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Letter from the Editor-in-Chief

I am happy to report to you that the Data Engineering Bulletin is now available via electronic distribution. Below
are the instructions on how to deal with the electronic mail server that does the distribution.

Send e-mail to the TC on Data Engineering server at:

tcdata@crl.dec.com

Commands should be sent in the subject line. Only one command per message
is permitted. The commands are:

enroll Use this to receive an application to become a member
of the TC.

application Use this when returning the application. You will
be registered as a member of the TC.

send <filename> Use this to receive an issue of the Bulletin.
Only one file per "send" request is allowed.

index Use this to receive complete instructions and a list
of the currently available issues. The index gives
you a filename for each issue.

For example:
send march93-letfinal

results in your being sent by e-mail the March, 1993 issue of the Bulletin
formatted for letter size paper, and including all postscript figures.

I would like to thank Win Treese of Digital’s Cambridge Research Staff for making the modifications to our
report server that enable us to provide electronic distribution of the Bulletin.

As of my writing, 345 people have enrolled as TC members. All members will be notified via e-mail
whenever an issue of the Bulletin is published. They will be able to request the issue by following the above
instructions. Indeed, re-enrolled members should already have received a notification that electronic distribution
has commenced and that the September issue is now available, as well as the March and June issues.

The hardcopy version of the Bulletin will only be available to those that pay for a subscription. I wish it
were possible to provide specifics on hard copy distribution. Unfortunately, we have still not resolved this with
the Computer Society. The Computer Society currently provides printing and distribution services and these do
not present problems. The snag is in exactly how the fees will be collected and at what frequency.

The current issue of the Bulletin is on Geographic Information Systems and was edited by Kyu-Young
Whang. I think you will agree that it presents an interesting cross-section of the work going on in Geographic
Information Systems. Kyu-Young is the last editor who was appointed by Won Kim and he will now retire as an
editor of the Bulletin. I thank him for agreeing to continue to serve as an editor during this transition phase and
for his handling of this issue.

The December issue of the Bulletin is on query processing and is being handled by Goetz Graefe. This
issue captures the current state of the commercial art in query processing and will include papers from a good
cross-section of the database vendors. Its subject is in line with my desire to have the Bulletin be a vehicle for
propagating knowledge of current industrial practice.
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I am gratified by the progress that has been made so far and am confident that the Bulletin will be established
in a way that permits it to prosper over the long term. Electronic distribution goes a long way toward that goal.
When complemented with subscription based hardcopy distribution, we should finally have what we need.

David Lomet
Editor-in-Chief
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Letter from the Special Issue Editor

Geographic Information Systems (GISs) have gained popularity recently thanks to their application to diverse
areas such as land management, facility management, environment management, and cartography. An increasing
number of organizations, including Government agencies and private companies, have been adopting GISs for
efficient management of large volumes of data. The objectives of this issue are to raise the GIS technical issues
in the database research community, to summarize the current state, and to project future research directions in
this exciting area with active practical use.

The GIS storage system has a major effect on performance. Many commercial GISs use as their underly-
ing storage systems proprietary file systems or, more recently, relational database management systems. Due
to complexity in the spatial and non-spatial data structures required of GIS applications and the special char-
acteristics of their queries, conventional techniques have not seemed adequate. Recent research efforts seek to
enhance the modelling power and performance of storage structures and query processing algorithms for GISs.
The papers here appear in an order that presents the systems issues first, then detailed algorithms, and finally an
introduction to a multi-national ESPRIT project.

The paper by Günther and Riekert describes the design of GODOT, an object-oriented GIS. It has four-
layers consisting of a commercial object-oriented database system, an extensible GIS kernel, a collection of
base components such as the query processor, and several user interface modules.

Kriegel, Brinkhoff and Schneider propose an architecture of query processing in the GIS consisting of four
steps: 1) scaling down of the search space, 2) geometric filtering, 3) efficient transfer of exact geometry, and 4)
efficient processing of the exact geometry. Their paper also proposes specific techniques for each step, which
are based on the notions of five-corners, scene organization, and TR*-trees.

The paper by Lu and Ooi surveys spatial indexes, shows their evolution, and classifies them according to
the techniques for handling nonzero-sized (i.e., non-point) objects. It subsequently discusses future research
directions on spatial indexing.

Schmult, Jagadish, and Ganapathy present the architecture of the Interactive Spatial Directory (ISD) system
being built at At&T Bell Laboratories and discuss research issues on modelling, management of heterogeneity,
spatial indexing, and system performance.

The Faloutsos and Kamel paper describes two R-tree variants: the Hilbert R-tree for good clustering of R-
tree nodes in a centralized system and the MX R-tree for good performance on a parallel system. It also proposes
a proximity measure for distance between rectangles.

Evangelidis and Salzberg present a spatial index structure, the hBΠ-Tree for which a general method for
concurrency and recovery is applicable. Such a tree can be embedded in a general purpose database system,
extending its functionality to spatial indexing. It can also be used in a GIS.

Egenhofer identifies 33 topological relations between line objects for which geometric interpretations can be
given. This algebraic topology approach compares interiors, boundaries, and exteriors of the lines. The relations
identified can be applied to spatial queries relating lines in GISs.

Finally, the paper by Franciosa and Talamo introduces a GIS effort within the ESPRIT project called AMUS-
ING. The objective of AMUSING is to define the features and principles of a next generation GIS architecture.
The project involves nine organizations in six European countries.

I would like to thank the authors for their excellent contributions and their cooperation. I particularly ap-
preciate the efforts of Franciosa and Talamo, who had to submit their paper on very short notice. Hans Schek
deserves thanks for finding this ESPRIT GIS effort. Finally, I would like to acknowledge the help from Ju-Won
Song at KAIST, who collected and formatted the papers.

Kyu-Young Whang
Korea Advanced Institute of Science and Technology(KAIST)

email: kywhang@cs.kaist.ac.kr, kywhang@eclipse.stanford.edu
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The Design of GODOT:
An Object-Oriented Geographic Information System∗

Oliver Günther
Institut für Wirtschaftsinformatik
Humboldt-Universität zu Berlin

Spandauer Str. 1
10178 Berlin, Germany

guenther@faw.uni-ulm.de

Wolf-Fritz Riekert
FAW Ulm

Postfach 2060
89010 Ulm, Germany

riekert@faw.uni-ulm.de

Abstract

This paper describes the design of an object-oriented geographic information system called GODOT
(Geographic Data Management With Object-Oriented Techniques). GODOT has a four-layer archi-
tecture, consisting of (i) a commercial object-oriented database system; (ii) an extensible kernel with
classes and methods for representing complex spatial and non-spatial data objects; (iii) a collection of
base components for query processing, graphics, database administration, and data exchange; and (iv)
several user interface modules. The conceptual basis for the system is a data model with three categories
of objects: Thematic objects, geometric objects, and graphic objects. The GODOT approach facilitates
the management of complex geographic and environmental information and leads to an extensible system
architecture.

1 Introduction

Geographic and environmental information systems operate on very complex spatial and non-spatial data struc-
tures. Relational databases are of only limited use for modeling this complexity. For that reason, most com-
mercial geographic information systems (GIS) rely on specialized file systems or other proprietary solutions for
storing the data.

The idea behind GODOT is to develop a GIS prototype on top of a commercial object-oriented database
system (OODB) by adding appropriate classes and methods. With this approach, GODOT differs from most
other recent GIS developments:

• GODOT’s object-oriented data model allows the representation of highly complexgeographic information
(e.g., in environmental applications) as a network of geographic objects.

• The GODOT data model is extensibleby user-defined classes and methods.

• GODOT’s underlying OODB is a general purpose system which allows for both spatial data and ordinary
tabular data to be seamlessly integratedwithin the same environment.

∗The GODOT project is funded by the Environmental Ministry and the Information and Communication Agency of the State of
Baden-Württemberg, Siemens Nixdorf Informationssysteme AG, and Siemens AG.
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• GODOT is based on a commercial OODB and therefore participates in new developmentson the database
market. This may concern features such as query language standards, graphical tools, transaction man-
agement, and distributed processing.

Earlier related work was mostly based on OODB research prototypes, such as PROBE [3] or O2 [6]. Several
other projects were based on extensible database systems, such as DASDBS [7], or POSTGRES [5]. A more
recent effort to use POSTGRES for the management of large amounts of geographical and environmental data
is the SEQUOIA 2000 project [8].

Section 2 describes the four-layer architecture of the GODOT system. In Section 3 we present the GODOT
data model with its three categories of objects: thematic objects, geometric objects, and graphic objects. Section
4 gives a brief overview of the current state of the implementation.

2 System Architecture

The GODOT system has a four-layer architecture (Fig. 1), consisting of:

1. A commercial OODB

2. An extensible kernel with classes and methods for the representation and management of complex spatial
and non-spatial data objects

3. A collection of base components for query processing, graphics, database administration, and data ex-
change

4. Several user interface modules, including a C/C++ program interface, a UNIX command interface and a
graphical user interface based on the X Window System and OSF/Motif

In the sequel we discuss those four layers in turn.

2.1 OODB and Kernel

The GODOT kernel is implemented directly on top of the commercial OODB ObjectStore [2]. ObjectStore is
a fully object-oriented database system in the sense of the OODB Manifesto [1]. This covers in particular the
basic database functionalities, including transaction management and indexing. Some of these functionalities
have been adapted and extended for a more efficient management of spatial data.

The GODOT kernel contains the definition of classes and methods that are crucial for the representation
and management of geographic information. In particular, the implementation of the GODOT data model (see
Section 3) is located here. Furthermore, the spatial clustering and indexing components will be located in the
kernel. We are currently in the process of evaluating a number of index structures for this purpose. As all the
other GODOT components, the kernel is implemented in the object-oriented programming language C++.

The GODOT data model can be extended by additional classes and methods. This facilitates the customiza-
tion of the system to serve any particular application.

2.2 Base Components

The query componentcontains several GIS-specific language elements to enhance the query language of Ob-
jectStore. It interacts directly with the interface modules described in Section 2.3. ObjectStore allows the call of
a user-defined method within a query; this feature has been used to extend the query language with spatial and
topological predicates.
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Data

Interface

GODOT
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Program GODOT
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Interactive Interface

UNIX Command Interface

C/C++ Program Interface

Figure 1: GODOT Architecture

The query component is tightly linked to a graphics componentthat manages the graphical representation
of the geographic information. In particular, it is common to use the graphics component to visualize the result
of user queries. On the other hand, one can use the graphics component to specify parts of a query by pointing
to certain objects on the screen. This includes the ability to update geographic information by manipulating the
corresponding graphic objects interactively.

The database administrator componentprovides the usual features for database schema manipulation, user
administration, and system support. Once again, we can use some of ObjectStore’s functionalities directly, while
others need to be adapted to manage spatial data efficiently.

A major issue in GIS is the exchange of geometric data encoded in different formats. GODOT supports the
integration of data interfacesas base components; these can be activated through any of the interface modules
described in the following section. GODOT also has its own external data format, which is a subset of C++,
encoded in ASCII. This external data format can be read easily by other systems. The execution of the code
leads directly to the generation of the corresponding object classes and instances in the given database.

2.3 User Interfaces

One of GODOT’s core functionalities is to be a GIS data server for a diverse and distributed collection of
applications. For this purpose, GODOT offers a variety of client-server style interfaces. An interactive interface
under the X Window System gives high-level graphical access to GODOT, especially for the occasional or non-
expert user. A different kind of access is provided by the UNIX command interface, where GODOT queries
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can be formulated by means of specialized commands that form an extension of the UNIX shell. Command
procedures can then be implemented as shell scripts. Finally, a C/C++ program interfacemakes the GODOT
modules available as a program library. This interface is typically used for more complex GODOT applications;
it also allows remote access via remote procedure calls. For the implementation of the C/C++ program interface,
the recommendations of the Object Management Group with regard to the Object Request Broker [4] will be
taken into account.

3 Data Model

The GODOT data model is partitioned into three categories of objects:

1. Thematic objectsare used to represent real-world objects. An important subcategory of thematic objects
are the geographic objectsor geo-objects. A thematic object is a geo-object if it is geometric in nature,
i.e., if it has a spatial extension.

2. Geometric objectsor geometriesare used to describe the geometric features of geo-objects.

3. Graphic objectsare used for the display of thematic objects. Cartographic objectsare an important
subcategory of graphic objects.

The various relationships between these categories are shown in Figure 2, using a simple example. Note
that we use strings of type X<Y> as object identifiers, where X denotes the class of the object. There are three
thematic objects in that example: Two geo-objects City<Ulm> and City<Neu-Ulm> to represent the twin
cities Ulm and Neu-Ulm, and a simple thematic object CoordCommittee<31> to represent the coordination
committee of the two cities. The two cities, respectively their corresponding geo-objects, are connected to
geometric objects to represent their shapes and to several graphic objects for their cartographic representation.

In the sequel, the three object categories are discussed in turn.

3.1 Thematic Objects and Geo-Objects

In the GODOT data model, geographic and environmental information is represented by so-called thematic
objects. Thematic objects may be simple or complex, i.e., composed of several other thematic objects. Examples
of thematic objects include the coordination committee and the cities in Figure 2, or a species in a natural
resource information system.

Thematic objects may have different kinds of attributes to represent a variety of geographic and environmen-
tal features:

1. Attributes of an elementary type (e.g., text strings or real numbers)

2. Attributes of a complex type (e.g., embedded classes in C++)

3. Attributes of a referential type (e.g., pointers to other thematic objects)

The most important subset of the thematic objects is formed by the geo-objects, which are characterized
by an attribute that is a geometric object. A geo-object therefore has a location and a spatial extension. If a
geo-object is complex, a number of integrity constraints need to be enforced. For example, the geometry of a
complex geo-object has to be the union of its component geometries.
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Figure 2: The three categories of the GODOT data model

3.2 Geometric Objects

Associated with each geo-object is a geometric object, which is typically composed of elementary geometric
objects. These elementary geometric objects form the class Geometrywith its three subclasses Region, Arc, and
Point. An arc may be curved although the current implementation is restricted to (piecewise linear) polylines.
Between these classes there exist the usual geometric relationships: A region has several bounding arcs. An arc
may in turn belong to any number (including zero) of regions. Similarly, an arc has two endpoints, and any point
may be the endpoint of any number of arcs.

Note that a geometric object can either be a singular point, arc, or region, or a collection of such singulars.
If these singulars all belong to the class Regionthen the resulting complex object belongs to the class RegionSet.
The classes ArcSetand PointSetare defined analogously. However, if the collection of singulars is heteroge-
nous in the sense that it contains singulars of different types, it belongs to the class GeometrySet, which is the
superclass of RegionSet, ArcSet, and PointSet.

This design guarantees that the result of a boolean set operation on two geometric objects can always be
represented by exactly one geometric object. It also enables us to represent the geometries of any geo-object,
however oddly shaped, with just one geometric object. Consider, for example, a river whose width varies widely,
such that its geometry in the chosen accuracy is partly arc, partly region. In GODOT, the geometry of this river
would be modeled by an instance of the class GeometrySet. Another example is a country whose area consists
of several disconnected regions (e.g., the USA). This area would be represented by an instance of RegionSet.
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3.3 Graphic Objects

Graphic objectsare used for the (interactive or printed) display and the interactive update of thematic objects,
in particular of geo-objects. The looks of a graphic object are defined in detail by its attributes, such as color,
line width, or text font. Possible graphic representations include business graphics, tables, videos, raster images,
or GIS-typical vector graphics. A thematic object can be linked to several graphic representations (e.g., for
multiple scale display).

An important subcategory of graphic objects is formed by the cartographic objects, which are used for the
graphic display of geo-objects. With this design, GODOT implies a clear separation between geographic and
cartographic information. Cartographic objects contain methods that determine how the properties of a given
geo-object are represented in terms of the graphics available. In particular, questions of scale and cartographic
generalization are handled at this level and not at the level of thematic objects.

4 Outlook

In this short paper we sketched the basic architecture of the GODOT object-oriented GIS. We have finished
the implementation of our data model on top of ObjectStore, and we are currently working on the graphic user
interface. The first complete prototype should be functional no later than the end of 1993.
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Efficient Spatial Query Processing in Geographic Database
Systems

Hans-Peter Kriegel, Thomas Brinkhoff, and Ralf Schneider

Institute for Computer Science, University of Munich
Leopoldstr. 11 B, D-80802 München, Germany

e-mail: {kriegel,brink,ralf}@dbs.informatik.uni-muenchen.de

1 Introduction

The management of spatial data in geographic database systemsgained increasing importance during the last
decade. Due to the high complexity of objects and queries and also due to extremely large data volumes,
geographic database systems impose stringent requirements on their storage and access architecture with respect
to efficient spatial query processing.

Geographic database systems are used in very different application environments. Therefore, it is not pos-
sible to find a compact set of operations fulfilling all requirements of geographic applications. But as described
in [BHKS 93], spatial selectionsare of great importance within the set of spatial queries and operations. They
do not only represent an own query class, but also serve as a very important basis for the operations such as
the nearest neighbor query and the spatial join. Therefore, an efficient implementation of spatial selections is
an important requirement for good overall performance of the complete geographic database system. The most
frequent spatial selection is the window query: Given a rectilinear rectangle W of arbitrary size and a set of
objects M, the window query yields all the objects of M intersecting W.

For the efficient processing of spatial selections, we propose a spatial query processor(see Figure 1). Its
major goal is to reduce expensive steps by preprocessing operations in the preceding steps which reduce the
number of objects investigated in an expensive step. In Figure 1 expensive steps are marked with the $-symbol.

A spatial selection is abstractly executed as a sequence of steps: First, we scale down the search space
by spatial indexing. A spatial index organizes sets of tuples on secondary storage. Each tuple corresponds
to a spatial object. It consists of a geometric key, an object identifier (ID) and a reference to the exact object
geometry. Due to the arbitrary complexity of real geographic objects, it is not advisable to build up an index
using the exact geometric description of the objects as a key; instead, simple approximations of the objects are
used. Thus, the spatial index is not able to yield the exact result of a query. However, spatial indexing filters out
a high number of objects not fulfilling the query.

Objects identified by the spatial index may fulfill the query. Therefore, we must inspect these candidates
using a geometric filterwhich tests the geometric key or further approximations of the object geometry against
the query condition. As a result, we obtain three classes of objects: hits fulfilling the query, false hitsnot
fulfilling the query and candidatespossibly fulfilling the query.

If we are only interested in the object identifiers, these hits are a subset of the set of answers (indicated by a
dotted arrow in Figure 1). Only the candidates have to be transferred into main memory for further processing
(indicated by a fat arrow in Figure 1). If the complete object geometry is required as an answer to the query, we
have to transfer the exact geometryof hits andcandidates into main memory.
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Figure 1: Spatial query processor

The transfer of the exact geometry may be very expensive, be-
cause the exact representations of objects can be large (compare
e.g. [BHKS 93]) and, additionally for window queries, a high num-
ber of spatially adjacent objects has to be transferred. Therefore,
a physically contiguous storage of spatially adjacent objects com-
bined with a fast set-oriented I/O [Wei 89] is necessary to support
large window queries.

The other expensive step is processing the exact geometryof an
object. After filtering, the remaining candidates are investigated
using complex computational geometry algorithms. Thus, it is de-
cided whether a candidate fulfills the query or not.

The goal of this paper is to present techniques for efficiently sup-
porting spatial selections using the above spatial query processor.
First, in section 2 we discuss spatial access methods for scaling
down the search space efficiently. In section 3, geometric filtering
techniques using various approximations are proposed. Next, the
efficient transfer of the exact geometry is discussed in section 4.
Processing the exact geometry supported by decompositions is the
topic of section 5. The paper concludes with a presentation of a
concrete spatial query processor and suggestions for future work.
We would like to emphasize that all the presented techniques have
been implemented and tested with real cartography data.

2 Scaling down the search space

Considering spatial selections in more detail, it turns out that in general only a small and locally restricted part
of the complete search space needs to be investigated. For an efficient scaling down of the search space, it is
essential to use spatial access methods (SAMs)because a high number of spatial objects has to be organized.
Access methods as an ingredient of the internal level of a database system partition the data space dynamically
into regionsthat correspond to pages on secondary storage. One-dimensional access methods like B-trees or
linear hashing schemes are not suitable for geographic database systems because they do not organize the spatial
objects with respect to their location and extension in the two-dimensional data space. Because of the arbitrary
complexity of spatial objects, SAMs for simpler spatial objects such as points or rectangles are widely discussed
in the literature, e.g. the grid file, the quadtree, the buddy-tree, and the R-tree. Samet provides an excellent
survey [Sam 90] of almost all of these methods.

Simply stated, SAMs for extended spatial objects use one of three techniques: The clipping techniquepar-
titions the data space into disjoint regions. The objects are associated with each of the regions they intersect.
In general, the clipping technique leads to poor query performance, since the objects may be stored in multiple
pages. The transformation techniqueviews an object as a point in some higher-dimensional parameter space.
Since transformations do not preserve the spatial neighborhood of objects in the original data space, and since
the distribution of parameter points is extremely skewed, the query performance tends to be quite bad. The
overlapping regions techniqueassigns each object to exactly one region. However, the regions may overlap.
Consequently, there may exist several regions potentially containing the object searched.

Performance comparisons (e.g. [HS 92]) demonstrate that the well-known SAMs do not significantly differ
in performance. We favor the R*-tree [BKSS 90], an improved variant of the R-tree, because it has proven
to be simple, robust, and efficient. The R*-tree uses the technique of overlapping regions and demonstrates
that it is possible to organize spatial objects with an extremely small overlap of the regions. From our point
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of view, integrating SAMs into geographic database systems is indispensable for query processing, but further
research in SAMs will improve the overall performance only marginally. Therefore, additional concepts have to
be integrated to accelerate spatial query processing.

3 Geometric filtering by approximations

As described above, spatial objects are organized and accessed by SAMs using geometric keys that represent
the most important features of the objects (location and extension). For extended spatial objects the minimum
bounding box (BB)is the most popular geometric key. Using the BB, the complexity of an object is reduced
to four parameters. Using BBs provides a fast but inaccurate filter for the response set. The more the area of
the BB differs from the area of the original object, the less accurate geometric filtering is, i.e. the candidate set
includes a lot of false hits.

In order to get expressive and realistic results on the approximation quality of BBs, we investigated polygonal
objects of various real maps. To be as general as possible, we used maps from different sources with different
resolutions. The data files contain natural objects such as islands and lakes, and administrative areas such as
counties.

map min max fa

Europe 0.25 21.14 0.93
BW 0.20 5.01 0.93

Lakes 0.21 22.11 0.97
Afrika 0.34 5.64 0.89

Table 1: False area of the BB

The accuracy of the filtering step is maximized by minimizing the
deviation of the approximation from the original object. We measure
this deviation by the false areaof the approximation normalized to
the area of the original object.
Table 1 shows impressively that real cartography objects are only

roughly approximated by BBs. In this table, fa is the average false
area; minand maxdenote the minimum and the maximum false area
in the map, respectively.

This investigation was the starting point to look for other approximations that have better quality than the
BB. Additionally, they should be simple to provide a fast filter. These requirements are fulfilled by convex
shapes with straight-line borders. Therefore, we tested the rotated bounding box (RBB), the convex hull (CH),
the minimum enclosing convex 4-corner (4-C), and the 5-corner (5-C).

Figure 2: Approximations with their number of parameters (#p) and average false area (fa)

In [BKS 93], we measured the approximation qualities in a detailed empirical investigation. As expected,
the more parameters are used for the representation of an approximation, the better the approximation quality is.
Naturally, the convex hull has the best approximation quality. However, the storage requirement of convex
hulls has extreme variations and on the average is much higher than the storage requirements of the other
approximations. In summary, we conclude that the 5-corner yields the best trade-off between additional storage
requirement and improvement of approximation quality. The 6 additional parameters compared to the BB pay
off by reducing the average false area by 65% compared to the BB.

Integrating the 5-corner in geometric filtering can be done in two different ways. First, the common BB
remains the geometric key and the 5-corner is additionally stored. This approach can be applied to all known
SAMs based on BBs. In the second approach, the 5-corner is used as geometric key instead ofthe BB which
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saves storage but is not suitable for the transformation technique. In [BKS 93] we have shown that this approach
can be efficiently realized using the R*-tree.

4 Transfer of the geometry into main memory

Most SAMs proposed up to now store either the approximations or the exact geometry of a small number
objects in their data pages. However, the pages storing the geometry of spatially adjacent objects are distributed
arbitrarily over the secondary storage. Typical window queries require the contents of many pages to be retrieved
from the database. If these pages are arbitrarily distributed, we always need one seek operation for each accessed
page. Because seeks are very expensive I/O operations, large window queries become extremely expensive. The
physically contiguous storage of spatially adjacent objects combined with set I/O saves many seek operations.

The main question is how to determine suitable sets of pages contiguously stored on secondary storage and
how to organize these sets dynamically. Our approach, the scene organization, stores spatially adjacent objects
in a set of physically contiguous pages. Such a set corresponds to a subtree of a slightly modified R*-tree and is
called scene. A scene is described by a minimum bounding box which is stored in a upper level of the R*-tree.
The geometric keys and additional approximations are organized as described before. The scene organization
allows dynamic changes of the database, assures a maximum scene size, and strives for a stable average scene
size and high storage utilization. An algorithmic description is given in [BHKS 93].

The scene organization supports large window queries as well as small queries. A window query is processed
by first determining all scenes that intersect the query window. If the degree of overlap between the scene and
the query window is smaller than a query threshold determined experimentally, the window query is processed
using the mechanism depicted in the left part of the diagram in Figure 3. Otherwise, the scene is completely
transferred into main memory using the fast set I/O. Unfortunately, a scene may contain a number of false hits
causing unnecessary transfer of objects into main memory. However, a relatively small number of false hits does
not affect performance considerably, since the time for a transfer operation is much lower than the time for a
seek. After transferring the scene into main memory, the query is processed as usual, however without further
transfer after filtering. This sequence of steps is depicted in Figure 3.

In order to evaluate the scene organization, we carried out a detailed empirical performance comparison of
the scene organization using real geographic data. The database consisted of 119,151 objects with an average
size of 956 bytes. The page capacity was 4 kbyte. We tested 5 series of window queries with an area of the
query window between 0.0625% and 16% of the data space. We weighed the cost for seeking a page on disk by
a factor of 10 relative to the cost of a page transfer.

As expected, when the scene size increases, the seek cost decreases, and the transfer cost increases. The
optimal scene size which leads to minimum access cost depends on the size of the queries. The larger the
queries, the larger the optimal scene size is. However, this dependency is not very strong. Our tests show that
if the size of the query window grows by a factor of 256, the optimal scene size grows only by a factor of 8.
Additionally, the cost functions are rather flat in the proximity of their minimum. Thus, there exists a scene size
which is almost optimal for all sizes of query windows.

We compared the performance of the scene organization to two conventional models:
• model 1: storing the exact object geometry outside of the spatial access method
• model 2: storing the exact object geometry inside the data pages of the spatial access method

In Table 2, the access costs of the three models are presented in terms of the speed-up factor for processing
queries in comparison to model 1. Storing the exact object geometry inside the data pages (model 2) speeds up
query processing by a factor of 2.3 to 2.9 in comparison to model 1, which stores the exact geometry outside
of the data pages. The fundamental drawback is the fact that each access to the object geometry causes an
additional seek operation. The scene organization is the clear winner of the performance comparison because
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its clustering is not limited by the page size as in model 2. Even the processing of small window queries is
performed considerably faster by the scene organization.

size of query windows (in % of data space): 0.0625% 0.25% 1% 4% 16%

geometry inside the data pages (model 2) 2.3 2.5 2.6 2.8 2.9
scene organization 6.5 11.7 18.6 25.4 30.6

Table 2: Speed-up factors for window queries in comparison to model 1

5 Exact investigation of the geometry

Geometric filtering is based on object approximation and therefore determines a set of candidate objectsthat
may fulfil the query condition. The geometry processor tests whether a candidate object actually fulfils the query
condition or not. This step is very time consuming and dominates the costs for spatial indexing and geometric
filtering in many applications. Algorithms from the area of computational geometry are proposed to overcome
this time bottleneck.

Due to the complexity of the objects on the one hand and the selectivity of spatial queries on the other hand,
it is useful to decompose the objectsinto simpler components because the decomposition substitutes complex
computational geometry algorithms by multiple calls of simpler and faster algorithms. The success of such
processing depends on the ability to narrow down quickly the set of components that are affected by the spatial
queries and operations.

In [SK 91] we showed how the decomposition approach can be used in order to improve the exact geometry
processing of polygonal objects. In a preprocessing step, we decompose polygonal objects into a minimum set
of disjoint trapezoids using the plane-sweep algorithm designed by Asano and Asano [AA 83]. Because we
cannot define a complete spatial order on the set of trapezoids that are generated by this decomposition process,
binary search on these trapezoids is not possible. Therefore, we propose to use the R*-tree for the spatial search.
Due to its tree structure, the R*-tree permits nearly logarithmic searching in real applications. The R*-tree is
designed as a SAM for secondary storage. In order to speed up the geometric test, we developed the TR*-tree,
a variant of the R*-tree, designed to minimize the main memory operations and to store the trapezoids of the
decomposed objects. The main characteristic of the structure of the TR*-tree is its small maximum number of
entries per node. We obtain the best experimental results with a maximum number of 3 to 5. The TR*-tree
representation of an accessed object is completely loaded into main memory for spatial query processing.

The performance of the TR*-tree cannot be analytically proven because the TR*-tree is a data structure
that uses heuristic optimization strategies. Therefore, we compared the performance of the TR*-tree approach
to plane-sweep algorithms in an experimental analysis. The results of this analysis documented that a speed-
up factor of two orders of magnitude can be obtained when the intersection test of two polygonal objects is
performed.
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Figure 3: Spatial query processor

6 Summary and future work

In the previous sections, we presented a number of techniques for
reducing query time. Figure 3 depicts our spatial query processor
consisting of several building blocks using these techniques. The
R*-tree is used as a simple, robust, and efficient spatial index. Our
performance comparison of approximations demonstrates that the 5-
corner is the best trade-off between additional storage requirement
and improvement of approximation quality. Therefore, it is used as
a geometric filter. In order to reduce the I/O cost for window queries
retrieving the object geometry, we integrated the scene organization.
If the degree of overlap between a scene and a query window is larger
than a given query threshold, the complete scene is transferred into
main memory using a fast set-I/O device. Otherwise, the R*-tree is
completely traversed and the exact geometry of candidates (and if
necessary of hits) is transferred after filtering. The exact geometry
processor is realized by TR*-trees organizing decomposed objects.

In our future work, we want to apply the presented techniques
for efficient processing of spatial joins. Furthermore, in order to
increase the number of identified hits in the filtering step, it is nec-
essary to integrate kernel approximationsinto our query processor.
The application of the presented techniques to 3D-objectsis another
important area of research activities.
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Abstract

Efficient processing of queries in spatial database systems relies upon auxiliary indexing structures.
A large number of spatial indexing structures have been proposed. In this short paper, we examine
the basic issues in indexing spatial data, classify the existing indexing mechanisms according to their
underlying data structures and the techniques used to handle non-zero sized objects, and briefly discuss
future research directions.

1 Introduction

Spatial information processing has been a focus of research during the past decade for effective support for
applications in computer vision, computer-aided design, solid modeling, geographic information systems (GIS),
computational geometry, and etc. In spatial databases, data are associated with spatial coordinates and extents,
and are retrieved based on spatial proximity. Spatial data consist of points, lines, polygons, volumes, and etc.
Operators supported for spatial data such as geometric operators (eg., rotation and translation) and spatial opera-
tors (eg., spatial intersect and contain) are much harder to compute. Efficient processing of queries manipulating
these relationships relies upon auxiliary indexing structures.

A record having k attributes can be viewed as a point in a k-dimensional space. Multi-attribute indexing
has also been studied in the context of relational database systems. Indexing in spatial databases, however, is
different from indexing in a conventional database in that data in a spatial database system are associated with
coordinates in the Euclidian space and often represent non-zero sizedobjects. One of the major issues here is
to effectively extend the existing indexing techniques for point (zero-sized) data to handle non-zero sized data.
The purpose of indexing is to accelerate query processing. Queries in conventional databases can be divided into
two basic types: exact match queriesand range queries. In spatial databases, the range query is generalized
to intersection search in which a search condition specifies a region and the results include all the objects that
intersect with it. One factor that makes search in spatial database more complex is that the search is often not
based on attribute values, but rather based on spatial properties of objects.

In addition to efficient support of both exact match and range queries, those desired properties for conven-
tional indexing structures, such as high space utilization, small ratio between the sizes of index and data, etc. are
still the design goals of spatial indexes. However, the same goals are more difficult to achieve for spatial indexes
since the volume of data in a spatial database is usually much larger than that in a conventional database, and the
distribution of data varies more drastically. Robustness, the ability of maintaining expected performance of an
index mechanism over a wide range of data distribution and query patterns, becomes more important for spatial
access methods.

A formidable number of spatial indexes have been proposed in the literature. In Section 2, we will categorize
them in the hope of better understanding of their fundamental strengths and weeknesses. In Section 3 we will
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speculate on research directions that might lead to some fruitful results. Due to limited space, our presentation
is inevitably sketchy and incomplete. Interested readers are suggested to follow the pointers available through
the paper’s references.

2 Spatial indexing techniques

Though the spatial indexes are more complex compared to non-spatial indexes, they are developed from the well
known basic indexing structures such as sorted arrays, binary trees, B-trees, and hashing, etc. Figure 1 shows
the evolution of the spatial indexing structures from the underlying base structures. Solid arrows in the diagram
indicate the relationships between a new structure and the original structures that it is based upon. The dashed
arrows are used to indicate a relationship between a new structure and the structures from which the techniques
used in the new structure originated, even though some were proposed independent of the others.

The underlying data structure of a spatial index determines the basic behavior of an index to a great extent.
For example, the grid files [NHS84] are based on hashing so that the number of disk accesses required for exact
match queries is expected to be constant. If the directory is stored as an array and all grid cells are of the same
size, only two disk accesses are required to retrieve an object: one for the directory entry and another for the
data page. On the other hand, as all hashing based-schemes, data skewness will lower the space utilization
and increase the size of directory drastically, which leads to the multi-level tree structured directory [WhK85].
Similarly, all tree-based indexes share some common characteristics.

Besides the underlying data structure, another important factor that determines the performance of a spatial
index is the way that it extends the basic structure to handle non-zero sized spatial objects. A basic approach
of indexing spatial data in a space is to (recursively) partition the space into manageable number of smaller
subspaces. Proper handling of the data objects and the partitioning process becomes a critical issue to extend
the basic structure to index non-zero sized objects. Major techniques for extension can be categorized into the
following classes [SeK88]:

• Object Mapping (Transformation): This approach maps objects from a k-dimensional space into points
in a 2k-dimensional space. Alternatively, objects are mapped from k-dimensional space into points in a
linear space, which can be indexed using any basic data structure for point data.

• Object Duplication/Clipping: The object duplication approach associates each object with an identifier
and duplicate it in all subspaces that the object intersects. The object clipping method decomposes an
object into smaller objects such that each component is totally included in one subspace.

• Object Bounding: Under this mechanism, the partitioning of the subspace is not arbitrary. Certain mea-
sures are supported to maintain that each data object is totally included in a subspace.

Table 1 groups various index structures according to the techniques used to handle non-zero sized spatial objects.
Each of the above approaches has its own strengths and weaknesses, which directly affect the performance

of indexes using it. For example, the major advantage of object mapping is that, after mapping, non-zero sized
objects can be treated as points in a k-dimensional space and proven techniques can be applied. However, after
mapping, the spatial relationship between the objects in the original space may not be preserved in the mapped
space. As a consequence, even if the original data are clustered, the mapped data may not be, making the
intersection search slow. Furthermore, not all queries can be meaningfully transformed. The major advantage of
object duplication and clipping is that the data structures used are straight forward extensions of the underlying
indexing structures. Also, both points and multi-dimensional non-zero sized objects can be stored together in one
file without having to modify the structure. The disadvantage is that duplication of object identifiers increases the
cost of storage and updates. As for the object bounding method, algorithms for maintaining effective enclosing
subspaces of objects can be complex and expensive. They may also require extra storage for the directory
structures and rendersing the search expensive.
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Figure 1: Evolution of spatial index structures.

_ ____________________________________________________________________________ __________________________________________________________________________
Object Mapping_ _____________________________

k-d to 2k-d k-d to 1-d
Object Duplication/Clipping Object Bounding

_ ___________________________________________________________________________ __________________________________________________________________________
Grid files locational keys Grid files multi-level grid files

Twin grid files Z-ordering EXCELL R-files

BANG files DOT mkd-trees PLOP-hashing

GGF R+-trees skd-trees

EXCELL Cell trees GBD-trees

K-D-B-trees BANG files R-trees

4d-trees Packed R-trees

hB-trees R* -trees

LSD-trees Buddy-trees_ ___________________________________________________________________________ ___________________________________________________________________________ 


































































































































Table 1: Classification of spatial index structures.
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3 Discussions

It can be seen that there are far more spatial access methods that have been proposed compared to the number of
access methods supported in relational database systems. This might be unavoidable as the applications using
spatial data are more diversified. It also indicates that most of them may not be satisfactory in one way or another.
While more specialized access methods can be devised to yield good performance for certain data distribution
and queries, it seems more important to develop a sound understanding of behavior of a few robust access
methods under varying conditions [GuB90]. As such, we could identify one or two indexing structures, for each
particular application area such as CAD/CAM and GIS, so that satisfactory performance can be maintained or
at least, the worst-case performance could be predicted.

To reduce the number of indexing techniques to be supported in a system whose applications may have dif-
ferent requirements, extensibility is one of the major design goals for new spatial indexing structures. An index
strudture can be made extensible by supporting variants of its basic structure. For example, the experimental
results show that, although the leaf layer of an skd-tree [OMS87] can reduce disk page accesses by limiting the
bounding rectangle coverage, it will increase them drastically due to the size of index when data are skewed
[OSM91]. With this observation, an extensible skd-tree index can be implemented that supports both structures,
with or without the leaf layer. The users can choose one of them based on the data skewness in their applications.
Thus, for applications where data is highly skewed, the leaf layer will not be built. Another alternative is to in-
clude a skew detection mechanism in the insertion algorithms. When high data skewness is detected, the index
will re-structured and stop to build the leaf layer. Furthermore, a number of proposed indexing mechanisms with
the same basic underlying data structure (e.g. tree) can be integrated as one extensible index that can maintain
satisfactory performance over a wider range of applications. In this case, a set of generic functions such as data
space partitioning, object insertion and deletion can be defined based on the underlying data structure. Different
implementations of those functions, including user defined ones, are stored in a linkable library. By instantiating
selected implemenations, a near-optimal indexing structure for a particular application can be generated.

Both identifying the robust access methods and designing effective extensible spatial indexes require us to
develop some benchmark databases and queries. So far, most comparative studies used synthetic databases
consisting of limited sets of spatial data objects that are generated using random number generators with desired
distributions and skewness with few exceptions[HoS92]. Although such randomly generated databases may
maintain certain fairness for the comparison, they may not reflect the characteristics of the real world data. The
ideal benchmark should be abstracted fromthe typical applications. We hope that some acceptable benchmarks
for spatial database systems will be available in the near future.

Indexing is a low level service provided to improve the overall system performance. Thus, it is important
to develop indexing techniques taking the whole system into account. So far, most studies on spatial indexing
focus on the data structures and algorithms; less work has been done on the interaction between index structures
and other closely related system components, such as query optimizers, system catalogues, buffer managers.
In addition to those well known issues such as concurrent updating and on-line construction of large indexed,
effective buffer management, one special issue here is the integration of spatial and non-spatial data. With a
good acceptance of object-oriented paradigm in multi-media systems, the coupling of spatial and non-spatial
data becomes tighter. Range queries with both spatial (geometric) and non-spatial conditions are not rare. To
provide reasonable performance for such queries, an integrated approach is suggested where the non-spatial
attributes to be requested flow directly into the overall data structure [Ohle92]. In a recent paper, Pagel, Six
and Toben proposed an area-sensitive transformation technique to address this problem [PST93]. While such
a technique provides a solution, it may not be feasible to build such index for each of the frequently accessed
non-spatial attributes. Some more general built-in mechanism in spatial indexes are needed.

Finally, we would like to further emphasize that, solutions to all above mentioned issues require close and
effective collaborations between the computer scientists and the application developers. High performance
indexing techniques can only be developed with a thorough understanding of the usage of spatial data, including

19



the access patterns and the post processing after data are brought into memory. At the same time, application
developers may be able to provide certain services or tune their algorithms to avoid some of the limitations of
underlying indexing mechanisms.
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Interactive Spatial Directories

Brian C. Schmult, H. V. Jagadish, and S. Kicha Ganapathy
AT&T Bell Laboratories

Abstract

A spatial directory is a directory of places, and information, things and events associated with
places, where classification and searching are based on location (or spatial proximity) as well as on
the name or type of an item. The result of a query could be alphanumeric or multimedia information,
or a map. In this paper we sketch some of the issues we are tackling in the Interactive Spatial
Directory (ISD) project.

1 Overview

A typical entry in an interactive spatial directory might be for an auto service station. For the service station,
there would be a record of its location, hours of service, prices for different grades of gasoline, and so forth. A
typical query will be based on proximity (“an auto service station within five miles of where I am”). The typical
query result will be a severe projection, since the database may often contain far more information about the
service station than the user desires. Further interactive querying can elicit desired additional information, such
as gasoline prices, or a map showing the location of the service station and directions to get there. In this manner,
an ISD is functioning like an inverted yellow pages, where the user goes from map to information instead of
from advertisement to map.

The ISD is a set of services, such as the interactive query-presentation loop described above, centered around
a core system that includes a spatial database. The spatial database also integrates traditional searching based
on name and classification, and stores alphanumeric, multimedia, and geometric information. The services will
be network based, and some will require location determination, for instance, the “where I am” part of the
query above. Location based services might be based on GPS (Global Positioning System) [Potmesil, 1993] for
location determination.

The defining characteristic of the ISD is that it will be a large, seamless store of potentially conflicting data
coming from many sources, that must be indexed both traditionally and spatially in real time by many users. The
data set is expected to be too large to be economical to unify into a monolithic database since it comes in small
pieces from many sources. This raises a number of problems, including representation, indexing, automatic
location of inconsistencies, simplified billing, etc. In this paper we do not consider such issues as billing and
location determination. Instead we focus on the database core.

This paper focuses on three major ISD issues. First is the data representations that accommodate hetero-
geneous and conflicting data. The second is spatial indexing. The third is getting adequate performance for
real-time access by multiple users. These issues are addressed in Sections 3-5 respectively. First we desribe the
overall architecture of our database.
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2 Schema Design

We use an object-oriented database system, Ode [Biliris et al., 1992], which is based on C++. There are four
fundamental classes of interest: logical entities, physical (or geometric) entities, representations, and attached
information. (See [Jagadish and O’Gorman, 1989] for a detailed study of the issues in modeling logical and
physical entities.) A logical entityis an object with meaning to the user, such as a road or a building. A single
logical entity may have multiple physical representations(from different providers, or on account of differences
in scale, etc. – see below). Each representation comprises one or more physical entities, such as line segments
and rectangles. Other information (i.e. hours of operation) may be included as a slot in a type, but many entities
(logical and physical) will have much instance-specific data, resulting in the attached informationclass. This is
similar to a property list, or a binary large object as used in relational databases.

The main components of the base logical entity are the names and aliases, the types, plus one level of
governmental containment, such as which county a municipality is in. The containment is particularly useful
for limiting certain types of queries. Geometry is represented by physical entities such as points, polylines,
polygons, and polygons with holes. Topological representation [White, 1980] is supported (but not required)
by placing left and right memberships as attached information on polylines. Grid data will also be supported,
including elevations, images, and characteristics such as land use/land cover.

2.1 Types

The domain of a query in an object-oriented database is usually the set of all objects of a given type. The
type hierarchy of C++, and hence Ode, supports multiple inheritance, and so an entry is made under the most
restrictive type known for it. For instance, an auto service station may be a subtype of both a gas station and an
auto repair shop. Queries specified on supertypes return objects that are instances of its subtypes as well. Thus,
a query for gas stations in some vicinity would return gast stations as well as auto service stations in the vicinity.

With the passage of time, new types of logical entities will be required. This must be automatic, since each
information provider specifies the type(s) used by it, and we expect information sources to be added, deleted and
updated frequently. New types may be derived from existing ones or newly created. It is not possible to have all
possible types pre-compiled; for instance, someone could own a combination gas station and flower shop. As far
as the Ode database is concerned, the creation of new types does not affect any existing data. When new objects,
instances of the new type, are created, appropriate database catalog entries are made for the type, transparent to
the application or database user. The challenge we are attempting to solve is for applications to automatically
link in type-related code on the fly, so that recompilation of the world is not required for each new type.

Users may often not be aware of the different types defined in the schema. A user unaware of type names can
ask a proximity query and retrieve all objects within the specified area, independent of type. Applications may
query objects to determine their type, when required. A built-in function to determine the type of an object has
been proposed for inclusion in C++, but is not currently available. We use a virtual function my type is() as
a work-around for the present. This virtual function is defined for the class logical entity and all its subclasses.
For this to work, all individual logical types must be derived, directly or indirectly, from the base type logical
entity. my type is() returns the primary type. The entity constructors also automatically build a list of all
types, represented by code numbers, for interrogation by applications.

3 Heterogeneity

It is expected that data in the spatial directory is obtained from multiple sources. Several problems of hetero-
geneity are created as a result.

First, the all important location attributes may not always be defined in the same way. We fix this by translat-
ing all location coordinates to latitude longitude pairs and using these as a standard for internal representation.
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User queries also have all user-specified location attributes translated into the latitude longitude pair representa-
tion.

Often, point locations are specified relative to benchmarks, rather than in absolute terms, both in the data
supplied and in the queries. It is difficult to compare data specified absolutely with data specified relatively. It
is even harder to compare data points specified relative to different benchmarks. Our solution is to convert all
locations to absolute values. Such conversion causes no problem in the query. In the database, however, the
reference benchmark may itself move at times, so a hard conversion from relative to absolute coordinates is not
appropriate. Instead, we use materialized views, retaining the definition of the coordinates of a point relative to
a benchmark, but presomputing and storing the absolute value, and updating it with a trigger when the reference
point is moved.

The next problem is distinct type names being assigned for essentially the same data obtained from different
providers. Our “solution” is to treat these as distinct unrelated data, passing the buck to the user or a higher
level application. These different data sets would have distinct index structures associated with them. Any
combination of data sets could be searched in response to a user query. When a query specifies all variants of a
conceptual type, hits from the various data sets are combined seamlessly.

Even worse, real data is often inconsistent. Thus, there may be conflicting place names, outright errors in
names, missing data, and multiple versions of the same point or line from different sources that do not line up.
The system scale, and our unwillingness to do special case hand-editing of inconsistencies, prohibits general
unification. Instead, inconsistencies are exposed to the user by storing separately the information available from
each provider, and making available to the user the version preferred for a particular application.

Similarly, map information is often available at different scales. This is frequently necessary, as displays at
various scales require corresponding data. Work has been done to simplify detailed representations automatically
[Whyatt and Wade, 1988], but this is not always possible, as some seemingly minor quirks may have legal
significance, requiring that reduced resolution representations be explicitly created. Once more, it is preferable
to show the user one or more distinct maps as may be appropriate for a particular application than to attempt
reconciliation.

In short, the default technique to manage inconsistency is to have multiple logical entities, and let the ap-
plication or user resolve the multiplicity. In addition, we plan to implement algorithms to search for objects
that appear to be the same, based on a similarity measure between names, types, locations and geometry. For
instance, see [Jagadish, 1991]. Where unification is impossible, an explicit relationship will be attached between
the objects so that applications clearly know that there are multiple versions of real truth.

3.1 Representations

Each logical entity has one or more representations. Each representation, in turn, comprises one or more physical
entities. (See [Story and Jagadish, 1991] for similar ideas in the context of document management.) For instance,
a township is a logical entity. One representation of a township may show roads, another reprentation may show
prominent buildings, and a third representation may show topography. Additional representations may present
this information at a different scale. A road-map for a township may be presented as a set of line segments, each
of which is a physical entity. Representations may also contain non-geometric information, such as road names
or population figures.

Often, different representations of a logical entity will be derived from different sources. It is possible
for representations to disagree on alphanumeric (population figure) or geometric (road location) data. Each
representation is identified by some “header” information including an ID, the source of the information, the
scale or resolution (stored as the minimum feature size), and the date range to which the information pertains.
The date is particularly important for historical maps.

Spatial indices point to the physical entities (low-level geometry), so where multiple representations of a
logical entity exist, a spatial query might return all representations. In some cases this is desired, but frequently
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the application wants a unique representation. The query mechanism includes provision for a representation
specification. The specification lists whether to use a default source, or which one is preferred or required;
the range of permissible scales and whether this is preferred or required; and the permissible time range. The
specification must be on a per-type basis, since a query might want geometry from one source and population
from another. To make this more efficient for common cases, we have designed an encoding of representation
descriptors, and combined it with an indexing technique described in the next paragraph.

It has been suggested, for object oriented databases, that it is sometimes effective to have indices over
superclasses include instances of derived subclasses as well, with markers in the leaf nodes to indicate for each
instance object which subclass it belonged to if any [Kim et al., 1989]. We extend this idea to the case of multiple
representations. An index structure on a particular object collection obtains the individual representations of the
object instead of the object itself. Queries interested in all representations of an object can look them up; those
interested only in a specific representation, can directly obtain the appropriate representation from the index
structure.

4 Spatial Indexing

Performance of the ISD must be optimized for read access by many users, many of which will be interactive.
Updates occur less frequently for most data. (There are some types of data that may change rapidly and re-
quire frequent updates, such as traffic or weather conditions. These exceptions must be treated specially). In
other words, the cost trade-offs favor pre-computation where possible, and the maintenance of multiple index
structures. In particular, spatial data is updated infrequently – rivers may change course, new buildings may be
constructed, but such changes are typically on a much longer time scale than most queries. In fact, we anticipate
that most spatial data updates can be applied in a batch mode at some low frequency, such as once a day.

We build one single global spatial index over all physical entities (lines, polygons, etc.) in the database.
Given the large expected size of the database, this index will be huge. Since updates are batched and infrequent,
we do not expect the large size to be a problem. On the other hand, having a single spatial index makes it easy
to determine all objects within the vicinity of a specified point, and makes our default query plan, described
below, optimal in most cases. Secondary spatial indices also exist, frequently associated with the data from each
provider. These will be of particular use for specialized applications, such as hotel location and reservations.

Access by spatial indexing is completed through a set of backpointers. An index bucket points to a specific
physical entity, which might be shared among logical entities, and/or might be duplicated by other representa-
tions of the same logical entity. (Physical entities may be shared, but not representations.) For instance a line
may be part of a township boundary, a county boundary, as well as a state boundary, There is a backpointer
from each physical entity to its containing representations, and a backpointer from each representation to its
containing logical entity. When multiple representations are returned, the two levels of backpointers permit an
application to throw out undesired physical entities.

When indexing is done by name, logical type, and/or other non-spatial attributes, the appropriate representa-
tion is selected based on its header, and a unique set of physical entities is obtained. Duplication is not possible
and backpointers are not required.

A typical query will involve a region around a specified point. The global spatial index is used to identify
all objects within the region of interest. Usually, the query will be interested not in all objects within the
specified region of interest, but rather in objects of a particular (logical) type and possessing particular properties.
These additional requirements are applied as a filter to the set of objects retrieved by the proximity query alone.
(Our implementation relies on the fact that query regions for proximity queries are usually very small, thereby
avoiding the need for a query optimizer).

Most providers are expected to provide map data in a topological representation, that is, as a collection of
line segments. Where the data represents regions rather than lines or polylines, the line segments represent the
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boundary of the region and the regions to the left and right of such boundary line segments are explicitly marked.
Where there is an intersection of boundaries, line segments are terminated and the intersection point explicitly
marked.

When data is obtained from multiple sources, such explicit marking of intersection is not possible. On the
other hand, region intersections are likely to be the basis of many queries and hence gain importance. Boundaries
of intersection regions have to be found by intersecting line segments of the individual boundaries. This has to
be done at query time since data is from many different autonomous sources, and often one of the regions to be
intersected may be a specified query region.

Efficient indexing of line segments is performed using the Hough transform space as suggested in [Ja-
gadish, 1990]. The basic idea is that a line segment becomes a point in the transform space and can thus be
retrieved efficiently using a point indexing technique. A region in the original space becomes a region in the
transform space as well, and proximity notions are preserved.

5 Related Work

There are two types of similar work, Geographic Information Systems (GIS), and Advanced Travelers Informa-
tion Services (ATIS). ATIS systems subsume directory services and street atlas systems.

GIS’s are mainly concerned with manipulating geometric and thematic data related to maps. See [Vijlbrief
and Oosterom, 1992] for a quick survey. The commercial ARC/INFO system [Morehouse, 1985] is represen-
tative. It uses topologically organized data split into separate maps (called coverages) and layers. There is no
spatial index – each map is a bucket. Effort goes into seamlessly moving between maps. Our objective is to have
only one map, and permit any region to be as easy to use as an independent GIS map.

ATIS’s demonstrate the style of interaction we desire, on a small scale. A good example is the TravTek
trial in Orlando, Florida [Taylor, 1991]. This combines a map of the Orlando area with location determination,
route planning, real time road congestion data, and a limited yellow pages. Most of the data is contained on
a CDROM. In consequence, the data integration and heterogeneity problems we tackle are avoided in this and
most other ATIS’s. We are creating a networked service instead, and a database that can be greatly expanded in
scale, both in type and area of coverage.
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High Performance R-trees

Christos Faloutsos∗ Ibrahim Kamel
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1 Introduction

One of the requirements for the database management systems (DBMSs) of the near future is the ability to
handle spatial data [12]. Spatial data arise in many applications, including cartography, Computer-Aided Design
(CAD) [7], computer vision and robotics, traditional databases (a record with k attributes corresponds to a
point in a k-d space), temporal databases, medical image databases [1], scientific databases [3]. In the above
applications, one of the most typical queries is the range query: Given a rectangle, retrieve all the elements that
intersect with it.

Spatial access methods have attracted a huge amount of interest (see, eg. [10] for a recent survey). One of
the most promising methods is the R-tree [7] and its variants, with the R∗-tree [2] showing the best performance.
In R-trees, spatial objects are represented by their minimum bounding rectangles (MBR). The reader is assumed
to be familiar with the R-tree structure.

We discuss two projects: (a) how to build better R-trees in a centralized environment and (b) how to decluster
an above R-tree in a parallel setting. Section 2 examines the centralized case, and it describes how to exploit
the good clustering properties of the Hilbert curve. The idea is to impose an ordering on the data items, so that
they can be grouped into tight R-tree nodes. Section 3 shows how to exploit parallelism to improve the search
performance of any R-tree structure. It proposes a new criterion, the ’proximity measure’, to decide whether
two rectangles are too close to each other to reside on the same unit. Section 4 lists the conclusions and future
research directions.

2 Centralized case: Hilbert-Rtree

For clarity of presentation, we temporarily assume that the data are points, and that the database is static. In
such an environment, the only packing method for R-trees is the one proposed by Roussopoulos and Leifker [9].
They build a packed R-tree by sorting the data on the x or y coordinate of one of the corners of the rectangles.
Once the rectangles have been sorted, the next step is to scan the list, assigning successive rectangles to the
same R-tree leaf node, until this node is full; then, a new leaf node is created and the scanning of the sorted list
continues. In our implementation of the method, we have chosen to sort on low-x; since our experiments showed
no performance difference among sorting on low-x, high-x etc. Thus, we shall refer to this method as the lowx
packed R-tree.

Although it performs very well for point queries on point data, its performance degrades for larger queries.
Figures 1(a)-(b) highlight the problem. Figure 1(b) shows the leaf nodes of the R-tree that the lowx packing

∗This research was partially sponsored by the Institute for Systems Research (ISR) and by the National Science Foundation under
the grant IRI-8958546 (PYI), with matching funds from EMPRESS Software Inc. and Thinking Machines Inc..
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method will create for the 200 random points of Figure 1(a). Neglecting the y-coordinate, the lowx packed
R-tree tends to create elongated nodes, containing points that are not necessarily close to each other. To achieve
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Figure 1: (a) 200 points uniformly distributed; (b) grouped by the ‘lowx packed R-tree’ algorithm; (c) grouped
by the proposed Hilbert-curve method.

a better ordering, we propose to use space filling curves (or fractals), and specifically the Hilbert curve, since it
is known for its superior clustering properties [4]. Figure 2 shows the Hilbert curves of order 1,2 and 3 (ie., for
2x2, 4x4 and 8x8 grids respectively). The number by each grid point is its ’Hilbert value’. Thus, the proposed
packing method is similar to the lowx packed R-tree, with the major difference that the data points are sorted on
their Hilbert values. Figure 1(c) shows the the MBRs of the resulting R-tree leaf nodes; notice that they tend to
be small square-like rectangles. This indicates that the nodes will likely have small area and small perimeter,
both of which properties will lead to faster response times (see Figure 3))

As we discuss in technical reports, the idea can be extended to handle rectangles (in addition to points) [6]
as well as insertions and deletions [5], while still maintaining its search performance. The resulting method will
be referred to as Hilbert R-tree.

Performance experiments in the above two technical reports confirm the intuitive arguments about the su-
periority of the Hilbert R-tree. Figure 3 gives a typical sample of these results, plotting the response time (disk
accesses) as a function of the area of the query, on a file of real data, a ’TIGER’ file, from the U.S. Bureau of
Census, containing 39717 line segments (the roads of Montgomery county in Maryland). Figure 3(a) examines
the static case, where the whole database is known in advance, and no modifications are allowed. It compares
the proposed method (Hilbert R-tree) against the low-x, the R∗-tree and the R-tree with quadratic split. The
proposed method achieves up to 36% improvement over the next best method (R∗-tree) and up to 58% improve-
ment over the lowxpacked R-tree. Figure 3(b) gives the results for the dynamic case (ie., insertions and deletions
are permitted). Again, Hilbert R-tree is the clear winner, outperforming by up to 28% the next best competitor
(again, the R∗-tree).
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Figure 2: Hilbert Curves of order 1, 2 and 3.
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Montgomery County, MD: 39717 line segements

Hilbert R-tree

R*-tree

Quad R-tree

Lowx

Pages Touched

-3Qarea x 10
0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

120.00

130.00

140.00

150.00

160.00

170.00

180.00

190.00

200.00

210.00

220.00

0.00 50.00 100.00 150.00 200.00 250.00

Montegomery County: 39717 line segements; 2-to-3 split policy

Hilbert R-tree

R*-tree

Quad R-tree

Pages Touched

-3Qarea x 10

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

220.00

240.00

260.00

280.00

300.00

320.00

340.00

360.00

380.00

0.00 100.00 200.00 300.00 400.00 500.00

(a) STATIC (b) DYNAMIC

Figure 3: response time vs. query area - real data (MGCounty dataset)

3 Parallel case: MX-R-tree

The goal of this project is to decluster the R-tree structure on a multi-disk architecture, to improve the perfor-
mance for range queries. Notice that the declustering method is orthogonalto the choice of the specific R-tree
variant; anyof the known R-tree variants can be used (including the freshly introduced Hilbert R-tree).

We have examined a multi-disk architecture, consisting of one processor with several disks attached to it.
There are two reasons for our choice: (a) Several of the target applications involve huge amounts of data, which
do not fit in one disk. For example, NASA expects 1 Terabyte (=1012) of data per day; the TIGER database of
the U.S. Bureau of Census is 19 Gigabytes. (b) a multi-disk architecture can be used as a building block for a
multi-processor share-nothing architecture, which is the topic of future research.

In the multi-disk environment, our goal is to maximize the throughput, which, as noted by Seeger and
Larson [11], translates into the following two requirements: (a) ‘minimum load’: Queries should touch as few
nodes as possible, imposing a light load on the I/O sub-system. As a corollary, small queries (eg., point queries)
should activate as few disks as possible. (b) ‘uniform spread’:Nodes that qualify under the same query, should
be distributed over the disks as uniformly as possible. As a corollary, queries that retrieve a lot of data should
activate as many disks as possible.

We strive for a way to distribute an R-tree over d disks, to meet both of the above requirements. There are
three major approaches to do that: (a) d independent R-trees (one R-tree per disk, with no pointers across disks);
(b) Disk striping (or ‘super-nodes’, or ‘super-pages’ - one global R-tree, with each node consisting of d disk
pages, striped across the d disks); and (c) the ‘Multiplexed’ R-tree, or MX-R-treefor short: one global R-tree,
with single-page nodes, but with pointers across disks (see Figure 4).

As discussed in [8], the most promising approach is the third one. By its construction, the MX-R-tree fulfills
the ‘minimum load’ requirement (as opposed, eg., to the super-node approach, which activates all d disks, even
for the tiniest query). To meet the ‘uniform spread’ requirement, we need a good declustering method, that is, a
heuristic to assign nodes to disks. The performance measure for these heuristics is the response time, that is, the
completion time of the latest disk; the CPU costs are negligible and are ignored.

The only case where we need to worry about declustering is when a new R-tree node is created, that is, when
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Figure 4: R-tree stored on three disks.

a node overflows and has to be split into two. One of these two new nodes, say, N0, has to be assigned to another
disk. To keep the insertion time short, we consider only the sibling nodes N1, . . . , Nk, that is, the nodes that
have the same father Nfather with N0 (see Figure 5 for an illustration). Thus, the problem can be informally
stated as follows: Given a node (= rectangle) N0, a set of nodes N1, . . . , Nk and the assignment of nodes to
disks Assign N0 to a disk, to optimize the response time on range queries.

We have experimented with several heuristics, such as: (a) Round-Robin (‘RR’), which strives for ’data
balance’, that is, for equal number of nodes per disk. (b) Minimum Area (‘MA’), which strives for ’area balance’,
that is, each disk should roughly cover the same area in native space. For example, in Figure 5, MA would assign
N0 to disk A, because the light gray rectangles N1, N3,N4 and N6 of disk A have the smallest sum of area. (c)
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Figure 5: Node N0 is to be assigned to one of the three disks.

Minimum Intersection (‘MI’), which tries to minimize the overlap of nodes that belong to the same disk.
The proposed heuristic is the Proximity Index (‘PI’), which assigns the new node N0 to the disk with the

‘least similar’ nodes with respect to N0 (ie., least likely to qualify in the same range query with N0). For the
setting of Figure 5, PI will assign N0 to disk B because it contains the most remote rectangles. Intuitively, disk
B is the best choice for N0, in our effort to satisfy the ’uniform spread’ criterion. The formulas to compute
the proximity index of a node (rectangle) N0 to a disk that contains a setof rectangles N1, . . . , Nk is based
on the proximity measure: This measure compares two rectangles and assesses the probability that they will be
retrieved by the same query. The proximity indexof a new node N0 and a disk D (which contains the sibling
nodes N1, . . . , Nk) is the proximity of the most ‘proximal’ node to N0.
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The exact formulas for the proximity measure and the proximity index are in [8]. For brevity, we present
only the formulas for 1-d case: If R and S are two line segments (1-d rectangles), then

proximity(R,S) =

{
1/3 × (1 + 2 × δ) if R and S intersect
1/3 × (1 − ∆)2 if R and S are disjoint

(1)

where δ is the length of the common segment, if R and S intersect, and ∆ is the distance between them, if they
are disjoint.

The same paper reports simulation results; we present some of those graphs next. Figure 6 compares the PI
heuristic over the rest (RR, MA, MI), for the MX-R-tree. It shows the response time as a function of the side qs
of the (square) queries. Notice that PI and MI, the two heuristics that take the spatial relationships into account,

Coverage = 0.26, Page size = 4k, no disks = 10
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Figure 6: Comparison among all heuristics (PI,MI,RR and MA)- response time vs query size

perform the best. Round Robin is the next best, and the Minimum Area heuristic is last.
Additional experiments in [8] compare the MX-R-tree (with PI)
against the super-node (= disk striping) approach, showing that the MX-R-tree typically achieves better

response times, while it always achieves lower load, as expected. Experiments in the same paper show that the
MX-R-tree scales up well.

4 Conclusions - Future research

In this paper we described two projects, which they both target high-performance R-tree designs. For the central-
ized case, we discussed a superior R-tree variant, which uses the Hilbert curve, and outperforms all the previous
R-tree methods. The major idea is to introduce a ’good’ ordering among data rectangles.

In a parallel environment, with one CPU and multiple disks, we proposed the ‘proximity index’ (PI) criterion,
to help decluster the nodes of an R-tree. Specifically, this criterion tries to store a new node on that one disk that
contains nodes as dissimilar to the new node as possible.
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Future research could focus on the following topics: (a) the use of the proximity concept to aid the paral-
lelization of other spatial file structures; (b) declustering schemes for multi-processor, share-nothing architec-
tures; and (c) analysis of the Hilbert R-trees, providing analytical formulas that predict the response time as a
function of the characteristics of the data rectangles (count, data density etc).
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1 Introduction

There is leverage to be gained by bringing spatial data within the purview of general purpose database systems.
A spatial access method embedded in a general purpose DBMS would have several advantages [Lom91]:

1. Spatial data could be integrated with other data. Spatial objects are likely to have attributes other than the
location of their bounding boxes. These other attributes can be queried using traditional methods.

2. Multiple users (some making updates) would be supported by concurrency algorithms already in place.

3. In case of a system failure, the restart process would be able to recover the database to a consistent state.

4. Robust system utilities for loading data, analyzing performance, producing reports and so forth could be
applied.

To this end, we have been modifying the hB-tree (or holey Brick tree) [LS90], an efficient multi-attribute
search structure, for use with the concurrency and recovery systems available in general purpose DBMSs. This
will make it more likely that vendors of DBMSs will be able to provide support for spatial data.

In section 2, we review the hB-tree. In section 3, we show why structures which cluster points in space
as the hB-tree does will also be efficient for clustering k-dimensional spatial objects when their bounding box
coordinates are entered as points in 2k-dimensional space. We give here performance results which demonstrate
that the hB-tree is especially well suited for such spatial data, since the space used for the index is not sensitive
to the number of dimensions. In section 4, we indicate how the concurrency and recovery algorithm of [LS92]
can be applied to a modified hB-tree.

2 The hB-tree

The hB-tree is a multi-attribute index structure. Its inter node search and growth processes are precisely analo-
gous to the corresponding processes in B-trees. Its nodes represent bricks (i.e., multi-dimensional rectangles),
or “holey” bricks, that is, bricks from which smaller bricks have been removed.

It consists of index and data nodes. Index nodes are responsible for multi-dimensional subspaces. They
contain a kd-tree [Ben79] which is used to organize information about lower levels of the hB-tree and extracted

∗This work was partially supported by NSF grant IRI-91-02821.
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index-level regions. Data nodes contain the actual data, which are points in multi-dimensional space. Since the
space a data node describes may be holey, data nodes may contain kd-trees, as well, that enable the data nodes
to describe their own “inner” boundaries and the extracted data-level regions.

A kd-tree is a binary tree that is capable of describing a region (possibly holey) of the multi-dimensional
space of attributes. The leaf nodes of a kd-tree may: (a) refer to other hB-tree nodes of the next lower level, (b)
be markers, called external markers, indicating that a subtree is missing (this happens when a node is split and
part of the attribute space it was describing is now described by another sibling node), or (c) refer to a collection
of data records that are kept in a record list (in data nodes, only).

Figure 1 contains an example hB-tree. We have
a two-dimensional attribute space. The root of the
hB-tree is the index node I, that describes the whole
space. Its kd-tree describes the next level of the hB-
tree, which consists of two data nodes. All records
with attributes x ∈ (x0,+∞) and y ∈ (y0,+∞) are
located in data node B, and the rest of the records are
located in data node A.

A’s kd-tree shows that A, which initially was re-
sponsible for the whole attribute space, was split and
part of its records moved to node B (that is what the
external marker denotes).

KEY SPACE

x0

DATA
NODES

B

I

A

x0

y0

ext

INDEX
NODE

x0

y0to A

to Bto A

data1

data2

data3

y0

A

Bdata1

data2

data3

Figure 1: An example hB-tree.

2.1 Searching

Searching for point data using the hB-tree is straightforward. We start the search at the hB-tree root. The root is
searched by traversing its kd-tree. Every kd-tree node has information which includes an attribute and its value.
By comparing this value to the value of the corresponding attribute of the search point, we can decide on which
of the two children of the kd-tree node we should visit next.

This process will lead us to lower levels of the hB-tree, and eventually to a data node. That data node contains
the part of the attribute space where the search point belongs. Finally, the points of the node are searched with
the help of the kd-tree of the node.

2.2 Node Splitting and Index Term Posting

The idea behind node splitting is the same as in B-trees. When a node becomes full it has to be split. Its kd-tree
is used to find a subtree whose size is between one and two thirds of the contents of the node. A new hB-tree
node is allocated and the extracted contents are moved to it. An external marker is included in the original node
indicating that part of its contents have been extracted.

The kd-tree nodes in the path from the kd-tree root of the node to the extracted subtree which describe the
extracted region and have not been posted during another splitting are posted to the parent hB-tree node. Posting
of index terms may trigger additional node splits at higher levels.

3 Using the hB-tree for Spatial Objects

The hB-tree can be used for spatial objects as can any other multiattribute point index. The spatial objects are
represented in the index by the coordinates of their bounding boxes.

We show first that any multiattribute index (such as the hB-tree) which clusters data points which are nearby
in space, will, using boundary coordinates, cluster together records of nearby spatial objects. Since the number
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of coordinates used to describe a bounding box is twice the number of dimensions of the space, indexes whose
size does not depend on the number of coordinates of the data points will be superior. We show that the hB-tree
disk space utilization is insensitive to the dimension of the space.

3.1 Mapping Spatial Objects to Points

Say we are using 2k coordinates to describe a brick in k-dimensional space. If two points in the 2k-dimensional
space have similar values in all coordinates, (a) the objects are similar in size, (b) if the objects are small, they
are close in space, and (c) if the objects are large, they will overlap. Thus, any method which clusters nearby
points will group records of large objects together in pages with other overlapping large objects. It will also
group small objects together with nearby small objects in pages.

This clustering is efficient for typical spatial queries. Large objects are likely to be the answer to many
queries. Having them clustered in disk pages will increase the locality of reference. Having the small objects
clustered together will decrease the number of pages which must be accessed for a particular query [Lom91].

To illustrate these points, we look at one-dimensional spatial objects,
which are line segments with a begin value and an end value. We map
these objects to points in two-dimensional space using the x-coordinate
for the begin value of the line segment and the y-coordinate for the end
value. Since the begin value is always less than or equal to the end value,
all points will lie on or above the line x = y. Points representing small
line segments will be near the diagonal line x = y and points representing
large line segments will be far from the line x = y (figure 2).

Common spatial queries such as inclusion or intersection are repre-
sented by rectangular bricks in the transformed (2k-dimensional) space.
For example, as illustrated in figure 2, all line segments containing the
point “6” would be in the area where the begin value x is less than or
equal to 6 and where the end value y is greater than or equal to 6.

y

x6

6

Figure 2: Mapping of line seg-
ments to points. Points close to
the line x = y will represent
small line segments.

3.2 Performance of the hB-tree in High Dimensions

The main objection to using multiattribute point-based methods for spatial objects is that the number of di-
mensions needed to represent the objects doubles, making the index too large. But the hB-tree is especially
insensitive to increases in dimension.

A kd-tree node always stores the value of exactly one attribute. Thus, the size of a kd-tree node (and,
consequently, the size of the kd-trees that reside in the hB-tree nodes) does not depend on the number of indexing
attributes.

But, in addition to a kd-tree, every hB-tree node stores its own boundaries (i.e., low and high values for all
attributes that describe the space the node is responsible for). These are 2k attribute values for a k-dimensional
hB-tree. An increase on the number of dimensions does increase the space required to store a node’s boundaries.
The additional amount of space required as the dimensions increase becomes a non-factor for large enough page
sizes. Figure 3 illustrates this fact. With a page size of 2K bytes and larger, there is almost no effect on the size
of the hB-tree and the node space utilization as the dimensions increase. (Page sizes larger than 2K bytes are not
shown.)

This is in contrast, for example, with the R-tree [Gut84], where index entries are bounding coordinates of
objects plus a pointer. Thus, in the R-Tree (and its variants) the size of the index is proportional to the dimension
of the space. The grid file [NHS84] is even worse since it is a multidimensional array. Thus doubling the number
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Figure 3: Index and data hB-tree node space utilization and size of the hB-tree in terms of height and Mbytes
under different page sizes and dimensions. For page sizes greater than 2K bytes the hB-tree is insensitive to the
number of dimensions. In all cases the same 150,000 24-byte records were inserted.

of dimensions squares the size of the index. In the worst case it is an O(nk) size index, where n is the number of
points and k is the dimension of the space. Z-ordering, [OM84] on the other hand, like the hB-tree is insensitive
to dimension.

4 Dealing with Concurrency and Recovery

New access methods which are advantageous for spatial data cannot be integrated into general purpose DBMSs
unless they use the existing concurrency and recovery methods provided by the systems. The hB-tree has been
properly modified so that the efficient algorithm for concurrency and recovery of [LS92] is applicable on it.

The most important modification is the replacement of external markers by actual pointers to the extracted
nodes. The hB-tree becomes a subcase of the Π-tree [LS92], an abstract tree-structure which is a generalization
of the Blink-tree [LY81]. We call the modified hB-tree an hBΠ-tree. Now, we can be lazy about posting index
terms that describe a node split. In other words, two instances of the hBΠ-tree can be structurally different,
because some index term postings have not been performed, but semantically equivalent.

4.1 Splitting and Posting

As with simple B-trees, when an insertion causes an hBΠ-tree node to overflow, that node is split, with part of
the contents going to a new sibling node, and a new index term is posted to the parent. In the hBΠ-tree the node
splitting phase and the index posting phase are performed by separate atomic actions, as following:

Node splitting phase: An updater detects an hBΠ-tree node that is full and cannot accommodate the update.
This node, called the container node, is split and part of its contents are moved to a newly created node,
called the extracted node. The node splitting phase concludes by storing a side pointer in the container
node that points to the extracted node (figure 4b).

Index posting phase: An index term that describes the space that was extracted from the container is posted to
a parent of the container. Since an hBΠ-tree node may have many parents, the index posting phase may
consist of several separate index posting atomic actions. An index posting atomic action always posts to
a single parent (figure 4c).
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An index posting atomic action can be scheduled after: (a) a node splitting phase is over, in which case
it involves the parent of the container node that lies in the current search path, or (b) a side pointer traversal,
which is an indication that either the posting action that was scheduled after the splitting was not performed for
some reason, or the container node is a multiparent node and the current search path is through a parent other
than the one involved in the node splitting phase.

C1 C2

P P P

C2
C1

C2

C3

C1 C2 C1 C3 C2 C1 C3 C2

C1

(a) Before splitting (b) After the node splitting phase (c) After the index term posting phase

Figure 4: In the node splitting phase, node C1 is split, part of its contents move to the new node C3 and a side
pointer to C3 is included in C1. In the index term posting phase an index term that describes the space of C3 is
posted to its parent P.

In case an index posting atomic action can not take place for any reason, the hBΠ-tree is left in a consistent
state. Searchers can always traverse or visit the extracted node by going through its container node and following
the side pointer. System failure is not the only thing that prevents posting actions from completing. Depending
on the algorithm used for performing the posting of index terms, a posting action may be dropped because the
algorithm decides that it is not a good idea to perform the posting at that particular moment for performance
reasons. Being too lazy in posting index terms may degrade the performance of the hBΠ-tree. An algorithm
has to balance the tradeoff between an efficient and simple scheme for posting index terms and more expensive
traversals of the hBΠ-tree due to a large number of side pointer traversals.

In the hBΠ-tree we have found that if we post more information (extra kd-tree nodes) than is actually needed,
or if we restrict index node splits to certain places on their kd-tree, our algorithms become simpler. Such
simplification could have negative consequences on performance since worst case guarantees of index term size
and index node space utilization no longer hold as in the hB-tree. However, our preliminary experiments show
that even with simple algorithms the performance is very good [ELS93].

5 Conclusions

The hB-tree is especially well-suited for spatial data. It clusters points using median attributes. It is insensitive
to increases in dimension. Like any other point-clustering method, it can be expanded for use with bounding
boxes of spatial objects. The resulting clustering will be effective for typical spatial queries such as nearest-
neighbor and intersection searching. In addition, we are applying an efficient concurrency and recovery method
to a modified hB-tree (called the hBΠ-tree) making possible its integration into a general purpose DBMS. This
will enable users of spatial data to take advantage of the extensive and robust capabilities of these systems.
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Abstract

Query languages for spatial databases need appropriate tools to inquire about spatial data and provide
access to the relations among spatial objects. These spatial relations are more complex than conven-
tional predicates comparing equality or order. Examples are such spatial predicates as “neighbor,”
“intersect,” and “inside.” A formal definition of spatial relations is necessary to define the semantics
of an appropriate set of spatial predicates in query languages and to provide a basis for spatial query
processing. We have extended a model, initially designed for binary topological relations between 2-
dimensional objects, to treat 1-dimensional objects inIR2 as well. The approach used is based upon
algebraic topology and compares the interiors, boundaries, and exteriors of the lines. A total of 33 dif-
ferent topological relations between two simple lines has been identified formally, for which geometric
interpretations are given.

1 Introduction

Queries in Geographic Information Systems (GISs) and image databases are often based on the relations among
spatial objects. For example, in geographic applications typical spatial queries are, “Retrieve all roads that lead
to interstate highway I-95” and “Find all electric power lines that run across a river.” Current database query
languages, such as SQL and Quel, do not sufficiently support such queries, because they provide only tools
for comparing equality or order of such simple data types as integers or strings. The incorporation of spatial
relations over geometric domains into a spatial query language has been identified as an essential extension
beyond the power of traditional query languages [5, 17]. Some experimental spatial query languages support
queries with one or the other spatial relation; however, the diversity, semantics, completeness, and terminology
vary dramatically [4, 10]. With the advent of extensible database query languages such as SQL3, it will become
increasingly important to have (consistent) models and formalizations of relations.

Previous investigations developed a formal model for binary topological relationsfor co-dimension 0 (i.e.,
if the dimension between the embedding space and the objects is 0). It applies to relations between regions
(2-dimensional objects) embedded in IR2 [7] or lines in IR1 [16]. For these settings, we have promoted a com-
prehensive formalism [6], which generalizes to n-dimensional objects embedded in IRn. Others have used this

∗This research was partially funded by NSF grant No. IRI-9309230 and grants from Intergraph Corporation. Additional support from
NSF for the NCGIA under No. SES-880917 is gratefully acknowledged.
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model, for instance to formalize topological relations among spatial objects in 3-D [11, 15], studies of the use of
spatial predicates in natural languages [14], or as a basis for the integration of topological constraints into spatial
query languages [3, 13, 18]. Here, we extend the formalizations of topological relations to line-line relations in
IR2.

The remainder of this paper is organized as follows: Section 2 briefly summarizes the model used for
topological relations with co-dimension 0 and demonstrates why it is necessary to extend it for objects with
co-dimension 1, such as lines in IR2. Section 3 introduces the 9-intersection as our model to formalize binary
topological relations between lines in IR2. Section 4 investigates which relations can be realized between two
lines in IR2. The conclusions in Section 5 discuss future research activities.

2 4-Intersection

Binary topological relations between two objects, A and B, are defined in terms of the four intersections of A’s
boundary (∂A) and interior (A◦) with the boundary (∂B) and interior (B◦) of B [6], called the 4-intersection[6].
Topological invariants of these four intersections, i.e., properties that are preserved under topological transfor-
mations, are used to categorize topological relations. Examples of topological invariants applicable to the 4-
intersection are the content (i.e., emptiness or non-emptiness) of a set, the dimension, and the number of separa-
tions [9]. The content invariant is the most general criterion as any other invariants can be considered refinements
of non-empty intersections. By considering the values empty (∅) and non-empty (¬∅) for the four intersections,
one can distinguish sixteen binary topological relations, nine of which can be realized for 2-dimensional objects
(including objects with holes), called regions, if the objects are embedded in IR2 [7], and eight between two
lines in IR1 (Fig. 1) (which correspond to Allen’s interval relations [2] if the order of the 1-dimensional space
is disregarded) . The difference is due to the fact that regions may have connected boundaries, while lines have
disconnected boundaries.

Figure 1: Examples of the eight topological relations between two lines in IR1.

The same relations also exist when the objects are mapped into a higher-dimensional space; however, due to
the greater degree of freedom, the objects may take configurations that are not represented by one of the relations
between objects with co-dimension 0. For example, if two lines “cross,” they have non-empty interior-interior

Figure 2: Examples of topological relations between two lines in IR2 that have the same 4-intersection (A◦ ∩
B◦ = ¬∅; A◦ ∩ ∂B = ∅; ∂A ∩ B◦ = ∅; and ∂A ∩ ∂B = ¬∅).

intersections, while the other three intersections are empty. Such a 4-intersection could not be realized for two
lines in IR1. On the other hand, some 4-intersections may have ambiguous geometric interpretations (Fig. 2).
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¿From a practical point of view, there are certainly situations in which one would like to distinguish between
them when querying a geographic database. These observations motivated the development of an extended mod-
el to account also for relations between n-dimensional objects that are embedded in an m-dimensional space,
m > n.

3 9-Intersection for Binary Topological Relations between Lines

The definition of a line is based on 1-cells, i.e., the connections between two geometrically independent nodes. A
line is a sequence of 1 . . . n connected 1-cells such that they neither cross themselves nor form a cycle. Nodes at
which exactly one 1-cell ends will be referred to as the boundaryof the line. Nodes that are an endpoint of more
than one 1-cell are interior nodes. The interior of a line is the union of all interior nodes and all connections
between the nodes. The closureof a line is the union of its interior and boundary. Finally, the exterior is the
difference between the embedding space and the closure of the lines. We will call a sequence of 1-cells a simple
line if it has exactly two boundary nodes. Lines that would have less than two boundary nodes would include
cycles, which are excluded by definition.

The 4-intersection is extended by considering the location of each interior and boundary with respect to
the other object’s exterior; therefore, the binary topological relation R between two lines, A and B, in IR2

is based upon the comparison of A’s interior (A◦), boundary (∂A), and exterior (A−) with B’s interior (B◦),
boundary (∂B), and exterior (B−). These six object parts can be combined such that they form nine fundamental
descriptions of a topological relation between two lines and be concisely represented by a 3 × 3-matrix, called
the 9-intersection.

R(A,B) =


 A◦ ∩ B◦ A◦ ∩ ∂B A◦ ∩ B−

∂A ∩ B◦ ∂A ∩ ∂B ∂A ∩ B−

A− ∩ B◦ A− ∩ ∂B A− ∩ B−




Each intersection will be characterized by a value empty(∅) or non-empty(¬∅), which allows one to dis-
tinguish 29 = 512 different configurations. Only a small subset of them can be realized between two lines in
IR2.

4 Existing 9-Intersections Between Lines in IR2

In order to identify which of the 512 different 9-intersections may be realized between two lines in IR2, we
formalize a set of properties as conditions for binary topological line-line relations, that must hold between
the parts of any two lines. These properties can be expressed as consistency constraints in terms of the 9-
intersection [8], such that by successively eliminating from the set of 512 relations the relations that would
violate a consistency constraint, one retains the candidates for those 9-intersections that can be realized for the
particular spatial data model. The existence of these relations is then proven by finding geometric interpretations
for the corresponding 9-intersections.

Condition 1: The exteriors of two lines always intersect with each other.

Condition 2: A’s boundary intersects with at least one part (interior, boundary, or exterior) of B, and vice-versa.

Condition 3: Each boundary of a simple line intersects with at most two parts of another line.

Condition 4: If A’s boundary is a subset of B’s boundary, then the two boundaries coincide, and vice-versa.

Condition 5: If A’s interior does not intersect with B’s exterior then the two interiors must intersect as well,
and vice-versa.
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Condition 6: If A’s interior does not intersect with B’s exterior then A’s boundary must not intersect with B’s
exterior, and vice-versa.

Condition 7: If A’s interior does not intersect with B’s exterior then A’s interior must not intersect with B’s
boundary, and vice-versa.

Condition 8: If A’s closure is a subset of B’s interior then either A’s exterior intersects with both B’s boundary
and B’s interior, or not at all, and vice-versa.

Based on these conditions, we find 33 relations between two simple lines, 13 of which are symmetric (ex-
amples of geometric interpretations are shown in the top two rows of Fig. 3) and the remaining ones form 10
pairs of converse relations (bottom two rows of Fig. 3 show one example of each pair of the converse relations).

Figure 3: Geometric interpretations of the topological relations between two simple lines in IR2.

5 Conclusions

A formalism for the definition of binary topological relations between linear spatial objects embedded into IR2

has been presented. Binary topological relations are described by the 9-intersection, i.e., the set intersections
between the interiors, boundaries, and exteriors of the two lines. The criterion for distinguishing different
topological relations is the contentof the 9-intersections, i.e., whether the intersections are empty or non-empty.
Using these criteria to classify topological relations, it was shown that in IR2 there are only 33 line-line relations
that can be realized. This set of relations provides a solid framework to process spatial queries. While the
content invariant provided a very generic criterion for classifying line-line relations, there are a number of other
topological invariants that reveal more detailed differences about line relations. Examples of these invariants
are the number of non-empty interior-interior intersections, their dimension, their type (crossing or touching),
and the order in which these invariants are encountered [3, 9, 12]. Each of them increases the number of spatial
relations a user can choose from when querying a geographic database.
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The results of this paper have some serious implications for the design of spatial query languages. Obvi-
ously, there is a large number of different relations that users might want to distinguish. Although one may be
tempted to group them into categories of conceptually similar relations [3], human subject tests with line-region
relations have indicated that some users actually distinguish the entire array of different relations offered by
the 9-intersection model [14]. The diversity of spatial configurations that may be distinguished and sometimes
necessary for users to make decisions, may be greater than what can be easily described in a traditional database
query language. For example, natural (English) language offers only a small, limited amount of spatial predi-
cates to describe spatial configurations [19]. Without comprehensive tests of how humans judge spatial relations
in different situations in which the context or the semantics of the objects involved change, any decisions about
the use of vocabulary in spatial query languages will be speculative.

As a consequence for spatial query language design, detailed spatial relations may need to be described by
other means than predicates, e.g., graphically as a sketch, as annotated drawing, or by selecting combinations
of legal and illegal configurations from a set of given prototypes. Graphical renderings appear to be very nat-
ural in interacting with spatial data, however, there are some major problem one faces with specifying spatial
constraints as sketches. For example, complex Boolean combinations of spatial constraints—particularly dis-
junctions and negation—are very difficult to draw. Likewise, any graphical rendering contains inevitably more
spatial constraints than what is expressed by a single spatial predicate. For example, a sketch of a topological
relation that ”A is disjoint from B” carries additional information about the directions between the objects, their
shapes, relative sizes and distances. Query languages that incorporate an interview processduring which the user
is involved in resolving overspecified or underspecified constraints, may be promising approaches to overcome
the limitations of traditional query languages based on the question-answer paradigm.
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1 General description

The ESPRIT Project EP6881 AMUSING(Algorithms, Models, User and Service INterfaces for Geography) is
a three year research project started on November 1, 1992. The project involves the following sites: University
of Rome “La Sapienza”, (Italy); (main partner) University of L’Aquila, (Italy); Algotech s.r.l., Rome, (Italy);
INRIA/CNAM, Paris, (France); IGN, Paris, (France); Fernuniversität Hagen, (Germany); National Technical
University Athens, (Greece); Technical University Wien, (Austria); ETH Zürich, (Switzerland).

The general objective of AMUSING is to define the main features and principles of a next generation ar-
chitecture for Geographical Information Systems (GIS). Such an architecture must offer a variety of powerful
functionalities in terms of efficiency of data management (both at the physical and logical levels), effectiveness
of interaction with users and external services, composability of such services (i.e. data repositories, specific
GIS tools, etc.).

Hence, the project does not refer to one specific research theme (such as HCI, data models, computational
geometry), but aims at integrating such areas, which are usually separated in research programs, with respect to
a specific application field such as GIS.

We envision the following topics as corresponding to mandatory pieces of such an architecture:

• Identifying and coping with typical user requirements for different classes of users (end users, application
developers, etc.) of such an architecture.

• Providing advanced data models and query languages for spatial information. Emphasis is given in the
project both to the definition of original data models and languages and to the application of existing ap-
proaches (extended relational, object-oriented, algebraic, etc.) to geographical data modeling and query-
ing. Interaction with spatial data management systems by means of a powerful set of user-system com-
munication mechanisms are also investigated.

• Providing tools for the cooperation between various application software systems and different spatial
data management services. This should range from tight integration to loose federation.

• Presence of efficient mechanisms for the management of data with multiple representations and for the
maintenance of intersystem dependencies.

• Providing efficient data structures and algorithms for the management, i.e. querying and manipulating,
of large amounts of geometric information. Particular emphasis is given to robust general purpose data
structures supporting a wide range of query types.

∗Università di Roma “La Sapienza”, Dipartimento di Informatica e Sistemistica, via Salaria 113, I–00198 Roma, Italy.
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Results obtained within the project are assessed by means of prototyping and case studies. This activity includes
building new prototypes, exchanging existing prototypes among AMUSING partners, extending and evaluating
them, applying them to case studies conducted in cooperation with end-users for real-life applications.

The final goal is to define a common platform for the development of GIS’s providing:

• precise formalisms and tools to analyse and measure requirements of particular applications;

• software modules for the generation of user interfaces and softwa re tools for the mapping of user level
specifications to the system data model;

• a data model that offers elegant modeling and treatment of networ ks and heterogeneous collections of
objects, spatial data types based on a clean underlying framework of cell topology, and facilities to keep
trac k of the lineage of geometric information;

• a system architecture implementing this data model with networks a nd heterogeneous collections in
query processing, containing spatial data types (and allowing addition of new types), structures for the
representation of partitions, and well defined interfaces to external computation services;

• a library of data type implementations and spatial data structure s that are offered as “extension packages”
and can be linked directly in to the extensible system architecture.

It will be attempted to view prototype systems to be built within the scope of the project as subsystems of the
above platform, and to adapt them to this environment. As a whole, such a platform will offer a basis for the
implementation of GIS that far exceeds the current state of the art.

The final goal of the research activity in AMUSING is defining the structure of a “target” architecture of a
GIS. Its basic subsystems are:

• interaction environment: will allow the definition and use of a user interface;

• spatial object manager: has to manage spatial objects and their multiple representation at a physical level;

• transformation manager: allows the creation of new objects by applying algorithms for computing func-
tions on sets of spatial objects.

• a data model manager: considering the AMUSING integrative approach, it should allow a uniform view
on heterogeneous data both comi ng from traditional databases or defined in the framework of our system.

The following three sections describe the activities in which the project is articulated: user requirements, data
models and prototyping, and more theoretical aspects on data structures and algorithms—showing the partners
participating in each activity, results achieved so far, and research directions to be followed.

2 User requirements and case study

Partners involved: Univ. of Rome, Algotech, Univ. of Wien and IGN.
We investigate the special properties of spatial data; these investigations concentrate on parameters related

to: (i) data volume, (ii) distribution, size, and topological characteristics, (iii) modelling of geometry, and (iv)
changes during use and maintenance of the data set.

The objectives are: to define parameters that characterize spatial data with associated methods for measuring
them, apply these methods to a variety of real data sets to determine particular values and typical ranges for
these measurements, and to apply solutions provided by the project to real-life case studies (to be conducted in
cooperation with end-users).
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These investigations, resulting in a characterization of geographic data, will have a strong influence on most
other fields within the project, such as data modeling, system architecture, and data structures. They also provide
criteria for the selection of a suitable data structure for a particular application and for tuning solutions defined
within the project to specific applications.

User requirements and their impact on complex application design have been captured thanks to the interac-
tion with two end users, such as Tiber Bacin Authority (Rome), which is mainly interested in integrating time
varying hydrological settings and static scenarios describing orography and administrative boundaries [3] and
IGN (National Geographic Institute, Paris), which deals with sets of spatial objects whose geometric attributes
change over time.

3 System architecture: data models, languages and prototyping

Partners involved: Univ. of Rome, Univ. of L’Aquila, Algotech, INRIA/CNAM, IGN, Univ. of Hagen, Univ. of
Athens, Univ. of Wien, and ETH Zürich.

The overall objectives of this activity are: to define extensions of the relational model to deal with geograph-
ical information, to model network structures, to define methods for representing heterogeneous collection of
objects, to analyse modeling problems regarding interaction between mathematical models and spatial DBMS,
to investigate topological data models.

Further studies on adequacy and evaluation of existing advanced data models and languages for the repre-
sentation and management of geographical data have been performed [7, 8, 13]. The aim of these studies is to
identify the most promising approaches for geographical data modeling, the definition of high level manipulation
primitives of the DML, and support for efficient implementation of the modelling primitives.

In this framework we study how to model structural properties of complex structures like graphs and their
spatial embeddings, planar decompositions, etc.

Several systems have been designed and developed within the framework of AMUSING: CARTECH [2] is
a geographical DBMS, developed by Algotech, based on a model for the management of complex data. The
focus of the model is managing abstract data types and constraints at the same time, allowing the manipulation
and query of spatial objects. GRAM [1] is a graph data model and query language, which deals with graph
databases.

A unified environment is currently being developed that allows the evaluation of DBMSs’ performances
while dealing with heterogeneous data types represented by means of different physical data structures. Our
main goals are: the creation of an embedded framework inside a high level declarative language; the building of
powerful tools for the evaluation and comparison of the performances of spatial data structures; the definition
of a library of complex spatial constraint, which can be referenced in geographic data handling applications and
mathematical models.

4 Data structures and algorithms

Partners involved: Univ. of Rome, Univ. of Hagen, Univ. of Athens and ETH Zürich.
The main objective is to extend classical spatial data structures and/or to design innovative data structures

in order to manage complex spatial object. A complex spatial object is either a spatial object whose shape has
some structure or an object that cannot be represented in a constant amount of memory.

Research activities follow four directions:

• Strengthen results on the representation of sets of simple spatial objects, e.g. intervals in one dimension
or rectangles in the plane, in order to better classify formal properties of classical data structures. For
this objective we achieved an optimal result for the representation of set of intervals on secondary storage
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[11]. Benefits deriving from the use of high dimensional point structures for representing spatial objects
are presented in [14], while an algorithm for optimal splits in R-trees is provided in [5]. A clear overview
on problems related to rectangles, such as separation and partition of sets of isothetic rectangles, is given
in [6].

• Evaluate the behaviour of classical data structures for spatial objects. Since worst case and “uniform
distribution based” probabilistic analysis seem to be not satisfying, we concentrate on the identification
of new “instance sensitive” criteria, (e.g. competitive analysis) in order to compare the performances of
data structures with respect to adequate adversaries. A deep analysis of performances of range queries
on classical spatial data structures in shown in [15], and in [12] performances of intersection queries are
studied on instances typical of geographical data sets.

• Characterize relations between geometric objects, evaluating their impact on the design of spatial data
structures. Currently some results have been achieved by looking at the general problem of representing an
order relation, which models a large number of both topologic and metric properties on sets of geometric
objects. This problem has been approached as a dominance problem on directed graphs. Static and
dynamic solutions to reachability problems have been proposed in [17, 18], whose space-time tradeoff is
related to the size of the transitive reduction of the graph, thus improving current bounds for the general
case.

• Manage spatial objects represented at different levels of detail,

in order to support complex operations on very complex shapes. More precisely our goal is to avoid man-
aging exact (thus heavy) representations of objects any time an approximated representation is sufficient
for computing the required functions (e.g. as in multiple scale representations, see [16]). Current results
are concerned with convex hull computation [9] on static points and with the problems related to moving
objects [10]. Approximation of polygonal objects by means of simpler shapes is treated in [4].
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LOCATION
The town of Vadstena is located about 300 km. south of Stockholm, bordering lake Vättern, the 2nd largest lake in Sweden. Vadstena is a medieval town with cobbled
streets, an ancient abbey and castle. It is near the town of Linköping, center for high-tech industry, and home of one of the largest universities in Sweden. The conference
site is the monastery originally built as a royal palace in 1258, pre-dating Stockholm. It is the oldest secular building in Sweden. The conference week includes the longest
day of the year, when there is light all night in Vadstena and midnight sun in northern Sweden. June 24 is also the national ’Midsummer’ holiday in Sweden, when many
ethnic celebrations take place. June/July is about the best time for vacations in Scandinavia.

APPLICATIONS
General Enterprise Management
Financial and Business Decision Support, Reporting, Spreadsheets
Interpersonal Communication: Datebooks, Contacts, Meetings, Email
Electronic Documents, Publishing, and Libraries
Application Development: CUI, GUI, CASE, Development Libraries, Interfaces, and

Utilities
Telecommunications: Switching & Billing, On-Line Services,

National Information Infrastructure
Personal Assistants for Mobile Users
Manufacturing: CAD, CAM, Signal Processing, Robotics
Consumer Services: Insurances, Banking, Real-Estate, Travel, Sales,

Marketing & Distribution
Mathematics: Formal Calculus, Numerical Analysis, Statistics, Computational

Geometry
Applied Sciences & Engineering: Geography, Chemistry, Aeronautics,

Biotechnologies
Healthcare
Law & HumanitiesTraining & Education
Leisure & Entertainment

SCOPE
Successful database research and development has made many general database systems available. The industrial offerings range
from traditional large mainframe systems, through workstations & PC servers, to massproduced $100 personal systems. Users, appli-
cation designers, and the software industry strive to get the most from this technology. Database researchers, and developers try hard
to further satisfy application needs. The conference aims at developing synergy between these communities. It is intended as the fo-
rum to explore innovative applications of databases, and innovative database services for specific applications.

PAPER SUBMISSION
We solicit research, industrial and user’s papers, panel proposals, and tutorial proposals. Papers should be original, not exceeding 6.000 words,
(25 double spaced pages), and with abstract. Accepted papers will be published by Springer Verlag. All submissions will be notified of acceptance or
rejection by April 1, 1994. Camera ready copy will be due for the conference proceedings by April 14, 1994.
Six copies of the submission, including e-address or fax number, should be sent by February 14, 1994 to:
ADB-94 Secretariat, email: adb94@ida.liu.se, Anne Eskilsson, Dept of Computer and Information Science,
Linköping University, S-581 83 LINKÖPING, Sweden.

SERVICES
Interoperability of databases, and with legacy applications
Visual Database Languages
Databases on multicomputers, parallel computers, and data highways
Mobile databases
Agents and Mediators
New storage media and technologies
Text, Image, Sound, and Video in databases
Object Management and Libraries
Data migration to databases
Database performance, benchmarking, and tuning
Large Scale Information Retrieval and Mining
Time, Event Management, and Monitoring
Customization of database manipulations
Use of standards: SQL, ODBC, OLE, DDE, WOSA, DRDA, CORBA, DCE....
DBMSs on new OSs, FMSs, and Transaction Managers: Windows NT, OS2,

Chorus, Mach, AFS, Encina, Tuxedo,.....
Security

General Topics of interest will include but are not limited to:

Marie-Anne Neimat (HPL)
Tamer Özsu (U Alberta)
Lawrence A. Rowe (UC Berkeley)
Steve Rozen (Whitehead/MIT Genome Ctr)
Marek Rusinkiewicz (Houston U)
Hanan Samet (U Maryland)
Arie Segev (UC Berkeley & LBL)
Amit Sheth (Bellcore)
Douglas Terry (Xerox Parc)
Frank Tompa (Waterloo U)
Andrew Whinston (U Texas, Austin)
Europe
Francois Bancilhon (O2 Techn., France)
Horst Biller (Siemens Nixdorf, Germany)
Anders Björnerstedt (Ellemtel Telecom. SL, Sweden)
Janis Bubenko (U Stockholm, Sweden)
Stefano Ceri (P Milano, Italy)
Stavros Christodoulakis (TU Crete, Greece)
Georges Gardarin (U Versailles, France)
Michael Hanani (Bromine Compounds Ltd., Israel)
Genevieve Jomier (U Paris 9)
Leonid Kalinichenko (Russian A. Sc., Russia)
Wolfgang Klas (GMD-IPSI, Germany)
eva Kuehn (TU Vienna, Austria)
Peter Lockemann (U Karlsruhe, Germany)
Robert Roffe (ADB.SA/Intellitic, France)
Felix Saltor (UP Catalunya, Spain)
Marc Scholl (U Ulm, Germany)
Stefan Schneider (GOPAS, Germany)

ORGANIZATION:
General Chair
Tore Risch (U Linköping, Sweden)
Organizing Committee
Chair: Anders Törne (U Linköping, Sweden)
Ingrid Nyman (U Linköping, Sweden)
Anne Eskilsson (U Linköping, Sweden)
Program Chair
Witold Litwin (U Paris 9, v. HPL & U Berkeley)
Tutorial Program:
Umesh Dayal, (HPL, USA)
Panel Program
Ming-Chien Shan, (HPL, USA)
Program Committee
American V-Chair: Dan Fishman (HPL, USA)
European V-Chair: Erich Neuhold (GMD-IPSI, Ger.)
Far East V-Chair: Ron Sacks-Davis (RMIT, Aus.)
America
Rakesh Agrawal (IBM)
Jürgen Annevelink (HPL)
John Carlis (U Minnesota)
Amelia Carlson (Sybase)
Dimitrios Georgakoupoulos (GTE)
Tomasz Imielinski (Rutgers U)
Joseph L. Koszarek (Boeing)
Mohamad Ketabchi (Santa Clara U)
Ravi Krishnamurthy (HPL)
Darrel Long (UC Santa Cruz)
Stuart Madnick (MIT)
Rao Mikkilineni (US West)

Michael Schrefl (U Linz, Austria)
Witold Staniszkis (Zeto Rodan, Poland)
Per Svensson (N Def. R. Estbl., Sweden)
Henry Tirri (U Helsinki, Finland)
Patrick Valduriez (INRIA, France)
Jerker Wilander (SoftLab AB, Sweden)
Roberto Zicari (U Frankfurt, Germany)
Far East
Mark Bilger (IBM, Hong Kong)
Anande Deshpande (Persistent Syst, India)
Yahiko Kambayashi (Kyoto U, Japan)
Masaru Kitsuregawa (U Tokyo, Japan)
Ramamohanarao Kotagiri (U Melbourne, Aus.)
Fred Lochovsky (U Sc. and Techn., Hong Kong)
Yoshifumi Masunaga (U Libr. and Inf. Sc., Japan)
Desai Narasimhalu (ISS, Singapore)
Beng Chin Ooi (NU Singapore, Singapore)
John Smith (CSIRO, Australia)
Kunitoshi Tsuruoka (NEC C&C Syst. RL, Japan)
Kyu-young Whang (KAIST, Korea)
Michael Yap (Nat’l Comp. Bd., Singapore)

IMPORTANT DATES
Submissions: February 14, 1994,
Notif. of acceptance: April 1, 1994
Conference: June 21-23, 1994

1994 International Conference on
Applications of Databases

ADB-94
June 21-23, 1994

Vadstena Monastery Hotel, Sweden

CALL FOR PAPERS

SPONSORED BY:
The Swedish Board for Technical Development (NUTEK), Hewlett-Packard,
Softlab AB, Ellemtel AB, GMD. In cooperation (requested) with ACM, AFCET,
AICA, GI, IEEE, IFIP, INRIA, VLDB Endowment Inc.
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Name: _____________________________
Address: ___________________________
___________________________________
___________________________________
E-mail: _____________________________
Fax: _______________________________
•Advance Registration: $________
•Advance Tutorials: $________

Please check the tutorial Number(s):
 1__ 2__ 3__ 4__5__ 6__ 7__

•Add’l Reception Tickets ($30/ea): $_______
•Banquet Tickets ($38/ea): $________
•Total Amount Enclosed: $_______ Signature:_______________
• Credit Card: Visa Mastercard American Express
• Credit Card Number: _________________ • Exp. Date:_______

Tenth International Conference on

Data Engineering
February 14-18, 1994

 Doubletree Hotel, Houston, Texas
Sponsored by the IEEE Computer Society

SCOPE
Data Engineering deals with the modeling and structuring of data in the development and use of information systems, as well as with relevant aspects of com-
puter systems and architecture. The Tenth Data Engineering Conference will provide a forum for the sharing of original research results and engineering expe-
riences among researchers and practitioners interested in automated data and knowledge management. The purpose of the conference is to examine  problems
facing the developers of future information systems, the  applicability of existing research solutions and the directions for new research.

DATA

ENGINEERING
1 1

CALL FOR PARTICIPATION
®

IEEE

Research Papers Sessions on:
• Disk Storage Management • Management of Distributed Data
• Query Processing • Analytical Modeling • Temporal Databases
• Multidatabase Systems • Knowledge and Rule Management
• Indexing Techniques • Data Mining • Parallel Databases
• Heterogeneous Information Systems.

Invited Presentations:
• Al Aho  (Bellcore): “Engineering Universal Access to
 Distributed Interactive Multimedia Data”.

• Gio W ieder hold  (ARPA): “From Data Engineering to
Information Engineering”.

Panel Discussions:
• Mobile Computing
• Business Applications of Data Mining
• Future Database Technologies.

Technology and Application Track:
• Practice-oriented presentations of applications of database
technologies.

1. Active Database System: Klaus Dittrich (Zurich Univ.) &
Jennifer Widom (IBM Almaden), Sunday, Feb. 13 1994, (full day).

2. New Developments in SQL Standards: Krishn
Kulkarni (Tandem Computers Inc.) and Andrew Eisenberg (DEC),
Monday morning, February 14, 1994, (half day).

3. User Interfaces and Databases: Prasun Dewan (Univer-
sity of North Carolina), Tuesday Morning, Feb. 15, 1994, (half day).

4. Multimedia Database Systems: Arif Ghafoor (Purdue
University), Monday Afternoon, February 14, 1994, (half day).

5. Object-oriented Modeling of Hypermedia Docu-
ments: Wolfgang Klas, Karl Aberer (GMD - IPSI), Monday
Morning, February 14, 1994, (half day).

6. Medical Databases: Lynn L. Peterson and J. C. G Ramirez
(University of Texas), Tuesday Afternoon, Feb. 15, 1994, (half day).

7. Object-Oriented Systems Development: From
Analysis to Implementation: Gerti Kappel (University of
Vienna) and Gregor Engels (Leiden University), Monday After-
noon, February 14, 1994, (half day).

TUTORIAL PROGRAM HIGHLIGHTS

Call the Houston Doubletree Hotel Post Oak at (713) 961-9300 or toll-free 1-800-528-0444 to make your hotel reservation. To obtain the special conference
rate of U.S. $85.00 per night for Single or Double, you must mention you are attending the ICDE-94 conference. The cut-off date for guaranteed guest room
reservations is Feb. 1, 1994. If you have any questions on registration, tutorials, or program, please send e-mail to icde94@cs.uh.edu or fax to (713) 743-3335.

HOTEL RESERVATION INFORMA TION

• ADVANCE (Received by January 10, 1994) •
• Registration: Member($290), Non-Member($360), Student($70)
• Tutorials (Full /Half day): Member($200/$120), Non-Member($250/$150)

• LATE/ON-SITE (Received after January 10, 1994) •
• Registration: Member($320), Non-Member($460), Student($110)
• Tutorials (Full /Half day): Member($240/$150), Non-Member($300/$185)

The conference registration fee covers the proceedings, conference reception, and refreshments, but
not the  banquet. Banquet tickets for the Texas Evening, Thursday Feb. 17, 1994 are $38/ea. Addi-
tional reception tickets may be purchased for $30/ea. Payment should be in US dollars ONLY (check
drawn on a US bank, International Money Order, or credit card) Please complete this form, and return
by Jan. 10, 1994 with your payment (payable to ICDE-94) to:

For information contact the Program Chair, Marek Rusinkiewicz: icde94@cs.uh.edu, (713) 743-3350

REGISTRATION FORM AND FEES SCHEDULE

Dr. Albert Cheng, ICDE-94,
Computer Science Department, University of Houston
Houston, TX 77204-3475, USA,Fax: (713) 743-3335
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TECHNICAL PROGRAM HIGHLIGHTS
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