Bulletin of the Technical Committee on

Data .
Engineering

September, 1994 Voal. 17 No. 3 | EEE Computer Society
Letters
Letter fromthe Editor-in-Chief DavidLomet 1
Letter from the Specia ISSUEEItOr.o Shahram Ghandeharizadeh 2

Special Issue on Data Placement for Parallelism

DataDeclusteringin PADMA: A PArallel Database MANBGEr oot e

................................. Jaideep Srivastava, Thomas M. Niccum, and Bhaskar Himatsingka
Fault Tolerance Issuesin Data Declustering for Parallel Database Systems.t

.. Leana Golubchik, and Richard R. Muntz

“Disk Cooling” in Parallel Disk Systems. Peter Scheuermann, Gerhard Weikum, and Peter Zabback
Issuesin Paralel Information Retrieval Anthony Tomasic, and Hector Garcia-Molina
Notices

14
29
41

Transactionson Knowledgeand Data ENgineering.o oot e back cover

Editorial Board

Editor-in-Chief
David B. Lomet
DEC Cambridge Research Lab
One Kendall Square, Bldg. 700
Cambridge, MA 02139
| onet @r | . dec. com

Associate Editors
Shahram Ghandeharizadeh
Computer Science Department
University of Southern Caifornia
Los Angeles, CA 90089

Goetz Graefe

Portland State University
Computer Science Department
PO. Box 751

Portland, OR 97207

Meichun Hsu

Digital Equipment Corporation
529 Bryant Street

Palo Alto, CA 94301

J. Eliot Moss

Department of Computer Science
University of Massachusetts
Amherst, MA 01003

Jennifer Widom

Department of Computer Science
Stanford University

Palo Alto, CA 94305

The Bulletin of the Technical Committee on Data Engi-
neering is published quarterly and is distributed to al TC
members. Its scope includes the design, implementation,
modelling, theory and application of database systemsand
their technol ogy.

Letters, conference information, and news should be
sent to the Editor-in-Chief. Papers for each issue are so-
licited by and should be sent to the Associate Editor re-
sponsiblefor the issue.

Opinionsexpressed in contributionsare those of the au-
thors and do not necessarily reflect the positionsof the TC
on Data Engineering, the IEEE Computer Society, or the
authors' organizations.

Membership in the TC on Data Engineering is open to
al current members of the IEEE Computer Society who
are interested in database systems.

TC Executive Committee
Chair

Rakesh Agrawal

IBM Almaden Research Center

650 Harry Road

San Jose, CA 95120

ragr awal @l maden. i bm com

Vice-Chair

Nick J. Cercone

Assoc. VP Research, Dean of Graduate Studies

University of Regina
Regina, Saskatchewan S4S0A2
Canada

Secretry/Treasurer

Amit P. Sheth
Bdlcore

RRC-1J210

444 Hoes Lane
Piscataway, NJ 08854

Conferences Co-ordinator

Benjamin W. Wah

University of Illinois
Coordinated Science Laboratory
1308 West Main Street

Urbana, IL 61801

Geographic Co-ordinators

Shojiro Nishio (Asia)

Dept. of Information Systems Engineering
Osaka University

2-1 Yamadaoka, Suita

Osaka 565, Japan

Ron Sacks-Davis (Australia)
CITRI

723 Swanston Street

Carlton, Victoria, Australia3053

Erich J. Neuhold (Europe)
Director, GMD-IPSI
Dolivostrasse 15

PO. Box 1043 26

6100 Darmstadt, Germany

Distribution

|EEE Computer Society

1730 Massachusetts Avenue
Washington, D.C. 20036-1903
(202) 371-1012

Letter from the Editor-in-Chief

Oneof thefew thingsgrowing faster than processor speedisdatabasesize. If database systemsareto succeed with
thetruly large (petabyte) databases of the future, they will need to exploit parallelism. Not only will user queries
requirethe processing of enormousamountsof data, but the userswill expect theresultsto be producedin atimely
fashion, i.e. with blinding speed. Applicationsof database systemsto science, to datamining, to multimedia, all
will depend on parallelism as a primary technique for achieving acceptable and scal able performance.

Simply scheduling extra processors for some logical partitioning of the datawill not suffice. The database
system, either automatically or under DBA direction, will need to place the data on disk or other stable media
in such away that paralelism can be effectively exploited. That iswhat this specia issue of the Bulletinis all
about. It isasubject of enormous practical importance that generates research interest because the problems are
difficult and can be attacked with the analytic skills possessed by strong researchers.

Shahram Ghandeharizadeh, who served as the editor of thisissue, has succeeded in bringing together highly
informative articles from outstanding researchers in the area of data placement for paralelism. Shahramishim-
self highly regarded for hiswork inthisarea. Theresultsof hiseditting reflect hisstrong skillsand good judgment
on this chalenging subject. | want to thank Shahram for thisfine job.

The current issue of the Bulletin has a minor stylistic change. The LaTex font previously used for the Bul-
letin has been replaced by the Times-Roman Postscript font. This has a number of subtle advantages. First, the
hardcopy remains readable while being somewhat more dense, hence permitting authors more words per issue.
Second, because thisis abuilt-in font, the size of the Bulletin Postscript filesis somewhat reduced. Finally, the
Postscript viewers that | have do a much better job of rendering the new font, the old LaTex font being nearly
unreadable, while the new font can be readily deciphered.

| am happy to be able to report some good news on the state of the Bulletin finances. The TC on Data Engi-
neering has been assured by the IEEE Computer Society that fundswill be provided that will allow usto publish
the Bulletin in hardcopy for the remainder of this year. (Our previous budget situation did not permit this. In-
deed, | was prepared to announce that the current issue would be available only electronically.) For the longer
term, the Computer Society has expressed its support for TC activities, including the Bulletin, and will continue
to work with usto solve the long term problem of providing hardcopy distribution of the Bulletin.

David Lomet
DEC Cambridge Research Lab
lomet@crl.dec.com

Letter from the Special |1ssue Editor

The emergence of both the Information Super Highway and the Nationa Information Infrastructure initiatives
have added to the increasing interest in parallel information systems. Thisis because both initiatives envision
the use of high performance systemsthat: (a) provide on-line access to vast amount of data, (b) continueto pro-
vide information services in the presence of hardware failures, and (c) scale to thousands of storage/processing
elementsin order to enable the platform to grow as the requirements of an application grows. Parallel database
management systems (DBMS) satisfy these requirements rather nicely.

Using amulti-node! hardware platform, a parallel DBMS disperses data across multiple nodes. This mini-
mi zes thetimerequired to processaquery becausethe system can partitionthe query (transparently) intomultiple
subquerieswith each subquery processing a stream of data from a node containing the relevant data. In order to
maximize the processing capability of the system, it is essential for the data to be placed across the nodes such
that the workload of an applicationis evenly distributed across the avail able resources. Otherwise, a singlenode
of athousand node system may become a bottleneck, reducing the overall processing capability of the system
and limiting its scalability characteristics.

The focus of this special issueis on the placement of datain paralel database systems. In the first article,
Srivastavaet. a., survey techniquesto horizontally decluster datain parallel relational DBM S based on a shared-
nothing architecture. Next, Golubchik and Muntz provide atutorial ontherole of parity and replicationto enable
asystem to continue operation in the presence of disk failures. This study a so describes how the redundant data
can be used during the normal operation in order to further enhance the performance of the system. The third
article by Schuermann et. d., presents and evauates a heuristic to dynamically redistribute datain a multi-disk
system, enabling the system to respond to the users' evolving pattern of access to the data. In the final article,
Tomasic and Garcia-Molinapresent research issuesin parallel document retrieval systems. Asacollection, these
articlesidentify someof theissues, solutions, and challengesfaced by the researchersinvestigatingthe placement
of datain parallel information systems.

| would liketo take this opportunity to thank the authorsfor contributing articlesto this special issue. | would
aso like to thank the external reviewersfor their time spent reading and providing valuable feedback to the au-
thors, they include: D. Agrawal, A. El Abbadi, H. Hsiao, T. leong, V. Krishnaswamy, M. Muralikrishna, D.
Schneider, and D. Schrader. Finaly, | would like to thank David Lomet, Editor in Chief of the bulletin, for his
advice and help with thisissue.

Shahram Ghandeharizadeh
Computer Science Department
University of Southern California
Los Angeles, CA 90089

! The definition of a node is architecture dependent. While in a multi-disk architecture a node may correspond to a disk drive, in a
shared-nothing architecture a node may consist of a CPU, one disk drive and some random access memory.

Data Declusteringin PADMA: A PArallel Database M Anager

Jaideep Srivastava, Thomas M. Niccum, Bhaskar Himatsingka
Computer Science Department
University of Minnesota
{srivasta|niccum|himatsin}Q@cs.umn.edu

1 Introduction

Parallel processing of database operations was first addressed by the database machine community, where the
focus was on designing special-purpose hardware [2]. However, the cost of building specia -purpose hardware
ishigh, and most of the proposalswere never realized [2]. The eighties saw the emergence of very powerful and
scalable commercial massively paralle processors (MPPs), with extremely attractive price/performance ratios,
e.g. NCUBE, Intel’siPSC and Paragon, KSR-1, and Thinking Machines CM-2 and CM-5. Also, with very high
speed communi cation switches becoming commercialy available, eg. ATM and Fiber Channel, and advance-
ments in operating system technology to make communication cheaper, e.g. Active Messages [27], a network
of workstations (NOWSs) [20] can be configured to provide the performance and price/performance of scalable
parallel machines. Thus, while special-purpose hardware design for databases did not succeed, use of MPPs or
NOWSsfor building parallel databasesis an extremely promising and active research area.

The past few years have seen growing activity in the area of parallel databases. The relational data model,
whose set-oriented non-procedural nature provides opportunitiesfor massive parallelization, has been found es-
peciadly suitable[2]. A number of parallel database projects have been started in academia[3, 7] and industry
[1, 21] and products such as Parallel Oracle, Tandem Himalaya, Sybase Navigator, Teradata parallel database on
NCR DBC/1012, etc. are available in the market. Applicationstargeted range from transaction processing to
deductive databases.

In this paper we provide a brief overview of the ongoing PArallel Database MAnager (PADMA) project at
the University of Minnesota and summarize specific results obtained in the area of data declustering. We finally
outlinethe project status and future directions.

2 DataDeclustering: An Overview

Record-oriented data can be visualized as pointsin multi-dimensiona space, with the co-ordinate of a point on
an axis being the value of the corresponding attribute of the record it represents. The declustering problem thus,
isdeciding how to partition the entire data space into subspaces, which may be overlapping or non-overlapping,
and then deciding how to allocate data subspacesto disks. In general, it is possibleto have multiple subspaces
allocated to the same disk, as well as a subspace allocated to multipledisks (replication). A datapoint (record) is
stored on the disk(s) to which the subspace containingit is alocated. Several declustering techniques have been
proposed in the literature, and good surveys are provided in [6] [15] [12]. A mgor classis of single-attribute
declustering methods, where the space partitioning is based on a single attribute. Examples are [9] [2], where
the most frequently queried attributeis used for declustering. Another classification of declustering methods can
be based on whether the partitioning of the data space is donein terms of regular grids, e.g. grid-file[19] type
partitioning, or irregular shapes[10]. Though the question of whether regular or irregular partitions are better is
by no means settled, our focus has been on finding good decl ustering methods for regular grid-based partitioning

3

or cartesian product files All these methods and the class of methods we are studying work well for read-only
databases. They aso handle well behaved updates, though further study isrequired in thisarea. Components of
the declustering problem are:

¢ Creating thegrid partitions, i.e. dividing the complete data space into regular sub-spaces.

e Assigningindividua sub-spaces to disk(s) i.e. disk allocation. Since we do not consider replication, this
is equivalent to finding a mapping which maps each sub-space to a unique disk.

Various deterministic methods have been studied [17] for creating agrid partitioning of the data space. How-
ever, these techniques are applicable only to small datafiles. Hence, statistical sampling based approaches be-
come extremely important. We have studied sampling based approaches for creating the grid partitions, and the
techniques have been shown to have very good partitioning properties. Details of these techniques are provided
in[17]. In the following sections, we assume that the grid partitioning has been created. We thus use the terms
data declustering and disk allocation interchangeably.

2.1 Problem Definition

We now define some terminology which is used through out this paper. These definitions are similar to those
used by Faloutsos et a [5].

Symbol Definitions

| Symbol | Definition ||
M Number of disks
d Number of attributes
D; Domain of 1 -th attribute
d; Number of Intervals of the
domain of the ¢ -th attribute
diskOf() | Function that maps bucket-idsto disks

Definition 1 [Cartesian Product File] Let D; denotethe domain of the4t attributeof ad -attributefile. Let each
D; be partitioned into d; disointintervas Lo, I;1, ..., Iig;—1. We call F acartesian product fileif all recordsin
partition Iy;, x In;, X ... X Ig;,, whereeach I;. € {Ljo, Ij1, .., Ijq;—1}, lieinthesame unique bucket(disk block).
Thebucket b = I;, X Iz, X ... X Ig;, isdenoted by < 41, 13, ..., 14 >.
Definition 2[RangeQuery] Arangequery@ = [L1, Uy) X [La, Uz) X ... X [Lqg, Ug), L;, U; € D;, isrepresented
asad -tuple([Ly, U), [La, Us), ..., [La, Ua)). Here [L;, U;) istherange on the it attribute. Records that satisfy
this query must be pointsthat liein the d -dimensional box [L1, U) X [La, Uz) X ... X [Lg, Uq).
Definition 3[Partial Match Query] A partial match query @ isarange query such that
{@0)[Li, Us) = D A (V5 € {1,2, ..., d})(j # D) (L; = U]}
Definition 4 [Point Query] A point query @ isarange query such that
[(Vie{1,2,..,d})(L; = U;)].
Definition 5 [Length of Query] Let @ = ([L1,U1), [L2, L3), - -, [L4, Ug)) be arange query. The length of
Q@ ondimension < is the number of intervalsintersecting [L;, U;) on dimension :.
Definition 6 [Response Time] The response time of a query is defined as: max (Ng, Ny, ..., Nar—1) where
N;(0 <1< M — 1) isthenumber of qualifying buckets on disk ¢, for the query.

Sincel/Oisthemajor bottleneck in query processing, it isdesirablethat 1/0 be parallelized asfar as possible.
This becomes particularly important for a query which occurs frequently in a database system. The following

4

definition of query optimality gives the maximum possible |/O parallelization feasible for a query.

Definition 7 [Query Optimality] Anallocationmethod on M disksisquery optimal for aquery @ if theresponse
timeof query @ is [%1 , Where P isthetotal number of qualifying buckets for query Q.

Definition 8 [Strict Optimality] An allocation method is strictly optimal if it is query optimal for al possible
gueries. Itisstrictly optimal for partial match queriesif itisquery optimal for al possible partial match queries.
Itisstrictly optimal for range queriesif it is query optimal for all possible range queries.

2.2 Survey of Grid Based Declustering Techniques

We now provide a brief overview of the multi-attribute grid-based declustering approaches. These descriptions
are only to recapitul ate their salient points. Detailed descriptionsexist in the respective papers.

Figure 1 provides an example of how each of these techniquesallocatesa2 dimensional grid, with8intervals
on each dimension, onto 4 disks.

1. Disk Modulo (DM) / Coordinate Modulo Declustering (CMD) The disk modulo method by Du and
Sobolewski [4] and coordinate modulo declustering by Li et a [14] are similar approaches. A bucket <
i1, %2, ..., ik > isassigned to the disk unit diskOf (¢4, tg, ..., i) = (%1, %2, ..., i) mod M. Variationsof this
method include the Generalized Disk Modulo allocation method [4].

2. Field-wise Exclusive-or (FX) Thisallocation method was proposed by Kim and Pramanik [16] with effi-
cient partial match retrieval in mind. The main ideabehind this approach is the use of bitwiseexclusiveor
operation () on the binary values of abucket-id. If < 44, ta, ..., 4 > isabucket-id then the FX method
alocatesit to disk unit diskOf (i1, 22, ..., 1) = Tar[t1 ® 12 & ... ® 1] Where T isafunction which returns
therightmost log, M bitsof ¢ ® 12 ® ... ® 1. Since (®) isaboolean operationthevaluesiy, iy, ..., i, Must
be encoded in binary.

3. Error Correcting Codes (ECC) A declustering approach based on using error correcting codes was pro-
posed by Faloutsos et a [6]. It works for binary attributes or an attribute where the number of partitions
onit, d;, isapower of 2. For the binary case the problem is reduced to grouping the 2* binary strings on
k bitsin M groups of dissimilar strings. The main ideais to form groups of strings such that each group
forms an Error Correcting Code (ECC). In case d; isapower of 2, the binary representation of the domain
isused. Thusif each d; can be represented as abinary string of length m then we need to construct an ECC
on km bitsout of which log, M bitswill be parity check bits whilethe rest will be information bits.

4. Hilbert Curve Method (HCAM) A declustering method based on space filling curves was recently pro-
posed by Faloutsos and Bhagwat [5]. Such acurve visitsall pointsin a & -dimensiona grid exactly once
and never crossesitself. Thus, it can be used to linearize the pointsof agrid. The authorsuse such acurve,
called theHilbert Curve[5] tofill the £ -dimensional grid and then assign the disksto the bucketsin around
robinfashion. Thus, if H isthefunctionwhichimposesthe linear ordering generated by the Hilbert Curve
on the grid points (buckets) then diskOf (i1, 23, ..., 1x) = H(< i1, 2, .., 1k >)modM.

2.3 Declustering and Optimality

Idedlly, wewould likeadeclustering method to be strictly optimal . Queriescan vary from being completely spec-
ified, partial match, range queries, correlational (diagonal) queries, etc. Consider acartesian product file F which
has N, N > M tota grid-blocks. Sincethe number of grid-blocks are greater than the number of disks, at least
two grid-blocks (buckets) will be mapped to the same disk. We can aways come up with aquery (using union)
which accesses exactly these two buckets. Thus, this particular query will not be optimal. Thisis independent
of the declustering method used. Thus, it is not possibleto have adeclustering method which is strictly optimal.

o|lw|N |k o

-

N

olr (N iw|o|r (N |w
RINv|w| ok |Nv|w|o
N w|okr (N w|o |k
wlo|k[N|w o]k N
olr (N iw|o|r|N|w
RINv|w| ok |Nv|w|o
N w|okr (N w|o|r
wlo|kr[N|w o]k N
olr (v iw|o|k|N|w
Rlo|lw N[k |o|w|N
Njw|ok (N w|o |k
olr (v iw|o|k|N|w
Rlo|lw N[k |[o|w|N
Njw|ok|N|w|o |k
w N[k [o|w N[k |o
ok (N|w|k|o|w|n
N w|o|k|w|N

w ([N |k |o|nv|w|o
Plo|lw|[Nv|o|k (N |w
w (N [k |o|nv|w|o|-
Plo|lw|[Nv|o|k (N |w
ok |(N|w|(k|o|w|n
N w|o|k|w [Nk o
olr|Nv|iw|o|w|o|r
W N[k [k [N|w|N
olw|o|w|N |k |o
PNk (N | w|[o|w|N
Nk [Nk |o|w|o |k
wlo|w ok |[N|w|N
olr|(N|w|N |k |o|k
w N[k [o|w|o|w|N

DM/CMD FX ECC

g
<

Figure 1: A Declustering Example

From apractical viewpoint, however it can often sufficeto consider range and partial match queriesonly since
these are the most commonly occurring class of queriesin a database. Given that a declustering method cannot
be strictly optimal, it isthus desirable to have a declustering method that is strictly optimal for partial match and
range queries. Much work has been done in proving results about performance bounds of partia match queries
for different declustering techniques[4] [6] [16] [8]. Some results also exist about the conditionsunder which a
strictly optimal declustering can be achieved for partial match queries [4] [16] [15].

Recent work [15] has derived sufficient and necessary conditionsfor optimality of a declustering technique
with respect to partial match queries when the number of partitionson all attributes are less than the number of
disks. The specific focus of [15] was on p -ary cartesian product files where (Vi)(d; = p). It was shown that
thereisno strictly optimal allocation for ap -ary cartesian product file if

pP*+P=2)/2 < A < pd-lorp? < M < pn P P2 _ 1,

Thus, for al practical purposes the non existence of strictly optimal declustering methods with respect to
partial match querieswas shown when the number of partitionson all attributesislessthan the number of disks.
Since range queries are a superset of partial match queries these results hold for range queriestoo.

The above result while certainly of theoretical interest is not disheartening from a practica viewpoint. For
most medium to large databases having more partitions on an attribute than the number of disksis expected to
be quite common. For example, for a16 disk system, with8 K’ B disk blocks, 64 bytes/record and 3 declustering
attributesin arelation, only 1 million records are needed in a relation to have 16 partitions on each dimension,
whichis not unrealistic for adatabase requiring parallel processing.

Thefollowing discussion showsthat range queries place more constraintsthan partial match queries, and op-
timality for them isharder to achieve. Specifically, a significant observationisthat whilethe condition (Vz)(d; >
M) guarantees optimality for partial match queries under many conditions, it does not do so for range queries.

Lemmal. If M = abisacompositeinteger and (3¢,5)(d; > a + 1,d; > b+ 1) then astrictly optimal
declustering for range queries does not exist.
Proof: Refer [11].

Lemma 2. If M isaprimeinteger and (34, j)(d; > 3,d; > M) then astrictly optimal declustering for range
gueries existsiff

()M =1,2,3,5andd =2 or

(2)M =1,2,3andd > 3.

Proof: Refer [11].

Theorem 1. If d > 3 then astrictly optimal declustering for range queriesexistsiff M = 1, 2, 3.
Proof: Thisisadirect consequence of Lemmas 1 and 2.

In the following table we summarize the main optimality resultsfor various declustering methods.

Declustering Techniques and Optimality

Declustering | Restriction on Restriction on Conditionson
Method Number of Disks | Number of Partitions Optima Queries
DM/CMD None None PM :Exactly onefield

unspecified

Range/PM: if one
of the range domainsisan
integral multiple of M

FX power of 2 None PM: Exactly onefield
unspecified

Power of 2 PM: with an unspecified

atributest. d; > M

ECC power of 2 power of 2 None derived
HCAM None None None derived

3 Latin Hypercube Declustering M ethods (LHDM)

Latin Squares [28] are two-dimensional structures which show very good properties, and have been widely used
in experimental designsto ensure least redundancy and maximum coverage for the minimal experimental effort.
We generalize Latin Squaresinto higher dimensions and define a class of declustering methods called Latin Hy-
percube Declustering Methods (LHDM).

Definition 9 [Latin Squares] A Latin Square of order » isan n x n square composed of symbols from 0 to
n — 1 such that no symbol appears more than oncein arow or column [28]. Zhou et a discuss some properties
of declustering methods using Latin squaresin [28].

Definition 10[L atin Hypercubes] A Latin Hypercubeof dimensiond and order n isann x n X ... X n hypercube
of dimension d composed of symbolsfrom 0 to n — 1 such that no symbol appears more than once in any row
for al dimensions.

Definition 11 [Latin Hypercube Declustering Methods (LHDM)] A declustering method which usesaLatin
Hypercube of dimension d and order M asits basic building block is called a Latin Hypercube Declustering
Method. The hypercubes are replicated along each dimension till they fill up the domain space of the relation.
In case the domain space in some attribute is not a multiple of M then the last hypercubein that dimensionis
incomplete.

In the following discussion we use the term Latin Hypercube and Latin Hypercube Declustering Method in-
terchangeably. Thisis not to imply that the complete grid is mapped as alatin hypercube but that it is mapped
using a latin hypercube as a basic block. We now derive some basic properties of Latin Hypercubes and show
sufficient and necessary conditionsfor a method to belong to the class of Latin Hypercubes.

Definition 12 [Periodic Allocation] A declustering method is said to be periodic if

(V5 €{1,2,...,d})diskO f(< 15,92, ..., bj, ..., 2q >) = diskO f(< 45,12, ..., 55+ M, ..., 14 >),1; + M < d;
Definition 13 [Row Optimal Allocation] A declustering method is said to be row optimal if the declustering
method is optimal for all queries such that the length of the query is1 on al but one declustering attribute.

Lemma 3. If adeclustering method is row optimal, thenit is periodic.
Proof: Refer [28].

Theorem 2 A declustering method belongsto the class LHDM iff it isrow optimal.
Proof: Refer [12].

Coroallary: DM/CMD, GDM, FX, and Latin Squares belong to class LHDM.
Proof: DM [4], GDM [4], FX [16], and Latin Squares [28], each have been shown to be row optimal in the
respective papers. Using Theorem 2, al these methods belong to the class LHDM. Q.E.D.

3.1 Performance Analysisof LHDM

In this section we analyze Latin Hypercube Declustering Methods and derive conditions under which optimal
paralledism is achieved. To help understand the performance of queries when these conditions do not hold, we
also derive upper bounds on the worst case behaviour of all queries. Finaly, to understand the expected perfor-
mance of LHDM we analyze their average case behaviour on queries. All of these results are applicable to any
declustering method which belongstotheclassLHDM, e.g. CMD, FX, GDM, etc. Theproofsto thetheLemmas
and Theorems in this section can be found in [12].

Definition 14 [I nterval Domain Space] Any query on the cartesian product file F will have to access dl the data
in theinterval it intersects. Thus, the range on any dimension 2, of arange query can be transformed to the co-
ordinate system of the interval domain 0 < I; < d;. We define this grid with the interval domains as its axes as
the Interval Domain Space.

Definition 15[Hyper-rectangle] A Hyper-rectangle H isasubspace of the d-dimensional interval domain space
suchthat if intervals I, I;; intersect H ondimension s thenV(j)(k < j < I)I;; intersects H. It can be observed
that any range query can be represented as a hyper-rectangle in the interval domain space.

Theorem 3. LHDM isquery optimal for all range querieswhoselength on some dimensionisequal to £ M where
kE>1.

Note that Theorem 3 provides only sufficient conditions under which queries are optimal. Thus, it is possible
to have queries which do not satisfy this condition and are still optimal. Next we characterize a subset of such
gueries.

Lemma 4. Let Q be arange query which needs to examine hyper-rectangle A = x¢_, (L;, L; +I; — 1), where
0<L;<d;—lL;and1l <I; < Mforl < ¢ < d. Without loss of generdity, let [;, < ;, < --- < ;,, where
L, € {ly, ..., lg} for 1 < k < d, Q isrequired to access at most HZ;} l;,, buckets on each disk.

id’

Lemmab. Let

A= X;-lzl(Li, L;+k,M+1; — 1),

Ay = (L1, Ly + ks M — 1) x (x&,(L;, Li + kM 4 [; - 1)),

A= (A-UZtA)NR for 2<1<d

where,

Ry = (XiZi(Le, Ly + keM 41, — 1)) X (L, Ly + kM — 1) x (x& 41 (L, Le + kM + 1, — 1)),
Ad_|_1 = X;-lzl(Li + k;M, L; + ks M + 1; — 1),

where0 < L; < d; — k;M — 1;,0 < l; < Mforl <i¢<d.

Aisahyper-rectanglein S. Thus, all A;’sare hyper-rectanglesin S for 1 < ¢ < d + 1 and have the following
properties:

LA=UH 4

2. Thelength of A; ondimensionzisk; M for1 < i < d.

3.4, NA: = Qifi#£tforl <4, t <d+ 1, where() isempty set.

It is obvious that the hyper-rectanglesin F' required by any range query, which do not satisfy the condition of
Theorem 3, can be represented by A in Lemma 5. Theorem 4 characterizes a subset of such queries for which
LHDM isstill optimal.

Theorem 4. Let Q bethe same range query as A in Lemma5. LHDM are optimal for Q if (1/B +{;,/M) > 1,
where B = [1%2} &i; and l;, <1, < -+ < ;.

Theorem 5. For any range query @ required to examine P buckets, at most
[P/M] + (M —1)%1 -1

buckets are accessed per disk in responseto Q.
Assumption: For the following discussion we make the assumption (Vi) (d; = nM).

Lemma 6. Assume that for any attribute ¢, al ranges [L;, U;), L;, U; € D;, could occur with equal probabil-
ity in any range query. Now, the probability of any range query being optimal is at least

_ 4 nM? — (n— 1)M — 2 4
P= nM? '

Clearly, we can make p large enough by properly selecting ». The probability of arange query not being optimal
islessthan 1 — p. The above result showsthat the performance of LHDM improves with the dimensionality of
the data.

Let range query @ be required to examine hyper-rectangle A = x&_, (L;, L; + k;M + ; — 1) containing P
buckets, where 0 < L; < nM — kM — L; and 0 < [; < M. Assuming I;’s are independently and uniformly
distributedin {0, 1, ..., M — 1}, we have the following theorem.

Theorem 6. In response to the range query @ above, at most

_ d—1
[P/M] +(1-p) ((MQdil) - 1)

buckets are accessed per disk on the average.

Theorems 5 and 6 providetwo upper boundswhich provideinsight into the expected behaviour of LHDM. How-
ever, the bounds are not the tightest possible and hence the actual performance of LHDM can be much better.
Since theoretical analysiswas rapidly getting intractable, we decided to carry out an experimental evaluation to
study the behaviour of LHDM in more detail. These are described in the next section. One of the most promis-
ing applicationsof parallel databasesisin decision support applicationsrunning against very large databases. In
such scenarios range queries are usually expected to examine avery big subspaceof F,i.e. P in Theorems5 and
6 will be very large. Thus [P/M], the optimal number of disk accesses, is much greater than (M — 1)4-1 — 1
or (1 — p)((M —1)4-1/24=1 — 1), And hence, LHDM is expected to behave nearly optimally for most range
queries.

4 Experimental Evaluation

We believe that while theoretical studies such as [15] [4] [16] [14] and that presented in the previous section,
provideval uableinsight into the propertiesof declustering methods, the pictureisnot completewithout adetailed

9

experimental evaluation. Thisis more so because of the fact that all declustering techniques are not amenable to
detailed theoretical analyses and the bounds obtained are not exact in most cases. Specifically, since in practice
no restrictions can be placed on the size and shape of queries, as well as the number of attributes or their domain
sizes, we believe an eval uation is needed which variesthese dimensionsas parameters and studiestheir effects on
the performance of various declustering methods. Thus, we have chosen to carry out experimental evaluations
to examine the performance of LHDM. The aim is to see how the different techniques belonging to this class
compare amongst themselves and a so with other prominent techniques proposed in literature. We choose two
declustering methods from the class LHMD, namely FX and CM D, and two others namely ECC and HCAM,
for our experimental evaluation.

Themain results of the experiments[11] are asfollows: (i) various declustering methods proposedin litera-
ture show a noticeabl e difference of performance (in relative terms though not much in absol ute terms) for small
queries, (ii) for large queries, Latin Hypercubes perform very well, (iii) the performance of declustering methods
isquitesensitiveto the query shapeand L atin Hypercubes show better performance for linear queriesand (iv) the
deviation of most declustering methods from optimality decreases as the number of dimensions, i.e. the number
of attributes, of the query box isincreased, and specialy so for Latin Hypercubes.

Our overall conclusionsare that (i) no declustering method can be optimal for al querieson alarge database,
(i) for large databases and large queries Latin Hypercube methods perform very well and are not very far from
optimal, (iii) information about commonly posed queries can beuseful in selecting onemethod over another much
like physical database designin centralized and distributed databases, and thischoiceiscrucial for small queries,
and (iv) since different methods may turn out to be better for different relations, based on the queries posed on
them, commercial DBM Ss will have to support more than one declustering method, much like different kinds
of access methods and index structures in today’s databases. Based on our studies, future work in the area of
declustering must address issues such as (i) how do grid-based methods perform compared to non grid-based
ones, (ii) how do various methods perform when data skew and attribute correlation is present, and (iii) how can
information about query sets be used in selecting a declustering method appropriate for arelation.

5 Project Architecture, Status & FutureDirections

Inthelastfew years, threeparall el database (software) architectures have been considered, namely shared-memory;,
shared-disk, and shared-nothing [25]. Shared-memory architectures suffer from scalability problems, and thus
grew out of favor. Aninitial consensus was that shared-nothing architectures are the most promising [2, 25],
though recently support has been expressed for the shared-disk architecture [26]. We believe that as technol-
ogy is progressing, the distinction between the latter two is becoming blurred. This is because the shared-disk
paralle database architecture is most suited to MPPs, while shared-nothing architecture is most suited to NOWSs.
However, since MPPs and NOWSs are becoming comparable from ahardware viewpoint, i.e. aggregate processor
cycles, communication bandwidth and latency, and 1/0 bandwidth and latency® , the di stinction between shared-
nothing and shared-disk database architecturesis diminishing. Essentially, in any paralld architecture there are
going to be nodes with two kinds of capahilities, namely processing and 1/0. Nodes that have both capabilities
would have separate processorsfor each. Nodeswill be connected by means of a high bandwidth and low latency
network, whose specific topology will be largely irrelevant. We believe that software architectures for parallel
databases must keep in mind these trendsin parallel hardware architecture.

PADMA hasbeen an ongoing project for thelast three years. We provideabrief overview of the project here.
A detailed description can be found in [24]. Figure 2 shows the architecture of the PADMA parallel database

! Experience with 1/0O intensive applications has shown that CPU-controlled 1/0 is not a good idea, and a DMA or 1/O processor is
certainly needed([3]. Trendsin architecturearesimilar, i.e. MPPshavededicated|/O processors, while nodesin NOWswith 1/0 capability
have DMAs. Coupled with the fact that NOWs will have high speed networks, accessingaremote node’s disk is going to be comparable
to that of accessing a disk connected to an |/O processor in a MPP.

10

Front End
Query Compilation, Optimization, Scheduling Query, Data Retrieval

A\l 1
i 1

Parallel Relational Algebra Layer;

gl Join, Union, Aggregate, Sort, Scan, etc.

]

i 1
A\l 1

Query Optimization and Processing
<=

[
[
[
’_Ig |-~ Browsing,
g

1
1
U] Parallel Record Management Layer
4] Concurrency Control, Buffer M anagement, Recovery 5
A g
T
[[[3 3 (E—
7l &S
L L |] g @ @ System
L8 = .
- Sl Administrator
S5
[] [] [] | 05 E
Data Storage | N

Figure 2: Parallel Database Architecture

manager. The architectureis designed around the following hypotheses:

e A geometric model, where points represent tuples, subspaces (boxes) represent queries, and geometric in-
tersection algorithms handle query processing, is a useful way to visualize relational database querying.

e Giventhat datamovement, between disk and memory, aswell as between memories, isthe main bottleneck,
effective data declustering isthe key to performance.

e Making the various layers of the database manager, e.g. record management, query processing and opti-
mization, etc., understand the declustering below can have significant payoffs for performance. Thus, the
DBMS layers must become declustering-aware.

e Multi-threading of various DBMS functionsis important for performance. Additionally, the mapping of
variousthreadsto processors must be donein adeclustering-aware manner to take advantage of the affinity
certain processors may have for certain computation (e.g. dueto data availability).

Oneway of viewing theresultsobtained in the PADMA project isas an ongoing experiment in testing the hy-
potheseslisted above. As of thisreporting the experiment isnot complete. One or more of the above hypotheses
have been tested to varying degrees. Others are part of our ongoing and future investigations.

Theresults[24] sofar include (i) devel opment of declustering techniques[14, 12] and their performance eval -
uation [11], (ii) declustering-aware query processing algorithms[18], (iii) paralel database oading agorithms
[17], and (iv) paralel query optimization [23, 13]. We are currently building a main-memory prototype of the
PADMA system.

11

Futurework inthe PADMA project includes (i) detail ed performance eval uation of varioustechniquesdevel-
oped, (ii) extension of the parallel techniques developed for pointsto handle intervals and regions, for temporal
and spatia data, and (iii) development of example applications on top of the prototype[22].

PADMA representsthe effort of variousindividual sover the last three years. We would like to acknowledge
the contributionsmadeby Prof. Jian-ZhongL.i of Heilongjiang University, PR.C., Dr. Doron Rotem of Lawrence
Berkeley Laboratory, Sakuntala Kavuri of Intel Corporation, Gary Elsseser of the University of Minnesota, and
Suja Parikh of CDAC, India. We would aso liketo thank the anonymous referees for their valuable comments.
Thisresearch has been supported in part by the National Science Foundation grant IRI-9110584. Technical re-
portsrelated to PADMA can be obtained by anonymous ftp from ftp.cs.umn.edu: /users/padma.

References
[1] H.Boral andetal. Prototyping Bubba: A highly parallel databasesystem. IEEE Transactionson Knowledge and Data Engineering,
2(1), March 1990.

[2] D.J. DeWwitt and J. Gray. Parallel database systems: The future of high performance database systems. Communications of the
ACM, 35(6):85-98, June 1992.

[3] D.J. Dewitt and et al. The Gamma database machine project. | EEE Transactionson Knowledgeand Data Engineering, 2(1), March
1990.

[4] H.C.DuandJ.S. Sobolewski. Disk allocation for cartesian product files on multiple disk systems. ACM Transactionson Database
Systems, pages 82—101, March 1982.

[5] C. Faoutsosand P. Bhagwat. Declustering using fractals. Parallel and Distributed Information Systems, pages 18-25, January
1993.

[6] C. Faloutsos and D. Metaxas. Disk allocation methods using error correcting codes. |EEE Transactions on Computers, pages
907-914, August 1991.

[7] O. Frieder. Multiprocessor algorithms for relational-database operations on hypercube systems. |EEE Computer, November 1990.

[8] T.Fujiwara, M. Ito, T. Kasami, M. Kataoka, and J. Okui. Performance analysis of disk allocation method using error correcting
code. |EEE Transactionson Information Theory, pages 379-384, March 1991.

[9] S.Ghanderharizadehand D.J. DeWitt. A multiuser performance analysisof alternative declustering strategies. Proceedingsof Data
Engineering Conference, Feb 1990.

[10] L. Harada, M. Nakano, M. Kitsuregawa, and M. Takagi. Query processing method for multi-attribute clustered relations. Proceed-
ings of International Conferenceon VLDB, pages 59-70, August 1990.

[11] B.Himatsingkaand J. Srivastava. Performance evaluation of grid based multi-attribute record declustering methods. Proceedings
of 10th International Conferenceon Data Engineering, Feb 1994.

[12] B. Himatsingka, J. Srivastava, J. Li, and D. Rotem. Latin hypercubes: A class of multidimensional declustering techniques. Tech-
nical Report TR 94-05, University of Minnesota, Minneapolis, Department of Computer Science, January 1994.

[13] B. Himatsingka, J. Srivastava, and Thomas M. Niccum. Tradeoffsin parallel query processing and itsimplications for query opti-
mization. Technical Report TR 94-09, University of Minnesota, Minneapolis, January 1994.

[14] LiJianzhong,J. Srivastava, and D. Rotem. CMD: A multidimensional declustering method for parallel databasesystems. Proceed-
ings of International Conferenceon VLDB, August 1992.

[15] A.S.Abdel-Ghaffar Khaled and Amr El Abbadi. Optimal disk allocation for partial match queries. ACM Transactionson Database
Systems, pages 132-156, March 1993.

[16] M.H. Kim and S. Pramanik. Optimal file distribution for partial match queries. Proceedingsof ACM SSGMOD, pages 173-182,
June 1988.

[17] J.Li, D. Rotem, and J. Srivastava. Algorithms for loading parallel grid files. Proceedingsof ACM SSGMOD, May 1993.

[18] Thomas. M. Niccum, J. Srivastavaand J. Li. Declustering Aware Parallel Join Algorithms. Proceedingsof the International Con-
ferencefor Young Computer Scientists, Beijing, 1993.

[19] J. Nievergelt, H. Hinterberger, and K.C. Sevcik. The grid file: an adaptable, symmetric multikey file structure. ACM Transactions
on Database Systems, pages 38—71, March 1986.

[20] David A. Patterson. A quantitative case for networks of workstations (NOW). Cray Distinguished Lecture Series, April 1994.

12

[21]

[22]

[23]

[24]

[29]
[26]

[27]

(28]

H. Pirahesh and et al. Parallelism in relational database systems: Architectural issues and design approaches. Proceedingsof 2nd
Inter national Symposiumon Databasein Parallel and Distributed Systems, Dublin, Ireland, July 1990.

J. Srivastava. A parallel data management system for large-scale NASA datasets. Proceedingsof the 3rd NASA GS-C Conference
on Mass Storage Systems and Technologies, pages 283-299, October 1993.

J. Srivastava and G. Elsesser. Optimizing multi-join queriesin parallel relational databases. Proceedingsof the 2nd International
conferenceon Parallel and Distributed Information Systems, pages 84—-92, January 1993.

J. Srivastava, T. M. Niccum and J. Srivastava. PADMA: A PArallel Database MAnager. Technical Report TR 94-47, University of
Minnesota, Minneapolis, Department of Computer Science, August 1994.

M. Stonebraker. The casefor shared nothing. Database Engineering, 9(1):4-9, 1986.

P. Valduriez. Parallel database systems: The case for shared something. Proceedings of 9th International Conference on Data
Engineering, pages 460465, 1993.

Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik Schauser. Active messages. a mechanism for inte-
grated communication and computation. Technical Report TR CSD-92-675, University of California, Berkeley, Computer Science
Division, June 1992.

Yvonne Zhou, Shashi Shekhar, and Mark Coyle. Disk allocation methodsfor parallelizing grid files. Proceedingsof 10th Interna-
tional Conferenceon Data Engineering, Feb 1994.

13

Fault Tolerance I ssuesin Data Declustering for Parallel Database
Systems

Leana Golubchik Richard R. Muntz
UCLA Computer Science Department

Abstract

Maintaining the integrity of data and its accessibility are crucial tasks in database systems. Although
each component in the storage hierarchy can be fairly reliable, a large collection of such componentsis
proneto failure; thisis especially true of the secondary storage system which normally containsa large
number of magnetic disks. In designing a fault tolerant secondary storage system, one should keep in
mind that failures, although potentially devastating, are expected to occur fairly infrequently; hence, it
isimportant to provide reliability techniques that do not (significantly) hinder the system’s performance
during normal operation. Furthermore, it is desirableto maintain a reasonablelevel of performanceun-
der failureaswell. Sncehighdegreesof reliability aretraditionallyachieved throughthe use of duplicate
componentsand redundant information, it is also reasonabl e to use these redundanciesin improving the
system'’s performance during normal operation. In thisarticlewe concentrate on techniques for improv-
ing reliability of secondary storage systems aswell as the resulting system performance during normal
operation and under failure.

1 Introduction

Maintaining the integrity of data and its accessibility are crucial tasks in database systems. Consequently, the
reliability requirements of a database, and especialy its storage hierarchy, are very stringent. A measure of a
storage system’s reliability is the mean time till it experiences loss of data due to the failure of one or more of
its components; because we are interested in a continuously operating system, we use the term “data loss’ to
refer to inability to access data, dueto failure, whether or not it is recoverable from archival storage and/or logs.
(Thus, in this article we do not discuss recovery of information through the use of full dumps, log files, etc.)
A database storage hierarchy typically contains a large number of disks, which not only provide the necessary
storage but also the bandwidth and/or the number of disk arms required to exhibit reasonable performance! . For
instance, transaction processing systems (i.e., with OLTP workload) are under stringent system responsiveness
requirements, e.g., 99 percent of al transactions must be completed within 1 second. Such systemsare configured
according to the number of 1/0s/second desired, rather than the number of MBs necessary to store the data[16].
Thus, the workload of the system greatly influences its storage configuration as well as (and we shall see this
later) the design of itsreliability schemes.

Although asingledisk can befairly reliable, given alarge number of disks, the probability that one of them
fails can be quite high. For example, if the mean timeto failure (MTTF) of asingledisk is 200, 000 hours, then
the MTTF of some disk in a200-disk system is on the order of 1000 hours, i.e., adisk failure is expected (ap-
proximately) once every 42 days. To improve the reliability and availability of the secondary storage system,

! A database storage hierarchy can also include atertiary store; however, in this article, we limit our discussion to the reliability of a
two level storage hierarchy.

14

some form of data redundancy must be introduced. One way to introduce redundancy into the system is to use
parity based schemes[31] which construct aparity block for every d datablocks; the parity block plusthed data
blocks constitute a parity group. Whenever a disk fails, a data block on the failed disk can be reconstructed by
reading and computing the exclusive OR of the corresponding parity and data blocks. Examples of parity based
schemes include RAIDs [31], clustered RAIDs[30] and various parity striping schemes [16]. Proper reliability
techniques can increase mean time to dataloss (MTTDL) to millions of hours[21].

Full mirroring [2] is a specid case of parity striping (with d = 1), where each disk is replicated on another
disk; whenever adisk fails, its mirror can be used to retrieve the missing data. The disk farm is composed of a
number of such pairs. Full mirroring has a higher storage overhead than other parity based schemes with d >
1 (e.g., RAID) because datais fully duplicated, but it can offer better performance in terms of throughput and
response time [16] than the parity based schemes. For instance, in[5], the authors exploit the availability of two
copies of the datato optimize seek timesin amirrored disks environment.

Theamount of redundant i nformation stored determinesthe storage overhead for providing reliability and the
system’sresiliency todisk failure. Thestorageoverhead for parity based schemesis di—l of thetotal storagespace.
In general, the more redundant information isstored, thelower isthe probability that afailure resultsin dataloss,
but the higher isthe cost of providingreliability. Furthermore, the placement of the redundant information onthe
disks[24, 25] influences the system’s behavior during normal operation and under failure as well asitsability to
recover quickly and return to thefully operational state. When designing afault tolerance scheme, the following
aspects of the disk subsystem must be examined: a) performance under normal operation (e.g., [7, 31]), b) mean
timetodataloss (or systemfailure) (e.g. [14]), and c) performance of the disk subsystem under failure, i.e., when
one or more disksare inoperable or inaccessible (e.g., [35, 30, 17, 19, 18]). We should keep in mind that failures
are expected to occur relatively infrequently, so most of thetime asystemisinafully operational mode. Thus, it
isimportant to provide reliability techniques that do not (significantly) hinder the system’s performance during
normal operation. Since high degrees of reliability and availability are achieved through the use of redundant
information (and duplicate components), it isal so reasonableto use theseredundanciesinimprovingthe system’s
performance during normal operation, e.g., asin mirrored disk systems[5] (see Section 3 for more details).

In order to maintain a reasonable MTTDL, it is desirable to provideimmediate repair of afailed disk; after
the first failure has occurred, there is a vulnerability window during which a second failure causes loss of data.
(We assume, as istrue of al the schemes surveyed here, that for every disk failure, the additional failure of one
of the surviving disks can cause dataloss.) To thispurpose, “hot standby” disks (or spares) are often provided,
and the system is designed to automatically rebuild the contents of the failed disk on the standby disk, using the
redundant information on the surviving disks[14]. The parity group size effects. a) the time required to rebuild
afailed disk (and therefore the MTTDL) and, b) the workload (measured in accesses per second per disk) that
can be supported during the rebuild process, and ¢) the system’s performance under failure. The MTTDL of a
RAID is easily shown to be inversely proportional to the rebuild time [6, 11]; in the RAID system described in
[31], rebuilding the failed disk contents at maximum speed (the capacity of the standby disk) resultsin the use
of the entire capacity of the surviving disksin the array. Thus rebuilding at maximum rate means that the array
can perform no other work during the rebuild period. One can of course, tradeoff the rebuild rate with the rate
at which the surviving disks process normal workload requests. However, thisincreases the time to rebuild the
failed disk contents and thereby decreasesthe MTTDL.

Although disk failures are infrequent, a single disk unavailability is still arelatively common occurrence as
compared to dataloss (or system failure). Therefore the performance of the system under failure and especialy
during the repair period (when the data on afailed disk is being rebuilt) is of concern. The RAID organization
achievesalow cost in redundant storage overhead, as compared to mirrored systems, but at the price of degraded
performance under failure2. Inthe worst case (aworkload of all reads and no writes) this can double the access

2Note that, RAID systems also pay a performance penalty during normal operation; this is due to having to write a parity block on
every write operation.

15

rate to the surviving disks and thusin effect, cut the capacity of thearray in half. Consider for example ashared-
nothing [34] database machine architecture, where each node contains one or more disk arrays. The impact of
afailure on the total system performance is dependent on the characteristics of the system workload; it is most
severe in the case of a“decision support” environment in which complex queries are common and the database
tables have been partitioned among the disks on all or many nodes, for the purpose of increasing 1/O bandwidth.
Such complex operations are typically limited by any imbalance® in the system, which can be caused €either by a
skew in the workload [23] or by adisk array with adiminished capacity, dueto afailure [20]. For example, in a
one hundred disk system, asingle failed disk represents aloss of only 1% of theraw 1/0O capacity of the system.
However, if the effect of the failure is areduction in the capacity of the array (to which it belongs) by say 25%,
then thisfailure can cause a significantimba ance in the system, and theimpact on aggregate system performance
can be considerable.

In thisarticle, we discuss techniques for providing a high degree of reliability and availability in a database
system; these techniquescan be dividedinto two basic categories, which are asfollows: 1) full replication, which
includes schemes such as shadow disks, interleaved declustering, and chained declustering, and 2) parity based
redundancy, which includes schemes such as RAID (Redundant Arrays of Inexpensive Disks), clustered RAID,
and parity striped disk arrays. We also discuss the tradeoffs, associated with each of these techniques, with re-
spect to the following metrics: a) storage overhead (due to redundancy), b) mean timeto dataloss (MTTDL), €)
performance during normal operation, and d) performance under failure.

Theremainder of thearticleisorganized asfollows. Section 2 pointsout the differences between physical and
logical replication. Section 3 discussesfull replication schemes, and the advantages and di sadvantagesassociated
with those, both in the context of reliability and performance. Section 4 presentsasimilar discussion, but in the
context of parity based schemes. Finally, Section 5 presents our concluding remarks.

2 Physical vs. Logical Redundancy

In general, data redundancy can be implemented on different levels within a database system. In particular, we
distinguish between (1) physical redundancy and (2) logical redundancy. In what follows, we discuss the dif-
ferences between physical and logical redundancy in the context of full replication schemes; however, similar
comments apply to parity based schemes, such as RAID systems.

With physical level replication the contentsof one areaof adisk are mirrored on an areaof another disk (inthe
classical mirrored disk system, one entire disk is mirrored by another entire disk). The 1/O controller generally
handlesthe replication and higher levels of software, such as the query optimizer, are not concerned?, i.e., higher
levels of software just see a collection of reliable disks with some changes in performance characteristics. With
logical fragmentation as in the Teradata [3] and Gamma [12] shared nothing database machines, relations are
fragmented and relation fragments are stored on independent nodes of the system. Replication is visibleto the
guery processing software and is managed by the database system software. For instance, sinceread requestscan
be serviced using either copy of the data, replication can be used for load balancing purposes (we elaborate on
thisfurther in Section 3). For reads, 10ad bal ancing decisions can be made by the query processing software, i.e.,
at thelogical level®, asin [20], or they can be deferred until the time of the actual 1/0 operation, i.e., performed
by the disk controller at the physical level, asin [15].

Note that, the dynamic scheduling studies that are discussed in this article, specifically in the context of
chained declustering (see Section 3.3), can be applied to both physical and logical replication methods. There

3 Such querieswould typically be performed in a“fork-join” manner (on a shared-nothing machine), where the performanceis limited
by the “ slowest” node participating in the computation.

“Similarly, in RAID systems, higher levels of softwarejust seeadisk, i.e., a(logical) reliable disk with some changesin performance.

®Note that, one can have logical level replication and not do dynamic load balancing, i.e., just use the replication for reliability and
(static) redistribution of load after failure.

16

are however significant problems associated with dynamic data sharing across multiple nodes of a system, e.g.,
concurrency control, and efficient use of buffer space [38, 37]. We do not address these problems here due to
lack of space. With respect to logical replication one can view such studies as an investigation of the potential
benefits of dynamic load bal ancing, particularly with respect to robustness to workload imbalance and disk fail-
ure. Determining whether these benefits compensate for the overhead and complexity of logical level dynamic
schedulingisbeyond the scope of thisarticle. Intheremainder of thisarticlewewill concentrate mainly on phys-
ica replication, with the exception of interleaved and chained declustering schemes? discussed in Sections 3.2
and 3.3, respectively.

3 Full Replication

Wefirst concentrate on systemsthat use full replication as aform of redundancy, and present three variationson
thisidea: 1) mirroringor disk shadowing, 2) interleaved declustering, and 3) chained declustering. Sinceall three
schemes fully replicate the data, they differ only in the way the replicas are placed on the disks. This placement
affects both reliability and performance.

3.1 Mirroring/Shadowing

Disk shadowing [5, 2] refers to maintaining two (mirrored disk) or more (shadow set) identical disk images on
different disks, mainly for the purposeof providingahighly reliable disk subsystem. A read request to the shadow
set can be satisfied by any disk in the set; awrite request must be executed on each of the disksin the shadow set.
When a disk fails, the datais still available on the other disksin the shadow set. To replace the failed disk, the
data must be copied from one of the disksin a shadow set to areplacement disk. This can be done either offline
or online. Offline copyingisfast, but requires|osing availability of data during the copying process (this can be
on the order of minutes/GB). Online copying has the advantage of availability of data but can be much slower
than offline copying (on the order of several hours). During the copying processthe disk subsystemisvulnerable
to a second failure; with only two disksin a shadow set, a second failure resultsin data loss. Furthermore, the
system operatesat adegraded level of performance. Thisdegradationin performanceisduenot only tothefailure
of adisk, but aso to the copying process, which resultsin an additional workload on the shadow set. The more
“aggressive” isthe copying process, the moreit interferes with the normal workload. However, thefaster afailed
disk isreplaced, the lesslikely we are to lose data and the shorter is this degraded mode of operation. Hence, it
is desirable to balance the speed of the copying process, with degradation of performance experienced by the
normal workload due to the copying.

There are several disadvantagesto disk shadowing. Firstly, there is the cost. Mirroring hasa 100% storage
overhead. Thisisnot a severe problem if the expected workload is of the OLTP type. According to [16], OLTP
systems have stringent responsiveness requirements; in order to avoid long queues of requests for the data, the
disksin such systemsareusually purchased for their armsand not for their capacity. Secondly, thereisthe“write”
overhead. Since awrite request must be serviced by every disk in a shadow set, it is not complete until the last
disk has finished writing. Even if al the disksin a shadow set can start working on the request simultaneously,
the write request will still experience the largest value of seek-plus-latency of all the disksin the shadow set.

There are advantagesto disk shadowing, besides high reliability, which should be considered when compar-
ingitscost to the cost of parity based schemes. One such advantage, perhaps not an obviousone, is performance.
With multipledatapaths, ashadow set can service several read requestsin parallel, thusimproving the throughput
of thedisk subsystem. Furthermore, expected seek timesfor read requests can beimproved by chosingthedisk in
the shadow set with the minimum seek distance[5, 4]. Thisleadsto aneed for disk scheduling policiesto exploit
these possibilities. Such policiesfor mirrored disk subsystems are studied in [36]; disk scheduling policies for

8 These schemes were originally suggested aslogical level schemes; thus we discuss them in that context.

17

real-time applicationsusing mirrored disksare studied in [9]. One interesting questionthat isaddressed in[5] is
whether it makes sense to have more than 2 disksin a shadow set. The authors argue that two copies are suffi-
cient to provide a high degree of reliability, but that more than two copies can result in significant performance
improvements.

3.2 Interleaved Declustering

In[3, 11] interleaved declustering is considered as a replication scheme at the logical level (see Section 2). It
can also provide an aternative to the mirroring” scheme, if applied at the physical level. We briefly describethis
scheme, which isillustrated in Figure 1, applied to physical level replication. The secondary storage subsystem

Cluster 0 Cluster 1

A A
dISkO dISkl dISk2 dlsk3 dISk4 dISk5 dlsk6 dISk7

Pri mary

Copy R3
Backup

Copy

Figure 1: Interleaved Declustering

isdividedinto disk clusters, each of size N, e.g.,inFigurel, N = 4. Eachfileor table, R, isalocated equally to
each cluster; then each part assigned to acluster isdivided into N fragments. At all timestwo copies of thisfile
or table exist, termed primary copy and backup copy; both copies reside on the same cluster. The primary copy
of each fragment resides on one of the disksin a cluster, and the backup copy of the same fragment is divided
equally among theremaining N — 1 disks of the cluster. During normal operation, read requests are directed to
the primary copy® and write requests are directed to both copies (as in the mirrored disks case). When afailure
occurs, for instanceof disk 1 in Figure 1, the read workload that was destined for disk 1 can be distributed among
thesurviving N — 1 disksof the cluster in which the failure occurred. Thisisan improvement over the mirrored
disks scheme where the additional workload, that was destined for the failed disk, ends up on a single surviving
disks (i.e., mirroring isa specia case of interleaved declusteringwith N = 2).

Thus, interleaved declustering has the same storage overhead as mirroring, but it offers better performance
degradation properties, when asingledisk failure occurs. Thelarger the cluster size, the smaller istheimbalance
in the workload (in the event of failure) between the fully operational clusters and the cluster with a failure®.
However, asthe cluster sizeincreases, so does the probability of two failuresin the same cluster. Two failuresin
any one cluster render data unavailable. Hence, the use of mirrored disks offers a higher level of reliability than
interleaved declustering (i.e., schemes with N > 2)10,

7In the remainder of Section 3 we make comparisonsto the mirrored disk scheme i.e., shadow setswith 2 disksonly), sinceit incurs
the same storage overhead as interleaved declustering and chained declustering (discussed in Section 3.3).

8Note that, it is possible to use both copies of the data to service read requests; however, with logical level replication, concurrency
control and buffer management issues must be considered (see Section 2).

®This could be asignificant problem, for instance, in a shared-nothing database machine (see Section 1), such asthe DBC/1012 [3],
where the performance of the “slowest” node limits the performance of the entire system.

1%Note that, this argument is an approximation, i.e., it only takesinto consideration combinations of 2 failures. To make precise cal-

culations, we must take into consideration combinations of 3 or more failures; however, these are much less probable than combinations
of 2 failures.

18

3.3 Chained Declustering

In[20], chained declusteringisconsidered as areplication scheme at thelogical level of ashared nothing database
machine. Thisscheme can aso providean alternativeto the classical mirroring scheme when applied to physical
level replication, as well as to the interleaved declustering scheme described in [3, 11]. We briefly describe the
concept of chained declustering from [20].

Chained declustering has the same storage overhead as compared to the classic mirroring scheme and inter-
leaved declustering, but, like interleaved declustering, it offers better performance degradation properties when
asingledisk failure occurs. Figure 2 illustratesthe chained declustering concept. Assume afile R isdeclustered

disk 0 disk 1 disk 2 disk 3 disk 4 disk 5 disk 6 disk 7
C O OO O O O D Sy
=z EEEEEEE
Backupcopy) e) Te] T) T J (T)

Figure 2: Chained Declustering

into M fragments, where M isthe size of a disk cluster (e.g., in Figure 2, M = 8). At any point in time, two
physical copies of thisfile, termed the primary copy and the backup copy, are maintained. If the primary copy
of afragment resides on disk z, then the backup copy of that fragment residesondisk<+1 (mod M). During
the normal mode of operation, read requests are directed to the primary copy'! and write operations update both
copies. When a disk failure occurs (e.g. disk 1 in Figure 2), the chained declustering scheme is able to adjust
the additional read workload to both copies of the datain such away asto balance it evenly among the surviving
disks; thisresultsin aless degraded performance (see [20] for more details).

There are several waysto perform the load adjustment depending on table declustering methods, storage or-
ganization, and access plans. Since datais logically replicated, the query scheduler chooses an access plan in
order to balance theload. Thisform of load balancing has severa limitations. (1) theload is only approximately
divided among the nodes; the assumption that a uniform division of the data correspondsto auniform division of
theload can be incorrect with skewed reference patterns and (2) both short term and long term reference patterns
change with time and a static balancing scheme can not adjust to variationsin load. Another way to balance the
load of the system is to apply some dynamic load balancing scheme, since it can adjust the load on each node
inreal time to respond to statistical variations'2. As already mentioned, several dynamic balancing schemes are
discussedin [36], in the context of mirrored disks systems. In [15], authorsinvestigatethe degree to which ady-
namic load balancing disk scheduling a gorithm in conjunctionwith chained declustering can respond robustly to
variationsin workload and disk failures (which destroy the symmetry of the system and introduce skewed | oad);
they demonstrate that simple dynamic scheduling algorithms can greatly improve the average response time as
compared to static |oad balancing.

Chained declustering has the same storage overhead as mirroring and interleaved declustering. But, it has
a higher reliability than interleaved declustering (but not as high as mirroring) [20]. In order to lose datain the
chained declustering scheme (refer to Figure 2), two consecutive disks in the same cluster must fail. Note that
the probability of two consecutive disksfailing in the same cluster, for M > 2, isindependent of the size of the
cluster. Hence, in the case of chained declustering, constructing a single cluster out of al the disksin the system
does not hinder the system’sreliability, but it can offer better |oad balancing in the event of failure. Sincethereis
no reliability penalty for using large clusters, theincreaseinload, dueto afailure, can be made as small asdesired
by increasing the cluster size. Thisis not the case for interleaved declustering (as already mentioned in Section

11 As with interleaved declustering, it is possibleto use both copies of the data to service read requests; however, with logical level
replication, concurrency control and buffer management issues must be considered (see Section 2).

12pynamic load balancing would result in additional complexity in query processing software (see Section 2), e.g., in terms of concur-
rency control; such complexity can be expensive, and consequently, dynamic load balancing schemes might be more suitable for large
queries, such as found in decision support type workloads, rather than OLTP type workloads.

19

3.2). Thus, chained declustering (for M > 2) offers better load balancing than either mirroring or interleaved
declustering, sinceit is able to distributed the additional 1oad (due to failure) among all the disksin the storage
subsystem as opposed to asingle disk (asin the case of mirroring) or the disksin asingle cluster (asin the case
of interleaved declustering)!3.

4 Parity Based Schemes

As dready mentioned in Section 3, full replication schemes have the disadvantage of a100% storage overhead.
To remedy this problem, we can use a parity based scheme. In this section we discuss three variations on such
schemes: 1) redundant array of inexpensive (or independent) disks (RAID) [31], 2) clustered RAID [30], and 3)
parity striping [16]. We should note that there exists another variation on the RAID idea, termed RADD (Re-
dundant Array of Distributed Disks), which is a distributed version of a RAID5 system (refer to Section 4.2 for
adiscussion on RAIDS5); we do not discussit here due to lack of space but refer theinterested reader to [35].

4.1 Disk Array Basics

Thebasic organization of an N + 1 disk array isillustrated in Figure 3, where thereisacluster of N + 1 devices
with N data devices and one parity device (N = 3). A file R is fragmented into blocks of size s, termed the

spare — disk1 disk 2 disk 3 disk 4
e — —— Cﬁ — |
= arge write
= T, d /
g do dl 2 Po large read
“m T a4 /
| d3 dy
N~ — N~ — N~ —

Figure 3: Basic RAID Organization

interleave unit size or the stripe unit, which is the amount of logically contiguous data that is placed on asingle
device, eg., do in Figure 3. Thefileisthen interleaved among the N data devices, where N isthe stripe width.
Each set of N datablocksis protected by one parity block; for instancein Figure 3, po = do B d1 @ ds.

In genera, there are three modes of operation for a disk array [30]: 1) normal mode, where al disks are
operational, 2) degraded mode, where one (or more) diskshave failed, and 3) rebuild mode, where the disks are
still down, but the process of reconstructing the missing information on spare disksisin progress. Under normal
operation read requests are directed to the disks holding the appropriate data'*. A “small” read operation would
result in asingle disk access, and a “large” read operation would result in afull stripe access (i.e., involving all
the disksin the cluster, except the parity disk). Every write request involves an access to at least 2 disks, dueto
the necessary parity update. For instance, to replace ds by d; in Figure 3, we must read d5 and p;, from disks 3
and 4, respectively, then compute the new parity, p; = ds @ p; @ d5, and then writeout d;, and p; , to disks3 and
4, respectively. Hence, a“small” write operation, involving dataon a singledisk, resultsin 4 1/0O accesses, two

13\We should note, that although there is no reliability penalty associated with using large clusters in a chained declustering scheme,
thereare potential performancepenalties. For instance, if the sizeof the fragmentsbecomesvery small (which would happenif arelatively
small file was distributed over many disks), then some types of queries would haveto be serviced by accessing multiple disks, and this
can result in increased overhead [13].

14This could involve one or more disks of the array, depending the granularity of the stripe unit and the size of the request .

20

reads and two writes. A “large” write operation would be afull stripe access and result in awrite on every disk
in the cluster, i.e., thereis no need to read the old parity or the old data (€.g., p, = dy @ dy D d,).

After a failure occurs the system continues to operate but in a degraded mode. For instance, suppose disk
3 failsin the system of Figure 3; then, to service a read request destined for the failed disk (e.g., d»), we must
read afull stripe in order to reconstruct the missing data, (e.9., d2 = do ® d1 @ po). TO Service awrite request
destined for the failed disk, we must do one of the following things. If the write request isfor a data block, then
we must read the full stripe, to reconstruct the missing block, compute the new parity, and write the new parity.
If the writerequest isfor a parity block, then it can beignored. These additional full stripe reads and writes that
are necessary to reconstruct the missing data, result in a degraded performance of the disk subsystem. Note, that
the above description of servicing reads and writes destined for the failed disk is relevant to “small” reads and
writes only. “Large’ read and write requests are full'® stripe operations regardless of whether there is afailure
or not. (Thisignores edge effects of “large” operations, i.e., 1% stripes, for example.)

To reconstruct the missing data, i.e., enter the rebuild mode, we need a spare disk. Having ahot spare, i.e., a
gpare disk that isonline and ready for reconstruction as soon as a failure occurs, would significantly decrease the
vulnerability period, i.e., the period in which another failure would result in loss of data; decreasing this period
isalso desirable because of the degraded system performance under failure. The basic reconstruction procedure
worksasfollows. A full stripeisread from all the surviving disksin the cluster, including the parity block. Then
the missing datablock (from that stripe) iscomputed and written out to the spare disk. For instance, to reconstruct
ds in Figure 3, weread dy, d1, and pe, and then compute the missing data, do = do ® d1 @ po. Findly, ds must
be written out to the spare disk.

Before discussing disk arraysin more detail, we present alist of design issues which should be considered
when constructing parity devices (in the following sections we address some of these issues in more detail):
a)redundancy support for hardware in addition to redundant information, e.g., multiple controllers, b) indepen-
dence of devicefailureisimportant since l/O subsystemsrequire support hardware that is shared among multiple
disks (see Section 4.6), ¢) array size (or cluster size) affects the reliability of the system as well as its perfor-
mance in the normal and degraded modes of operation (see Sections 3 and 4.4), d) stripe width (or parity group
size) in the traditional RAID organization (see Section 4.2) is equal to the cluster size, whereas in Section 4.4
we show how the system’s performance under failure can be improved by relaxing this condition, €) interleave
unit size (stripe granularity) determines the number of devices that are involved in an access, and and hence it
affects the system’ s performance during normal operation (we do not discussthisany further dueto lack of space
but refer the interested reader to [14] for aperformance comparison between byteinterleaved, block interleaved,
and mirrored systems under normal operation), f) number of spares affects the reliability of the I/O subsystem
(see Section 4.3), and g) reconstruction time (or vulnerability window) is of crucia importance, because a sys-
tem operating under failureis not only vulnerableto a second failure (which resultsin asystemfailure, i.e., loss
of data) but it aso exhibits degradation in performance; to reduce the MTTF of the whole system, it is neces-
sary to rebuild the failed disk as soon as possible but without significantly slowing down the normal workload;
in other words, the availability of dataafter afailure would not mean much if this data can not be accessed in a
“reasonable” amount of time (see Section 4.5 for a discussion of several reconstruction schemes).

4.2 RAID Organizations

In this section we describe the different RAID organizations, as they are presented in [31]. Firstly, we present
theterminology'é: 1) RAID1: isadatamirroring scheme, i.e., it usesfull replication (see Section 3), 2) RAID2

15 A large read doesn’t involve an access of the parity disk, under normal operation. The failure's affect on system’s performance
dependson the RAID organization used; e.g., there would be no impact on the performance of a RAID3, becauseit usesthe rotationally
synchronized byte interleaved organization which does not allow multiple parallel accessesanyway (see Section 4.2).

18\We do not describe the RAID1 schemein more detail, sinceit is very similar to the full redundancy schemes discussed in Section
3. The RAID2 organization uses Hamming code as its ECC, where some fraction of the redundant information is used to detect which

21

& RAIDS: are parity based, parallel access schemes, where all the disksin a cluster are rotationally synchro-
nized, and 3) RAID4 & RAIDS: are parity based, independent access schemes, where al the disksin a cluster
can simultaneously perform independent accesses. The synchronized RAID3 organization is traditionally byte
interleaved, asin[22, 31]. Thisisdueto the common assumptionthat rotationally synchronized disks do not per-
form independent accesses; hence, they are viewed as asingle unit, with N « rate of a single disk, and which can
satisfy onerequest at atime. (An exception to thisview isthework presented in [8], where the authors describe
workloadsunder which it would be beneficial to uselarger striping unitsin synchronized, i.e., RAID3, disk array
organizations.,) The advantages of atraditional byte interleaved RAID3 are: 1) high bandwidth, 2) high reliabil-
ity, and 3) its performance in degraded modes (since every request resultsin afull stripe access, its performance
in degraded mode is equivalent to its performance in normal mode). A disadvantage of RAID3 isthat it has low
throughput on small requests, since every request involves all the disksin cluster, no matter how large or small.

To remedy the problem of low throughput on small accesses, we can use the RAID4 and RAID5 schemes,
which both use block!” interleaving and can independently service multiple requestsin parallel. The difference
between the two schemes is in the parity placement!®. In the RAID4 scheme there is a dedicated parity disk,
as in the example of Figure 3. The problem with this arrangement is that the parity disk can become a bottle-
neck, since every small write operation requires the reading and writing of parity. To remedy this problem, the
RAIDS5 scheme rotates the parity among al the disksin a cluster; thisisillustrated in Figure 4. The basic idea

disk 1 disk 2 disk 3 disk 4

Figure 4: RAID5 Organization

isthat RAID4 and RAID5 should still provide the high access rate of RAID3 on large requests but are also able
to provide high throughput on small requests. However, we should note that RAID4 and RAIDS5 suffer from
performance degradation on “small” write requests, since each non-full stripe write request resultsin four I/0O
operations; dueto lack of space, we do hot discussthisproblem here but refer theinterested reader to [27, 26, 33].

4.3 Spares

Asmentioned earlier, reconstructing a failed disk as soon as possible contributes significantly to improving the
MTTDL. Of course, to reconstruct a disk, we need a spare one. If the spare disk is offline, i.e., requires human
intervention, then thetimeto order it, install it, etc. will likely dominatethe actual reconstruction process. How-
evey, if the spare disk isonline (i.e., a hot spare), then the vulnerability period!® of the system is determined by
the efficiency of the reconstruction process. The various approachesto improving the reconstruction process are
discussed in Section 4.5. In this section, we first address the question of “how many spares do we need?’. In
[14], the authors address thisissue by simulating a disk array with 7 parity groups (or strings as they are called
in [14]) and varying the size of the spare disk pool. The basic result is that (with or without hot spares) there is

disk hasfailed (only one parity disk per cluster is necessary to correct the failure). Since most disk controllers can detect which disk has
failed, thisis not necessary. Thus, we do not discussthe RAID2 organization any further.

17What is the desirable block size depends on the system’s expected workload (e.g., see[8]).

18 performance consequences of several parity placement schemesfor RAID systems are investigated in [24, 25], where the authors
show that, for certain types of workloads, a“ proper” choice of parity placement can result in a significant performance improvement.

19The period during which another failure results in data loss.

22

essentially no difference (with respect to MTTDL) between a spare pool of 7 disksand an “infinitely” large spare
pool, i.e., it is sufficient to provide one spare disk per parity group.

Another way to use spare disks to improve system performance, both during normal operation and under
failure, isto use a distributed spare [28] (instead of a dedicated spare). The basic ideais to use the spare disk
under normal operationto construct an N + 2 (instead of an N + 1 array) with spareblockson all N + 2 disks; an
example of asystem using a distributed spareisillustratedin Figure 5. Advantages of an array withadistributed

disk 1 disk 2 disk 3 disk 4 disk 5

Figure 5: Distributed Spare (N+2 Array)

gpare are as follows: a) better performance under normal operation, since we are able to use N + 2 instead of
N + 1 disks, b) better degraded mode performance, sincewe are abletouse N + 1 instead of N disksplusless
dataislost due to failure (since the spare blocks had no data), c) shorter reconstruction process (since less data
islost dueto failure), and d) higher probability that the spare is operational when it is needed, sinceit is being
used during normal operation (see Section 4.6 for discussion on infant mortality of disks). The disadvantages
are: @) when anew disk becomes availabl e (to replace the failed one), there isaneed for a*“copy back” process,
i.e., copying of datato the new disk in order to create a distributed spare again, which could be done when the
systemisidle, and b) with N +2 disksinan array, thereisagreater probability of asingledisk failure, and hence,
distributed spare systemstend to spend more time in degraded performance modes.

44 Clustered RAID

It isdesirable for the system to spend as little time as possiblein the degraded mode of operation, because dur-
ing that period: @) the system is vulnerable to a second failure, which can result in data loss and b) the system
performance is degraded due to the failure. One way to improve the system’s performance under failure and at
the same time speed up the reconstruction process is to use the clustered array organization, proposed in [30].
The basic ideabehind clustered disk arraysisto relax the assumption that the group size, G, should be equal to
the cluster size, C', where “group” refersto the parity groupssize, i.e., the number of data blocks plusthe parity
block, and the*“cluster” sizerefersto the number of disksover which the parity group blocksare distributed. In a
traditional RAID architecture, asin [31], it is assumed that the group sizeis aways equal to the cluster size. An
example of asystem where the group size (G = 4) isless?? than the cluster size (C = 5) isillustrated in Figure
6. To place each parity group (i.e., three data blocks plus one parity block) on the disks, we must select 4 out of
5 disksin the system. Sincethere are (3) waysto make such aselection in Figure 6, there are five possibletypes
of parity groups®!.

The clustered organi zation does not require additional disks, since the overhead for storing redundant infor-
mationisdetermined by thegroup size, G; furthermore, G determinesthe number of readsthat must be performed
to reconstruct adata block from afailed disk. On the other hand, the MTTDL is determined by the cluster size,
C, since any two failuresin one cluster result in data loss. Note that, there are benefitsin choosing a cluster size

200f course, the group size hasto be at most as large as the cluster size, otherwise, the array would not able to recover even from a
single failure.

I Note that in Figure 6, each group type appearsto have a column of empty blocks; this is done for ease of illustration, i.e., the figure
illustrates the logical organization of the data on the disks rather than the physical one.

23

disk1 disk2 disk3 disk4 disk5

DB E O
to o & O
s o] & o o O
SF o B B O
BB BE O E
i E E O O
' B B O B
® B O =

Figure 6: Clustred RAID Organization

that is greater than the corresponding group size, and they are asfollows. When adisk fails,G — 1 blocks must be
read, from C — 1 surviving disksin order to reconstruct each block of the missing data. By properly distributing
the groups among all the disks in the cluster, the additional |oad, due to failure, can be distributed evenly over
al C — 1 survivingdisks. If r isthefraction of accessesin the normal workload that are reads, then the increase
in the workload dueto onefailed disk is determined by r%. Hence, an array with G < C would perform bet-
ter under failure and would have a shorter reconstruction process. An analysisof clustered array’s performance
under failure, using three different reconstruction schemes (see Section 4.5) can be found in [30]; this analysis
indicatesthat there are significant advantages to using the clustered disk array scheme. There remains one prob-
lem with respect to implementing the clustered array architecture, whichisleft openin[30]. Thisisthe problem
of computing, for a given datablock, thelocation of its“buddy” data blocksand parity block (i.e., the rest of the
blocksin the parity group), which is addressed in [17, 29].

45 Recovery Procedures

Severd reconstruction schemes are suggested in [30]; theseinclude: @) basic rebuild, wherethe dataisread from
the surviving disks, reconstructed through a parity computation, and then writtento the sparedisk, b) rebuild with
read-redirect, where, in addition, read requests, for the portion of the data on the missing disk that has already
been reconstructed on a spare, are redirected to the spare disk, and c) piggy-backing rebuild, which takes advan-
tage of read requests for data on surviving disks and uses the retrieved information to reconstruct some portion
of thefailed disk. In all three schemes, the authors [30] suggest that the write requests to the failed disk should
always be redirected to the standby disk. In [17] the authors question this decision and investigate another re-
covery agorithm, in addition to the three proposed in [30], which they refer to as the minimal-updatealgorithm;
in this scheme, updatesto thefailed disk are ignored, whenever possible. A simulation of all four reconstruction
algorithmsreveal sthat the two more complex schemes, i.e., read-redirect and piggy-backing, do not consistently
reduce the length of the reconstruction period. In particular, in light to moderate loads with % < 0.5, the
schemes with no redirection result in a shorter reconstruction period. The reason [17] is that the benefits of of-
floading the surviving disks do not outweigh the penalty of 1oading the replacement disk with randomworkload,
unlessthe surviving disks are highly utilized.

Severd other issues should be considered when designing a reconstruction process, for instance, the size of
the reconstruction unit, which can be atrack, a sector, a cylinder, etc. The tradeoffs are as follows. A larger re-
construction unit should speed up the reconstruction process, however, it should also result in greater degradation
of performance, as experienced by the normal workload, i.e., thelonger it takesto read areconstruction unit, the
(possibly) greater isthe queueing delay experienced by the normal workload. Another way to reduce the recon-
struction period is to start multiple (independent) reconstruction processesin paralel. In[17], the authors note

24

that a single reconstruction process (or in lock step reconstruction)?? is not always able to highly utilize a disk

array, especially when % isrelative small; inthat paper, the authorsinvestigate the benefits of using an 8-way

parallel reconstruction process®3.

4.6 Independenceof Disk Failures

Until now, we have primarily considered the failure of disks. However, there are other componentsin the 1/0
subsystem that deserve attention, such as controllers, power supplies, cabling, cooling systems, etc. In [14], the
authors point out that such support hardware is normally shared by a disk string (all the disks on one bus), as
illustrated in Figure 7(a). A failure of one such shared hardware component, e.g., a power supply, would result

Busl Bus2 Bus3 Bus4 Busb5 Busl Bus2 Bus3 Bus4 Busb5

o |5 -5 {]
Data
oz L3 8 -0
Data
ondisk 2
v |5 -]
= & N
Array 5 «Ej

O g

(@) Orthogonal Parity Group Organization (b) Disk Matrix

e
e
e
SR .
R
SIS Tl

Figure 7: Independence of Disk Failure

intheinaccessibility of an entire string of disks. Thus, diskssharing the same support hardware should not belong
tothesamedisk array. Infact, the disk arrays should be constructed orthogonally to the support hardware groups
[32]. In[14], the authorscompare theMTTDL of an array with an non-orthogonal organizationto that of an array
with an orthogonal organization and show a significant improvement in reliability.

In addition to guarding against multiplefailures due to asingle support hardware failure, we would also like
to have an even load distribution, over al the disksin the system, when afailure does occur. However, the or-
thogonal organi zation described above does not exhibit thisproperty. Notethat in that organization, adisk failure
creates an addition load only on the disks belonging to the same disk array as the failed disk. In [1], the authors
propose another approach, termed a disk matrix24, which also guards against single points of failure but with an
additional benefit of evenly distributing the additional load due to a failure over al the disksin the system. In
generd, all blocksbelongingto the same parity group (i.e., datablocks plusa parity block) are distributed among
the disksin the disk matrix according to the following rules: 1) no two blocks from the same parity group end
up on the same disk string and 2) theincrease inthe load due to adisk failure isevenly distributed among al the
disksin the matrix [1]; thisisillustrated in Figure 7(b). Due to alack of space we do not describe this scheme
any further but refer the interested reader to [1]. We do note, however, that one disadvantage of this scheme, as
compared to the orthogonal organization scheme, isthat it has alower reliability, since essentialy, it uses larger
clusters.

2By a single reconstruction process (or in lock step reconstruction) we mean a recovery procedure where the reconstruction of one
data block must be completed before the reconstruction of another data block can begin.

23 The parallel reconstruction process requires additional buffer spaceto hold the data blocks that have been read from the surviving
disk, but have not (yet) been used to reconstruct the missing data.

*4The disk matrix is a generalization of the clustered disk array idea.

25

4.7 Parity Striping

In[16], the authors point out why traditional RAID5 organization [31] might not be the best solutionfor all types
of workloads, and more specifically for OLTP workloads (i.e., workloads with relatively small accesses). The
reason is that OLTP systems can not afford to use several disk arms on a single transfer, because the reduction
in (an aready fairly short) transfer time can not offset the overhead associated with parallel transfer, such as an
increase in seek plus latency time (due to using multiple arms). Therefore, the authors propose another striping
scheme, termed parity striping, which can provide cheap reliable storage and high throughput. The basic idea
behind parity stripingisto makea N + 2 disk array ook like N + 1 logical disks plus a spare disk, rather than
as onelogical disk (asin a RAID architecture). To this end, only parity blocks (rather than files) are striped
across all the disksin the system. Such a system isillustrated in Figure 8, where, for instance, blocks pyo and
P21 represent one contiguous parity segment which holds parity information for data blocks dgg, do1, d10, and
d11 (whereblocks dg; belong tofile 0 and blocksdy; belongtofile 1). Thus, aparity striping architecture allows

ey
doo dig dy

o | 1 9u) | 9a]
Poo P10 P20
Po1 P | P2y

Figure 8: Parity Striping

each small (relativeto thesize of the parity segment) accessto be satisfied by asingledisk, but it still providesthe
reliability of aRAID5 system. In[16], asystem using parity stripingisanayzed and itsperformance is compared
to that of a system using mirrored disks and a system using RAID5. Another comparison of RAID5 and parity
striping performance (under normal operation) can be found in [10]. Dueto alack of space, we do not discuss
these works here.

5 Summary

In summary, we have discussed two basic categories of schemesthat store redundant information for the purpose
of reliability; theseare: 1) full replication schemes and 2) schemes using parity information. In genera full repli-
cation schemes exhibit higher reliability and better throughput under normal operation (if both copies of the data
are used to service read requests). On other other hand, schemes using parity information have a much lower
storage overhead. The reliability characteristics of (most) schemes presented in this article can be summarized
briefly, as follows. To lose datain a system with D disks, the following must happen: 1) with mirroring two
disks must fail in the same mirrored pair, and there are % such combinations, 2) with interleaved decluster-

ing two disks must fail in the same cluster, and there are (g) g such combinations, where C' isthe size of each

cluster, 3) with chained declustering two consecutive disksin the same cluster must fail, and thereare C = D
such combinations, where C' is the size of the cluster (recall, that in chained declustering there is no reliability
penalty dueto larger clusters, and in addition, there is a benefit to having larger clusters, namely the reduction
in additional load dueto failure. Thus, it is (usually) desirable to have all the disks belong to the same cluster;
hence, C' = D above), 4) with traditional RAID two disks must fail in the same cluster of size C = G (where

G isthe parity group size), and there are (f) g such combinations, 5) with clustered RAID two disks must fail

26

in the same cluster of size C (where G < C'isthe parity group size), and there are (g) g such combinations.

References

[1] Fault Tolerant Disk Drive Matrix, Patent 5,303,244, Granted April 12, 1994. AT& T Global Information Solutions.

[2] NonStop SQL, A Distributed, High-performance, High-reliablity Implementaion of SQL. Technica Report No.
82317, Tandem Database Group, March,1987.

[3] DBC/1012 database computer system manua release 2.0. Technical Report Document No. C10-0001-02, Teradata
Corporation, Nov 1985.

[4] D. Bitton. Arm scheduling in shadowed disks. COMPCON, pages 132-136, Spring 1989.
[5] D.Bittonand J. Gray. Disk shadowing. VLDB, pages 331-338, 1988.

[6] P.Chen. Anevauation of redundant arrays of disks using an Amdahl 5890. Technical Report UCB/CSD 89/506, UC
Berkeley, May 1989.

[7] P.Chen, G. A. Gibson, R. H. Katz, and D. A. Patterson. An evauation of redundant arrays of disksusing an Amdahl
5890. ACM S GMETRICS Conference, pages 74-85, 1990.

[8] Peter M. Chen and David A. Patterson. Maximizing Performance in a Striped Disk Array. |SCA, pages 322—-331,
1990.

[9] S. Chenand D. Towsley. Performance of amirrored disk in a real-time transaction system. ACM Sgmetrics 1991,
pages 198-207, 1991.

[10] S. Chenand D. Towsley. The Design and Evauation of RAID5 and Parity Striping Disk Array Architecture. Journal
of Parallel and Distributed Computing, pages 58-74, 1993.

[11] G. Copeland and T. Keller. A Comparison of High-Availability Media Recovery Techniques. ACM S GMOD Con-
ference, pages 98109, 1989.

[12] David J. Dewitt, R. Gerber, G. Gragfe, M. Heytens, K.Kumar, and M.Muralikrishna. Gamma: A high performance
dataflow database machine. VLDB Conference, pages 228-240, 1986.

[13] S. Ghandeharizadeh and D. J. DeWitt. Hybrid-Range Partitioning Strategy: A New Declustering Strategy for Multi-
processor Database Machines. VLDB, pages 481-492, 1990.

[14] Garth A. Gibson. Performance and Reliability in Redundant Arrays of Inexpensive Disks. 1989 Computer Measure-
ment Group (CMG) Annual Conference Proceedings, December 19809.

[15] Leana Golubchik, John C.S. Lui, and Richard R. Muntz. Chained declustering: Load balancing and robustness to
skew and failure. RIDE-TQP Workshop, February 1992.

[16] Jim Gray, Bob Horst, and Mark Walker. Parity striping of disk arrays. Low-cost reliable storage with acceptable
throughput. VLDB Conference, pages 148-172, 1990.

[17] M. Holland and G. A. Gibson. Parity Declustring for Continuous Operation in Redundant Disk Arrays. In 5th Con-
ference on Architectural Support for Programming Languages and Operating Systems, Boston, MA, October 1992.

[18] M. Holland, G. A. Gibson, and D. P. Siewiorek. Architecturesand Algorithmsfor On-Line Failure Recovery in Re-
dundant Disk Arrays. Submitted to the Journal of Distributed and Parallel Databases.

[19] M. Holland, G. A. Gibson, and D. P. Siewiorek. Fast, On-Line Failure Recovery in Redundant Disk Arrays. In 23rd
Annual International Symposium on Fault-Tolerant Computing, 1993.

[20] H. Hsiao and D. J. DeWitt. Chained Declustering: A New Availability Strategy for Multiprocessor Database Ma
chines. Proc. of Data Engineering, pages 456465, 1990.

[21] R. Katz, D. W. Gordon, and J. A. Tuttle. Storage System Metrics for Evaluating Disk Array Organization.
[22] M.Y.Kim. Synchronized Disk Iterleaving. |[EEE Trans. on Computers, pages 978—988, November 1986.

[23] M. S. Lakshmi and P. S. Yu. Effect of skew on join performance in paralel architectures. In Int. Symposium on
Databasesin Parallel and Distributed Systems, pages 107-120, 1988.

[24] E. Lee. Software and Performance Issues in the Implementation of a RAID Prototype. May 1990.

27

[25] E. Leeand R. Katz. Performance Consequences of Parity Placement in Disk Arrays. pages 190-199, 1991.

[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]

[38]

J. Menon and J. Cortney. The Architecture of aFault-Tolerant Cached RAID Controller. In 20th Annual International
Symposium on Computer Architecture, pages 76-86, San Diego, CA, May 1993.

J. Menon and J. Kasson. Methods for Improved Update Performance of Disk Arrays. Proceedings of the Hawaii
International Conference on System Sciences, pages 74-83, 1992.

J. Menon and D. Mattson. Comparison of Sparing Alternativesfor Disk Arrays. Proceedings of the International
Symposium on Computer Architecture, 1992.

A. Merchant and P. S. Yu. Design and Modeling of Clustered RAID. Proceedings of the Inter national Symposiumon
Fault-Tolerant Computing, pages 140-149, 1992.

Richard R. Muntz and John C.S. Lui. Performance analysis of disk arrays under failure. VLDB Conference, pages
162-173, 1990.

David A. Patterson, Garth Gibson, and Randy H. Katz. A Case for Redundant Arrays of Inexpensive Disks (RAID).
ACM S GMOD Conference, pages 109-116, 1988.

M. Schulze, G. Gibson, R. Katz, and D. Patterson. How-Rdiableisa RAID? COMPCON, pages 118-123, 1989.

D. Stodolsky, G. A. Gibson, and M. Holland. Parity Logging, Overcoming the Small Writes Problem in Redundant
Disk Arrays. In 20th Annual I nter national Symposiumon Computer Architecture, pages 64—75, San Diego, CA, May
1993.

M. Stonebraker. A Case for Shared Nothing. Database Engineering, 9(1), 1986.

M. Stonebraker and G. A. Schloss. Distributed RAID - A New Multiple Copy Algorithm. Sixth Int’l. Conf on Data
Engineering, pages 430437, 1990.

D. Towdey, S. Chen, and S. P. Yu. Performance anaysis of a fault tolerant mirrored disk system. Proceeding of
Performance ' 90, pages 239-253, 1990.

Philip S. Yu and Asit Dan. Effect of system dynamics on coupling architectures for transaction processing. Technical
Report RC 16606, IBM T.J. Watson Research Division, Feb 1991.

Philip S. Yu and Asit Dan. Impact of affinity on the performance of coupling architectures for transaction processing.
Technica Report RC 16431, IBM T.J. Watson Research Division, Jan 1991.

28

“Disk Cooling” in Parallel Disk Systems

Peter Scheuermann* Gerhard Weikum
Dept. of Electr.. and Computer Sc. Dept. of Computer Science
Northwestern University University of Saarbrucken
Evanston, IL 60208 D-66041 Saarbrucken, Germany
Peter Zabback™**

IBM Research Division
Almaden Research Center
650 Harry Road
San Jose, CA 95120

Abstract

Parallel disk systemsprovideopportunitiesfor high performancel/O by supportingefficientlyintra-request
and inter-request parallelism. We review briefly the components of an intelligent file manager that per-
forms striping on an individual file basis and achieves load balancing by judiciousfile allocation and
dynamic redistribution of the data. The main part of the paper discusses our “ disk cooling” procedure
for dynamic redistribution of data which is based on reallocation of file fragments. We show that this
heuristic method achieves excellent load balance in the presence of evolving access patterns. WWe report
on two sets of experiments: a synthetic experiment which exhibits a self-similar skew in the data access
patternsand a trace-based experiment where we study the impact of the file fragment size on the cooling
procedure.

1 Introduction

Parallel disk systemsare of great importanceto massively parallel computerssincethey are scalable and they can
ensure that 1/0 is hot the limiting factor in achieving high speedup. However, to make effective use of commer-
cidly available architectures, it is necessary to devel op intelligent software tool s that allow automatic tuning of
the paralld disk system to varying workloads. The choice of a striping unit and whether to choose a file-specific
striping unit are important parameters that affect the responsetime and throughput of the system. Equally impor-
tant are the decisionsof how to allocate the files on the disks and how to perform redistribution of the files when
access patterns change.

Wehavedevel oped anintelligent filemanager, called FIVE, for parallel disk systemsthat can perform striping
on afile-specific or global basis, as desired by the application, and in addition it achieves|oad balancing by judi-
ciousfile allocation and dynamic redistribution of data. Our system isgeared toward software-controlled parall €l
disk systemsin which each disk can be accessed individually. The system has the following salient properties:

¢ It consists of modular blocks that can be invoked independently; in particular the agorithmsfor file alo-
cation and redistribution of data can be used regardless of whether striping is employed or not.

* Theresearch of this author was partially supported by NASA-Ames grant NAG2-846 and by NSF grant IR1-9303583.
**This work was performed while the author was at ETH Zurich, Switzerland.

29

e It usessimple but effective heuristics that incur only little overhead.
e Itsconstituent algorithms can be invoked on-lineg, i.e., concurrently with regular requeststo existing files.

e Theheuristicsfor data placement and redistribution of data can be integrated with the fault tol erance tech-
niques devel oped for RAIDs as well as various forms of data mirroring.

In thispaper wediscussmainly our “disk cooling” procedurefor dynamic redistribution of datawhichisbased on
reall ocation of filefragments. We show that thisheuristic method achieves excellent |oad balancein the presence
of evolving access patterns. In addition, we al so discuss opportunitiesfor fine-tuning our disk cooling procedure
so that the unit of reallocation can be chosen in order to account for the cost/benefit of the redistribution.

The remainder of this paper is organized as follows. In Section 2 we review briefly our file partitioning
method and discuss the relationship between partitioning and load balancing. In Section 3 we present our load
balancing procedure, concentrating on disk cooling and the bookkeeping steps required to keep track of its dy-
namically changing statistics. Section 4 reportson two setsof experiments: asyntheticexperiment which exhibits
arecursive skew of access and a trace-based experiment where we study the impact of the file fragment size on
the cooling procedure. Section 5 concludes with a brief discussion of issues under investigation.

2 FilePartitioning

File striping or declustering [10, 15] is a technique for file organization that divides afile into runs of logically
consecutive data units, called “stripes’ which are then spread across a number of disks in order to reduce the
transfer time of a single request or to improve the throughput of multiple requests. The striping unit denotes
the number of logically consecutive data bytes or blocks stored per disk, and the degree of declustering of afile
denotesthe number of disksover which afileisspread. Invirtually al disk architecturesthat have been proposed
so far, thestriping unit is chosen globally [4]. Thisapproach is suitablefor scientific applicationsor pure on-line
transaction processing, in which al files have approximately the same sort of access characteristics (i.e., only
large requests or only single-block requests). However, as we have shown in [17] for many applications which
exhibit highly diverse file access characteristics (e.g., VLS| design, desktop publishing, etc.) it is desirable to
tune the striping unit individually for each file.

We have developed an anaytic model for an open queueing system in order to determine heuristically the
optimal striping unit on an individua file basis or on a global basis[17, 20, 22]. We observe here that an open
gueueing model is much more redistic for an environment where a large number of users issue requests to a
paralld disk system, as compared to the closed queueing model used in [3, 12] where the number of concurrent
I/O requestsin the systemisfixed. Inour system, the striping unit is chosen in terms of data blocks. Our striping
procedure can be applied to afile system in two different ways:

1. The striping unit of each file is chosen individually, based upon the file's average request size R. Two
further optionsexist here. For low arrival rates of requests, where we can assume that no queueing delays
occur, the response time can be computed as if the system operatesin single user mode. For higher loads,
the response time can be optimized by taking into account explicitly the arrival rate, A, in addition to the
parameter R.

2. Thestriping unit can be determined globally by any of the two options mentioned above based on the over-
all average request size R*.

Although the problems of file striping and load balancing are orthogonal issues, they are not completely in-
dependent. In order to derive analytically the optimal striping unit, it isassumed in [17, 20, 22] that the system
isload balanced.

30

If the striping unit isa byte and all files are partitioned across al disksin the system, then we obtain a per-
fectly balanced /O load. In general, very small striping units lead to a good load balancing. But throughput
considerationsrequire for many applicationsthat we choose large striping units(e.g., the size of acylinder). For
example, the parity striping scheme proposed in [7] is based on very large (possibly infinite) striping units, and
[14] proposes choosing both asmall and alarge striping unit for replicated datato support both on-line transaction
processing and decision-support queries as well as batch processing. However, a coarser striping unit increases
the probability of load imbalance under a skewed workload [13]. In general, we can see that file striping can
help towards achieving good load balancing, but partitioning by itself is not sufficient for this goal. Additional
methods for load balancing are called for, regardless of whether data partitioningis used or not.

3 Load Balancing

Theload balancing component of our intelligent file system consists of two independent modules: one that per-
forms file alocation [19] and the second that performs dynamic redistribution of data[17].

After the decision has been made to decluster a file over a particular number of disks, all striping units of
the file that are to be mapped to the same disk are combined into a single allocation unit called an extent. The
file alocation problem in aparallel disk system involves making ajudicious decision about the disks on which
to place the extents so as to optimize the load. While this problem is similar to the file allocation problem in
distributed systems, it presents an additional constraint due to the need to consider also intra-request parallelism.
Thisimplies, that not all extentsof afile should be allocated to the same disk if intra-request paralelismisto be
supported.

In order to perform these load balancing procedures, i.e., filealocation and file redistribution, our file system
keeps track of the following related statistics[5]:

o the heat of extents (or dternatively, of the smallest units of data migration) and disks, where the heat is
defined as the number of block accesses of an extent or disk per time unit, as determined by statistical
observation over a certain period of time,

e and the temperature of extents, which is defined as the ratio between heat and size.

3.1 FileAllocation

A number of heuristic methods have been proposed for file allocation, with the simplest one being the round-
robin scheme. A simple but effective heuristic algorithm for static file alocation, where al files are allocated
at the same time and the heat of each extent can be estimated in advance, has been introduced in [5] (see, for
example, [21] for amore sophisticated approach to statically load balanced data placement). The agorithm first
sorts al extents by descending heat and the extents are allocated in sort order. For each extent allocation, the
algorithm selects the disk with the lowest accumulated heat among the disks which have not yet been assigned
another extent of the samefile.

We have extended this greedy algorithm in order to deal with dynamic file allocation [19]. Since our algo-
rithm makes no assumptionsabout the heat of anew file at allocation time, the sorting step is eliminated and the
algorithm only uses the information about the hesat of the files which have been alocated already and for which
statistics are available. The disk selection can be made in such away as to consider also, if so desired, the cost
of additional 1/0s necessary to perform partial disk reorganization. Partia disk reorganization may have to be
performed if, due to file additions and deletions, there is room to store an extent on a disk but the space is not
contiguous. Even more expensiveis the situation when disk ¢ has the lowest heat and may appear as the obvious
choiceto storeanew extent of afile, but thisdisk does not have enough free space. In order to make room for the
new extent we have to migrate one or more extentsto a different disk. In order to account for these reorganiza-
tion costswe associatewith every disk astatusvariablewith regard to the extent chosen for allocation. The status

31

Input: D - number of disks
H; - heat of extent j
H? -heatof disk:
H - averagedisk heat
E; -list of extentson disk ¢ sorted in descending temperature order
D - list of diskssorted in ascending heat order

Step0: Initidization: target = not_found
Step 1: Select the hottest disk s
Step 2: Check trigger condition:

if Ho>H x (1+6)then

Step 3: whi | e (E, not exhausted) and (target == not_found) do
Select next extent e in E,
Step 4: whi | e (D not exhausted) and (target == not_found) do

Select next disk ¢ in D in ascending heat order
i f (¢t doesnot hold an extent of the file to which e belongs)
and STATUS(t) == FREE t hen
target = found
fi
endwhi | e
endwhi | e
Step 5: i f s hasnoqueuet hen
HY =Hr-H.
Hy' = H + H.
if H' < H.then
reallocate extent e from disk s to disk ¢
update heat of disks s and ¢:
H=HY
H} = H
fi
fi
fi

Figure 1: Basic disk cooling algorithm

variable can takethe values FREE, FRAGand FUL L, depending upon whether the disk (1) has enough free space
for the extent, (2) has enough space but the the spaceis fragmented or, (3) does not have enough free space. Our
file alocation a gorithm has the option of selecting disksin increasing heat order without regard to their status.
Alternatively, we may select the disksin multiple passes, where in thefirst pass we only choose those that have
status FREE.

3.2 The*Disk Cooling” Procedure

In order to perform dynamic heat redistribution we employ in our system adynamic load balancing step, called
disk cooling. Basically, disk cooling is a greedy procedure which tries to determine the best candidate, i.e., ex-
tent, to remove from the hottest disk in order to minimize the amount of data that is moved while obtaining the
maximal gain. The temperature metric isused asthe criterion for selecting the extentsto be reall ocated, because
temperature reflects the benefit/cost ratio of the reall ocation since benefit is proportional to hest (i.e., reduction of
heat) and cost is proportional to size (of the reallocated extents). Our basic disk cooling procedureisillustrated
in Figure 1. The extent to be moved, denoted by e, is reallocated on the coolest disk, denoted by ¢, such that ¢
does not hold already an extent of the corresponding file and ¢ has enough contiguous free space.

32

In our system the disk cooling procedure isimplemented as a background demon which is invoked at fixed
intervalsintime. The procedure checksfirst if thetrigger conditionis satisfied or not (Steps 1 and 2 in Figure 1).
If thetrigger conditionisfase, the systemis considered load balanced and no cooling actionisperformed. Inthe
basic disk cooling procedure the systemisnot considered load balanced if the heat of the hottest disk exceedsthe
average disk heat by a certain quantity é. It isimportant to observe that during each invocation of the procedure
different disks can be selected as candidates for cooling after each cooling step.

Our procedure considersimplicitly the cost/benefit ratio of a considered cooling action and only schedulesit
for execution if is considered beneficial. These cost considerations are reflected in Step 5 of the algorithm. The
hottest disk islikely to have aready aheavy share of the load, which we can “measure” by observingif itsqueue
isnon-empty. A cooling action would most likely increase the load imbalance if aqueueis present at the source
disk sinceitimpliesadditional 1/Osfor the reorganization process. Hence, we choose not to schedul e the cooling
action if this condition is satisfied. We also consider the cooling move not to be cost-beneficial if, would it be
executed, the heat of the target disk would exceed the heat of the source disk. Hence, although our background
demon isinvoked afixed number of times, only a fraction of these invocationsresult in data migration.

Our generic disk cooling procedure can be generalized in a number of ways. In [16] we have shown how
an explicit objective function based on disk heat variance (DHV) can be used in a more general test for the
cost/benefit of acooling action. Thus, the benefit is computed by comparing the DHV after the potential cooling
step with the DHV before the potentia cooling step. In addition, we can consider also explicitly the cost of per-
forming the cooling. Thus, amore accurate cal cul ation of benefit and cost would consider not only the reduction
in heat on the origin disk and theincreasein heat on thetarget disk, but also the additional heat caused by the re-
organization processitself. The cooling processis executed during two intervals of time, the first corresponding
to theread phase of the action and the second corresponding to the write phase of the action. The additional heat
generated during these phases can be computed by dividing the size of the extent to be moved by the correspond-
ing duration of the phase. The duration times of the read and write phase of a cooling action can be estimated by
using aqueueing model, as shownin [16].

Our disk cooling procedure can be fine-tuned so that the unit of reallocation is chosen dynamically in or-
der to increase the potentia of a positive cost/benefit ratio. In the basic procedure given in Figure 1 the unit of
redistribution is assumed to be an extent. However, in the case of large extents that are very hot the cost of a
redistribution may be prohibitive. In this case, we can subdivide further an extent into a number of fragments
and use afragment as the unit of redistribution. Since al fragments of an extent are of the same size we can now
base the choice of the migration candidates (see Step 3 in Figure 1) on the heat statisticinstead of temperature.

In addition, theincrease in the number of alocation unitsof afile also requiresthat we remove the allocation
constraint on the target disk, namely we do not require anymore that the disk should hold only one fragment of
afile. Hence, we put here the objective of abalanced |oad above the requirement that the degree of declustering
isoptimal.

3.3 Heat Tracking

The dynamic tracking of the heat of blocksisimplemented based on a moving average of the interarrival time
of requests to the same block. Conceptually, we keep track of the times when the last &£ requests to each block
occurred, where k isafine-tuning parameter (intherangefrom 5to 50). Toillustratethisbookkeeping procedure,
assume that ablock is accessed at the pointsof timety, ¢,,. . ., t, (n > k). Thenthe average interarrival time of
the k last requestsis w , and the estimated heat of the block is the corresponding reciprocal ;-

Upon the next accessto thls block, say at timet,, 1, the block heat is re-estimated as ; " ’:ﬂ -

One may conceive an aternative method for heat tracking that keeps a count of the humber of requeststo a
block withinthe last T' seconds, where T' would be a tuning parameter. The problem with such a request-count
approach isthat it cannot track the heat of both hot and cold blocksin an equally responsive manner. Hot blocks

would need arelatively short value of T to ensure that we become aware of heat variations quickly enough. Cold

tn Et1

33

blocks, on the other hand, would need alarge value of T to ensure that we see a sufficient number of requeststo
smooth out stochastic fluctuations. The moving-average method for the interarrival time does not have this prob-
lem since afixed value of & actually implies a short observation time window for hot blocks and along window
for cold blocks. Mareover, extensive experimentation with traces from real applications with evolving access
patterns has shown that our tracking method works well for a wide spectrum of & values; the heat estimation is
fairly insensitiveto the exact choice of k£ [22].

The adopted heat tracking method is very responsive to sudden increases of a block’s hest; the new access
frequency isfully reflected in the heat estimate after & requests, whichwould takeonly ashort whilefor hot blocks
(and reasonable values of k). However, the method adapts the heat estimate more slowly when ablock exhibitsa
sudden drop of itsheat. Inthe extreme case, ahot block may suddenly ceaseto be accessed at all. In thiscase, we
would continueto keep the block’sold heat estimate asthere are no more new requeststo theblock. To counteract
this form of erroneous heat estimation, we employ an additional “aging” method for the heat estimates. The
aging isimplemented by periodically invoking a demon process that simulates “ pseudo requests’ to all blocks.
Whenever such a pseudo request would lead to a heat reduction, the block’s heat estimate is updated; otherwise
the pseudo request isignored. For example, assume that thereis apseudo request at time ¢’ and consider a block
with heat H. We compute tentatively the new heat of the block as t'_ﬁ%],:“ but we update the heat bookkeeping

only if H' < H. The complete heat tracking method isillustrated in Figure 2.

requests pseudo requests
to block to all blocks

|
A 1 1 1 o
B | 1 1 1 | l

|
c | \ 1 1 1

time

Figure 2: Illustration of the heat tracking method for £ = 3. The relevant interarrival times are shown by the
double-ended arrows.

The described heat tracking method requires a space overhead per block of &£ + 1 timesthe size of afloating-
point number. Since we want to keep this bookkeeping information in memory for fast cooling decisions, it is
typically unacceptable to track the heat of each individua block. For low-overhead heat tracking, we actually
apply the heat estimation procedure to entire extents (or fragments of a specified size). We keep track of the
timest,,. .., t,—k+1 Of thelast k£ requeststhat involve any blocks of the extent in the manner described above,
and also we keep the number of accessed blocks within the extent for each of thelast & requests. Assume that
the average number of accessed blocksis R. Then the heat of the extent is estimated by ﬁ Finaly, we
estimate the heat of afraction of an extent by assuming that each block in the extent has the same heat (which
is extent heat divided by extent size). This extent-based heat tracking method provides a compromise between
the accuracy and the space overhead of the block-based estimation procedure. The method has proven to be
sufficiently accurate in all our experimental studies (including studies with application traces).

4 Performance Studies

In this section we present an experimental evaluation of our dynamic disk cooling procedure. In order to study
the robustness of our procedure we performed two different sets of experiments. The first set of experiments
was based on a synthetic workload, enabling usto study systematically the effect of changesin arrival rates and
various patterns in data access skew. For the second set of experiments we used |/O traces from file servers at
the University of Caifornia.

34

4.1 ThePerformance Testbed

Our testbed consistsof aload generator, the file system prototype FIVE, and asimulated I/O system that is using
CSIM [18]. FIVE dlowsfor striping of files on an individua basis and incorporates heuristics for file striping,
alocation, and dynamic load balancing. For the experiments presented here we wanted to study only the impact
of thevarious parameters rel evant to the disk cooling procedure. Hence, we performed striping on aglobal basis,
using one track as the striping unit and static file all ocation was performed using round-robin. The disk cooling
procedure isinvoked as a background process running concurrently with regular requeststo existingfiles. FIVE
can managereal dataon real hardware or synthetic/real dataon asimulated 1/0 system. For these experimentswe
used asimulated disk farm consisting of 32 diskswhose parameters are described in Table 1. Note, that although
average figures are given for the seek time and rotational latency, our detailed simulation computes the actua
figures for each request by keeping track of the cylinder position of each disk arm.

capacity per disk [MBytes] | 540 || avg. seek time [mg] 12
cylinder per disk 1435 || avg. rotational latency [ms] | 6.82
tracks per cylinder 11 transfer rate [MBytes/s] 24
capacity per track [blocks] 35 block size [Bytes] 1024
disks 32 total capacity [GBytes] 17

Table 1: Characteristics of the ssimulated disk farm

4.2 Synthetic Workload

We performed a number of synthetic experimentsin order to study systematically the effects of different param-
eters on the disk cooling procedure. While experiments with real-life traces are important, it is often difficult to
obtain long enough traces that exhibit all the relevant patterns of access. The purpose of the synthetic experi-
ments was to study theimpact of variousarrival rates, degree of skew in data access, aswell as fluctuationsover
timein the skew.

For these experiments we used N = 1000 files each having 70 blocks (2 tracks). Each file resided on two
disks (i.e., the global striping unit was 1 track). Furthermore, as the file size was rather small, we considered
only entire files as migration candidates and did not investigate smaller fragment sizes. Each (read or write)
request accessed an entirefile.! Note that this synthetic setup captures the most important workload features of
applicationssuch as office document filing, desktop publishing, etc., asfar asload balancingissuesare concerned.
In areal application, there would probably be more files and also larger files, but, on the other hand, 1/0 requests
would often access only a fraction of afile and alarge fraction of the files would be accessed only extremely
infrequently. So we disregard the non-essential detailsfor the sake of simplifying the experiments.

The /O requests were generated so asto exhibit a self-similar skew in the data access pattern acrossthe files
[8]. We use an X/Y distribution of access, where X % of the requests are addressed to Y % of thefiles. Thus, if
the files are numbered from 1to N, for agiven setting of the parameters X and Y, the probability of accessing a
file numbered ¢, with < < s, isgiven by the formula of [11]:

S log(X/100)/log(Y/100)
R
Prob(i < s) (N)
In order to experiment with fluctuationsin patterns of access, we haveimplemented a uniform shift procedure
which allows usto switch among the fil es the heats assigned to them from one period to the other. Let usassume
that during simulation period 4 the files numbered 1 through N have been assigned heats in decreasing order of

!In Section 4.3 we discuss experiments with larger file sizes and variable request sizes.

35

with Disk-Cooling
— — — - without Disk-Cooling

time

& balanced

O queue at source

O no migration candidate
m # of cooling steps

time

(b) Cooling process statistics (d) Cooling process statistics

Figure 3: Average responsetime for synthetic experiments. skew 70/30. A = 200. (&) and (b) one shift, (c) and
(d) three shifts.

magnitude; thus file numbered 1 was assigned the highest heat, 1, and so on, with the file numbered N being
assigned the smallest heat, A . A shift in heat of magnitude » means that in the next simulated period, namely
1+ 1, the highest heat h isassigned to file numbered 1 + r, hy isassigned to file numbered 2 + r, and soon in
cyclic fashion.

In all experiments the simulation time was divided into 50 intervals. We report here on two sets of experi-
ments using a different degree of skew: thefirst one uses a 80/20 skew in access, while the second one uses a
70/30 skew. For each set of experiments we experimented with different shiftsin skew: no shift for the entire
simulation versus one or three shiftsin skew. In the case of one shift the magnitude chosen wasr = 500 and the
shift occurred in the middleinterval (number 25). In the experiments with three shiftsthe magnitude of the shift
was 250 and the shiftsoccurred during intervals 12, 25 and 37, respectively. Different arrival rateswere used for
each set of experiments, but due to lack of space we limit ourselves here to only one arrival rate per X/Y skew.
Note that alower skew in data access can handle a much higher arrival rate. Thisis dueto the fact that for high
degrees of skew the vanillaround-robin allocation method thrashes above a certain arrival rate.

Figure 3 depictsthe average response times and the cooling frequencies as they vary over the simulated time
period for a skew of 70/30. Figure 4 repeats these measurements for a skew of 80/20. The disk cooling proce-
dure achieves tremendous savingsin the response time due to better 1oad balancing, and hence reduced queueing
delays.

Thehistogramsillustratedin the Figures depict the frequency of the datamigration stepsinvoked by our cool-
ing procedure, varying over thesimulationintervals. Thedisk cooling procedureisimplemented as abackground
demon whichisinvoked afixed number of times(i.e., 100 times) during each simulation period. The histograms
illustrate how many of these invocations actually resulted in data migrations being executed (cooling steps). An
invocation will not result in a cooling action if the system determines that the cost/benefit ratio is not favorable.
The cases when no cooling actions occur are divided into two categoriesin our histograms. queue at source and
no migration candidates. Thequeue at source category countsthoseinvocationswhere aqueueisobserved at the
source disk. The no migration candidate category includesthoseinvocationswhere (1) all extents on the hottest
disk are so hot that after a move the target disk would become hotter than the source disk before the move, or (2)
all remaining extents have no observed 1/0s. The first case was discussed aready in Section 3. The second case
isrelated to the fact that our disk cooling procedure has no a-priori knowledge about the heat of any of the ex-
tents. Hence, initialy the heat of any extent isassumed to be zero and the disk cooling procedureisnot executed
further when we reach extents with no observed 1/Os.

36

with Disk-Cooling
— — — - without Disk-Cooling

(a) avg. response time (c) avg. response time

@ queue at source
O no migration candidate
m #of cooling steps

|}
III|I|II|II|I “||“||||I‘| M= -|||II|II|I ”““l"ﬂ‘l |I|\|I||I|\I
10 20 10 20 40

time
30 40 50 30

(b) Cooling process statistics (d) Cooling process statistics

50

Figure 4. Average response time for synthetic experiments. Skew 80/20. A = 95. (@) and (b) one shift, (c) and
(d) three shifts.

In al experiments our agorithm initiated a larger number of cooling steps during the initial learning phase.
Figure 4 shows that in the case of a 80/20 skew, the number of cooling steps initiated subsequently was rather
small. In addition, the experimentsillustrate that our disk cooling procedure reacts fast to changesin the access
pattern. Asobservedin Figure4, asudden shift duringinterval 25 caused aslightincreasein the average response
time. But the system isfast to recognizeit, and immediately in the next time interval cooling actions are taken
to readjust the load balance. The experiments with three shifts show a similar pattern: very few and singular
cooling actions, performed after the shifts occurs. On the other hand, the experiments depicted in Figure 3 show
adifferent configuration. In these experiments we observe that the cooling steps occur continuously throughout
the entire simulation period. Thisis due to the fact that for a more moderate skew the disk cooling procedure
has more degrees of freedom for the migration. With a high skew it often happens that we end up with one or
two diskswhich have only one extent, namely the hottest ones. When this occurs, no suitable target disk can be
found for the migration since its heat will now become the bottleneck.

4.3 Trace-based Workload

For thisexperimental study we used a48-hourstrace from the University of California, Berkeley, aperiod during
which the magjority of the applications dealt with VLS| design and simulation. The original trace, described in
[1], wasreformatted in order to feed it into our testbed. Furthermore, we removed all short-livedfileswithalife-
time of lessthan aminute, assuming that these files would be cached on a permanent basis. Animportant feature
of thistrace is the constantly changing pattern of access to the individual files. Files accessed frequently at the
beginning of the trace are hardly requested anymore at the end of the trace. Hence, we are dealing here with a
skewed access distribution that is undergoing continual shifts. In addition, the file sizes are substantiadly larger
than in the synthetic experiment. This enabled us to study here the impact of the file fragment size on the disk
cooling procedure.

The trace consists of approximately 440,000 requests for datain 14,800 files. The average request sizeis
about 107 KBytes, but awide variance in the request sizesis exhibited. The origina average arrival rate of the
trace was A = 2.45 requests per second; we accelerated the load by a “ speed-up factor” of 10 for a stress test,
thus the effective average arrival rate was A = 25 requests per second. Note, however, that the trace contained
heavy load surges with much higher arrival rates. All files were striped with a striping unit of one cylinder (385
blocks) and allocated on the disksin around-robin manner.

37

—— with Disk-Cooling
- — - without Disk-Cooling

time

(a) avg. response time

I| | l | -I
O 1 gl
| || || @ queue at source

O no migration candidate
m # of cooling steps

20 30 40 50
(b) Cooling process statistics

time

Figure 5: Responsetime for the trace-driven experiment

Asinthe synthetic experiments, the disk cooling procedure had no a-priori information about the access fre-
guenciesof theindividual extentsor fragments. The heat statisticswere collected and updated dynamically using
amoving window containing the last & = 20 requeststo a given extent (fragment).

In our first experiment we assumed that the fragment size for the reallocation procedure is 210 Kbytes (six
tracks). Figure 5 (@) shows the average response time varying over time obtained by using our disk cooling pro-
cedure versusavanillamethod that does not make use of disk cooling. As expected, our load balancing algorithm
exhibitsalearning phase at the beginning of the simulation, during which it collects heat statistics, which corre-
spondsto the peak in accesstime of Figure 5 (a). After thisthe average responsetime obtained with disk cooling
drops substantialy. Over the entire simulation period the average response time measured was 1.085 seconds
without disk cooling, versus 0.297 seconds with disk cooling.

Figure5 (b) illustratesthefrequency of thedatamigration stepsinvoked by our load bal ancing procedure. We
observethat the cooling stepsare executed throughout the entire simul ation period dueto the continual ly evolving
pattern of access, i.e., the constant shift in skew. Overall, 1798 cooling stepswere executed each requiring onthe
average 0.13 seconds. Between simulation periods 17 and 28, and then between periods 40 and 49, the cooling
guiescentssomewhat. Thisisdueto thefact that the trace covers a48 hours period and these periods correspond
to the two lightly loaded night intervals (as backup activity was not recorded in the trace).

In order to study the impact of file fragment size on the disk cooling procedure we designed afurther set of
experiments. The file fragment size was varied across experiments from FG=0, (no fragmentation — the extent
is moved in its entirety) to FG =35 KBytes (one track). For each experiment, i.e., simulation period, the frag-
ment size was kept fixed. Figure 6 shows the average response times with disk cooling for different fragment
sizes. We observe that in the extreme case where no fragmentation is used (FG=0) the disk cooling procedure
performs almost identically to the vanillaround-robin all ocation method (see Figure 5 (a) for comparison). This
phenomenon is due to two factors characteristic to large files. First, the extents can become so large that the cost
of the migration exceeds the benefit of the move. Secondly, the number of extentsin afile can be quite large,
hence it becomes difficult to find a target disk which satisfies the constraint that no other extents of the file are
aready stored there. At the other extreme setting of the fragment size, i.e., FG = 35 Kbytes (one track) we also
observed no improvement versus the vanilla agorithm which does not perform disk cooling, since the benefits
of each migration are too small. However, for fragment sizes of 140 Kbytes, 210 Kbytes or 385 Kbytes (one
cylinder) we observed a substantial improvement of the response time. All these fragment sizes offer a good
compromise between costs and benefit of the redistribution. Furthermore, it is worthwhile to observe that the

38

Figure 6: Response time for different fragment sizes

responsetimes are fairly insensitiveto the exact settings of the fragment size.

Thetrace-based experiments confirm theresul tsobtai ned i n the syntheti c experiments. Thecooling procedure
isrobust and fine-tuned with respect to changesin access patterns. |f the pattern of access changesat certaintime
intervals and remains relatively stable in between, as was the case in the 1 shift/ 3 shifts experiments, the load
bal ance can be restored with very few cooling steps if the skew islarge. On the other hand, for smaller values
of data skew, or for a constant shift in skew, as happened with the trace, the migration activities occur with high
frequency. In al cases, the migration is executed only if the benefits of cooling exceed the cost of the move and
thistrade-off presents opportunitiesfor fine-tuning the choice of the migration unit (i.e., the fragment size).

5 Further Issues

The disk cooling method that we have discussedin detail in this paper forms a major component in an integrated
but modular set of data placement and dynamic reorgani zation heuri sticsthat we have devel oped for parallel disk
systems. This package isimplemented in the FIVE experimental file system. We are in the process of investi-
gating additional dimensions of the cooling method and exploring various generalizations of our approach.

Most importantly, we are considering the impact of caching on our heat tracking method. For this purpose,
we distinguishthelogical heat and the physical heat of ablock, where the former includes all accesses to ablock
and the latter counts only those accesses that incurred disk I/0. Whileit may seem at afirst glance that disk load
bal ancing needs to consider only physical heat, such an approach would be very sensitive to sudden changesin
the cache effectivity. For example, sudden load imbal ances may result from a decision of the cache manager to
drop severa hot blocksthat happen to reside on the same disk. This could occur when the cache manager needs
to set aside a large amount of working memory (e.g., for a hash join), which effectively changes the memory
size asfar as disk block caching is concerned. On the other hand, simply balancing the logical heat of the data
does not necessarily achieve the god of disk load balancing, since different disks may have different quantities
of “cached heat” (i.e., accesses that are serviced by the cache).

Another important issuethat needsfurther investigationisthe synchronization and fault tolerance of thevari-
ousreorgani zati on stepsthat we may invokeon-linein our system (e.g., thecooling steps). Basically, thisrequires
critical sectionsfor accesses to the block addressing tables and al so logging the changesto these tables. We are
currently working out detailsof theseissues. Notethat none of the on-line reorganizationsrequires holding locks
on the actual data blocksfor transaction-length or longer duration.

Finally, we are aiming to generalize our approaches to data partitioning, data allocation, and dynamic load
bal ancingto arbitrary distributed storage systemssuch as shared-nothing parallel computersor workstationfarms.
While basic principles of our approach can be carried over, differences in the various cost metrics demand us to
reconsider the benefit/cost optimization. We have a so started studying a broader spectrum of application work-
loads. In particular, we want to address the performance requirements of multimedia applicationswith accesses
to continuous, delay-sensitive media like audio and video. Although there exists some promising work on this

39

subject (e.g., [2, 6, 9]), we believe that substantially more research is needed towards efficient and cost-effective
multimedia data management.

References

[1] Baker, M.G., Hartman, JH., Kupfer, M.D., Shirriff, K.W., and Ousterhout, JK., “Measurements of a Distributed File
System,” Proc. 13th ACM Symposium on Operating Systems Principles, 1991.

[2] Chiueh, T., and Katz, R., “Multi-Resolution Video Representation for Parallel Disk Arrays,” Proc. ACM Multimedia
Conf., 1993.

[3] Chen, PM. and Patterson, D.A.," Maximizing Performance in a Striped Disk-Array,” Proc. 17th Int. Symposium on
Computer Architecture, 1990.

[4] Chen, PM., Lee, EK., Gibson, G.A., Katz, R.H., and Patterson, D.A., “RAID: High-Performance, Reliable Sec-
ondary Storage,” Technical Report UCB/CSD-93-778, Department of Computer Science, University of Cdifornia
at Berkeley, 1993.

[5] Copeland, G., Alexander, W., Boughter, E., and Keller, T., “Data Placement in Bubba,” Proc. ACM SIGMOD Conf.,
1988.

[6] Gemmel, J., and Christodoulakis, S., “Principles of Delay-Sensitive Multimedia Data Storage and Retrieval,” ACM
Transactions on Information Systems, Vol. 10, No. 1, 1992.

[7] Gray, JN., Horst B., and Walker, M., “Parity Striping of Disc Arrays. Low-Cost Reliable Storage with Acceptable
Throughput,” Proc. 16th Int. Conf. on Very Large Data Bases, 1990.

[8] Gray, J., Sundaresan, P, Englert, S., Baclawski, K., and Weinberger, PJ., “Quickly Generating Billion-Record Syn-
thetic Databases,” Proc. ACM SIGMOD Int. Conf., 1994.

[9] Ghandeharizadeh, S., and Ramos, L., “Continuous Retrieva of MultimediaData Using Paralelism,” |EEE Transac-
tions on Knowledge and Data Engineering, Vol. 5, No. 4, 1993.

[10] Kim, M.Y.,“Synchronized Disk Interleaving,” IEEE Transactions on Computers, Vol. C-35, No. 11, 1986.
[11] Knuth, D.E.,* The Art of Computer Programming. Vol. 3: Sorting and Searching,” Addison-Wesley, 1973.
[12] Lee EK.,andKatz, R.H.,“AnAnalytic Performance Modd of Disk Arrays,” Proc. ACM SIGMETRICS Conf., 1993.

[13] Livny, M., Khoshdfian, S., and Boral, H., “Multi-Disk Management Algorithms,” Proc. ACM SIGMETRICS Conf.,
1987.

[14] Merchant, A. and Yu, PS." Performance Analysis of aDua Striping Strategy for Replicated Disk Arrays,” Proc. 2nd
Int. Conf. on Parallel and Distributed Information Systems, 1993.

[15] Salem, K., and Garcia-Moling, H.," Disk Striping,” Proc. 2nd Int. Conf. on Data Engineering, 1986.

[16] Scheuermann, P, Weikum, G., and Zabback, P, “Adaptive Load Balancing in Disk Arrays,” Proc. 4th Int. Conf. on
Foundations of Data Organization and Algorithms, Lecture Notesin Computer Science, No. 730, 1993.

[17] Scheuermann, P, Weikum, G., and Zabback, P, “Data Partitioning and Load Baancing in Paralel Disk Systems,”
Technical Report 209, Department of Computer Science, ETH Zurich, January 1994.

[18] Schwetman, H., “CSIM Reference Manua (Revision 16),” Technical Report ACA-ST-252-87, MCC, 1992.

[19] Weikum, G., Zabback, P, and Scheuermann, P, “Dynamic File Allocation in Disk Arrays,” Proc. ACM SIGMOD
Int. Conf., 1991.

[20] Weikum, G., and Zabback, P, “Tuning of Striping Unitsin Disk-Array-Based File Systems,” Proc. 2nd Int. Workshop
on Research Issues on Data Engineering: Transaction and Query Processing (RIDE-TQP), 1992.

[21] Wolf, J., “The Placement Optimization Program: A Practical Solution to the Disk File Assignment Problem,” Proc.
ACM SIGMETRICS Conf., 1989

[22] Zabback, P, “I/O Paralelism in Database Systems,” Ph.D. Thesis (in German), Department of Computer Science,
ETH Zurich, 1994.

40

| ssuesin Parallel Information Retrieval

Anthony Tomasic Hector Garcia-Molina
Stanford University, Stanford, CA 94305-2140
email:{t omasi c, hect or }@s. st anf ord. edu

Abstract

The proliferation of the world's “ information highways’ has renewed interest in efficient document in-
dexing techniques. In thisarticle, we provide an overview of theissuesin parallel informationretrieval.
Toillustrate, we discussan exampl e of physical index design issuesfor inverted indexes, a common form
of document index. Advantages and disadvantagesfor query processing are discussed. Finally, to pro-
vide an overview of designissuesfor distributed architectures, we discussthe parametersinvolved in the
design of a system and rank them in terms of their influence on query responsetime.

1 Introduction

As the data volume and query processing loads increase, companies that provide information retrieval services
areturning to paralel storage and searching. Theideaisto partition large document collections, and their index
structures across computers. Thisallowsfor larger storage capacities and permits searchesto bein parallel.

Inthisarticlewe sample research in the area of parallel information retrieval. We start by summarizing basic
information retrieval concepts, and then describe how they have been appliedin aparalel environment. We also
giveashort summary of our own research inthisarea, mainly as an example of the types of algorithmsthat need
to be devel oped, and the system issues that need to be studied.

2 Information Retrieval Basics

For an introduction to full-text document retrieval and information retrieval systems, see reference [16]. Anin-
formation retrieval model (IRM) defines the interaction between a user and an information retrieval system and
consists of three parts: adocument representation, a user need and a matching function.

Theboolean IRM is provided by most existing commercia information retrieval systems. Its document rep-
resentation is the set of words that appear in each document. Typically, each word is also typed to indicateif it
appearsin thetitle, abstract, or some other field of the document. The boolean IRM user need is represented by
aboolean query. A query consists of a collection of pairs of words and types structured with boolean operators.
For examplethe query titleinformation and titleretrieval or abstract inverted containsthree pairs and two oper-
ators. The matching function of aquery inthe boolean IRM isbool ean satisfiability of adocument representation
with respect to the query.

Thevector IRM ispopular in academic prototypesfor information retrieval systemsand has recently gained
commercia acceptance. Its document representation is the set of words that appear in each document and an
associated weight with each word. The weight indicatesthe “relevance” of the corresponding word to the docu-
ment. Thus, adocument isrepresented as avector. A vector IRM user need isrepresented by another vector (this
vector can be extracted from adocument or a set of words provided by a user). The matching function computes
the similarity between the user need and the documents. Thus, al the documents can be ranked with respect to

41

the similarity. Typically, the topmost similar documents are returned to the user as an answer. There is much
research on the assignment of weightsto words and on the effectiveness of various matching functionsfor infor-
mation retrieval. However, both the boolean IRM and the vector IRM and associated variation of these models
can be computed efficiently with inverted lists. (See Section 4 for a description of inverted lists.) Reference [28]

surveysinformation retrieval models.

Thefocus of traditional information retrieval research isto develop IRMs that provide the most effectivein-
teraction with the user. Our focus in this article, however, isin providing the most efficient interaction with the
user in terms of response time, throughput and other measures, regardless of which IRM is used.

In the design of full-text document retrieval systems, thereis a basic trade-off between the time to process
the document database and the time to process queries. Broadly speaking, the more time spent processing the
document database (i.e., building indexes) the lesstime is spent processing queries. In some scenarios (such as
government monitoring of communication), atremendous amount of information must be queried by only afew
gueries. Inthiscase, time spent indexing iswasted and linear searching of documentsis more efficient. Work in
thisarea concentrates on hardware processors for speeding up the scanning of text [11]. Moretypically, indexing
thedocumentsisworthwhilebecause the cost can beamortized acrossmany queries. Weconsider only theselatter
systems.

Emrath’sthesis [6] explores this trade-off between query and update time by providing a data structure that
can betunedintheamount of informationindexed. Essentialy, thedatabaseis partitionedinto equal sized“pages.”
A pageisafixed number of words located together in a document. Duplicate occurrences of words are dropped
within a page. If the pageislarge, many duplicates are dropped from the index, speeding up indexing time. If
the page is small, few duplicate words are dropped, slowing down indexing time. For certain applicationsthis
tuning of the data structure works well.

More recent work [18, 26, 27] uses physical index design to express the trade-off. The collection of docu-
ments is partitioned and each partition has an independent index at the physical index designlevel, but the entire
collection has a single logical index. This provides fast update time but slow query time since each physical
index must be searched. To provide fast query time, the physical indexes are merged according to afamily of
algorithms. More typically, indexing the documentsin asinglephysical index isworthwhilebecause the cost can
be amortized across many queries. We consider only these latter systems for the remainder of thisarticle.

Much research has goneinto designing datastructuresfor indexingtext. Faloutsos[7] isasurvey of thisissue.
One approach isthe use of signature schemes (al so known as superimposed coding) [13]. Here, each word is as-
signed arandom (hashed) &-bit code of an n-bit vector —for example the word “information” might correspond
to bit positions 10 and 20 of a 2 kilobyte vector. Each document is represented by an n-bit vector containing
the union of al the k-bit codes of all the wordsin the document. Queries are constructed by producing an n-bit
vector of the &-bit codes of thewordsin the query. Matching is performed by comparing a query against the doc-
ument vectors in the database. This scheme is used because the signatures of documents can be constructed in
linear time. Unfortunately, the matching process produces “false drops” where different words or combinations
of words are mapped into the same k&-bit codes. One approach is to ignore false drops and inform the user that
some additional documents may be returned. We do not consider this approach further. Otherwise, each docu-
ment in the result of the matching process must be checked for false drops. While the number of false drops can
be statistically controlled for the average case, the worst-case behavior of thisdatastructureimplieschecking ev-
ery document in the database for some queries, whichis prohibitively expensivefor large document collections.
Lin [14] describes a signature scheme where multiple independent signatures are used to control fal se dropsand
to improve parale performance.

Another data structure is PATRICIA trees and PAT arrays [9, 10]. Here, the database is represented as one
database string by placing documents end-to-end. A tree is constructed that indexes the semi-infinite strings of
the database string. A semi-infinite string is a substring of the database string starting at some point and pro-
ceeding until itisaunique substring. The PAT system providesindexing and querying over semi-infinitestrings.
The New Oxford English Dictionary has be index using this data structure. The query time, indexing time, and

42

storage efficiency are approximately the same as inverted lists. The techniques described here can be applied to
this data structure.

For commercial full-text retrieval systems, inverted files or inverted indexes [8, 13] aretypically used. Note
that the information represented in each posting (each element of an inverted list) varies depending on the type
of information retrieval system. For a boolean IRM full-text information retrieva system, the posting contains
the document identifier and the position (as a byte offset or word offset from the beginning of the document)
of the corresponding word. For aboolean IRM abstracts text information retrieval system, the posting contains
the document identifier without a positional offset (since duplicate occurrences of aword in a document are not
represented in these systems). For a vector IRM full-text or abstracts information retrieval systems the posting
contains the document identifier and a weight. All of the above systems can be typed. In this case, the type
system can be encoded by setting aside extrabitsin each posting to indicate which fields the word appearsin the
document. Other methods of representing the typeinformation are a so used. Asthe information retrieval model
becomes more complicated, more information istypically placed in each posting.

A related area of research isthe compression of inverted indexes[29, 30]. Theinverted index for afull-text
information retrieval system isvery large — typically on the same scale in size as the text. In fact, the original
documents (minus punctuation) can be reconstructed from the inverted index. Thus, one interesting physical
designissueistheimpact of the compression ratio of theinverted index on responsetime. We return to thisissue
in Section 6.

3 Parallel Query Processing

Various distributed and parallel hardware architectures can be applied to the problem of information retrieval. A
series of papers by Stanfill studiesthis problem for a Connection Machine. In reference [20], signature schemes
are used. A companion paper by Stone [22] argues that inverted lists on a single processor are more efficient.
In reference [21], inverted lists are used to support paralel query processing (in a fashion similar to that used
by the system index organization that will discussed in Section 4). Finaly, in reference [19], an improvement
of the previous paper based on the physical organization of inverted listsis described. The technique essentialy
improves the alignment of processorsto data.

Animplementation of vector IRM full-text informationretrieva isdescribedinreference [1] for the POOMA
machine. The POOMA machineisa 100-node, 2-d mesh communication network where each node has 16 MB of
memory and a processor. One out of five nodes has an ethernet connection and one half of the nodes have alocal
disk. Theimplementation partitionsthe documents among the processors and buildsalocal invertedindex of the
partition. (Thisapproachis similar to the host index organization of Section 4; however there are two processors
per disk, as opposed to multiple disks per processor.) This paper cites a 2.098 second estimated query response
time for a 191-term query on a database of 136,020 documents with a 20-node machine.

Some preliminary experimental resultsare reported in reference [3] for a 16 processor farm (Meiko Comput-
ing Surface). The vector IRM is used here and a signature scheme is used as the data structure. Unfortunately,
the database has only 6,004 documents and the query workload only 35 queries.

Theperformance of some aspectsof query and update processing of animplementation of aboolean IRM full-
text information retrieval isdiscussedin reference [5] for a symmetric shared-memory multiprocessor (Sequent).

Reference [15] presentsadiscussion of the architectureissuesinimplementing the IBM STAIRSinformation
retrieval system on anetwork of personal computers. This paper argues for the physica distribution of inverted
lists across multiple machines when the size of asingle database islarger than the storage capacity of anode on
the network. Thisideaisessentially aspecia case of disk striping, where an abject (in this case an inverted list)
is partitioned across disks.

In the analysis of query processing, a query can be divided into three parts. parsing the query, matching the
guery against the database, and retrieving the documentsin the answer. Parsing consumes few resourcesand is

43

LAN
DO| ab D2| ab
CPUO CPU 1
Dl]a D3| ab
cd
BUSO BUS 1
do d1 d?2 d3

Figure 1. A example set of four documents and an example hardware configuration.

typically the same for al information retrieval systems. Retrieving of documents offers some interesting issues
(such as placement of the documents) but again few resources are needed. Burkowski [2] examines the perfor-
mance problem of theinteraction between query processing and document retrieval and studies the issue of the
physical organization of documents and indices. His paper models queries and documents analytically and sim-
ulates a collection of servers on alocal-area network.

Schatz [17] describes the implementation of a distributed information retrieval system. Here, performance
improvements come from changing the behavior of the interface to reduce network traffic between the client in-
terface and the backend information retrieval system. These ideas are complementary our work. Threeimprove-
ments are offered. First, summaries of documents (or the first page) are retrieved instead of entire documents.
This scheme reduces the amount of network traffic to answer an initia query and shortens the time to present
thefirst result of aquery, but lengthensthe timeto present the entire answer. Second, “related” information such
as document structure definitions are cached to speed up user navigation through a set of documents. Third, the
contents of documents (as opposed to summaries) are prefetched whilethe user interfaceisidle.

Our own work [23, 24, 25] compares various options for partitioning an inverted list index across a shared-
nothing multi-processor. (Reference [12] considers shared-everything multi-processors.) Simulated query loads
are used in [24, 25], while[23] uses a trace-driven simulation.

4 Some Physical Design Choices

Toillustrate more concretely the types of choicesthat arefaced in partitioning index structures across machines,
in thissection we briefly describe the choicesfor an inverted-listsindex, using theterminology of [25]. Asstated
earlier, thisisthe most popular type of index in commercia systems.

The left hand side of Figure 1 shows four sample documents, DO, D1, D2, D3, that could be stored in an
information retrieval system. Each document contains a set of words (the text), and each of these words (maybe
with afew exceptions) are used to index the document. In Figure 1, thewordsin our documents are shown within
the document box, e.g., document DO contains words a and 5.

Asdiscussedin Section 1, full-text document retrieval systemstraditionally buildinvertedlistson disk tofind
documents quickly [8, 13]. For example, the inverted list for word b would be b: (DO,1), (D2,1), (D3,1). Each
pair in thelist is a posting that indicates an occurrence of the word (document id, position). To find documents
containing word b, the system needs to retrieve only this list. To find documents containing both « and b, the
system could retrievethelistsfor « and b and intersect them. The positioninformationinthelistisused to answer
gueriesinvolving distances, e.g., find documents where a and b occur within so many positions of each other.

Index | Disk Inverted Listsinword: (Document, Offset) form
Host do a (DO,0),(D1,0)

dl b:(DO,1)

d2 a (D2,0),(D3,0);c: (D3, 2

d3 h:(D21), (D3, 1); d: (D3, 3)

System | dO a (DO, 0), (D1, 0), (D2, 0), (D3, 0)

dl h:(DO,1), (D2 1), (D3, 1)

d2 «c (D3,2

d3 d: (D3, 3)

Table 2: Thevariousinverted index organizationsfor Figure 1.

Supposethat we wishto storetheinverted listson amultiprocessor likethe oneshown ontherightin Figure 1.
This system has two processors (CPUs), each with a disk controller and 1/O bus. (Each CPU hasits own local
memory.) Each bus has two diskson it. The CPUs are connected by alocal area network. Table 2 shows four
optionsfor storing thelists. The host and 1/0 bus organizations are identical in this example because each CPU
has only one /O bus.

In the systemindex organization, the full lists are spread evenly across all the disksin the system. For exam-
ple, theinverted list of word & discussed above happened to be placed on disk d1. This organization essentialy
divides the keywords among the processors.

Inthe host index organi zation, documentsare partitioned into two groups, onefor each CPU. Herewe assume
that documents DO, D1 are assigned to CPU 0, and D2, D3 to CPU 1. Within each partition we again build
inverted lists. The lists are then uniformly dispersed among the disks attached to the CPUs. For example, for
CPU 1, thelistfor a ison d2, thelist for 4 ison d3, and so on.

Clearly, many choicesare avail ablefor physical index organization beyond those described here. We cannot
consider al possible organizations. Our criteria for choosing these two organizations focuses first on the opti-
mization of queries as opposed to updates. Thus, we assume that the inverted lists on each machine are stored
contiguously on disk. Second, we are interested in the interaction between the physical index organization and
the alocation of resources (CPUSs, disks, 1/0 buses) of a shared-nothing distributed system. In addition, we have
studied issues such as striping and caching of the physical index organization with respect to a single host.

5 Query Processing

Given aphysical index partition like the onesillustrated in the previous section, how does one process queries?
To illustrate, let us focus on a particular type of query, a “boolean and” query. Such queries are of the form
a AbAc... andfind the documents containing all thelisted words. The words appearing in a query are termed
keywords. Given aquery a A b. .. the document retrieval system generates the answer set for the document
identifiers of all the documents that match the query. A match isadocument that contains the words appearing
in the query.

Noticethat boolean-and queriesare themost primitiveones. For instance, amore complex search such as (aA
b) OR (cAd) can bemodeled astwo simple and-querieswhoseanswer setsaremerged. A distancequery “Find a
and b occurring withinx positions” can be model ed by the query a A b followed by comparing the positionsof the
occurrences. Thus, the query processing strategies for the more complex queries can be based on the strategies
wewill illustrate here for the simple bool ean-and queries.

For the host index organi zation, boolean-and queries can processed asfollows. Thequery a A b... isinitidly
processed at ahome site. That site issues subqueriesto al hosts; each subguery contains the same keywords as

45

the original query. A subquery is processed by a host by reading al the lists involved, intersecting them, and
producing alist of matching documents. The answer set of a subquery, termed the partial answer set, is sent to
the home host, which concatenates al the partial answer sets to produce the answer set.

In the system index organization, the subquery sent to a given host contains only the keywordsthat are han-
died by that host. If a host receives a query with a single keyword, it fetches the corresponding inverted list and
returns it to the home host. If the subquery contains multiple keywords, the host intersects the corresponding
lists, and sendsthe result as the partial answer set. The home host intersects (instead of concatenates) the partial
answer setsto obtain the fina answer.

There are many interesting trade-offs among the storage organizations and query processing strategies. For
instance, with the system index organization, there are fewer 1/0s. That is, the a list is stored in a single place
on disk. To read it, the CPU can initiate a single 1/O, the disk head moves to the location, and the list is read.
(Thismay involvethe transfer of multiple blocks). In the host index organization, on the other hand, thea list
is actually stored on, say, 4 processors. To read these list fragments, 4 1/0Os must be initiated, four heads must
move, and four transfers occur. However, each of the transfersisroughly afourth of the size, and they can take
placein parallel. So, even though we are consuming more resources (more CPU cycles to start more 1/Os, and
more disk seeks), the list may be read more quickly.

Thesystem index organi zation may save disk resources, but it consumes more resourcesat the network level.
Noticethat in our example, theentirec lististransferred from CPU 1to CPU 0, and theseinverted listsare usually
much longer than thedocument listsexchanged under the other schemes. However, thelonginvertedlist transfers
do not occur inall cases. For example, thequery “Find documentswith a and " (system index organi zation) does
not involveany such transfers since al listsinvolved are within one computer. Also, it is possibleto reduce the
size of thetransmitted inverted listsby moving the shortest list. For example, in our “Find documentswith ¢ and
¢”, we can move the shorter list of ¢ and ¢ to the other computer.

It is aso important to notice that the query algorithms we have discussed can be optimized in a variety of
ways. To illustrate, let us describe one possible optimization for the system index organization. We call this
optimization Prefetch | ; it isaheuristic and in some cases it may not actually improve performance. (Other query
optimization techniques have been studied in the literature.)

In the Prefetch | agorithm, the home host determines the query keyword k that has the shortest inverted list.
We assume that hosts have information on keyword frequencies; if not, Prefetch | is not applicable. In phase 1,
the home host sends a single subquery containing k to the host that handles k. When the home host receives the
partial answer set, it starts phase 2, which is the same as in the un-optimized algorithm, except that the partial
answer set is attached to all subqueries. Before ahost returnsits partial answer set, it intersectsit with the partia
answer set of the phase 1 subquery, which reduces the size of the partial answer setsthat are returned in phase 2.

6 Experimental Parameters

In this section we summarize two studieswe have performed to eval uate theindex partition and query processing
trade-offs. We believe they are representative of the types of analysis that needs to be performed to evaluate
physical design alternatives for information retrieval. In particular, we focus on the experimental parameters
used and their impact on response time. Our ranking of these parameters gives an overview on the important
areas to consider when designing an information retrieval system. In addition to the simulation work described
here, agenera interest in the performance of text document retrieval systems has led to a standardization effort
for benchmarking of systems[4].

Thefirst study [25] focused on full-text information retrieval. In full-text retrieval, the inverted index con-
tains essentially the same information as the documents, since the position of each word in each document is
recorded. Our inverted list model was based on experimental data, and our query model was based on a prob-
abilistic equations. The second study [23] focused on abstracts text information retrieval where each electronic

46

Parameter BaseVaue Influence

Database scale 1.0 -359.6
Fraction of query words which are striped 0.0 2784
Disk bandwidth (Mbit/sec) 104 112.7
Compression ratio 0.5 -67.4
Multiprogramming level (per host) 4 -48.1
CPU speed (MIPS) 20.0 477
Posting size (bits) 40.0 -44.5
Hosts 1 -27.9
Disks per 1/O bus 4 254
1/0 bus bandwidth (Mbit/sec) 240 11.2
Buffer overhead (ms) 4.0 -9.33
Disk buffer size (Kbyte) 32 9.12
LAN bandwidth (Mbit/s) (4 hosts) 100.0 2.33
1/0 bus overhead (ms) 0.0 -1.96
Disk seek time (ms) 6.0 -1.93
Bytes per block 512 -0.81
Instructions per byte for amerge 40 0.0
Answer entry size (bytes) 4.0 0.0
Instructions per byte of decompression 40 0.0
Instruction count per query 500,000 0.0
Cache size (postings) 0 0.0
Instructions per byte of union operation 5 0.0
Subquery instruction count 100,000 0.0
Instructions per disk fetch 10,000 0.0
LAN overhead (ms) 0.1 0.0
LAN bandwidth (Mb/s) 100.0 0.0
Subquery length (bytes) 1024 0.0

Table 3: A ranking of theinfluence of simulation parameters on responsetime for the systemindex organization
with Prefetch | query optimization.

abstract is an abstract of a paper document. In thisform of retrieval, the inverted index records only the occur-
rence of aword in an abstract, and not every occurrence. This dramatically reduces the size of the index with
respect to full-text retrieval.

In general, our results indicate that the host index organization is a good choice, especially if long inverted
lists are striped across disks. Long inverted lists are present in full-text information retrieval. Since thelistsare
long, the bottleneck is I/O performance. The host index organization uses system resources effectively and can
lead to high query throughputsin many cases. When it does not perform the best, it is close to the best strategy.

For an application where only abstracts are indexed, the system organi zation (with the Prefetch | optimiza-
tion) actually outperformsthe host organization. Thebottleneck for these systemsisthe network. Thisisbecause
theinverted lists are much shorter, and can be easily moved across machines.

To study the impact of the experimental parameters on response time, we focus on the second study. Our
inverted list model and query model were based on inverted lists of actual abstracts and traces of actua user
gueriesfrom the Stanford University FOLIO information retrieva system. In both studies, query processing and
hardware measurement where accomplished by using a sophisticated simulation containing over 28 parameters.
Table3liststhe parameters and the default valuesof each parameter. For each parameter inthetable, asimulation
experiment wasrun which linearly varied theval ues of the parameter. The simulationreflectsthethearchitecture
shown in Figure 1, as determined by the number of hosts, 1/0 buses and disks shown in the table. Full details of
our experiments and our results are available in the references.

One way to succinctly show the parameters involved in the studies and their influence on performance isto

47

“rank” them by their (normalized) influence. Hereweonly ook at query responsetimeasthe performance metric.
In particular, if & and b are the smallest and largest values measured for a parameter and z is the response time
for a and y theresponsetime for b, we compute (y — z)/(a/b) as an estimate of the influence the parameter has
on response time. Of course, thismeasure is only arough indication of influence. The measure depends on the
ranges of values over which a parameter is measured. It also assumes that response time is monotonic over the
range of values chosen. We have inspected the datato insure that thislast condition holds.

Table 3 showsthe ranking of 28 parameters for the system index organization, as described in Section 4, with
the Prefetch | query optimization, as described in Section 5. In previouswork, the system index organi zation was
shown to bethe best overall choicefor anindex organization for abstractstext informationretrieval. The positive
or negative nature of the ranking is due to the positive or negative influence the parameter has on responsetime.

Database scal e has the strongest influence — this parameter linearly scales the length of an inverted list and
scales the lengths of all other objectsin the system — such as the size of the answersto queries. With striping, a
fraction of theinverted lists(in particular thelongest ones) are striped across the diskswithin acomputer system.
Thisisacomplementary techniqueto thelist partitioning done by the basi c index organi zation we have discussed,
and can be very beneficial. Disk bandwidth is important due to the disk intensive nature of the computation.
The compression ratio linearly scales the length of the inverted lists, but does scale any other parameter. The
multiprogramming level isthe number of simultaneousjobswhich are run on each host. Therelative CPU speed
scalesall computationswhich compute the number of instructionsneeded to accomplish atask. The postingsize
is the number of bits needed to represent a posting. Hosts represents the number of processors in the system.
When this parameter isincreased, a copy of the processor ismade. That is, if the parameter doubles, the number
of 1/0 buses and disksin the entire system also doubles. In addition, the workload doubles, since the number of
concurrent queriesis alocated on a per host basis. Examining the parameters at the end of the table, we see that
within the accuracy of the measurement, several parameters have no influence on response time. One surprising
fact shows cache size as having no influence. In fact, caches have no influence on response time, but have a
tremendousinfluence on throughput. Essentially, each query almost alwayshas a cache miss. Thus, the response
time of the query is dictated by the read from disk of the cache miss and thus the cache has little influence on
responsetime. However, most queries have cache hits also, which dramatically improves throughput.

7 Conclusion

Inthisarticle, we have sampled issuesin parale information retrieval. Asan introductionto theissuesinvolved,
we have discussed the literature in the area to introduce the various areas of research. We then focused on a
specific exampleto illustratethe issued involved in distributed shared-nothing information retrieval, and discuss
physical index organization and query optimization techniques. Then, to givethe reader asense of theimportant
variablesin the design of asystem, weranked thevariousparametersin an experimental simulation study interms
of their influence on the response time of query processing.

References

[1] ljsbrand Jan Aalbersberg and Frans Sijstermans. High-quality and high-performance full-text document retrieva: the
paralel infoguidesystem. In Proceedings of the First International Conference on Parallel and Distributed I nforma-
tion Systems, pages 151158, Miami Beach, Florida, 1991.

[2] Forbes J. Burkowski. Retrieval performance of a distributed text database utilizing a parallel processor document
server. In Proceedings of the Second International Symposium on Databases in Parallel and Distributed Systems,
pages 71-79, Dublin, Ireland, 1990.

[3] Janey K. Cringean, Roger England, Gordon A. Manson, and Peter Willett. Parallel text searching in serial filesusing
aprocessor farm. In Proceedings of Special Interest Group on Information Retrieval (S GIR), pages 429453, 1990.

[4] Samuel DeFazio. Full-text document retrieval benchmark. In Jim Gray, editor, The Benchmark Handbook for
Database and Transaction Processing Systems, chapter 8. Morgan Kaufmann, second edition, 1993.

48

(5]
(6]

[7]
(8]

[9]
[10]

[11]

[12]

[13]
[14]

[15]

[16]
[17]

[18]
[19]
[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Samuel DeFazio and Joe Hull. Toward servicing textual database transactions on symmetric shared memory multi-
processors. Proceedings of the Int’| Workshop on High Performance Transaction Systems, Asilomar, 1991.

Perry Alan Emrath. Page Indexing for Textual Information Retrieval Systems. PhD thesis, University of Illinois at
Urbana-Champaign, October 1983.

Christos Faloutsos. Access methods for text. ACM Computing Surveys, 17:50—-74, 1985.

J. Fedorowicz. Database performance evaluation in an indexed file environment. ACM Transactions on Database
Systems, 12(1):85-110, 1987.

William B. Frakes and Ricardo Baeza- Yates. Information Retrieval: Data Structures and Algorithms. Prentice-Hall,
1992.

Gaston H. Gonnet, Ricardo A. Baeza-Yates, and Tim Snider. Lexicographical indicesfor text: Inverted filesvs. PAT
trees. Technical Report OED-91-01, University of Waterloo Centre for the New Oxford English Dictionary and Text
Research, Canada, 1991.

Lee A. Hollaar. Implementationsand eval uation of aparallel text searcher for very largetext databases. In Proceedings
of the Twenty-Fifth Hawaii International Conference on System Sciences, pages 300-307. IEEE Computer soci ety
Press, 1992.

Byeong-Soo Jeong and Edward Omiecinski. | nverted fil e partitioning schemes for a shared-everything multi processor.
Technical Report GIT-CC-92/39, Georgia | nstitute of Technology, College of Computing, 1992.

Donad E. Knuth. The Art of Computer Programming. Addison-Wesley, Reading, Massachusetts, 1973.

Zheng Lin. Cat: An execution model for concurrent full text search. In Proceedings of the First International Con-
ference on Parallel and Distributed Information Systems, pages 151-158, Miami Beach, Florida, 1991.

Patrick Martin, lan A. Macleod, and Brent Nordin. A design of adistributed full text retrieval system. In Proceedings
of Special Interest Group on Information Retrieval (S GIR), pages 131-137, Pisa, Italy, September 1986.

Gerard Salton. Automatic Text Processing. Addison-Wesley, New York, 1989.

Bruce Raymond Schatz. Interactiveretrieval ininformation spaces distributed across awide-area network. Technical
Report 90-35, University of Arizona, December 1990.

Kurt Shoens, Anthony Tomasic, and Hector Garcia-Molina. Synthetic workload performance anaysis of incremental
updates. In Proceedings of Special Interest Group on Information Retrieval (SIGIR), Dublin, Ireland, 1994.

Craig Stanfill. Partitioned posting files: A paralle inverted file structure for information retrieval. In Proceedings of
Foecial Interest Group on Information Retrieval (S GIR), 1990.

Craig Stanfill and Brewster Kahle. Paralldl free-text search on the connection machine system. Communications of
the ACM, 29:1229-1239, 1986.

Craig Stanfill, Robert Thau, and David Waltz. A paralld indexed algorithm for information retrieval. In Proceedings
of the Twelfth Annual International ACM/SIGIR Conference on Research and Development in Information Retrieval ,
pages 88-97, Cambridge, Massachusetts, 1989.

Harold S. Stone. Paralel querying of large databases: A case study. |EEE Computer, pages 11-21, October 1987.
Anthony Tomasic and Hector Garcia-Molina. Caching and database scaling in distributed shared-nothing information
retrieval systems. In Proceedings of the Special Interest Group on Management of Data (S\ GMOD), Washington, D.C.,
May 1993.

Ari{lony Tomasic and Hector Garcia-Molina. Performance of inverted indicesin shared-nothing distributed text doc-
ument information retrieval systems. In Proceedings of the Second International Conference On Paralld and Dis-
tributed Information Systems, San Diego, 1993.

Anthony Tomasic and Hector GarciaMolina. Query processing and inverted indices in shared-nothing document
information retrieval systems. The VLDB Journal, 2(3):243-271, July 1993.

Anthony Tomasic, Hector GarciaMolina, and Kurt Shoens. Incremental updates of inverted lists for text
document retrieval. Technical Note STAN-CS-TN-93-1, Stanford University, 1993. Avadlable via FTP
db.stanford.edu:/pub/tomasi c/stan.cs.tn.93.1.ps.

Anthony Tomasic, Hector GarciasMolina, and Kurt Shoens. Incremental updates of inverted lists for text document
retrieval. In Proceedings of 1994 ACM S GMOD International Conference on Management of Data, Minneapolis,
MN, 1994,

Howard R. Turtle and W. Bruce Croft. Uncertainty in information retrieval systems. In Amihai Motro and Philippe
Smets, editors, Proceedings of the Workshop on Uncertainty Management in Information Systems, pages 111-137,
Mallorca, Spain, September 1992.

Peter Weiss. Sze Reduction of Inverted Files Using Data Compression and Data Sructure Reorganization. PhD
thesis, George Washington University, 1990.

Justin Zobel, Alistair Moffat, and Ron Sacks-Davis. An efficient indexing technique for full-text database systems.
In Proceedings of 18th International Conference on \ery Large Databases, Vancouver, 1992.

49

50

|EEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
CALL FOR PAPERS

Resear ch Surveys and Correspondences on Recent Developments

We are interested to publish in the IEEE Transactions on Knowledge and Data
Engineering research surveys and correspondences on recent developments. These
two types of articles are found to have greater influence in the work of the majority
of our readers.

Research surveys are articles that present new taxonomies, research issues,
and current directions on a specific topic in the knowledge and data engineering
areas. Each article should have an extensive bibliography that is useful for experts
working in the area and should not be tutorial in nature. Correspondences on
recent developments are articles that describe recent results, prototypes, and new
developments.

Submissions will be reviewed using the same standard as other regular sub-
missions. Since these articles have greater appeal to our readers, we will publish
these articles in the next available issue once they are accepted.

Addressto send articles: Benjamin W. Wah, Editor-in-Chief
Coordinated Science Laboratory
University of Illinois, Urbana-Champaign
1308 West Main Street
Urbana, IL 61801, USA
Phone: (217) 333-3516 (office), 244-7175 (sec./fax)
E-mail: b-wah@uiuc.edu
Submission Deadline: None
Reviewing Delay: One month for correspondences, three months for surveys
Publication Delay: None; articles are published as soon as they are accepted
Submission Guidelines: See the inside back cover of any issue of TKDE or by
anonymous ftp from manip.crhc.uiuc.edu (128.174.197.211)
in file /pub/tkde/submission.guide.ascii
Length Requirements: 40 double-spaced pages for surveys, 6 double-spaced pages
for correspondences
Areas of Interest: See the editorial in the February’ 94 issue of TKDE or by
anonymous ftp from manip.crhc.uiuc.edu in file
/pub/tkde/areas.of .interest

|EEE Computer Society
1730 Massachusetts Ave, NW
Washington, D.C. 20036-1903

Non-profit Org.
U.S. Postage
PAID
Silver Spring, MD
Permit 1398

