
Bulletin of the Technical Committee on

Data
Engineering
March, 1994 Vol. 17 No. 1 IEEE Computer Society

Letters
Letter from the Editor-in-Chief .David Lomet 1

Special Issue on TP Monitors and Distributed Transaction Management

Letter from the Special Issue Editor .Ron Obermarck 2
A Tale of a Transaction Monitor .Susan Malaika 3
Pioneering Distributed Transaction Management .Eric Newcomer 10
High Performance TP Monitors - Do We Still Need to Develop Them?. .Dieter Gawlick 16
Recent Work on Distributed Commit Protocols, and Recoverable Messaging and Queuing..

. .C. Mohan, and Dick Dievendorff 22
Real “Real Time Transactions” .Dr. Gary Bundell and Gene E. Trivett28
The TUXEDOTM System: An Open On-line Transaction Processing Environment .. .

. .Juan M. Andrade, Mark T. Carges and M. Randall MacBlane33
Services for a Workflow Management System.Hector Garcia-Molina and Kenneth Salem39
Transaction Processing at Microsoft: Present and Future .

.Patrick O’Neil, Mohsen Al-Ghosein, David Vaskevitch, Rick Vicik, and Laura Yedwab44

Conference and Journal Notices
1995 RIDE Workshop .. 50
1995 International Conference on Data Engineering.back cover

Editorial Board

Editor-in-Chief
David B. Lomet
DEC Cambridge Research Lab
One Kendall Square, Bldg. 700
Cambridge, MA 02139
lomet@crl.dec.com

Associate Editors
Shahram Ghandeharizadeh
Computer Science Department
University of Southern California
Los Angeles, CA 90089

Goetz Graefe
Portland State University
Computer Science Department
P.O. Box 751
Portland, OR 97207

Meichun Hsu
Digital Equipment Corporation
529 Bryant Street
Palo Alto, CA 94301

J. Eliot Moss
Department of Computer Science
University of Massachusetts
Amherst, MA 01003

Jennifer Widom
Department of Computer Science
Stanford University
Palo Alto, CA 94305

The Bulletin of the Technical Committee on Data Engi-
neering is published quarterly and is distributed to all TC
members. Its scope includes the design, implementation,
modelling, theory and application of database systems and
their technology.

Letters, conference information, and news should be
sent to the Editor-in-Chief. Papers for each issue are so-
licited by and should be sent to the Associate Editor re-
sponsible for the issue.

Opinions expressed in contributions are those of the au-
thors and do not necessarily reflect the positions of the TC
on Data Engineering, the IEEE Computer Society, or the
authors’ organizations.

Membership in the TC on Data Engineering is open to
all current members of the IEEE Computer Society who
are interested in database systems.

TC Executive Committee

Chair
Rakesh Agrawal
IBM Almaden Research Center
650 Harry Road
San Jose, CA 95120
ragrawal@almaden.ibm.com

Vice-Chair
Nick J. Cercone
Assoc. VP Research, Dean of Graduate Studies
University of Regina
Regina, Saskatchewan S4S 0A2
Canada

Secretry/Treasurer
Amit P. Sheth
Bellcore
RRC-1J210
444 Hoes Lane
Piscataway, NJ 08854

Conferences Co-ordinator
Benjamin W. Wah
University of Illinois
Coordinated Science Laboratory
1308 West Main Street
Urbana, IL 61801

Geographic Co-ordinators
Shojiro Nishio (Asia)
Dept. of Information Systems Engineering
Osaka University
2-1 Yamadaoka, Suita
Osaka 565, Japan

Ron Sacks-Davis (Australia)
CITRI
723 Swanston Street
Carlton, Victoria, Australia 3053

Erich J. Neuhold (Europe)
Director, GMD-IPSI
Dolivostrasse 15
P.O. Box 10 43 26
6100 Darmstadt, Germany

Distribution
IEEE Computer Society
1730 Massachusetts Avenue
Washington, D.C. 20036-1903
(202) 371-1012

Letter from the Editor-in-Chief

This marks the beginning of my third year as editor of the Bulletin. During this time, the Bulletin published issues
that continue its role as a collection point for describing the state-of-the-art in some technical area of interest to
the database community. I have been gratified by the positive response that the resumed Bulletin has received.

I am happy to report that Eliot Moss will be joining the Bulletin as an Associate Editor. Eliot has a well
deserved reputation for his work in object-oriented databases, and is this year’s program chair for OOPSLA. Eliot
launched his career with the introduction of nested transactions and continues his work in transaction models and
mechanisms. He is currently a professor at the University of Massachusetts, Amherst.

Establishing the publication procedures has proven to be very time-consuming. The TC membership list has
been re-constituted, with most members now electronically enrolled and with both postal and email addresses.
The email addresses are very important as we strive to produce the Bulletin in as inexpensive a way as possible.
Email permits us to notify TC members promptly and without postage cost. In addition, the publication of the
Bulletin electronically has been firmly established. This is essential as this is the least expensive way for us to
distribute the Bulletin, and may eventually become the dominant way.

The postscript issues of the Bulletin produced several problems. The files are large and not all mailers can
handle them. Postscript is not a consistent standard and particularly postscript figures can cause problems. I
have tried to respond promptly to all reported problems. If you should have a problem, please report it to me at
lomet@crl.dec.com . Not all problems are solvable (e.g. mailers with message size restrictions) but some
may be and I would like to understand how successful this enterprise is.

We will continue to distribute hardcopy of the Bulletin to TC members so long as we have budget to cover the
cost. We expect that at least three issues this year can be distributed. We will have to watch whether the fourth
is also possible. Next year, hardcopy distribution may be more limited. We are still awaiting word on whether
we can establish a paid subscription for hardcopy. This still seems to be the only long term solution for covering
printing and mailing costs. I hope to have more news on this in the next issue.

Finally, about this issue. I am delighted that Mei Hsu convinced Ron Obermarck to edit the issue. Ron is
uniquely qualified to assemble information about the commercial state of transaction monitors and distributed
transaction managment, having been a leading industrial pioneer in this area. Like the December issue, the cur-
rent issue furthers my goal of disseminating to our community information about current commercial products
exploiting a particular technology. So I would like to thank Ron (and Mei) for a fine job on this. I am sure that
there is much we can all learn from the contributions presented here.

David Lomet
Editor-in-Chief

1

Letter from the Special Issue Editor

The traditional TP Monitor serves important roles in industry where economy of scale dictate centralized op-
eration. It has also evolved to support open distributed transaction processing (DTP) environments. There are
vigorous new entries in the field. DTP is supported by TP monitors, and by client-server environments. Open
systems, additional requirements imposed by workflow, real-time processing, and the explosion of casual con-
nectedness, all show that the first quarter-century is just a beginning.

Susan Malaika takes us from 1969 to the present, and beyond with IBM’s CICS in “A Tale of a Transaction
Monitor”. The product evolution is traced from its beginnings on the IBM/360 to its current use as client or server
on a wide range of platforms, both IBM’s and others.

Eric Newcomer presents Digital Equipment Corporation’s ACMS and STDL, one of the pioneers in the con-
trol of distributed transaction management. Opening this work has resulted in the adoption of a standard for
transactional RPC. STDL is accepted as a portable, high-level language to define the execution of transactions
under the control of a TP monitor.

Dieter Gawlick discusses methods developed to handle exceptionally high transaction volumes and the avail-
ability requirements they imposed on the IMS/VS TP Monitor. The IMS Fast Path Feature and Extended Restart
Facility (XRF) met those requirements. Emerging workflow management systems must exhibit comparable avail-
ability and performance.

C. Mohan and Dick Dievendorff describe recent work in distributed commit protocols and recoverable mes-
saging and queuing. The commit protocols have been implemented in IBM’s DB2 and the System Network Ar-
chitecture. While DTP focuses on connected clients and servers, queuing and messaging support applications
where the server and client may be disconnected.

Gary Bundell and Gene E. Trivett remind us that what we call “legacy systems” are the “work-horse systems”
of today. They then move to transaction processing in real-time systems, and discuss aspects which require sup-
port at the operating system level.

Juan M. Andrade, Mark T. Carges and M. Randall MacBlane discuss the requirements driving open OLTP
in today’s market and an overview of the TUXEDO products designed to meet those requirements. With an em-
phasis on open DTP, TUXEDO’s Enterprise Transaction Processing System supports open standards.

Hector Garcia-Molina and Kenneth Salem show a firm relationship between transaction processing and the
low-level functions needed in a workflow management system. Without requiring extension of the transaction
model, they postulate reliable low-level transactional services needed to support workflow management.

Patrick O’Neil, Mohsen Al-Ghosein, David Vaskevitch, Rick Vicik, and Laura Yedwab, present Microsoft’s
vision of the distributed database and DTP environment. Supporting transactional database access from the home
and auto is an exciting prospect that poses an interesting array of problems.

I wish to thank the contributing authors for their support and patience. Special thanks to my colleague Mei
Hsu. Without her long hours of effort in addition to her knowledge, this special issue would not have been.

Ron Obermarck
Digital Equipment Corporation

Palo Alto, CA
email: ronober@pa.dec.com

2

A Tale of a Transaction Monitor

Susan Malaika
Transaction Systems,

Mail Point 197, IBM Hursley Park,
Hampshire SO21 2JN, United Kingdom

malaika@vnet.ibm.com

1 Introduction

In order to tell the story of CICS, it is simpler to begin by explaining what CICS is and thus the next few sections
describe the CICS products of 1994. For more general information on IBM’s transaction monitors, see [IBM4].
For more general information on CICS see [Gera93, Yela85]. CICS runs on a number of operating systems which
are listed at the end of this article. In addition, there are a number of CICS-like products that have been developed
independently of IBM, which are an indication of CICS’s success. An essential ingredient of a CICS-like product
is usually the run-time environment to execute COBOL programs that include CICS commands. This article
concentrates on some of the CICS products from IBM which are all developed at the IBM Hursley laboratory in
the county of Hampshire in the south of the United Kingdom. (In IBM, the word “laboratory” denotes the place
where software and hardware is designed).

2 The functions of CICS

CICS is software that provides a suitable environment to run and manage programs that are executed repetitively
by many users with various device types, e.g. mobile computers, workstations and terminals. The programs
access and update shared data and both the programs and the data may be distributed. CICS supports a number
of functions which programmers use via the CICS commands, also known as the CICS application programming
interface (API), and often the same CICS command can access local or remote resources without changing the
application program.

The CICS API is made up of about a hundred commands with hundreds of keywords and it is summarized in
[IBM5]. The CICS API and the way CICS systems communicate with each other is monitored closely at Hursley
by the CICS Architecture Board, to ensure compatibility when extensions are made. Here is an example of the
CICS API:

� EXEC CICS LINK PROGRAM(Hursley) COMMAREA(sun-shine)

This command causes control to be passed to a program called “Hursley” passing any parameters in the data area
“sun-shine”. Information can be returned in “sun-shine” to the calling program. The program Hursley can be on
the same or different CICS system, e.g. the client system could be CICS OS/2 and the server system could be
CICS/6000.

These are the CICS API functional areas, as listed in [IBM5]: abend handling (processing abnormal termina-
tions), APPC (Advanced Program to Program Communication), authentication, BMS (Basic Mapping Support),
diagnostic services (dump and trace), environment services, exception handling, file control, interval control,
journal control, monitoring program control, storage control, syncpoint (commit, rollback), task control, tempo-
rary storage, terminal control and transient data.

3

CICS application programmers have many options for storing information as an alternative to a database, e.g.
in a CICS managed file or queue which can be recoverable, or in memory which can be shared or specific to the
application instance. The lifetimes of the memory can vary considerably. In general, CICS gives the application
program the illusion that it is running alone, e.g. CICS copies any program variables that are needed for multiple
concurrent instances of a program within a single CICS server system. This support makes it relatively straight-
forward to write server applications. Currently, the third generation programming languages that are considered
most important to CICS are C and COBOL, and they are both supported wherever CICS is ported by IBM. C++
can also be used in some of the products.

CICS systems programmers or administrators define the attributes of resources such as files to the CICS sys-
tem. This includes the location of the resources. In many cases there are interactive, off-line and programmable
ways for supplying the definitions.

3 The characteristics of a CICS application

CICS supports the chained transaction model. Thus, when a CICS application starts running, it finds itself within
a transaction (in CICS terminology within a “logical unit of work”) and the application does not issue a “begin
transaction” request. When an application terminates and returns control to CICS, CICS issues a commit request
(a SYNCPOINT in CICS terminology) on behalf of the application. If the application itself issues a commit,
then CICS automatically begins another transaction for the application after processing the commit. Most CICS
applications do not contain commit requests and rely on CICS to take care of recovery considerations, which is
an advantage of chained transactions.

A CICS application is typically made up of many programs, screens, layouts for work-areas, queues, files and
databases. Associated with this may be one or more “transaction identifiers” or “transaction codes”. A transaction
code consists of four characters that when typed in, determines the first application program to be executed. Over
the years, the CICS transaction code has accumulated many attributes, in addition to the name of the first program.
Examples include security and execution priority. Thus it is often convenient to think of the transaction code as
a grouping mechanism for a set of characteristics, that can be associated with a CICS execution unit at run-time.
Selecting and changing transaction codes at the appropriate times can be vital to achieving desirable behavior in
a CICS system.

Usually each user interaction causes a number of application programs to be executed within one CICS exe-
cution unit. A general recommendation is that CICS applications should be “pseudo-conversational”. This means
that the application should terminate instead of waiting for the human user to respond, in order to conserve com-
puter resources, e.g. storage and execution units. The application can name the transaction code to be used next
time that same device initiates work in that CICS system. The application can also save some context in a scratch
pad which CICS presents to the program associated with the next transaction code. In CICS terminology, a pro-
gram that waits for a human to respond is called “conversational”.

On CICS/ESA and CICS/VSE, programmers have always been discouraged from using native operating sys-
tem requests within their CICS programs. Indeed, they could only use the CICS API, and APIs that were specifi-
cally supported, e.g. SQL. The reason for the guideline was that one program could issue a request which would
hold it up and all the applications waiting to run after it, whereas the CICS supported APIs would ensure that no
waiting occurred. On the workstation platforms each CICS application runs within its own process with its own
execution thread, so the impact of delaying one of the processes is less significant, although it could be noticeable.
Thus, most APIs are available to CICS workstation applications.

Another piece of CICS terminology is “quasi-reentrancy”, which means that a CICS application may give up
control of the processor only when executing within a CICS command. Quasi-reentrancy does not apply on CICS
OS/2 nor CICS/6000, as the application can be interrupted at any point during its execution by the underlying
operating system which uses preemtive scheduling.

4

4 And eventually “A Tale of a Transaction Monitor”

4.1 The Des Plaines days

During the 1960s many public utilities (gas, water, electricity etc) in the US were independently writing applica-
tions to manage their customer records on IBM’s System 360 operating system. It was observed that many ele-
ments of these systems were common, and a team of six people was set up at IBM in Des Plaines (near Chicago)
to develop what became CICS [IBM92]. The product was initially announced as “Public Utility Customer In-
formation Control System” (PUCICS) in 1968 [IBM68]. It was re-announced the following year at the time of
availability as CICS [IBM69] and it included the following components: Program, storage and task manage-
ment; Terminal management; File, temporary storage and transient data management; Signon/Signoff; Master
and supervisory terminal function; System statistics and system shutdown.

One important theme of the early CICS systems was their support for various terminal types and the relative
ease with which the application programmer accessed these terminals. The first CICS release was efficient in
its use of the computer both in instruction path-length and storage. For example the basic CICS needed 15,000
bytes of memory to run excluding the memory needed to hold the CICS resource attributes, known as the CICS
tables. (The size of the CICS client for PC DOS in 1994, is around 60,000 bytes to provide access into a server
CICS system). The application programs had to be written in 360 Assembler, and access to CICS services such
as shared files, was provided through assembler macros. Support for PL/I and COBOL was then introduced and
CICS made a separate copy of the application’s working storage for each instance, but used a shared copy of the
program itself. The application programmers still used 360 Assembler macros to access CICS services.

4.2 A tale of two transaction monitors

Also in the 1960s, the Information Management System (IMS) transaction monitor and database manager was
developed by IBM in collaboration with Rockwell [Graf83]. Rockwell was one of the contractors for the Apollo
space program, and one of Rockwell’s requirements was to manage the two million parts needed for a single
spacecraft, which IMS helped to satisfy. CICS was designed to run on a System/360 with 64K of memory,
whereas IMS was intended to run on a System/360 with 256K of memory. It is interesting to observe that the
process structure of CICS on AIX and OS/2 resembles that of IMS more than mainframe CICS, e.g., the applica-
tions run in processes (address spaces) separate from one another, and from the CICS system software. Another
difference between IMS and CICS is that in CICS the application program communicates with a terminal directly,
whereas in IMS the application and terminal communicate through a queue. IMS also supports batch execution,
e.g. by providing mechanisms to take checkpoints and to restart batch applications.

4.3 The Palo Alto days

In 1970, the CICS team moved to Palo Alto, California, and various extensions were incorporated into CICS.
e.g.:

� Support for DL/I (IMS/DB): When the support first became available, only one user could access an in-
dividual database view (PSB) at a time. This was later improved to support multiple concurrent users.
More flexibility was introduced through making the program able to select the view dynamically via API,
whereas in IMS/TM (formerly IMS/DC) the view is dependent on the transaction code used.

� Basic Mapping Support (BMS): This function allowed programs to communicate with devices without
having to understand the controls of the individual devices.

� Disk Operating System (System 360): CICS was modified to run on this operating system (which later be-
came VSE). The support for CICS for DOS was moved to IBM in Germany, and later it moved to Hursley.

5

� Virtual storage (paging) operating systems: CICS’s storage management algorithms were modified to op-
erate better in a paging environment.

4.4 The Hursley days

In 1974 CICS product development was moved to the Hursley laboratory after a six month hand-over period.
At about the same time, PL/I compiler development was moved from Hursley to the US. Thus, a number of the
programmers working on CICS in the mid 1970s had a PL/I background.

4.5 EXEC CICS form of the API

Some ex-PL/I implementers thought it necessary to replace the 360 Assembler macros used to access CICS ser-
vices by something better. Three small independent projects ran in parallel to define a replacement. There were
various considerations and objectives, e.g.:

� A preprocessed API from which native language calls are generated which would be simpler for a COBOL
or PL/I programmer. For example, keywords could be specified in any order in contrast with a call API.

� It was undesirable to reserve any special words in the enclosing programming language.

� Using macros meant that applications were placing and looking for data in CICS’s internal structures.

Eventually the project that introduced the EXEC CICS API was selected. Each CICS request is prefixed by
two consecutive words (EXEC CICS) that are easy for a preprocessor to detect. Also, in most programming lan-
guages, two consecutive variable names do not constitute valid syntax. The choice of the word “EXEC” appears
to have been influenced by IBM 360 job control language. At the time it was also assumed that other similar
APIs would be integrated with CICS, which later happened in the form of EXEC DLI to access IMS databases,
and EXEC SQL to access relational databases. Many years later EXEC SQL became the standard way to pre-
fix requests to many relational databases. In a subsequent release of CICS, a debugging utility was introduced
to help programmers step through the CICS API at run-time and to allow them to modify the input and output
parameters.

4.6 Distributed processing

During the late 1970s and early 1980s various forms of distributed processing were introduced into CICS, e.g.:

� Transaction routing: Routing whole CICS applications to a system different from the one where the appli-
cation was initiated.

� Function shipping: Routing file and queue access and update requests to systems different from the ones
where the application is executing. The way function shipping was implemented, using a “mirror program”
to represent the client application in the server system was one of the first patents for CICS. It was applied
for in 1978.

� Distributed Transaction Processing: Accessing remote CICS applications from other CICS or non-CICS
programs.

At first there were just two protocols supported for distributed processing. One was for communication between
multiple CICS systems in a single instance of the operating system, called Multi-Region Option. The other was
for communication across SNA and known as Intersystems Communication. The application is not sensitive to
the protocol. These distributed requests and others are supported across TCP/IP and NetBIOS on some platforms.

6

CICS’s early implementation of distributed processing has proved to be very useful. For example, special-
ized CICS/ESA systems are often configured to manage the routing of applications, these are known as terminal
owning regions. Other regions are configured to manage applications and files. These are known as applica-
tion owning regions and file owning regions. Many years later, these configurations became the basis of main-
frame CICS’s operation on multi-processors and for the workload management support recently announced in
CICS/ESA 4.1.

4.7 The Resource Manager Interface

As part of the work to make the SQL/DS relational database manager available to CICS/DOS/VS applications in
the late 1970s, a general interface was introduced to allow external (non-CICS) resources to be coordinated with
CICS resources, as part of the same transaction. This interface is also available in CICS/ESA and used by DB2,
IMS/DB, MQSeries etc. The resource manager interface supports presumed abort, dynamic registration, single
updater and read only optimisations. Thus, it is similar to the X/Open XA interface but it does have some addi-
tional facilities, e.g. the external resource manager can also participate in events other than commit processing
such as application initiation and termination.

4.8 Restructuring CICS/ESA

In the early 1980s, some of the programmers working on CICS recommended that it be re-written, as it was
becoming very hard to maintain. At about the same time, the CICS development manager heard Tony Hoare
of Oxford University speak on the subject of the Z formal specification language. The eventual outcome was
that important sections of CICS were identified, specified in Z, and re-written. The first release that included
the restructured code was CICS/ESA 3.1 which was announced in 1989. This was a particularly difficult release
to complete and ship, but eventually the work was completed and the release was very successful. Currently
about one fifth of CICS/ESA has been specified in Z. These are the core sections which CICS spends 80% of its
time executing. There are many Z experts at Hursley and at least two books on the subject have been written by
Hursley authors [McMoPow93] and [Word92].

4.9 CICS OS/2

CICS OS/2 was introduced in 1988 and with it came support for some other CICS interfaces, e.g.:

� Distributed Program Link: The ability for a CICS program to invoke another CICS program across a net-
work, without either program needing to know that the other program is remote. Data conversion, e.g.
ASCII-EBCDIC, of the parameters is performed by CICS outside the application. Distributed Program
Link is now available on all the CICS products from IBM.

� External Call Interface: This is a call request to enable a non-CICS program to invoke a CICS program
synchronously or asynchronously. The server CICS program does not know that the invocation is any dif-
ferent from a local or distributed program link, nor does it know whether the request is synchronous or
asynchronous. Multiple invocations can be part of the same transaction or run in separate transactions. An
interface similar to the External Call Interface has recently been announced for CICS/ESA 4.1 enabling
batch MVS, TSO or IMS programs to call CICS programs.

For more information on CICS OS/2, please see [Lamb92].

7

4.10 CICS/6000

CICS/6000 for the AIX operating system is built very differently from the other CICS products. It uses various
components from Transarc, a Pittsburgh based company that specializes in OLTP, e.g. the Encina Server which
acts as the transaction coordinator and supports the X/Open XA coordinator interface. Both the Transarc com-
ponents and CICS/6000 itself use the Distributed Computing Environment (DCE). CICS/6000’s internal use of
DCE means that the components of a single CICS/6000 system can be placed on different servers. CICS/6000
(and CICS OS/2) support the External Presentation Interface enabling non-CICS programs to simulate a 3270 ter-
minal to drive existing applications. A similar interface is available on CICS/ESA enabling CICS applications
to simulate 3270 devices. See [StoKnut92] for more information about CICS/6000.

4.11 The CICS workstation products generally

These products tend to be smaller in terms of lines of code than CICS/ESA, reflecting the difference in underlying
software. In addition, they come in two flavors, client and server. Thus, the client code has just enough support
to enable a non-CICS program to access the CICS server system. On each server platform, CICS file control,
temporary storage and transient data are implemented using local file systems, e.g. Structured File Server (SFS)
from Transarc on AIX, and Btrieve on OS/2.

5 And finally

5.1 What next?

That’s another story!

5.2 Thanks

Many thanks to Peter Alderson, Peter Collins, Steve O’Connell, George Czaykowski, Ken Davies, Phil Emrich,
Mike Halperin, Gerry Hughes, Stuart Jones, Peter Lupton, Paul Mundy, Simon Nash, Bob Yelavich, Dennis Zim-
mer, who very kindly described their experiences with CICS. Thanks also to all the people who have worked on
CICS.

5.3 Dates of first releases

These are the first shipment dates for some of the CICS products from IBM. The list is derived from information
in [Gera93].

� CICS/OS: 1969, CICS/OS/VS: 1974, CICS/MVS: 1988, CICS/ESA: 1990.

� CICS/DOS: 1971, CICS/DOS/VS: 1974, CICS/VSE: 1990.

� CICS OS/2: 1989, CICS/6000: 1993, CICS/400: 1993.

CICS from IBM has been available for other operating systems, e.g. VM and DPPX. At the time of writing
this article, CICS has been announced for HP and DEC. CICS client software has been announced (or is available)
for DOS, Microsoft Windows, Apple Macintosh, AIX and OS/2.

The word “CICS” is pronounced differently across Europe and the US. Some examples are France and Ger-
many: Sicks, Italy: Chicks, Northern Spain: Thicks, UK: Kicks, US: SEE - EYE - SEE - ESS.

8

References

[Gera93] Jim Geraghty, CICS Concepts and Uses - A Management Guide, McGraw Hill, 1993, ISBN 0-07-
707751-2, 273pp.

[Graf83] William P. Grafton, IMS: Past, Present, Future, Datamation, September 1983, 158-171.

[IBM68] IBM program announcement: Generalized Information System, Information Management System,
Public Utility Customer Information Control System, April 29, 1968.

[IBM69] IBM program announcement: The System/360 Customer Information Control System ready for ship-
ment, July 8, 1969.

[IBM92] The Ben Riggins (and CICS) Story 40th anniversary, Reflections IBM Santa Teresa Laboratory, April
1992, 6-7.

[IBM4] GC33-0754 - Transaction Processing: Concepts and Products.

[IBM5] SC33-1007 - CICS Family: API Structure.

[Lamb92] Rob Lamb, Cooperative Processing using CICS, McGraw Hill, 1992, ISBN 0-07-014770-1.

[McMoPow93] Mike McMorran and Steve Powell, Z Guide for Beginners, Blackwell Scientific Publications,
1993, ISBN: 0-632-03117-4, 247pp.

[StoKnut92] Tony Storey and John Knutson, CICS/6000 Online Transaction Processing with AIX, AIXpert
(IBM), November 1992.

[Word92] J.B. Wordsworth, Software Development with Z, Addison-Wesley, 1992, ISBN: 0-201-62757-4,
334pp.

[Yela85] B.M. Yelavich, Customer Information Control System: An Evolving System Facility, IBM Systems
Journal, 24(3/4), 1985, pp. 264-278.

9

Pioneering Distributed Transaction Management

Eric Newcomer
Consulting Writer

Digital Equipment Corporation

1 Introduction

Digital Equipment Corporation is generally perceived as an engineering and scientific computing company rather
than as a producer and seller of commercial application software. Digital, however, has been a pioneer in two
significant areas of distributed transaction management: remote procedure call (RPC) communications and high-
level transaction language. Technology based on Digital’s distributed transaction management model is gaining
wider acceptance in the industry.

Transaction management software guarantees that the state of a business, its operations or records, is reflected
consistently on the computer without manual intervention. By bracketing a series of operations on business data
within a transaction, users know that the operations will either succeed or be rolled back as a unit.

Digital’s main contributions to distributed transaction management are twofold: one, to allow operations on
data bracketed within a transaction to include procedure calls, local or remote using an RPC mechanism; and
two, to specify transactional operations using a specialized, high-level programming language.

Digital was not the first to implement distributed transactional communication. IBM implemented distributed
transactional communications within CICS as early as 1976. Nor was Digital the first to implement a transactional
RPC. The Camelot project of Carnegie Melon pioneered the use of transactional RPC [Gray93]. But Digital was
the first to create an open transactional RPC specification.

2 Transaction Processing Model

Digital’s contributions are based on its unique transaction processing model. Digital’s TP model has been called
the “three-ball model” [Gray93]. Each “ball” is a group of procedures intended for a specific purpose, such as
accessing a display, application flow and transaction control, and database and file access and general computa-
tion. Unlike mainframe TP monitors, Digital’s ACMS monitor implemented the groups of procedures in separate
processes. Communications among the processes was handled by an RPC mechanism. Digital thus pioneered the
use of the RPC mechanism in transaction management, allowing parts of the application to be easily distributed
among multiple processors in a network.

In the early 1980s, Digital created a TP monitor called the application control and management system (ACMS).
It was integrated with the VAX Information Architecture (VIA) family of products built around the common data
dictionary (CDD). The VIA products shared several characteristics. Among them were data definitions in the
form of records stored in the CDD and an “English-like” high-level language. Those new to the VIA family of
products confronted a learning curve to understand the architecture and its new languages. Often, however, after
ascending this learning curve, programmers found they were very happy with the products and the productivity
gains resulting from the use of a high-level language.

The ACMS “control” language, called the task definition language (TDL) [DEC91] puts into sequence a se-
ries of procedure calls to modules for display manipulation or for database and file access and general computa-
tion. Each “ball”, or group of procedures is created and maintained separately. The interface to the procedures is

10

Display
Access

Control Data
Access

C, COBOL STDL C,COBOL,SQL

Call Call

Procedure
Group

Procedure
Group

Procedure
Group

Figure 1: ACMS’s “Three-Ball Model”

defined separately so that procedures in each of the groups can be changed independently. As long as the inter-
face remains the same, the procedures within one group can be modified without requiring modification to any
of the other groups of procedures.

Applications can be created in separate, specialized modules. One programmer can write the display manip-
ulation procedures while another writes the database access procedures. A third can put it all together by writing
the TDL control procedures. This model improves maintainability and eases upgrades to new technology by, for
example, allowing the display manipulation procedures to be rewritten to use a new device without impacting any
of the other procedures. Programmers can upgrade to GUI-based displays without having to change the control
or database access procedures.

Furthermore, because the procedure grouping concept provides separation of procedure and interface, it is
possible to transparently introduce an RPC in place of a local procedure call at any of the points of separation.
Portions of the application can easily be distributed among multiple computers in a network. And by taking ad-
vantage of a name service such as DCE naming, the groups can be distributed and redistributed without modifying
the procedure code.

The evolution of this approach lies in the VAX family line of computers and its phenomenal success in the
1980s. About the time ACMS was first released, small VAXes started to emerge in the market, such as the VAX
stations I and II, the VAX 750 and the VAX 725. ACMS engineers realized that they could provide greater cost
savings and increased performance by allowing the off-loading of the display processing (or forms control) onto
one of the smaller VAXes, while the larger, or back-end VAXes were used for database processing. In ACMS
terms, these were the “front end” and “back end” processors. In modern terms, these are the client and server
processors. The high-level language of ACMS easily hid from the programmer whether the procedure calls were
local or remote. ACMS engineers decided to implement this new functionality using an RPC mechanism that
would be transparent to programmers.

3 An Open Architecture

During Digital’s entry into the commercial applications market, two external events occurred which influenced
the course of ACMS:

� Apple Computer worked with Digital to integrate the Macintosh with ACMS, so they could run their busi-
ness applications using VAX servers and Macintosh clients.

� Nippon Telegraph and Telephone (NTT) adopted ACMS as the model for the multivendor TP standard in
its Multivendor Integration Architecture (MIA) [MIA91].

MIA Consortium members included Digital, IBM, NEC, Hitachi, Fujitsu, and NTT Data (the systems inte-
gration subsidiary of NTT).

11

The result of the first was the ACMS Desktop product that integrates PCs with ACMS. The result of the
second was the structured transaction definition language (STDL) and the remote task invocation (RTI) protocol,
both of which are currently being implemented in the next generation of ACMS products. These two efforts are
creating open technologies based on Digital’s ACMS model.

Following its development by the MIA Consortium, the RTI protocol was adopted by X/Open as the basis of
its TxRPC (or transactional RPC) standard [X/Open93]. STDL has been adopted by the Service Providers Inte-
grated Requirements for Information Technology (SPIRIT) Consortium, a group of telecommunications service
providers from the U.S.A., Europe, and Japan working to develop general-purpose computing platform specifi-
cations under the sponsorship of the Network Management Forum.

Although Digital was not the first to implement a transactional RPC, Digital was the first to put together OSF’s
DCE RPC with the ISO OSI TP and create a truly open standard for transactional RPC. Digital also developed
STDL, a high-level procedural language specifically designed for transaction processing that unifies groups of
procedures written using standard programming languages.

STDL is a portable application programming language for TP environments, based on the model of the orig-
inal TDL of VAX ACMS. STDL is a block-structured language specifically designed for RPC-based distributed
transaction management.

STDL provides application portability and TxRPC provides interoperability among TP monitor products.
Portability and interoperability have been demonstrated on Digital, Hitachi, IBM, and NEC platforms. Both
STDL and TxRPC are based on technology first implemented, tested, and proven in production applications using
Digital’s ACMS product.

In developing STDL, the original ACMS high-level language was modified and extended to make STDL
portable, to ensure cost-effective implentability, and to meet the functional requirements of MIA. In developing
the TxRPC, Digital drew on its experience with RPC-based transaction processing to integrate the DCE RPC
with the OSI TP standard and move the technology into the open systems arena.

STDL is a persistent programming language especially suited to client/server computing:

� It allows programmers to structure computations as collections of tasks.

� These tasks can be local or remote.

� Task invocation in a heterogeneous client/server environment is supported by the TxRPC.

STDL’s exception handling mechanisms make it easy for programmers to construct workable and manageable
distributed heterogeneous applications that are portable among many vendors’ TP monitors.

STDL demarcates transaction boundaries, performs transactional remote procedure calls, supports transac-
tional queuing operations, transactional display management, and transactional exception handling. In this ex-
ample, the STDL task called “example” represents the middle ball of the three-ball model, while the RECEIVE
and SEND exchanges with the display represent the first ball. The CALL PROCEDURE represents the third ball.
This separation of procedure according to the type of function being performed allows a process-based imple-
mentation to tune each type of process for the type of work being performed. Each process is active only long
enough to complete its portion of the work. The calls are bracketed by a transaction that ensures the operations
either all succeed or are rolled back. Any number of data operations, local or remote, can be included.

Most application logic, as well as operations on files and databases, is performed using a combination of
standard C, COBOL, and embedded SQL. Transactional functionality and features additional to standard C and
COBOL required to support distributed transaction management applications are implemented in STDL. The
isolation of transactional functionality within STDL allows the use of standard C, COBOL, and SQL and permits
the mapping of STDL to any commercial TP monitor.

By using the atomicity and isolation concepts from transaction processing, STDL insulates the application
programmer from system calls, and permits transparent application distribution to any other STDL systems irre-
spective of hardware or operating system configurations.

12

TASK example
WORKSPACES ARE customer, control
BLOCK WITH TRANSACTION
EXCHANGE

RECEIVE RECORD customer FROM input-form
PROCESSING

CALL PROCEDURE update IN database-server
EXCHANGE

SEND RECORD customer,control TO input-form
END BLOCK
EXCEPTION HANDLER IS

GET MESSAGE failure INTO display-field
END EXCEPTION HANDLER

Figure 2: STDL Code Example

STDL

CICS

STDL

ACMS

STDL

Encina
TxRPC TxRPC

Figure 3: STDL for Portability and TxRPC for Interoperability

13

STDL separates execution flow control, user access, and database and file access. This modularity makes
STDL application programs inherently distributable. Local procedure calls can be replaced by remote procedure
calls without application recoding. Chained transactions and concurrent processing are supported [Bern93].

Tasks written in STDL replace the main program module of traditional TP applications. STDL eliminates the
need for system service calls. This increases application programmer productivity by enabling application pro-
grammers to concentrate on business problems rather than dealing with the idiosyncrasies of operating systems.

The major advantage of STDL is portability. STDL can be implemented on top of any existing TP monitor
on the market, and can also be implemented as the native language of a new TP monitor. In this respect, STDL
is very similar to SQL, which also has been implemented on top of existing database management products as
well as implemented as the native language for new database management products.

An application written using a combination of STDL, standard C or COBOL, and standard SQL, is portable
at the source code level. This was demonstrated at NTT’s labs in May, 1993 by porting a transaction processing
application between the Digital and IBM implementations of STDL.

STDL
ACMS

STDL
CICS/OS2

PS/55

STDL
ACMS

STDL
CICS/MVS

3090

DEC

IBM

VAXstation 4000 6410

RPC

RPC

Source
Code
Transfer

Figure 4: Portability Demonstration at NTT Labs, May 1993

IBM has sucessfully layered STDL on top of CICS/MVS and CICS/OS2. NEC has supplied NTT with an
STDL product, as has Digital. HP, Fujitsu, and Hitachi have also committed to implement STDL and the TxRPC
specification from X/Open that includes the MIA-developed RTI protocol [NTT93].

Through these efforts, the technology Digital originally developed in ACMS is becoming accepted more and
more widely in the industry as the basis for modern, RPC-based transaction management. However, general
acceptance of new, open technologies can be slow. The fate of these new, open technologies is essentially in the
users’ hands. If the benefit of standards is truly for the user, it is truly the user that will have to demand them and
provide the force that will open the TP market.

The technologies derived from Digital’s ACMS product can serve as the basis of a standard for opening the
TP market because they are modern, thoroughly tested in production situations, and have been proven to work
by multiple vendor implementations.

The separation of procedure from interface in STDL paves the way for future migration to object-oriented
technology. Digital is investigating the future transformation of STDL into object-oriented STDL. The task group
is essentially identical to a network object, paving the way toward future integration with OO technologies in
distributed transaction management.

Because of STDL’s origins in ACMS, the language is currently more like COBOL than C. As it evolves over
time, however, more and more concepts from C are being incorporated.

14

Procedures

Interface

Procedures =
 STDL
 C
 COBOL

Interface =
 Group

C stubs, DCE IDL
[Compiler]

Figure 5: Separation of Procedure and Interface

4 Summary

Despite Digital’s reputation for unfamiliarity with the commercial applications market, Digital has leveraged its
strength in networking and high-level languages into pioneering efforts within the distributed transaction man-
agement field.

References

[Bern93] “STDL – A Portable Language for Transaction Processing”, Philip A. Bernstein, Per O. Gyllstrom,
Tom Wimberg, Proceedings of the 19th VLDB Conference, Dublin, Ireland, 1993.

[DEC91] VAX ACMS V3.2 Transaction Processing ADU Reference Manual, Digital Equipment Corporation,
1991

[Gray93] “Transaction Processing Concepts and Techniques”, Jim Gray and Andreas Reuter, 1993 Morgan
Kaufmann, Pub.

[MIA91] “Multivendor Integration Architecture, Division 1, Overview, Technical Requirements” TR550001,
Nippon Telegraph and Telephone Corporation, 1991

[NTT93] Report by NTT at the X/Open User’s Requirements Group meeting, September 1993

[X/Open93] Distributed TP: The TxRPC Specification, X/Open Preliminary Specification, 1993.

15

High Performance TP Monitors - Do We Still Need to Develop
Them?

Dieter Gawlick
Activity Management Group

Digital Equipment Corporation
529 Bryant Street, Palo Alto, CA 94301
email: Gawlick@HPTS.enet.dec.com

1 Introduction

Since the 1970’s IMS/VS is IBM’s preferred TP monitor for installations requiring large, high performance data
bases, automatic scheduling, reliable end to end computing and fault tolerance. By the mid 1970’s the IMS/VS
infra-structure was in place. However, the existing system neither delivered the required performance nor the
level of fault tolerance for banking applications. Two extensions, IMS/VS Fast Path and XRF (Extended Restart
Facility), were created to address these issues.

The reminder of the paper is as follows: Sections 2 explains the challenges of high end business applications
using the classical Debit/Credit transaction, the ancestor of the TPC (Transaction Processing Council) work, as
guideline [Anon89], [tpca92]. Sections 3 and 4 describe, how IMS/VS Fast Path and XRF solve the majority of
these previously described problems. Section 5 and 6 will explain the support that needs to be offered by operating
and database systems to solve the Debit/Credit challenges. In section 7, I will argue why these solutions are a
subset of the requirements for evolving intra and inter company “groupware” and/or workflow systems.

2 The Challenge of the Debit/Credit Transaction

IMS/VS Fast Path and XRF were created to handle a system that can process large volumes of data with high
availability and high performance. Since Debit/Credit was and still is one of the most frequently used transac-
tions in these environments, I will use it to explain these issues. The following is a definition of the Debit/Credit
transaction:

Get the next work item
Identify customer account number
Retrieve customer account
If there are enough funds
Update the account
Update the ATM information
Update the general ledger
Append a journal record
Send OK and new balance to ATM
Else
Deny request
End

Although this transaction is very simple, it creates the following set of challenges:

16

1. The ATM information is a hot spot. Using disk based databases leads to expensive I/O operations.

2. The general ledger is a hot hot spot., requiring potentially hundreds of updates per seconds for some records.

3. The application journal requires a database with excellent performance to append data while being able to
retrieve these data entries efficiently for individual accounts as well as for groups of accounts.

4. The system can deal with very large amounts of data, especially for the application journal.

5. The system requires no service interrupts for reorganization of data bases, i.e. the reorganization has to be
on-line and impact the performance as little as possible.

6. The system requires no service interrupt for data base checkpoints, i.e., data base backups have to be done
on-line.

7. Databases can be moved to different I/O devices while the system is operating close to full speed.

8. Data have to be replicated to avoid lengthy recovery. Furthermore, local errors can be repaired while the
system is operating close to full speed.

9. The response time of the server - database plus application program, is well below one second, preferably
below .1 second.

10. The response time of the system is flat up to 95load.

11. The connection to the ATM has to be such that each request will be processed exactly once and each re-
sponse will be deliv- ered exactly once.

12. A hot stand by system can deliver the full service of a running system within a short period of time (2
minutes), without intervention of end users, system operators and without any effort by the programmer.

The next two sections describe how IMS/VS Fast Path and XRF allowed IMS/VS to meet these challenges.
I will always point out which problem is solved by a specific technology.

3 IMS/VS Fast Path Functionality

Descriptions of the IMS/VS Fast Path technology can be found in [gawl8(2)], [gray91], [IMSGIM] and [oneil86].
Here are some highlights:

Fast Path supports two database type, MSDBs (Main Storage Databases) and DEDBs (Data Entry Databases).
MSDBs deal with small amount of heavily used data. Normally, MSDBs are kept in main memory, giving

good response time and preventing unnecessary I/O operations. Extreme hot spots are supported through a com-
bination of Optimistic Escrow, Fast Commit and Group Commit technology. MSDBs allow the classical read
and update approach. Furthermore, they allow the user the specify the desired change of a numerical field. At
request time the systems checks, whether the request could be granted under the current conditions. No locks will
be held. The request will be re-checked at commit time. If a request can still be granted the transaction commits,
otherwise it aborts. Fast Commit prevents the need for I/O during commit time. However, Fast Commit allows
the completion of all internal processing. All external notifications to databases and terminals are held back until
the required journal records are written to non volatile storage. In case of a failure, the system can not re- cover
all the committed transactions. However, it can recover all those transactions for which the completion may be
externally known. The system requires no further action, there is no recovery gap through this technology. It is
indeed not necessary to make a transaction recoverable before it can be committed. Additional enhancements for
optimization of the journal I/O are achieved through Group Commit. (Problems 1 and 2)

17

DEDBs support a hierarchical database technology in the spirit of IMS/VS. DEDBs can be configured into up
to 240 Areas, each of which can be placed and managed independently. The size of an area can be up to 4 Giga
bytes. DEDBs support a record type called Sequential Dependent. Data of this type are appended to database
records in LIFO order. For each Area these records are stored at the tail of an Area in commit sequence order.
This creates again an hot hot spot. A process local work-to-do-list and the fast commit technology are used to
solve this problem. (Problem 4)

Access to records is either by key or sequentially. The Sequential Dependent segments can either be retrieved
for each database record in LIFO or sequentially in an Area by defining a starting or ending record. (Problem 3)

Utilities such as reorganization and database checkpoint work on Area level. They can be executed while the
Area is used for on-line services. Through a skillful usage of the underlying file system, the utilities perform well
as batch processes without interfering in any significant way with the on-line system. (Problems 5 and 6)

DEDBs can be replicated up to seven times. Copies of Areas can be added and deleted while the system
is running. This concept allows not only data replication but also the relocation of Areas while the system is
running, enabling the user to balance the load of the I/O system, to move Areas to new devices or device types,
and to eliminate faulty devices. (Problems 7 and 8)

In 1987 the system achieved a transaction rate well above 1ktps with response time well below 1 second. The
system showed in- teresting performance characteristics. Under increased load the required instructions per trans-
action decreased, the speed of the hardware increased and the response time of the journal decreased. In effect
the response time of a system running Debit/Credit transactions was flat close to the saturation point. (Problems
9 and 10)

Each transaction is guaranteed to run exactly once and each response to the front-end is delivered exactly
once. This is simply done through the use of the network support (Set and Test sequence numbers) and journaling
(Problem 11)

An IMS/VS system can support and manage tens of thousands of terminals. IMS/VS Fast Path needs about
35k instructions per transaction. On an IBM mainframe each instruction requires on the average 3.5 CPU cycles.

4 IMS/VS XRF Functionality

While IMS/VS Fast Path was able to solve the functional, performance and reliability requirements of the Debit/Credit
transaction, a more general approach was needed to solve the hot standby problem. This was done through a
project called IMS/VS XRF. The hot standby technology was started through the requirements on IMS/VS. How-
ever, it influenced, challenged and improved the underlying operating system, file system and network support.

IMS-XRF assumes that there are two local processors which are connected through a high speed link and
which share I/O devices. While one system is active, the other system, the backup system, is in hot standby
mode. The backup systems monitors closely the operations of the active system. It knows which terminals are
connected and how they can be reached, and which databases are opened and where they are located. It keeps
closely track of the database locks and monitors whether the active system is still alive. The backup system starts
frequently used programs for im- mediate activation. The backup system is really ready to go.

If a failure occurs, the journal of the active system is disabled and is read to the end, which takes only parts of
a second. The operating system blocks all access of the active system to the databases. Furthermore, it improves
the service to the standby system by changing it’s priority. The database parts that need recovery are locked, the
transaction queues are synchronized. The backup system is now ready to run. While processing new transactions,
the databases and the terminals are synchronized and restarted, without intervention from operations or the end
users. (Problem 12)

For additional descriptions of IMS/VS XRF see [gray91] and [IMSXRF].

18

5 Operating System Support for High Performance and High Reliable Systems

The necessary operating system support for systems that respond to these requirements is well understood:

1. Fast switch from privileged to non privileged code and vice versa (well below 100 instructions).

2. Good support of shared memory with very fast locking mechanism (below 100 instructions).

3. Very Light Process structure with limited functionality and access to shared memory (process start and
termination must be below thousand instructions).

4. The ability to write efficient I/O programs that use the semantic knowledge of the database systems for
optimization.

5. Fast Workload Acceptance: The ability to switch the system resource allocation for a set of processes al-
most instantly (In the range of a few seconds).

6. Fast I/O prevention: The ability to stop I/O to pre-defined data sets instantly (well below one second).

7. The ability to connect multiple programs to the same data set in update mode, only the active system will
actually perform updates.

8. The ability to connect multiple programs to the same ’terminal.’ Only one, the active program will commu-
nicate, the other, the backup program, needs the help of the network support to synchronize backup system
and terminals very fast.

These requirements represent well understood and implemented technology. There is no reason why it can
not be added to server oriented operating and file systems. Operating systems also need to offer a scheduler that
could be used for transaction scheduling.

As noted in [Klein93], 2PC needs to be a fundamental extension of operating systems. Local 2PCs can be very
efficient by using shared memory and shared journals, which should be offered by database systems. Distributed
2PCs should run on low level standard transports and support standard protocols for interoperability. Although
there seems to be no technical obstacle to implement the last two requirements, I am not aware of any product
that includes either a scheduler or an efficient 2PC technology within the just mentioned constraints .

While a significant part of the support for high performance, high reliable systems must be imbedded in the
underlying system infra-structure, some parts of the required support is best provided by database systems.

6 Data Base Support for High Performance and High Reliable Systems

These are some of the most important requirements for database systems:

1. Applications require the storage of an increasing amount of history information. It is time that databases
offer good support for temporal data.

2. To simplify the programming and support increased parallelism, support for escrow technology is required.

3. High reliability requires data replication as well as on- line utilities for database checkpoints, relocation
and reorganization.

4. Hot standby support demands the ability to accept the workload of an active system and to resume full
operations within a very short time interval (< two minutes, which seems to be equivalent to a “very bad”
response time).

19

While the support for the first three requirements seems to be straight forward and well understood, the sup-
port for hot standby will be the most demanding task. Database systems will have to deal with varying level of
support by the different underlying operating systems, file systems and networks.

7 Groupware/Workflow Systems

The modern business environment becomes increasingly business process oriented. New systems are evolving
to support this trend, [gawl94], [leym93]. While transaction systems are focused on the support of isolated ac-
tivities, steps in the language of workflow, workflow systems are focused on the connection of steps. These two
approaches need to be integrated. We should use the power of transaction systems for high volume transactions.
However, the workflow technology should integrate these steps into the business context. For some time to come,
TP/DB systems and workflow system can cooperate through the evolving CORBA technology. However, at some
time in the future we need a tight integration. Such an integration will only be possible if these system are based on
a common infra-structure such as the one described in the previous sections. Furthermore, workflow technology
will only be mature enough for the use as backbone for business environments, if it supports all the performance,
reliability and fault tolerance characteristics of mature TP/DB systems.

Workflow system requirements exceed the TP/DB technology in respect to scalability and system wide re-
liability. It will be an important challenge to use the experience of the Mail technology to achieve these system
additional attributes.

8 Summary

For many years, the technology to develop high performance, high reliable systems has been well known. While
the technology was developed for the special use of transaction monitors, it is applicable to other areas. However,
the economics of today’s software development prohibits specialized development efforts such as IMS/VS Fast
Path and XRF [gray94]. The time has come to leverage the knowledge, that has been acquired by the development
of these systems and incorporate it into the operating system and database technology of today’s high end servers.

I challenge the developers of modern operating systems and database systems to create systems that execute
a Debit/Credit transaction with at most 100k CPU instructions, and still achieve all the operational, performance
and reliability characteristics of today’s top of the line specialized TP/DB systems.

References

[Anon89] Anon Et AL., “A measure of Transaction Processing Power.” Datamation 31(7) 1 April 1989, pp. 112-
118.

[gawl8(2)] Gawlick, D., and D. Kinkade, “Varieties of Concurrency Control in IMS/VS FastPath.” IEEE
Database Engineering, 8(2): pp.3-10

[gawl94] Gawlick, D., M. Hsu, R. Obermarck, “Strategic Issues in Workflow Systems.” CompCon 94, March
1994, San Francisco, CA, IEEE 1994

[gray91] Gray, J., and A. Reuter, “Transaction Processing: Concepts and Techniques.” Morgan Kaufmann, San
Mateo, CA, 1991

[gray94] Gray,, J., C. Neyberg, “Desktop Batch Processing.” SFSC Technical Report 94.1, January 1994, San
Francisco, CA: DEC

20

[IMSGIM] IBM-IMS, Information Management System: General Information SC26-4275 and Application Pro-
gramming SC26-4279. San Jose, CA: IBM

[IMSXRF] IBM-IMS-XRF, IMS Extended Recovery Facility (XRF) Planning, GC24-3151. San Jose, CA: IBM

[Klein93] Klein, J., Upton, Open DECdtm, Constraint Based Transaction Managment Proceedings of the ACM
SIGMOD, May 1993

[leym93] Leymann, F., W. Altenhuber, “Managing Business Processes as Information Resource.” ITL IRM Con-
ference, Thornwood, USA October 1993

[oneil86] O’Neil, P. E. “The Escrow Transactional Method.” ACM TODS. 11(4) 1986 pp. 405-430

[tpca92] “TPC Benchmark A,” Chapter 2 of “The Benchmark Handbook for Database and Transaction Process-
ing Systems,” 2nd ed. Morgan Kaufmann, San Mateo, CA, 1992

21

Recent Work on Distributed Commit Protocols, and
Recoverable Messaging and Queuing

C. Mohan, and Dick Dievendorff
IBM Almaden Research Center

San Jose, CA 95120, USA
fmohan, dieveng@almaden.ibm.com

Abstract

This paper briefly summarizes some recent IBM work in the areas of distributed commit protocols, and
recoverable messaging and queuing. We discuss the original presumed nothing commit protocol of SNA
LU 6.2 and the current industry standard presumed abort (PA) protocol which we originally developed
in IBM’s R* project. We also discuss generalized presumed abort (GPA) which resulted from the inte-
gration of PA into LU 6.2. GPA has been implemented in DB2 V3. We provide a brief introduction to
the Message Queue Interface (MQI), an architected application programming interface, and Message
Queue Manager (MQM) MVS/ESA, one of the IBM MQSeries products that implements MQI. Some in-
ternal design features of MQM are also described.

1 Introduction

Several paradigms have been adopted for inter-program communication in a distributed computing environment.
The most important of them are conversations, messaging and remote procedure calls (RPCs). In this paper, we
will discuss some of our recent work relating to the first two topics.

2 Distributed Commit Protocols

In [MoLi83, MoLO86], we introduced two efficient distributed transaction commit protocols called Presumed
Abort (PA) and Presumed Commit (PC). PA and PC were first developed and implemented at the IBM Almaden
Research Center in the context of the distributed database management system R*. PA and PC are extensions of
the well-known, classical two-phase commit protocol. PA is optimized for read-only transactions and a class of
multisite update transactions, and PC is optimized for other classes of multisite update transactions. The opti-
mizations result in reduced inter-site message traffic and log writes, and, consequently, a better response time for
such transactions. Both PA and PC were designed to make mainline (i.e., no-failure) performance be very good,
at the possible expense of some performance degradation under certain failure conditions.

Of late, PA has become very popular. It is now part of the ISO-OSI and X/Open standards for distributed
transaction processing (DTP). It has been implemented in IBM Almaden Research Center’s R* and QuickSilver,
Tandem’s TMF, DEC’s VMS, Transarc’s Encina, CMU’s Camelot and Unix System Laboratories’ TUXEDO.

IBM’s communications architecture SNA LU 6.2 supports inter-program communication using half-duplex
conversations [SJFF89]. Originally, LU 6.2 included a commit protocol (call itPresumed Nothing (PN)) which
was inefficient in terms of logging and message overheads. PN was implemented in CICS/MVS and VM/ESA.
Honeywell Bull implemented it in GCOS8. The distributed computation model that LU 6.2 supports (peer-peer)

22

is very general compared to the one that we had to deal with in R* (client-server). Recently, the LU 6.2 architec-
ture has been enhanced to include PA as an option [IBM93d]. We call this version of PAgeneralized PA (GPA)
since it accommodates LU 6.2’s peer-peer computation model [MBCS93]. It coexists with PN in the sense that
even during the execution of a single transaction some of the nodes executing the transaction may be using PN
while others are using PA. Some flaws in the original architecture with regard to the read-only optimization (i.e.,
avoiding the second phase of message exchanges with read-only process subtrees) and handling of terminations
of conversations which result in two or more islands of the original distributed computation continuing to ex-
ist were also fixed. In those situations, problems arose due to the manner in which transaction identifiers were
generated and used.

In LU 6.2, during the commit of a transaction, all the processes of the then-existing process tree of the dis-
tributed computation were involved in the commit protocol message exchanges whether or not some of those
processes did any work as part of the committing transaction. In R*, all work originated from only the root pro-
cess of the tree since that was the only process where the user application ran. The other processes performed
database accesses based on requests from the root process. So, in R*, any process that was not involved in the
current transaction was excluded from the commit protocol, thereby gaining significant performance advantages.
In LU 6.2, since the user application may be executing in more than one process, work within a transaction can
be self generated by the processes of the distributed computation. As a result, determining which processes per-
formed work as part of a transaction is not easy. GPA supports R*’s optimization as an option by taking advantage
of the half-duplex nature of LU 6.2 conversations [BCMS93].

PA, as originally designed and implemented in R*, did not supportcoordinator migration(i.e., making a
process other than the one that started the transaction be the coordinator of the commit protocol). Also, in R*, the
initiator of the commit protocol was always the same process that began the transaction (unilateral rollbacks could
be initiated by any process). Both initiator and coordinator migrations are supported by PN and GPA [CiMo91,
MBCS93]. While they give rise to some race conditions which complicate the protocols, they provide some
performance and availability advantages [SBCM93].

Integrating PA into the LU 6.2 commit protocol architecture was not a simple task given the complex and
flexible nature of PN. Since much of the functionality and mechanism of the OSI DTP standard is based on LU
6.2, our work should be of value for future enhancements of the standard. Many of the advanced features of
LU 6.2 are not currently part of the OSI DTP standard. Unfortunately, much of the research community has
been unexposed to PN. It is important that the strengths and weaknesses of this widely-in-use protocol be un-
derstood to enhance the new DTP standards. OSI DTP has a few features that LU 6.2 currently does not have.
Recently, GPA has been implemented in DB2 V3 [Moha93a]. Since IBM’s Distributed Relational Database Ar-
chitecture (DRDA) [IBM93a] incorporates LU 6.2, now DRDA-compliant products can exploit and benefit from
the efficiency-enhancing features of presumed abort.

3 Messaging and Queuing

Messaging supports asynchronous communication between programs. Communication takes place via recover-
able message queues. Transaction semantics is supported with respect to the interactions between the programs
and the message queues. IBM has defined an application programming interface (API) standard for messaging
called Message Queue Interface (MQI) [IBM93b]. IBM has released a family of products called MQSeries that
supports MQI. One of those products is Message Queue Manager (MQM) MVS/ESA [IBM93c].

Messaging products are referred to as middleware. They interface between applications and communication
networks. They shield the complexities of the underlying multivendor, multiprotocol networks, allowing a more
user-friendly programming environment in an open, distributed world where interoperability is essential. They
allow integration of multiple transaction and database management systems. E-mail messaging (e.g., using X.400
and X.500) provides non-realtime communication between people, whereas the MQSeries products also provide

23

online/realtime, asynchronous message exchanges at computer speeds between programs. Typically, MQSeries
messages reside only for a few seconds in message queues before they are processed.

MQSeries products operate on IBM and non-IBM platforms and they support the architected MQI. Named
queues are used by the applications for message exchanges in a location-transparent manner. Because of the asyn-
chronous nature of the supported communication paradigm, the participating programs need not all be available
(i.e., up and running) at the same time. MQI is not sensitive to network transport protocol differences. It lets
the application designer concentrate on the business logic alone rather than having to deal with communications
logic also. Conversational communication (e.g., as in LU 6.2) and RPC are connection based. As messaging is
connectionless, it shields the application program from communication failures and recovery. The underlying
messaging and queuing infrastructure deals with those problems.

3.1 Message Queue Interface

Queues are named and each queue is owned by a queue manager. Multiple queues may be owned by the same
manager. Put (add a message) and Get (retrieve and delete a message) are the main calls in MQI. Each message
has aMsgId and a timestamp which marks the time when the message was Put. A message consists of some
application data and some control information. The latter is examined by a queue manager to determine, for
example, what the message’s priority is and whether the message is persistent or not. Within a priority class,
messages are appended to the end of the subqueue representing that priority class. To identify problem messages,
for each message, a count is maintained of the number of times the message was retrieved and then the retrieval
was rolled back. A message can be typed to indicate if it is a one way message, is a request which needs to be
replied to or is a reply to an earlier request. In the case of a request, the identity of the message queue to be used
for the reply is given. A reply identifies (using thecorrelation identifier (CorrelId)field) the original request
message.

On a Get call, if no message satisfying the request is currently available for retrieval, then thewait option can
be used to indicate that the call should wait for a new message to be Put and committed or for an existing mes-
sage’s Put to be committed or for an uncommitted Get to be rolled back. A time limit for the wait can be specified.
A Get can be specified to retrieve the next available message in a queue or a message which has some specific
values in the MsgId and/or CorrelId fields. Thebrowseoption of Get can be used to retrieve a message without
deleting it from the queue. With this option,first andnextcalls can be used to look at a sequence of messages. To
enable this, internally, a browse cursor which holds a position in the queue of messages is maintained. Get can
be used to retrieve and delete the message on which the browse cursor is currently positioned. Puts and Gets can
be issued within or outside the scope of the current transaction. When a Get/Put is issued with the outside option,
that call’s effect alone is committed immediately without the current transaction’s other actions being committed.

When a message is Put, it can be tagged as being persistent or non-persistent. Once the Put of apersistent
message is committed, even if there are system failures, the message will continue to stay in the queue until it
is deleted via a Get. On the other hand, allnon-persistentmessages disappear if there is a system failure. In the
absence of system failures, both persistent and non-persistent messages obey transaction semantics (i.e., commit
and rollback).

A local queueis one which is managed by the queue manager to which the application is connected. Aremote
queueis managed by some other queue manager. An application can issue Put and Get calls to a local queue, but
can issue only Put calls to a remote queue. When a Put involving a remote queue is issued, first the message is
inserted into atransmissionqueue in the local queue manager. Some time after the Put commits, the message is
movedasynchronouslyto the remote queue by the queuing system software.

Certain events that relate to a queue (e.g., the queue becoming non-empty) can be made to trigger some
activity. When triggering is enabled for a particular queue, the occurrence of a triggering event at that queue
causes a trigger message to be inserted into aninitiation queue. The latter can be monitored by a program which
then schedules, based on the contents of the initiation queue message, another program to deal with the event-

24

triggering message in the original queue. Even if the transaction adding the trigger message rolls back, the trigger
message’s Put is always committed. This is necessary to deal with situations where one transaction may decide
not to trigger a Put based on the so-far-uncommitted earlier triggering action of another transaction. Later on
the former transaction may commit while the latter transaction rolls back. For this case, triggering is still needed
even though the triggering transaction rolled back. To improve performance, trigger messages are always treated
as non-persistent messages.

3.2 Message Queue Manager MVS/ESA

Message Queue Manager (MQM) MVS/ESA is the implementation of MQI on IBM’s MVS/ESA operating sys-
tem. MQM can be invoked from IMS, CICS, TSO and Batch applications. It participates in two-phase commit
processing with IMS and CICS. It uses CICS Inter-System Communication (ISC) for moving a message from a
transmission queue to a remote queue.

Internally, MQM is designed like a DBMS (e.g., DB2 [Moha93a]) in that it does its own logging, recov-
ery, space management, buffer management and locking. It supports recovery from not only system failures but
also media failures. MQM uses the write-ahead logging based ARIES recovery method [MHLPS92] which has
been implemented in a number of products (DB2, DB2/2, DB2/6000, Encina, WDSF and ADSM) and prototypes
(Starburst, QuickSilver, Exodus and Gamma). It supports fuzzy checkpoints, fuzzy backups and dual logging.
It allows a message’s length to be as high as 4MB. It locks individual messages with non-intention locks (e.g., S
and X). Since the lock hierarchy includes queues and pages also, typically, intention (e.g., IX) locks are acquired
at those levels. It uses the CommitLSN technique of [Moha90, Moha93b] to avoid/reduce locking overheads
under certain conditions. MQM’s buffer manager followsno forceandstealbuffer management policies, and it
does batched (i.e., multipage) I/Os and asynchronous writing of dirty pages to disk. MQM uses thenested top
actions (NTA)feature of ARIES to efficiently support commit of some actions of a transaction irrespective of
whether the transaction as a whole commits or rolls back. An NTA is used to support, for example, a Put/Get
that is issued outside the scope of the current transaction [DiMo93] or the Put of a trigger message on an initia-
tion queue. The writing of log records (compensation log records (CLRs)) during updates performed as part of
rolling back a transaction permits the easy support of features like recoverably tracking the number of times a
message had been retrieved and then the retrievals were rolled back.

Mixing of persistent and non-persistent messages on the same queue is supported efficiently. In order to avoid
scanning every message in every queue during restart after a failure to purge non-persistent messages, storage al-
location within a file for persistent and non-persistent messages is handled differently. On a given page, persistent
and non-persistent messages are not intermingled. Space map pages (SMPs), as in DB2 [MoHa94], keep track
of which pages have been allocated to non-persistent messages. Consequently, it is enough to examine the SMPs
to deallocate the space associated with non-persistent messages during restart or on first access to a given SMP
after restart had occurred. The pages storing the non-persistent messages themselves do not have to be accessed
for purging such messages. To guarantee that across persistent and non-persistent messages the messages are
retrieved in the same order in which they are appended, each queue header has 2 subqueue pointers: one for
each type of message on the queue. All the pages containing persistent (respectively, non-persistent) messages
of that queue are chained together starting from the persistent (non-persistent) subqueue header. Actually, this is
done separately for each priority class (i.e., on a given page messages of different priority classes are not mixed
together). Within a page, messages are stored contiguously without chaining. During a Get operation, the times-
tamps on the first available message in each of the subqueues is examined to determine whether the next message
to be retrieved should come from the persistent subqueue or the non-persistent subqueue.

To provide transaction semantics to Gets/Puts involving non-persistent messages, a virtual memory log (soft
log) private to each transaction is used [DiMo93]. This strategy improves performance compared to the one
which uses the usual disk-based log for them also. No redo logging is needed for Puts/Gets of non-persistent
messages. Only undo logging is needed. Whenever an NTA involving a non-persistent message completes, the

25

soft log records relating to that NTA are purged since they are no longer needed.
MQM performs logical deletion, as opposed to physical deletion, of messages during Get operations to avoid

having to log message contents during Gets. Once a Get is committed, the space occupied by the deleted message
could be garbage collected. An asynchronous garbage collector is used for this purpose. To determine efficiently
that a page full of deleted messages is in the committed state, the CommitLSN technique is used. Only when
the former condition is true is such a page removed from the linked list of pages representing the queue contents.
Performing logical deletions also avoids the need ever for alogical undowhen the rollback of a Get is performed,
unlike in the case of B+-trees with ARIES/IM [Moha94, MoLe92]. To avoid the need for logical undos, the undo
of a Put also is implemented as a logical deletion of the corresponding message. Logical deletions also avoid
physical deletions’ need for a space-reservation method like the one described in [MoHa94]. Since the logically
deleted messages continue to be in the queue until garbage collection happens, to improve performance for Gets,
a pointer is maintained in the queue header to the first page containing a non-deleted message. When a Get is
rolled back this pointer is reset to the first page of the queue, instead of using complicated logic to determine the
position of the affected page in the chain of pages. To make a Put efficient, for each priority class and for each
message type (persistent or non-persistent), a pointer is maintained to the last page (tail) of the subqueue. For
efficiency reasons, queue header information is retrieved from the database and cached in a hash table in virtual
storage.

It is possible that a transaction, after doing some updates (which includes doing some Gets and, possibly,
some Puts), encounters an error condition which relates to one or more of the messages which were retrieved.
Under these conditions, if the transaction were to merely rollback, then the problem-causing messages would
be put back on their queues due to the rollback of the Gets. Those messages would then become available for
subsequent Gets to retrieve them. If the application were to determine that the problem-causing messages should
not be put back on the queues since they would continue to give problems to future transactions that would Get
them, then the application might desire the following alternate sequence of events: the transaction undoes all
its updatesexceptthe Gets relating to the problem-causing messages, Puts one or more error messages and then
commits.

Supporting the above semantics requires some extensions to the usual logging and recovery logic since it in-
volvesselectiveundo under certain conditions (e.g., when there is a rollback due to an application-detected error
condition but not when the rollback is due to a process or system failure). MQM supports this functionality by
handling application-initiated rollbacks (AIRs) differently and by letting transactions indicate (mark) during Get
operations which of those operations should not be rolled back in case of an AIR. Internally, in MQM, this is im-
plemented as follows: A list of the marked Gets of a transaction is maintained in virtual memory. When an AIR
occurs, longer-than-commit-duration (i.e.,allocationduration) locks are obtained on the marked messages, the
transaction is rolled back normally (which includes rolling back the marked Gets), all locks except allocation-
duration locks are released, a new transaction is begun, the marked Gets are redone, allocation-duration locks
are released and control is given back to the application. Now the application can issue its error messages and
commit. The latter will commit the marked Gets also. If a rollback other than AIR were to occur, then the nor-
mal undo logic will cause the marked Gets also to be rolled back without any subsequent automatic redo of those
Gets. Acquiring the allocation-duration locks ensures that the redo of the marked Gets can be performed with-
out interference from other transactions. In the current implementation, only one marked Get can be issued in a
transaction.

A Get with the browse option retrieves only a committed message, but since no lock is retained on the re-
trieved message that message may be deleted by another transaction. A browse cursor’s position is retained across
a commit. Holding an allocation duration page lock on the current page ensures that garbage collection does not
unchain that page from the queue.

AcknowledgementsWe would like to acknowledge the contributions of our Almaden, Hursley and Raleigh
colleagues to the work described here.

26

References

[BCMS93] Britton, K., Citron, A., Mohan, C., Samaras, G.Method of Excluding Inactive Nodes from Two-Phase Commit
Operations in a Distributed Transaction Processing System, U.S. Patent 5,258,982, IBM, November 1993.

[CiMo91] Citron, A., Mohan, C.Combining Presumed Abort Two-Phase Commit Protocols with SNA’s Last Agent Opti-
mization, IBM Technical Disclosure Bulletin, Vol. 34, No. 7B, December 1991.

[DiMo93] Dievendorff, D., Mohan, C.Selective Participation in Unit-of-Work Protocols, IBM Technical Disclosure Bul-
letin, Vol. 36, No. 11, November 1993.

[IBM93a] Distributed Relational Database Architecture Reference, Document No. SC26-4651-01, IBM, March 1993.

[IBM93b] Message Queue Interface: Technical Reference, Document No. SC33-0850-01, IBM, April 1993.

[IBM93c] Introduction to Using the Message Queuing Interface via Message Queue Manager/ESA,Document No. GG24-
4062, IBM, June 1993.

[IBM93d] Systems Network Architecture Transaction Programmer’s Reference Manual for LU Type 6.2, Document No.
GC30-3084-5, IBM, July 1993.

[MBCS93] Mohan, C., Britton, K., Citron, A., Samaras, G.Generalized Presumed Abort: Marrying Presumed Abort and
SNA’s LU 6.2 Commit Protocols, Proc. 5th International Workshop on High Performance Transaction Systems,
September 1993. Also available asIBM Research Report RJ8684, March 1992.

[MHLPS92] Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., Schwarz, P.ARIES: A Transaction Recovery Method
Supporting Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead Logging, ACM Transactions on
Database Systems, Vol. 17, No. 1, March 1992.

[Moha90] Mohan, C.CommitLSN: A Novel and Simple Method for Reducing Locking and Latching in Transaction Pro-
cessing Systems, Proc. 16th International Conference on Very Large Data Bases, August 1990.

[Moha93a] Mohan, C.IBM’s Relational DBMS Products: Features and Technologies, Proc. ACM SIGMOD Interna-
tional Conference on Management of Data, May 1993.

[Moha93b] Mohan, C.Transaction Processing System and Method With Reduced Locking, U.S. Patent 5,247,672, IBM,
September 1993.

[Moha94a] Mohan, C.Concurrency Control and Recovery Methods for B+-Tree Indexes: ARIES/KVL and ARIES/IM, To
appear inPerformance of Concurrency Control Mechanisms in Centralized Database Systems, V. Kumar (Ed.),
Prentice Hall, 1994. Also available asIBM Research Report RJ9715, March 1994.

[Moha94b] Mohan, C., Haderle, D.Algorithms for Flexible Space Management in Transaction Systems Supporting Fine-
Granularity Locking, Proc. 4th International Conference on Extending Database Technology, March 1994.

[MoLe92] Mohan, C., Levine, F.ARIES/IM: An Efficient and High Concurrency Index Management Method Using Write-
Ahead Logging, Proc. ACM SIGMOD International Conference on Management of Data, June 1992.

[MoLi83] Mohan, C., Lindsay, B.Efficient Commit Protocols for the Tree of Processes Model of Distributed Transactions,
Proc. 2nd Annual ACM Symposium on Principles of Distributed Computing, August 1983.

[MoLO86] Mohan, C., Lindsay, B., Obermarck, R.Transaction Management in the R* Distributed Data Base Management
System, ACM Transactions on Database Systems, Vol. 11, No. 4, December 1986.

[SBCM93] Samaras, G., Britton, K., Citron, A., Mohan, C.Two Phase Commit (2PC) Optimizations and Trade-Offs in the
Commercial Environment, Proc. 9th International Conference on Data Engineering, April 1993.

[SJFF89] Sanders, J., Jones, M., Fetvedt, J., Ferree, M.A Communications Interface for Systems Applications Architecture,
IEEE Journal on Selected Areas in Communication, Vol. 7, No. 7, September 1989.

27

Real “Real Time Transactions”

Dr. Gary Bundell
University of Western Australia

Gene E. Trivett
University of Western Australia

1 Introduction

Having been a part of the development of the current “work horse” systems that are doing the major work in
transaction processing today, we believe they should be recognized for what they are and not called legacy sys-
tems that really misrepresent what they are. That being said, the “work horse” systems do have some significant
limitations, Among these is their ability to handle “real time” transaction processing. We refer to most of the
transaction processing work being done today as event driven or dat a driven; here, many of the results of trans-
action are the changing of data from one state to another. Transferring money from one account to another, the
issuance of an insurance policy, or the booking of a reservation are examples of event driven transactions. How-
ever, real time actions are a significant extension to the current focus of event driven or protected actions. It is
our objective to discuss the additional Transaction processing services that must be made avail! able to perform
transaction proce

To establish some common terminology, Gray and Reuter in their Transaction Processing [gray91] text out-
line three classes of action type :

1. UNPROTECTED, which do not have ACID properties.

2. PROTECTED, which have ACID properties.

3. REAL, which may or may not have ACID properties. They “need special treatment”.

It is the purpose of this paper to outline the “special treatment” that is needed for transactions that have REAL
actions associated with them.

One major architecture and design point for the “work horse” systems was whether the transaction processing
functions were “in” or “on” the operating system. Whether they were “open” or “closed” was mostly a marketing
issue not a technical issue! I would note that in the early days of the “workhorse” systems, the source code was
sent to the customer as part of the product, and the maintenance was done via source updates - it is hard to get more
OPEN than that! In real time transaction systems, the de cision is clear - some transaction processing functions
are “in” the operating system as an integral part. This is largely driven by performance. This forces an approach
that addresses both the operating system and transaction management as a united effort. The time requirements
of the transaction must be the same as the time management services of the operating system.

2 An Approach to Real-Time Processing

In some systems, notably those that at some point must interface with the physical world, there are hard time
constraints that must be met in the responsiveness of certain sequences of transactions. No matter how that trans-
action processing system is configured to be responsive to these time-constraints they will not be met if the un-
derlying operating system is unable to support a hard-responsiveness to external time-constraints. For this reason
we briefly identify the available real-time operating system approaches, and then see how one of these operating
systems can be used to support real-time transaction processing.

28

2.1 Real-time Operating Systems

There are four broad classes of real-time operating system [Levi90]:

� Priority-driven

� Priority-driven with Enhanced time services

� Time-driven Scheduling

� Deadline-Guaranteeing

The first two classes represent the vast majority of currently implemented systems, including those supporting
commercial transaction processing systems. The third class attempts to address the problem in priority driven
systems of missing deadlines (which is not permissible for hard real-time systems). The time-driven approach
does this by allocating various value functions to measure the criticality of a task. Task scheduling is done on the
basis of attempting to maximize the value functions of all tasks and the workload of all tasks The problem with
this approach is that no guarantee can be given to meet particular deadlines although the extent of deadline misses
would be significantly lower than for priority-driven schedulers. The four class of real-time operating system is
the one we are most interested in since it provides an environment where transaction agents will guarantee to
complete within a specific time-constraint.

2.2 Deadline-Guaranteed Transaction Processing

Using a Deadline-guaranteeing approach (an implemented example of which is the Spring kernel), we can assume
that our operating system supports the setting and reading of the criticality for transaction agents and the impo-
sition of time constraints on transaction agents. An important point is that transaction agents are only created by
the scheduler per transaction so that their time criticality is directly related to the transaction time criticality. In
implementation terms, the transaction agents would b e lightweight processes or tasks so that their creation over-
head is minimal. Although the term ’lightweight’ may have various interpretations depending on the context,
here we are talking about POSIX-like multi-threaded operation.

A significant issue is that most deadline-guaranteeing operating systems are usually very restrictive on mem-
ory allocation policies and that pre-execution segmentation is used in preference to virtual memory systems.
This means that transaction agents have fixed limits on their capabilities when invoked (although a range of pre-
assigned capabilities can be provided). In most applications not all transactions will necessarily require hard-
responsiveness, so that the capability to specify non real-time transactions and consequently obtain a more re-
laxed resource environment should be supported. Traditionally this has been achieved by a physical separation
between systems, i.e.: a real-time ’front-end’ with some loss in flexibility. However with the compute power
available today, this separation should become a logical rather than a physical one.

The transaction scheduling function can be separated into three components: resource allocation, schedule
feasibility verification and run-time scheduling. The function of the resource allocator is to determine the re-
source set needed to satisfy a specified transaction request, i.e. the transaction agents and their location and then
obtain the resource and time constraint information from the participating distributed nodes. This information is
used by the scheduler to verify feasibility of the modified op erating-system schedule and to determine the re-
quired time criticality of all transaction agents to meet it. If favourable, all participating nodes have transaction
agents allocated for the specific time constraint window, which is propagated to these nodes. in the final phase
of run-time scheduling, the transaction agents reach their defined constraint window and then execute, subject to
minor local node scheduling variations. Because the issue of time-constraint propagati! on is an important one
in this co

29

3 Transaction time-constraint propagation

Transactions are primary objects or justificands from the perspective of an object-orientated real-time system,
And the transaction agents serve as joints between sources and destination nodes for the transaction object. As
shown in the diagram below the transaction agents maintain a real-time calendar which holds the scheduled time-
constraint windows for access to and from the transaction. This is illustrated by Figure 1:

Source
Node

Destination
Node

Transaction agent
and joint calendar

time

Transaction
Object

Figure 1: Transaction agent and Joint Calendar

The purpose of the calendar in the transaction agent is to allow the planning of transport for the transaction,
i.e. to support the reservation of future time-constraint windows which in turn enforces deadline compliance.
The time-constraints themselves are referenced to a global-time which is mapped to local time by each node
responsible for the transport of transactions as shown in Figure 2:

Global Reference Line

Local Map

Transaction
Object

Constraint Requirement Constratint

Requirement

Local Map

Transaction
Object

Figure 2: Time constraint relationships global to local

An important issue in distributed systems is fault tolerance in either the two forms of fault containment (grace-
ful degradation) and fault recovery [Mullen89]. In real-time transaction systems the penalty for failing to recover
a transaction is just as severe as missing deadlines. Thus transaction recovery agents must be scheduled with suf-
ficiently high time criticality to achieve this - in fact node-based local schedulers must reserve a transient trans-
action recovery procedures. Transaction agents are deliberately not terminated until a transaction has been two-
phase committed and no further transport operations for that transaction are currently scheduled within the time
horizon. This non-termination of agents is the basis for the recovery process. There are other issues associated
with recovery that relate to the dynamic nature of real-time applications which also need to be considered.

30

3.1 RECOVERY CONSIDERATIONS

When one characterizes the effect of having a major change in the environment when recovery occurs, then the
approach to recovery is very different. Transactions that exhibit REAL actions are probably idempotent and the
time to complete recovery probably determines the extent of the environmental change. For example in mining
operations the conveyor belts are moving and continue to move during recovery; or a liquid flowing through a
major pipeline will continue to flow even during recovery. Hence real time transaction processing requires some
different recovery models. The major recovery models used in “work horse” systems and even newer transaction
systems are as seen in Figure 3:

Old
State

Log

Redo

New
State

Log

Undo Old
State

New
State

Figure 3: Standard (Work-horse) recovery model

However, a new model for real time transaction processing systems that is more useful is as shown in Figure
4:

Old
State

Log

Redo
Current

Adjust New

New
State

Dynamic
State

Operational
State

To Real

Figure 4: Real-Time recovery model

It is the addition of CURRENT DYNAMIC STATE and ADJUST TO REAL that are needed in real time
transaction systems. In effect, the addition of CURRENT DYNAMIC STATE forces the transaction system re-
covery (ADJUST TO REAL) to take into account the state of the reality that exists in the real world; this is in
addition to any compensating transactions. The objective is that once the real world state is known (CURRENT
DYNAMIC STATE), then the transaction manager can again process transactions that affect the oper ation of the
REAL process. Now, a key point here is that CURRENT DYNAMIC STATE is changing even during recov-
ery (for example a conveyor belt is still moving or liquid is still flowing). The longer to recover, the more the
ADJUST TO REAL is required to do.

4 Conclusions

This paper has addressed some of the salient issues for real-time transaction processing. In particular, the im-
portant issue of the connection between transactions transaction agents and the underlying real-time operating

31

system has been covered. The related issue of time constraint propagation in a real-time transaction architec-
ture has also been considered. The approach taken to recovery management is another issue. A mechanism was
proposed whereby the dynamic state of a real-time process (held by the s ystem) that is involved in transaction
exchange, can be adjusted.

5 Short Biography

Gary A. Bundell received the B.E. and M.Eng.Sc. degrees in electrical engineering from The University of
Western Australia in 1978 and 1981, respectively, and the Ph.D. degree in control engineering from Cambridge
University, U.K. in 1985. From 1986 to 1990 he was progressively s Senior Research Engineer, Research and
Development Manager (Electrical), and Research and Development Manager with ACET Ltd. In 1991 he joined
the faculty of The University of Western Australia where he is currently a Senio r Lecturer. His research interests
include real-time distributed information systems design and analysis and his professional affiliations are MIEEE,
MIEAust, and AMIEE.

Gene E. Trivett worked at IBM Corp. for thirty years as a senior developer involved in the research and
development of a large number of systems including ESA, IMS, AI products, and communication products. He
worked for HaL Computers for one year prior to his taking his current position of Senior Lecturer at The Uni-
versity of Western Australia. He is a graduate of UCLA and has a number of patents and publications.

References

[gray91] Gray, J., and A. Reuter, “Transaction Processing: Concepts and Techniques.” Morgan Kaufmann, San
Mateo, CA, 1991

[Levi90] Levi, S.T. and Agrawala, A.K., “Real-Time System Design”, McGraw-Hill, 1990.

[Mullen89] Mullender,S.J., “Distributed Systems”, Addison-Wesley, 1989.

32

The TUXEDOTM System: An Open On-line Transaction
Processing Environment

Juan M. Andrade, Mark T. Carges and M. Randall MacBlane
Novell Inc., 190 River Road, Summit, NJ USA 07901

Abstract

On-line transaction processing (OLTP) users are moving from monolithic proprietary solutions (e.g.,
CICS) to open distributed solutions. Open distributed TP environments blend together standards-based
interfaces, processing models and protocols into a flexible solution for OLTP users. The TUXEDOTM

Enterprise Transaction Processing (ETP) System [TUXEDO] provides a UNIXTM System-based trans-
action processing monitor (TPM), System/T, designed to enable the integration of many different com-
ponents of OLTP in an open systems environment. This paper discusses the requirements driving open
OLTP in today’s market and an overview of the TUXEDO products designed to meet those requirements.1

1 Open OLTP Requirements

As OLTP systems and applications are being deployed on open platforms, the list of requirements for OLTP sys-
tem providers is growing. Not only are many of the traditional requirements, such as supporting hundreds of
users performing short interactive tasks, still valid but there are also new requirements specific to open systems
environments. This section explores many of these requirements.

Open OLTP systems have been driven by industry needs to support decentralized applications in order to
decrease high computing costs. These systems must be able to handle distributed and heterogeneous configura-
tions of software, hardware and networks. They must provide mechanisms for the integration of multiple tiers
of processing, from PCs to Mainframes. Such integration requires a consistent set of application programming
interfaces (APIs) across a broad span of computing environments, and the coordination of transactions across
multiple heterogeneous resource managers (RMs).

The X/Open DTP Model [XOPEN] addresses the issues of consistent APIs and some level of component
interchangeability, but does not completely address the total OLTP environment. Open OLTP systems still require
a great deal of flexibility to integrate other required software provided by different vendors. What follows is a
list of requirements that OLTP system providers must meet for open systems platforms:

Freedom of choice - vendor independence. The main thrust behind open OLTP systems is that customers
have the freedom to choose the parts of their computing environment based on their needs. This includes the
hardware they buy, the way in which it is networked together and the different software components. A TPM must
therefore support standard interfaces like X/Open’s XA interface [XA]. The XA interface allows applications to
easily integrate different RMs (e.g., DBMSs) while maintaining the transactional data integrity they currently
have in a single vendor environment.

Application portability. Open OLTP application developers need the same application development envi-
ronment across different hardware and software platforms. This requirement calls for a standard set of APIs that

1TUXEDO is a registered trademark of UNIX System Laboratories, Inc., a wholly-owned subsidiary of Novell Inc, 190 River Road,
Summit, NJ USA 07901. UNIX is a registered trademark of the X/Open Company Limited. Other brand and product names referenced
in this document are trademarks or registered trademarks of their respective holders.

33

span different computing bases (that is, from the PC, to the UNIX server, to the proprietary mainframe). These
APIs allow application developers to take advantage, for example, of different graphical user interfaces (GUIs)
across dissimilar platforms while preserving the same OLTP transaction and communication semantics. X/Open
has defined three such interfaces to date. The first, XATMI [XATMI], provides application buffer management
and both request/response and conversational style communication mechanisms. The second, TxRPC [TxRPC],
provides a Remote Procedure Call, or RPC, interface. The third interface, TX [TX], provides transaction control
verbs for transaction demarcation. Together, these interfaces define a powerful set of tools that allow portable
applications access to the power of transaction processing in an open distributed environment.

Distribution transparency. Communications paradigms in open OLTP systems must present location trans-
parent communication services to application programmers. This transparency must allow application programs
to be completely independent of the environment with which they communicate. This includes independence
from the hardware on which the other program is running, the language in which it is written, the data format
it expects and the TPM system by which it is administered. As systems become more distributed, the need for
location transparency becomes greater.

Performance, modular growth, and scalability.OLTP applications require high throughput and short response
times. Distributed open OLTP must also allow application growth through the orderly expansion of the hardware,
system software and application software on different computing bases.

Reliability, robustness, and reconfigurability. In a distributed environment, an open OLTP system must be re-
silient to failures and it must provide mechanisms to prevent application data from becoming inconsistent. OLTP
systems provide the concept of a distributed transaction to ensure that data at all sites remains consistent.

Monitoring and administration. OLTP systems must allow systems administrators to tune the load distribu-
tion of their application, and to schedule the priority of work. In distributed environments, there is also an interest
in automating the start-up and shutdown of an application (or parts of it). Such automated support should be con-
trolled from a central place. That is, OLTP systems administrators need to have a centralized view of a distributed
application.

To illustrate how the requirements of open OLTP can be met, the TUXEDO ETP System will be described.
First, a high level description of the TUXEDO ETP System distributed architecture is given to show the various
computing bases that an open OLTP system must span. Next, to motivate how the diverse requirements of open
OLTP are met with a simple but powerful software architecture, the TUXEDO ETP System computational model
is described. Lastly, the individual components of the TUXEDO ETP System architecture are briefly described.

2 Overview of the TUXEDO ETP System

The TUXEDO ETP System distributed architecture allows a set of heterogeneous computer nodes to cooperate
towards the efficient and reliable execution of OLTP applications. Figure 1 depicts the different computing bases
on which the TUXEDO ETP System runs (e.g., workstations and UNIX-based server nodes). It also illustrates
that it interoperates with other OLTP environments, perhaps dissimilar from its own (e.g., IBM MVS/CICS).

The TUXEDO ETP System distributed architecture has the following main components:

� System/T nodes. System/T is the TPM of the TUXEDO ETP System. System/T nodes are the fundamen-
tal nodes in a TUXEDO ETP System application. Because the TUXEDO ETP System runs on a variety
of open systems platforms, the computing base that a System/T node is defined on is provided by many
platform vendors.

� Workstation nodes. Applications can offload CPU cycles used for forms processing (or other input activi-
ties) from System/T nodes to workstation nodes, thus improving the overall performance of an OLTP appli-

34

TUXEDO ETP
System Domain

TM Domain
Central
Console

Mac Win OS/2

Workstations

System/T
Node

Unix Ware

Workstations
Win HP-UX

Asynchronous
Terminals

Asynchronous
Terminals

System/T
Node

System/T
Node

Unix Ware

Other TM Domain
Other

TP Node
(e.g., CICS)

IBM MVS

Figure 1: TUXEDO ETP System Distributed Architecture

cation. Applications running on workstations nodes are requesters of OLTP services offered on other Sys-
tem/T nodes. The TUXEDO ETP System supports PCs running MS-DOS, Windows, Macintosh System
7, OS/2, Windows NT and workstations running various versions of the UNIX operating system. Work-
stations nodes can be connected to System/T nodes using many types of networks (e.g., TCP/IP, OSI,
IPX/SPX).

� TM Domains. A TM Domain represents an independently administered set of TP nodes, whether they be
System/T nodes or other TP nodes. System/T nodes can be connected to other System/T nodes using many
types of networks and transport interfaces. Interaction between heterogeneous TM domains, i.e. domains
controlled by different TPMs, is performed using standardized protocols. Interaction between homoge-
neous TM domains, e.g. two TUXEDO ETP System Domains, is often performed using more efficient
customized protocols.

� Other TP nodes. These nodes are part of a cooperating TM domain that is interacting with the local TUXEDO
ETP System domain to form a larger application. As was mentioned above, these other domains may be ei-
ther homogeneous (e.g., other TUXEDO ETP System domains) or heterogeneous (e.g., IBM MVS/CICS).

In a distributed, heterogeneous environment, as described above, a computational model that simplifies the
development of an open OLTP application and hides the complexity associated with distribution application pro-
cessing is required.

3 Client/Server: A Computational Model for Open OLTP Applications

A client/server model is ideal for building OLTP applications in distributed environments. This approach con-
sists of splitting the application into two types of software components, clients and servers. Clients gather input
from terminals (or special devices) and construct service requests. These service requests refer to operations im-
plemented within a server. Hence, a server’s main function is to process clients’ service requests and send them
replies indicating the outcome of their requests.

The client/server model has important properties for OLTP applications:

� Modularity. It provides a modular approach to building distributed applications. Such modularity allows
for extensible and scalable applications that can grow with an enterprise’s needs.

� Performance. By conserving system resources (e.g., many clients can be served by a few servers), the
client/server model permits applications to maintain short response times and high transaction throughput.

35

� Data independence. Clients have to know very little about the structure of servers. They need to know only
the name of the service they want performed and the parameters that service expects. Because the service
routines hide the actual data access methods, clients have no idea what kind of DBMS is being used. In
fact, the DBMS accessed within a server can be changed with little or no impact on the clients.

� Location transparency. Because of the separation between client and server processes, clients communi-
cate with servers using abstract, location independent names. This allows servers to migrate across com-
puting bases depending on resource needs with no affect on clients.

The TUXEDO ETP System exploits the client/server computational model towards the goal of enabling high
performance OLTP applications. Because of the special needs of OLTP applications, the TUXEDO ETP System
recognizes the following programming paradigms: request/response, conversational, store-and-forward queu-
ing, event notification and remote procedure call (RPC). The first four of these paradigms are provided through
an API, called ATMI (a superset of XATMI), that was designed to meet the requirements of open OLTP. The
last paradigm is provided through X/Open’s TxRPC interface which adds transactional syntax and semantics to
DCE’s RPC and IDL.

ATMI’s request/response verbs provide a dynamic, run-time resolution of service names. These verbs also
provide support for synchronous and asynchronous service requests. Asynchronous service requests allow sev-
eral requests to be executing in parallel and are particularly well suited to distributed environments. In conjunc-
tion with the transaction management verbs of the TX interface, several requests can be grouped together within a
single transaction. Application programmers also have control over the priority at which a service request is han-
dled by a server. Because of the high level of abstraction in ATMI, TUXEDO ETP System/T is able to handle data
presentation services automatically. These data presentation services include transparently encoding/decoding
application data as it passes between nodes having different processor types. Services defined using ATMI can
return replies to clients, or forward work to other servers that take over the responsibility of sending the originat-
ing client its reply. This ”bucket-brigade” style of communication is well suited to distributed environments as
it keeps a high percentage of servers busy, and working in parallel, during peak periods.

While the request/response paradigm is simple and powerful, it is not ideal for applications that require either
bulk data transfer or incremental results. These two styles of communication are best performed by a conversa-
tional paradigm that allows a client and a server to communicate more than just a single request and response.
Part of ATMI, therefore, is an interface allowing clients and servers to communicate using a simple, half-duplex
conversational paradigm while maintaining the premise of location transparency.

At times, applications require time independent disk-based queuing so that requests may be queued for parts
of the application that may not yet be available. Queuing of request/response requests must be controlled by the
same transactional boundaries that bracket the services being requested. These capabilities are provided by the
store-and-forward features of the ATMI interface.

While ATMI provides a complete and powerful communication interface, many users desire the simplicity
that comes with using a remote procedure call interface. X/Open has defined the TxRPC interface to support
this type of user in a transaction processing environment. The TUXEDO ETP System’s TxRPC interface allows
application programmers the freedom to program to function call interfaces while leveraging the functionality of
a complete transaction processing environment.

4 Architecture of the TUXEDO ETP System

Figure 1 shows the components of a TUXEDO ETP System application. These components provide the funda-
mental services required by open OLTP applications shown in the figure below. These services provide an open
systems solution to the Open OLTP requirements specified earlier.

36

Mac Win OS/2 UnixWare

 Clients
Application
Clients Clients

Application
Services

Tuxedo System/T Services
Workstation Handling
Distributed Function Shipping
Naming Services
Data Encdoing and Decoding
Priority Scheduling and Load Balancing

Request Queuing and Spooling Services
Distributed Transaction Management
Inter-Domain Services
Inter-Node Network Handling
Security Services
Fault Management Services
System Adminstration and Reconfiguration Services

Workstation Nodes

LAN/WAN

Aynshronous
Terminals

ToKerberos SNMP/CMIP

To/from Central ManagementTuxedo Management Console

To/from Remote Nodes
To/from Remote Domains

OSI/TP

Resource
Manager

Application Services

Figure 2: TUXEDO ETP System/T Services

Freedom of choice (vendor independence)is provided through support for X/Open’s XA interface. This inter-
face allows an application to use the TUXEDO ETP System with heterogeneous RMs (e.g., DBMSs) in a single
application without sacrificing data integrity for transactions that span RMs. Vendor independence is also pro-
vided at the hardware level by the availability of the TUXEDO ETP System on more than 20 different platforms.

Application portability is provided at the hardware level by the availability of the TUXEDO ETP System
on a wide range of open platforms, at the language level by the availability of the programming interfaces in C,
C++ and COBOL, and at the API level through support of the communication and transaction APIs defined by
X/Open.Workstation handling allows applications to migrate client code based on these APIs to workstations.
This in turn allows application builders to utilize the graphical user interfaces on the platforms of their choice.

Distribution transparency. The TUXEDO ETP Systemnaming servicesprovide location transparency for
service requests. Clients use abstract names, such as ”DEBIT,” to call on a service. System/T’s naming services
are responsible for resolving these abstract names and routing the request to the appropriate server. System/T’s
naming services contain information about application services located within a TUXEDO ETP System domain
as well as about those known to be located in other TM Domains.Priority scheduling, context-sensitive rout-
ing, and load balancingallow an application to specify additional criteria to be used in choosing the best service
for a particular request. Automaticdata encoding/decoding servicesprovide hardware independence to appli-
cation programmers so that they do not need to know when a particular request might be sent to a different type
of machine for processing.

Performance, modular growth, and scalabilityare supported by the client/server model used within the TUXEDO
ETP System. This model allows a few servers to support many clients while allowing additional servers to be
added to meet increasing demand. The hardware and vendor independence mentioned earlier allow applications
to expand by adding machines and RMs of different types as needed. The client/server model is based ondis-
tributed function shipping which saves data transfer and processing time by implementing services near the
data rather than retrieving large amounts of data for processing by a front-end client. Additionally,inter-domain
servicesallow applications to share information between cooperating application domains without sacrificing the
administrative integrity of either domain. Inter-domain services are available to IBM MVS/CICS via LU6.2 pro-
tocols, to other TUXEDO ETP System domains via proprietary protocols and through the OSI-TP protocol to any
other TPM meeting this protocol.

Reliability, robustness, and reconfigurability. Fault management servicesincrease the availability of an ap-
plication by allowing servers and services to be replicated across several System/T nodes. Also, System/T mon-
itors the viability of the different components in a System/T node, such as machines, networks and processes.

37

When a failure is detected, automatic recovery or automatic server re-start is performed.System administra-
tion, monitoring, and reconfiguration servicesprovide capabilities for transaction monitoring and on-line re-
configuration.Distributed transaction management servicescontrol the two-phase commitment mechanism
required for interoperation with X/Open XA-compliant resource managers. the use of a two-phase commitment
protocol and logging service.Request queuing and scheduling servicesallow applications to store requests in
a stable queue and to control their delivery to application servers at a later time.

Monitoring and administration. System administration, monitoring, and reconfiguration services, as
mentioned above, provide monitoring and reconfiguration capabilities. An administrative API is also provided
that is used to create customized GUI administrative interfaces and SNMP or CMIS administrative gateways for
example.

5 Summary

Open On-Line Transaction processing is a rapidly evolving area that requires support for distributed and hetero-
geneous configurations of software, hardware and communications networks. The architecture of the TUXEDO
ETP System presented in this paper shows that Open OLTP is viable. The paper illustrates how the different
components of the TUXEDO ETP System and the client/server model provide an Open OLTP environment.

References

[TUXEDO] Novell, “TUXEDOTM ETP System Release 4.2 Product Overview”.

[TX] ‘Distributed TP: The TX Specification”, X/Open Company Ltd., Preliminary Spec., November 1992.

[TxRPC] ‘Distributed TP: The TxRPC Specification”, X/Open Company Ltd., Preliminary Spec., July 1993.

[XA] ‘Distributed TP: The XA Specification”, X/Open Company Ltd., CAE Spec., February 1992.

[XATMI] ‘Distributed TP: The XATMI Specification”, X/Open Company Ltd., Preliminary Spec., July 1993.

[XOPEN] ‘Distributed TP: Reference Model, Version 2”, X/Open Company Ltd., November 1993.

38

Services for a Workflow Management System

Hector Garcia-Molinay

Stanford University
Kenneth Salemz

University of Maryland

Abstract

This paper represents an effort to understand the problem of workflow management. Our goal is not to
propose yet another model or system. Instead, we give examples of the types of services that a workflow
management system may provide.

1 Introduction

Traditionally, database management systems (DBMSs) have had a very “data centered” view of the world. An
application program is simply an entity that issues a transaction. It starts interacting with the DBMS by issuing
a “begin work” command, then emitting a series requests to access and modify data, and finally ending with
either an “abort work” or a “commit work” command. After that, if the application issues other transactions, it
is considered to be a different program. It is of no concern to the DBMS what happens to the program if its work
is aborted or if a system crash occurs, or how one program is related to another.

There has been recent interest in providing more comprehensive support for data intensive applications. This
general research area has been referred as either workflow management, new transaction models, activity man-
agement, or third generation transaction monitors [Elma93, Daya93].

To illustrate some of the issues, let us consider a typical application oractivity that accesses one or more
database systems. This activity processes a purchase order at some company, and can be represented as a collec-
tion of steps. The activity starts when a phone call is received to place a new order. In this “phone call” step a
clerk enters the required information into an electronic form. The next step, “enter order,” is to run a transaction
to record the new order in the database. After the order is entered, two parallel steps are executed. The “billing”
step charges the customer and the “inventory” step updates the inventory. Each of these steps may involve a trans-
action that reads and updates the database. After these transactions complete, a final “shipping” step is executed
to generate the appropriate shipping orders.

Activities sometimes fail. For example, if the “billing” step discovers that the customer’s credit is not good,
then we may want undo some of the work done and perhaps perform some alternative. For instance, we may run
a “delete order” step to record the fact that the order has been canceled. Note that this is not simply an “undo”
of the original “enter order” transaction. That transaction already committed; furthermore, we want a record of
the canceled order. In addition, we may want to initiate other steps, like generating a letter to the customer.

Each step of the activity may run as a separate process (or thread or whatever unit of processing the operating
system supports). To implement this activity, the application programmer must write code for:

� Starting up and initializing the processes;

yDepartment of Computer Science; Stanford, CA 94305-2140; email: hector@cs.stanford.edu
zDepartment of Computer Science; Collage Park, MD 20742; email: salem@cs.umd.edu

39

� The internal logic of each step (e.g., how to bill a customer). This code may call on a DBMS to access
data, and to start or terminate transactions;

� The overall flow of the activity, e.g., when can the “shipping” step start up,

� Inter-process communication (e.g., the part number ordered must be sent from the “enter order” step to the
“inventory” step);

� Detecting and coping with failures of the processes.

The goal of aWorkflow Management System (WFMS)is to support activity programming, that is, to make it
easier to program activities like the purchase order one. There has been a great flurry proposed “new models” that
a WFMS should support, like Contract Nets, Sagas, Split-Transactions, Flex Transactions, and S-Transactions,
among others. There have also been proposals for “took kits” for allowing the definition of new models, for for-
malisms for describing transaction models, for new languages for describing activities, and for execution systems
that can support a variety of “transaction models” [Elma93, GaSa87, GrRe93, Hsu93].

To understand what all these “models” are contributing, we think it is important to separate the two main
components of a WFMS: theservicesand theprogramming environment. The services provide the underlying,
operational functionality for activity programming while the environment provides the language and tools for
the programmer to express the logic of the activity. This is analogous to the role operating systems (OS) and
programming environments (PE) play in general purpose computing: The OS provides processes, interprocess
communication, scheduling, and so on, while the programming environment provides a way to write programs
and represent variables.

The environment and the services are of course closely related, but in a way are also orthogonal. For example,
consider a trigger service that initiates processes when certain conditions occur (e.g., when a transaction aborts).
This service may be made available in the language through an “on abort:” statement. On the other hand, it could
be made available in an implicit way, e.g., because steps like “billing” and “enter order” are defined to be part of
the same activity, then an abort of “billing” may automatically imply that the compensation for “enter order” is
run. Similarly, an environment concept such as shared step variables can be implemented in several ways, e.g.,
by storing the variables in a shared database, or by exchanging messages between steps when the variables are
updated. The models suggested in the literature usually combine service and environment ideas. We believe that
by separating the components, one can gain a better understanding of what each model contributes.

In this paper we briefly illustrate some of the basic services a WFMS may provide, independent of the pro-
gramming environment. We start by illustrating, through an example, how hard it is to program activities if the
WFMS provides no support beyond what the OS provides (Section 2). Then we suggest some simple but pow-
erful services that can make the programming task simpler (Sections 3 and 4).

2 Programming an Activity

As a running example for this paper, let us consider an even simpler activity that the one in Section 1. The activity
consists of two “forward” steps. The first stepA increments a variableX stored in a database and the second step
B modifies a database variableY . The activity has a constraint that ifX andY cannot both be modified properly,
then any changes made to either value should be compensated for.

Suppose that a programmer has available some common services, such as those provided by a simple oper-
ating system, a transaction manager, and a DBMS. What additional services must be provided by a WFMS to
make it possible to program this (or any other) activity? The is answer is: none! Our activity is just a program,
so it should be implementable on any computer.

The problem is that the program would be quite messy because it has to recover from failures. In particular,
while the steps executed, they would have to write detailed state information to disk, to allow recovery. For

40

example, before the database transaction for stepA commits, we need to write to disk any parameters that may
be needed by the compensation step. We also need to record the transaction id for this transaction, so that at
recovery time we may determine its fate (by querying the DBMS).

At recovery time, an application specific program would have to be run to determine the actions to take. In
particular, since database transactions and processes that execute them are independent, there are many states
to consider. That is, the processes that were executing the activity may or may not be running (perhaps they
failed, perhaps they were never created). Similarly, the transactions may have or may have not committed. For
each scenario, we take different actions, re-starting processes, aborting or committing open transactions, runing
compensations if necessary, and so on.

3 Binding Processes and Transactions into Steps

The WFMS can simplify matters tremendously if it provides the concept of atransactional step. The idea is that
a process and a database transaction, called itsunderlying transaction, are bound together as an atomic unit. Any
actions, e.g., creation of other steps, do not take effect until the underlying transaction commits. The process may
request that its current underlying transaction be committed or aborted, to be replaced by a new one.

The WFMS provides “create-step()”, “commit-step()”, and “abort-step()” services. The latter two services
cause the current underlying transaction and the process to terminate. In addition, “commit-and-chain()” and
“abort-and-chain()” are provided to allow a step to terminate its underlying transaction and start a new one, with-
out terminating the process.

Using these new facilities, our example could be coded as follows.

program-A:
x := read-db(X); /* get value of X from the database */
x := x + 1;
write-db(X,x); /* write the new value of X */
create-step(program-B, parameters);
commit-step();

program-B:
y := read-db(Y); y := f(y); write-db(Y,y);
res := commit-and-chain(); /* returns result of commit request */
/* new underlying transaction begins here */
if (res = aborted) then create-step(program-C, parameters);
commit-step();

program-C:
x := read-db(X); x := x - 1; write-db(X,x);
commit-step();

In our example, we assume that the WFMS maintains the mapping from processes to underlying transactions.
Thus, when stepA issues the “read-db” call, the transaction id of the underlying transaction is automatically
passed on. The same holds for other calls.

Recovery is simplified because all of a program’s actions are part of an underlying transaction. In fact, a step
that has only a single underlying transaction can simply be rolled back and restarted. For example, if there is
a system failure before stepA commits, then it can be redone. However, recovery is still not completely appli-
cation independent. One reason is that a failure may occur part of the way through a step that uses more than
one underlying transaction. For example, program-B’s execution may fail after the “commit-and-chain()” but
before “create-step()”. The proper recovery action (creating a step to run program-C) in that case is a matter of
application semantics.

41

The WFMS may provide additional services that allow an application to define how recovery should be per-
formed in such cases. For example, the WFMS could supportpersistent triggersto be executed in case a trans-
action enters a specified state. Program-A could be re-written to use triggers as follows.

program-A:
x := read-db(X); /* get value of X from the database */
x := x + 1;
write-db(X,x); /* write the new value of X */
s := create-step(program-B, parameters);
on-abort(s,program-C,parameters); /* trigger program-C in case program-B fails */
commit-step();

The on-abortcommand triggers a step to run Program-C in case the step running program-B aborts. (Of
course, Program-B would also have to be modified so that it did not call create-step().) Like the other WFMS
services, the trigger commands are transactional. This means that both the program-B step and the trigger will
exist if and only if the program-A step commits.

4 Activities

In our previous example, the fact that a series of steps comprises an activity is known only to the application.
Compared to processes, or transactions, or steps, activities are clearly second-class entities.

A WFMS can alleviate this problem by maintaining a activity status, or context, in a database. The WFMS
may permit an activity’s steps to access and modify the context.

Our second example illustrates how our running example might look if the WFMS implemented activity con-
texts. We have assumed that the new activity services are transactional, like other services. We have also assumed
that the WFMS maintains the mapping of steps to activities, so that explicit activity identifiers are not needed in
the programs.

program-A:
create-activity-context();
x := read-db(X); x := x + 1; write-db(X,x);
s := create-step(program-B, parameters); /* new step, part of same activity */
commit-step();

program-B:
y := read-db(Y); y := f(y); write-db(Y,y);
res := commit-and-chain();
/* new underlying transaction starts here */
if (res = aborted) then s := create-step(program-C, parameters);

else set-activity-context("success");
commit-step();

program-C:
x := read-db(X); x := x - 1; write-db(X,x);
set-activity-context("failure");
commit-step();

The “create-activity-context” call in stepA tells the WFMS that this step is the beginning of a multi-step
activity. If A commits, the context is created. If other steps inquire about the state ofA after it has committed,
they arenot told of the commit; instead they are returned the state of the activity context, in this case still active.
Only afterB successfully commits, is the context set to “success” and other steps would be then told thatA has

42

successfully committed. If the compensation stepC is run, the activity has logically failed, and an “unsuccessful”
status would be returned.

The basic idea is that to the step that invokedA the execution of multiple steps is transparent. The invoker
sees the entire activity as a single step. This makes it easy to compose activities out of activities in a recursive
fashion, a key to modular systems.

5 Conclusions

Given our space limitations, we have only illustrated two types of WFMS services that can simplify the activity
programming effort. These examples omitted many details, and of course, these are not the only ways to define
steps and activities. Furthermore, there are several other types of useful WFMS services that we did not cover.

The key point we are trying to make is that a good WFMS must provide some low level but activity-specific
services, beyond the traditional operating and database services. These services must be based on clean abstrac-
tions such as transactional steps, triggers, and activities.

References

[Daya93] U. Dayal, H. Garcia-Molina, M. Hsu, B. Kao, M. Shan, Third Generation TP Monitors: A Database
Challenge, Proc. of the ACM-SIGMOD International Conference on Management of Data, May, 1993, pp.
393-397.

[Elma93] A. K. Elmagarmid (editor), Database Transaction Models for Advanced Applications, Morgan Kauf-
mann, 1992.

[GaSa87] Garcia-Molina, H., K. Salem, “Sagas,” Proc. of the ACM-SIGMOD International Conference on Man-
agement of Data, May, 1987, pp. 249-259.

[GrRe93] Gray, J., Reuter, A., Transaction Processing: Concepts and Techniques, Morgan Kaufmann, 1993.

[Hsu93] M. Hsu (editor), Bulletin of the Technical Committee on Data Engineering, Special Issue on Workflow
and Extended Transaction Systems, 16, 2, June, 1993.

43

Transaction Processing at Microsoft: Present and Future

Patrick O’Neil, Mohsen Al-Ghosein, David Vaskevitch, Rick Vicik,
Laura Yedwab:

poneil@cs.umb.edu
fv-poneil, mohsena, davidv, rickv, laurayeg@microsoft.com

1 Introduction

The Microsoft vision of transactional database systems over the next few decades is for an increasingly perva-
sive market for packaged products. Microsoft today has a strong presence in software that empowers individuals,
software that can be taken out of the box, plugged in, and used immediately, often without even the need to read
the documentation. The Microsoft Database and Development Tools (DDT) Division is currently gearing up for a
major effort to extend this strength. The plan is to provide an integrated database system that will work on a large
NT server with high concurrency in one configuration, or a small laptop with reliable deferred workflow schedul-
ing in another. In both environments this will be an industrial strength, high reliability system, with sophisticated
transaction coordination and package ease of use. We try here to give some idea of the design concepts that will
bear on distributed transactions.

As Jim Gray and Chris Nyberg point out in their Compcon-94 paper [GRAYNY], the Microsoft Access database
product costs about $100 and has several million licenses, whereas IBM’s DB2 costs over $100,000 for an ini-
tial license fee and has about 10,000 licenses. Both systems generate $300M in annual revenue, and therefore
can sustain comparable engineering organizations. Now the Access product has only been available for a few
years and is still in an immature phase of its life cycle, so to consider a more mature market we look to computer
processor hardware. In [VASK], it is noted that there are about 30,000 mainframes in existence (characterized
as costing $1,000,000 by [GRAYNY]) and 300,000 big minis (or departmental servers, costing $100,000), while
there are more than 100M PCs and laptops, costing well over $1000 each. In this market the center of gravity
of weighted investments ($30B for mainframes, $30B for departmental servers, and $100B++ for PCs) has al-
ready moved well into the PC realm. Taking into account the continuing thrust for downsizing in business and
the growing market for home applications (many of which have not yet been invented), this trend can be expected
to continue into the foreseeable future.

Looking perhaps a decade into the future, we can easily imagine a world in which there are 100M database
servers world-wide (see [VASK] for an extended treatment of this scenario). These will be servers in the sense of
being continuously available on the net as agents for a home or business, to transact needed interchanges; home
servers will normally not have multiple concurrent request threads active, although concurrent thread execution
will continue to be an important feature. As we see with telephone use today, much of the home server net traffic
will interact with businesses to make appointments, order and pay for services and goods, and so on. But more
personal uses will also exist: to receive and screen email messages, make personal appointments, etc. Dis- trib-
uted database transaction capabilities will be crucial to making these services a reality. We can also expect to see
several hundred million notebook PCs that people carry with them, many of these not continuously connected to
the net because of volume limitations in cellular phone traffic. Notebook users will make at least daily contact
with their office and personal servers in order to back up work and continue long-running transactional work-
flow that has made progress while disconnected from net communication, for example dealing with details of a
computer conference. If this scenario seems too visionary, the reader should know that many of these capabili-

44

ties are already being supplied by large companies, such as accounting firms, for knowledge workers who spend
a good deal of time traveling. Just as the sophisticated word processing machines in 1980 offices became the
ubiquitous PC word processing software of 1990, we believe that the transactional systems are about to enter a
shrink-wrapped phase: the scene is set for another fundamental shift to home use.

At the same time that there is an explosion in home use of database systems, office use will expand as well.
Every dentist and take-out restaurant will have an inexpensive office server to deal with customer’s personal
servers to make appointments and place orders. It is possible that some applications such as airline reservations
will retain a presence on large mainframe servers because of a need to centralize flight reservation data, although
large centralized parallel databases of the Teradata model make this uncertain. In any event, cost-performance
considerations will probably force much of the work currently performed centrally on behalf of about a hundred
thousand reservation terminals to become local on the office server. As with grocery stores of today, an inexpen-
sive local server can collect information (grocery reorder, commissions for reservation agents) that can then be
cheaply centralized.

All of these observations have a number of important implications for the design of transactional database
systems of the future.

� Systems must be easy to install and maintain. This is an aspect of a shrink-wrapped package product: peo-
ple will want to be able to use their database server with no training. We shouldnUt imagine having SEs
around to install 100M copies of CICS.

� Systems must be easy to query. Most people will not write programs, or even use SQL. The Access and
MS Mail browsers provide a good initial model for what is needed.

� Easy program development for office servers. We should picture a large number of vertical markets where
entrepreneurial programmers provide customized extensions to standard frameworks for small businesses.
The Visual Basic interface to databases gives a good first cut picture of this.

� Systems must provide a sophisticated paradigm for distributed transactions. Standard 2PC protocols are
only the beginning. Replication management with weak consistency will be needed, and a Transaction
Manager (TM) to deal with appropriate Workflow models such as given in [GHO], Sagas [GARSAL, GGKKS],
ConTracts [ẄACHTREU], ACTA [CHRYKRI], etc.

As we will try to illustrate in this paper, there are a number of aspects of database theory that must be rethought
and applied in completely new ways to properly address some of the challenges arising in these new database
systems. In Section 2, we discuss Microsoft SQL cursors available today and a few details of the transactional
programming interface provided. In Section 3, we discuss a number of distributed transaction concepts needed
in future products.

2 Cursors and the Transactional Programming Interface

To provide an easy to use browse interface to data, programs often need to concurrently access a database server
and display results on a client screen for interactive scrolling and update. The standard cursor of today must be
enriched in a number of ways to provide a programming model that makes this easy to accomplish. We list a
number of features to address this, contained in the ODBC standard and implemented in Microsoft SQL Server,
and known as the Microsoft Scrollable Cursor API (or MSC-API, see [VICIK]).

� The lack of backward scrolling in SQL-89 has long been a handicap for applications that require the ability
to scroll backwards at the request of interactive users with scrollbars. The MSC-API provides essentially
all the capability in SQL-92, the ability to fetch: NEXT, PREV (SQL-92 ”PRIOR”), FIRST, LAST, RAN-
DOM (SQL-92 ”ABSOLUTE”), or RELATIVE.

45

� In SQL-89 and continuing in SQL-92, a transaction commit automatically causes all open cursors to close,
so cursor position is lost. The behavior of these cursor standards and many product implementations is
clearly a significant liability in common interactive applications that wish to scroll through a result set
making occasional updates. The problem is solved in MSC-API, where cursors remain open and positioned
after commit.

� To minimize communication overhead and latency in client-server retrievals, the MSC-API takes advan-
tage of a sensible opportunity to batch requests by fetching a (parametric) number of rows at once from
the server to the client, usually the number needed to fill a screen display. This is known as a ”fat cursor”
capability, and seems to be unique.

� It is unclear how classical Isolation Levels should be used with a user scrollable cursor. Even Cursor Sta-
bility (SQL-92 ”Read Committed”) seems to cause too much contention delay if locks are held awaiting
user response. The solution is to provide an ”optimistic” form of concurrency, where rows on the user
screen are not kept locked on the server. Updates to rows on the screen are identified on the server during
a short-term transaction, and the updates are performed if the rows involved have not been modified by
other users. Otherwise, row changes are reflected back to the interactive user to try again.

To expand a bit on this ”optimistic” form of isolation we explain the OPTCC option, set by the programmer
when opening a cursor or else as a default for all cursor opens. When a fat cursor fetch is made under this option,
a set of rows in the server will be retrieved to the client with a unique identifier and a ”Timestamp” for each row, if
a column in the table has been defined to contain these. (These ”Timestamps” are used in SQL-Server as version
numbers; they are really use-driven counters, incremented when row updates occur.) When updates to rows on
the client screen are to be executed, a transaction is started and the affected rows on the server are identified.
If the affected rows have not changed their version numbers then the update will be successful. Otherwise, a
transactional abort occurs and the client displays any new values for these rows on the client screen. Note that if
no version number exists for the rows retrieved, an analogous approach is taken except that changes to affected
rows are detected by testing values of columns retrieved for those rows and seeing if changes have occurred.
These values, after all, are the only things the user has seen on which the decision to update was based. In the case
where only a few values are retrieved to the screen, the value based approach seems to have an advantage over
the Timestamp approach, because the method allows concurrent updates to different columns by different clients.
Because of this, another option, OPTCCVAL, requires value based row update testing even when Timestamps
exist.

The ideas behind OPTCC and OPTCCVALare not new in theory. The method is mentioned in [GRAYREUT],
Section 7.12.3, but seems to be new in this client-server form. It is likely that a number of sophisticated applica-
tion programmers have used schemes like this for equivalent scenarios, but such schemes are at a disadvantage
without system support. One of the major aims of Microsoft database transaction design will be to make hard
things easy, for programmers as well as users.

3 Concepts for the Future

As we mentioned at the end of Section 1, there seem to be a number of aspects of database theory that must be
rethought and applied in entirely new ways to properly address some of the challenges of future database systems.
We are not talking here about major research breakthroughs, but rather reevaluation of a number of fundamental
concepts, many of which have been published but not adopted by existing transactional systems. As the Microsoft
transactional strategy develops, some of these ideas will become central to design.

46

3.1 Replication, Weak Consistency, and Allied Concepts

Weak consistency replication is an approach used in distributed document handling as an alternative to Two-
Phase commit [KBHOG]. The idea is that text data is replicated (copied) from one processor to several others
and then updates are permitted on one version of the text without immediate update of the others. The Rweak
consistencyS guarantee is that all changes on one version will eventually propagate to all the versions. When
conflicting updates arrive at a node, a resolution scheme must be available to RcombineS or Rchoose betweenS
the effects of two updates; the scheme used is dependent on the type of application. A common use for this form
of replication is for laptops out of touch with the net: documents for which several people share responsibility
can be shared out to a number of authors/reviewers, and changes collected later to be integrated. We see this
capability now in products such as Lotus Notes.

The weak consistency conflict resolution step is left rather vague in most products today, and it is an impor-
tant goal to provide more structure for specific application areas. A classical form arises in CASE applications,
where designers check out code modules for update projects, and weeks later check the changed modules back in.
Many CASE venders provide a sophisticated versioning method to test for code change overlap, with editors to
help users combine the effects of overlapping changes. On reflection, it seems that this is exactly the type of con-
sistency appropriate for this situation. When numerous programmers are working at once on different projects
that touch the same code modules, a concurrency scheme that takes UPDATE locks and refuses access by oth-
ers to modules locked is not helpful. Often, different projects changing a module will not overlap at a statement
level where conflict problems actually arise, and we probably would not want to detect and deal with such de-
tailed conflicts at the earliest possible time even if this were supported, but would rather wait until the entire set
of updates has been made to get the benefit of performing the resolution all at once.

Weak consistency seems to generalize to a number of other applications as well, where atomic distributed
transactions are difficult or costly. Even banks, which seem to require strong consistency in dollar transfers,
have handled ATM withdrawals of limited cash amounts without a two-phase commit to the account balance;
the money saved on less expensive hardware dominates possible losses from fraud. Many banks also allow with-
drawal of funds deposited by check before the check can clear a foreign bank, a much more serious risk. Formal
generalizations of this type of approach seem to exist with Epsilon Serializability [PULEFF] and a number of
solutions based on Escrow locking [HÄRDER, BARGAR, KRIBER].

The weak consistency approach can also be thought of as providing an important element of fault tolerance,
since by avoiding two-phase commit we allow failures to occur without blocking progress in distributed situa-
tions. Sometimes this kind of fault-tolerance must be provided by a flexible business rule model and a workflow
infrastructure. For example, when the normal course of accepting an order requires access to a server that han-
dles warehousing, we need a rule deciding whether the order should be accepted even when that server is out of
contact. If so, then the order will be accepted with a number of special follow-on actions: later access to avail-
ability might find that a back-order must be prepared for delayed delivery, notification then might be sent to the
customer to advise of the delay, etc., a classical workflow scenario. It is a challenge to provide an easy to use
system that will make it easy for an entrepreneurial programmer to determine the rules a small business owner
wants to impose and then write the workflow to execute these scenarios.

3.2 Some Future Work: Object Orientation and Transaction Coordination

Microsoft is currently looking into a new approach to data access interoperability based on cursors. The approach
would make it possible to interchange data naturally between different data providers: spreadsheets and word
processors as well as database tables. The approach is object based, integrated with the OLE model, and places an
emphasis on efficient access to remote data. A few basic underpinnings for object extended relational capabilities
are also envisioned. In this model rows will be treated as lightweight objects with object pointers that can be
RswizzledS. In the further future, complex structured attributes and user defined functions are being considered.

47

A start is being made to define a Transaction Manager (TM) model that will perform distributed transactional
coordination. One of the goals is to support interoperability with legacy transactional systems. Interoperability
with existing standards will be achieved by treating a TM as something that can be written as an application on top
of an extremely basic set of verbs to be exposed by Microsoft Resource Managers (RMs) and special components
that provide Logging services and Durable Store and Forward services. Clearly, these capabilities are intended
to support the workflow capabilities we have been discussing, although the first phase of implementation will
likely support only a basic subset of these capabilities.

One of the interesting aspects of these underlying exposed capabilities is that it should be possible to write
applications that can handle specific forms of data with specialized treatment. These applications would use a
normal database resource manager for storage, but would become resource managers in their own right, with
complete control over their data. As an example, we could create an RM to provide Escrow locking on records
for which it is responsible. The Escrow RM would handle all types of accesses to its specialized data by nor-
mal application logic: reads, updates, and logical locking for such accesses, as well as prepares, commits and,
in particular, recovery. To perform prepare and commit, the Escrow RM must be able to access the transaction
coordination verbs provided by the underlying database RM that serves as a data store. To provide recovery, the
underlying database RM must signal the Escrow RM when its own recovery is complete; the Escrow RM can
then perform its own recovery based on logs written to the Logging services. With this kind of flexibility, it is
hoped that new exotic approaches to locking and concurrency can be easily implemented as if they were applica-
tions by sophisticated Independent Software Vendors, without the long delays that occur when new fundamental
capabilities must be added to the database system.

References

[BARGAR] D. Barbara and H. Garcia-Molina, ”The Demarcation Protocol: A Technique for Maintaining Arith-
metic Constraints in Distributed Database Systems,” Technical Report CS-TR-320-91, Princeton Univer-
sity, Apr. 1991.

[CHRYKRI] Panos K. Chrysanthis and Krithi Ramamritham, ”ACTA: The Saga Continues,” Database Trans-
action Models for Advanced Applications, Ahmed K. Elmagarmid, Editor, Morgan Kaufmann, 1990.

[GARSAL] H. Garcia-Molina and K. Salem, ”Sagas,” ACM SIGMOD Proceedings, 1987.

[GGKKS] H. Garcia-Molina, D. Gawlick, J. Klein, K. Kleissner, and K. Salem, ”Coordinating Activities
Through Extended Sagas,” Proceedings IEEE Spring Compcon, 1991.

[GHO] Dieter Gawlick, Mei Hsu, and Ron Obermarck, ”Strategic Issues in Workflow Systems,” Proceedings
IEEE Spring CompCon, 1994.

[GRAYNY] Jim Gray and Chris Nyberg, ”Desktop Batch Processing,” Proceedings IEEE Spring CompCon,
1994.

[GRAYREUT] Gray, J., and A. Reuter, ”Transaction Processing: Concepts and Techniques.” Morgan Kauf-
mann, San Mateo, CA, 1991

[HÄRDER] Theo Ḧarder, ”Handling Hot Spot Data in DB-Sharing Systems,” Inform. Systems, Vol. 13, No. 2,
pp. 155-166, 1988.

[KBHOG] Leonard Kawell Jr., Steven Beckhardt, Timothy Halvorsen, Raymond Ozzie, and Irene Greif, ”Repli-
cated Document Management in a Group Communication System,” Proceedings Second Conference on
Computer- Supported Cooperative Work.

48

[KRIBER] Narayanan Krishnakumar and Arthur J. Bernstein, ”High Throughput Escrow Algorithms for Repli-
cated Databases,” Proceedings of the VLDB 1992, pp. 175-186

[PULEFF] Calton Pu and Abraham Leff, ”Replica Control in Distributed Systems: An Asynchronous Ap-
proach,” Proceedings of the ACM SIGMOD 1991, pp. 377-386

[VASK] David Vaskevitch, ”Microsoft’s Vision for the Transaction Environment,” OTM Spectrum Reports, v.
8, no. 1, February 1994. Spectrum Reports Ltd., MCI Mail: 313 8708

[VICIK] Rick Vicik, ”Microsoft Scrollable Cursor API,” Microsoft White Paper, August 1993.

[WÄCHTREU] Helmut Ẅachter and Andreas Reuter, ”The ConTract Model,” Database Transaction Models for
Advanced Applications, Ahmed K. Elmagarmid, Editor, Morgan Kaufmann, 1990.

49

CALL FOR PAPERS

Fifth International Workshop on Research Issues on Data Engineering:

DISTRIBUTED OBJECT MANAGEMENT

Taipei, Taiwan, March 6-7, 1995 Sponsored by the IEEE Computer Society (pending

RIDE-DOM'95 is the �fth of a series of annual workshops on Research Issues in Data Engineering (RIDE). RIDE work-
shops are held in conjunction with the IEEE CS International Conferences on Data Engineering. Past successful RIDE
conferences include RIDE-IMS'91 (Kyoto, Japan), RIDE-TQP'92 (Pheonix, USA), RIDE-IMS'93 (Vienna), and RIDE-
ADB'94 (Houston, USA). The next RIDE workshop will also focus on distributed object management systems.

The objective of the workshop is to provide a forum for the discussion and disseminatin of original and fundamental
advances in all aspects of distributed object management. Original research papers are sought in all areas related this
objective. The following is partial list of research areas of interest:

� Distibuted Objectbase Design � Distributed object system architecture
� Object Migration � Transactions in Object-Oriented Systems
� Managing large distributed object stores � Distributed garbage collection
� Language Support for Persistent Objects � Queries and Optimization
� Operating System Support � Applications (e.g., GIS, CSCW)
� Object Views � Supporting Interoperability

The workshop encourages papers from industrial and user communities that will promote debate among researchers and
practitioners. The workshop will include panel sessions that will investigate the emerging products, standards and appli-
cation platforms. The proceedings consisting of the accepted papers will be published by IEEE Computer Society and will
be widely available.
INSTRUCTIONS: Authors are invited to submit six copies of manuscripts (up to 25 pages, double-spaced) by July 22,
1994 (hard deadline!), to the RIDE'95 Secretariat:

RIDE'95 Secretariat

Department of Computing Science
University of Alberta
Edmonton, Alberta
Canada T6G 2H1

CONFERENCE ORGANIZATION:

HONORARY CHAIRMAN: GENERAL CHAIRMAN: PROGRAM COMMITTEE CO-CHAIRS:

Yun Kuo Ahmed Elmagarmid M. Tamer �Ozsu Ming-Chien Shan

Institute for Information Industry Purdue University University of Alberta HP Laboratories
ake@cs.purdue.edu ozsu@cs.ualberta.ca shan@hplmcs.hpl.hp.com

PROGRAM COMMITTEE:
Gul Agha (USA) Peter Apers (Netherlands) Malcolm Atkinson (Scotland) Francois Bancilhon (France)
Elisa Bertino (Italy) Jose Blakeley (USA) Alex Buchmann (Germany) Michael Franklin (USA)
Olivier Gruber (France) Mei Hsu (USA) Yahiko Kambayashi (Japan) Wolfgang Klas (Germany)
Paul Leach (USA) Chiang Lee (Taiwan) Frank Manola (USA) Eliot Moss (USA)
Jack Orenstein (USA) Hans Schek (Switzerland) Marc Shapiro (France) Henry Tirri (Finland)
Gerhart Weikum (Germany) Akinori Yonezawa (Japan) Stan Zdonik (USA)

Steering Committee: Ahmed Elmagarmid (Chair)
Joseph Urban (Chair)
Yahiko Kambayashi
Marek Rusinkiewicz

Local arrangements: C.J. Cherng (Taiwan); cjcherng@iiidns.iii.org.tw
Publicity co-chairs: Ken Barker (Canada); barker@cs.umanitoba.ca

Gary Gong (Taiwan); gary@iiidns.iii.org.tw
Proceedings chair: Omran Bukhres (USA); bukhres@cs.purdue.edu

IMPORTANT DATES:
Deadline for submission:
July 22, 1994
Noti�cation of acceptance:
October 30, 1994
Final camera-ready due:
December 05, 1994

50

11th International Conference on
Data Engineering

March 6-10, 1995
The Grand Hotel, Taipei, Taiwan

Sponsored by the IEEE Computer Society

SCOPE
Data Engineering deals with the modeling and
structuring of data in the development and use of
information systems, as well as with relevant
aspects of computer systems and architecture. The
11th Data Engineering Conference will provide a
forum for the sharing of original research results
and engineering experiences among researchers
and practitioners interested in automated data and
knowledge management. The purpose of the con-
ference is to examine problems facing the devel-
opers of future information systems, the
applicability of existing research solutions and the
directions for new research.

TOPICS OF INTEREST
The topics of interest include but are
 not limited to:
• AI and Knowledge-Based Systems
• Data Consistency, Integrity and Security
• Data Modeling and Database Design
• Data Structures and Access Methods
• Engineering/Scientific Databases & Applications
• Extensible and Active Databases
• Incomplete, Imprecise or Uncertain Information
• Heterogeneous Systems and Interoperability
• Knowledge Discovery
• Mobile and Personal Computing
• Multimedia Databases
• Object-Oriented Databases
• Query Languages and Optimization
• Parallel and Distributed Databases
• Real-Time Databases
• Temporal and Spatial Databases
• Transaction and Workflow Management
• Tuning and Performance Evaluation

PAPER SUBMISSION
Six copies of original papers not exceeding 6000
words (25 double spaced pages) should be submit-
ted byMay 20, 1994 to:

America and Europe:
Philip S. Yu, ICDE
IBM T. J. Watson Research Center
30 SawMill River Road
Hawthorne, NY 10532
E-mail: icde95@watson.ibm.com
Tel. (914) 784-7574, FAX: (914) 784-7455

Far East, Australia and other areas:
Arbee L.P. Chen, ICDE
Department of Computer Science
National Tsing Hua University
Hsinchu, Taiwan 300
E-mail: icde95@cs.nthu.edu.tw
Tel. (35) 731065, FAX: (35) 723694

Authors should indicate one or two of the con-
ference areas most relevant to the submission.

There will be a series of sessions focused on
issues relevant to practitioners of DBMS technol-
ogy. Eachpanel, industrial and tutorial proposal
should include a one-page description of the sub-
ject matter and the name of the organizer, and for
panels, a list of proposed panelists. Submissions
should be addressed to the Program Chairs, who
will forward them to the appropriate conference
organizer.

PUBLICATIONS & AWARDS
All accepted papers will appear in the Proceed-
ings published by IEEE Computer Society. The
authors of selected papers will be invited to sub-
mit an extended version for possible publication
in theIEEE Transactions on Knowledge and Data
Engineering and in theJournal of Distributed and
Parallel Databases. An award will be given to the
best paper. A separate award honoring K.S. Fu
will be given to the best student paper (authored
solely by students).

IMPORTANT DATES
• Paper, Panel, Industrial and Tutorial sub-

missions: May 20, 1994
• Notification of acceptance: Sept. 10, 1994
• Tutorials: March 6-7, 1995
• Conference: March 8-10, 1995

DATA

ENGINEERING

®

IEEE

General Chairs: R.C.T. Lee, National Tsing Hua U. and C. V. Ramamoorthy, U. C. Berkeley
Program Chairs: Philip S. Yu, IBM Watson Research and Arbee L.P. Chen, National Tsing Hua U.
Steering Committee Chair:Benjamin Wah, U. of Illinois at Urbana-Champaign
Industrial Program: Ahmed Elmagarmid, Purdue U.
Panel Program:Maria Zemankova, MITRE
Tutorial Program: Y. Lien, ITRI/CCL

PROGRAM VICE CHAIRS
Object-Oriented Databases
Kyu-Young Whang, KAIST

Engineering & Scientific Databases
Margaret Eich, Southern Methodist Univ.

Database Design and Modeling
Gunter Schlageter, Univ. of Hagen

Heterogeneous Systems & Interoperability
Calton Pu, OGI

Performance Evaluation
Gerhard Weikum, ETH Zurich

High-Performance & Parallel Systems
Masaru Kitsuregawa, Univ. of Tokyo

Transaction Management & Real-Time Data-
bases
Krithi Ramamritham, Univ. of Massachusetts

AI, Knowledge-based Systems & Deductive
Databases
JiaWei Han, Simon Fraser Univ.

Access Methods & Query Optimization
David Lomet, DEC Cambridge Research Lab

Extensible, Temporal, Spatial & Active Data-
bases
H. V. Jagadish, AT&T Bell Labs

Data Consistency, Integrity and Security
Chin-Chen Chang, National Chung-Cheng Univ.

EUROPEAN COORDINATOR
• Elisa Bertino, Univ. of Genova

FAR EAST COORDINATORS
• Makoto Takizawa, Tokyo Denki Univ.
• Mike Papazoglou, Queensland U. of Tech.

EXHIBITS PROGRAM
• Jie-Yong Juang, National Taiwan Univ.

PUBLICATION CHAIR
• Kun-Lung Wu, IBM Watson Research

PUBLICITY CHAIRS
• Abdelsalam Helal, Univ. of Texas at Arlington
• Chiang Lee, National Cheng-Kung Univ.

FINANCIAL CHAIRS
• Steve Y.L. Lin, National Tsing Hua Univ.
• Jeffrey Tsai, Univ. of Illinois at Chicago

REGISTRATION
• Chuan-Yi Tang, National Tsing Hua Univ.

LOCAL ARRANGEMENTS
• Allen Wu, National Tsing Hua Univ.
• Chen-Pang Lin, III

1
1

CALL FOR PAPERS

ORGANIZING COMMITTEE

IEEE Computer Society
1730 Massachusetts Ave, NW
Washington, D.C. 20036-1903

Non-profit Org.
U.S. Postage

PAID
Silver Spring, MD

Permit 1398

