
Bulletin of the Technical Committee on

Data

Engineering
December, 1992 Vol. 15 No. 1 - 4 IEEE Computer Society

Letter fmm the TC Chair R. Agrawal 1

Re-Introducing the Data Engineering Bulletin D. Lomet 2

Important Membership Announcement D. Lomet 3

SPECIAL ISSUE ON ACTIVE DATABASES

Letter from the Guest Issue Editor 4

Active Database Modeling and Design Tools: Issues, Approach, and Architecture

S. B. Navathe, A. Tanaka, and S. Chakravarthy 6

Constraint Enforcement through Production Rules: Putting Active Databases to Work

S. Ceri, P. Fraternali, S. Paraboschi, and L. Tanca 10

The Starburst Rule System: Language Design, Implementation, and Applications J. Widom 15

Active Database Facilities in Ode N. H. Gehani and H. V. Jagadish 19

SAMOS: an Active Object-Oriented Database System S. Gatziu and KR. Dittrich 23

Active Rules based on Object-Oriented Queries T. Risch and M. Skold 27

On Developing Reactive Object-Oriented Databases M. Berndtsson and B. Lings 31

Active Database/Knowledge Base Research at the University of Florida

S. Chakravarrhy, E. Hanson, and S. Y. W. Su 35

A DOOD RANCH at ASU: Integrating Active, Deductive and Object-Oriented Databases
..

S. Dietrich, S. Urban, J. Harrison, and A. Karadimce 40

REACH: A REal-Time, ACtive and Heterogeneous Mediator System

A.P. Buchmann, H. Branding, T. Kudrass, and J. Zimmermann 44

Triggers on Database Histories A. Prasad Sistla and 0. Wolfson 48

Active Databases for Approximate Consistency Maintenance L. J. Seligman and L. Kerschberg 52

Events and Events Rules in Active Databases T. Urpi’ and A. Olive 56

EDITORIAL BOARD EXECUTIVE COMMITTEE

Edltor-In-ChleufPubllcatlons Chair

Dr. David Lomet

Digital Equipment Corporation
Cambridge Research Lab

One Kendall Square, Bldg. 700

Cambridge, MA 02139

lomet@crl.dec.com

Associate Editors

Prof. Ahmed Elmagarmid
Dept. of Computer Sciences

Purdue University
West Lafayette, IN 47907

ake@cs.purdue.edu

Dr. Meichun Hsu

Digital Equipment Corporation
800 El Camino Real West

Mt. View, CA 94040

hsu@ocean.enet.dec.com

Prof. Yannis loannidis

Dept. of Computer Sciences

University of Wisconsin

Madison, WI 53706

yannis@cs.wisc.edu

Dr. Kyu-Young Whang
Computer Science Department
KAIST

373-1 Koo-Sung Dong
Daejeon, Kore
kywhang@cs.kaist.ac.kr

Distribution

IEEE Computer Society
1730 Massachusetts Avenue

Washington, D.C. 20036-1903

(202) 371-1012

Data Engineering Bulletin is a quarterly;publication of

the IEEE Computer Society Technical Committee on

Data Engineering. Its scope of interest includes: data

structures and models, access strategies, access

control techniques, database architecture, database

machines, intelligent front ends, mass storage for

very large databases, distributed software design and

implementation, database utilities, database security
machines, intelligent front ends, mass storage for

very large databases, distributed software design and

implementation, database utilities, database security
and related areas.

Contributions to the Bulletin are hereby solicited. News

conference calls, and letters, etc. should be sent to the

Editor-in-Chief. Letters to the Editor will be considered

for publication unless accompanied by a request to the

contraiy. Technical papers to appear in special issue

should be sent directly to the issue editor. Technical

papers are not refereed

Dr. Rakesh Agrawal
IBM Almaden Research Center

650 Harry Road

San Jose, CA 95120

ragrawal@almaden.ibm.com

Vice- Chair

Prof. Nick J. Cercone

Assoc. V. P. Research & Dean, Graduate Studies

University of Regina
Regina, Saskatchewan S4S 0A2 Canada

nick@cs.uregina.ca

Secretary/Treasurer
Dr. Amit P. Sheth

Beilcore

RRC-1J210, 444 Hoes Lane

Piscataway, N. J. 08854

amit@ctt.bellcore.com

Conferences Co-ordinators

Prof. Benjamin W. Wah

University of Illinois

Coordinated Science Laboratory
1308 West Main Street

Urbana, IL 61801

wah@manip.crhc.uiuc.edu

Geographic Co-ordinators

Prof. Shojiro Nishio (Asia)

Dept. of Information Systems Engineering
Osaka University
2-1 Yamadaoka, Suita,
Osaka 565, Japan
nishio@ise.osaka-u.ac.jp

Prof. Ron Sacks-Davis (Australia)
CITRI

723 Swanston St.

Carlton, Victoria, Australia, 3053

rsd@citri.edu.au

Prof. Erich J. Neuhold (Europe)
Director, GMD-LPSI

Dolivostrasse 15

P.O. Box 104326

6100 Darmstadt, Germany
neuhold@darmstadt.gmd.de

Opinions expressed in contributions are those of the

idividual authors rather than the official position of

the TC on Data Engineering, the IEEE Computer
Society, or organizations with which the author may
be affiliated.

Membership in the Data Engineering Technical

Committee is open to individuals who demonstrate

willingness to actively participate in the various acti

vities of the TC. Any member of the IEEE Computer
Society may join the TC.

I

Letter from the TC Chair

It is a great pleasure to see the Data Engineering Technical Bulletin resurrected after a lapse of

more than a year. David Lomet, the new Chief Editor of the Bulletin, deserves much of the credit

for making it happen. It is due to his foresight, his perseverance, and his organizational skifis that

we are on-line again. I believe that the Data Engineering Bulletin has provided a unique service to

the database community, and I am hopeful that this tradition will continue.

I want to take this opportunity to apprise you of what caused an interruption in the publication
of the Bulletin, and to bring you up to date on the current state of TCDE. My understanding is

that the Bulletin was earlier funded by a grant from the IEEE Computer Society Technical Activity
Board. Sometime last year, it was decided that all the technical committees should become self

sufficient. In particular, the Bulletin needed to be financed using the revenues generated from the

TCDE sponsored activities. The then TCDE Chair also resigned in June. The result was that

TCDE was left with no budget and no organization.
In March this year, I agreed to become the TC Chair for a year. I am pleased to inform that

TCDE now has a strong Executive Committee, consisting of Nick Cercone (Vice Chair), Amit Sheth

(Secretary/Treasurer), Benjamin Wah (Conferences Co-ordinator), David Lomet (Publications Co

ordinator), Erich Neuhold (European Co-ordinator), Shojiro Nishio (Asian Co-ordinator), and Ron

Sacks-Davis (Australian Co-ordinator). I feel having a. diverse Executive Committee will provide
the much-needed continuity to TCDE.

We were able to get a one-time grant of $4000 for 1992 from the Technical Activity Board for

restarting the Bulletin. We also now have a budget of $8000 for 1993 for the Bulletin. However,
in the long run, the Bulletin cannot depend on the vagaries of the TCDE budget. We have

spent considerable time exploring the long term financial viability of the the Bulletin without

compromising its quality and unique role. Given the high cost of paper publication and distribution,
it is unlikely that we can afford to distribute the paper version for free. We don’t have all the details

in place, but we are moving towards a model where the Bulletin is published in a combination of

electronic and paper forms.

I want to close by applauding Won Kim for his services to the Data Engineering Bulletin. He

devised the current format for the Bulletin, gave it a novel personality, and steered it for more than

10 years. Thanks, Won.

Please e-mail me or any member of the Executive Committee if you have any suggestions or if

you would like to volunteer your time for TCDE.

Rakesh Agrawal
Chair, TC on Data Engineering

1

Re-Introducing The Data Engineering Bulletin

I have long believed that the Bulletin provides a unique and valuable service. It is unique in

that each issue is devoted to a different special topic. Leading researchers on the special topic

provide papers describing their work and their assessments of the field in a format that would not

be appropriate for conferences or journals. But the articles are highly valuable for TC members

wishing to understand what is happening in a field. It is this unique role, established by Won

Kim, that was the inducement for me to accept TC Chair Rakesh Agrawal’s invitation to become

editor-in-chief of the Bulletin.

This current issue continues the Bulletin’s role by containing a special issue on Active Databases.

Active databases is not only an area of current research interest, but commercial vendors of database

systems are providing “active” functionality to their users, e.g., via triggers and constraints. As

you can see from the table of contents, the issue contains contributions from many of the top

database researchers. I would like to thank Professor Sharma Chakravarthy of the University
of Florida, who acted as guest editor for this issue, and Professor Ahmed Elmagarmid who, as

associate editor, arranged Sharma’s role and helped with the editing.
I want to continue having the Bulletin provide focused issues on areas of interest to the database

community. In addition to its traditional role of covering special areas of research interest, I would

like to include from time to time issues on the state of industrial practice in such areas. My

experience suggests that knowledge within our technical community of the functionality and the

directions of commercial database offerings is spotty at best. I think this would be a real eye-opener

in some fields as practice sometimes is in advance of research.

The editorial board for the Bulletin is in transition. Won Kim, the Bulletin’s former editor,
established the Bulletin and sustained it for many years. He also started the practice of appointing
associate editors for two year terms. His last appointed associate editors, Ahmed Elmagarmid, who

played a role in putting together the current issue, Yannis loannidis, who is acting as issue editor

for the March issue, Kyu-Young Whang, and Rakesh Agrawal, who is now the TC chair, have all

served more than two years. I want to thank them all for their valued contributions to the bulletin

during their terms.

I will soon appoint a new editorial board. I am pleased to announce that my first appointment
is Meichun Hsu, formerly a faculty member at Harvard and currently on the staff at Digital’s Lab

in Mt. View, California. Mei has a distinguished publication record, and brings to the editorship
some of the industrial focus that I look forward to seeing in the Bulletin. I am sure that the Bulletin

will be well served by her efforts.

Let me close by directing your attention to the announcement on page 3. It contains a request

for you to provide information so that we can continue to bring you the bulletin in a timely and

cost effective way. Your continued receipt of the bulletin requires your response. I hope to hear

from you soon.

David Lomet

Editor-in- Chief

2

Important Membership Announcement

The IEEE Computer Society Technical Committee on Data Engineering needs to rebuild its

membership list. Our current lists are now quite old, we are uncertain whether the address infor

mation remains current, and because we plan to exploit e-mail much more in the future, we need

e-mail addresses as well as postal addresses. Electronic mail is a low cost way for the TC to reach

its members.

Particularly important for the future of the Data Engineering Bulletin, we are planning the

electronic distribution of the Bulletin. As most of you are aware, this is the first issue of the Data

Engineering Bulletin that has been published since September, 1991. The Bulletin was shut down

for over a year very simply because of insufficient funding. An effort was made in 1990 to establish

a membership fee for the Technical Committee, but this did not work out weli.

Our goal is to continue to bring you the interesting special issues of the Bulletin at a cost that

ensures its long term survival. Our plan for continued and low-cost publication of the Bulletin has

two parts:

1. All TC members will receive announcements of each issue of the Bulletin as it is published.
They will be able to obtain electronically, the postscript version, and perhaps a latex version

of the issue.

2. Hardcopy of each issue will also be available, but only to subscribers, and at a cost that helps
to cover the TC’s printing and distribution costs. The annual subscription fee for four issues

is expected to be in the $10 to $15 range.

To proceed with these plans, we request that you re-enroll as a TC member using the following
procedure:

1. Send e-mail to TCData©crl.dec.com and include in the subject header the word “ENROLL”.

2. You wifi then be sent via an e-mail reply, an electronic membership form that will request:

Name, IEEE membership no., postal address, e-mail address

In addition to the above information, you will be asked a number of questions on issues

that will affect how the Bulletin’s distribution will be handled. These questions will include

whether you are interested in subscribing to the hardcopy version of the bulletin. This

information wifi enable us to plan our print runs and determine the parameters of electronic

distribution.

3. You should then e-mail the electronic application form to TCData@crl.dec.com, with the

word “APPLICATION” in the subject header.

This procedure permits us to electronically establish our member list without any manual tran

scription process. Please be aware that no response wifi mean that you will not remain a TC

member, and hence that you will not receive the Bulletin.

David Lomet

Editor-in- Chief

3

Letter from the Guest Issue Editor

Research on active databases has been prompted by a genuine need for supporting database

functionality deemed important for a number of non-traditional applications, such as .Computer

Integrated Manufacturing (CIM), stock trading, and network management. Although the concept

of condition monitoring itself is not new, its formulation in the context of active databases has re

ceived substantial attention in the last five years — both from researchers and developers. Already,
there are a number of research prototypes,~and commercial products with primitive active database

features.

Concepts that have emerged from the active database research have provided a uniform frame

work for supporting a number of functionality that were being supported in an ad hoc manner.

Although HiPAC, Postgres, and the work at Karisruhe pioneered the work on active databases, a

number of groups are currently working on a wide range of issues, as can be seen from the coverage

of topics in this issue. If the number of papers on active databases submitted to conferences in the

last two years is any indication of ongoing research, undoubtedly there is an enormous following
for this area.

For a change, it is not just the academician who is interested in this area of research. Assessing
from the number of commercial database management systems supporting active capability (albeit
a primitive one), it is clear that the technology is here to stay and promises a faster transition from

research results to products. Triggers will certainly make their way into the SQL3 standard.

This issue intends to provide a fish-eye view of ongoing research in the area of active databases.

The Paper by Navathe, Tanaka, and Chakravarthy addresses the modeling and design of active

databases and proposes an extension to the entity-relationship modeling approach using petri-nets.
The paper by Ceri, Fraternali, Paraboschi, and Tanca discusses how ECA rules can be generated
from specifications in function-free first order language. The paper by Widom provides a brief

overview of the Starburst rule system. The paper by Gehani and Jagadish summarizes the active

database facilities in Ode.

The paper by Gatziu and Dittrich discusses SAMOS, an active object-oriented database system

currently under development at the University of Zurich. The paper by Risch and Sköld discusses

another active object-oriented database system which uses OSQL and log screening filters for con

dition evaluation. The paper by Berndtsson and Lings discusses a prototype implementation of

active functionality on top of ONTOS.

The next two papers cover a lot of ground as they discuss several ongoing research projects.
The paper by Chakravarthy, Hanson, and Su highlights the results from three projects: Sentinel —

an active object-oriented database system, Ariel — a database system dealing with efficient rule con

dition evaluation, and an active KBMS with its own language, data model (OSAM*), and support

4

for parallel and distributed computation. The paper by Dietrich, Urban, Harrison, and Karadimce

discusses how active, deductive, and object-oriented paradigms are being integrated in an ambitious

project.

The next four papers explore the applicability of the active database approach to a number of

problems. The paper by Buchmann, Branding, Kudrass, and Zimmermann reports ongoing work on

integrating heterogeneous repositories using a mediator based on the active paradigm. The paper

by Sistla and Wolfson highlights the need for supporting triggers on database histories and dis

cusses temporal languages for that purpose. The paper by Seligman and Kerschberg discusses how

the active database approach can be used for approximate consistency maintenance in a federated

environment. Finally, the paper by Urpi and Olive outlines the deductive approach for supporting
active database functionality.

I would like to thank all the authors for their contributions and cooperation in meeting the

deadline on such a short notice. Also, I would like to thank all the authors for condensing their

work to a mere 4 (in two cases 5) pages. I would like to thank Mr. Lionnel Maugis for providing
feedback on all the papers as well as helping me with MiTEX. I sincerely hope that this issue provides
a fish-eye view of the ongoing work on active databases (as intended) and the reader will benefit

from the diversity of the topics covered.

Sharma Chakravarthy

Associate Professor

Database Systems Research and Development Center

Computer and Information Sciences Department

University of Florida, Gainesville, FL 32611

email: sharmaC~snapper.cis.ufi.edu

5

Active Database Modeling and Design Tools:

Issues, Approach, and Architecture*

S.B. Navathe A.K. Tanakat S. Chakravarthy

Georgia Institute of Technology University of Florida

College of Computing Department of C.I.S.

sham©cc.gatech.edu sharma©cis. ufi .edu

1 Introduction

Although a lot of research is being done on active databases, and a few commercial relational Dl3~ISs already

provide support for some active database capabilities (e.g. Ingres, InterBase, Oracle, and Sybase), to the best

of our knowledge, currently there are no design tools that can take full advantage of these new capabilities.

Using current relational database design methodology, the specification of active behavior iii the form of

triggers/rules and stored procedures has to be done after-the-fact, i.e., after the translation of the conceptual

schema into the relational schema. This implies that major design decisions regarding the behavior of the

database are deferred to a later stage of the design process, where the semantics of the real- world situations

may be obscured by the intricacies of the implementation model. At this stage, designing the active behavior

of a database for a given set of applications is usually a difficult task, because of the inherent complexity and

non-deterministic aspect of rule-based programming. There is evidence that users do not adequately exploit

the functionalities of rules, triggers, and stored procedures because of the complexity of their design at the

DBMS level. Actually, some DBMS vendors offer the “knowledge management” component as an optional

rather than a standard resource of their products.
We propose the modeling of active database behavior at earlier stages of the database design piocess, by

extending the entity-relationship (ER) approach with events and rules as objects of the nioclel (which we

call (ER)2 model TNCK91]), as well as providing language and tool support for translation of events and

rules into the language constructs of target DBMSs. Furthermore, we provide a graphical interface as au

extension to ER diagrams to facilitate the modeling of events, rules, and their interaction with ER objects.

It turns out that this representation can be mapped into high level Petri nets Jen9l], which we use as a

formalism for the semantics of event and rule processing. The resulting graph, called event/rule network, is

then used for the purpose of analysis and validation of the design. The extended database design process

is illustrated in Figure 1, where the shaded boxes represent the steps that have been added or extended

(the dashed lines illustrate another dimension of the database dynamics, the process dimension realized by

transactions, that is orthogonal to the kind of dynamics related to active database behavior).

2 Design and Translation of Active Functionality

Current design tools contain capabilities for specifying the conceptual schema by editing ER diagrams and

automatically mapping it into an equivalent normalized relational schema, usually generating the data defi

nition statements to create the schema for the target relational DBMS. Moreover, some advanced tools such

as the LBL tools SM91, MF91] are able to generate rule/trigger definitions for enforcing referential integrity

constraints when supported by the DBMS, as well as to store design information (ER schema, relational

schema, and their mapping) in a meta-database defined in the DBMS.

This work is (in part) supported by the Office of the Naval Technology and the Navy Command, Control and Ocean

Surveillance Center RDT&E Division.

tSupported by the Brazilian Army and CNPq

6

PROCESS
DESIGN

V

I Process
Model..:

APPLICATION~
DESIGN

Figure 1: Extension to the Database Design Process using the (ER)2 Model

Our approach relies on the design information stored in the meta-database to translate the specification
of events and rules into corresponding DBMS language constructs (rules, triggers, procedures).

Figure 2 shows the self-representation of the (ER)2 model, i.e., a meta-schema that shows events and rules

as objects of the model in addition to entities and relationships, as well as the inter-object connections. We

represent events as circles and rules as parallelograms; directed edges represent connections between events

and rules, and between events and ER objects. In an actual (ER)2 diagram, there is no need to label “Fires”

and “Raises” arcs, since the connections between events and rules are implicit: an event “fires” rules while a

rule “raises” events. Also, the “Precedes” relationship between events is implicitly defined by the unique time
of occurrence of each event. The “Priority” relationship between rules needs not be explicitly represented
in the diagram, as it is specified in the textual definition of the rules. The “Affects” and “Affected_by”
connections are labeled with the type of the database event (modification, insertion, deletion, or retrieval)
or the name of the signal in the case of non-database events.

The language construct that provides the extension has the following general format:

behavior_senience ::= WHEN even1 FIRE rule

where an eveni can be a database event or a signal issued by the external environment (the underlying
system, applications, or users) and a rule consists basically of an optional condition and a list of actions.

The active behavior of a given database is specified as a set of behavior.seniences.

NOTATION

I I Design step

cc~ inpuvoutput

Validation step

Application
Development

flC~~*M~ ~h~ni
•.b~m

7

Although our approach is general, from a practical viewpoint, we restrict the power of the specification

language for events, conditions and actions to the capabilities that are currently present iii the target DBMSs.

This ensures that the gap between conceptual and logical design is bridged for extant systems, and further

extension to the DBMS capabilities will give rise to corresponding extensions hopefully in a straightforward
manner. Because of the higher level of abstraction at which active behavior is modeled, the specification

language is much more concise and more meaningful. Furthermore, special operations like PROPAGATE

and REJECT can generate several SQL statements to enforce general integrity rules.

Constraint maintenance can be achieved by deriving behavzor_sentences from a declarative constraint spec

ification in a manner similar to derivation of rules from SQL-based constraints {CW9O], and then translating
them along with other behavior_sentences. Not all types of constraints need to go through this constraint

to behavior_sentence to rules/triggers mapping. Dynamic constraints, that refer to the consistency of state

transitions rather than to a single state (e.g. “a salary never decreases”) is more simply specified directly
with a behavior_sentence instead of trying to extend the constraint language to consider multiple states.

A special type of constraint, that is implied by the invariant properties of the ER model SSW8O], if not

supported declaratively by the DBMS, is specified as “meta-behavioi”, i.e., behavior over alt entities and

all relationships, and instantiated to behavzor_sentences by the tool for a particular database (again the

meta-database of the design is central to these transformations).

3 Validation of Active Behavior

The representation of active database behavior in an (ER)2 diagram can be mapped into a high level Petri

net, in which the places are events, the transitions are rules, and the net znscriptzons are the definitions

of events and rules in their specification language. Also, the underlying ER schema is implicitly declared

as the net declaration part containing the token types. For database events, the tokens are tuples of ER

objects that are carried from events to rules and referred in the evaluation of conditions and execution of

actions. Non-database events, when supported by the DBMS, will have signal parameters as attributes

as well. The combination of the individual event/rule nets (e/r-nets) representing behav~or_sente~rces by

merging common places results in an e/r-network, a (possibly disconnected) bipartite directed graph that

Figure 2: Meta-schema of the (ER)2 Model

8

represents the processing done by the DBMS to support active capability.
The processing model implied by the e/r-network cannot be used as the execution model of the active

DBMS because it does not include the processing of application transactions. Rather we use the e/r-network
as an analysis tool that helps the database designer to detect inconsistencies ih the set of behavior_sentences

by using a Petri net editor/simulator.
An e/r-network is consistent if: 1) There are no conflicting situations involving rules that are not mutually

exclusive; 2) There are no coordination situations involving events that are not conjunctive; and 3) The

execution of every cycle terminates.

Because of the required knowledge of the applications semantics, the analysis of an e/r-network based

on this definition of consistency must rely on the intervention by the user. Some limited assistance can be

given by the tool like in production rule systems or truth maintenance systems.

4 Conclusions

We have taken the approach of considering events as first-class objects too, rather than only rules DBM88].
The extensions we have made are on the conceptual design level, and serve as tools for specifying, validating,
and translating active behavior into executable specifications at the DBMS level.

We are implementing the extended tools architecture on top of the LBL tool set.

The following benefits will result from the extended modeling and design methodology: reduced database

design and application development effort with automatic generation of meta-behavior and translation of

active behavior into executable DBMS language constructs; better control of application development; and

better quality of the overall design.
Further details of the work reported here may be found in Tan92].

5 Acknowledgements

The authors thank Victor Markowitz and Arie Shoshani for making the LBL tools available for this work.

References

CW9O] S. Ceri and J. Widom. Deriving production rules for constraint maintenance. In Proceedings of
the Iniernatzonal Conference on Very Large Data Bases, 1990.

DBM88] U. Dayal, A. Buchmann, and D. McCarthy. Rules are objects too: A knowledge model for

an active, object-oriented database management system. In Proceedings of the international

Workshop on Object-Oriented Database Systems, 1988.

Jen9l} K. Jensen, editor. High-Level Petri Nets: Theory and Applications. Springer-Verlag, 1991.

MF91] V.M. Markowitz and W. Fang. SDT: A database schema design and translation tool - reference

manual. Technical Report LBL-27843, Lawrence Berkeley Laboratory, 1991.

SM91] E. Szeto and V.M. Markowitz. ERDRAW: A graphical schema specification tool - reference

manual. Technical Report PUB-3084, Lawrence Berkeley Laboratory, 1991.

SSW8OJ P. Scheuermann, G. Schiffner, and H. Weber. Abstraction capabilities and invariant properties

modeling within the entity-relationship approach. In P.P.S. Chen, editor, Proceethngs of the

International Conference on the Entity Relationship Approach. North-Holland, 1980.

Tan92] A.K. Tanaka. On Conceptual Design of Active Databases. PhD thesis, Georgia Institute of

Technology, 1992.

TNCK91] AK. Tanaka, S.B. Navathe, S. Chakravarthy, and K. Karlapalem. ER-R: an enhanced ER model

with situation-action rules to capture application semantics~ In T.J. Teorey, editor, Proceedings

of the International Conference on the Entity Relationship Approach, 1991.

9

Constraint enforcement through production rules:

putting active databases at work

Stefano Ceri, Piero Fraternali, Stefano Paraboschi, Letizia Tanca

Dipartimento di Elettronica e !nforma.zione

Politecnico di Milano

P.zza Leonardo da Vinci 32

20133 Milano - Italy

e-mail: {ceri,fraterna,parabosc,tanca} ©ipmel2.elet.polimi.it

Abstract

This paper presents an approach to the automated correction of constraint violations produced by

transactions, in the context of active databases with integrity constraints. Constraints are expressed

as formulas in a function-free first-order language; we then automatically generate production rules

that detect constraint violations and propose repair actions. In this proposed architecture, transaction

execution can lead to inconsistent states; production rules are then run to compensate violations and

achieve a final state which is consistent and represents the user’s intended semantics.

Our mechanism exhaustively considers compensations that can be syntactically generated from a

given constraint; then it eliminates some of them which are obviously not correct. We remain with a

rule set that is normally redundant and contains rules that may trigger each other, possibly leading
to nonterminating execution. Therefore, a rule analyzer is used to choose a subset of these rules, so

that termination of execution is ensured, a high number of constraints is compensated, and the user’s

intentions are respected.
In this paper, we outline the structure of such constraint-enforcement architecture and illustrate

the problems that need to be solved for effectively compensating constraints. We also present some

experimental results obtained by a prototype, and compare rules generated manually with rules generated

by our prototype.

1 Introduction

The availability of production rule systems inside DBMSs, yielding so-called active data base systems, is a

challenging opportunity in order to extend the power of current database technology. In particular, integrity
maintenance is one of the most promising areas for active databases.

When a database is being conceptually designed, a major effort is devoted to capture all those data

interactions and restrictions that must hold in order for a physical configuration of the database to make

sense. Unfortunately, due to the lack of an appropriate technology, a minor part of this effort becomes

part of the physical design of the database—typically, only very simple constraints are captured by keys

or referential integrity. The remaining prescriptions are then doomed to become part of the application

requirements under the control of application designers, so that database integrity maintenance becomes

more a matter of software discipline than an inherent property of the database schema. To contrast this

phenomenon, two directions are currently being pursued by researchers in the database community:

• The evolution of data models towards object orientation, sustained by a parallel development of their

deductive capabilities, to make some design concepts directly enforceable by new generation systems.

• The definition of a new conceptual and technological support to data integrity, in the form of constraint

specifications and of techniques for their enforcement, independent of the data model and of the physical
data representation.

Though the above directions may seem to diverge, they are complementary. The richer semantics of

object-oriented models enables expressing constraints both on the structure and the evolution of databases.

10

liowever, not all of the semantics of a problem domain can be captured through structure and behavior

constraints of database models; some semantic constraints require arbitrary, application-dependent state

ments. Thus, a declarative formulation of properties and/or behaviors must be supported in addition to

schema structures; these properties must be enforced through several, alternative actions to be executed

upon violation.

Our efforts are directed to provide a methodological framework for the automatic derivation of production
rules maintaining a given set of constraints, specified through high-level declarations. We express data,

constraints, and rules using the relational data model; however, our results can be restated in the context of

a more powerful, object-oriented data model.

The idea behind this approach is the following. Assume that a transaction, applied to an initial state

S, performs a sequence of operations and produces a state 5’ which falls outside the domain of the possible
values. A typical reaction to this situation would be to roll back the transaction. In our approach, instead,

we execute additional changes to database states, by means of production rules, until we reach an admissible

final state S”. Further, we design rules so that the final state S” be as “close” as possible to 5’, thus trying
to capture the user’s intentions.

This work is an extension of the approach described in 2] where production rules were used in order to

enforce integrity. Rules in 2] are semi-automatically produced from constraints; our approach describes a

system capable of providing a fully automatic solution to the same problem. The system still requires user’s

support, but only in the form of supervision of the process. This work used some results of 3]; in particular

we adopted the constraint language introduced in 3].

2 Architecture

Fig. 1 shows the components of the architecture which we propose for an integrity maintenance system based

on the active database paradigm.

The Constraint Editor is used for collecting constraints definitions.

The Rule Generator translates automatically constraints into the complete set of production rules that

enforce them.

The Rule Set Analyzer is a component, possibly interactive, that analyzes and resolves situations in which

rules may trigger each other in cycle, so that the termination of constraint-enforcing rules can be ensured.

The actual product of this component is a partial order on the constraint set.

The Rule Selector provides a total order on the rule set, by identifying the compensating actions that

should be used to maintain database integrity. This ordering may be decided at compile-time or at run-

time; the former approach guarantees higher efficiency, but run-time selection can be more accurate, because

more information is available about the transaction history and the database instance. In our prototype we

implemented a compile-time approach.
The Run-time System is responsible of execution control after a user-supplied transaction. It should

either be built on top of an existing active DBMS, or be provided by the run-time system of an active DBMS

by writing rules appropriately.

Figure 1: Architecture of the integrity maintenance system

11

3 Constraint language

An important characteristic of our system is the language used to express constraints: a constraint in standard

conjunctive form (s. c.f.) is an evaluable closed formula of Domain Relational Calculus having the following

pattern:

V~3ii-’(pi(~) A.. .Ap~(~)A -~q1(~,t~)A . . .
A -~qm(~,t~)A G(i))

Following 3], we also call this form denial1. We also assume, without loss of generality, that all literals p1,

q, represent database relations and are positive; G is a generic predicate. We apply the following evaluability
conditions:

• Every universal variable z~ that appears in a literal q1 must also appear at least in one literal p.

• Variables that appear in the subformula G must also occur at least in one literal p’.

This constraint language is less expressive than relational algebra or first order logic and it does not

express aggregate functions and recursion, but we are working to extend its expressive power. It is important
to say that a large fraction of real systems’ constraints is expressible by the above language.

A typical integrity constraint is the following, that says that each type in the WIRE table has to appear

in the WIRE-TYPE table:

V v—type, power 3 max-volt, maxpow, cross—section

-i(WIRE(w—type, power) A

—WIRE—TYPE(w—type, max—volt, max—pow. cross—section))

This is an example of a Starburst rule maintaining the above constraint:

create rule A on wire

when (inserted, updated(type)),
then ‘delete from wire

where type not in (select type from wiretype)’;

We have illustrated in 4] how it is possible to generate the set of all the possible compensations for

every possible constraint expressed with our language. Rule generation will produce a redundant set of

compensating rules.

4 Rule Analysis and Selection

The computational behavior of a rule-based system for constraint maintenance is, in general, neither termi

nating nor deterministic, since the rule set comprises compensating actions that enforce the same constraint

in different ways and rules that can trigger each other.

Our strategy for guaranteeing termination is the following: we determine a partial order on the con

straint set such that normally the compensation of constraints at a given level can only violate lower-order

constraints. If no rule may violate higher-order constraints, then termination is ensured. Thus, the rule

analysis tool aims at selecting constraint-enforcing rules so that such partial order is established; this may

not be possible in general. The run-time system is then responsible of carefully executing those rules which

may violate higher-order constraints.

Rule analysis assumes as input a Triggering Hypergraph (TUG) which describes rule interferences. A

TUG is a directed labeled hypergraph; nodes represent constraints and hyperarcs represent rules so that an

hyperarc from C1 to C2 and C3, labeled r1, indicates that rule r1 compensates constraint C1 but may violate

constraint C2 and Cs. Potential violation is statically determined in a conservative way, by inspecting the

signature of actions used by the rules. In fact, rule action execution at run-time depends on the actual values

of its variables and may not violate any constraint.

Rule analysis is then reformulated as follows: determine the “optimal” set of hyperarcs to be removed

from a THG, so that it is reduced to a directed acyclic hypergraph (DAHG) such that the rules in DAHG

1The s.c.f. is a semantically equivalent alias of the more common implicative form V~(p1 (~) A .. .
A p~ (~) —, 3ifl q~ (~, til) V

V q,,(!, tl~) V G(~)), used in (3J.

12

satisfy the “maximal” number of constraints. If a system executes only these rules, then termination is

guaranteed.
A first approach to tackle rule analysis is to rely completely on user’s intervention. In this case, the

system assists the user in the manual browsing of the TEG, by detecting cycles and presenting them to the

user, who keeps the entire responsibility of choosing which rules are to be removed or modified 2]. However,
in real-world cases, the THG tends to be intricate even with few constraints, which make extensive browsing
impractical and suggest the convenience of developing an automated problem-solver to perform rule analysis.

The automatic problem-solver has to consider the relative adequacy, from a semantic viewpoint, of

alternative compensating actions. This adequacy was represented with a weight assigned to each hyperarc,
yielding to the following problem formulation:

Given a directed hypergraph H: (V1 A), a weight function f : A .—~ N.

Question: find a subset A’ of A such that:

• the hypergraph H’: (V1 A’) is acyclic

• for every subset A” of A, distinct from A’, such that the corresponding hypergraph H”: {V, A”) is

acyclic, holds that~E~V~~Vweight”(v1)
weight(v~)~Max(f(a1), tail(a,)=v~)

The above formulas indicate that the hypergraph weight is equal to the sum of the weights of the

heaviest arc exiting from every node. This problem is known to be NP-complete 5]. Since the dimension of

the problem can be quite relevant, it is impossible to solve the problem with an exhaustive approach, but it

is necessary to develop approximate techniques. Therefore, we have developed several heuristic techniques,
by investigating different goals of the problem-solver and different metrics to use in the resolution process.

Experiments, which are next reported, showed that the difference between the automatic and human solution

could be greatly reduced by improving the accuracy of the weights of the compensating actions.

5 Run-Time System

In order for the system to be correct, i.e. always compensating and terminating, it is necessary that each

constraint be compensated by at least one rule contained in the DAHG, which is not guaranteed in general.
Therefore, it is necessary to implement a Run-time System that executes a strategy for conflict resolution

and execution control. This strategy can be outlined as follows:

a. While there is a rule in the DAHG that can enforce a violated constraint, execute it.

b. While there are constraints whose violation can only be compensated by a flagged rule (i.e., one not in

the DAHG), then simulate its execution; if the rule does not violate higher-order constraints, then

make the effects of its execution permanent; otherwise, try another flagged rule.

c. If both (a) and (b) fail, then rollback the transaction.

6 Experimental results

To execute tests and provide an experimental base of our proposal, we built a prototype of rule analysis
and generation components; we are going to conduct in the near future some experiments using an active

database to test the whole architecture. The prototype is a program that accepts as input a description of

the relations with their attributes, keys and modifiability level. It then accepts constraints, described in the

standard conjunctive form. The prototype generates as output a set of Starburst rules.

The best way to evaluate the quality of the solution was to compare a set of rules that was illustrated in 2]
for a particular problem, developed manually by Ceri and Widom, with the solution provided automatically
by the system for the same problem. The results of this comparison were encouraging, since 10 out of the

15 constraints in the example were enforced exactly in the same way; 3 constraints were compensated in a

slightly different manner; 1 constraint had a different compensation, though reasonable; and 1 constraint

was not compensated.

13

7 Conclusion

The objective of the research reported in this paper is developing a system that writes production rules for

enforcing a given set of constraints with the minimum help from the user. We believe that user supervision
cannot be eliminated, but a tool may be very helpful due to the regularity in writing compensating rules.

Full exploitation of these regularities will drive us in the development of a powerful constraint definition

language, that will permit to specify the user’s preferred resolution strategies together with constraints.

Our work will pursue also other goals in the near future:

• Increment the experimental base: the experiments that we have already done were very useful in

directing our work and we expect additional indications from further experiments

• Implement the global architecture: we have tested only the compile-time component.

• Evaluate the user’s interface and interaction pattern.

• Consider incrernentability: we will investigate how to deal with small variations in the constraint set,

by changing the compensating rules accordingly.

Acknowledgment

We thank Jennifer Widom for giving us the opportunity of testing our ideas in the context of the Starburst

Production Rule System.

References

1] A. Aiken, J. Widom, J. M. Hellerstein “Behavior of database production rules: termination, confluence

and observable determinism”, Proc. ACM-SIGMOD, pp. 59-68, 5. Diego, May 1992.

2] S. Ceri, J. Widom “Deriving production rules for constraint maintenance”, Proc. 16th VLDB, pp. 566-

577, Brisbane, Australia, August 1990.

3] S. Ceri, F. Garzotto, G. Gottlob “Specification and management of database integrity constraint through

logic programming techniques”, Tech. Rep., Laboratorio di Calcolatori, Dipartimento di Elettronica,

Politecnico di Milano, 1991.

4] P. Fraternali, S. Paraboschi, L. Tanca “Automatic rule generation for correction of constraint violations

in active databases”, 4th mt. Workshop on Foundations of Models and Languages for Data and Objects,

Volkse, Germany, October 1992.

5] P. Fraternali, S. Paraboschi “Selecting rules for constraint maintenance: its complexity and a heuristic

solution”, Tech. Rep. 76-92, Laboratorio di Calcolatori, Politecnico di Milano.

14

The Starburst Rule System:

Language Design, Implementation, and Applications

Jennifer Widom

IBM Alinaden Research Center
*

Abstract

This short paper provides an overview of the Starburst Rule System, a production rules facility inte

grated into the Starburst extensible database system. The rule language is based on arbitrary database

state transitions rather than tuple- or statement-level changes, yielding a clear and flexible execution

semantics. The rule system was implemented rapidly using the extensibility features of Starburst; it is

integrated into all aspects of query and transaction processing, including concurrency control, autho

rization, recovery, etc. Using the Starburst Rule System, we have developed a number of methods for

automatically generating database rule applications, including integrity constraints, materialized views,
deductive rules, and semantic heterogeneity.

1 Introduction

The Starburst Rule System is a facility for creating and executing database production rules; it is fully

integrated into the Starburst extensible relational database system at the IBM Almaden Research Center.

Production rules in database systems (also known as active database systems) allow specification of database

operations that are executed automatically whenever certain events occur or conditions are met. In most

active database systems, including Starburst, production rules are a persistent part of the database and

are created using a rule definition language. As users and applications interact with data in the database,
rules are triggered, evaluated, and executed automatically by a database rule processor. In developing the

Starburst Rule System we had two major goals:

• Design of a rule definition language with a clearly defined and flexible execution semantics

• Rapid implementation of a fully integrated rule processor using the extensibility features of Starburst

As we developed and experimented with our language and system, we discovered that the inherently un

structured nature of rule processing makes production rules quite difficult to program. Consequently, we

added as a third goal:

• Development of methods for specifying common classes of database rule applications in high-level

languages and compiling these specifications into Starburst rules

The remaining three sections of this short paper outline the approaches we have taken to meeting each of these

three goals. Further details on language design appear in WF9O, Wid92], further details on implementation

appear in WCL91], and further details on applications appear in CW9O, CW91, CW92a, CW92b, Widgl].

2 Language Design

There are two important aspects in the design of a database production rule language: the syntax for

creating (as well as modifying, deleting, and grouping) rules, and the semantics of rule processing at run

time. Most database production rule languages have a similar syntax, relying on and extending the syntax

of the database query language. However, the semantics of rule processing varies considerably.
In Starburst, the syntax for creating a rule is:

create rule name on table

when triggering operations
if condition j
then action

precedes rule-list] follows rule-list J

Addreu: 650 Harry Road, San Jose, CA 95120 E-mail: widomOalmaden.ibm.com

15

	40979_DataEngineering_Dec1992_Vol15_No1 -4.pdf

