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Important Membership Message- Repeated from March Issue.

To Current Members of the Technical Committee on Data Engineering:

There is both good news and bad news in this letter. The good news is that we are well on our
way to being able to distribute the Bulletin electronically. This low cost method of distribution should
ensure the long term economic survival of the Bulletin. It should permit us to continue to provide the
bulletin to all members free of charge. The bad news is that if you do not re-enroll as a member of the
Technical Committee, then the June 1993 hardcopy issue of the Bulletin is the last copy of the Bulletin
that you will receive.

Our annual revenue, which comes almost entirely from sponsoring the Data Engineering Conference,
is not sufficient to cover the costs of printing and distributing four issues of the Bulletin a year. Four
issues is, we agree, the minimum publication schedule that is reasonable in order to bring you timely
information on technical and professional subjects of interest in data engineering. Long term survival
then requires that we limit free distribution to those that can receive the Bulletin electronically. We
are working on arranging hardcopy distribution via paid subscription for those that are not reachable
electronically or who simply prefer receiving hardcopy. The annual subscription fee for four issues is
expected to be in the $10 to $15 range.

Please be aware that failure to enroll means that you will not remain a TC member,
and hence that you will no longer receive the Bulletin.

Electronic Enrollment Procedure

Electronic enrollment is the preferred method of becoming a member of the Technical Committee on
Data Engineering. To enroll electronically, please use the following procedure:

1. Send e-mail to TCData@crl.dec.com and include in the subject header the word “ENROLL”.

2. You will then be sent via an e-mail reply, an electronic membership form that will request:

Name, IEEE membership no., postal address, e-mail address

In addition to the above information, you will be asked a number of questions on issues that will
affect how the Bulletin’s distribution will be handled. These questions will include whether you
are interested in subscribing to the hardcopy version of the bulletin. This information will enable
us to plan our print runs and determine the parameters of electronic distribution.

3. You should then e-mail the electronic application form to TCData@crl.dec.com, with the word
“APPLICATION” in the subject header.

Alternative Enrollment Procedure

In the event that you cannot reach the above electronic mail address, you may enroll in the Technical
Committee on Data Engineering by sending postal mail to David Lomet, whose address is given on
the inside cover of this issue. Please clearly state that you want to enroll as a member of the TC. A
hardcopy application will then be sent to you requesting the same information as described above.

Please note that if you are unreachable via electronic mail, that you will not receive a free copy of
the Bulletin. Only hardcopy will be available to you which can be obtained only via paid subscription.

Rakesh Agrawal, David Lomet
TCDE Chair, Editor-in-Chief
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Letter from the Editor-in-Chief

The current issue of the Bulletin is the first issue put together by an editor that I appointed, so I take
special satisfaction in seeing this issue appear. Mei Hsu, who is active in the workflow field, served as
the editor for this issue on ”Workflow and Extended Tranaction Systems”. The systems described here
are destined to become increasingly important as our technical community tackles the task of providing
applications that must retain state and satisfy constraints over extended periods. Mei has done a fine
job both in terms of selecting authors and sheparding the papers through to final publication. Of
importance to me also is the inclusion of a number of papers from industrial organizations. As I have
noted before, I believe the research community should know more about industrial efforts.

Editorial changes continue as associate editors appointed when Won Kim was Editor-in-Chief begin
to retire. Ahmed Elmagarmid had editorial responsibility for his last issue in December. Yannis
Ioannidis was the issue editor of his last issue in March. I want to thank both of them for accepting
editorial responsibilities during this transition phase for the Bulletin. Yannis has my special thanks for
handling the first electronic edition. Both Ahmed and Yannis have now officially retired as editors.

It is with great pleasure that I appoint and welcome Goetz Graefe of Portland State University as a
new Associate Editor of the Bulletin. Goetz is a graduate of the University of Wisconsin and has done
outstanding work on query processing, join algorithms and object-oriented databases. I look forward
to working with Goetz, who will be handling the December 1994 issue of the Bulletin.

The current issue of the Bulletin is the second that is entirely in electronic form. While it is clear
that more ”ironing out” of editorial procedures is required, the process has functioned successfully. I
intend to specify author instructions more completely so as to provide an increasingly uniform style
to the appearance of Bulletin articles. Additional difficulties continue to be encountered in handling
postscript figures. Postscript from a diversity of sources is much less standard than one might hope.
We continue to grapple with this problem. For this issue, Mei Hsu reworked several of the figures so
that I could view and print them, greatly facilitating publication of the issue.

Progress on electronic distribution has not been as rapid as I would have liked. Trial electronic
distribution will begin soon. It is not yet clear whether full electronic distribution of the September
issue will occur as was originally intended. If not, hardcopy distribution will continue, but only to
members that have re-enrolled following the enrollment procedure described in the preceding member-
ship message. So, once again, I urge you to re-enroll in the Technical Committee so that
we can keep sending you the Data Engineering Bulletin, with its timely articles capturing
the state of our field. If you do not re-enroll, this is your last issue.

David Lomet
Editor-in-Chief
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Letter from the Special Issue Editor

“After several decades of data processing, we have learned that we have not won the battle of mod-
eling and automating complex enterprises,” assert Medina-Mora, Wong, and Flores, in their article
on ActionWorkflow in this Special Issue of Data Engineering. Their article, together with that by
McCarthy and Sarin on Xerox’s InConcert system, and that by Hsu, Obermarck and Vuurboom on
business process modeling and execution, provide a perspective on where the industry stands on its
offerings in workflow automation.

Workflow systems have their origin in the Office Automation effort in the 1970s, and also in the
imaging-based systems in the 1980s, both of which were aimed at automating office paper processing.
Today, the ambition of workflow systems is to elevate the abstractions of Information Technology (IT)
to a level such that these abstractions can be directly understood and manipulated by business users
to optimize their business processes, and to achieve competitive advantages.

Research in relaxed or extended transaction models, on the other hand, has been motivated by
a need to access heterogeneous information sources and applications in a business transaction. The
goal has been to preserve integrity properties of such transactions without violating autonomy of
the information sources. The properties to be preserved by such transactions are often expressed as
constraints among the sub-units of work in concurrent or related transactions. The ACID property
of the basic transaction model has provided initial inspiration for modeling these constraints, and
transaction managers (which enforce the ACID property) are extended to provide for enforcement of
these newly evolving constraints.

The article by Weikum, Deacon, Schaad and Schek provides a lucid characterization of the “se-
mantic serializability” property, a correctness criterion for concurrent execution of multi-step trans-
actions. Rostagi, Mehrotra, Korth and Silberschatz proposes to “transcend” serializability, directly
using consistency constraints specified by application administrators. Barga and Pu discusses “epsilon
serializablity” for relaxed transaction management.

The ACTA (meta)model described by Chrysanthis and Ramamirtham abstracts the life cycle of
a transaction as a sequence of “significant” events, and its properties as dependencies among the
events. Klein and Upton has used a specification-based methodology in their implementation of an
“extensible” transaction manager, where the coordination protocols are generated from dependencies.
Georgakopoulos et al of GTE Lab introduce a facility enabling classes of extended transactions to be
specified in an ACTA-like meta model, and managed by a “programmable transaction manager”.

The next four papers have added aspects of “context data”, or “data flow”, to their models.
Bukhres, Elmagarmid and Kuhn present two workflow application languages that embody the Flex
Transaction Model. Tomlinson et al from MCC give an introduction on how Carnot generates task
graph (workflow) scripts and enforces inter-task dependencies. Sheth and Rusinkiewicz offer their
perspectives on correctness criteria of workflow, and Dayal and Shan articulate their plan in adding
operation flow automation to the Pegasus project.

This collection of 13 articles bring forward a wide range of views on extended transactions and
workflow systems. It also demonstrates the existence of different levels of concerns. Research in
extended transactions, by generalizing the basic ACID transaction model, provides many promising
ideas on how coordination requirements on business processes may be specified and enforced. Actual
deployment of workflow application systems will be needed for us to know how these ideas can be
effectively used to enhance the state of the art in business process modeling and workflow automation.

I wish to thank all the authors for their generous support (and their patience with the tight 4-page
limit). Special thanks also go to my colleague Ron Obermarck for his help and encouragement.

Meichun Hsu
Activity Management Group, Digital Equipment Corp., Palo Alto, CA
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Open Nested Transactions in Federated Database

Systems

Gerhard Weikum Andrew Deacon Werner Schaad Hans Schek

Department of Computer Science, ETH Zurich

CH-8092 Zurich, Switzerland

E-mail: weikum@inf.ethz.ch

1 Models of Federated Transaction Management

1.1 State of the Art

The increasing demand for interoperability of existing information systems requires support for global
transactions in federations of largely autonomous databases. In the past few years, substantial research
has been carried out on this problem of federated transaction management. The following general
model of a federated database system has evolved from this research [4]. A federated database system
is composed of a number of pre-existing local databases (LDBs), which are managed by the same or
by different database systems. An LDB is a collection of data and pre-existing applications. The
applications run local transactions (LTs) that access only the LDB. The federated system serves to
support new applications that span multiple LDBs. These applications run global transactions (GTs)
that consist of multiple global subtransactions (GSTs) each of which accesses exactly one LDB.

There are two approaches to federated transaction management. The first approach is to rely on
some common properties of the underlying LDBs. It has been shown that global serializability and
atomicity, i.e., ACID guarantees for both GTs and LTs, are self-guaranteed if all LDBs ensure commit-
order serializability [5, 16] and are able and willing to participate in a global two-phase commit.
Note, however, that some of today’s widely used DBMSs do not necessarily ensure commit-order
serializability, since they make use of multiversion concurrency control protocols. The second approach
is to build an additional layer on top of the LDBs, to ensure global serializability and atomicity. The goal
of this approach is to improve the degree of local execution autonomy. Unfortunately, virtually all of
the previously proposed approaches in this category incur severe performance problems. Our approach
belongs to this category, but it aims to improve performance by exploiting application semantics.

1.2 Our Approach

We are investigating an approach to federated transaction management based on 1) exploiting seman-
tics of high-level operations explicitly exported by the LDBs, and 2) embedding invocations of these
operations into open nested transactions within a requestor-server architecture. The approach adopted
is to restrict the way local systems cooperate with each other in a loosely coupled federation. We
assume a federated system model that is based on a high-level requestor-server model [13]. For au-
tonomy reasons, local systems may often restrict the operations that global transactions are allowed
to invoke. For example, no airline, bank, or rental car agency allows other corporations to access and
manipulate its data by means of SQL statements (not even with restricted access permissions and/or
views). Rather an LDB “exports” a well-defined set of high-level operations that may be invoked by
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global transactions. This notion of exported high-level operations corresponds to the “steps” of nested
sagas [10] and ConTracts [21] (cf. also [6]). Many real-life examples of multidatabase interoperability
seem to be based on such a high-level requestor-server model [1, 11, 12, 20]. These include, for example,
networks of travel agencies, the international interbank clearing system SWIFT, etc.

We are investigating both the foundations and implementation issues of dealing with GTs and their
co-existence with LTs within such a framework. Our approach is based on open nested transactions
[13, 24], which allows us to ensure semantics-based global serializability and atomicity, and, if desired,
to relax these properties in a controlled manner [24].

The rest of this synopsis discusses our semantics-based correctness model and gives a brief overview
of a prototype that is being built within the COSMOS project at ETH Zurich. More details on the
foundations of our approach and some background material can be found in [7, 18, 19, 22, 24]; more
details on the implementation issues can be found in [15, 17, 22, 23].

2 Semantics-based Global Serializability

We assume that a compatibility specification for the exported operations of an LDB, usually in the
form of a table, is provided by the administration staff of the LDB. Compatibility of two operations
means that the ordering of the two operations in a schedule is insignificant from an application point
of view. The compatibility specification could be based on state-independent commutativity or on
return-value commutativity. A compatibility specification may even go one step further by explicitly
declaring two non-commutative operations as compatible if the different effects of the two possible
execution orders are considered negligible from an application point of view (e.g., a pair of Deposit and
Withdraw operations on accounts without overdraft protection but with a penalty of say $ 10 which is
charged when a Withdraw operation results in a negative balance).

We assume that GTs invoke only exported operations. An invoked high-level operation is dynam-
ically expanded into a sequence of native DML statements of the underlying local DBMS (e.g., SQL
statements). LTs may also invoke the exported high-level operations, or may directly execute native
DML statements. Both LTs and GTs can be considered trees of operation invocations, with edges
representing the caller-callee relationship between transactions and operations at different levels. For
GTs, the children of the transaction root can also be viewed as subtransactions; so we are actually using
a nested transaction model. Subtransactions may be committed (i.e., their effects are made visible to
other transactions) independently of the commit of the transaction root; therefore, this model is called
the open nested transaction model [13, 3, 24].

In this model, a schedule is a set of transaction trees together with an execution order < of the
invoked operations (i.e., the nodes of the trees). A schedule is called semantically serializable if it is
equivalent to a serial execution of the transaction roots in the following sense [2]: a serial execution
can be stepwise constructed from the original execution by

• Rule 1 (compatibility of operations): exchanging the order of two <-ordered and (with respect
to <) adjacent subtrees the roots of which are compatible operation invocations and belong to
different transaction trees, and

• Rule 2 (reduction of isolated subtrees): reducing an isolated subtree to its root, where a subtree
is called isolated if all its descendants are serial and the entire subtree is <-ordered with respect
to all other operations (i.e., not interleaved with other subtrees).

As an example, consider the schedule of Figure 1. The executions of native DML statements are
modeled as (combined) Read/Write operations here; the execution order is from left to right. The
schedule is semantically serializable; it is equivalent to the serial execution GT1 < LT3 < GT2, which
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GT1                  GT2

LDB1 LDB2
      Withdraw(a)  Withdraw(b)                             Deposit(c)  Deposit(c) 

 R/W(p)         R/W(q)   R/W(r)  R/W(r)  R/W(r)        R/W(s)      R/W(s)    

LT3

Figure 1: Semantically serializable example schedule

can be proven by applying the two rules and assuming that Deposit operations on the same account
are compatible.
Our model of federated transactions subsumes sagas [9] as a special case. Assume that there were no
LTs and that all exported high-level operations of an LDB are compatible with each other. In this
case, GTs correspond to sagas, and local serializability alone is sufficient to guarantee correctness.

3 Semantics-based Global Atomicity

GTs are aborted by invoking additional compensating operations. We assume that an LDB exports a
compensating operation for each exported high-level operation, and that there are well-defined rules for
deriving the actual input parameters of the compensating operation from the actual input parameters
and the return values of the corresponding “forward” operation.

Compensation achieves “semantic atomicity” in the following sense. Within a schedule, the opera-
tion invocation f is compensated by the operation invocation f−1 if the return values of all subsequent
operation invocations are the same as if neither f nor f−1 had ever executed. Similar to relaxing com-
mutativity towards compatibility, this definition of a compensating operation may be relaxed as follows
(cf. also [14]). A subsequent operation invocation may have different return values if the observable
differences are acceptable from an application point of view. For example, the cancelation of an order
need not undo the possible restocking of inventory that was triggered by the order.

To reason about the interference of compensating operations and forward operations in concurrent
executions, our model is extended as follows. Schedules are augmented by making all recovery-related
operations explicit operations. Compensating operations, including their children at the DML level, and
the additional undo operations of the LTs are added to the corresponding transaction trees [3, 19, 22].
In addition to the compatibility and reduction rules, we introduce the following rule:

• Rule 3 (compensation of operations): If the compensating operation f−1 of a forward operation f
immediately follows f in a schedule, and if both f and f−1 are isolated, then both f and f−1 can
be discarded from their transaction tree.

Using the three rules, we can reason about the equivalence of schedules with compensating operations.
The correctness criterion requires that a schedule can be stepwise transformed into a serial execution
of the committed transaction roots by applying the compatibility rule, the reduction rule, and the
compensation rule.

4 Prototype Architecture

The described semantics-based correctness model can be cast into a locking protocol, which is driven
by an application-defined compatibility table for the exported high-level operations. This protocol fol-
lows the implementation techniques for multilevel transactions [22, 23]; however, an additional problem
arises in the presence of LTs. Since LTs may invoke native DML statements directly, LTs may interfere

6



incorrectly with GTs. The approach used to solve this problem is to treat GTs as open nested trans-
actions only with respect to other GTs, and to treat them as closed nested transactions with respect
to LTs (i.e., locks acquired by a subtransaction are retained by the parent) [15, 18].

A federated transaction management prototype is being built that incorporates several commercial
DBMSs [17]. Messages at the native DML interface between the LDB server and its clients are inter-
cepted, and fed into an additional layer of DML locking and logging on top of the LDB. On top of the
DML-level transaction management, semantic locking and high-level logging for possible compensation
are implemented in a distributed manner. Note that our approach does not require any changes to
existing application programs.

References

[1] Ansari, M., Ness, L., Rusinkiewicz, M., Sheth, A., Using Flexible Transactions to Support Multi-system
Telecommunication Applications, VLDB Conference, 1992

[2] Beeri, C., Bernstein, P.A., Goodman, N., A Model for Concurrency in Nested Transaction Systems, Journal
of the ACM, 36(1989),2

[3] Beeri, C., Schek, H.-J., Weikum, G., Multilevel Transaction Management: Theoretical Art or Practical
Need?, International Conference on Extending Database Technology, Venice, 1988, Springer, LNCS 303

[4] Breitbart, Y., Garcia-Molina, H., Silberschatz, A., Overview of Multidatabase Transaction Management,
VLDB Journal, 1(1992),2

[5] Breitbart, Y., Georgakopoulos, D., Rusinkiewicz, M., Silberschatz, A., On Rigorous Transaction Scheduling,
IEEE Trans. on Softw. Eng., 17(1991),9

[6] Dayal, U., Hsu, M., Ladin, R., A Transactional Model for Long-Running Activities, VLDB Conference,
1991

[7] Deacon, A., Schek, H.-J., Weikum, G., Semantics-based Multilevel Transaction Management in Federated
Systems, Technical Report, Dept. of Computer Science, ETH Zurich, 1993

[8] A.K. Elmagarmid (ed.), Database Transaction Models for Advanced Applications, Morgan Kaufmann, 1992
[9] Garcia-Molina, H., Salem, K., Sagas, ACM SIGMOD Conference, 1987

[10] Garcia-Molina, H., Gawlick, D., Klein, J., Kleissner, K., Salem, K., Modeling Long-Running Activities as
Nested Sagas, IEEE Data Engineering Bulletin, 14(1991),1

[11] Gray, J.N., An Approach to Decentralized Computer Systems, IEEE Trans. on Softw. Eng., 12(1986),6
[12] Gray, J.N., Anderton, M., Distributed Computer Systems: Four Case Studies, Proceedings of the IEEE,

75(1987),5
[13] Gray, J., Reuter, A., Transaction Processing: Concepts and Techniques, Morgan Kaufmann, 1993
[14] Levy, E., Korth, H.F., Silberschatz, A., A Theory of Relaxed Atomicity, ACM PODC Conference, 1991
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Transcending the Serializability Requirement

Rajeev Rastogi∗ Sharad Mehrotra∗ Henry F. Korth† Abraham Silberschatz‡

1 Introduction

The concept of serializability as the notion of correctness for certain “new” database applications or
in certain distributed database environments has been recently shown to have unacceptable practical
consequences. For example, in applications such as computer-aided design, where transactions are
of a long duration, adopting the serializability correctness criterion may result in long-duration waits
imposed by locking protocols [4]. In multidatabase systems (MDBS), which is an integration of a number
of autonomous local database management systems (DBMSs), ensuring serializability may result in a
low degree of concurrency and, depending upon the interface exported by the local DBMSs, may not
even be achievable without the loss of local autonomy.

In this paper, we propose two complementary approaches for relaxing the serializability requirement.
The first approach is based on exploiting the knowledge of the integrity constraints of the system. The
fundamental technique used is to partition the database into relatively independent subdatabases, each
with its own consistency constraints. We show how the restricted nature of integrity constraints between
these subdatabases can be exploited to relax the serializability requirement. The second approach is
based on exploiting the semantics of transactions. In this approach, a transaction is broken into a set
of subtransactions, with each of which a type is associated. We show how the specification of the set
of acceptable/unacceptable interleavings of the subtransactions can be used to relax the serializability
requirement while still preserving database consistency.

We further show that both the proposed approaches are applicable to relaxing the serializability
requirement in MDBS environments. In an MDBS, there are two types of transactions– local transac-
tions that execute at a single DBMS outside the control of the MDBS software, and global transactions
that execute at multiple local DBMSs under the MDBS’s control. Each local DBMS ensures the seri-
alizability of the schedules that result from the execution of the transactions at its site. The challenge
in transaction management in MDBSs is to integrate the local DBMSs without requiring any modi-
fications to either the software or to the pre-existing applications of the local DBMSs (i.e., without
violating the autonomy of the local DBMSs). In such an environment, ensuring global serializability
has proven to be difficult task [2], and the proposed schemes that ensure global serializability turn
out to permit a low degree of concurrency. In contrast, schemes based on our approach can be used
in MDBS environments to permit a high degree of concurrency and thus improved performance with-
out jeopardizing database consistency and without requiring modifications to either the local DBMS
software or to the local applications.

∗Department of Computer Sciences, University of Texas at Austin, Austin, TX 78712-1188.
†Matsushita Information Technology Laboratory, Panasonic Technologies Inc., 2 Research Way, Princeton, NJ 08540-

6699.
‡AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974-0636. On leave from the University of

Texas, Austin, where this work was done. Work partially supported by NSF grants IRI-9003341 and IRI-9106450, by the
Texas Advanced Technology Program under Grant No. ATP-024, and by grants from the IBM corporation and the H-P
corporation.

8



2 Exploiting Knowledge of Integrity Constraints

Integrity constraints distinguish inconsistent database states from consistent ones. A database state is
said to be consistent if it satisfies all the integrity constraints of the system. In this section, we explain
how the knowledge of the integrity constraints of a system can be utilized to relax the serializability
requirement. Let us consider a database system with the set of data items D and a set of integrity
constraints IC = C1 ∧ C2 ∧ · · · ∧ Cn−1 ∧ Cn, where each constraint Ci is defined over the set of data
items Di and

⋃n
i=1 Di ⊆ D. Let us assume that Di ∩ Dj = ∅, for all i, j, i 6= j. Thus, effectively,

the database D consists of a set of subdatabases D1,D2, . . . ,Dn, each subdatabase Di with its own
consistency constraints Ci. Furthermore, these subdatabases are independent in the sense that there are
no constraints that involve data in more than one subdatabase. In such a system, database consistency
can be preserved by ensuring that the resulting schedules are predicate-wise serializable (PWSR). A
schedule S is said to be a PWSR if its projection on the set of data items Di is serializable, where the
projection of S on Di is the subsequence of S consisting of all the operations that access data items in
Di, i = 1, 2, . . . , n. Note that every serializable schedule is PWSR; however, there are PWSR schedules
that are not serializable.

The importance of PWSR as a correctness criterion in CAD/CAM applications was established in
[4]. Below, we establish its importance to MDBS environments. However, before we do so, we first
note that PWSR schedules preserve database consistency only under certain appropriate restrictions
on the system [8]. For example, PWSR schedules can be shown to preserve database consistency if
each transaction program has fixed-structure. A transaction program is said to have a fixed-structure
if its execution from any database state results in the same sequence of database operations (i.e., read
and write operations). Another orthogonal way to ensure that PWSR schedules preserve database
consistency, without requiring transaction programs to have fixed-structure, is by ensuring that the
schedule S besides being PWSR is also cascadeless [1]. A schedule is said to be cascadeless if abortion
of any transaction in S does not result in abortion of any other transaction in S. We next establish
the applicability of PWSR to MDBSs.

Consider an MDBS consisting of local DBMSs located at sites s1, s2, . . . , sn. Let the set of data
items at site si be denoted by DBi. In an MDBS the set of integrity constraints can be viewed as
IC = C1 ∧ C2 ∧ · · · ∧ Cn ∧ CG, where each constraint Ci (referred to as local constraints) is defined
over the set of data items Di ⊆ DBi and CG (referred to as a global constraint) is defined over data
residing at multiple different local DBMSs. Let DG be the set of data items over which CG is defined
(data items in DG may be located over multiple local DBMSs). Note that, by definition, Di ∩Dj = ∅,
i 6= j. Let us assume that Di ∩ DG = ∅, i = 1, 2, . . . , n. Further, since local transactions execute only
at a single local DBMS, if they were to update data items in DG they may violate the constraint CG.
We thus assume that local transactions do not update data items in DG.

Let us first consider the case in which an MDBS does not contain any global constraints; that is,
DG = ∅. In this case, since each local DBMS ensures serializability of its local schedule, the global
schedule is PWSR. Thus, database consistency can be preserved without any global coordination (and
thus fully preserving autonomy) if either transaction programs are fixed-structure or if local DBMSs
besides ensuring serializability also ensure that local schedules are cascadeless.

Let us now consider the case where DG 6= ∅ (i.e., the MDBS contains global constraints). If local
transactions do not read data items in DG, then PWSR can be ensured by ensuring that the global
schedule is two-level serializable (2LSR) [5]. A global schedule S is said to be 2LSR if:

• each of the local schedules is serializable, and

• the restriction of S to operations belonging to only global transactions is serializable (i.e., if local
transaction operations are deleted from S, then the resulting schedule is serializable).
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If, however, local transactions do access data items in DG, then 2LSR schedules may not be PWSR. In
such a case, we can force 2LSR schedules to be PWSR by certain external mechanisms (for example,
by forcing any two global transactions that access data items in DG to conflict directly.). In this case,
however, it can be shown that 2LSR schedules can by themselves preserve database consistency if global
transaction programs do not have data dependencies [5]. A transaction program is said to have no data
dependencies if its execution at a local DBMS is independent of its execution at other local DBMSs. In
[5, 8], we have identified additional restrictions on transactions and integrity constraints under which
2LSR and PWSR schedules preserve database consistency.

3 Exploiting Transaction Semantics

In this section, we develop an approach that exploits semantics of transactions to relax the serializ-
ability requirement. Let us consider a database system in which each transaction consists of a number
of subtransactions with each of which a type is associated. Let us assume that the application admin-
istrator a priori specifies the various subtransaction types along with the set of interleavings of the
subtransactions that does not result in a loss of database consistency1. A transaction manager utilizes
this specification to permit only acceptable, and prevent unacceptable interleavings of the transactions.
To make our idea more concrete let us consider a simple example.

Suppose that a banking database supports three different types of subtransactions: balance – that
returns the balance in an account; debit – that debits the balance in an account by a specified amount;
credit – that credits an account by a specific amount. Consider two transactions in this environment:
transfer – that transfers money from one account to another and consists of a debit subtransaction
followed a credit subtransaction, and approx audit – that returns an approximate and conservative sum
of the balances in various different accounts and consists of one or more balance subtransactions. Let
the application semantics be such that an approx audit transaction must not overestimate the total
money it sees in the various accounts being audited; it can, however, underestimate the total money
in the various accounts, in case there are concurrently executing transfer transactions that transfer
money between the accounts being audited.

In the above example, an interleaving of multiple transfer transactions in between the subtransac-
tions of an approx audit transaction is unacceptable since it could potentially result in the approx audit
transaction returning the total which is an overestimate of the sum of money in the various accounts
being audited. On the other hand, most other interleavings of the transactions of type approx audit
and transfer are quite acceptable and will not result in a loss of database consistency.

To prevent undesirable interleavings of transactions the application administrator specifies the set
of undesirable interleavings to the transaction manager. In our approach, undesirable interleavings are
specified as regular expressions over the alphabet consisting of the different types of the subtransactions
in the system. Thus, in the above banking example, the undesirable interleaving can be expressed as the
following regular expression audit (debit, credit)+audit. Protocols that can be used by the transaction
manager in order to prevent undesirable interleavings (that are specified as regular expressions over
the transaction types) can be found in [7]. Note that our approach to exploiting transaction semantics
is simple yet powerful. Depending upon the knowledge of the transaction types and the application
semantics, our approach may be used to permit exactly the set of interleavings that do not violate data
consistency.

Our approach to exploiting transaction semantics to relax the serializability requirement can be used

1We assume that the subtransaction types and the specified interleavings are fixed a priori by the application admin-
istrator to keep our discussion simple. The approach is equally viable in case application programmers specify the new
transaction types and the set of acceptable interleavings dynamically.
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in MDBS environments as follows. The global transactions access data at the various local DBMSs
by invoking a fixed set of procedures at the local DBMSs. Each such procedure invocation results
in a subtransaction of a global transaction. Each global subtransaction has a type associated with it
which is the type of the local DBMS procedure whose execution resulted in the subtransaction. The
set of (un)acceptable interleavings can be specified as regular expressions over the types of the local
procedures as mentioned above. Algorithms that can be used to prevent unacceptable interleavings in
an MDBS can be found in [7].

A similar approach to exploiting the transaction semantics, was proposed in [3]. Unlike us, in
their scheme for specifying interleavings, transactions are grouped into compatibility sets. Steps of
transactions whose types belong to a single compatibility set are permitted to interleave freely, while
steps of transactions belonging to distinct compatibility sets are not permitted to interleave at all.
Our approach to specifying unacceptable interleavings using regular expressions over the types of the
subtransactions in the system can be used to specify interleavings among transactions that cannot be
specified using compatibility sets. For example, the unacceptable interleaving that we presented earlier
in the context of the banking organization example cannot be specified using compatibility sets.

Finally both our approaches to exploiting semantics of integrity constraints and transactions are
complementary. In [6], we present a concurrency control scheme that combine the two approaches for
preserving database consistency in MDBS environments.
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Abstract

In many real world applications (even in banking), imprecise data is a matter of fact. However,
classic database management systems provide little if any help in the management of imprecise
data. We are applying methods from interval arithmetic, epsilon serializability, and other related
areas to help the application designers in the management of naturally imprecise data. Our
approach includes operators on imprecise data that give bounds on the result imprecision and
algorithms that constrain the imprecision propagation in the database.

1 Introduction

Traditional database management systems provide support only for precise data, though in the physical
world data is often imprecise. An important class of examples is the scientific data such as incomplete
recording of data, instrument noise, measurement error, computational model imprecision, and data
aggregation of one kind or another. Another example is the “fuzzy” data managed by Epsilon Serial-
izability algorithms [PL91, DP93]. In these cases, the application designer is left with the unpleasant
decision whether to ignore the imprecise information and store some approximation to the precise value,
or to manage the imprecision by hand. Our objective is to provide database management systems that
support both precise and imprecise data directly.

In many situations where precise data is not available, much more useful information on the im-
precision other than ‘value unknown’ or ‘predicate is possibly true’ is available. Different approaches
to the problem of managing imprecise information have been proposed. These range from a consistent
way of handling incomplete information [Lip79] to recent work on fuzzy data models [SMF90] and
probabilistic data models [BGMP92]. One of the most common and useful forms of information avail-
able to an application designer is the ability to bound the amount of imprecision or error in the value
of a data item. We think that it would prove valuable if the database management system was able to
represent and store this type of information on imprecision, as well as provide operators to manipulate
the imprecision bounds in a consistent and useful manner. In our examples, the most natural way to
represent imprecise data is through an interval . For simplicity of presentation we are concerned with
numerical data only in this paper.

The immediate problems we wish to address here are how to represent imprecise information (par-
ticularly bounded imprecision), the development of a data model for imprecise information, and how to
manipulate imprecise data in a consistent manner, particularly when a database state is being trans-
formed. Our basic strategy for dealing with bounded imprecision is to permit each component of a
tuple to be an interval of values drawn from the corresponding database domain. We are working
on an algebra for interval relations as an extension of relational algebra, using methods from interval
arithmetic to manipulate the imprecision bounds.
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2 Interval Relational Data Model

The interval relational data model is defined as an enhanced relational database that allows imprecise
attribute values and imprecise queries; both are expressed in terms of intervals. As in classical relational
database theory, an interval relational database is defined as a set of relations where each relation is
a set of tuples. The key departure of the interval relational data model is that tuple components are
not confined to single elements drawn from the underlying domain; instead, as an attribute value, an
interval is used to represent imprecise data. An example is presented in Figure 1. An interval database

Time Temperature Wind Speed Humidity

1230 [23. . .25] [7. . .10] [0.10. . .0.16]

1400 [28. . .42] [13. . .32] [0.22. . .0.34]

1530 [44. . .48] [9. . .14] [0.48. . .0.62]

selectTemperature⊂[20...45] with precision 0.90

Figure 1: Interval relation and query.

consists of relations, where a relation R(t1, . . . , tn) is a subset of the Cartesian product I1 × I2 × · · ·
× In of interval domains Ii; each Ii is the Cartesian product Di × Di constructed from an attribute
domain Di (1 ≤ i ≤ n). A pair (d, d′) ∈ Ii represents the interval [d, d′], with an interval width of
zero (d = d′) representing a precise value. In the interval relational data model, key attributes require
precise values.

It is the ability to use an interval of values from a domain as a component in a tuple that provides
us with the basic structure for storing imprecise information. An interval representation also provides
an intuitively appealing scheme for understanding imprecise information. The width of the interval of
a tuple component is a measure of the imprecision of the stored information: the larger the interval
the more imprecise the information. The intuition is that for the Ith component of a tuple, an interval
containing the entire domain Di corresponds to information of the worst precision, while an interval of
width zero in Di represents information of the highest precision1.

With imprecise values specified using intervals, a measure of relative imprecision can be derived.
We give just one example here, although many other useful alternative definitions exist.

Definition 1 (Relative Imprecision): The relative imprecision of an interval data element is defined
from a maximum imprecision bound ∆max,where ∆max = max(| val(Attr) - low(Attr) |, | val(Attr) -
High(Attr) |), by ε = ∆max

|val(Attr)| .

where val(Attr) is the value of the data element stored in the database, without the imprecision bounds.
As a consequence of being able to quantify the relative imprecision of the values assigned to data

elements, a tuple may be selected from an interval relation based on the precision of the data it
contains. This affords the application designer the ability to control the quality of data used in further
experiments and decision making. In addition, bounds on the imprecision of data values is available
to bound imprecision in results derived from simulation models or aggregate functions which use this
data as input.

3 Interval Relational Algebra

An interval relational algebra is proposed as an enhancement of the relational algebra. The fundamental
interval relational algebra operators are union, difference, cartesian product, project, and
select. These operators are the interval counterparts of the primitive operations in the classical

1The problem of missing information is outside the scope of this paper. However, it is conceivable that one could
represent the fact that an attribute is “missing but applicable” using an interval that contains the entire domain Di.
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relational algebra, and are intended to directly extend the corresponding precise classical operations
to the ’non-precise’ attributes of the interval relation. We limit our discussion here to the select

operation. (Other interval relational algebra operators are discussed in [BP93].)
The syntax of the select operation at level of precision P applied to an interval relation I with

selection condition C is: SELECTC (I) with precision P . The selection condition C is a Boolean
expression specified on the attributes of interval relation I. The Boolean expression is made up of a
number of clauses of the form Arg op Arg, where Arg is either a constant interval value or the name of an
attribute in an interval relation, and op is one of the comparison operators { ∈,=, <,≤,≥, >, 6=,⊃,⊂ }.
Clauses can be arbitrarily connected by the logical connectives AND, OR, and NOT to form a general
selection condition.

Many applications often require query capabilities involving aggregate and statistical functions.
The interval representation allows for a natural definition of a full range of aggregate functions over
imprecise data: max, min, mean, count, avg, sum, and product, based on interval arithmetic. We
discuss this in detail in [BP93].

4 Bounding the Imprecision on Data

When a data element acquires imprecision due either to external directive, or from the result of a
transaction (e.g., update operations), importing and exporting imprecise values, we would like the
DBMS to update and maintain bounds on the amount of imprecision introduced for each data item.
Using our interval representation, the amount of imprecision imported by a transaction can be recorded
in the database as the interval bounds of an attribute, or the bounds of an existing interval value can
be updated following the rules of interval arithmetic.

Classic transaction models do not include inconsistencies such as data imprecision, since a transac-
tion is defined as a program that transforms a consistent database state into another consistent state.
We have introduced the concept of epsilon serializability [PL91] (ESR) as a family of correctness crite-
ria that bound the amount of inconsistency introduced into transactions. Efficient divergence control
algorithms [PHK+93] guarantee epsilon serializability at a cost close to that of classic concurrency con-
trol algorithms, from which the divergence control algorithms were derived. In addition to transaction
control, consistency restoration algorithms [DP93] can reduce the inconsistency introduced into the
database, given some information on the correction of data values.

Divergence control and consistency restoration both support the interval notation of data impre-
cision. Although originally developed to extend classic (commercial) transaction processing, these
algorithms are being adapted for bounding the imprecision on data in general, including scientific data
and in particular, the interval relational data model sketched in the previous sections. To achieve this,
we specify the amount of imprecision allowed on each data object, denoted as data-ǫ-spec, in analogy
to the specification on the amount of allowed transaction inconsistency, denoted as trans-ǫ-spec, in
epsilon transactions (ETs). Each data item may contain some imprecision (stored with the interval
value and managed by the Interval Relational DBMS), limited by its data-ǫ-spec.

When ETs access imprecise data in an interval relational DBMS, the data imprecision is accumu-
lated by the ET. If the imprecision is tolerable (compared to trans-ǫ-spec) then the ET commits; The
query algebra of the interval relational DBMS can be used to later retrieve the imprecise data values
committed by transactions relaxed with ESR. Otherwise, the ET may wait, abort, or trigger a consis-
tency restoration method. ESR algorithms are then used to constrain the imprecision propagation.

As an example, consider the collection and processing of environmental data from a number of
remote sensing devices. Each device introduces instrument noise and measurement imprecision, which
can be quantified and used to bound the precise values for the collected data. Differences in instrument
type, quality, and placement also effect the precision of the data and result in varying width interval
bounds. Using an ESR-based transaction processing system, the bounded amount of imprecision may be
recorded into an update transaction and stored in the interval relational DBMS. Additional processing
of the imprecise data values, such as aggregate operations to compute the average temperature or total

14



precipitation over the monitored area, using only the interval relational algebra operators ensures that
interval bounds will be properly maintained. The precision of the data retrieved from the collection
can be specified by providing a precision requirement along with a query. ESR divergence control
algorithms will maintain the amount of imprecision in the query result within this limit.

5 Closing Remarks

In this paper, we have proposed the concept of the interval relation to capture the natural imprecision
in much of real world data. The interval relational data model and algebra have both an intuitive
appeal and a simple representation. We are developing interval analogs to the fundamental relational
algebra operations and new operators that have no counterpart in classical relational systems. We
regard imprecision and uncertainty as two complementary aspects of imperfect information we have
of the physical world. Imprecision refers to the value of a data object, while uncertainty refers to the
degree of confidence in the value assigned to an attribute. The ability to represent and manage both
imprecision and uncertainty in a database has considerable promise for many practical applications
such as scientific data management.

Ongoing research on Epsilon Serializability has produced divergence control algorithms [WYP92,
PHK+93] and consistency restoration algorithms [DP93] that preserve bounded inconsistency in data.
Queries on data with bounded inconsistency can be formulated easily using our interval algebra. We are
actively investigating other aspects of managing imprecision as well as methods to manage uncertainty
information, and expect to incorporate both into our system in the future.
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Abstract

ACTA is a comprehensive transaction framework that facilitates the formal description of prop-
erties of extended transaction models. Specifically, using ACTA, one can specify and reason
about (1) the effects of transactions on objects and (2) the interactions between transactions.
This paper focuses on one of the building blocks of ACTA, namely delegation. A transaction
ti can delegate to tj the responsibility for committing or aborting an operation op. Once this
delegation occurs, it is as if tj performed op and not ti. We discuss how the notion of delegation
is useful to capture the interactions that take place in extended transactions.

1 Introduction

ACTA was introduced in [2] to investigate the formal specification, analysis, and synthesis of extended
transaction models. Our goal in this paper is to provide a summary of the notion of delegation. Unlike
in traditional transactions, sometimes extended transactions require the flexibility of not having to
atomically commit all the operations invoked by a transaction. ACTA considers the commitment of
an operation as a significant event, in addition to the commitment of a transaction. By separating
transaction commitment from operation commitment, ACTA allows for a finer treatment of recovery
than is allowed with traditional transactions. Thus, it is possible for a transaction to abort and yet
for some of its operations to commit. Furthermore, while a transaction is executing, it may selectively
abort some of the operations it has performed and yet commit.

Delegation is a powerful concept and is very useful in the controlled commitment of operations. A
transaction ti can delegate to tj the responsibility for committing or aborting an operation op. Once
this delegation occurs, it is as if tj performed op and not ti and hence tj has the responsibility to
commit or abort op. Consider two transactions ti and tj where ti performs opi on an object ob and
then delegates opi to tj; tj then performs opj on ob and then commits. This commitment implies that
in the committed state, ob reflects the changes done by both opi and opj even if ti subsequently aborts.
Had tj so desired, it could have aborted opi unilaterally.

The fact that tj is able to observe the changes done by ti in deciding whether to commit or abort
the delegated operation opi exemplifies how delegation broadens the visibility of a delegatee. Thus,
through delegation, a transaction can selectively make tentative or partial results as well as hints, such
as, coordination information, accessible to other transactions.

†This material is based upon work supported by the National Science Foundation under grants IRI-9109210 and
IRI-9210588 and a grant from University of Pittsburgh.
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In the rest of this paper, after introducing the necessary underlying concepts, we give a detailed
description of delegation.

2 Events, History, and Properties of Histories

During the course of their execution, transactions invoke transaction management primitives, such as,
Begin, Commit, Spawn and Abort. We refer to these as significant events. The semantics of a particular
transaction model define the significant events of transactions that adhere to that model. We use ǫt to
denote the significant event ǫ pertaining to t.

Transactions also invoke operations on objects. We refer to these as object events and use pt[ob] to
denote the object event corresponding to the invocation of the operation p on object ob by transaction t.

The concurrent execution of a set of transactions T is represented by H, the history [1] of the
significant events and the object events invoked by the transactions in the set T . H also indicates the
(partial) order in which these events occur. This partial order is consistent with the order of the events
of each individual transaction t in T . The predicate ǫ → ǫ′ is true if event ǫ precedes event ǫ′ in history
H. It is false, otherwise. (Thus, ǫ → ǫ′ implies that ǫ ∈ H and ǫ′ ∈ H.)

Each transaction t in execution is associated with a V iewt which is the subhistory visible to t at
any given point in time. In simplified terms, V iewt determines the objects and the state of objects
visible to t. A view is a projection of the history where the projected events satisfy some predicates,
typically on the current history Hct. Hence, the partial ordering of events in the view is preserved.

The occurrence of an event in a history can be constrained in one of three ways: (1) An event ǫ

can be constrained to occur only after another event ǫ′; (2) An event ǫ can occur only if a condition c

is true; and (3) a condition c can require the occurrence of an event ǫ.
Correctness requirements imposed on concurrent transactions executing on a database can be ex-

pressed in terms of the properties of the resulting histories. Here are two common types of properties.
Further examples can be found at the end of this section. A Commit-Dependency of tj on ti, specified
by (Committj

∈ H ⇒ (Committi
∈ H ⇒ (Committi

→ Committj
))), says that if both transactions ti and

tj commit then the commitment of ti precedes the commitment of tj. An Abort-Dependency of tj on
ti, specified by (Abortti

∈ H ⇒ Aborttj
∈ H), states that if ti aborts then tj aborts.

Some of the dependencies between transactions arise from their invocation of conflicting operations.
Two operations p and q conflict in some object state, denoted by conflict(p, q), iff their effects on the
state of the object or their return values are not independent of their execution order. For instance,
suppose operation q is an observer of an object’s state and p is a (pure) modifier of the state, i.e., p does
not observe the state. (For a simple example, consider an object on which read and write are the only
operations supported. Read is an observer and write is a modifier.) Suppose p precedes q in a history,
i.e., operation q observes the effects of p. Then, if failure atomicity is desired, then all the direct and
indirect effects of an aborting transaction must be nullified. So, tq, the transaction invoking q, has to
abort if tp, the transaction invoking p, aborts, i.e., tq has an abort-dependency on tp. Suppose instead
that q is a modifier and p is an observer or a modifier. Then, operation q makes p’s effects/observations
obsolete. If the invoking transactions must be executed serializably, tq has to be serialized after tp.

Let us discuss serialization orderings precisely. Let C be a binary relation on transactions: (ti C tj)
if ti must be serialized before tj. Thus, (ti C tj) if ∃ob ∃p, q (conflict(pti [ob], qtj [ob])∧(pti [ob] → qtj [ob])).
Clearly, for a history to be serializable, the C relation must be acyclic, i.e., 6 ∃t (t C∗ t) where C∗ is the
transitive closure of C.

Depending on the semantics of a transaction and its relationship to others, not all conflicts need
produce abort dependencies or serialization orderings. To capture this, with each transaction t in
progress ACTA associates a conflictsett, the conflict set of transaction t, to denote those operations
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in the current history against which conflicts have to be considered when t invokes an operation. The
conflict set is thus a subset of the operation events in the current history, where the events in the subset
satisfy predicates, again on Hct.

Other dependencies between transactions arise from the constraints imposed on the manner in which
extended transactions are required to be structured. For instance, in the nested transaction model [5],
a (parent) transaction spawns (child) transactions. A parent can commit only after its children have
committed. That is, a parent has a commit dependency on its children. But, if the parent aborts, and
a child has not yet committed, the child is aborted. In this case, because of the (italicized) qualification
associated with this abort-dependency, we say that the child has a weak abort-dependency on its parent.
The commit dependency of the parent on the child and a weak abort-dependency of the child on the
parent are formed when a parent spawns a child.

3 Delegation

A transaction ti delegates to tj the responsibility for committing or aborting an operation p when it
invokes the event Delegateti [tj, p]. Once this delegation occurs, it is as if tj performed p and not ti.
Hence, as a side effect, the dependencies induced by operations performed on the delegated objects are
redirected from the delegator to the delegatee. Delegateti [tj , ops] delegates the set of operations ops

from ti to tj .
Via nested transactions, let us illustrate a simple use of delegation. Inheritance in nested transac-

tions is an instance of delegation. Delegation from a child tc to its parent tp occurs when tc commits.
This is captured by the following requirement (Committc ∈ H ⇔ Delegatetc [tp, AccessSettc ] ∈ H)
where AccessSett contains all the operations t is responsible for. That is, all the operations that a
child transaction is responsible for are delegated when it commits.

Given the concept of delegation, it is no longer the case that the transaction invoking an operation is
the same as the transaction that is responsible for committing (or aborting) the operation. Specifically,
once ti delegates p to tj, tj becomes the responsible transaction for p, or simply, tj is responsible for
p. This is denoted by ResponsibleTr(p). Note that ResponsibleTr(p) can change as delegations occur
and so given Hct, for each operation p in it, there exists a ResponsibleTr. If p was never delegated, this
transaction is the same as the one that invoked p. Otherwise, this is the transaction to which p was
most recently delegated.

Delegation has the following ramifications which are formally stated in [3]:

• ResponsibleTr(pti [ob]) is ti, the event-invoker, unless ti delegates pti [ob] to another transaction,
say tj , at which point ResponsibleTr(pti[ob]) will become tj . If subsequently tj delegates pti [ob]
to another transaction, say tk, ResponsibleTr(pti[ob]) becomes tk.

• The precondition for the event Delegatetj [tk, pti [ob]] is that ResponsibleTr(pti [ob]) is tj. The
postcondition will imply that ResponsibleTr(pti[ob]) is tk.

• A precondition for the event Aborttj [pti [ob]] (as well as for Committj [pti [ob]]) is that
ResponsibleTr(pti [ob]) is tj.

• Delegation cannot occur in case the delegatee has already committed or aborted, and it has no
affect if the delegated operations have already been committed or aborted.

• Since once an operation is delegated it is as though the delegatee performed the operation. Thus,
delegation (1) brings the delegated operations into delegatee’s view if they were not already,
and (2) redirects the dependencies induced by delegated operations from the delegator to the
delegatee — dependencies are sort of responsibilities.
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Delegation can be used not only in controlling the visibility of objects, but also to specify the
recovery properties of a transaction model. For instance, if a subset of the effects of a transaction
should not be obliterated when the transaction aborts while at the same time they should not be
made permanent, the Abort event associated with the transaction can be defined to delegate these
effects to the appropriate transaction. In this way, the effects of the delegated operations performed
by the delegator on objects are not lost even if the delegator aborts. Instead, the delegatee has
the responsibility for committing or aborting these operations. Similarly, as the example of nested
transactions illustrated above, by means of delegation, it is possible for a subset of the effects of
committed transactions not to be made permanent. This is the simplest method for structuring non-
compensatable components of extended transactions, e.g., open-nested transactions [4].

A transaction can delegate at any point during its execution, not just when it aborts or commits. For
instance, in Split Transactions [6], a transaction may split into two transactions, a splitting and a split
transaction, at any point during its execution. A splitting transaction ta may delegate to the split trans-
action tb some of its operations at the time of the split (Splitta [tb] ∈ H ⇔ Delegateta [tb,DelegateSet] ∈
H). Here, it is interesting to note that a split transaction can affect objects in the database by com-
mitting and aborting the delegated operations even without invoking any operation on them.

Other transaction models using delegation include Reporting Transactions and Co-Transactions
described in [3]. A reporting transaction periodically reports to other transactions by delegating its
current results. This supports the construction of data-driven computations, e.g., pipeline-like or
star-like computations. Co-transactions behave like co-routines in which control is passed from one
transaction to the another transaction at the time of the delegation. As in the case of reporting trans-
actions, a transaction ta delegates its current results, contained in ReportSetta , to its co-transaction tb
by invoking the Join event (Jointa [tb] ∈ H ⇔ Delegateta [tb, ReportSetta ] ∈ H).

In cooperative environments, transactions cooperate by having intersecting views, by allowing the
effects of their operations to be visible without producing conflicts, and by delegating responsibilities to
each other. By being able to capture these aspects of transactions, the ACTA framework is applicable
to cooperative environments.
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Abstract

Transaction management requires integration of coordination protocols, concurrency control pro-
tocols and communication protocols. Protocol integration is simplified by specifying coordination
protocols as logical constraints. Such a framework provides a foundation for specifying and
executing the different transaction models and activity types required for work flow systems.
This approach has been used to specify and implement Open DECdtm, a portable transaction
management service layered on OSF DCE.

1 Introduction

Transaction management requires the integration of coordination, concurrency control, and commu-
nication protocols. Protocol integration is simplified by specifying coordination protocols as logical
constraints. This framework provides a foundation for specifying and executing the different trans-
action models and activity types required for work flow systems. The approach has been used in
Open DECdtm to offer portable transaction management services layered on OSF DCE. It supports
the application (TX), resource manager (XA), and transactional DCE RPC (TxRPC) interfaces spec-
ified by X/Open [5]. Open DECdtm provides interoperability with OSI Transaction Processing (OSI
TP) [4] and OpenVMS systems using the DECdtm OpenVMS protocol[3]. Protocols are specified by
constraints. This simplifies the development of transactional gateways between different data transfer
protocols and allows for support of different transaction models in a heterogeneous environment.

Most transaction management protocols are defined in the context of particular data transfer pro-
tocols [1]. No agreement has been reached on how to manage transactions across different data transfer
models (i.e. request/response, peer-to-peer, queued). To address those issues and to allow applications
use of different data transfer protocols within a transaction, Open DECdtm supports synchronization
between transaction state and data transfer state.

Today most transaction management protocols only provide support for flat transactions. Those
providing support for nested transactions have difficulty using their extended functionality when coor-
dinating transactions in a heterogeneous environment. The approach taken by Open DECdtm allows
support for nested transactions in a manner that interoperates with flat transaction protocols by repre-
senting each nested transaction as a flat transaction and providing the necessary coordination locally.
This is a first step towards supporting different transaction models. An integration with different con-
currency control protocols has been prototyped. Commercial usage is limited due to the fact that most
lock manager are not built to be integrated with different concurrency control protocols.

∗This paper expresses the views of the authors, not opinions or future product plans of Digital Equipment Corp.
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2 Model and Coordination Protocols

Transaction processing systems distinguish between four different components: applications (AP) ex-
ecuting user programs; applications accessing local resource managers (RM) using languages such as
SQL; applications accessing remote resource managers through services offered by remote applications;
and invocations of remote services supported by communication managers (CM). Transaction managers
(TM) ensure that local and remote resource managers agree on the same outcome of a transaction.
They must also ensure that all messages sent by participating applications are processed before allow-
ing a transaction to commit. Protocols are specified to define the correct behavior of each component.
Internally, Open DECdtm models transaction participants as resources. Each resource is managed by
one of the above components. Examples of resources are an AP thread, an RM instance, or a specific
branch managed by a CM. Resources change state when processing a transaction. Those state transi-
tions are called events. Protocols define conditions on the occurrence of events. Open DECdtm uses
constraints to define these conditions[2]. Messages are exchanged between components to indicate the
state of a given event and resolve conditions. Messages indicate that events have become TRUE, have
become FALSE, or are promised to become TRUE at some later point. Examples of events include
commit, indicating the transaction has committed, request, indicating the desire to begin transaction
termination, and token, indicating the right to send data on a given communication link. Constraints
are defined using when-then-enable statements.

when< condition >

then [enable]< action >.

Conditions and actions refer to events. All conditions associated with an event must be satisfied
before the event becomes enabled, i.e. the event may only become TRUE once it has been enabled,
but being enabled does not imply the event will become true.

Take as an example the specification of a coordination protocol for nested transactions. Each
participant in a nested transaction indicates completion of its computation with a finish event. Com-
mitment of the results is indicated by a commit event. Participants coordinating the agreement protocol
indicate start of the first phase by issuing a request event. Commitment of the Superior becomes depen-
dent on the commitment of the Subordinate after the Subordinate’s computation has been successfully
completed. Commitment of the Subordinate is unconditionally dependent on the commitment of the
Superior.

constraint Participant (Superior, Subordinate)
{
//start termination when reveiving a request

when request(Superior) then
request(Subordinate);

//commit when requested and superior agreed
when request(Superior) and commit(Superior)

then commit(Subordinate);
//commit when subordinate agreed
when (commit(Subordinate) or not(finish(Subordinate)) then

commit(Superior);
}

If at runtime state transitions cause updates to recoverable resources, journaling actions are au-
tomatically triggered by analyzing the state of affected constraints. Optimizations such as read-only,
volatile, last-participant and one-phase are automatically derived ensuring optimal behavior of Open
DECdtm.
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3 Conflict Detection and Conflict Resolution

Frameworks for supporting different transaction models must enable integration of concurrency control
protocols with transaction coordination protocols. When supporting concurrency control protocols
two important aspects need to be addressed: conflict detection and conflict resolution. In most imple-
mentations conflict detection is provided by lock managers. Conflict resolution components interact
with transaction managers and conflict detection components to resolve conflicts between different
transactions. Conflict resolution policies specify how conflicts have to be resolved, thereby defining
the concurrency control protocol for the respective transaction model and application environment.
Conflict resolution components analyze the coordination protocols established and other application
specific data. Since coordination protocols are represented and maintained as logical constraints conflict
resolution components are able to retrieve those kinds of information at runtime.

Conflicts between operations are caused by one of the following reasons:

1. An operation modifies the state of a resource observed by a previous operation (Order).

2. An operation observes a modification caused by a previous operation (Dataflow).

If an event indicates completion of a transaction’s computation a hybrid of two phase locking and
constraint enforcement may be used as conflict resolution policy. This increases concurrency but still
ensures isolation.

1. Delay write operations until all current readers finished their computations.

2. Delay read operations until the current writer finished its computation.

As an example take transaction A whose modification is delayed until transaction B’s computation
has been finished, when (finish(B) or not(finish(B))) then write(A). Transactions reading recoverable
resources can only commit if all modifications seen have been committed and recorded on stable stor-
age. Therefore in most cases transactions only access resources after all updates have been committed.
However, if constraints ensure that a transaction’s commitment depends on the commitment of all
previous update transactions modified resources can be accessed as soon as the modifying transaction
finished its computation. To check for a commit-dependency conflict resolution components may issue
the following query given transaction A wants to access a resource previously modified by transaction
B: query( when commit(B) then commit(A) ). Besides checking basic ordering and coexistence require-
ments conflict resolution components may also evaluate other attributes associated with transactions
such as whether or not transactions are started by users of the same work group.

4 Communication Management

When dealing with transactional communication, there are two important entities:

1. The transaction branch which represents the state of the remote transaction participant.

2. The connection which represents the state of the communication link to a remote application.

Current proposal for communication manager interfaces, such as XA+, only deal with issues related
to branch management. However, it is useful to treat connection and branch management separately
because of the different nature of their events and their different lifetimes. Failure of a connection may
abort ongoing local branches while causing a recovery of local branches which are promised to commit
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or committed. The current state of a connection also determines when commitment can be started or
whether a premature request for commitment should cause the transaction to be aborted or cause a
state check.

Branches have the traditional transaction events, e.g. commit, request. They live until the trans-
action termination protocol has completed. Connections have events associated with them such as
com fail, indicating the connection has failed, and token, indicating that data may be sent on the con-
nection. Some connections are only associated with a single branch[4] others are multiplexed between
transaction branches[3].

Polarized control[4] is another important aspect in the relationship between connections and branches
that must be considered. In this case branches are only allowed to start commitment if all connections
are in the send state. The transaction manager has to prevent any attempt by the AP to commit a
transaction if any of its associated connections are not in send state. This ensures that all messages
sent are processed before commitment starts.

Take as an example polarized control (half-duplex) dialogues (conversations) as defined by OSI TP
or IBM’s SNA LU 6.2[4]. At any time only one application is allowed to send data on a dialog. An
application issuing the request to commit must have the right to send on all its dialogues. This ensures
that all data is received before an application commits. The transaction manager should reject any
commit request if it is issued prematurely. If this “state check” is not handled by the transaction
manager, then transactions would have to be aborted to ensure message integrity.

5 Summary

Open DECdtm offers portable transaction services across OSF and VMS platforms. Open DECdtm is
layered on OSF DCE with support for TxRPC, XA, and TX as specified by X/Open. Open DECdtm
supports the DECdtm Open VMS for VAX protocol and provides interoperability with OSI TP. Open
DECdtm’s protocols are specified using constraints. This simplifies the task of interoperating with
different communication protocols and provides an extensible infrastructure for new transaction models
and work flow systems.
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1 Introduction

Distributed object computing is evolving as a new paradigm for solving complex distributed systems
problems. It is supported by Distributed Object Management Systems (DOMSs) [MHGH+92], which
are object-oriented environments in which distributed, autonomous, and heterogeneous systems (such
as database and legacy systems) can be integrated, and complex, non-traditional applications can be
developed. A DOMS integrates local systems by representing their data and functionality as objects,
and allowing client applications to access them without knowing their location, access language, or
data representation. It must ensure correct and reliable execution across multiple objects. The scope
of a DOMS ranges from small centralized systems to massive world-wide information systems.

There is increasing interest in specifying applications in a DOMS environment as workflows in-
volving distributed objects. A workflow is a collection of tasks organized to accomplish some business
process. Workflows define the structure of business processes, including the order of task invocation,
task synchronization, and data-flow, and specify tasks performed by both humans and computer sys-
tems using high-level scripting or rule-based languages.

1 - Collect Customer Data
2 - Work Assignment
3 - Update Customer DB
4 - Update Billing DB
5 - Update Directory DB
6 - Allocate Facilities
7 - Update Switch
8 - Sync. Completion

9 - Access Customer DB
10 - Access Billing DB
11 - Access Facilities / Billing DB
12 - Access Customer DB
13 - Allocate Facilities
14 - Allocate Facilities
15 - Access Billing DB
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Figure 1: Concurrent execution of multiple workflows.

For example, Figure 1 depicts three telecommunications workflows that access a combination of
distributed resources (databases and a telecommunications switch). A basic problem is to ensure the
correctness and reliability of such workflows. This becomes increasingly complex as more and more
aspects of workflows are automated because: (1) the number of concurrent tasks accessing shared
resources increase sharply; (2) the potential for failures of automated tasks or workflows increases; and
(3) less human intervention to control process flows or resolve conflicts is possible.
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2 Treating Workflows as Extended Transactions

Typically, workflows managers do not ensure correctness or reliability. But, without such guarantees,
concurrent workflow execution may result in, for example, lost updates, dirty or inconsistent retrievals,
or even allocating the same non-sharable facilities to two different customers. Correctness is ensured if
the executions of concurrent tasks and workflows are interleaved in a way that cannot produce incorrect
results. For example, consider two extended transactions, T1 and T2, that access shared resources R1

and R2. If T1 accesses R1, but T2 executes completely before T1 accesses R2, when T1 commits, the
serialization order at R1 is T1 before T2, but the serialization order at R2 is T2 before T1. This globally
unserializable schedule may produce incorrect results as noted above.

Reliability requires that both tasks and workflows be recoverable in the event of failure, and that
a well-defined method exists for recovery. Providing task reliability requires maintaining information,
such as logs, that can be used to determine the state of a failed task. Systems that support transactions
automatically provide a single failure state (i.e., abort) for tasks that execute as transactions. Systems
that do not support transactions require workflow managers to track the possibly multiple failure states
of each task and provide necessary recovery actions. Similarly, ensuring workflow reliability requires
the ability to determine the state of a failed workflow so that completed tasks can be compensated for,
and partially completed tasks can be aborted.

Our approach addresses these correctness and reliability issues by expressing workflows as extended
transactions. Treating workflows as extended transactions is based on the following:

1. workflows have constituent transactions corresponding to workflow tasks

2. workflows have an execution structure corresponding to the workflow structure, and such
structure is defined by an extended transaction model (ETM)

3. workflows obey a correctness criterion, as specified by the same ETM as in (2)

Workflows are so diverse in their requirements that no single ETM is sufficient to meet the needs
of all workflows. Moreover, different workflows often have incompatible requirements which makes
defining a single model impossible. Therefore, our objective is to provide an environment within which
we can support various ETMs.

Our approach to implementing ETMs in support of workflows combines rules with transaction
management mechanisms (TMMs) such as schedulers. In particular, we implement extended trans-
action structure using rules, and enforce transaction correctness and reliability using schedulers. In
our approach, rule definitions include interactions with schedulers, and schedulers are designed to take
into account rule executions and the results of rule actions. This has significant advantages over other
approaches that use rules alone to specify and implement workflows. Using rules for the specification
of correctness criteria is extremely difficult. Their complexity grows exponentially with the number
and complexity of the extended transactions.

Although sufficient for implementing workflows as extended transactions, combining rules and
schedulers introduces two problems. First, integrating rule-based specifications and schedulers is com-
plex and brings specification to the level of writing programs. Second, combining rules and TMMs
does not constitute a homogeneous specification language. To address these problems, we separate
the specification of ETMs from their implementation. We specify extended transactions (the work-
flows) as dependencies between constituent transactions (their tasks). These dependencies, expressed
as dependency descriptors in our ETM specification language, are translated into combinations of rule
definitions and instructions to schedulers to support a particular ETM. The language used for ETM
specification, formally defined in [GH92], is similar to ACTA [CR92]. Unlike ACTA, however, the
TSME dependency specification language is minimal and does not require complete histories.
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3 Transaction Specification and Management Environment

To support the specification of ETMs and their corresponding implementations, we introduce the
concept of a Transaction Specification and Management Environment (TSME) [GH92], which comprises
a Transaction Model Specification Facility (TSF) and a corresponding programmable TMM, as depicted
in Figure 2. The TSF accepts specifications of ETMs expressed in terms of dependencies between the
kinds of transactions allowed by each ETM; the programmable TMM supports the implementation of
ETMs (to ensure transaction dependencies) and provides an environment in which to execute extended
transactions. This separation of model specification from implementation allows ETM designers to
reason about and check the correctness of models separate from their implementations.

transaction designer

mismatches
between

specifications

specifications
of extended

transaction models

specifications of
one-of-a-kind
transactions

application programmer

model-dependent
transactions

one-of-a-kind
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Transaction Model Specification Facility (TSF)

interfacemechanism assembler
& components run-time environment

Figure 2: A TSME Facility.

DOMS application programmers may implement extended transactions that behave according to
a TSME-supported model, called model-dependent transactions, or they may implement one-of-a-kind
transactions not associated with any TSME-supported model. One-of-a-kind transactions are useful
for prototypical implementation of workflow requirements, and can be generalized to ETMs for reuse
by other transactions, if needed. If a class of workflows requires an entirely new ETM, this may be
specified directly. For example, if an application requires specific kinds of transactions to cooperate
(share intermediate results or interleave data accesses) to increase concurrency, this may be specified
as a new ETM.

The TSF analyzes a model’s specifications to determine its transaction management requirements.
Such requirements can be classified as constraints on the execution structure of complex extended
transactions required by an ETM, and the correctness criteria such transactions must satisfy. For
example, a structural requirement of nested transactions is that a parent cannot commit unless all its
children abort or commit. Examples of correctness criteria include serializability, temporal order, and
transaction cooperation. The TSF uses a repository to record TSME-supported models.

Specifications are translated to instructions for the programmable TMM which then assembles
and configures a run-time environment according to those instructions, for example, by combining the
appropriate TSME-provided schedulers, programs that access local systems, and rule definitions. The
run-time environment ensures that model-dependent transactions behave according to their model.
The TSME also supports the evolution and integration of existing ETMs by allowing the composition
of specifications.

Extended transactions consist of a set of constituent transactions and a set of dependencies between
them. Transaction dependencies specify correctness criteria or transaction execution structure. Trans-
action state dependencies are conditions on transaction state1 that define the execution structure of

1The state of a transaction may be, for example, prepared, committed, or aborted.
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extended transactions. We have identified three kinds of state dependencies: backward, forward, and
strong. For example, on transactions T1 and T2 a backward-commit-begin dependency requires that
“T2 cannot begin before T1 commits,” a forward-commit-begin dependency requires that “T2 cannot
begin after T1 has committed,” or a strong-commit-abort dependency requires that “T2 must abort if
T1 commits.” Correctness dependencies specify which concurrent executions of extended transactions
preserve consistency and produce correct results. Dependencies in this category include: serialization
order, visibility, cooperation dependencies, and temporal order dependencies [GH92]. For example, “T1

and T2 do not conflict on any operations of object o1,” and “T3 must be temporally ordered after T1

and T2” are correctness dependencies.
The programmable TMM uses Event-Condition-Action (ECA) rules [DHL90] triggered by transac-

tion state change events to enforce transaction state dependencies. It uses traditional scheduler tech-
nology to ensure correctness dependencies. To enforce correctness dependencies, the programmable
TMM uses a hierarchical scheduler comprised of: a global scheduler (GS) at the root of the hierarchy,
high-level (“local global”) schedulers associated with complex objects, and simple object schedulers at
the leaves.

A hierarchical scheduler is required because objects may use different, possibly autonomous and
heterogeneous schedulers to perform local synchronization of the operations they support. Each com-
ponent of a complex object may provide a different scheduler, requiring synchronization at each level of
the complex object. DOMS transactions issue operations on objects through the GS, which behaves as
a multidatabase scheduler. That is, the GS ensures that all object schedulers in a DOMS provide the
same correctness guarantees. For example, the GS may use one of the methods described in [GRS92]
to ensure that global transactions have the same serialization order in all object schedulers.

To support multiple correctness criteria from various ETMs, the programmable TMM provides
a programmable scheduler (PS) for objects that neither provide their own scheduler, nor use a local
scheduler. The PS accepts commands to alter, for example, the correctness criteria, visibility, and
enforcement options it applies to objects under its control. The PS uses a generalized conflict table that
defines conflicts between semantic operations and allows the specification of transaction cooperation on
specific objects and/or for specific operations. A programmable TMM that incorporates the capabilities
above is currently being implemented in our DOMS.
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Abstract

A multidatabase system integrates pre-existing and heterogeneous databases in a distributed en-
vironment. A multidatabase transaction is a consistent and reliable execution of an application
over a multidatabase system. In this article, we first summarize the characteristics of flexible
transactions, then present two multidatabase transaction specification languages for workflow
applications, the InterBase Parallel language (IPL) and InterSQL. Both languages provide ap-
proaches to the definition and mangement of a unit of work. Design issues, components, and
examples of both languages are described. The implementation of IPL and InterSQL is also
discussed.

1 Introduction

A multidatabase system (MDBS) is a typical heterogeneous distributed system which integrates pre-
existing local database systems (LDBSs) to support applications accessing more than one LDBS. Inter-
Base [BCD+93], a multidatabase prototype at Purdue University, is such a system. The purpose of the
InterBase project is to define the design and implementation of a global environment for applications
to access multiple systems. InterBase supports flexible interactions among heterogeneous systems by
employing specially designed agents, termed Remote Systems Interfaces, to mask the heterogeneities
of the local systems; by providing a uniform language, the InterBase Parallel Language (IPL) [CBE93],
to specify global transactions; and by supporting the Flex Transaction model [Elm92] to coordinate
concurrent global transactions. An MDBS transaction is a consistent and reliable execution of such an
application; its subtransactions are executed as local transactions on individual LDBSs. Because of the
distinct environmental characteristics of MDBSs, MDBS transactions differ greatly from traditional
distributed transactions. The preservation of the ACID (atomicity, consistency, isolation, and durabil-
ity) properties of traditional transactions becomes problematic in MDBS environments. Furthermore,
MDBS transactions are vulnerable to the failure of their subtransactions, because these subtransactions
are usually executed on remote systems beyond the control of the MDBS.

1.1 Flex Transaction Model

Many researchers have proposed alternative transaction models for MDBS transactions which can
tolerate the failure of individual subtransactions [Elm92]. For example, the Flex Transaction model
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[ELLR90] relaxes the atomicity and isolation properties of nested transactions to provide users increased
flexibility in specifying their transactions. Consider a transaction that is composed of a set of tasks.
For each task, the Flex Transaction model allows the user to specify a set of functionally equivalent
subtransactions, each of which, when completed, will accomplish the desired task. A Flex Transaction
is thus resilient to failures in that it may proceed and commit even if some of its subtransactions fail.
The Flex Transaction model also allows the specification of dependencies on the subtransactions of a
Flex Transaction; these may take the form of internal or external dependencies. Internal dependencies
define the execution order of subtransactions, while external dependencies define the dependency of
a subtransaction execution on events (such as the start/end times for the execution) that do not
belong to the transaction. Finally, the Flex Transaction model allows the user to control the isolation
granularity of a transaction through the use of compensating subtransactions. All of the above features
contribute to the flexibility of the Flex Transaction model, rendering it particularly useful for flexible
transaction processing in multidatabase systems. An MDBS transaction specification language should
therefore allow users to specify the isolation and atomicity granularity of an MDBS transaction to
support advanced applications in MDBSs. The Flex Transaction model has been implemented in the
InterBase Parallel Language (IPL) [CBE93] and the Vienna Parallel Logic (VPL) language [KPE91].
The Flex Transaction model has also influenced such implementations as MCC’s Carnot project.

2 Workflow Aspects of InterSQL

InterSQL combines the transaction and execution specification abilities of IPL [CBE93] with the unified
common query language approach of FSQL used in FBASE [Mul92] while adding high-level support
for atomic commitment.

An InterSQL transaction program consists of two parts: a subtransaction definition and an exe-
cution section. The latter, which forms the main program, specifies the execution plan and data flow
of the transaction and can reference previously defined subtransactions. Each subtransaction executes
at a single system, and subtransaction arguments are used to pass data to and return results from
subtransactions. Figure 1 illustrates a sample InterSQL transaction program.

The main program consists of a list of statements. These statements are either SQL statements
that access local data, or statements used to control the execution flow. The statements allowed can
be summarized as follows:

< statement list > ::= ǫ | < statement list > < statement >

< statement > ::= < standard sql statements >

[ [ < library name > : ] < system name > : ]
< procedure name > ( < arg list > ) ;

| execute in parallel < statement list >

| execute one of < statement list >

The procedure invocation statement is used to invoke procedures. If a procedure is invoked in the
main program, it represents the invocation of a subtransaction. The subtransaction must either be
defined in the transaction program, or defined in a system library. To specify a system library sub-
transaction, the system name of the library is prepended to the subtransaction name. For example,
bank1:withdraw(101, 1000); represents a withdrawal subtransaction at system “bank1” that with-
draws $1000 from account number 101. If a procedure is invoked within a subtransaction it refers
to a database method (or function). The database method must have been previously defined at the
system that is accessed. A subtransaction cannot invoke another subtransaction. The “execute one
of” statement is included to permit alternate possible execution paths to achieve global commitment.
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transaction simple bank transfer {
subtransaction withdraw () at bank1 {
update account set balance = balance - 100 where number = 101; }
subtransaction deposit () at bank2 {
update account set balance = balance + 100 where number = 101; }
Main Program

withdraw();

deposit(); } Figure 1: InterSQL Example

For example, a user may want to reserve a room at any one of three hotels, would write the following
in the main program:

execute one of { reserve hotel1(); reserve hotel2(); reserve hotel3(); }

The “execute one of” statement here instructs the program to execute (in this case commit) only
one of subtransactions “reserve hotel1()”, “reserve hotel2()”, or “reserve hotel3()”, and to abort the
transaction if none of them can be committed. The “execute in parallel” statement has the same effect
as listing subtransaction invocations sequentially, except that the subtransaction may be executed in
any order, including in parallel. So all the subtransactions invocations listed in an “execute in parallel”
statement must therefore be committed for the transaction to succeed. The “execute one of” and
“execute in parallel” statements can be arbitrarily nested. Clearly, any combination of acceptable
goals can be specified, although one may not specify an execution plan that would execute the same
subtransaction twice.

3 The InterBase Parallel Language

The InterBase Parallel Language (IPL) is the transaction specification language of InterBase. IPL
allows users to specify all actions associated with a global transaction, such as the control flow and
data flow among subtransactions. Moreover, InterBase will automatically execute subtransactions in
parallel when it can do so without violating the specified control flow or data flow constraints. IPL
therefore retains the essential characteristics of workflow languages.

The features of IPL are most effectively illustrated through an example. Suppose a user wishes to
transfer money from either a checking or savings account to a Visa account. The user will make the
final determination of the amount from which to withdraw while the transfer is in progress. We assume
that the bank system is a distributed multidatabase system which maintains all checking accounts in
a Sybase database system on the machine sonata, all savings accounts in an Ingres database system
on the machine ector, and all Visa accounts in a guru database system on the machine interbase.
The IPL program for this application is shown in the Appendix, and we will refer to it throughout our
explanation of IPL. An IPL program consists of three parts that specify, respectively, definition of data
types, definition of subtransactions, and dependency relations among subtransactions.

Definition of Data Types: In IPL programs, a subtransaction is associated with a data type which
specifies the data structure of the result if the subtransaction is successfully executed (i.e., reaches its
ready-to-commit state). The predefined data types provided are int, real, boolean, and charString,
and users can define complex types through aggregation. In the example, the subtransactions checking,
savings, and visa all produce outputs of the complex type account.
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Definition of Subtransactions: This part provides mechanisms for specifying subtransactions
within an IPL program. In the example, checking takes data of the type inparams from the in-
put task in as its input parameter. The local software system involved is the sybase system, which
runs on the machine sonata. Its execution step, optional confirm step, and optional undo step1 are
defined between IPL keyword pairs beginexec and endexec, beginconfirm and endconfirm, and
beginundo and endundo, respectively.

Dependency Description: The dependency description provides users with a mechanism for spec-
ifying the execution order among the subtransactions of a global transaction. The dependency descrip-
tion supports functionally equivalent subtransaction alternatives for the goals of transactions. This
flexibility allows an increased tolerance of individual subtransaction failures. In the example, since two
subtransaction alternatives (checking, visa) and (savings, visa) can be deduced, the global transaction
can therefore tolerate the failure of either checking or savings.

The major advantage of using IPL is its semantic power and suitability. Through dependency
description, programmers in IPL can specify control flow among subtransactions, which gives IPL the
flexibility to support parallel execution and synchronization among subtransactions. As shown in the
example, IPL provides a method for specifying data flow within a global transaction. IPL permits the
construction of mixed global transactions by allowing the extent of compensatability to be specified in
the declarations of subtransactions. Commit and abort operations of subtransactions are deferred until
their global transactions commit or abort, if they are defined, and thus support atomic transactions.
IPL also allows the specification of transactions that may include subtransactions that access non-
database systems, and database systems with complex data models, because statements in the native
language can be incorporated into IPL programs.
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Appendix: Example IPL Program

program

record inparams of /* the inputs to the program from the customer */

accNum : charString; /* account number */

amount : integer; /* the amount of money to be transferred */

endrecord;

record account of /* the schema of bank accounts such as savings */

name, accNum, suffix : charString;

balance, preBalance, amount : integer;

endrecord;

/* input task "in" to obtain the inputs of type inparams from the customer */

input in : inparams endinput;

subtrans checking (in) : account use sybase at sonata output

beginexec /* execution step, in SQL format */

begin tran sybasebank;

update bank set amount = -$$in.amount$$ where accNum = $$in.accNum$$;

update bank set preBalance = balance where accNum = $$in.accNum$$;

update bank set balance = balance - $$in.amount$$ where accNum = $$in.accNum$$;

select name, accNum, suffix, balance, preBalance, amount from bank where accNum = $$in.accNum$$;

endexec

beginconfirm /* confirm step, in SQL format, two-phase commit */

commit tran sybasebank;

endconfirm

beginundo /* undo step, in SQL format, two-phase commit */

rollback tran sybasebank;

endundo

endsubtrans;

subtrans savings (in) : account use ingres at interbase8 output

beginexec /* execution step, in SQL format */

update bank set preBalance = balance where accNum = $$in.accNum$$;

update bank set amount = -$$in.amount$$ where accNum = $$in.accNum$$;

update bank set balance = balance - $$in.amount$$ where accNum = $$in.accNum$$;

select name, accNum, suffix, balance, preBalance, amount from bank where accNum = $$in.accNum$$;

endexec

beginundo /* undo step, in SQL format, compensation */

update bank set balance = balance + $$in.amount$$ where accNum = $$in.accNum$$;

endundo

endsubtrans;

subtrans visa (in) : account use guru at interbase output

beginexec /* execution step, in SQL format */

update bank set preBalance = balance where accNum = $$in.accNum$$;

update bank set amount = -$$in.amount$$ where accNum = $$in.accNum$$;

update bank set balance = balance - $$in.amount$$ where accNum = $$in.accNum$$;

select name, accNum, suffix, balance, preBalance, amount from bank where accNum = $$in.accNum$$;

endexec

beginundo /* undo step, in SQL format, compensation */

update bank set balance = balance + $$in.amount$$ where accNum = $$in.accNum$$;

endundo

endsubtrans;

dependency

checking or savings : visa;

visa : accept;

enddep;

endprogram
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Abstract

The Carnot project has been developing a variety of technologies oriented towards the integra-
tion of heterogenous data and information resources. This article will describe several of these
technologies: the extensible services switch (ESS), the tree spaces communication facility within
the ESS used for script and results distribution, and task flow constraints and the declarative
resource constraint base (DRCB). The latter is used to capture organizational knowledge about
the way in which various resources are used and the constraints between the resources that are
(often implicitly) maintained by various applications.

1 Introduction

The Carnot project in the Information Systems Division of MCC is developing an extremely flexible
framework that supports the integration of heterogeneous components in a distributed computational
setting. The overall goal is to provide more effective interoperability among heterogeneous information
resources and applications than has previously been tractable. The principal need for such systems
is in enterprise integration, both within and among organizations. The reader is referred to [Can91],
[Huh92], and [Woe92] for further information on the Carnot project at MCC.

A principal feature of the Carnot technology is its support for the description and management of
heterogeneous, distributed workflows. Figure 1 presents the major components that are involved. The
Extensible Services Switch(ESS), in Figure 1 provides interpretive access to communications resources,
information resources and applications resident at a site in a distributed system. There are two sorts
of paradigms that may profitably be used to understand the ESS. First, the ESS can be thought of as a
component of a distributed command and control interpreter that is used to implement heterogeneous
distributed transaction execution and generalized workflow control. Second, the ESS may be viewed
as a programmable application layer communications front-end for applications and other resource
managers within a distributed information system. The ESS is essentially a programmable glue for
binding software components to one another in a manner that enhances interoperability.

The ESS is constructed on top of a high-performance implementation of an interpreter for the
Actor model [Agh90], enhanced with object-oriented mechanisms for inheritance and reflection. The
language of the interpreter is called Rosette[Tom92] and has been developed over a period of five years
for research in both parallel algorithm development and interpretive control of distributed applications.
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Figure 1: Control flow for scripts

Many different communications resource and distributed processing abstractions are supported by
the ESS. These include: ByteStreams, RosetteStreams, Remote evaluation, TreeSpaces, and OSI. The
ByteStream provides access to an uninterpreted stream of bytes while the RosetteStream provides
access to a stream of Rosette expressions. This latter provides basic support for remote evaluation and
is used by several of the client applications of the ESS. The TreeSpace abstraction is discussed below.
Support for OSI includes an ASN.1 type system, interfaces to the Association Control Service and the
Remote Operations Service.

The TreeSpace abstraction is built on RosetteStreams and provides functionality similar to that
described in [Agh93] and [Car89]. A TreeSpace is similar to a directory in a Unix file system. It
provides a collection of named entities which may be of several different classes: TreeSpace, LeafSpace,
GroupSpace, or SpaceLink. LeafSpaces provide basic pattern directed retrieval of messages by anony-
mous recipients. They may be used to achieve various forms of synchronization since an attempt to
retrieve a message via a pattern for which there is no match leads to the requestor blocking until a
message is deposited by some other actor. GroupSpaces provide a multicast facility based on subscrip-
tion lists, while SpaceLinks are used to attach a sub-tree of one TreeSpace to another TreeSpace. This
latter facility is used to create networks of ESSes by attaching TreeSpaces at each ESS to one another
under names that may be the site name or some other functional name representing the use of the ESS
in the system.

2 Work Flow Processing

The Distributed Semantic Query/Transaction Manager(DSQTM) in Figure 1, dynamically expands
a query to include access to all semantically equivalent and relevant information resources[Woe92]
and also groups any updates to these resources as a set of independent tasks that interact according
to a dynamically defined relaxed transaction semantics [Att93], [Woe93]. The DSQTM accepts user
specifications of queries and updates and generates an initial task graph. The task graph is passed to the
declarative resource constraint base (DRCB), which is implemented using Carnot’s knowledge based
distributed communicating agents. The DRCB uses rules to perform two types of transformations
on the task graph. First, articulation axioms are used to expand the task graph to include nodes
representing other information resources that contain relevant information. Articulation axioms express
a set of logical relations between a local database schema and a global schema represented in a knowledge
base. Articulation axioms are generated using the Enterprise Modeling and Model Integration tools
that are part of the Carnot semantic services [Huh92]. For example, Figure 2 illustrates an initial
query for a relation A at site 1 and an expansion of the query to include access to a relation B at site
2. The results are to be sent to site 3 where the union will be performed.
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floors:

  SITE 1

A B

SITE 3

name:
addr:
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levels:

SITE 2

Original Query: SELECT A.hotel_rm, A.floors FROM A WHERE a.year < 1940
                          Augmented Query: UNION Original Query WITH
                                SELECT B.name, B.levels FROM B WHERE B.biult < 1940

Figure 2: Tree space example

 

Site 1:
(Out [’site3 ’gtid42 ’temp1
          (do-query itasca-agent-1
             "SELECT A.hotel_rm, A.floors FROM A WHERE A.year <1940")])

Site 2:
(Out [’site3 ’gtid42 ’temp2
          (do-select  ingres-agent-2
              "SELECT B.name, B.levels FROM B WHERE B.built <1940")])

Site 3:
 (do-semantic-union [["B"[[=1="one"] [=2="two"]]]]
            [[In ’gtid42 ’temp1][In ’gtid42 ’temp2]]))

Figure 3: Tree space scripts

Second, the articulation axioms and inter-resource constraints are used to derive additional update
subtasks that must be performed in order to maintain enterprise-wide consistency. The execution of
these subtasks is constrained by dependencies declared in a language similar to [Chr92] or [Kle91]. The
DRCB augments the task graph with these additional subtasks and their derived interdependencies.
The augmented task graph is passed back to the DSQTM which annotates it with physical resource
locations. The DSQTM then generates an optimal query plan for each query node in the task graph.
The query plan specifies the ordering of joins and the flow of intermediate results among the remote
systems.

Finally, the task graph is used to generate a set of scripts to be executed by the ESS at each site
that is involved in the task flow. A script controls the execution of subtasks at a site, controls the
flow of data to and from the site, does necessary data value mapping between databases, and controls
the transaction semantics. The scripts are executed under the control of the ESS using TreeSpaces
to perform basic synchronization among tasks and inter-task dependency actors to enforce constraints
among task events. For example, Figure 3 illustrates the scripts for performing the selects at each of
site 1 and 2 and the union at site 3. The commands Out and In are used to move actors through the
TreeSpaces at each of the three sites. The scripts are also distributed to each site via the distributed
TreeSpaces. Although not illustrated in the example of Figure 3, the sched function of Figure 1
is performed by message exchanges among inter-task dependency actors. Tasks submit requests (e.g.,
do-query or commit) to an inter-task dependency actor with which they are associated and receive
a status notification when any dependencies mentioning the requests are resolved.

DSQTM has been implemented as an ESS actor. The DSQTM actor responds to a set of messages
that include the typical functions provided by a database server (connect to database, begin transaction,
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execute query, etc.). Most of the functionality of DSQTM is provided by C and C++ functions, which
are called through the ESS foreign function interface. This allows the ESS to provide flexible control
of the concurrent execution of functions while implementing function kernels in C and C++.
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1 Introduction

The basic transaction model has evolved over time to incorporate more complex transactions structures
and to take the advantage of semantics of higher-level operations that cannot be seen at the level of
page reads and writes. Well known examples of such extended transaction models include nested and
multi-level transactions. A number of relaxed transaction models have been defined in the last several
years that permit a controlled relaxation of the transaction isolation and atomicity to better match
the requirements of various database applications. Correctness criteria other than global serializability
have also been proposed. Several examples of extended/relaxed transaction models are reported in [5].

Recently, transaction concepts have begun to be applied to support applications or activities that
involve multiple tasks of possibly different types (including, but not limited to transactions) and ex-
ecuted over different types of entities (including, but not limited to DBMSs). The designer of such
applications may specify inter-task dependencies to define task coordination requirements, and (some-
times) additional requirements for isolation, and failure atomicity of the application. We will refer
to such applications as multi-system transactional workflows. While such workflows can be developed
using ad hoc methods, it is desirable that they maintain at least some of the safeguards of transactions
related to the correctness of computations and data integrity. Below, we discuss briefly the specification
and execution issues in this evolving field, with emphasis on the role of database transaction concepts.

The idea of a workflow can be traced to Job Control Languages (JCL) of batch operating systems
that allowed the user to specify a job as a collection of steps. Each step was an invocation of a program
and the steps were executed as a sequence. Some steps could be executed conditionally. This simple
idea was subsequently expanded in many products and research prototypes by allowing structuring
of the activity, and providing control for concurrency and commitment. The extensions allow the
designer of a multitask activity to specify the data and control flow among tasks and to selectively
choose transactional characteristics of the activity, based on its semantics.

This area has been influenced by the concept of long running activities [3]. Workflows discussed in
this paper may be “long running” or not. Related terms used in the database literature are task flow,
multitransaction activities [7], multi-system applications [1], application multiactivities, and networked
applications [4]. Some related issues are also addressed in various relaxed transaction models.

A fundamental problem with many extended and relaxed transaction models is that they provide a
predefined set of properties that may or may be not required by the semantics of a particular activity.
Another problem with adopting these models for designing and implementing workflows is that the
systems involved in the processing of a workflow may not provide support for facilities implied by
an extended/relaxed transaction model. Furthermore, the extended and relaxed transaction models
are mainly geared towards processing entities that are DBMSs that provide transaction management

∗Please send email for an extended version.
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features (often assumed to be of a particular restrictive type), with the focus on preserving data
consistency, and not on coordinating independent tasks on different entities, including legacy systems.

2 Specification of Tasks

A task in a workflow is a unit of work that is represented by sending a message, filling out a form, or
executing a procedure, a contract or a transaction. A task can be processed by one or more entities,
although we will limit our attention to the cases where a task is executed by only one entity, such as
a DBMS or an application system.

An abstract model of a task is a state machine whose behavior can be defined by providing a state
transition diagram (task skeleton). As with the correctness of traditional transactions, on the workflow
level we do not model internal operations of the task – we deal only with those aspects of a task that
are externally visible or controllable. In general, each task (and the corresponding automaton) can
have a different internal structure resulting in a different task skeleton. One example corresponding to
a standard transaction with a visible prepared to commit state, is shown below (cf: [10, 2]).

A task specification may include:

• a set of (externally) visible execution states of a task including an initial state and one or more
termination states,

• a set of significant events that lead to transitions between these states, with each event identified
by an attribute such as forcible, rejectable, and delayable (these are required to enforce inter-task
dependencies [2]).
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Figure 1: An Example Task State Transition Diagram

A task can be specified independently of the entity that can execute it or by considering the
capabilities and the behavior of the executing entity. In the former case, it may be necessary to
determine which entity can execute the task or the workflow system should be able to adequately
simulate the states not supported by the task’s executing entity. The latter case, in which a task is
specified for execution by a specific entity or a specific type of entity is usually appropriate when dealing
with existing (legacy) systems. The task skeleton then depends, to a large entent, on the characteristics
of the system on which the task is executed. Some of the properties of the local system responsible
for the task execution, like presence or absence of the two-phase commitment interface, will directly
affect the form of the task skeleton and thus, the definition of the activity. Other characteristics of an
executing entity may influence the properties of its task, without affecting its structure.
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When the task is a transaction executed by a DBMS providing a full range of transaction manage-
ment functions, we can take advantage of its concurrency control, commitment, recovery and access
granting facilities. But when the task is executed by an application system, we must understand the
application system semantics that affects its transactional behavior. Rather than developing “global”
mechanisms that duplicate the functionality of local systems, we should build a model for managing
multi-system workflows that utilizes the known task structures and semantics, coordination require-
ments of a collection of tasks, and execution semantics of systems that execute the tasks.

Workflow specification also consists of the conditions that affect the execution of tasks. These result
from the specification of inter-task and inter-workflow execution requirements discussed next.

3 Dependencies and Correctness Criteria

Once the tasks constituting a workflow are specified, the internal structure of the workflow can be
defined by specifying inter-task dependencies. Dependencies can be specified using a variety of software
paradigms (e.g., rules, constraints, or programs). In general, dependencies can either be defined á priori
(statically) or determined dynamically during its execution. In the first case, the tasks and dependencies
among them are defined before the execution of the workflow starts. Some of the relaxed transaction
models (e.g., [6],[13]) and [7]) use this approach.

A generalization of the static strategy is to have a precondition for execution of each task in the
workflow or specific transitions of the tasks, so that all possible tasks in a workflow and their depen-
dencies are known in advance, but only those tasks whose preconditions are satisfied, are executed [1].
Different initial parameters for the task may result in different executions of a task. The preconditions
may be defined in terms of execution states of other (sibling) tasks, output values of other (sibling)
tasks, and external variables including time and data states. The terms execution dependencies, data
or value dependencies and temporal dependencies are used in the literature to refer to various schedul-
ing preconditions. In the dynamic case, the task dependencies are created during the execution of a
workflow, often by executing a set of rules. Examples of this kind of dependency specifications are
found in long-running activities [3] and polytransactions [12].

The tasks of a workflow can communicate with each other through variables, local to the workflow
and made persistent by the workflow system. These variables (including temporal variables) may also
hold parameters for the task programs. The data flow between tasks is determined by assigning values
to their input and output variables. In practice, there can be substantial difference in the format
and representations of the data that is output by one task and input to another. The corresponding
translation needs must be recognized but need not be an integral part of of the workflow model. The
execution of a task has effects on the state of a database and the value of its output variable.

Additional aspects of intra- and inter-workflow specifications that are not captured using inter-task
dependencies 1, include [11]:

• Failure atomicity requirements that can be defined using acceptable termination states of the
workflow (committed or aborted).

• Execution atomicity requirements that define isolation properties of the workflow. Some of these
requirements may be specified by providing the coupling modes between the tasks and requiring
execution of tasks as atomic transactions,

• Dependencies that span across workflows. For example, it may be required that all tasks of one
workflow must follow those of another at every execution entity.

1Some of these requirements are referred to as “correctness criteria” in [8].
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4 Execution of Workflows

The correct execution of workflows involves enforcing all intertask dependencies, and assuring cor-
rectness of interleaved execution of multiple workflows. A scheduler (e.g., [2]) determines allowable
transitions of each task based on different system and user events. These are then analyzed before
allowing the corresponding transition(s) to take place or before terminating a workflow. By taking
into account the semantics of tasks, workflows, and executing entities, we can significantly simplify the
control needed to assure the correct concurrent execution of multiple workflows [9].

Two basic approaches to the implementation of a workflow management system can be identified:
(a) An embedded approach that assumes that the executing entities support some active data manage-
ment features. This approach is frequently used in dedicated systems developed to support a particular
class of workflows and usually involves modification of the executing entities. (b) A layered approach
that implements workflow control facilities on the top of uniform application-level interfaces to execu-
tion entities. A workflow manager based on such an approach is developed by the Carnot project at
MCC. As a follow-on to the work reported in [1] and partly based on [2], we are currently working on
a workflow management project that utilizes the latter approach.
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Abstract

Complex enterprises support heterogeneous, distributed, multi-system computing environments.
Many activities in these enterprises are of long duration and consist of multiple operations
that require different services, may execute on heterogeneous information systems, and may
involve interaction with multiple individuals. Also, activities must be resilient to failures. In
this paper, we explore the relevant issues that need to be addressed for supporting the automation
of activities in such an environment. The Activity/Transaction Model of [3] meets most of these
requirements. Based on this model, we are designing and implementing support for operation
flow management as part of the Pegasus project [1].

1 Introduction

Today, economic imperatives are forcing enterprises to look for new information technologies to stream-
line their business processes. Key requirements include integrating heterogeneous information resources
of the enterprise, and automating mission-critical applications that access these shared information re-
sources. The Pegasus project at Hewlett-Packard Laboratories aims to meet these requirements. The
Pegasus approach to integrating heterogeneous information resources is described in [1]. Here, we
outline the issues we are exploring for automating operation flows in complex business activities.

Many of these activities are of long duration and consist of multiple operations executed over
(possibly) heterogeneous systems. Examples of such applications are order processing, insurance claims
processing, manufacturing, and patient tracking in hospitals. Such an activity typically starts with
some business operation that is usually captured as a database transaction, a program execution, or
even a human interaction. The execution of this operation may trigger other asynchronous and/or
deferred operations. For most existing activities, the linkage among related operations is encoded in
the application programs themselves, or documented in operational manuals to be enforced manually.
Automating the control and data flows among operations will speed up the delivery and improve the
quality of products or services offered by the enterprise, thus giving it a decisive competitive edge.

Two levels of effort are involved: the efficient and reliable implementation of individual operations,
and the management of the overall flow among operations of an activity. The former is the subject of
transaction processing in database systems. The latter resembles the programming in the large concept
and aims at managing enterprise business activities along with their interacting operations. It involves
the high-level specification of flows, and provides the operational glue and environment support for
automating and managing the flows, recovering from failures, and enforcing consistency.

There are numerous systems that support groupware or workflow in an office systems context.
However, activity management differs from these in some crucial respects. First, there is a difference in
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scale. Workflow systems are intended mainly to automate document flows among human workers in an
office. Activities, in contrast, span many organizations within an enterprise and even across enterprises.
Workflow systems typically use electronic mail for delivering tasks to human workers. Little support for
automatic operation execution, monitoring workflows, enforcing consistency, or recovering from failure
is provided. The operations of an activity may be performed by application systems in addition to
machines, robots, or humans; hence, mechanisms for invoking and monitoring application processes
are necessary. The operations of an activity may access shared information resources, hence must
be subject to concurrency control and recovery. Activities are defined and their status recorded in a
database, which is used by the activity management system to monitor and control the flows.

In [2], we discussed the major challenges in supporting operation flow management. In Section 2,
we summarize the issues that we are addressing in the Pegasus project. Then, in Section 3, we describe
the approach we are taking to addressing these issues.

2 Major Issues

2.1 Operation flow model and language

Most of today’s enterprise applications are implemented as a sequence of operations encoded as tradi-
tional transactions. The flows within and among these operations are coded into the application logic.
If a transaction fails during execution, it is rolled back and possibly restarted. However, there is little
support for failure handling or recovery across a multi-transaction application. This must also be coded
into the application logic or be taken care of manually by humans. Extended transaction models [4, 5]
provide some but not all of the required inter-transaction dependencies, error handling, and recovery
capabilities. An operation flow model with more control flexibility and expressive power is needed.

To specify how enterprise activities are composed from well-defined operations, a high level speci-
fication language is needed. The language should support:

1. Basic operation definition: This includes the definition of the application step that is to be
executed, the parameters to be passed to this step, any constraints to be satisfied before and
after the step executes, and whether the step is to be executed as an atomic transaction.

2. Nonelectronic operations: Not every operation can performed as a database transaction or even
computer-based process. The model and language should allow interaction with humans or exter-
nal devices, for example, notifying a human to perform a task, or accepting human intervention
to indicate that a task has been initiated and/or completed and what the results are.

3. Control and data flow definition: This includes defining the linkages and dependencies among
operations. Sequential, parallel, conditional, and iterative control flows must be expressible. The
data (parameters) passed from one operation to a downstream one must be specified. It would
also be useful to allow the flows to be dynamically modified or overriden.

4. Failure and Exception handling: The semantics of activities have to be defined. Since activities
are of long duration, treating an entire activity as an atomic transaction is infeasible. Failures
should not cause an entire activity to be rolled back. Instead, partial rollback with forward
recovery must be supported. Since an activity typically consists of several transactions, some
of which may already have committed, rolling back may require compensating these committed
transactions. Forward recovery may involve restarting the operations of the activity (from the
point to which it was rolled back) or executing alternate operations. The language should allow
the specification of compensation and alternate operations, and policies for rollback and forward
recovery. These policies may include intervention by sophisticated users.
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5. Business Rules and Constraints: Most enterprises have business rules and operational constraints.
For example, special relationships may exist with preferred customers or suppliers; the quantity
of goods stocked in a warehouse may be based on projected seasonal fluctuations in demand. It
should be possible to define these business rules and constraints, so that they can be enforced
during the execution of the activity.

6. Security and role resolution: Operations in an activity may be performed by humans or other
organizational resources. The same person can dynamically assume different roles for different
operations. Access constraints and organizational (e.g., role resolution) policies must be defined
to govern the assignment of resources to operations.

2.2 Flow optimization and monitoring

While the model and language issues have been studied to some extent [3], the overall efficiency and
control issues related to activity management have been less explored. These include flow analysis,
optimization, and scheduling; and flow monitoring and control.

1. Flow analysis, optimization, and scheduling: A critical objective in automating business activities
is the scheduling of operations and resources to reduce total elapsed time. To facilitate scheduling,
cost-based flow optimization should be investigated. The problem requires estimating the costs of
individual operations, compensation and alternate operations, and the costs of different scheduling
and execution strategies. When dynamic modification of flows is permitted, these cost estimations
become even harder. The cost model will need to include the occurrence probabilities of events
that can modify the flow (e.g., failure events that cause rollback or alternative execution paths).
Technologies developed in other areas such as Petri nets and query optimization can be used
to facilitate this work. Temporal constraints (such as deadlines) further complicates scheduling,
making the problem akin to scheduling transactions is real-time database systems.

2. Flow monitoring and control: Services must be provided for reliably recording events (e.g., the
commit of an operation, the occurrence of a failure) and for invoking appropriate actions when
these events are detected. This implies that the flow manager must be an active system. It must
also reliably implement the linkages and dependencies among operations. Finally, it must log
the execution history and status of an activity, and answer queries for this information. The
information might be input to visualization tools that display the activity’s execution and enable
dynamic modification of the flow, or to analysis, reporting, and decision support tools.

2.3 Architecture

Given the trend towards open systems and standards, the flow manager must coexist with and take
advantage of related components that are likely to exist in an open distributing computing environ-
ment. Recently, standards organizations such as OSF and OMG have announced major components
relevant to operation flow management implementation. The Distributed Computing Environment
(OSF/DCE) defines the architecture and basic services for distributed application development en-
vironments. It includes a location broker, which provides a remote request invocation service with
location transparency, and security, naming, and transaction management services (Encina). The Dis-
tributed Management Environment (OSF/DME) defines a framework for event management. DME
based products are now available and support the monitoring of network and system events. The OMG
is working on an even broader domain of relevant technologies. The Common Object Request Broker
and various object services, including naming and event services, can be expected to play an important
role in the development of operation flow management systems.
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3 Our Approach

In the Pegasus project, we are developing a general framework for operation flow management, utilizing
standard components, and emphasizing performance and system robustness. We are designing a com-
plete operation flow model and language, based on the Activity/Transaction Model (ATM) proposed
in [3], which will address all the issues discussed above.

In the ATM approach, activities are treated explicitly as units of execution. An activity consists of
multiple steps, each of which can be an activity or a transaction. Steps can be interactive and/or can
include the invocation of an application program. Activities have weaker semantics than traditional
database transactions: they are neither atomic nor serializable.

Activities are execution instances of activity classes. Control and data flow within an activity
is specified via a predefined script in the activity class definition. The activity class also includes
formal input and output parameters (which are bound to actual data when the activity is invoked and
when it terminates). Activities may be nested to arbitrary levels, and the steps of an activity may
execute sequentially or concurrently. The script language includes constructs for sequential and parallel
execution, iteration, and branching; and supports data passing between steps. The flow specified in the
script may be dynamically modified by rules triggered by events that occur as the activity executes.

The model supports various dependencies among transactional steps. A downstream step may
execute in the same transaction scope as its predecessor, be deferred to the end of the predecessor
transaction, or execute as a separate transaction that may be commit dependent on the predecessor.

Flexible exception handling is supported. Exception handlers may be attached to any step. Also,
partial rollback with compensation, and forward recovery are supported. All of these can be specified
in the script or via rules.

We plan to enhance HOSQL, the object-oriented data language of Pegasus, with features supporting
operation flow specification and management. We will implement an operation flow manager that will
provide flow optimization, monitoring, control, and query services. This will not replace a traditional
transaction manager. Rather, it will use the services of local transaction managers in the component
database systems to ensure the atomicity of operations that are executed against a single database
system. If coordinating distributed transactions is deemed necessary, we will use a standard transaction
manager service. In addition, some of the functional components defined by OSF or OMG will be
evaluated and used as the basis of our implementation.
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1 Introduction

A workflow system supports execution and monitoring of business processes, often accommodating
multiple users and workgroups in these processes. The Echo workflow system has been developed based
on a close collaboration with selected industrial users. In this paper we first present the Echo workflow
system. Using the Echo workflow model as our example, we describe how workflow execution can be
abstracted into inter-related process objects, whose state transitions are reliably recorded, tracked, and
notified to participants of the workflow processes. We conclude with a discussion on the relationship
between the process objects in workflow systems and transactions in TP systems.

2 The Echo Workflow Model

The workflow front end is usually tailored to a specific customer set. Depending on the workflow
provider, the focus may be insurance claims processing, CIM, or an aspect of health care. In many
instances, the system embeds, or contains interfaces for, image processing, forms or text processing. The
presentation of most modern workflow systems is object-oriented GUI, WYSIWYG, and multi-media.

We present an overview of the ECHO (Electronic Case Handling Office) workflow system, and
the model upon which it was designed. The application focus during development was the insurance
industry. The system has been installed in customer sites in Europe. The ECHO workflow model itself
has many attributes which combine to form a general model for workflow systems.

The Process Model
Echo’s CTDL (Case Type Description Language) is a high level business process specification

language. The language allows specification of both the procedures and their associated data.
The process is modelled as a partially ordered directed graph, consisting of nodes connected by

directed arcs, where the nodes represent activities to be performed in the course of the process and the
directed arcs the ordering of the allowed processing of the nodes.

There are four basic node types in a process: elementary activity (also known as a step), proce-
dure abstraction (i.e., a nested composite activity), decision (i.e., a nested composite activity with
process-data-dependent branching), and iteration (i.e., a composite activity with dynamic number of
instantiations). These basic constructs allow for expressions of a rich set of procedures. Figure 1
illustrates a business process defined in terms of the four basic node types.

∗This paper expresses views of the authors only, not opinions or future product plans of Digital Equipment Corporation.
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The Visual Plan Guide and the Wavefront
The visual plan guide is a front-end tool in Echo that provides guidance and control for the partici-

pants of the business processes at execution time. It provides a graphical overview of the process status.
The state visualized by the process guide represents the current progress achieved on the process; i.e.,
which parts of the work sequence have been completed, which are currently under process (known in
Echo as the wavefront), and which are still to be done. The plan guide provides the user the ability to
execute activities (nodes). The capability to execute a node in a process changes dynamically with the
progression of the wavefront. Each node specifies authorisations (roles) required to perform operations.

Figure 2 illustrates the visual plan guide. The plan guide contains three views. The context view
shows the position of the current activity in the nested structure of the process. The activity focus
view provides a graphical representation of the plan at the current level. It presents the nodes as
being in one of the three regions: past (checked), current (i.e., wavefront), and future. It provides
access to the lower level view of any of the composite nodes in the view. For an elementary node, the
associated application is invoked through which the user can complete that node. Completing the node
changes the state of the node from open to completed. The form view provides direct access to forms
(containing the data associated with the process) available in that particular context.

The visual plan guide allows a user to navigate through the process by going down one level by
opening a subplan, or by going up a number of levels by closing a node in the context view. The
contents of the context view, activity focus view, and form view will adapt to the current context.

Feedback Control
An essential part of human activity is the presence of feedback loops providing the ability to correct
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and redo activities which may have been insufficiently or incorrectly carried out.
Feedback control is a primary mechanism for exception handling in Echo. The Echo model supports

feedback loops by providing authorized users the ability to “roll back” the process to any point in the
past, and to “redo” the activities from that point on. For example, a user may request to redo the
Collect case data step as shown in the activity focus view in Figure 2, even though the wavefront of
the activity has progressed past that step.

3 Reliable Workflow Execution

There is a distinct layering between the front end (the “client”) and the engine in a workflow system.
Functionally, the engine keeps track of the states and context data of processes, handles events occurring
to the processes, and moves the processes forward by interpreting the events against the process plans
and against the constraints among related processes. The engine is generic in that it focuses on
triggering steps in the process plan while delegating the actual performance of the elementary steps
as well as the user interface, such as the visual plan guide functions described previously, to the
client components. We characterize the behavior of a workflow engine with a generic execution model
described below.1

Process Execution Model
The engine abstracts the business processes as process objects. A process object is created by a

creation event. The creation event gives the process object a process plan, and the data which defines
the process object’s initial data state. Once created, a process object becomes live and goes through
state transitions according to the process plan until terminated.

Each state transition of a process object is triggered by an event. Upon receiving an event, the
process object performs a state transition according to the process plan and the process state. The
state transition may result in sending events to other process objects. Coordination among the process
objects is achieved through enforcing conditions on their state transitions, and through channeling
externally and internally generated events to related process objects.

A process object may send creation events to create child process objects. A child process object
may be chained or nested. During the termination state transition, a nested child process object sends
out an event to its parent process object, triggering a state transition in the parent. Process objects
form a family tree, with the root being the top process object, and the leaves being the elementary
step objects. Figure 3 illustrates a process object family tree with nested child processes.

External client components also generate events. External events constitute an interface between

1A preliminary version of this execution model was presented in the 1991 Workshop in High Performance Transaction
Systems, Pacific Grove, CA, September 1991.
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the workflow engine and the client components. An external event can trigger creation of a top process
object, or it can be targeted at some process object or an elementary step object. External events are
shown as squigle arrows in Figure 3.

The state of the workflow engine is represented by the collection of the states of the process objects
in the engine. This state can be revealed to the client components (e.g., to be shown in a visual plan
guide). It is through accessing the process object states that the client components are informed of
pending steps. A client component carries out the tasks in a pending step and sends a step finish event
(an external event) to the step object. The step object in turn terminates and sends a termination
event to its parent, enabling the latter to move forward in its life cycle.

Reliable and Atomic State Transitions
The process objects in a workflow engine are generally long-running objects with multiple exter-

nally visible state transitions and are hardly atomic. However, state transitions of the process objects
are executed as ACID transactions, ensuring that each state transition is failure-atomic and persistent.
Transactional state transitions imply that the events that participate in the state transitions are con-
sumed or produced atomically and reliably. Unconsumed events are persistently captured and are part
of the states of the process objects in the system.

The workflow engine may be layered on a DBMS and transaction manager, and rely on them to
provide a reliable base, or can implement its own reliable storage and coordination.2

In order to reliably integrate with client component’s transaction processing, the workflow engine
must be aware of, and be able to reliably record, the failure of the client transaction as well as its
successful completion. This implies that with current standard transaction managers, the workflow
system must participate as a “resource manager”. Current transaction managers do not reliably inform
applications of the failure of transactions in which the application was involved. Resource managers
involved in the transaction are so informed.

4 Concluding Remarks

There is one valid model of transaction which seems constant, and that is the ACID model. Various
optimizations and extensions have been proposed, but unless they maintain the ACID property, they
are really coordinated activities.

Workflow is a coordinated activity set which controls a business process. There is nothing atomic
about the aggregate progression and regression which may occur in the real-world processing of an
insurance claim, for example. One of the assumptions of workflow is that it includes human interaction
and decision. That does not imply that workflow is unreliable.

To be reliable across the spectrum of failures which can occur, the workflow state transitions made
by its process objects must either be reliably captured during normal processing, or recreated during
recovery processing. A database management product which supports transactions supplies the means
to atomically capture the record of state transitions, as well as the redundancy to guard against loss
of the record due to media failure. The recovery of the state of a workflow when the system uses a
database manager is defined by the last successfully committed transaction (which is the last workflow
state transition made by its process objects) before the failure occurred.

A reliable workflow management system does not extend the transaction to a business process.
Rather, it uses transactions to reliably capture the state changes made by its process objects.

Acknowledgement: The authors wish to thank colleagues at Apeldoorn, Holland, and Palo Alto, CA, for
their contribution to the work on Echo and RFM.

2Transactional queues can also be used to reliably capture unconsumed events (refer also to the paper by Bernstein,
Hsu and Mann, “Implementing Recoverable Requests using Queues,” Proc. ACM SIGMOD Conf., 1990.
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1 Introduction

We characterize “workflow management” as systematic organizational communication, coordination,
and actions among people. For the past ten years we and our colleagues at Action Technologies
have been developing our workflow theory, which we call ActionWorkflowTM and computer software
implementation of the theory, which we call ActionWorkflow System (AWS). The reader is referred to
[1,2] for a more in-depth description of the theory and implementation of AWS.

2 Basics of the ActionWorkflowTM Methodology

The design methodology focuses on the agreements between people. It shows the structures of agree-
ments between people to produce customer satisfaction. The methodology classifies all units of work
into workflows, and identifies for each workflow, a performer who is doing work for a customer. Each
workflow unit is graphically represented as a workflow loop (see figure 1). Processes can be modeled as a
series of workflows, with different participants assigned the roles of customer, performer, and observers
within each workflow.

Preparation                                                Agreement
The customer orperformer
proposes work to be
performed by the performer

The customer and performer
come to agreement about the
work to be performed

Acceptance
The customer evaluates the
work and declares
satisfaction

Performance
The performer performs the work
and declares that it is complete

Customer PerformerCondition of
Satisfaction

Cycle time

Figure 1: Basic Structure of a Workflow Loop

Each workflow is divided into the four phases in which customers and performers coordinate with
each other: The first phase is preparation, in which the customer prepares to ask for something,
often, for example, by filling out a form or preparing an e-mail message. When the customer asks
for something, the workflow enters a phase of negotiation, in which the customer and performer agree
on the work to be performed, clarifying what are termed the conditions of satisfaction. Once this
agreement has happened, the workflow enters the phase of performance, in which the work is done and
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the performer declares that the work is complete. The workflow enters then a final, critical, acceptance
phase, in which the customer either reports satisfaction or dissatisfaction with the work.

Most business processes are made up of many workflows, and the workflows are connected. For
example, as can be seen in Figure 2, a customer orders software over the phone, and this kicks off
several new workflows designed to ensure that the customer gets the product and the company gets
paid. We represent the relationships among workflows by putting all of a business process’ workflows
on a map, and drawing links between them indicating what phase in a parent workflow kicks off a
sub-workflow.

Process maps are integral parts of both Action’s design methodology and its workflow technology.
Maps create a common graphical language that ties together all stages of process automation, from
the early stage of analysis and design through to development and application deployment.

3 AWS Implementation

The AWS consists of the following products in the Windows and OS/2 environments.
ActionWorkflow AnalystTM The Analyst is a graphical tool for non-programmers such as analysts and

for business consultants. It is used to analyze and design the flow of work within an organization.
ActionWorkflow Application BuilderTM The Application Builder is a GUI application that allows a

business process designer to specify the business process map and from which a “definition” database is generated.
ActionWorkflow ManagerTM The ActionWorkflow Manager is implemented as a server managing the

workflows defined by the Application Builder. The Manager’s services can be accessed using a collection of
ActionWorkflow APIs.

ActionWorkflow Standard Transaction FormatTM (STF) Processors ActionWorkflow technology
provides an additional interface to access workflow services called the Standard Transaction Format (STF). STF
enables an open application development environment in which applications can access workflow services using
ActionWorkflow STF Processors via messaging, database access, and application-to-application communications.
STF Processors are one of the key facilities for ActionWorkflow users to integrate external data and applications
into a common business process.

ActionWorkflow ReporterTM The ActionWorkflow Reporter is a GUI application that provides facilities
for managers and process participants to monitor business process operations.

4 Highlights of AWS

ActionWorkflow technology embodies tools to facilitate the entire life cycle of business process devel-
opment, including analysis and design (modeling), generation, and management. This approach to
process automation yields the following important benefits:
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Human actions as system events - Human actions (such as approving a travel request or requesting a
software shipment) constitute the events that trigger AWS to perform predefined actions, such as initiating new
workflows, taking automatic action in other workflows, invoking external processes and integrating their results,
and sending notifications to other participants. These human actions can be explicitly taken, or taken by the
system on behalf of the users, according to the process definition.

Automatic Status Tracking - Process participants can view the exact status of their own tasks, and they
can also determine the exact status of work in the entire process. Workers can ask, “What do I need to do next?”
or “Where am I late?” and receive specific answers.

Deadline Management - Deadlines of individuals’ tasks within a business process can be represented and
supported. Reminders can be sent automatically before the passing of a task deadline. Follow-up messages can
also be sent based on a recurring policy specified by the process designer.

Supervisory Tools - Managers of a business process can obtain the business process status in his/her
organization. Questions can be asked such as, “Who is late on this task?” “What happened to the order?”
“What needs to happen to complete the process?”

Business Process Performance Monitoring - The overall performance of a business process can be
queried and monitored. “Hot spots” and problem areas can be identified in order to improve the process. The
manager can ask questions such as: “What is the average delay of the credit checking task?” “What is the
throughput for John Smith?”

Incremental Automation Customers and peformers of workflows can be replaced by software agents. The
replacement can be carried out over time, thereby allowing a business process to be automated incrementally.
This allows for increased emphasis on decision-making and developing new offers.

Business Process Versioning A workflow-enabled process can be changed dynamically, without having
to first stop and flush the old process. Both processes, the old and the new upgraded one, can exist side-by-side
until all work items already begun have completed their pass through the old process. At that point the old
process is automatically removed, and all work continues to flow through the new process definition.

5 Research Opportunities Supporting Workflows

AWS is implemented on top of database systems. Our experience of building and using the system has
revealed several important and interesting database and systems research areas that will enhance our
workflow work. They are described as follows:

ActionWorkflow as Semantic Business Model. Just like the Object Oriented DBMSs enhance
the representation power of data models, we believe the ActionWorkflow scheme of representing business
processes provides an interesting direction of data modeling by introducing people as the central part
of the model along with data and processes. Our experience of using this model has convinced us that
in order to represent a complex situation such as how a business is being run, one needs to go beyond
the traditional data analysis approach of looking at just data.

Process Integrity. A business process goes through many related steps before it is completed.
The current database transaction model requires us to divide a business process into many small
transactions. A mechanism of ensuring the integrity of process data spanning the life time of a business
process is very beneficial. The current research on extended transaction shares similar motivation, we
believe that our process model provides a solid context for such research.

Alerting Mechanism. A strong advantage of our technology is that it can integrate multiple
applications together. STF Processors are examples where diversified applications can be tied together
through a business process. A sophisticated database alerting mechanism will facilitate the implemen-
tation of these Processors because they can be activated by certain pre-specified conditions in the data
and the appropriate workflow can be invoked. Fruitful results are likely if one concentrates on adopting
some of the current active database research supporting workflow applications.

Time. Time is handled in ActionWorkflow very differently from most databases. It is “process
centric” rather than “data centric”. Time is an intrinsic part of a workflow. It is used by the user
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to ensure that the person responsible for a workflow will act on the workflow. If the person is late,
the time element is used to generate a follow up message. This treatment of time could be a useful
mechanism in a database system where data and processes can be tied together in a proactive manner.

Process data type. The business process map has very rich semantics associated with it, including
graphical, textual, and spatial information. We found the blob data type available in most database
systems to be general but semantically weak. What is needed is a data typing mechanism to store and
manipulate these large objects in a more natural and efficient manner.

Security based on Organizational Roles. The security mechanism in ActionWorkflow is based
on the privileges assigned to organizational roles, and not to people directly. A separate, many-to-
many mapping between roles and individuals within an organization can be set and reset dynamically
by authorized people and workflow processes. An interesting research direction is to incorporate the
concepts of organizational roles and role-to-individual mapping to the grant/revoke scheme of the
relational systems.

“Practical” Distributed Database. Using ActionWorkflow as an enterprise integration solu-
tion, we found that we almost never dealt with distributed data but rather distributed data AND
applications. While the current distributed database research will yield very useful results, we found
that a more practical, arms-length approach to distributed data and applications fits many real world
situations really well. The STF Processors in ActionWorkflow are such examples that we manage to
tie many existing large databases and their applications together in the same business process.

6 Summary and Conclusion

After several decades of data processing, we have learned that we have not won the battle of modeling
and automating complex enterprises. These enterprises typically have the requirements of coordinating
multiple people in multiple applications over long duration across multiple organizations. Currently
isolated islands of automation are used to satisfy local and intermediate needs. But the bridging of
these islands is typically very complex and expensive. The reason is that the current approach based
on traditional database systems, programming languages, and more recent technique such as Object
Oriented programming, does not provide the environment for this type of applications.

We have been working on such an environment for the past ten years, with products such as
The CoordinatorTM MHS, and recently AWS. The AWS allows the modeling of complex business
processes using primitives so that declaratively you can build workflow models capturing the complex
coordination among multiple individuals. The model can be used as an integration platform to tie
multiple applications and their data together while retaining their autonomy. Enterprises can be
automated with people at the core of the process. New and existing applications can participate in the
workflow processes and become part of the whole system. More importantly, our technology is driven by
a proven and sound business process methodology which guides users to model their complex processes.
This tight coupling of methodology and technology provides a powerful environment of enterprise
modeling and automation. We believe there are many potentially fruitful research opportunities in
database systems in the context of this higher level semantics of business processes in AWS.
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1 Introduction

Workflow technology is becoming increasingly visible as a means for organizations to improve their
productivity and competitive position, via automation and reengineering of business processes. Work-
flow systems offer organizations the ability to model, execute, report on, and dynamically control work
processes that typically involve multiple people in collaboration. Individual users also have the oppor-
tunity to see how their tasks interact with other users’ tasks and how these all fit together in a business
process to achieve organizational goals.

The InConcert workflow management system [Sarin91] is designed to address both the above orga-
nizational objectives as well as improve individual users’ ability to manage their work. By presenting
an interface in terms of “tasks” that are meaningful to the user (e.g., preparing the user’s contribution
to their department’s annual budget), the nature of interaction between user and computer is raised to
a more productive level. The user no longer needs to deal with low-level concepts like files (sometimes
fashionably called “objects”) and applications that are invoked against these files. Rather, the user
can view their work as a collection of assigned tasks perhaps organized by priority, deadline, or other
criteria. On selecting a task to work on, the user is presented with a task context in which the nec-
essary documents and applications are directly accessible. The user may well invoke multiple diverse
applications (e.g., a word processor and a spreadsheet) as well as perform work outside the computer
system (e.g., make a phone call) in order to accomplish a single task.

2 Workflow Model

The primary concept in the InConcert workflow model is that of a job, which is a multi-person collab-
orative activity. A job consists of tasks, each of which is a unit of work that can be performed by one
person. Tasks can be decomposed into subtasks, to obtain a hierarchical work breakdown structure
(WBS). Tasks at the same level in such a hierarchy may have ordering dependencies defined among
them, such that a “dependent” task cannot be worked on until the “precedent” task has been com-
pleted. The definition of dependencies allows for as much or as little concurrency among tasks as is
appropriate. Figure 1, for example, shows some tasks that can be performed in parallel and others
that must be performed in the specified order.

Each task in a job has an assigned role, which is a logical placeholder (with an appropriate generic
name, e.g., “Editor” for a technical report) for the user (person or program) that will perform the
task. Each task in a job may also have any number of references, which are placeholders for documents
that are likely to be needed (for update, or as reference material) in performing the task. Documents
are “routed” among users implicitly in InConcert, by virtue of the same document being referenced in
multiple tasks.
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Figure 1: Example Task Structure

Documents in turn are simply abstract data objects which have content that can be manipulated by
the appropriate application (e.g., word processor or spreadsheet). The content of a document resides
in a repository which is an abstraction of document storage and retrieval services. Documents may also
have links to other related documents.

An InConcert job is activated by instantiating a template which provides a predefined task structure
for performing a given business process. In the course of execution of a particular job, the task structure
can be modified by adding and deleting tasks and dependencies. This provides users with the flexibility
needed to deal with the inevitable exceptions and deviations from the idealized process descriptions.
For example, a document review job with the structure shown in Figure 1 above could be modified to
have additional or fewer reviewers, or an additional review cycle after the first round of comments.

InConcert maintains an audit log which is a record of significant events. Events consist of state
changes such as task becoming ready to work on or overdue, or document checkout or checkin, as
well as additional event types that are defined by the application. Triggers can be defined which
cause a specified action to be invoked when a particular kind of event occurs. The action invoked
may be creation of a new InConcert job, notification of users via electronic mail, or invocation of an
application-supplied procedure (via remote procedure call - see Section 3).

Jobs and tasks, which can last for a long time, have a natural correspondence with long “engineering
transactions”. However, the actions performed in a task are often subject to human judgment and may
be hard to predict. Users may therefore need to perform ad hoc coordination (within the contexts of
the tasks they are working on) using the following capabilities:

• Document checkout and checkin ensure that the same document is not modified concurrently by
multiple users. Users may view, read only, a document that is checked out by another user, and
may determine who has the document checked out and in what task and job.

• Document version histories provide a record of past checked-in versions. Because checkout and
checkin in InConcert are always performed in the context of a task, it is possible for users to
determine what changes were made in a given task (or job).

The above primitives provide the foundation for users to perform their own concurrency control
and recovery. For example, if a user wishes to relinquish a task and not work on it, or if the user
to whom they are responsible is not satisfied and wishes to have the task “redone”, InConcert does
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not automatically roll back (or compensate for) the changes performed by the user within the task.
Rather, the users may examine the current state and past versions of the relevant documents in order to
determine what to undo and what to retain. As we gain experience with customers’ use of InConcert, we
may apply more sophisticated transaction management concepts [Elmagarmid92] where appropriate.

3 System Architecture

The InConcert system is a practical realization of the model described above. The goal was to produce
a system with the following architectural attributes:
Open and Extensible: Workflow management systems bring together users and their work, including
the documents and applications they use to perform that work. The organizations that will use workflow
systems already have computer networks, personal productivity applications (e.g., word processors and
spreadsheets), and documents (stored in files, databases, etc.). To be useful, a workflow management
system must fit into the organization’s existing computing environment.

InConcert is open and extensible in a variety of ways. Existing personal productivity applications
can be integrated with InConcert by simply adding an entry to a configuration file. When a user opens
a document icon from an InConcert graphical user interface, the application is launched and loaded
with the document content.

The concept of repository, which is an abstract service for storing and retrieving document content,
also allows for extension and customization. The basic repository type provided by InConcert reads
and writes document contents as operating system files (which may be network-accessible). Additional
types of repositories can be integrating by implementing content read and write (and delete) operations
that conform to a specified interface.

InConcert triggers are also extensible. The event for a trigger can be detected by the InConcert
server or by an external application; InConcert provides functions for defining and reporting the latter
kind of event. The action for a trigger can be executed by the InConcert server or by an external
application. When a trigger with such an external action fires, the InConcert server performs a remote
procedure call using information specified when the action was registered by the application.

InConcert includes an application programming interface (API) as well as graphical user interfaces.
The graphical user interfaces access InConcert through this API. Everything that can be done through
an InConcert graphical user interface can also be done through the API. Developers can use the API
to produce user interfaces or agents that are customized for a particular organization or workflow. C
and C++ language bindings are provided for the API.
Based on Standards: The InConcert process and document management services can be thought of
as “middle-ware”. That is, InConcert is implemented over conventional computing infrastructure, and
provides its users with a semantically richer set of objects (e.g., jobs, tasks, documents) and operations.
InConcert uses standard interfaces to underlying services: POSIX for the operating system and file
system; SQL for the DBMS (until an object-oriented database standard becomes available); TIRPC
for the network; Motif, OpenWindows, or MS-Windows for the window system. This ensures that
InConcert is easily ported to new computing environments that provide different implementations of
these interfaces. Furthermore, the graphical user interfaces provided with InConcert conform to the
look and feel standards for the desktop environments in which they operate.
Object-Oriented: InConcert is object-oriented, both in its interface and implementation. The entities
in the model are implemented as object classes, and the operations in the API are methods for the
object classes. Users can define subclasses of the predefined model classes, and can add new attributes
to any class. In the graphical user interface, objects are presented as icons, and methods are presented
as (selection sensitive) menu choices. In the application programming interface, the entities in the
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model are expressed as C++ classes, and the operations on an entity type are class member functions.
The InConcert system is implemented in C++.
Client-Server: InConcert employs a client/server architecture. InConcert client applications (e.g.,
graphical user interfaces, agents, administrative utilities) typically run on desktop computers (PC’s,
workstations). The InConcert server typically runs on a server host. Heterogeneous networks are
supported (e.g., MS-Windows client and UNIX server). A client may interact with multiple servers in
a large organization.

The InConcert API is the interface between client and server. The API is a library consisting of
object classes that correspond to the entities in the model. The operations on each class are member
functions in this client library, which is linked with the client application. A client application obtains
services by calling these API functions. When a client calls a function that retrieves or updates a
shared persistent object, the client library makes a remote procedure call to the InConcert server.

The server is responsible for managing the persistent objects that are shared among clients. The
state of the object instances are stored in a relational DBMS. In executing an API operation, the server
reads or updates the state of objects by reading or updating tables in its database. A single API call
by a client may result in multiple database accesses. The server executes each API call in its own
database transaction. This guarantees that each API call executes atomically, and that multiple API
calls can be processed in parallel subject to DBMS concurrency control.

The audit log of events is stored in a database table, and can be examined using the query and
reporting capabilities of the DBMS. The audit log is also used by the server for triggering actions, using
an asynchronous execution model [McCarthy89]. That is, actions triggered by an event are performed
in transactions separate from the transaction that reported the event. When a transaction writes an
event to the audit log, descriptions of actions to be performed, if any, are also written to the database.
This guarantees execution of triggered actions, even if the server fails.

Although the transaction mechanism of the underlying DBMS provides consistency and atomicity,
these guarantees do not extend to InConcert operations outside the DBMS. For example, updating a
document’s content involves both writing a new content to the repository and updating the document’s
metadata (stored in the DBMS) to reflect the new content handle. The combination of these two cannot
be made atomic, and it is possible after a failure to have a content in the repository that is not referenced
by any document in the database. Such unreferenced contents need to be cleaned up after the fact
using administrative tools. Similarly, when invoking an application-defined triggered action, it is not
possible to make the remote procedure call execution and the marking of the action as completed
(by deleting the triggered action description) atomic, because the former is not under the control of
a DBMS transaction. These problems could be alleviated if a distributed atomic transaction facility
[Gray93] were available, that was not limited to DBMSs alone but supported a published standardized
commit protocol in which all of the data stores and application procedures could participate in order
to ensure atomicity.
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