of Hong Kong (cslui@cs.cuhk.hk). This research was supported in part
by the CUHK Direct Grant and the Croucher Foundation.

xComputer Science Department, UCLA (muntz@cs.ucla.edu). This research was supported in part by Hewlett Packard through an
equipment grant.

1The seek latency for a1:3GB tape on a $1000 tape drive can be on the order of20 seconds [6], whereas a similarly priced disk, of a
similar capacity, has a maximum seek time on the order of35 milliseconds and more than16 times the transfer rate. Tape systems with
significantly higher transfer rates and tape capacities although not with much lower seek latency do exist, but at a cost $40; 000-$300; 000.

2Techniques exist for starting playback of an object before it is entirely retrieved from tertiary storage; however, we will not discuss
these here and will assume for the remainder of the paper that the entire object is retrieved before playback is initiated.
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the request’s arrival to the time the system initiates the reading of the object (from a disk); for the purposes of
our discussion, we consider the additional delay until data is actually delivered to the display device relatively
negligible. Latency can be attributed to: a) insufficient bandwidth for servicing the request, b) insufficient buffer
space for scheduling its reading from the disks, or c) insufficient disk storage, i.e., the object in question may not
be disk-resident and hence may have to be retrieved from tertiary storage before it can be scheduled for display.

For ease of exposition, we can assume that the server, depicted in Figure 1, can be described by the following
three parameters: 1) total available I/O bandwidth, 2) total available disk storage space, and 3) total available
buffer space3. These parameters, in conjunction with data layout and scheduling schemes, determine the cost of
the server as well as the “quality of service” it can offer; although quality of service is a somewhat ambiguous
term, thelatency, in servicing a video request, is one useful measure. In general, the more video streams a system
can support simultaneously, the lower is the average latency for starting the service of a new request (at least for
the disk resident objects).

There are many architectures that can be used for constructing a video-on-demand server [2, 16, 12, 1, 10].
The distinctions between these architectures can be (mostly) attributed to the data layout and scheduling tech-
niques used. Let us consider one such system4, where the workload can be described by� = (�1; �2; : : : ; �K),
where�i is the arrival rate of requests for objecti andK is the total number of objects available on the storage
server (including the non-disk-resident objects). Informally, we expect a skewed distribution of access frequen-
cies with a relatively small subset of objects accessed very frequently, and the rest of the objects exhibiting fairly
small access rates5. In such a system, it is fair to assume that there is sufficient disk storage to at least hold the
popular objects; moreover, it is very likely that I/O bandwidth is the critical resource which contributes to in-
creases in latency. One way to reduce the latency is to simply purchase more disks. A more interesting and more
economical approach might be to either attempt to improve the data layout and scheduling techniques or to reduce
the I/O demand of each request in service through “sharing” of data between requests for the same object.

There are several approaches to reducing the I/O demand on the storage server through data sharing, or, in

3We will not consider the characteristics of the tertiary device in this paper.
4In this work, we focus on the benefits that can be gained from I/O stream sharing. These techniques can be applied to almost any VOD

server architecture, although we do not consider a specific implementation here; of course, the actual amount of performance improvement
will depend on a particular implementation.

5For instance, a movie server would have such characteristics, where a small subset of popular movies (for that week, perhaps) is
accessed simultaneously by relatively many users; furthermore, we can assume that the change in access frequency is relatively slow,
e.g., the set of popular movies should not change more often than once per week.
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effect, increasing the number of user requests which can be served simultaneously. For example:

1. batching: delaying requests for up toTi time units in hopes of more requests, for the same objecti, arriving
during the batching interval and servicing the entire group using a single I/O stream

2. buffering: closing the temporal “gaps” between successive requests through the use of buffer space, i.e.,
holding data read for a “leading” stream and servicing “trailing” requests out of the buffer rather than by
issuing another I/O stream

3. adaptive piggybacking: adjusting display rates of requestsin progress(for the same object) until their cor-
responding I/O streams can be “merged” into one

Note that, these techniques arenotmutually exclusive; for example, the results of using adaptive piggyback-
ing in conjunction with batching are presented in [7]. Note also, that sharing of data between requests for the same
object, results in additional complications when attempting to provide VCR functionality, for instance, allowing
one user in a batch to pause and then to eventually resume. This problem is a difficult one and is investigated in
[12, 4, 18], to name a few.

In general, the following parameters can be used to improve the number of simultaneous requests that a sys-
tem can serve: 1) delay time (for batching), 2) merging policy (for adaptive piggybacking), 3) buffer allocation
policy, and 4) display rate altering techniques (see Appendix 6 for more details), where (as already mentioned)
reduction in the I/O bandwidth consumed by the aggregate requests for a movie is considered to be the main goal
of these policies. While other resources are affected, disk bandwidth is likely to be the most important and costly.
This will remain so for the foreseeable future since disk capacity is increasing at a faster rate than disk bandwidth.

In this paper we describe each of thedata sharingtechniques, as well as their advantages and disadvantages,
in turn. The remainder of the paper is organized as follows. In Section 2 we describe batching approaches as
well as the tradeoffs associated with batching of streams. In Section 3 we describe buffering approaches, and in
Section 4 we present adaptive piggybacking. Finally, Section 5 presents our concluding remarks.

2 Batching

A batching procedureis defined to be an I/O scheduling policy which, on a per object basis, delays the initiation
of I/O streams for the purpose of grouping requests and using a single I/O stream to service the entire group.
Grouping requests can save system resources by allocating one I/O stream for each batch of requests instead of
one I/O stream per request; however, it can also result in higher average latency for initiating a display of an
object. Hence, there is an obvious tradeoff between initial delay experienced by each request after arrival and
the number of I/O streams that a system can support. In this paper, we are interested in controlling the utilization
of the I/O subsystem; for reasonably busy systems (the only really interesting case), the lower utilization a system
has, the lower is its response time for servicing requests.

There are several ways to batch requests into a single I/O stream. We discuss the following basic batching
policies: (1) batching by size and (2) batching by timeout. For the purposes of this discussion, we assume that
the request arrival process, for a particular objectj, is Poisson with rate�j .

Batching by size
LetBj be the pre-defined batching size and�j be the arrival rate of requests for objectj. The system issues an I/O
request to the storage server only whenBj such requests accumulate in the system. LetE[Nj ] be the expected
reduction (due to batching) in the number of I/O streams issued; then

E[Nj ] = Bj � 1 (3)
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Let Lj be a random variable denoting the latency experienced by each request for objectj; then the expected
latency is:

E[Lj ] =
1

Bj

BjX
i=1

Bj � i

�j
=
Bj � 1

2�j
(4)

Although this policy reduces the I/O demand on the storage server, it can result in long delays for requests, par-
ticularly for low to moderate arrival rates6.

Batching by timeout
Another policy is “batching by timeout”. The timer is set when a request arrives to the storage server and there
exists no other outstanding request for the same objectj. The system issues an I/O request to the storage server
Tj time units after the initiation of the timer. Any request, for the same object, arriving during theseTj time units
is batchedand serviced when the timer expires. LetNj be a random variable denoting the number of I/O streams
saved due to batching, andpjk be the probability ofk arrivals during timeTj; since the arrival process is Poisson,
we have:

E[Nj ] = �jTj (5)

To evaluate the expected latency experienced by each request, we can view the system as anM=G=1 queue with
a constant setup time (where the setup time is the duration of the timerTj) and a deterministic service time dis-
tribution with a mean of zero. The expected latency for this type of a system can be found in [15] as:

E[Lj ] =
Tj(2 + �jTj)

2(1 + �jTj)
(6)

SinceE[Nj ] = �jTj, the I/O demand on the secondary storage can be reduced tremendously under moderate
to high request arrival rates. This is also a reasonable policy for movie-on-demand applications because each
requests, for objectj, does not experience more thanTj units of delay due to batching. Figure 2 depicts the
expected latency curves for the two batching policies described in this section.

T  / 2j

Tj

E[L  ]j

λ j

batching by timeout
batching by size

Figure 2: Exp. Latency for Batching Policies (for objectj).

There has been considerable work done in investigating the use of batching techniques. We describe several
of these below. In [5], the authors consider several policies for deciding on which movie to multicast (or which
requests to batch), where the objective is to reduce the average waiting time for starting the service of a request
as well as to reduce the probability of a request reneging, i.e., there is some non-zero probability that a request

6Depending on the network characteristics, it might be wise to batch by size, since it can result in lower network traffic; however, we
do not consider network characteristics in this paper.
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may decide to leave the system if it does not receive service within some (“reasonable”) amount of time; note that
these are often conflicting goals. Fairness is also considered as the third objective of this optimization problem.
The two policies that are studied in the paper are FCFS and MQL (maximum queue length). The FCFS policy is
the recommended policy, especially if the reneging probability is a function of the waiting time.

In [4], the authors also consider batching as a resource conservation technique, and they correctly point out
that such techniques complicate provision of VCR functionality; more specifically, when one of the clients in
a batched group pauses and then eventually attempts to resume, the system must provide a new I/O stream in
order to serve the resumed client. (Of course, if no streams are available when a resume is requested, the client is
forced to wait.) The authors consider the following tradeoffs when analyzing the batching policies. Firstly, the
longer is the batching interval, the greater are the savings from batching, but also the greater is the probability
of reneging of a client. Secondly, to address the VCR functionality problem, the authors consider reserving a
pool of channels in order to provide quicker response to future resume requests; these are termed contingency
channels. In this work, an analytic model is developed for predicting the reneging probability and the expected
resume delay; this model is used to allocate channels for batching, contingency channel pool, and on-demand
(i.e., non-batched) service.

In [12], the authors propose an architecture for a movies-on-demand (MOD) system, which is efficient for
multiple concurrent retrievals of data for servicing requests for the same movie. The basic scheme works as
follows. A movie is divided intop phases, where the duration of a phase is determined by the bandwidth require-
ments of the movie as well as the bandwidth capability of the disk or disk array that stores that movie. The data
layout and scheduling schemes are such that the system architecture can continuously support multiple simulta-
neous retrievals of the same movie, separated by one phase. Thus a request for a particular movie can belong
to one ofp groups that are supported by thep concurrent streams (separated in time by the duration of a phase)
being retrieved for that movie. One important advantage of the schemes presented in this work is that they make
it fairly simple to provide VCR functionality (see [12] for details). Note that, the “granularity” of the VCR func-
tions, e.g., how long of a delay a user might incur after pushing the resume button, the frame rate of the fast
forward function as compared to normal display, etc. depends on the duration of the phase; finer granularity can
be provided, but at the cost of a (possible) storage/bandwidth mismatch. In [12], the authors propose several
solutions to the “granularity” problem.

In [18], the authors are mainly concerned with providing pause/resume functionality in a system where batch-
ing techniques are used to conserve resources. They propose an interesting solution to this problem, termed look-
ahead scheduling with look-aside buffering, which can be briefly described as follows. The idea of look-ahead
scheduling is to “back up” each display (in case of a pause/resume request) with a stream that is being used for
a different display and is near completion, rather than backing up each display with “real” stream capacity. The
look-aside buffering is used to support the display’s pause/resume needs until the appropriate look-ahead stream
runs to completion and becomes available. Note that, although this scheme does result in significant through-
put improvements, this is accomplished through the use of a very large buffer pool; thus, it remains to be seen
at which point it is more cost-effective to purchase additional disks (i.e., increase the bandwidth of a system)
rather than continue increasing the buffer pool. This of course, depends on the future trends of buffer to disk cost
rations.

3 Buffering

A buffering procedureis defined to be a buffer scheduling policy which attempts to bridge the temporal gap be-
tween two requests, for the same object, as follows. Rather than deallocating the buffer space after transmitting
data for a particular request, the system can retain the information in the buffer so that later requests, for the same
object, can extract this data directly from the buffers rather than issue another I/O request to the secondary stor-
age. The tradeoff here is between I/O bandwidth utilization and buffer space utilization. Retaining even a few

21



minutes of a movie in main memory can be an expensive proposition7 and might only be cost effective for the
very popular objects.

Considerably less studies have been performed on buffering techniques. We briefly describe a few of these
below. In [9, 8] the authors consider the use of buffering techniques to improve the efficiency of use of the disk I/O
bandwidth. In this work they discuss schemes for caching continuous media data. More specifically, the authors
propose and analyze heuristics for determining when data, that has been played back for a particular request,
should be kept in buffers for the purpose of reuse (or data sharing) with future requests for the same objects.
Their results indicate significant performance improvements, when data sharing is possible.

In [3], the authors also consider caching techniques for improving the efficiency of the I/O subsystem. They
study the cost impact of varying buffer sizes, disk utilization, as well as disk characteristics on the capacity of the
system. A simulation study is performed to determine the benefits of interval caching, i.e., exploiting temporal
locality rather than just caching the hottest objects. The cost-effectiveness of such buffering techniques is, of
course, highly affected by the fluctuations in the workload.

In [13], the authors present novel demand paging algorithms which reduce I/O bandwidth requirements through
the use of buffer space. A “pinning” demand paging technique is given to insure that the real-time constraints of
displaying video objects are satisfied. Furthermore, algorithms are presented for eliminating disk bandwidth lim-
itations, given that there is a sufficient amount of buffer space. Finally, the problem of optimizing the total buffer
space requirements is considered, in order to increase the number of streams that can be serviced simultaneously.

4 Adaptive Piggybacking

An adaptive piggybacking procedure[7] is defined to be a policy for altering display rates of requestsin progress
(for the same object), for the purpose ofmergingtheir respective I/O streams into a single stream, which can serve
the entire group (of merged requests). The idea is similar to that of batching, with one notable exception. The
grouping is donedynamicallyand while the displays arein progress, i.e., no latency is experienced by the user.
Note that, the reduction in the I/O demand is not quite as high as in the case of batching, since some time must
pass before the streams can merge8; hence, the tradeoff (between these two techniques) is between latency for
starting the service of a request and the amount of I/O bandwidth saved.

Consider a storage system, where for each request for an object there exists a display stream and a corre-
sponding I/O stream. The processing nodes use the I/O streams to retrieve the necessary data from disks, possibly
modify the data in some manner, and then use the display streams to transmit the data (through the network) to
appropriate display stations (e.g., in Figure 3, display streams1 and2 are serviced using the corresponding I/O
streams1 and2). The I/O demand on the storage server can be reduced by using a single I/O stream to service
several display streams corresponding to requests for the same object (e.g, in Figure 3, display streams3 and4
correspond to requests for the same object and are serviced using a single I/O stream9, 3). This can be done in a
static manner, i.e., by batching requests (see Section 2), and in adynamicor adaptivemanner.

A dynamic approach initiates an I/O stream, for each display stream, on-demand, and then allows one display
stream toadaptively piggybackon the I/O stream of another display stream (for the same object). We can also
view this as adynamic mergingof two I/O streams into one. Before the merge, there were two I/O streams,
each serving one (or more) display stream(s), where the display streams correspond to two temporally separated
displays of the same object. Of course, the benefits are that after the merge, there is only one I/O stream, which

7For instance, a1 min segment of an MPEG-2 stream may occupy as much as45 MB of buffer space; of course, the duration of time
for which it is needed is of importance.

8The display adjustment must be gradual (or slow) enough to insure that it is not noticeable to the user; we assume that altering the
quality of the display (as perceived by an “average” user) is not an acceptable solution.

9Depending on the network characteristics, it might be wiser to delay “splitting” display streams3 and4 until the last possible moment,
i.e., transmit them through the network as a single stream for as long as possible. However, we do not consider network characteristics
in this paper; hence, we shall not consider alternative transmission policies here which can reduce network bandwidth utilization.
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Figure 3: Simplified View of the System.

can service both display streams, and furthermore the corresponding displays are then “in synch”. This merging
can be accomplished by adjusting requests’ display rates, i.e., rather than displaying each request at the “normal”
rate, the system can adjust the display rate of each request (see Appendix 6), either to a “slower” rate or a “faster”
rate, in order to close the temporal gap between the displays10 .

Consider an analogy of servicing video requests, for a particular movie, to a collection of bugs sitting on
a moving conveyor belt (refer to Figure 4). The conveyor belt represents one particular movie; its length corre-

jk i
departures

new arrivals

Figure 4: Conveyor Belt Analogy.

sponds to the duration of the movie’s display, and the rate at which the conveyor moves corresponds to thenormal
display rate of the movie (e.g.,30 frames/sec for U.S. television). Each bug represents a single I/O stream, ser-
vicing one or more display requests for that movie; the position of the bug on the conveyor belt represents the part
of the movie being displayed by the corresponding I/O stream. If a bug chooses to remain still on the conveyor
belt, then the corresponding stream displays the movie at the normal rate. If the bug chooses to crawl forward (at
some speed), then the corresponding movie is displayed at a slightly higher rate. Similarly, if the bug chooses to
crawl backwards (at some speed), then the corresponding movie is displayed at a slightly lower rate.

If two bugs, one crawling forward and one crawling backward, are able to “merge” at timet, before either
one falls off the conveyor belt, then starting at timet the system is able to support both displays using only a
single I/O stream. Consider for the moment bugi in Figure 4, which must make a decision, namely, whether
to crawl forward, toward bugj, and piggyback on its I/O stream or whether to crawl backward, toward bugk,
and instead piggyback on its stream. Ifi crawls forward, then it will take less time to merge; however, after the
merge, a smaller portion of the movie will remain (to be displayed), and hence the benefits of merging would not

10In Appendix 6, we discuss different approaches to altering display rates; of course, an appropriate choice depends on the particular
implementation of the VOD server and involves such considerations as effect on: data layout techniques, scheduling, etc. (see [7] for
details).
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be as great. On the other hand, ifi crawls backward, towardk, then it will take longer to merge; however, greater
benefits might be reaped from that merger, if it can be achieved at an earlier portion of the conveyor belt.

Thus, one can view the duration of the object’s display as acontinuousline of finite length and consider the
problem of adaptive piggybacking as a decision problem; given the global state of the system, i.e., the position
(relative to the beginning of the display) of each display stream in progress, one must choose a display rate for
each of these requests, such that the total average I/O demand on the system is minimized11. In [7], several
merging policies, in conjunction with batching policies, are investigated and evaluated with respect to reduction
in I/O bandwidth utilization. The results indicate convincingly that small variations in the delivery rate can enable
enough merging of I/O streams that significant reduction of I/O bandwidth is realized.

5 Conclusions

On demand video servers present some interesting performance problems. Part of the effort is simply to un-
derstand the constraints and goals well enough to appreciate what is possible. In this paper we have presented
several techniques for sharing data between requests for the same object in a multimedia storage servers, namely,
batching, buffering, and adaptive piggybacking; we also described several studies in each catagory. The results
of these studies indicate that significant benefits can be gained from sharing data; however, as expected, these are
highly workload dependent.

6 Appendix A — Altering Video Display Rates

As stated in Section 4, adaptive piggybacking is a viable technique for reducing I/O demand on a video storage
server, if the storage server has the capability to dynamically alter the display rate of a request, or, rather, to
dynamicallytime compressor time expandsome portion of an object’s display12. In this section we discuss how
this can be done.

If one makes the basic assumption that the display units being fed by the storage server are NTSC standard
and display at a rate of30 frames per second (fps), then any time expansion or contraction should be done at the
storage server. Slow down in the effective display rate can be done by adding additional frames to the video since
the display device displays at a fixed rate. For example, if 1 additional frame is added for every 10 of the original
frames, the effective display rate (orig-frames/sec) will be30� 10

11 . Similarly, by removing frames the effective
display rate can be increased. There is ample evidence that effective display rates that are�5% of the nominal
rate can be achieved in such a way that it is not perceivable by the viewer (see [7] for further details). For instance,
a movie shot on film is transferred to video using atelecinemachine which adapts to the 30 fps required for the
video from the 24 fps which is standard for films; this is done using a 3-2 pulldown algorithm [14, 11], which for
every4 movie frames creates5 video frames, where two of the five frames produced are interpolations of a pair
of the original frames. A similar type of interpolation could be used in systems using adaptive piggybacking.

There are two approaches to actually providing the altered stream of frames to be transmitted to the display
stations:

� The altered version of the video can be created on-line. In this case the I/O bandwidth required from the
disk varies with the effective display rate. There are two possible disadvantages of the on-line alteration:
(1) the layout of the data on disk is often tuned to one delivery bandwidth and having to support multiple

11Note that in [7] the minimization of the average I/O demand is taken as the objective. Such reductions, if small, would not necessarily
be a good measure of how latency is decreased; however it is shown in [7] that large reductions are obtainable, and therefore the reduction
in I/O bandwidth requirements will translate directly to latency reduction.

12We do not discuss it in detail here, but necessary time adjustments can be performed on the audio portion of an object, using techniques
such as audio pitch correction [17]; clearly, the rate of this adjustment must be chosen accordingly to insure the necessary synchronization
[14] with the video portion of the object.
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bandwidths can complicate scheduling and/or require additional buffer storage and (2) to support on the
fly modification may require the expense of specialized hardware to keep up with the demand.

� The altered version of the video is created off-line and stored on disk with the original version. The obvious
disadvantage of this approach is the additional disk storage required.

Based on the above discussion, it is reasonable to assume that one can alter the effective display rate by�5%
without sacrificing video quality, and one can consider both the on-line generation approach to providing the
altered stream of frames and the off-line approach13 . For the latter, one must include additional considerations
in the scheduling policies that are motivated by the desire to limit the amount of additional disk space required
for storing replicates of a video (see [7] for details).
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A Proposed Method for Creating VCR Functions using MPEG
streams

David B. Andersen
Hewlett-Packard Company

1 Introduction

The development of Video-On-Demand (VOD) systems for movie delivery requires that the user be able to per-
form VCR functions over a broadband network system. These functions include Play, Pause, Fast Forward, and
Fast Rewind. No standard method exists between content developers, server manufacturers, and client applica-
tions to provide these functions. This paper will propose a standard method for implementing these functions
using MPEG streams and discuss some of the important tradeoffs.

The encoding and distribution of content has become one of the most important issues facing video infor-
mation providers. Today, in the case of movies, every service provider must encode the material for the specific
equipment being deployed in the network. Therefore, the ease of use and speed of the algorithms employed to
encode the material are extremely important. In the future, the creator of the content may encode the material
once and distribute it to the service providers in compressed form, but this is not the case today due to the lack
of standards.

2 Data Management Issues

There are several important data management issues to consider when deciding on how to implement MPEG VCR
functions. The two most important are buffer management at the client and the network architecture requirements
for bandwidth allocation. In addition, the efficiency of the encoding process is also a data management concern.
Many tradeoffs must be resolved in deciding these issues and standards must be adopted in order for broadband
interactive television to be successful.

The two types of network architectures for interactive video are constant bit rate (CBR) and variable bit rate
(VBR). In a CBR network, the server must ensure that every client receives an isochronous video stream. This
implies that no handshaking is performed between the server and the client. The advantage of this type of network
is that it can minimize the amount of buffer memory required at the client since it is assumed that the data will be
delivered at a constant rate. In a VBR network, the client manages the data buffer in FIFO fashion and requests
more data as necessary to guarantee the frame rate required. This type of buffer management is more suitable
in networks that cannot allocate isochronous bandwidth. The disadvantage is that VBR systems usually require
larger client buffers. The algorithm used to provide VCR functions should take these network architecture issues
into account.

Once the network architecture and client buffer issues are understood, the algorithms for creating the MPEG
video streams must be considered. Here the issues are efficiency and total data storage requirements. While it is
not the intent of this paper to detail these issues, several future research directions shall be described.
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3 Broadband Interactive Television systems for Video-On-Demand

There are several possible methods to provide VCR functions. In broadband VOD systems the most important
constraint for any method is that of Constant Bit Rate (CBR). Interactive television requires isochronous data
streams at all times. In addition, broadband networks employ a ”push” architecture that does not allow hand-
shaking to perform client buffer management. This implies that even in Play mode the bit rate must be carefully
controlled by the server and the network without any client intervention.

4 VCR Functions

Pause is the simplest of the VCR functions. It is typically implemented at the client by freezing the last picture.
Fast Forward and Fast Rewind can be implemented in many different ways. It is assumed for this discussion

that the picture should remain viewable during these functions to distinguish them from skip ahead functions.
The nature of the MPEG compression algorithm suggests that selective sampling of the I frames would achieve
a fast forward effect that could be varied by the sampling frequency. The problem with this approach is that the
aggregate network bit rate does not remain constant. This is due to the increased number of bits found in an I
frame picture compared to P and B frames. This can lead to buffer overruns at the client. It also requires real-time
processing at the server to perform the selective sampling.

An alternate method for implementing Fast Forward and Fast Rewind is to preprocess the content and create
special VCR mode files. When the user requests Fast Forward mode, the server switches the output stream to
the appropriate Fast Forward file. This has the advantage that the content creator can choose the algorithm to
create the VCR mode file, perform the preprocessing once, and distribute the complete package to many service
providers.

The VCR mode files can be created in one of two ways. This paper describes the Fast Forward file, but the
Fast Rewind file is almost identical with the frames in reverse order. The first method requires that the original
video material be sub-sampled before compression. For a ten times fast forward speed, every tenth video frame
would be stored to a suitable device before MPEG encoding. This material would then be MPEG encoded in
the normal fashion and stored in a separate file in the video server. This method results in very high quality Fast
Forward viewing with very smooth motion, but requires intermediate storage of the sub-sampled uncompressed
video.

The Fast Forward file can also be created in the MPEG compressed domain. Here, I frames are extracted and
a valid MPEG stream is produced from the results. Each MPEG GOP (one I frame only, typically) is wrapped in
a Sequence Header. The desired speed up rate is achieved by selecting one or more of the following strategies:

1. Select every I frame only from input play stream. Wrap this single I frame with a GOP header. The speed
up rate is a function of the input I frame rate. If the input GOP size was, say, 15 pictures per GOP then the
speed up would be 15x. If the GOP size was 12 then the speed up rate is 12x. This method limits the speed
up rate to the GOP size.

2. Select certain I frames (from play stream) to meet a desired speed up rate. If the desired speed up rate is,
say, 30 and the GOP size is 15 then build a stream with every other I frame captured. This method works
for speed up rates greater than the GOP size. By choosing which I frames to capture, this technique can
realize any desired average speed up rate (¿ GOP size).

3. Duplicate certain I frames (from play stream) to meet a speed up rate. This is needed when the speed up
rate is less than the GOP size. For example, if GOP size is equal to one and a factor of five speed up is
desired then every play I frame is captured and duplicated. The resulting picture exhibits a sample-and-
hold look since every captured frame is held. By choosing which I frames to capture then any average
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speed up rate (¡ GOP size) should be met. This effect may be achieved without actually duplicating the I
frame. Whenever an I frame needs a duplicate, place a template P frame in its place. This P frame has no
non-zero coefficient data so the previous I frame is held, in effect.

While these methods will create files with the desired speed up rate, the aggregate network bit rate will still
increase. Therefore, the rate of each I frame needs to be reduced so that the new picture sequence has a reasonably
low data rate. This can be accomplished by zeroing out higher frequency DCT coefficients in individual I frames.
This method is computationally efficient and yields an acceptable picture sequence. For example, assume a 10X
speed up for FF and FR and a 4:1 reduction in spatial resolution (fewer non-zero DCT coefficients). Then the FF
and FR tracks only consume 5the server. This method can even result in reduced network bandwidth requirements
for VCR functions if the spatial resolution is reduced sufficiently.

5 Video Server Implications

The server must store separate video tracks called the Fast-Forward and Fast-Reverse tracks. These tracks are
jumped to and viewed when a user requests fast-forward and fast-reverse functions respectively. These tracks
are MPEG-2 transport streams that contain the speeded up version of the standard track.

For the FF track, one out of every Nth picture in the STD track is represented in the track, where N is a
predetermined ratio number. This ratio is attached to the FF and FR tracks as a property in a Table of Contents
file for the content package.

To implement FF and FR functions, the capability must be provided to jump from one track to another. To
facilitate this, the STD, FF, and FR tracks are required to have locations that allow random access into the track.
These locations are known as Random Access Points (RAPs).

RAPs are defined to be at the start of the NULL Transport Stream Packet (TSP) that immediately precedes a
video TSP whose randomaccessindicator is set. The following must be true for this video TSP:

1. There shall be a NULL TSP immediately preceding it.

2. It shall have its payloadunit start indicator set and shall contain a payload.

3. It shall contain an adaptation field.

4. The randomaccessindicator shall be set in the adaptation field.

5. The PCRflag shall be set in the adaptation field.

6. The video TSP shall contain a PCR.

7. The payload of the video TSP shall be the start of a PES packet.

8. The PES packet header shall contain a PTS

9. The first byte of the PES packet payload shall contain the first byte of a video sequence.

A STD track should provide a RAP at least every 500 millisecond (half a second). FF and FR tracks must
provide a RAP at each picture. When jumping from one track to another, the video server needs to know where
to start playing the new stream. This is determined by performing lookups into index files called Random Access
Point Index Files. These files contain information about each possible point of entry into each stream. The RAP
Index file is a binary file that contains a series of records describing the RAPs. This information includes the
STD track picture number, the MPEG-2 Presentation Time Stamp, and the 64 bit byte offset into the stream.
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6 Conclusion

A standardized method for creating VCR functions using MPEG streams has been presented. The advantage of
this method is that content creators can specify and develop the desired quality and effects appropriate to the
content at hand. Service providers do not have to be involved in the content encoding and quality process. In
addition, the network bandwidth required to deliver the VCR functions can be controlled in a computationally
efficient manner.

Several data management issues deserve further investigation. The video server buffer management for CBR
vs. VBR networks is not well understood. When VCR functionality is added to the set of server features, what is
the impact on the server buffer management? What is the most efficient pipeline algorithm for MPEG encoding
if VCR files are to be created? What are the network bandwidth allocation considerations for VBR networks
providing VCR functions and what are the advantages of VCR files in these networks? These are a few of the
many issues that must be resolved for the widespread deployment of video as a network data type.
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Abstract

We describe a domain-independent method to search multimedia databases by content. Examples of
these searches include ‘find all images that look like this graphic drawing (which is a photograph of a
sunset)’ in a collection of color images; ‘find stocks that move like Motorola’s’ in a collection of stock
price movements; and ‘find patterns with stripes containing red and white’ in a collection of retail catalog
items.

In all these applications, we assume that there exists a distance function, which measures the dis-
similarity between two objects. Given that, the idea is to extractf numerical features from each object,
effectively mapping it into a point inf -dimensional space. Subsequently, any spatial access method (like
the R-trees) can be used to search for similar objects (that is, nearby points in thef -d space). Comparing
the features corresponds to a ‘quick and dirty’ test, which will help us exclude a large number of non-
qualifying objects. The test could allow for false alarms, but no false dismissals. This implies that the
mapping from objects tof -d points should preserve the distance, or, as we show, it shouldlower-bound
it.

We briefly show how this idea can be applied to achieve fast searching for time sequences and for
color images. Experiments on real or realistic databases show that it is much faster than sequential scan-
ning, while not missing any qualifying objects, as expected from the lower-bounding lemma. Thus, this
approach can be used foranydatabase of multimedia objects, as long as the lower-bounding lemma is
satisfied.

Keywords: image databases; indexing; spatial access methods; time sequence matching.

1 Introduction

The problem we focus on is the design of fast searching methods that will search a database of multimedia objects,
to locate objects that match a query object, exactly or approximately. Objects can be 2-dimensional color images,
time sequences, video clips etc.

Specific applications include medical image databases in 2-d or 3-d (eg., MRI brain scans[4]); financial, mar-
keting and production time sequences (eg., stock-market time sequences [24]); scientific databases with vector
fields [9]; audio and video databases [26], DNA/genome databases [3], etc. In such databases, typical queries
would be ‘find companies whose stock prices move similarly’, or ‘find images that have colors similar to a sunset
photograph’, or ‘find medical X-rays that contain something that has the texture of a tumor’.

�On leave at AT&T Bell Laboratories, Murray Hill, NJ; His research was partially funded by the National Science Foundation under
Grants IRI-9205273 and IRI-8958546 (PYI), with matching funds from EMPRESS Software Inc. and Thinking Machines Inc. E-address:
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Searching for similar patterns in such databases as the above is essential, because it helps in predictions,
computer-aided medical diagnosis and teaching, hypothesis testing and, in general, in ‘data mining’ [2] and rule
discovery.

To solve these problems, the distance of two objects has to be quantified. We rely on a domain expert to
supply such a distance functionD():

Definition 1: Given two objects,O1 andO2, the distance (= dis-similarity) of the two objects is denoted by

D(O1; O2) (7)

For example, if the objects are two (equal-length) time series, the distanceD() could be their Euclidean dis-
tance (sum of squared differences).
Similarity queries can be classified into two categories:

Whole Match: Given a collection ofN objectsO1; O2; : : : ; ON and a query objectQ, we want to find those
data objects that are within distance� fromQ. Notice that the query and the objects are of the same type:
for example, if the objects are 512�512 gray-scale images, so is the query.

Sub-pattern Match: Here the query is allowed to specify only part of the object. Specifically, givenN data
objects (eg., images)O1; O2; : : : ; ON , a query (sub-)objectQ and a tolerance�, we want to identify the
parts of the data objects that match the query. If the objects are, eg., 512�512 gray-scale images (like
medical X-rays), in this case the query could be, eg., a 16�16 sub-pattern (eg., a typical X-ray of a tumor).

Additional types of queries include the ‘nearest neighbors’ queries (eg., ‘find the 5 most similar stocks to
IBM’s stock’) and the ‘all pairs’ queries or ‘spatial joins’ (eg., ‘report all the pairs of stocks that are within dis-
tance� from each other’). Both the above types of queries can be supported by our approach: As we shall see,
we reduce the problem into searching for multi-dimensional points, which will be organized in R-trees; in this
case, nearest-neighbor search can be handled with a branch-and-bound algorithm (eg., [33]), and the spatial-join
query can be handled with recent, highly fine-tuned algorithms [7]. Thus, we do not focus on nearest-neighbor
and ‘all-pairs’ queries.

For all the above types of queries, the ideal method should fulfill the following requirements:

� it should befast. Sequential scanning and distance calculation with each and every object will be too slow
for large databases.

� it should be ‘correct’. In other words, it should return all the qualifying objects, without missing any (i.e.,
no ‘false dismissals’). Notice that ‘false alarms’ are acceptable, since they can be discarded easily through
a post-processing step.

� the proposed method should require a small space overhead.

� the method should be dynamic. It should be easy to insert, delete and update objects.

As we see next, the heart of the proposed approach is to usef feature extraction functions, to map objects
into points inf -dimensional space; thus, we can use highly fine-tuned database spatial access methods to accel-
erate the search. The remainder of the paper is organized as follows. Section 2 gives some background material
on past related work, on image indexing and on spatial access methods. Section 3 describes the main ideas for
the proposed, generic approach to indexing multimedia objects. Section 5 summarizes the conclusions and lists
problems for future research.
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2 Survey

As mentioned in the abstract, the idea is to map objects into points inf -d space, and to use multi-attribute access
methods (also referred to bySpatial Access Methods(SAMs)) to cluster them and to search for them. There are
two questions: (a) how to derive good features and (b) how to organize them in SAMs.

In terms of features to use, research in image databases benefits from the large body of work in machine vision
on feature extraction and similarity measures see e.g., [5, 10]. There is also a lot of work from the database end
(see, eg., [21]). In many cases, the article emphasizes either the vision aspects of the problem, or the indexing
issues. Several papers (eg., [27]) comment on the need for increased communication between the vision and the
database communities for such problems. See [11] for a survey of papers on feature extraction from the machine
vision research.

From the database end, there is a wide variety of multidimensional indexing methods (or Spatial Access Meth-
ods - ‘SAM’s). The prevailing methods form three classes [23]: (a) R-trees [18] and related tree-based methods
(k-d-B-trees [31], cell-trees [17], the BANG file [15], hB-trees [25], packed R-trees [32, 22],R+-trees [34],R�-
trees [6], Hilbert-R-trees [23] etc.) (b) linear quadtrees [16] or, equivalently, thez-ordering [30] or other space
filling curves [12] [20], and (c) grid-files [19, 28].

The upcoming, proposed method, can useanyof the above spatial access methods (SAMs), exactly because
it will treat the SAM as a ‘black box’: The SAM should be able to store multi-dimensional points, and, upon a
range query, the SAM should quickly return the data points inside the query region.

Our personal preference is the R-tree family, because the R-tree based methods seem to be most robust for
higher dimensions [11]. In the implementations reported in [13, 11] we used theR�-tree.

3 Proposed method

To illustrate the basic idea, we shall focus on ‘whole match’ queries. There, the problem is defined as follows:

� we have a collection ofN objects:O1,O2, : : :, ON

� the distance/dis-similarity between two objects (Oi; Oj) is given by the functionD(Oi; Oj), which can be
implemented as a (possibly, slow) program

� the user specifies a query objectQ, and a tolerance�

Our goal is to find the objects in the collection that are within distance� from the query object. An obvious
solution is to apply sequential scanning: For each and every objectOi (1 � i � N ), we can compute its distance
fromQ and report the objects with distanceD(Q;Oi) � �.
However, sequential scanning may be slow, for two reasons:

1. the distance computation might be expensive. For example, the editing distance in DNA strings requires
a dynamic-programming algorithm, which grows like the product of the string lengths (typically, in the
hundreds or thousands, for DNA databases).

2. the database sizeN might be huge.

Thus, we are looking for a faster alternative. The proposed approach is based on two ideas, each of which tries
to avoid each of the two disadvantages of sequential scanning:

� a ‘quick-and-dirty’ test, to discard quickly the vast majority of non-qualifying objects (possibly, allowing
some false-alarms)

� the use of Spatial Access Methods, to achieve faster-than-sequential searching, as suggested by Jagadish [21].
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The case is best illustrated with an example. Consider a database of time series, such as yearly stock price
movements, with one price per day. Assume that the distance function between two such seriesS andQ is the
Euclidean distance

D(S;Q) �

 X
i=1

(S[i] �Q[i])2
!1=2

(8)

whereS[i] stands for the value of stockS on thei-th day. Clearly, computing the distance of two stocks will take
365 subtractions and 365 squarings in our example.

The idea behind the ‘quick-and-dirty’ test is to characterize a sequence with a single number, which will
help us discard many non-qualifying sequences. Such a number could be, eg., the average stock price over the
year: Clearly, if two stocks differ in their averages by a large margin, it is impossible that they will be similar.
The converse is not true, which is exactly the reason we may have false alarms. Numbers that contain some
information about a sequence (or a multimedia object, in general), will be referred to as ‘features’ for the rest
of this paper. Using a good feature (like the ‘average’, in the stock-prices example), we can have a quick test,
which will discard many stocks, with a single numerical comparison for each sequence (a big gain over the 365
subtractions and squarings that the original distance function requires).

If using one feature is good, using two or more features might be even better, because they may reduce the
number of false alarms (at the cost of making the ‘quick-and-dirty’ test a bit more elaborate and expensive). In
our stock-prices example, additional features might be, eg., the standard deviation, or, even better, some of the
discrete Fourier transform (DFT) coefficients (see [13]).

The end result of usingf features for each of our objects is that we can map each object into a point inf -
dimensional space. We shall refer to this mapping asF() (for ‘F’eature):

Definition 2: LetF() be the mapping of objects tof -d points, that isF(O)will be thef -d point that corresponds
to objectO.

This mapping provides the key to improve on the second drawback of sequential scanning: by organizing
thesef -d points into a spatial access method, we can cluster them in a hierarchical structure, like theR�-trees.
Upon a query, we can exploit theR�-tree, to prune out large portions of the database that are not promising. Such
a structure will be referred to byF-index(for ‘Feature index’). Thus, we do not evenhaveto do the quick-and-
dirty test on all of thef -d points!

1 365

Sn

S1

..

3651

Feature2

Feature1

F(Sn)

F(S1)

e

Figure 1: Illustration of basic idea: a database of sequences S1, ... Sn; each sequence is mapped to a point in
feature space; a query with tolerance� becomes a sphere of radius�.

Figure 1 illustrates the basic idea: Objects (eg., time series that are 365-points long) are mapped into 2-d
points (eg., using the average and the standard-deviation as features). Consider the ‘whole match’ query that
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requires all the objects that are similar toSn within tolerance�: this query becomes anf -d sphere in feature
space, centered on the imageF(Sn) of Sn. Such queries on multidimensional points is exactly what R-trees and
other SAMs are designed to answer efficiently. More specifically, the search algorithm for a whole match query
is as follows:

Algorithm 1: Search an F-index:

1. map the query object Q into a point F(Q) in feature space

2. using the SAM, retrieve all points within the desired tolerance � from F(Q).

3. retrieve the corresponding objects, compute their actual distance from Q and discard the false
alarms.

Intuitively, an F-index has the potential to relieve both problems of the sequential scan, presumably resulting
into much faster searches. The only step that we have to be careful with is that the mappingF() from objects to
f -d points does not distort the distances. LetD() be the distance function of two objects, andDfeature() be the
(say, Euclidean) distance of the corresponding feature vectors. Ideally, the mapping should preserve the distances
exactly, in which case the SAM will have neither false alarms nor false dismissals. However, requiring perfect
distance preservation might be difficult: For example, it is not obvious which features we have to use to match the
editing distance between two DNA strings. Even if the features are obvious, there might be practical problems:
for example, in the stock-price example, we could treat every sequence as a 365-dimensional vector; although in
theory a SAM can support an arbitrary number of dimensions, in practice they all suffer from the ‘dimensionality
curse’, as discussed in the survey section.

The crucial observation is that we can guarantee that the ‘F-index’ method will not result in any false dis-
missals, if the distance in feature space matches or underestimates the distance between two objects. Intuitively,
this means that our mappingF() from objects to pointsshould make things look closer(ie., it should be a con-
tractive mapping).

Mathematically, letO1 andO2 be two objects (e.g., same-length sequences) with distance functionD() (e.g.,
the Euclidean distance) andF(O1),F(O2) be their feature vectors (e.g., their first few Fourier coefficients), with
distance functionDfeature() (e.g., the Euclidean distance, again). Then we have:

Lemma 3: To guarantee no false dismissals for whole-match queries, the feature extraction functionF() should
satisfy the following formula:

Dfeature(F(O1);F(O2)) � D(O1; O2) (9)

Proof: LetQ be the query object,O be a qualifying object, and� be the tolerance. We want to prove that if the
objectO qualifies for the query, then it will be retrieved when we issue a range query on the feature space. That
is, we want to prove that

D(Q;O) � �) Dfeature(F(Q);F(O)) � � (10)

However, this is obvious, since

Dfeature(F(Q);F(O)) � D(Q;O) � � (11)

Thus, the proof is complete. 2

We have just proved that lower-bounding the distance works correctly for range queries. Will it work for
the other queries of interest, like ‘all-pairs’ and ‘nearest neighbor’ ones? The answer is affirmative in both cases:
An ‘all-pairs’ query can easily be handled by a ‘spatial join’ on the points of the feature space: using a similar
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reasoning as before, we see that the resulting set of pairs will be a superset of the qualifying pairs. For the nearest-
neighbor query, the following algorithm guarantees no false dismissals: (a) find the pointF(P ) that is the nearest
neighbor to the query pointF(Q) (b) issue a range query, with query objectQ and radius� = D(Q;P ) (ie, the
actual distance between the query objectQ and data objectP .
In conclusion, the proposed generic approach to indexing multimedia objects for fast similarity searching is as
follows (named ‘GEMINI’ for GEneric Multimedia object INdexIng):

Algorithm 2 (‘GEMINI’): GEneric Multimedia object INdexIng approach:

1. determine the distance function D() between two objects

2. find one or more numerical feature-extraction functions, to provide a ‘quick and dirty’ test

3. prove that the distance in feature space lower-boundsthe actual distance D(), to guarantee cor-
rectness

4. use a SAM (eg., an R�-tree), to store and retrieve the f -d feature vectors

The first two steps of GEMINI deserve some more discussion: The first step involves a domain expert. The
methodology focuses on thespeedof search only; the quality of the results is completely relying on the distance
function that the expert will provide. Thus, GEMINI will returnexactly the sameresponse-set (and therefore,
the same quality of output, in terms of precision-recall) with what the sequential scanning of the database would
provide; the only difference is that GEMINI will be faster.

The second step of GEMINI requires intuition and imagination. It starts by trying to answer the question
(referred to as the ‘feature-extracting’ question for the rest of this work):

‘Feature-extracting’ question: If we are allowed to use only one numerical feature to describe each
data object, what should this feature be?

The successful answers to the above question should meet two goals: (a) they should facilitate step 3 (the distance
lower-bounding) and (b) they should capture most of the characteristics of the objects.

Next, we present briefly two case studies.

4 Case studies

We have used the above approach for retrieval by content in two environments, time sequences and 2-d color
images.

Time Sequences: There [1, 13], we used the Euclidean distance as the dis-similarity measure, which has been
widely used for time-series forecasting [8]. For features, we used the first few coefficients for of the Discrete
Fourier Transform (DFT) [29], and we showed that they lower-bound the actual distance, thanks to Parseval’s
theorem. Specifically, for a signal~x = [xi], i = 0; : : : ; n� 1, letXF denote then-point DFT coefficient at the
F -th frequency (F = 0; : : : ; n� 1). Parseval’s theorem [29] states that the DFT preserves the energy of a signal
(sum of squares of its entries), as well as the Euclidean distance between two signals:

n�1X
i=0

jxi � yij
2 =

n�1X
F=0

jXF � YF j
2 (12)
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where ~X and~Y are the Fourier transforms of~x and~y respectively. Thus, if we keep the firstf (� n) coefficients
of the DFT as the features, we lower-bound the actual distance:

Dfeature(F(~x);F(~y)) =
f�1X
F=0

jXF � YF j
2 �

n�1X
F=0

jXF � YF j
2 =

n�1X
i=0

jxi � yij
2 � D(~x; ~y) (13)

because we ignore positive terms from Equation 8. Thus, there will beno false dismissals, according to Lemma 3.
Timing experiments showed that the proposed method outperforms the sequential scanning for ‘whole-match’,

‘all-pairs’ and sub-pattern match queries. As expected, our method introduces some false alarms; however, the
cumulative time to traverse the F-index and to clean-up the false alarms is still much smaller than the response
time of the sequential scanning.

Color Images: We applied GEMINI on color image databases [11], as part of the QBIC project of IBM [14].
There, the dis-similarity measure was the so-calledcolor-histogramdistance: After deciding on a numberk of
colors (eg.,k=256), the color histogram of an image is ak-dimensional vector, where each entry is the count of
pixels that have the specific color. Once these histograms are computed, one method to measure the distance
between two histograms (k � 1 vectors)~x and~y is given by

d2hist(~x; ~y) = (~x� ~y)tA(~x� ~y) =
kX
i

kX
j

aij(xi � yi)(xj � yj) (14)

where the superscriptt indicates matrix transposition, and the color-to-color similarity matrixA has entriesaij
which describe the similarity between colori and colorj.

The problem with the color-histogram distance is that it involves ‘cross-talk’ between the features: For exam-
ple, the ‘bright-red’ color is similar to the ‘orange’ color, as well as to the ‘pink’ color etc.; thus, when comparing
two color histograms, we have to take these similarities into account. This ‘cross-talk’ among features precludes
the use of spatial access methods.

We solved the problem by asking the ‘feature-extracting’ question. Since we have three color components,
(eg., Red, Green and Blue), we considered the average amount of red, green and blue in a given color image.
We showed that the Euclidean distance between the average RGB vectors lower-bounds the color-histogram dis-
tance [11], and we presented timing experiments on a collection of 924 color images: There, sequential scanning
requires roughly 10 seconds, while our method requires from a fraction of a second up to 4 seconds.

5 Conclusions

We have presented a generic method (the ‘GEMINI’ approach) to accelerate queries by content on image databases
and, more general, on multimedia databases. Target queries are, eg., ‘find images with a color distribution of a
sunset photograph’; or, ‘find companies whose stock-price moves similarly to a given company’s stock’.

The method expects a distance functionD() (given by domain experts), which should measure the dis-similarity
between two images or objectsO1, O2. We mainly focus onwhole matchqueries (that is,queries by example,
where the user specifies the ideal object and asks for all objects that are within distance� from the ideal object).
Extensions to other types of queries (nearest neighbors, ‘all pairs’ and sub-pattern match) are briefly discussed.
The ‘GEMINI’ approach combines two ideas:

� The first is to devise a ‘quick and dirty’ test, which will eliminate several non-qualifying objects. To achieve
that, we should extractf numerical features from each object, which should somehow describe the object
(for example, the first few DFT coefficients for a time sequence, or for a gray-scale image). The key ques-
tion to ask is‘If we are allowed to use only one numerical feature to describe each data object, what should
this feature be?’
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� The second idea is to further accelerate the search, by organizing thesef -dimensional points using state-of-
the art spatial access methods (‘SAMs’) [21], like theR�-trees. These methods typically group neighboring
points together, thus managing to discard large un-promising portions of the address space early.

The above two ideas achieve fast searching. We went further, and we considered the condition under which the
above method will be not only fast, but alsocorrect, in the sense that it will not miss any qualifying object (false
alarms are acceptable, because they can be discarded, with the obvious way). Specifically, we proved thelower-
boundinglemma, which intuitively states that the mappingF() of objects tof -d points shouldmake things look
closer.

We briefly discussed how to apply the method for a variety of environments, and specifically, 2-d color images
and 1-d time sequences. Experimental results on real or realistic data confirmed both the correctness as well as
the speed-up that our approach provides.

Future work involves the application of the method in other, diverse environments, like voice and video
databases, DNA databases, etc.. The interesting problems in these applications are to find the details of the dis-
tance functions in each case, and to design features that will lower-bound the corresponding distance tightly.
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