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Message from the TC Chair

A professional group exists only to serve its members. The service is primarily by members for other members.

A chair is not a sage who divines the needs of members, nor a slave to do all the work. A chair can be collec

tion point for needs, problems and dreams.

As your chair I ask you to communicate with me as part of what you do for yourself through the technical com

mittee. Send me mail or email, fax or phone, bend my ear at conferences, or drop by as you tour beautiful Min

nesota.

What can the TC do for you? How do you want to serve the TC? Are we doing things well? Are we doing the

right things? Are we reaching the right audience? Who else should join and be an active member? What ques

tions should we be asking?

John Carlis Computer Science Dept. University of Minnesota 200 Union St SE Minneapolis, MN 55455 (612)-

625-6092 (612)-625-0572 fax] carlis@umn-cs.cs.umn.edu
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Letter from the Issue Editor

This special issue is devoted to describing some of the activities underway on the topic of

transaction models in applications that go beyond traditional banking scenarios. Most of these new

transaction models stem from a practical need to relax one or more of the ACIDity (Atomicity,

Consistency, Isolation and Durability) properties of a transaction. These papers are, for the most

part, written in the context of a specific system. The systems covered in these papers vary, from

the heterogeneous database, computer publishing, computer aided software development, computer

aided design, active databases etc. Many of these papers address long transactions such as those

found in CASE and CAD systems. The variety of systems are as interesting as the differences in

approaches. I hope that one of the conclusions to be drawn from this particular special issue is

that transactions should be perceived as an enabling technology that can be used to build advanced

applications that are flexible. This flexibility manifests itself in the user’s ability to select the degree

to which he wants certain properties enforced.

The papers are presented in alphabetical order of the first author’s name. The first paper by

Dayal, Hsu and Ladin presents an extended transaction model for long lived transactions and ac

tive databases. The paper by Ellis differs from most other papers in that it only briefly discusses

the collaborative nature of groupware. Instead, it spends more time in discussing the approach to

concurrency control used in groupware. The paper by Garcia-Molina, Gawlick, Klein, Kleissner

and Salem describes nested sagas. Nested sagas allow for composition of long-running activities

into sagas, thereby, gaining the ability to abort or commit activities independently. The paper by

Kaiser and Perry addresses transaction models for cooperative environments. The authors’ expe

rience in software development environments has set the tone for the extensions they discussed.

The paper by Lee, Mansfield and Sheth addresses requirements for transaction processing in a

multimedia telecommunications environment. The paper uses a feedback mechanism to make the

model interactive. This provides the ability to build applications as a set of cooperative tasks. The

paper by Leu presents a transaction model for multidatabase systems. By allowing more than one

acceptable execution path for a single transaction and typed subtransactions, this model relaxes

both the atomicity and isolation properties in a way that facilitates transaction processing in mu!

tidatabase systems. The paper by Muth, Rakow, Kias and Neuhold is written for a fairly unusual

and relevant application. The paper addresses the requirements of a transaction model for pub

lication environments. More specifically, it presents an open distributed publication environment

for multimedia products. The paper by Reuter and Wachter on the contract model, addresses the

limitations of classical models and deals with various mechanisms for managing activities based on

the contract model. This model uses a script to describe the activities in a contract. The paper on

polytransactions by ltusinkiewicz and Sheth describes a multidatabase environment in which data

is interrelated in various ways. After briefly describing interdependent data, the paper introduces

the notion of polytransactions to deal with them. The paper by Unland and Schlageter is probably

more related to the management of transactions than any of the other papers. The adaptable tool

kit approach is described and then various strategies for performing concurrency control and recov

ery are presented based on this approach. The paper on s-transactions by Veijalainen and Eliassen

discusses how the s-transaction model is used to preserve both local and global consistency in a
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highly autonomous multidatabase environment. Finally, the paper by Weikum and Schek gives an

overview of the multi-level transaction model and its generalization for open nested transactions.

They also discuss the various requirements of ACIDity and provide various potential applications.

I want to thank all the authors for putting up with my nit picking. I know some of them have

gotten pushed to the limit at times. I believe that we are all better for this effort of writing and

rewriting. I would also like to thank Mr. Yungbo Leu for helping out at various stages of this

process. Since the papers had to be limited to 5 pages for this special issue, we have decided to

publish extended versions of a subset of these papers, and a few other papers that did not make it

into this issue, in a book to be tentatively published by Morgan Kauffmann later in 1991.

Before closing this letter, I would like to introduce to the readers of the Bulletin the newly

established Indiana Center for Database Systems. The center is a state wide effort by Purdue Uni

versity, Indiana University and various other institutions in the state. The primary objectives of

this center are the establishment of research, technology transfer and outreach programs to benefit

the database industry. The Director of the center is Judith Copier and the Executive Directors

are myself and Edward Robertson of Indiana University. The center was established through a

generous grant from the Indiana Corporation for Science and Technology.

Ahmed K. Elmagarmid
Associate Professor and Executive Director

The Indiana Center for Database Systems

Department of Computer Sciences

Purdue University
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A Generalized Transaction Model for Long-Running Activities and

Active Databases

Umeshwar Dayal
Meichun ilsu’

Rivka Ladint

Digital Equipment Corporation

1 Introduction

In the conventional transaction model supported by existing database management systems, a transaction is the

atomic unit of work. A transaction is guaranteed to satisfy the concurrency atomicity, failure atomicity, and

permanence properties.
This model is limited for many applications. First, it presupposes strictly sequential transactions. The nested

transaction model Lisk85, Moss8l] overcomes this limitation by allowing a transaction to spawn subtransactzon.s

that execute concurrently. In the nested transaction model, the subtransactions are immediate in that they can

be scheduled for execution as soon as they are spawned.

Sometimes, however, it is necessary to defer the execution of some actions to the end of a transaction.

For example, the deferred actions might check integrity constraints, propagate updates performed during the

transaction to replicas of the updated objects, propagate updates to derived data (e.g., to materialized views),
or execute “automation rules” for postprocessing Hc88]. The execution semantics of deferred actions are not

described by the nested transaction model.

A more serious limitation is that both the conventional transaction model and the nested transaction model

presuppose short, isolated transactions. Sometimes, it is necessary to break off some actions of a transaction and

to execute these actions in one or more separate, decoupled transactions. For example, in an inventory control

application, transactions may update the quantity on hand of some item in the inventory database (to reflect the

consumption of the item). If the quantity of hand falls below a threshold, then the item has to be reordered.

However, there is no need to execute the reordering action as part of the original transaction that consumed the

item. Decoupling some actions permits transactions to finish more quickly, thereby releasing system resources

earlier, and improving transaction response times. A decoupled transaction can execute concurrently with the

transaction from which it was spawned. Often, we want the decoupled transaction to be causally dependent: it

must be serialized after the transaction from which it was spawned, and it can commit only if the latter commits.

Sometimes, however, causally independent decoupled transactions are desirable. For example, suppose we want

to write a record in the security log whenever a user accesses some data object; we want the security log record

to be written irrespective of whether the original transaction that accessed the object commits or aborts. To do

this, we write the security log in a causally independent transaction.

In HLM88, Chak89, DHL9O], we introduced a generalized transaction model, and accompanying language

primitives, that supports different kinds of nested transactions: concurrent subtransactions, deferred subtransac

tions, and decoupled (causally dependent and independent) transactions. We were motivated by real application

needs, rather than some theoretical notion of completeness. In particular, we were motivated by the need to

describe the semantics of active databases and long running activities. (In contrast, the work on generalized

Address: Digital Equipment Corp., One Kendall Square - Building 700, Cambridge, MA 02139; dayal©crl.dec.com.

tAdcfrese: Digital Equipment Corporation, Mountain View, CA 94040; hsu©ocean.dec.com

Address: Digital Equipment Corp., One Kendall Square - Building 700, Cambridge, MA 02139; rivka@crl.dec.com.
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transaction frameworks, such as ACTA CR90], is motivated by the desire to describe and compare all existing
transaction models.)

In this short paper, we first give in Section 2 a brief overview of our generalized transaction model. Then in

Section 3, we illustrate its use as the execution model for active databases. In Section 4, we show how to use the

model to express control flow in long-running activities. We augment the model to support the recovery semantics

(and other desired features) of activities. For details, the reader is referred to HLM8S, DHL9O, DHL9x]. For

details of the algorithms for implementing the model, see Chak89, DHL9x].

2 The Transaction Model

Our model gives the programmer fine control over the scope in which a transaction is executed. To achieve this,

we extend the nested transaction model described in Moss8l, Lisk85]. A nested transaction is a transaction that

is started from inside another transaction (the parent transaction). Transactions can be nested to arbitrary levels,

forming a tree with a top transaction at the root. We first describe briefly the basic nested transaction model.

Then, we present our extensions, which are twofold: the first allows tasks to be explicitly deferred to the end of

the transaction; and the second permits the decoupling of tasks to be performed in a separate transaction.

2.1 The Nested Transaction Model

A transaction may contain any number of nested transactions or subtransactions, some of which may be required to

perform sequentially, some concurrently. We use standard tree terminology in referring to relationships between

transactions, for example, parent, child, ancestor and descendant. A subtransaction may be aborted without

causing its parent transaction to abort.

Concurrency within a transaction is obtained by allowing the parent to start concurrent subtransactions.

While a child is running, its parent is suspended. However, sibling subtransactions may execute concurrently.

Because siblings are serializable at each level of the transaction tree, there is no problem with concurrent siblings

interfering with one another. Sequential siblings are ordered according to when they run. This structure can’t be

observed from the outside; i.e., the overall transaction still satisfies the atomicity properties.
The commit of a subtransaction is always relative to its parent. If a subtransaction commits and its parent

aborts, the effects of the subtransaction will be undone. When a subtransaction T and all its ancestors up to, but

not including, the top transaction commit, we say that T has committed to the top. When T’s top transaction

then commits we say that T has committed through the top. The top transaction commits only after all of its

subtransactions have terminated.

A top transaction and its descendants can be modelled by means of a tree structure called a transaction

tree. The root of the tree is labelled by the top transaction; the interior nodes are labelled by the descendant

subtransactions. For convenience, we assume that there exists a distinguished system transaction, T8~8 every top

transaction is a child of T3~5.
To constrain the execution order of concurrent siblings, priorities can be assigned to transactions. The system

guarantees that the serialization order of concurrent siblings is consistent with their priority order.

2.2 Deferred and Decoupled Transactions

In addition to the nesting of subtransactions described above, we allow three more types of nesting. First, we

allow the creation of deferred subtransactions whose execution is explicitly delayed until the end of the user’s top

transaction T and before any deferred subtransaction is executed, a point we shall refer to as the cycle-O end.

When T reaches its cycle-O end, a deferred subtransaction is started, and runs as a proper subtransaction of T. If

more than one deferred subtransaction is created before T reaches its cycle-0 end, then all these subtransactions

are started as concurrent subtransactions in cycle 1 at cycle-0 end. If the processing of subtransactions in cycle
1 causes more deferred transactions to be created, the latter are started when all subtransactions in cycle 1 have

finished, and are started as concurrent subtransactions of T in cycle 2. The cycles of execution of T continue

until the last cycle finishes in which no more deferred subtransactions are created. Like a regular subtransaction,

the commit of a deferred subtransaction is conditional on its parent (the transaction that created it) committing

through the top.
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Second, we allow a separate top transactions to be started from inside another transaction. Such a “nested

top transaction” is called a decoupled transaction. A decoupled top transaction will be represented by its own

tree. We identify two kinds of decoupled transactions based on whether they are causally dependent on their

parent or not. Let T be the top transaction and let T’ be a decoupled transaction created either by T or by one

of its descendants. Then T’ is causally dependent on transaction T (we say that T’ is a CD Top transaction) if

T’ is serialized after T and the commit of T’ is conditional on the committing of its parent through the top.

Note however, that aborting of T’ has no effect on its parent. It is important to note that CDtop transactions

whose natural parents have committed must be scheduled for execution. Therefore, CDtop transactions that are

interrupted by a system failure should be automatically restarted as part of system recovery.

The execution of a causally independent decoupled transaction T’ has no special privileges relative to its

parent T; the commit of T’ is not relative to its parent, but rather independent. Note that we don’t constrain

the serialization order of T’ relative to its parent.

In the standard nested transaction model, a subtransaction cannot control the fate of the top level transac

tion. We extend these failure semantics to allow a subtransaction to request that its top transaction and all its

decendants (excluding the causally independent decoupled top transactions) be aborted.

To constrain possible execution orders of concurrent CDtop transactions, we support a pip elining mechanism.

We say that a decoupled transaction T’ created by transaction T satisfies the pipelining property if for all

transactions Ti that are serialized before (after) T, any decoupled transaction Ti’ created by Ti is serialized before

(respectively, after) T’. Thus, suppose a decoupled transaction is used to display a moving target’s position on a

screen every time the position is updated. If many update transactions occur in a short period, several decoupled

display actions may be queued. For the display to reflect the correct sequence of updates, the display actions

must be pipelined.

3 Execution Model for Active Databases

In this section, we illustrate the use of the transaction model to describe the execution semantics of active

databases. An active database contains both data and rules Dayas8b, DBM88J. A rule is an event-action pair.
The event may be a database operation, a temporal event, an external signal, or combinations of these; the action

is any program.

A transaction may trigger the execution of a rule’s action by causing its event to occur. In most rule models

(e.g., Ston86, Syba87, KDMSS, WF9O]) the triggered actions execute within the triggering transaction, either

immediately (when the triggering event occurs) or they may be deferred (to the end of the transaction). This

prolongs the original transaction, especially if rule executions are allowed to cascade, causing locks to be held for

a long time and thereby limiting database concurrency. Also, most rule models support only sequential execution

of rules.

In our model, a rule includes the specification of a coupling mode — immediate, deferred, causally dependent
decoupled, or causally independent decoupled. The coupling mode specifies the transaction scope within which

the action is executed relative to the triggering transaction (i.e., the transaction that caused the event to occur).
When the event is detected, the system creates an appropriate (nested) transaction to execute the action part.
If several rules have the same triggering event and the same coupling mode, they are executed concurrently.

Priorities, and the cycling and pipelining mechanisms, may be used to restrict concurrent execution. Also, the

execution of one rule may raise events that cause other rules to be triggered.
In the inventory control example, we can write a rule whose event is the update of the quantity on hand of an

item, and whose action invokes the reorder procedure if the quantity on hand has dropped below the threshold.

The desired semantics are obtained by executing the action part of the rule in a decoupled transaction.

In addition to monitoring events and starting nested transactions, the system may also need to recover events

that were signaled by committed transactions that spawned uncommitted nested CDtop and top transactions.

Therefore, a transaction commits only after its database updates, and the events signaled by it, are stably
captured. With these signals recovered, the system can restart the interrupted decoupled transactions and ensure

the completion of the execution. We distinguish between recoverable and irrecoverable events; all events triggered
by database updates are recoverable events. Temporal events, on the other hand, may be recoverable or not.

Upon recovery, events signalled by commited transactions and for which the necessary action was taken before the

failure, are recovered independent on whether they are recoverable events or not. Events signalled by commited
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transactions, and whose processing has not completed before the failure, are signalled only if they are recoverable

events.

4 Organizing Long-Running Activities

A long running activity involves multiple steps of processing (which may be serviced by different servers, perhaps
on different nodes of a distributed system) and that typically are of long duration. For example, a purchase
order may be issued from an inventory clerk, then passed to a manager who approves it, and then passed to an

accountant who makes proper accounting entries. Executing a long-running activity as a single transaction is not

strictly necessary in most cases, and can significantly delay the execution of short transactions. For example, if

purchase order processing is run as a single transaction, locks on the inventory records and the budget records

may be held for a long time, severely limiting database concurrency. When these steps involve several distributed

servers, commit processing is also expensive, and the transaction can run only when all servers are available

simultaneously.
One approach to handling a long-running activity, therefore, is to have each step run as a transaction; thus,

the long-running activity corresponds to multiple transactions. In conventional transaction processing systems,
the control flow among the steps is embedded in application programs (e.g. McGe78]). However, there is no

system support for handling failures or exceptions across the steps of the long-running activity.
Several extended transaction models to support long-running activities have been proposed 0587, KR88,

Reut89, Garc9O, ELMA9O]. Each step is executed as a transaction. Control flow among steps is declaratively
specified. These models also provide an automatic compensation capability that offers failure atomicity for the

user request.

To govern the execution of multiple application steps that are related, we augment our transaction model with

a control stucture called an activity.
A top transaction is created from within an activity. Activities can be further nested. Thus, children of

an activity may be activities or top transactions or a combination of these. An activity also has three states:

active, committed and aborted. The relationship between an activity and its children is similar to that between

a parent transaction and its children. A parent activity is committed only after all its children have terminated.

However, there are a couple of differences between activities and transactions. If a parent activity is aborted,
then all its active children are aborted; committed children are not affected. Furthermore, sibling activities are

not serializable; their effects on the database may be interleaved.

It is desirable to allow a user to query the status of an activity, or to stop or alter the progress of an activity.
For this purpose, a program that creates an activity is given a handle for the activity. After an activity is created,
the program may query the status of the activity by presenting the activity handle to the system.

The program may also ask the system to abort the activity. Aborting an activity is defined as follows. All

children activities are aborted; all active top transactions are aborted. Committed top transactions are not

aborted, but may be compensated for (see DHL9x] for more information).
The control flow among the steps of an activity is expressed in the application program, or is implicit in

rules as described in DHL9O]. Thus, a step Si that must start another step S2 can do so by starting a nested

transaction to execute S2, or it can signal an event that triggers a rule whose action part executes S2. The use

of rules allows the control flow to be dynamically modified based on the database state or the history of events

that have occurred. Exception handlers (and compensation actions) can be associated with each activity or step
as desired; these are invoked auomatically by the system using a fixed policy as in the saga model; or, they can

be dynamically invoked by rules.
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Consistency within Concurrent

Groupware Systems*

by

Clarence A. Ellis

MCC Software Technology Program
Austin, Texas, USA

Abstract

Groupware systems are computer based systems which supports two or more users

working in a tightly coupled fashion on a common task. This paper briefly introduc
ess a family of concurrency control algorithms for groupware systems. These algo
rithms maintain consistency without locking, and without rollback, within a dynam
ic non-serializable environment. A consistency theorem for this family of algo
rithms has been devised, and its proof is sketched in a companion document.

1. Introduction

Groupware aims to assist groups in communicating, in collaborating, and in coordinating their ac

tivities. Groupware can be defined as computer based systems that support two or more users en

gaged in a common task or goal, and that provide an interface to a shared environment. The group

ware group at MCC’s software technology program has been researching groupware and computer

supported cooperative work for the past five years. A number of prototypes have been produced,
measurement and modeling of those prototypes has occurred, and lessons learned have lead to var

ious theories and models of the resultant processes and systems.

These systems can be categorized as real-time groupware versus non-real-time groupware. Exam

ples of real-time groupware are multi-player video games, real time group editors, video confer

encing systems, and group decision support (electronic meeting room) systems. Examples of non-

real-time groupware are office coordination systems, intelligent electronic mail, and software en

gineering project managers. See Elli9Ob] for further motivation, examples, issues, and references.

Groupware systems differ dramatically from general database management systems and other

multi-user systems because they are built to explicitly allow users to know and easily keep track of

the presence of others.

* Many ofthe notions mentioned in this extended abstract arefurther elaborated in the proceed

ings ofthe ACM SIGMOD’89 International Conference on Management ofData.
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Real-time groupware is characterized by the following:

• highly interactive - response times must be short.

• real-time - notification times must be comparable to response times.

• distributed - in general, one cannot assume that participants are all connected

to the same machine or even to the same local area network.

• volatile - participants are free to come and go during a session.

• ad hoc - generally the participants are not following a pre-planned script, it is

not possible to tell a priori what information will be accessed.

• focused - during a real-time work session there is a high degree of synergistic
shared data access, and an unusually high probability of unwanted access conflicts.

• external channels - often participants are connected by one or more external (to the

computer system) channels such as an audio or video link. We used speaker phones
within our offices for many of our groupware sessions.

Examples of advanced real-time groupware include GROVE (Group Outline Viewing Editor)

E11i88], and rIBIS (real-time hypermedia system) Rein9O]. These were fully distributed systems

implemented in the Software Technology Program at MCC. They were specifically designed for

real-time use by groups of people performing simultaneous editing.

2. Concurrency Control Problem

Concurrency control is needed within real-time groupware to help resolve information access con

flicts between participants, and to allow them to perform tightly coupled group activities. For ex

ample, with a group editor, clearly there is a conflict if one participant deletes a sentence while a

second inserts a word into the sentence. In the usage observations of GROVE, we have noticed that

there is a mode of operation in which a tightly coupled group will do a complex sequence of edit

operations in a concurrent fashion, getting the task performed in a much more efficient manner.

Many CASE tools (computer aided software engineering) discourage rather than enhance closely

coupled teamwork. There is a need for mechanisms which go beyond today’s typical technology.

The various approaches to providing concurrency control, such as explicit locking or transaction

processing, that have been developed for database applications do not appear to be suitable in

groupware contexts. Interactive concurrency control techniques are much more useful in this con

text. This section identifies some of the issues related to concurrency control in groupware, and

overviews our approach.

2.1 Issues

WYSJWIS. Although there has been little experience in the evaluation of interfaces to groupware

Grud88, E1li89] it appears that some form of a WYSIWIS (what you see is what I see) interface

Stef87] is very useful to maintain group focus. If each user sees a slightly different or out-of-date

version then the session’s cohesiveness is soon lost. WYSIWIS interfaces have two implications

on concurrency control. First response times are important - the time taken to access data, modify
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data, or notify users of changes must be as short as possible. Secondly, if the concurrency control

scheme entails the use of modes where actions of one user are not immediately seen by the others,

then the effect of these modes on the group’s dynamics must be carefully analyzed and only al

lowed if they are not disruptive.

Wide-area distribution. One of the main benefits of groupware is that it allows people to work to

gether, in real-time, even though separated by great physical distances. Consequently these sys

tems may be geographically distributed. With current communications technology, transmission

times and rates for wide-area networks are significantly worse than those found in their local area

counterparts; the possible impact on response time must be taken into account.

Replication. Because the response time demands of groupware are so high, the data state is usually
replicated for each participant. This allows many potentially expensive operations to be done lo

cally. For instance, consider an editing session where one participant is in Los Angeles and the oth

er in New York. Typically each participant would be working in a windowing environment. If the

objects being edited and the data state are not replicated then even simple scrolling operations re

quire communication between the two sites. The resulting degradation in response time may be cat

astrophic.

Robustness. Traditionally robustness refers to recovery from unusual circumstances, typically
these are component failures - the crash of a site or a communications link. While these are also

concerns within groupware, there is also a second form of robustness these system must achieve,

in particular, robustness to user actions. For example, the addition of a new user to the set of users

issuing transactions on a database is not normally considered a major problem. However, with

groupware, the addition of a participant may result in what amounts to a reconfiguration of the sys

tem. Clearly the concurrency control algorithm must adapt to such reconfigurations and in general
recover from “unexpected” user actions (abruptly leaving the session, going away for coffee, etc.)

2.2 Our Approach

At MCC, we have explored notions of soft locks Elli87], and interactive concurrency control

Yeh89]. In our recent groupware systems, we have employed the dOPT algorithm which, when

combined with the above techniques, provides a powerful new concurrency control mechanism for

groupware. dOPT abbreviates distributed operation transformation algorithm, and proceeds with

out locking or roll-back. This approach relies upon application specific semantic knowledge of the

desired outcome of concurrent operations. For example, when two participants make concurrent

edits to the same data structure, their local copies are updated immediately, and messages contain

ing the edit operation and carefully selected local state are sent to all other sites. When each of these

sites receives the other’s message, they know if they are performing the pair of edit operations in

different orders. Each first performs an application dependent transformation on the operation, and

each applies the transformed operation to their local copy of the data structure. Voila! It can be

shown that for a significant class of applications, all is guaranteed to end up consistent E11i91].

A groupware system execution is defined to be correct if it guarantees that an initially consistent

system will, at the conclusion of any admissible execution (called quiescence), still maintain con

sistency, semantic integrity, and temporal ordering.

8. Conclusions and Future Developments
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This paper has introduced the notion of groupware, and presented a novel algorithm for concurren

cy control within real-time groupware. Groupware reflects a change in emphasis from using the

computer to solve problems to using the computer to facilitate human interaction. For these sys

tems to be accepted requires fine-granularity sharing of data, rapid response time, and rapid noti

fication time. Therefore, the algorithm presented does not use locking, performs non-serializable

sets of operations, and works in a workstation environment with replicated data and distributed

control.

A general theorem has been developed which allowed us to prove consistency of the replicated ob

ject set by examining properties of the combined precedence graph. This consistency property, to

gether with other properties of temporal ordering and semantic integrity, fulfill our criterion of cor

rectness. This is done elsewhere E11i91].

The algorithm and the proof were worked out in the context of GROVE and rIBIS, group editors

which we have implemented within the Software Technology Program at MCC. In these systems,

users frequently apply associative access techniques rather than accessing objects by name. Thus,

within a text editing application, users browse and point at the items they want to update; the indi

vidual characters are not given separate immutable names or unique addresses.

A primary difference between these systems, and the majority of database systems, is the visibility
criterion. DBMS ‘s are constructed with an intent to hide the presence of other users (transactions,

locking, etc.); groupware is constructed with the intent of making visible the presence and state of

other participants. Future work of our research team includes embellishing the group user interface

to better make this happen. There is also work in progress to generalize the characterization of our

transform matrix, and extending our proof technique to encompass other systems. We will also

continue to incorporate these ideas within other groupware which we are constructing, and will be

constructing in the future. One challenging issue is the implementation of the UNDO function be

cause there is only a partial ordering on previous operations. We also have some ideas for the im

plementation of further DWWM features. We have been developing and applying the notions of

team automata to model and prove various other properties of groupware. We are also exploring
alternative models. We hope that this will be useful in further correctness proof extensions. In con

clusion, we believe that the new emphasis on groupware suggests a number of interesting and chal

lenging frontiers. Perhaps this paper can help to stimulate work at these frontiers.
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ABSTRACT

Long—running activities often consist of collections of related, simpler steps. We propose the

use of nested sagas to model such activities. This model allows useful operations, such as aborts,

to be performed on the activities, without requiring the high cost of long—lived transactions.

1. Introduction

Consider the process of registering an automobile with a state’s department of motor vehi

cles. A vehicle registration is initiated by a request from the vehicle’s owner. In the request, the

vehicle’s owner supplies relevant information about it, such as its make, model, age, and

identification number. To perform the registration, a number of steps must be completed. For

example, the department may require that the vehicle pass a safety and emissions inspection and

may check its databases for any information about the vehicle, such as existing registrations.

Next, a new, unique registration number must be assigned to the vehicle and a registration card

and license plates must be generated for the car. Finally, the department collects a registration

fee from the owner.

Many business activities can be modeled as collections of related sub—activities. Figure 1

illustrates this for the vehicle registration activity. This simple example illustrates that activities

may be composed, or nested. In the example, the “inspection” sub—activity actually involves

separate safety and emissions test activities, as well as the payment of an additional inspection

fee.

submit

request

registration
check

assign
registration
number

produce
registration

vehicle registration

inspectionI I
I Ipayment

safety inspection
test payment

. .

I
emissions.

test

I

~

~

Figure 1 — Vehicle Registration Activity

Activities such as vehicle registration have a number of properties that suggest that transac

tion processing techniques could beneficially be applied to them. It is likely that concurrent

activities will require concurrent access to shared databases, e.g., a database of license plate

t This paper expresses the views of the authors only. It does not express the opinions or future product plans of Digi

tal Equipment Corporation.
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numbers and their assignments. Furthermore, the effects of completed activities should not be

lost as a result of system failures. The depaitinent. should not forget that a vehicle has been

registered once the registration process has completed. 1-lowever, despite the existance of these

properties, simple transaction models are inappropriate for such activities. One problem is that

activities may he long—lived. Hours or days may elapse between the initiation of the registration

activity and its completion, even if the individual steps are not themselves long—lived. For this

reason, it quickly becomes impractical to treat activities as atomic transactions. Implementing
this would require that resources (e.g., databases) accessed by the activity be held (e.g., locked)
for long periods of time. Alternatively, the individual sub—activities could be treated as separate
transactions. However, no services are provided for the entire activity in this case. In particular,
it is not possible to “abort” or “commit” the activity as a whole, since it is not itself a transac

tion.

In this paper, we propose that activities be modeled as generalized sagas ~Garc87,Ciff85),
rather than as transactions. A saga is a collection of atomic transactions, though the saga itself is

not atomic. Thus, resources are released after each of the component transactions completes,

allowing sagas to be long—lived. Although sagas are not atomic, they can be aborted. In general,
the effects of a saga cannot be rolled back, as a transaction’s can, because the affected resources

may already have been released. Instead, a saga is “aborted” by executing compensating transac

tions for each transaction in the saga that has already comrnited and released its resources. A

compensating transaction “undoes”, according to the seiiiantics of the application, the effects of

the transaction it compensates for.

In the following sections, we present sagas in more detail and discuss some of the issues that

arise when sagas are nested. We also discuss a simple system call interface that could be used by

application programs (e.g., the vehicle registration code) to reciuest services from a “saga process

ing system”.

2. Sagas

Originally Garc87}, sagas were defined as collections of atomic transactions. By grouping
transactions into a saga, an application gained the ability to abort the saga. A saga abort is pro

cessed according to two rules:

1) Active (uncommitted) transactions in the saga are aborted and rolled back.

2) A compensating transaction is initiated for each committed transaction in the saga.

Like the regular (forward) transactions that comprise the saga, compensating transactions are

application programs that must be coded and supplied when the saga is created.

Applications similar to motor vehicle registration require a more general saga model. Since

sub—activities may themselves be long—lived and involve a number of steps, modeling them as

atomic transactions may be inappropriate. A natural solution to this problem is to allow sagas to

be composed of transactions or of other sagas, i.e., to allow the nesting of sagas. Nested sagas

can be defined recursively, as follows:

• A single, atomic transaction is a primitive saga.

• A collection of sagas is a composite saga.

The state of a saga is one of committed, aborted, or running. A primitive saga has the

same state as the transaction that it is composed of. A composite saga that is not aborted is

committed if all of it component sagas have committed or aborted. Otherwise it is running.

A saga can be requested to abort at any time. Primitive sagas are aborted by rolling back

their effects, since they are atomic transactions. An abort of a composite saga is applied to each

of its component sagas. Those that have committed are compensated for, while those that are

running are recursively aborted. The compensating actions used to abort a saga must be specified
when a saga is defined.

We can illustrate these ideas using the motor vehicle department example (Figure 1). Con

sider the situation in which a registration saga is running, and assume that the “submit request”,
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“registration check” and “inspection” components of the registration have committed, and that

the two remaining components are active (running). If the “registration” saga is aborted at this

point, the following actions occur. First, the two active components (“assign registration
number” and “produce registration”) are aborted. Since these a primitive sagas they can be

rolled back. Next, compensating actions are initiated for each of the three committed com

ponents of “registration”. For example, the compensating actions for the “submit request” and

“inspection” requests may simply mark the registration request arid inspection records for this

registration invalid in the department’s databases, or they might delete the records. Some activi

ties, such as “registration check”, may not require any compensation. For such activities, a null

compensation step can be specified.

If the “inspection” saga is not committed when “registration” is aborted, the abort pro

cedure is somewhat different. Since the “inspection” saga is not committed, its compensation

step is not executed. Instead, the “inspection” step is recursively aborted. Compensation steps

would be initiated for any of the three inspection sub—activities that had already committed.

Uncommitted sub—activities would be rolled back.

In summary, sagas provide the capability to abort long—running activities without incurring
the costs of long—lived transactions. The nesting of sagas permits modular composition of activi

ties. Since both sagas and transactions (primitive sagas) can commit and abort, nested sagas can

be built up from smaller components, without regard for their nature, i.e., whether they are tran

sactions or sagas.

3. An Environment for Activities

We have addressed the semantics of sagas and nested sagas, defining what it means to com

bine small sagas into larger ones. However, we have not considered a mechanism for sagas. In

this section, we address the question of how an application might create, commit and abort sagas.

There are many ways to answer this question. The view we take here is that a “saga pro

cessing system” exists which implements sagas. The saga processing system has a simple inter

face, i.e., a set of system calls, which application programs can use to request saga services. A

saga processing system is analogous to an operating system, which implements processes, or to a

transaction processing system, which implements transactions.

In the remainder of this section, we will describe a simple interface to a saga processing sys

tem and show how it can be used to acquire saga services. We do not suggest that using the sys

tem call interface described here will, in practice, be the best way to “code up” an application.

Graphical tools, additional system calls, and other enhancements would certainly make this pro

cess easier. However, our goal is to present a very simple set of primitives that provide the neces

sary services.

Primitive sagas, or steps, are simply executions of application programs. Application pro

grams can be written in any language that has a small set of system calls (described below)
embedded within it. Steps use these calls to request system services. The system calls at the

interface include Create, Commit, Abort, and Compensation Bind.

3.1 Create

The Create system call is used to create new steps. Create is invoked with an argument

describing the program the new step should execute. (Several additional, optional parameters

exist, whose purposes are described in Section 3.3, below.) Every step is executed as an atomic

transaction, i.e., a primitive saga. Furthermore, when a step creates new steps, the new steps

together with their creator constitute a saga. Thus, every newly—created step is a part of two

sagas: a composite saga that includes its parent, and its own primitive saga. When a step creates

new steps, its primitive saga “expands” to include the new offspring.

The Create system call is a useful tool for modular composition of activities because every

created step can be considered a saga. It allows a step to create a child step to perform a sub—

activity without worrying about whether the child will perform the activity itself, or create
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additional steps to do so. In our motor vehicle example, the “inspection’ activity could be imple
mented by a program called “inspection”. To perform the inspection, the “vehicle registration’

program would Create a step running the “inspection program. This program could implement
the inspection activity itself, or it could, in turn, create new steps (‘safety inspection”, “emission

inspection’, and “payment’) to do the necessary work. In either case, “inspection” appears to

“vehicle registration’ as a saga that accomplishes the necessary task.

3.2 Commit

The Commit system call allows a running step to commit itself. Committing a step makes

that step’s effects (e.g., database modifications) permanent. If the step created new steps during
its execution, then the step’s saga does not commit until all of these steps stop running. For

example, if the “inspection” step simply creates three steps and then commits, the “inspection”

saga is not considered committed because it includes the three created steps.

3.3 Abort

Any saga can be aborted. Aborting a primitive saga (i.e., a step) undoes any changes made

by~ the step. An abort of a composite saga is handled recursively as described in Section 2. By
default, the abort of a saga also causes the saga’s parent saga to abort, i.e., the abort propagates

“up” the tree of nested sagas, towards the root. In our example, this would mean that an abort

of the “safety inspection” saga would cause the “inspection” saga (its parent) to be aborted.

This, in turn, would cause the “vehicle registration” saga to abort, and so on.

Frequently, such cascading of aborts is a desirable behavior. For example, the motor vehi

cle department may find it reasonable to abort the entire “inspection” activity if the inspection

payment cannot be made. However, this is not always the case. Sometimes it will be preferable
to .attempt some alternative activity if a step fails, or to retry the failed step, or perhaps to do

nothing at all. To accomodate this, the non—vita! option can be specified (along with the name of

the program to execute) when a step is created. When a non—vital step is aborted, its parent saga

is not automatically aborted. However, such a step is still considered a part of its parent’s saga,

so that an abort of the parent will result in the (recursive) abort of the child. The non—vital

option provides a mechanism for breaking the default cascade of aborts “up” the tree. Alterna

tively, the independent option can be supplied when a step is created. The independent option
breaks the default cascade of aborts up the tree and down the tree. Thus, an abort of the parent
does not affect the child, and vice versa.

3.4 Compensation Bind

The Compensation Bind call is used to specify the compensating steps that should be exe

cuted in case a saga aborts. Aiiy step can have a compensating step specified for it. The compen

sation is executed if the step has committed and is part of the saga that later aborts.

The Compensation Bind call takes the names of two steps (which we will call “forward”

and “reverse”) as arguments. Both of these steps must already have been created using the

Create call. The call indicates to the system that “reverse” should be used as the compensating

step for “forward”, in case compensation is necessary. In response to such a command, the sys

tem ensures that the “reverse” step does not run until such time as compensation is required for

“forward”.

3.5 An Example

Figure 2 shows a simple program called “vehicle registration” that, when run, produces the

registration activity. The program creates a step for each of the five sub—activities of registra
tion. In addition, it creates compensating steps for the “inspection” and “reserve number” sub—

activities, in case compensation is necessary. The calls to Compensation Bind are used to relate

these compensation steps to the corresponding forward steps. Finally, the “registration” program

itself commits, indicating that the new steps that it has created can begin execution. If the regis
tration program were to abort for any reason before the call to Commit, it would be as if none of
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the system calls in the program had ever been executed, i.e., none of the newly created steps

would exist.

Program: registration;

sr ‘- Create( program: “submit request”
rc Create( program: “registration check”

in ~- Create( program: “inspection”
ar ~ Create( program: “assign registration number”

pr ~ Create( program: “produce registration”
ar’ ~ Create( program: “release registration number”

in’ ~- Create( program: “invalidate inspection”
Compensation Bind( forward_step: ar comp_step: ar’

Compensation Bind( forward_step: in comp_step: in’

Commit()

Figure 2 — Vehicle Registration using Saga System Calls

Most of the steps created by “vehicle registration”, e.g., “generate number”, will them

selves perform the work necessary to accomplish their task. However, the “inspection” step is

itself composed of several sub—activities. Thus, “inspection” will be a program much like “regis

tration”, using the system calls to create new steps to do the necessary work.

The environment provides several additional system calls and services not discussed here.

In particular, there are calls to “bind” related steps together for the purpose of sending and

receiving messages, and a mechanism by which the system notifies a step of the commit or abort

of a saga. Binding steps together creates persistent mailboxes into which the bound steps can

place an retrieve messages. The persistence of Che mailboxes ensures that messages produced by a

step survive any failures that might occur after the step has committed. As is true of the other

system services, step bindings and message delivery are not effective until the requesting step has

committed. Further details concerning the environment and nested sagas, along with a discussion

of related work, can be found in Garc9O].

4. Conclusion

We have described nested sagas and have illustrated how they can be used to model long—

running, multi—step activities. Such activities are common in business data processing environ

ments, but it is difficult to support them using existing transaction models. The saga model

allows applications to create and abort long—running activities without the high cost of long tran

sactions. In addition, we presented a simple environment for the specification and execution of

these activities. The environment consists of calls to a “saga processing system” that allow appli
cations to define sagas and to indicate when they should be committed or aborted.

References

jCarc87l
•H. Carcia—Molina, K. Salem, “Sagas,” Proc. 1987 SIGMOD International Conference on Management
of Data, May 1987, pp. 249—259.

Carc9O)
H. Carcia—Molina, D. Cawlick, J. Klein, K. Kleissner, K. Salem, “Coordinating Multi—Transaction

Activities,” CS—TR—2412, University of Maryland, Dept. of Computer Science, College Park, MID,
February, 1990.

Ciff8S]
D. K. Cifford, 1. E. Donahue, “Coordinating Independent Atomic Actions,” COMPCON85 Digest of
Papers, San Francisco, CA, IEEE Computer Society Press, February, 1985, pp. 92—95.

18



Making Progress in

Cooperative Transaction Models

Gail E. Kaiser Dewayne E. Perry
Columbia University AT&T Bell Laboratories

Department of Computer Science Room 3D-454
500 West 120th Street 600 Mountain Avenue
New York, NY 10027 Murray Hill, NJ 07974

kaiser@cs.columbia.edu dep@allegra.att.com

In the classical transaction model, transactions are consistency preserving units: a transaction is made up
of a series of actions which, when executed in isolation in a reliable environment, transforms the database
from one consistent state to another 2]. A classical transaction management system guarantees the

appearance of isolation and reliability, even though multiple transactions execute concurrently and
hardware and software components fail. It does this by enforcing atomicity and serializability: atomicity
means that either an entire transaction apparently executes to completion or not at all, while serializability
means that the effects of the transactions are viewed as if the transactions had executed in some serial
order, one completing before the next begins. This is accomplished by considering the objects read and
written by concurrently executing transactions, and ensuring that either all updates are completed or none

are, and that the read and write dependencies among the set of transactions correspond to some serial
order of the transactions.

There have been many proposals for extending the transaction model from its original data processing
applications to software development, CAD/CAM and other forms of cooperative work. The notion of
“transaction” is intuitively appealing in these domains, since forward progress often depends on making
a related set of changes to a program, design or document in such a way that it is transformed from one

consistent state to another. As with data processing applications, “consistency” depends on the

requirements of the domain, such as a new system configuration passing regression and acceptance tests

before the changed modules can be committed.

However, it is well-known that atomicity and serializability are inappropriate for interactive cooperative
work 9, 13]. A task that might be treated as a “transaction”, such as responding to a modification

request, may be of long duration — hours to days to weeks — while information must be shared among
the perhaps large numbers of personnel who participate in the concerted effort during the process of

making the changes. Such a task is typically broken down into several subtasks, one per developer, that
are carried out in parallel, and together bring the software system under development from one consistent
state to another.

But even these subtask “transactions” may be very long and need to exchange infonnation while they are

in progress, and in any case one subtask is unable by itself to maintain global consistency. Thus the
conventional understanding of transactions as failure recovery and serialization units is unacceptable for

cooperative work applications. In particular, recovering from failures by rolling back to the beginning of
a (sub)task and starting again is rarely appropriate for human developers who would then have to redo
much of their work, while serializing developer (sub)tasks does not permit cooperation while they are in

progress.

The notion of cooperative transactions has been devised (under many different names) not only to

provide the same intuition as conventional transactions but also to support the requirements of
cooperative work. The gist of many cooperative transactions models is that transactions are assigned to
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groups, where the transactions within a group employ a different concurrency control policy among

themselves than with respect to transactions in other groups 4, 14]. Concurrency control is typically
relaxed within a group, e.g., allowing simultaneous updates to multiple versions of an object or allowing

reads of uncommitted updates. Among groups, however, a stricter policy such as serializability is

common. Cooperative transaction groups allow collaboration among the designated members of a group,

through exchange of partial results, but enforces isolation among groups. See 1] for a survey of the

literature on concurrency control policies and mechanisms for cooperative work;

We are concerned in this paper with one particular shortcoming of nearly all the cooperative transaction

schemes. The shortcoming we have in mind is due to the problem of human management of in-progress

software development processes. Cooperative transactions are designed to isolate groups from other

groups and individuals, to allow cooperation among the members of a group while they carry out their

tasks, and to implement the notion that the fmalized set of updates made by group members is completed

and released atomically. The external view outside the group sees only the released system, and not the

partial results of in-progress work. However, the human managers of a software development project
cannot wait for the released version of the system! They must be able to determine progress at a much

finer granularity, dependent on the policies of the organization.

One possible approach would be to place the managers and all the personnel they manage in the same

group, but for large organizations this defeats the purpose of concurrency control. Everyone may

arbitrarily overwrite everything, without satisfying the consistency constraints of forward progress!

Alternatively, each manager could be placed individually in every relevant group, as is possible in the

participant transactions model which permits overlapping groups 7], but the symmetric cooperation

implied between these managers and the other group members may be undesirable. Not only can the

manager see the up-to-the-minute work of the developers, but the developers may inspect whatever the

manager is doing; this is not usually acceptable for real projects.

Further, it would be preferable to provide the managers with an abstract view concerned with the software

development process as opposed to the details of development products 10]. Managers are generally
concerned with the results that have been accomplished thus far, and are not terribly interested in which

versions of which files are currently being edited. Thus we propose that any cooperative transaction

model should be augmented with a distinct internal view that supports the human management process,

rather than trying to impose such access within the particular cooperative transaction model.

We have devised a general solution to this problem by analogy to the internal view of conventional

transaction management systems that implement the classical transaction model. A transaction manager

monitors the status of the currently in-progress transactions as well remembering the updates made by the

previously committed transactions. The transaction manager interacts with various resource management

systems, since transactions compete for computation cycles, primary memory, etc., and maintains internal

structures to guarantee atomicity and serializability, including locks, logs, queues, shadow copies of data

items, timestamps, distributed transaction coordinators and cohorts, and so on. The transaction manager

sees a highly dynamic database, while an end-user of even a cooperative transaction system sees a

relatively static database, since the database appears to change only when an update to an individual data

item is completed (e.g., cooperating users probably would not share editing buffers, but only saved files).

We propose to solve the impedance mismatch between cooperative transaction models and the

requirements of human management by unveiling the internal transaction management view at an

appropriate level of abstraction. Like the transaction management system, the human manager can then

use this internal view to manage resources, detect errors, recover from faults and in general monitor

progress, but in terms of the software development process rather than data management structures. That
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is, the human manager manages human and machine resources, detects erroneous interface and work

breakdown assumptions by development staff, recovers from these faults by reassigning responsibility
and correcting misconceptions, and in general keeps track of how far behind the schedule has slipped.

The human manager can go further than most transaction management systems, to restructure and change
the direction of software development tasks, for example, to dramatically scale down the planned
software product. On the other hand, transaction management systems can guarantee certain invariants,
such as “all faults will be recovered” and “all deadlocks will be detected”, while human management is
itself fallible.

More specifically, we notice that every traditional transaction management system has two views, the
transaction view of committed transactions and the transcendent view of in-progress transactions. The
transaction view is explicit and externally visible; the transcendent view is implicit and internal to the
transaction manager itself. In traditional applications, there is no reason to make the transcendent view

explicit, and many good reasons to keep system implementation details hidden from applications
programmers as well as end-users. The goal of a traditional transaction management system is that if the

application programmer defines his program according to the transaction view using the primitives
provided (e.g., begin-transaction/end-transaction blocks), then the transaction manager will use its
transcendent view to monitor global progress in order to guarantee atomicity and serializability. It is not

necessary for the application programmer to be concerned with the details of how this is accomplished,
and hiding this transcendent view is generally believed to ease the application programming effort.

A cooperative transaction manager should have similar transaction and transcendent views that support a

cooperative work concurrency control policy and a consistency model specific to the particular
cooperative work domain. Our solution to the human manager’s dilemma is to extend such systems to

uncover a portion of the already existing transcendent view to make it explicit and visible to selected
end-users (i.e., the managers). In particular, we provide an abstract view of the internal structures and
mechanisms that implement the cooperative transaction manager’s concurrency control protocol, while

continuing to abstract away from the lower level layers that support the failure recovery protocol, physical
data management, and so forth, which vary with the implementation. The result enables the human

manager to monitor the progress (or lack thereof) of the software project, and take appropriate action, in
the context of whatever cooperative transaction mechanism is employed.

Our preliminary ideas have been implemented in the INFUSE software development environment 6],
which supports change management and integration testing. INFUSE is intended to support very large
teams of developers, where it is crucial for the environment to enforce policies regarding the degree and
style of cooperation among the developers 11]. This is achieved in INFusE as follows.

A set of modules is selected in advance to be modified as part of a scheduled change. This change set is

automatically partitioned into a hierarchy of what we call experimental databases using a simple module

interdependency metric 8]. Developers make their changes to leaf experimental databases consisting of
one or a few modules, invoke static semantic consistency checks and perform unit testing, and deposit
their changes to the parent experimental database only when their work satisfies pre-specified constraints.
Within a shared experimental database, the multiple developers integrate their changes, invoking inter-
module static semantic consistency checks and applying regression and integration test suites, before the
set of modules can be deposited to the next level. At the top of the hierarchy, acceptance tests must be
passed before all the changes can be deposited to form the new baseline version of the system. The use of
a module interdependency metric in forming the hierarchy follows the theory that changes to strongly
coupled modules are more likely to affect each other, and thus should be integrated as early as possible,
while changes to weakly coupled modules can be delayed until later on when higher levels of the
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hierarchy are integrated.

Thus, INFUSE isolates individual developers and groups of developers following an isolationist

concurrency control policy. The hierarchy is strictly partitioned, so it is never the case that more than one

writer has access to a given module in a leaf experimental database, and readers who own sibling

experimental databases cannot access the module until all changes have been completed in the leaf and

deposited. Whenever it becomes clear at higher levels of the hierarchy that additional changes are

required, the current experimental database is repartitioned below that point to enforce such isolated

access while further changes are made.

However, INFUSE recognizes the pragmatic requirements of human managers to keep tabs on the progress

of the scheduled change. Managers and other privileged users may make queries that cut across the

hierarchy of experimental database, in order to determine the up-to-the-minute status of all modules in the

change set. The managers can display a snapshot of the hierarchy at any given moment, or request a

history of previous partitionings and repartitionings due to repeated changes (the “yo-yo” effect)

required below a selected node in the hierarchy. Further, any developer may request creation of a

workspace 5] that gathers together a selected set of disjoint experimental databases, with the permission
of the other developers affected, in order to carry Out early consistency checking and testing with respect

to modules otherwise isolated from each other until higher levels of the hierarchy. This is useful when it

is known that the scheduled changes will result in greater coupling among these modules or otherwise

specifically involve these modules’ interfaces.

Thus ll’4FUSE supplies a transcendent view to managers of software development projects, to aid them in

monitoring the progress of the software development process. This transcendent view is lacking in all

other cooperative transaction models that we know of, even though it is clearly required for most practical

applications. Unfortunately, the transcendent view we have developed is not sufficient in itself since the

access it provides is read-only. In particular, it is not possible in INFUSE for a manager to modify the

organization of in-progress transactions when a problem is discovered. Therefore, the transcendent view

capability must be coupled with some facility for restructuring in-progress transactions, such as the split-
transaction and join-transaction operations 12].

The split-transaction operation allows one on-going transaction to be split into two or more transactions

as if they had always been independent, separating the data items accessed by the original transaction

among the new transactions in a serializable manner. New developers may take over the new

transactions, to improve progress towards the goal of a coherent working system. The join-transaction

operations permits two or more on-going transactions to be joined into one, combining the data items

accessed by the originally separate transactions as if they had always been part of the same transaction, so

that the changes are released together.

The join-transaction operation is relatively easy to implement, but the split-transaction operation requires

support to aid in the determination as to whether the desired split is valid. Both operations require aid

from the software development environment in notifying affected developers of the potential changes to

their work assignments and checking whether these changes make sense from the viewpoints of the

individual developers. In INFUsE, the split-transaction and join-transaction operations would be

implemented by dividing and merging experimental databases, respectively.

The transcendent view augmented with these transaction restructuring operations seems sufficient to

support practical human management considerations towards making forward progress during software

development. It seems possible to apply these ideas to a range of cooperative transaction models, not just
INFUSE, and to support other cooperative work applications, not just software development. It should not
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be very difficult to implement the transcendent view as part of a transaction manager already supporting a

cooperative model, by making available an abstraction of the existing internal processes and structures.
The feasibility of augmenting another transaction model with the split-transaction and join-transaction
operations has previously been shown 3].
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Abstract

We investigate transaction management support for applications in a multimedia telecommu

nication environment. Implementing the applications as distributed cooperative tasks operating
on shared objects is expected to provide the needed flexibility and reliability. We propose an in

teractive transaction (ITX) model that allows definition, monitoring, and real-time control of the

cooperative tasks. To support the desired level of consistency in managing the shared objects,
it provides a framework for using correctness criteria in various extended transaction models and

supports a new correctness criterion, called freed point, that is motivated by the applications of in

terest. By enforcing a partial fixed point execution criterion, we can also achieve the effects of many

extended active database mechanisms such as triggers, constraints, and active views, in a unified

conceptual framework. An extended version of this paper can be obtained from the authors.

I. Introduction

With advances in communication and computing technologies, current voice-based telecommuni

cation networks are expected to evolve towards multimedia communication environments. An

example of a basic application (also called “service”) in this evolving environment is that of a mul

timedia conference application. It supports multimedia communication among a number of users

at different locations at the same time.

We investigate implementing applications as a set of cooperative tasks manipulating shared

objects to achieve the application objectives. Shared objects can be application objectives, state

information and media resources. Since the shared objects can be stored reliably in databases, and

the control is distributed, the distributed cooperative task model is robust to local failures and

allows more flexibility.
Transaction support for cooperative tasks on shared objects is a complicated and application

dependent problem 3]. To support applications in a multi-media communication environment, we

propose the interactive transaction (ITX) model that supports several features not found in earlier

extended/long-running transaction models (e.g., 6] 4] 8] 2] 9] 1] 5]).
Unlike most of these models which execute subtransactions only once, an interactive transac

tion, ITX, is a feedback control process that interacts with the environment iteratively to satisfy

(possibly user defined) cooperative objectives. Cooperative objectives are defined in terms of the

observations (of the types defined later) on the objects shared by the cooperating ITXs. The
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system appears to be in a stable state to an ITX when its observations remain unchanged. Such

stable states are characterized by the correctness criterion of fixed point.
To achieve the cooperative objectives, multiple ITXs indirectly interact with each other by

issuing transactions (TXs). TXs are atomic, but need not be serializable. An ITX remains active

until some predefined termination condition is met. While an ITX is active, it monitors and reacts

to the changes in the states of the shared objects, possibly by repeated execution of its TXs. The

execution of the TXs is controlled by the correctness criteria of the ITX. Both the termination

condition and the correctness criteria are specified by the application logic and the users. In the

multimedia conference application, a set of ITXs, one for each user participating in the conference

call, monitor and manipulate the shared objects to achieve the next objective. Authorized users

can add change media type or request addition of a user or media by simply changing the states

of shared objects. In response, ITXs execute some or all of its TXs to allocate or deallocate the

resources, or propose alternatives by updating shared objects affecting other ITXs. Eventually,
the system wifi reach a fixed point that agrees with the cooperative objective.

The contributions of the ITX model are:

• A powerful high level feedback control framework supporting correctness criteria used in

several extended/long-running transaction models 2] 7] 1] 9]. A correctness criterion is

defined over execution states (as in most previous models) as well as input and output.

• A new fixed point correctness criterion for the definition, monitoring, and control of the dis

tributed cooperative tasks implementing applications of our interest.

• A partial fixed point based execution control criterion supporting active database features such

as trigger, constraints, active views, and snapshots.

Section 2 presents the proposed interactive transaction model and discusses how various correctness

criteria can be integrated in the ITX model. Section 3 presents the partial fixed point control

criterion and discusses why various extended database functionalities can be achieved by enforcing
the partial fixed point correctness criterion. Section 4 identifies some of our future work.

II. Interactive Transaction Model

An application is implemented as a set of cooperative tasks, one for each participating user or user

agent. In Figure 1, two cooperative tasks represented by ITX1 and ITX2 perform a cooperative

activity by issuing a set of TXs. The shared objects are stored possibly in multiple and hetero

geneous databases. The effects of the committed transactions lead to changes in the states of the

updated shared objects and, in turn, are observed by all interested ITXs. An ITX observes the

state changes (shown by observation arrows) by submitting a TX that returns the information

about the states of the shared objects or by other implementation mechanism such as triggers (this
is discussed further in subsection IIIB).

Definition: An ITX is (statically) defined as a tuple (ID, {TX~}, ACC), where ID is the

identifier, {TX~} is the set of n transactions, and ACC is the acceptable correctness criteria for

the ITX.

Dynamic behavior of an ITX can be represented as a feedback controller using the ACC as a

time-varying control function. In other words, an ITX uses its ACC to control the execution of

the TXs. The ACC is composed of one or more correctness criteria defined over three types of

observations, denoted {O~}: input (i.e., values of the objects in the read set), output (i.e., values
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of the objects in the write set), and execution state (status) of each TX in {TX~}. ACC can

represent different correctness criteria used by various transaction models. Examples include:

1. Goal States: The set of observations, {O~}, is the fail/succeed/executing/not-yet-issued
(f/s/em) status of {TX~} 2]. Goal states allow for specifying a termination criterion such

as, “If {0~} matches the specified pattern then terminate the execution of transactions.” For

example, the ACC of an ITX consisting of three transactions can be defined as a {O~, 02, 03}
= {,, f,s} or {s, ,, 4. This ITX should terminate when the executions of the TXs result in

either of the two execution statuses.

2. Scheduling Dependency: The set of observations, {0~}, are the same as in the previ
ous case. However, the ACC specifies a partial order on {TX~} based on {0~} to enforce

precedence predicates and temporal predicates 2].

3. Commit/Abort Dependency: The set of observations, {0~}, are either commitment or

abortion states of the TXs. The ACC is defined as a partially ordered dependency graph
involving the commit dependencies and abort dependencies among transactions 7].

4. Data Access Control: One can define access control criteria for the. elements of {0~} in an

ACC. For example, one can specify (a) data delegation criteria, as in the ACTA framework

7], (b) invariants between transactions, as in the migrating transaction model 1], or (c) the

patterns and conflicts using finite state machines, as in the cooperative design model 9].

III. Dynamic Behavior and the Fixed Point Criterion

In this section, we present the intuition and definition of a fixed point, a new correctness criterion

motivated by telecommunication applications, and discuss the dynamic behavior and control of

ITX supported by a partial fixed point criterion.

A. Definition of Fixed Points

A distributed cooperative activity is accomplished by executing a set of ITXs. Cooperative ob

jectives define fixed points to be reached iteratively by each ITX. For each iteration, the ITX
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obtains a set of observations (either returned by its TXs or by a system supported mechanism).
The observations resulting from (i.e., obtained during) the latest iteration are compared to the

previous iteration. When two consecutive observations of all the TXs are equivalent, then, the

system is at a fixed point. At a fixed point, the ITX remains active to detect further changes until

a termination condition occurs. If a change is observed, the ITX will be reexecuted iteratively to

reach a new fixed point.
We now define the fixed point criterion of an ITX. Each execution trace (i.e., iteration) of an

ITX involves execution of some or all of its transactions in a partial order’. The mth execution

trace of an ITX, {TX~(m)}, is defined as {TX,(m), ...,TX:(m)} where TX, (i < n) is the last

transaction executed for the mth trace (m is called the trace number, i is called the transaction

label). Let AS(m) = {O~(m)} denote the observation set of the mth trace of the ITX. It is a set

of observations obtained corresponding to {TX2(m)}.

Definition: An AS(m) is at a partial fixed point up to TX3(m) if {01(m — l)} = {O~(m)}
for i = 1 to j and j < n (where both observation sets are obtained by executing the TXs in the

same order). AS(m) is a fixed point of the ITX if {O~(m — 1)} = {O~(m)}.
To further improve the dynamic adaptation capability, we propose a partial fixed point crite

rion by specifying that a TX,+i(m) can only be executed when a partial fixed point is reached for

AS(m). This results in allowing an ITX to continue only if the previous transactions observed

no state changes and prevents the ITX from progressing if the states of the shared objects have

changed. Optionally, we can also specify that AS(m) should reach a fixed point within time ~
to provide a time out (for deadlock resolution). The partial fixed point criterion is application-
independent, and is orthogonal to the application-dependent components of the correctness criteria

described in the previous section. Thus, the ACC for an ITX can be defined using the fixed point
criterion along with zero or one or several application-dependent correctness criteria. Furthermore,
the ACC can define temporal relations among multiple fixed points to govern the execution behav

ior of a long-running task. The following conference call example demonstrates this for observations

involving output of transactions.

Example: Let an ITX be composed by two transactions. TX, observes the set of active confer

ence call participants, L, and TX2 controls whether the user is to drop out or join the conference.

We can define the application-dependent ACC as a partially ordered sequence of conference objec
tives {{john,mary,gary},{{mary,gary,X} or {john,gary,X}}}. ITX will first try to reach the

objective {john,mary,gary}, then to reach {mary,gary,X} or {john,gary,X}. As a result, two

sessions of a conference call can be defined in the ITX. When “john” or “mary” drop out of the

first session of the conference call, a third person “X” must be connected.

B. Dynamics of Fixed Point Criterion

While the observations of fixed points are used for feedback control of the overall behavior of

an ITX, the partial fixed point criterion provides a unified conceptual framework for supporting
triggers, integrity constraints 5], intertransaction invariants 1], and active views. The state changes
that affect the observation set of some transactions may be detected as violations of a partial fixed

point. On detecting these violations, ITX reexecutes transactions to satisfy the partial fixed point
criterion. The reexecution of a transaction based on state changes, can be used to implement

1The partial ordering of the executed transactions is determined by the application logic and may also

be limited by the parallelism allowed in the implementation.
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triggers, constraints, invariants, and active views. Such an implementation many not be efficient,
however.

The partial fixed point criterion can be supported by observing changes in the observation set

of the previously executed transactions. Observations can be obtained by (a) an iterative strategy

that involves repeated execution of TXs executed so far, or (b) by system supported observation

mechanism (such as trigger), if no change in the observation set is noted, ITX may progress by

issuing additional transactions.

In the second strategy, when different observations are received corresponding to the objects
accessed or manipulated by one or more previously completed transactions, the currently running
transactions are aborted, and the affected transactions are reexecuted. This can transitively result

in reexecution of additional transactions that depend on the reexecuted transactions. For ITXs

consisting of large number of transactions, the second strategy is expected to be more efficient.

IV. Future Work

Planned future work include, (a) understanding various correctness criteria with respect to the mul

tunedia communication applications and the ability to represent them in this model, (b) prototyping
an application, (c) investigating efficiency and robustness issues of alternative implementations, and

(d) implementing the ITX model and the prototype application using Prolog or C++, and using
an object oriented data store for shared objects.

We would like to thank Nancy Griffeth, Will Leland, Brian Coan, Linda Ness, Jane Cameron

and Ming Lai for their valuable comments that helped us to significantly improve the technical

report and this short paper.
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1 Introduction

A transaction constitutes a unit of work in a database system. Systems that use transactions

have to guarantee four basic transaction properties, namely, atomicity, consistency, isolation and

durability (also called the ACIDity properties). Most DBMSs strive to guarantee these properties

through the use of concurrency, commitment, and recovery algorithms. Transactions have been a

successful technology for building meaningful and extensive applications over the last few decades.

However, with the wide spread use of DBMSs in advanced applications, the suitability of these

transaction properties has come under question. It has lately been argued that while it is desirable

for the system to guarantee the ACIDity properties, it should be up to the applications to decide

which of these properties they need to enforce and which they can trade for more flexibility or

higher performance.

This paper introduces a new transaction model, called Flexible model, which relaxes two of

these properties, namely, atomicity and isolation. While the Flexible model is studied in the context

of the InterBase project1, it is formulated and is intended for general use.

The new model outlines the goal of flexible execution control. Three important notions of the

Flexible model are: function replication, dependencies (both external and internal) and compen

satability. Suppose that an application is implemented as a transaction which has to perform a

set of tasks. Function replication states that it is usually possible to perform a specific task of

an application in more than one way (see the example in the next section). Therefore, we can

compose a set of subtransactions to implement a specific task of an application. The set of sub-

transactions which implements the same task are said to be functionally replicated (or functionally

quivalent)RELL9O]. Function replication enables us to have more than one acceptable execution

path within a single transaction. As a result, transaction execution becomes resilient to failure. In

the event that some subtransactions fail, the transaction can still be “successfully” executed. The

execution paths of a transaction in the Flexible model are nondeterrninistic, i.e. the actual path
of execution depends on the patterns of subtransaction failure occurring during the transaction

execution. It is also possible to leave it up to the user to decide which path of execution to commit

by scanning through all paths of the transaction execution.

N. Boudriga, A. Elmagarmid, E. Kuhn and M. Rusinkiewicz have all worked on this project and contributed to

various stages of the work reported in this paper.

1lnterBase is a project in the Indiana Center for Database Systems that studies issues of transaction management

and consistency in the multidatabase area. The InterBase prototype has been built and it currently includes Sybase,

Ingres, Guru, Dbase IV, and Oracle. In addition it also integrates various other non-database packages.
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The notion of dependency is very important in the Flexible model. Two categories of dependen

cies, external dependency and internal dependency can be specified over the set of subtransactions

of a global transaction. External dependency specifies the dependency of the execution of subtrans

actions on events or objects outside the transaction. For example, we can specify the dependency
of subtransactions on time or on cost functions. The external dependency provides useful infor

mation for scheduling the execution of subtransactions to preserve the execution autonomy 2~ The

Flexible model also allows a user to specify the internal dependencies which relates the subtrans

actions of the same transaction. The internal dependencies explained in this paper are success

dependency and failure dependency. Other useful internal dependencies are commit dependency
and abort dependency CR90].

Finally, a transaction in the Flexible model can have two types of subtransactions, compensa

table and non-compensatable. This results in mixed transactions. The mixed transaction concept

allows flexible control of the isolation granularity of transactions. Those subtransactions which are

non-compensatable must run in isolation of the rest of the system (i.e. maintaining isolation prop

erty), while the compensatable subtransactions can be committed once they are completed and,

therefore, reveal their effects to other transactions before their composing transactions commit (i.e.
compromising isolation property) ELLR9O]. By properly specifying the types of subtransactions,
we can control the isolation granularity of a transaction to be as large as the whole transaction (as
in nested transactions Mos8l]) or as small as subtransactions (as in Sagas CM587]).

This paper is organized as follows. In Section 2, we present the Flexible model by describing
the form of a Flexible transaction and giving an example of a Flexible transaction. In Section 3, we

present two methods for implementing the Flexible model. Section 4 summarizes this paper.

2 The Flexible Model

Dependencies:
Let us consider a transaction which consists of a set T of subtransactions, T = {ti, t2, ..., t,~ }.
The execution of a subtransaction t~ can depend on the failure or the success of the execution of

another subtransaction. Furthermore, it can be dependent on some external parameters (such as

time). More precisely, we define:

Success dependency: A subtransaction t~ is success dependent on subtransaction tj if t~ can be

executed only after tj is successfully executed.

Failure dependency: A subtransaction t1 is failure dependent on subtransaction tj if t1 can be

executed only after t~j is executed and failed.

External dependency: Let X be a set of parameters (X is disjoint from T). A subtransaction t~

is externally dependent on X if the execution of t1 depends on the truth of a predicate on X.

Form of Flexible Transactions:

In order to capture the notion of compensatability of subtransactions, we use the concept of type:

a subtransaction is said to be of type C if it is compensatable, it is of type NC if it is non

compensatable.

A Flexible transaction is formally defined as follows:

2The local database system decides when to execute a subtransaction for a global transaction VPZ86I.
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Definition 1 A Flexible transaction T is a 5-tuple (B, 8, F, II
, f) where

• B= {ti, t2, •‘‘, t,~} is a set of typed subtransactions called the domain of T;

• S is a partial order on B called the success order of T;

• F is a partial order on B called the failure order of T;

• II is a set of external predicates on B;

• f is an n-ary boolean function defined on the set { 1, O} and is called the acceptability function

of T.

To illustrate the above definition, we use as an example the following travel agent transaction.

Example: Consider a travel agent (TA) information ystemGra8l]; a transaction in this system

may consist of the following tasks:

1. TA negotiates with airlines for flight tickets.

2. TA negotiates with car rental companies for car reservations.

3. TA negotiates with hotels to reserve rooms.

Let us assume, now, that for the purpose of this travel, two airline companies (Northwest and

United), one car rental company (Hertz) and three hotels (Hilton, Sheraton and Ramada) can be

involved in this trip. The travel agent can implement these tasks as

1. Order-a-ticket from either Northwest or United airlines.

2. Rent-a-car from Hertz.

3. Reserve-a-room in any one of the three hotels.

These three tasks can be implemented respectively by three sets of functionally equivalent
subtransactions: {t1,t2}, {t3} and {t4, t5, t6}, where the ti’s are defined as follows:

ti Order a ticket at Northwest Airlines;

t2 Order a ticket at United Airlines;

t3 Rent a car at Hertz;

t4 Reserve a room at Hilton;

Reserve a room at Sheraton;

Reserve a room at Ramada.

In addition, we assume the following: (1) the order-a-ticket subtransactions can not be compen

sated; (2) the order-a-ticket subtransactions must run within business hours from 8AM to 5PM and

t2 will be executed only after t1 is executed and fails; (3) the rent-a-car subtransaction must be exe

cuted after the order-a-ticket subtransaction and the reserve-a-room subtransaction must be under

the budget of $100; (4) the transaction succeeds when order-a-ticket, rent-a-car and reserve-a-room

succeed. We propose the following Flexible transaction for the travel agent transaction.
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B = {t1(NC),t2(NC),t3(C), t4(C), t5(C), t6(C)}

S = {ti -.< t3,t2 -~ t3} F = {ti -< t2}

11 = { P, Q } where P and Q are two predicates defined by
P = { 8 < time(ti) < 17, 8 < time(12) < 17 }

Q = { cost(t.~) < $100, cost(t5) < $100, cost(t6) < $100 }

f(xi,x2,x3,x4,x5,x6) = (xiAx3Ax4) V (xiAx3Ax5) V (xiAx3Ax6) V

(x2Ax3Ax4) V (x2Ax3Ax5) V (x2Ax3Ax6)

Execution of a Flexible Transaction:

To discuss the execution of a Flexible transaction, we first introduce the notion of transaction

execution states.

Definition 2 For a Flexible transaction T with m subtransaetions, the transaction execution state

x is an m-tuple (X1,X2,...,Xm) where

N if subtransaction t2 has not been

submitted for execution;

—

E if t1 is currently being executed;
—

S if t has successfully completed;

F zf t~ has failed or completed without

acheiveing its objective;

While successfully completed for a compensatable subtransaction means that the subtransac-.

tion is committed, successfully completed for non-compensatable subtransaction means that the

subtransaction is in a prepared state Gra78]. The transaction execution state is used to keep track

of the state of execution of subtransactions in a Flexible transaction. The acceptability function

appears as a partial function defined on the set of execution states. It is computable whenever all

x~s occurring in its expression are equal to either S or F. Hence, the acceptability function reflects

the acceptability of an execution state. Whence the following definition

Definition 3 Let T be a Flexible transaction and X the set of its execution states. The acceptable
state set, A, of the Flexible transaction is the subset

A = { x E X f(x) = 1}

In the previous example, the set of acceptable states is defined by

A_—{(S, -, 5, S, -, )}u{(S, -, 5,-, S, 4}u

{(S, -, S, -, -, S)}u{(, S,S,~, S, )}u

{(, S,S,S,~, )}u{(, S,S,,, S)}

The execution of a Flexible transaction start from the initial transaction execution state with all

state variables x, (i = 1, m) set to N, scheduling subtransactions for execution, and terminates

either when no subtransaction can be scheduled or an acceptable state is reached. In the former

case, we say that the transaction fails; while in the latter case, we say that the transaction succeeds.

For a detailed scheduling algorithm, we refer the reader to LEB9O].
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3 Implementation Methods

Two approaches have been proposed to implement the Flexible model LEB9O, KELB9O]. The first

approach is based on the Predicate Transition Nets. In this approach, a Flexible transaction is

mapped into a Predicate Transition Net. We then use the derived Predicate Transition Net as an

internal data structure to control the execution of the Flexible transaction. We refer to LEB9O] for

the details of the control algorithm. The second approach is to use the logic paradigm. We have

designed a parallel logic transaction language, called PLTL, which is an extension of the sequential
PROLOG for parallel programming. We can specify a Flexible transaction program using the PLTL.

Currently, we are prototyping an execution environment for the PLTL. For a detailed description
of PLTL, we refer to KELB9O].

4 Conclusion

In this paper, we presented a new transaction model to support flexible execution control over

transactions. The features of this model are useful for general applications. Especially, it is useful

for transaction processing in multidatabase systems which is characterized by the requirement of

local autonomy. As in a multidatabase system, the local database systems may decide whether

or not and when to execute subtransactions for a global transaction. Flexible scheduling of the

transaction execution is a useful means to facilitate transaction processing in this environment.
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Abstract

Different users of a publication environment, e.g., authors, editors, layouters, typesetters, will together produce and distribute a

publication. We consider three different kinds of components in such an environment: assistants, agents, and tools. Assistants

provide users with homogeneous access to local tools, such as text editors, information bases etc. In addition, they support the

cooperation between users. Agents provide direct access to non-local tools, originally available only to the assistants of other

users. We propose a transaction model with the following properties: easy integration of existing tools, guarantee of ACID pro

perties by assistants and agents if tools supporting ACID transactions are accessed, and a higher degree of parallelism compared
to conventional transaction models.

1 Introduction

In recent years the wide availability of desktop publishing systems has given the impression that new ways and processes for

publishing will replace the traditional complicated multi-person publishing activities. However, it turned out that in most cases an

author is unable to maintain the quality of publication that was ensured by many specialists in traditional publishing, e.g., co-au

thors, editors, layouters, typesetters etc. To support the traditional publishing process electronically by an open distributed system

has become a major research and development topic.
In this paper, we investigate an open distributed publication environment for multi-media products that is being developed at

our institute. It supports a multi-user environment, where individuals or groups play specialized roles but want to cooperate and

use the system concurrently. They all require durability for their work, e.g. new parts of a document. Powerful versioning and

undo-facilities are also needed if different versions of documents are to be explored or changes are subject to rejection. It turns out

that traditional transaction management concepts offered by conventional database systems are not sufficient to cover these envi

ronments:

• The publication environment consists of lots of components. New components may be added any time. Users of the system

need an integrated system interface as they may not be aware which components are activated by their operations. A consis

tent transaction behavior is required, even if some components have their own, non-changeable behavior.

• The various users of the system need to utilize existing information sources — databases, knowledge bases, even active system

components. Many, but not all of them will offer atomic, consistent, isolated, and durable (ACID) transactions BHG87I. The

system should support global ACID properties if the involved tools provide them.

• Publication activities consist of manysub-activities, some of them of short duration, others lasting a longtime. Some of them

are quite independent, some are heavily dependent on each other. Both need transaction support.

We propose a modular, extendible transaction model that makes use of ‘encapsulated’ transaction management modules of

existing components, but also allows the integration of new transaction concepts. We use open nested transactions as our basic

model. By constructing trees of subtransactions that are managed relatively independent of each other, it allows the integration of

existing components. In addition, using the semantics of operations provides for a higher degree of concurrency compared to

transaction models that support read/write operations only.

Many other groups also investigate non-traditional transaction models. WR9O] proposes petri-net like synchronization
mechanisms for intra-transaction parallelism (as suggested in {ELLR9O] also) and persistency for every, even intermediate trans

action state. Sagas AGK87] provides a transaction model for heterogeneous systems, but global serializability is not guaranteed.
DE89] discusses a new correctness criterion for transactions in heterogeneous database systems by relaxing the serializability
definition. This approach reflects the problems of integrating unchangeable existing transaction managers in presence of local

autonomy. A concurrency control algorithm for cooperative editing, discarding serializability, is presented in EG89].
The paper is organized as follows. After introducing the general architecture we describe the requirements of transaction

management in our system. A solution based on open nested transactions is presented. We describe our extensions to the open

nested transaction model which are needed to support the requirements. In addition, we point out some open issues for further

research in this area. We will not describe algorithmic solutions. Instead, we will refer the interested reader to our other publica
tions where appropriate.



2 Publication Environment

In this section, we define the architecture of our publication environment. It has to support the complete publication process, be

ginning with the authors work and ending with the distribution of the resulting publication. Typically, these tasks will take place at

different locations on different nodes ofa computer network. Such a large and complex environment cannot be defined as a closed

system. Instead, we propose an open architecture. i.e., a system that consists of independently developed modules. This approach
allows us to extend the system dynamically with new modules, and replace old ones by modules with richer and improved func

tionality.

2.1 Architecture

In order to support a high degree of flexibility, we define two major system components: assistants and agents. Assistants are

system modules that support the users directly in theirfields of expertise by providing access to tools such as text editors, informa

tion bases, video production environments, etc. Each user has his own assistant. If a user’s task needs services from tools which

are not directly accessible by the user’s assistant, another assistant with access to these tools has to be consulted. An assistant may

concurrently consult different other assistants for different parts of his task. These assistants may also consult other assistants for

subtasks of the subtask, etc. For some tasks, no appropriate service might be found or exist in the system. In this case, the assistant

detecting this lack of functionality will ask his user for help.
Because assistants are directly assigned to users, users may not want their assistant to be consulted frequently by other assis

tants. Instead, a user may offer independent agents to perform these tasks. Agents can access a subset of the tools which are avail

able to the corresponding assistant. Therefore, the services provided by an agent are a subset of the services of the assistant, but are

independentof the assistant. That is, agents can be purchasedby other users and used directly by theirassistants instead of consult

ing the foreign assistant. Foreign assistants have to be consulted only if no corresponding agent is available or the corresponding

agent is not able to perform the requested task.

In general, assistants will reside atdifferent nodes ofa network. Agents which were purchased by a userfor a specific task will

typically reside on the same site as the user’s assistant. Hence, consulting an agent instead of the corresponding assistant also

saves communication costs.

New tools are included in the publication environment either by extending the functionality of existing assistant modules, or

by defining a new assistant module. Corresponding extensions in the agent modules offer the facilities of the new tools directly to

other assistants.

An Example

Assume an author uses the publication environment for writing a document (Fig. I). His assistant provides an appropriate envi

ronment, but during writing, the author needs some additional facts about a topic. Assume further, these facts are stored in an

information base which has been integrated into the publication environment, and the userowns an agent with access to this infor

mation base. The assistant will call the agent to execute the appropriate query, i.e., retrieve the additional facts. If the execution

succeeds, the author will get the required facts and may continue to write the document. If not, the user’s assistant will consult the

assistantof the information base expert, who offered the agent. Forexample, this may happen due to a mismatch ofentity names in

the query and in the schema of the information base. Let us assume that the assistant of the information base expert has an agent

which provides knowledge about the schema of the information base. In turn, this information is provided by access to a Knowl

author

writing a

document

expert for
information
bases

Fig. 1: An Example for an Author’s Request.
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edge Explorer KN89]. If the Knowledge Explorer is able to find an appropriate transformation of the query, the query will be

executed by the assistant of the information base expert, and the result will be sent to the assistant of the author. If all this fails, the

assistant of the information base expert may contact the human information base expert for help.
The same procedure will be used for the next steps of the publication process. Forexample, the editor will request through his

assistant parts of a book from the assistants of the authors. In turn, the type-setter will request the contents of the document from

the editor’s assistant.

2.2 Requirements with Respect to Transactions

From the above scenario, we can derive the requirements for the transaction model in our publication environment. Different

from the use of isolated tools for editing, retrieving information from databases, defining the layout, etc., the persons involved in

the publication process will interact through system facilities during the whole process. As a consequence, there is a need to con

trol information exchange in order to avoid unintended visibility of intermediate data, and there is a need to control changes to the

data, in order to avoid inconsistencies like lost updates and inconsistent reads BHG87]. In addition, the system must provide an

undo-operation for each user-operation, because complex operations may involve a lot of system components and may cause a lot

of changes which are not known to the user. Undoing parts of the work of a user must not affect the whole global transaction,

because too much previous work would be lost. Partial abort of user transactions is required.

Considering the technical level, new problems arise by the above requirements. The transaction model must support the

whole publication process and all the involved components in the same way. Otherwise, a user has to deal with different transac

tion models and interfaces, which is not acceptable.
Since our architecture is open for the integration of new tools, the transaction model must also be able to support the integra

tion of the transaction management schemes coming with the new tools. If it is not allowed or not possible to apply changes to a

new tool, for instance, if it had not been designed to be used in the publication environment, the integration will be difficult. Some

times the newly integrated systems will not provide an internal transaction management at all. In this case, we have to cover this

lack of functionality as far as possible in order to provide the required homogeneous interface.

Existing database systems mostly provide ACID transaction properties for their internal transactions. In many cases, a user of

the publication environment also needs ACID properties for his transactions. Hence, a transaction model must support the combi

nation of ACID subtransactions into a global ACID user transaction. If autonomous transactions in an existing system are still

allowed after the integration into the publication environment, special correctness criteria for the dependencies between the au

tonomous local transactions and the global transactions of the publication environment should be considered DE89].

Other components may need a different notion of transactions KS9O]. For example, hypertext writing tools should support

cooperation between authorsediting the same document. Hence, a definition for cooperation between transactions of different

users is needed. Because of this requirement, such transactions should be designated as co-transactions in contrast to ACID trans

actions. For co-transactions, the isolation property will be violated in a controlled way.

Therefore, the global transaction model in our environment has to support the combination of transactions with different

correctness criteria into global transactions. The properties of these global transactions depend on the transaction properties of the

involved systems. For example, if a user makes changes to data that is stored in a database and to text maintained by a hypertext
editor inside of one transaction, ACID properties should be ensured for the users view ofhis changes to the database, independent
of the non ACID properties for the changes in the hypertext editor.

3 Transaction Model

All these requirements can only be fulfilled by a modular, extendible transaction model, which is able to incorporate existing
transaction management schemes such as ACID transactions, and new ones specially designed for components of the publication
environment. We propose the use of open nested transactions BBG89, MR9 1, RGN9O,’Wei86, WHBM9O] as the general princi

ple of our transaction model. After introducing the principle of open nested transactions we explain the usage in our environment.

3.1 The Principle of Open Nested Transactions

Open nested transactions constitute transaction trees (Fig. 2). The root node is defined as the user transaction, also called top-level
transaction. The sons of a node are defined by the actions of the transaction assigned to this node. We call them subtransactions,

because they can be divided into actions, too. This scheme continues until the actions are indivisible, e.g., page operations. In

general, the depth of the tree varies for different transactions.

In contrast to closed nested transactions Mos85],open nested transactions make the changes ofa subtransaction visible at the

end of the subtransaction, not at the end of the top-level transaction. But the results must not be visible to every other transaction.

In order to avoid inconsistent use of the results of committed subtransactions, only those (sub-)transactions which commute with

the committed one are allowed to use the results. Commuting means that the result of the execution of both transactions is inde

pendent of their execution order. At the end of the global transaction, the results of all subtransactions become unconditionally
visible to other transactions, as it is the case in flat transaction models.
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Open nested transactions provide a higher degree of parallelism than conventional models, because of the controlled visibili

ty of immediate subtransaction results. For example, two increments of a counter commute and can therefore be executed concur

rently. If only read/write semantics are considered, two concurrent increments (=writes) cannot be allowed. A drawback of open
nested transactions is the more complex recovery compared to conventional flat transactions. Recovery for open nested transac

tions requires the ability to undo committed subtransactions, if the calling transaction is aborted. Compensating subtransactions

which execute inverse operations are used for this purpose WHBM9O]. Each subtransaction can be aborted independently of

other subtransactions and its calling transaction, i.e., partial abort of global transactions is possible.

3.2 The Usage of Open Nested Transactions

In our publication environment, an assistant creates a top-level transaction for a specific task. Those pafls of the task which can be

executed locally by the assistant are executed as subtransactions in the corresponding tools. The other parts are given to agents of

the assistant — if applicable — or to other assistants. An agent calls subtransactions on his tools, which will finally call indivisible

actions. An assistant acts like the requesting assistant and calls his agents orotherassistants. Recursive calls are allowed, but must

not lead to an ultimate calling loop, i.e., an infinite depth of the transaction tree.

Example (continued)

The author’s assistant creates a top-level transaction for getting the facts (Fig. 3). This results in subtransactions executed by the

requested agents and assistants, and subtransactions executed in the accessed tools. The tools create actions on their own decision,
which are independent from agents and assistants. The example only represents a querying function. However, notice that our

transactions may also involve update actions, e.g., the growth of the knowledge base in the knowledge explorer.
The most important advantage of open nested transactions for homogeneous database systems is the concurrency gain. For

the use in the publication environment, a second advantage becomes important: The concurrency control and recovery for differ

ent nodes of the transaction tree can be done by separate modules. For a more detailed discussion of transaction management at

different nodes, we have to distinguish between two kinds of nodes:

1. nodes ‘in the middle’ of transaction trees and

2. leaf nodes.

Nodes ‘in the middle’ of transaction trees consist of subtransactions performed by agents and assistants. They execute at least

some of their actions as subtransactions and have to check for the commutativity of these subtransactions with other subtransac

tions. Therefore, the concurrency control has to ensure serializability regarding the commutativity. By this scheme, a high degree
of concurrency can be achieved, if the commutativity is defined with respect to the semantics of the subtransactions. For example,
consider two transactions working on the final version ofa document. Assume, the first transaction represents applying a spelling
checker to the entire document, and the second transaction inserts a new section, which has already been checked for spelling
errors. In conventional systems, the transactions cannot run concurrently, because both apply changes to the document. But the

transactions commute, since the result offirst executing the spelling checker and after that inserting a correct section is the same as

first inserting and then checking for spelling errors.

Subtransaction calls between assistants may cross site boundaries. That is, a protocol for atomic commitment in the open

nested model has to be used MR9 1]. Even though the distribution makes the transaction model more complex, distributed trans

actions give us the chance of intra-transaction parallelism Mos85J.
In the accessed tools, no specific transaction management is necessary. Because no further subtransactions are executed, con

currency control can be done according to conventional, flat transactions. The same is true for recovery. Redo and undo can be

done by simply using after and before images. Hence, existing transaction managers can be used for transactions that consist of

leaf actions without any changes.

-

-

Subtransactions

-
-

- Indivisible

actions

Fig. 2: An Open Nested Transaction.
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Fig. 3: Transaction for the Example.

Different concurrency control and recovery algorithms may be used for transaction management of the tools. If ACID trans

actions are provided by a transaction manager, e.g., by a database system such as DBS I of Fig. l,these properties can be preserved

by the transaction management of the agents and assistants. That is, our model provides ACID user transactions if all the involved

tools also provide ACID properties for their transactions. If other transaction models, e.g., for hypertext systems, do not provide
such properties, they may also be used as bottom-level transactions. The impact of the mixture of different bottom-level transac

tion properties on the properties of the top-level transaction will be subject of further studies, especially the consequences of inte

grating transaction models that allow cooperation between co-transactions.

4 Conclusion

We propose the use of open nested transactions for a publication environment. As a major achievement, our model allows the

integration of new tools into the publication environment without changing the overall architecture. The integration is done by

providing appropriate assistant and agent modules. The transaction managers of the new tools are simply plugged in to the global
transaction management. If all the connected systems provide ACID properties for their transactions, the transactions of the pub
lication environment users will also have these properties. In addition, our transaction model provides a higher degree ofparallel
ism compared to flat models, and allows partial transaction undo by aborting subtransactions which are relatively short compared
to whole user transactions. The proposed transaction model is currently under implementation within the project VODAK which

goal is the development of an open object-oriented and distributed database system as a part of our publication environment.
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1 Introduction

The limitations of classical ACID transactions have been discussed extensively in the literature 1]. Developed
in the context of database systems they perform well when the controlled units of work are small, access only a

few data items, and therefore have a short system residence time. Given this assumption, transactions could be

made atomic state transitions. Atomicity, taken verbally, means that there is no structure whatsoever that can be

perceived and referred to from the outside. In other words, if there is a unit of work that ha.s a structure, say, in

terms of control flow, which needs to be maintained by the system, it cannot be modeled as a transaction - and

current database systems, operating systems, etc. have no other means for dealing with that.

Now in distributed systems and in so-called non-standard applications like office automation, CAD, manufacturing
control, etc. one frequently finds units of work that are very long compared to classical transactions, touch many

objects and have a complex control flow which may include migrations of (partial) activities across the nodes

of a network 2]. Because the lack of appropriate system mechanisms to support this processing characteristics,

controlling such activities requires organizational means or enforces the application itself to take care of, e.g.

recovering the activity from a crash. But even simple examples like the mini-batch 3] demonstrate that then

substantial parts of the code are not application-specific, but have to do flow control.

The ConTract-model, first proposed in 4], tries to provide the formal basis for defining and controlling long-lived,

complex computations, just like transactions control short computations. It was inspired by the concept of spheres

of control 5], and by the mechanisms for managing flow that are provided by some TP-monitois 3].

The key observation is quite simple: Since we want to control long-lived activities, the computation itself must be

a recoverable object, and not just the state manipulated by it, as is the case with classical transactions. So any

execution suitable for non-atomic computations must have the following properties:

- There must be a way to describe control flow in both static and dynamic terms.

- The computation must be forward-recoverable, i.e.rather than rolling back the whole thing in ca.se of a

component crash - which is unacceptable for long-lived activities - the computation must be re-instantiated

and continued according to its specification.

- Since each computation needs its own local state (variables), this state must be recoverable, too. Of course,

the database is assumed to be recoverable anyway.
-

- Long computations will have to externalize results before they are completely done. This implies that unilat

eral roll-back is no longer possible 6]; one rather needs to specify compensating actions as part of the control

flow description.
-

- For the same reason, consistency definitions can no longer be based on serializability; they rather have to use

invariants defined on global state 2], 7]. -

- In most cases, it is not feasible to Jet some activity wait (in case of a resource conflict) until a long-duration
activity has completed. Therefore, part of the control flow description has to specify what should be done, if

a resource conflict occurs, how it can be resolved, etc.

These key ingredients of the ConTract model are explained in some detail in the following sections by a (simplified)
travel planning activity as illustrated in Fig. 1.

Doing flight, hotel and car reservations for a business trip is a typical activity that can be very long and sometimes

needs more than one session to be completed. It is therefore not possible to do the whole reservation procedure
within one transaction. To keep things simple there are only three airlines to be consulted for a flight and only two

hotel resp. car rental companies. These give an exclusive discount to each other (in this example) and therefore

are only booked in combinations (Cathedral Hill Hotel, Avis) or (Hilton, InterRent). We assume this application
to be run on a terminal of a travel agency connected to a worldwide network of heterogeneous computers running
the various databases.
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dollar;

city;

date_type;

boolean;

CONTROL_FLOW_SCRIPT

Si: Travel._Data_Input( in_context: ; out_context: date, from, to, cost_limit );

PARBEGIN

S2: Check_Flight_Schedule( in_context: “Lufthansa”, date, from, to; out_context:

S3: Check_Flight_Schedule( “British Airways”, );

S4: Check_Flight_Schedule( “PanAm”, );

PAREND

S5: Flight_Reservation( in_context: flight, ticket_price; );

S6: Hotel_Reservation( in_context: “Cathedral Hill Hotel”; out_context:

IF ( ok ) THEN 57: Car_Rental( “Avis” );

ELSE BEGIN S8: Hotel_Reservation( “Hilton” );

IF C ok ) THEN S9: Car_Rental( ...
“InterRent” );

ELSE SlO: Cancel_Flight_Reservation_&_Try_Another_One(.. );

END

Sil: Print_Documents( );

END_CONTROL_FLOW_SCRIPT

TRANSACTIONS

Ti C S6, 57 ), DEPENDENCY( Ti:abort I-”> begin:58 );

T2 C S8, S9 ), DEPENDENCY( T2:abort I—~> begin:S1O );

END_TRANSACTIONS

SYNCHRONIZATION_INVARIANTS_&_CONFLICT_RESOLUTION
Si: EXIT_INVARIANT( budget > cost_limit ), POLICY( check/revalidate );

S5: ENTRY_INVARIANT( (budget > cost_limit) AND (cost_limit > ticket_price) );

EXIT_INVARIANT( budget > cost_limit tickte_price );

S6, SB: ENTRY_INVARIANT( hotel_price <budget ),

CONFLICT_RESOLUTION: 5110: Call_Manager_to_Arise_Budget(
57, S9: ENTRY_INVARIANT( car_price < budget ),

CONFLICT_RESOLUTION: 5i20: Cancel_Car_Rental(

END_SYNCHRONIZATION_INVARIANTS_&_CONFLICT_RESOLUTION

Figure 1: A sample script ,,Business Trip”. (a) Graphical, (b) textual representation.

begin or

ConTract

End of

ConTract

travel

data input

check

flight schedules

rlight hotel car rental print

reservation reservation documents

ConTract Business_Trip

CONTEXT_DECLARATION

cost_limit, ticket_price:

from, to:

date:

ok:

flight, ticket_price );

ok, hotel_reservation);
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2 The ConTract Model

A ConTract is an invulnerable execution of an arbitrary sequence of predefined actions (called steps) according
to an explicitly given control flow description (called script).

2.1 Programming Model: Scripts and Steps

Scripts’ constitute the central ConTract mechanism to extend control beyond transaction boundaries. Control flow

between related steps can be modeled by the usual elements: sequence, branch, loop and some parallel constructors.

It is also possible to specify a loop over a tuple set forming a query result, e.g. to consult n dynamically computed

airline timetables in parallel.

The ConTract manager internally uses some sort of predicate transition net to specify activation and termination

conditions for a step. For example, step S5 in Fig. la is triggered when all three steps S2, S3 and S4 are finished.

The basic idea is that with a script the programmer gives only a declarative description of how to run an application,

e.g. how to concatenate steps to implement an application’s task, to define application specific synchronization

and recovery requirements and so on (see below). All aspects concerning execution control at runtime, however,

have to be done by an application independent system service called ConTract manager.

Steps are the elementary units of work in the ConTract model. Each step implements one basic computation of an

application, e.g. booking a flight, cancelling a reservation and so on. There is no internal parallelism in a step and

therefore it can be coded in an arbitrary sequential programming language. Its size is determined by the amount

of work an application can tolerate to be lost after a system failure.

In the ConTract programming model, coding these algorithmic parts is separated from defining an application’s

control flow. So the programming of a reservation step and the concatenation of steps to form the business trip

script of Fig. 1 are two different tasks, which may be even performed by different people. The consequence, though,
is that there are at least two ,,levels” of programming. The hypothesis is that this will be inevitable when specifying

and implementing long—lived, complex applications, no matter which framework one uses.

The idea behind this separation is to keep the programming environment for the actual application programmer

as simple as possible: Steps are coded without worrying about things like asynchrony, parallelism, communication,

resource distribution (localization), synchronization and failure recovery. In particular, the programmer of a step

does not have to consider whether a step or a set of steps (for instance (S6, S7) or (S8 S9)) is executed as an

ACID transaction. This decision is made at the script level in the Transaction part of the specification, see Fig.

lb. Moreover, logical and temporal dependencies between the outcome (resp. activation) of transactions and/or

steps can be defined there. If in the example transaction T1 fails, then S8 should be started. These dependencies

are controlled by the runtime system, the ConTract manager.

From the programmer’s view, steps will be run on a virtual machine which is arbitrarily reliable and executes in

single user mode. How to achieve this is discussed in the next sections.

2.2 Forward Recovery and Context Management

System reconfiguration, communication failures, node crashes and other failures should not cause an application

to turn undefined or, even worse, vanish without trace.

But that is what normal transactions would do for you without further application programming:

- An ordinary operating system process running application code is killed and forgotten after reboot. The user has

to know which application was killed and has to recover it manually.

- A transaction system rolls back all uncommited operations, which doesn’t matter for short transactions but is

unacceptable for long lived activities.

A reliable system, on the other hand, would resume (automatically after system restart or on user demand)

all ongoing computations and try to minimize the loss of work. In case a local computer fails during the sample

1 A graphical editor would be the optimal choice for a user-friendly script definition. Since here we are not concerned about semanLical

aspects, a Concurrent Pascal like textual language is used (Fig. Ib). Of course, there are other syntactic means for specifying control

flow, but this is not the point of this paper.
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ConTract, the agent would like just to turn to another terminal and to continue the suspended reservation procedure

right from the last valid ConTract state. The ConTract manager therefore tries to overcome resource failures and re

instantiates an interrupted ConTract by restoring the recent step consistent state and then continues its execution

according to the specified script.

The realization of this forward oriented recovery scheme implies that all state information a step’s computation
relies upon has to be recoverable. This so-called Context comprises the set of data defining an application specific

computation state. To re-instantiate an interrupted ConTract the following information is required

(a) the global state of the application, i.e. the involved databases;

(b) the local state of the ConTract, e.g. the program variables, sessions, windows, cursors etc. used

by more than one step;

(c) the gobal computation state. This means a stable bookkeeping in the ConTract system of which

event has triggered, which step has (or has not yet) been executed etc.

The context programing model is quite simple: Each step declares which context elements it expects to be available

when it executes and what relevant state information for further steps is produced with its completion.

In essence, the need for robust context management comes in as soon as one wants to have guaranteed stability
for long lived activities covering a set of related (trans)actions and finally ending up with the computation itself

becoming a recoverable object.

2.3 Synchronization and Conflict Resolution

ACID transactions deal with concurrency by ignoring it; this is what serializability is all about. Since each

transaction is atomic (and therefore small and short), it makes sense to maintain an execution order that is free

of influences of one atomic state transition on another. Creating a serializable schedule is the simplest way to do

that.

ConTracts are neither atomic nor short. They externalize some of their updates as they go (the term “commitment”

should be avoided, because it has two aspects to it: updates are externalized and the right to revoke them is waived),
but there is still a chance that these updates will be rolled back later on. Consequently, a ConTract might operate

using data that have been externalized early by other ConTracts.

This problem can be solved by generalizing an idea that was already proposed for special types of hot spots 7].
Rather than holding locks on objects, one remembers the predicates that should hold on the database in order

for the activity to work correctly. Put in a more application oriented style: No program needs serializability or

even worries whether or not it is serializable. Its only concern is to keep the database free of unsolicited changes
in the parts it works on. If this is guaranteed, this is isolated execution from that program’s point of view. Now

this observation is more than just another phrase for the same thing. Keeping the database free of unsolicited

changes generally means much less than preventing all the attributes, tuples etc. that have been used from being
modified at all. In many situations it is sufficient, e.g. to make sure that a certain tuple is not deleted; that a

certain attribute value stays within a specified range; that there are no more than x of a certain type of tuples,
etc. To implement synchronization based on the idea of “environmental invariance”, the ConTract system needs

two things:

First, it must be able to state the invariance predicates on the database defining its view of the world.

Second, it must be able to specify which of these invariants must be fulfilled for the next step to execute.

In the example of Fig. ib, step Si establishes that the travel budget (a tuple in the database) of the department
was higher than the cost limit allowed for that trip. Before a flight can be booked (S5), this must still be true. At

the end of this step the budget has been debited the ticket price, and so it only needs to be higher than the cost

limit minus the ticket price. The other invariants follow the same logic.

Since there are purely declarative specifications, some hints are needed to tell the ConTract manager and the

database system how to handle these invariants. One way to keep things “as they are” is to lock all objects as in

today’s systems. The ConTract manager at the DBMS would then have to manage long locks, i.e. locks that are

held beyond transaction boundaries. Instead of locks, the DBMS could use semantic synchronization techniques
like escrowing 8}, if the operations have the necessary properties. The most liberal approach is to use no locks at

all; this requires the check/revaiidate technique 7].
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Now if one accepts that the world might change while executing a ConTract, one has to cope with the situation

of an invariant having changed, such that the next step cannot be executed - like the department budget being

overdrawn in the example. In ACID transactions, such conflicts are not communicated to the application; rather

the system decides whether the transaction is rolled back or just has to wait. Both approaches do not make much

sense for long-lived activities. Therefore, ConTracts allow to explicitly talk about conflicts, and to specify actions

for conflict resolution. In the example, somebody must increase the budget in case it does not hold enough money,

or the whole business trip must be cancelled.

Of course, some ultimate resort must be built into the system to take over when all conflict resolutions have failed

to re-establish the invariant.

3 Conclusions

There is one aspect of ConTracts that has not been discussed in this paper, because many aspects are the same as

for the Saga mechanism 6]: Since updates can be externalized early, for each step (or group of steps), there must

be a compensation step to semantically undo the original operations (rectangular boxes in Fig. la).

Implementing ConTracts as an execution environment for long-lived, consistent distributed applications requires a

good deal of cooperation by the major system components. Without elaborating the details, here is a list of the

most important requirements:

- The database systems must be able to act as resource managers, i.e. they must accept external commit

coordination.

- Database systems must be able to understand long, recoverable locks, -i.e. locks that are miot bound to an

ongoing transaction.

- Database systems must notify callers about synchronization conflicts.

- There must be a transactional RPC-mechanism that is able to schedule and migrate tasks and processes for

requests.

- The operating system must provide relocatable processes.

- An naming service for steps, users and objects must be able to handle value-dependent roles.

- All components must support existence locks for preventing an object from being discarded while its existence

is assumed elsewhere. Additionally all objects must have a global “eternal” identity.

- Logs must be able to move from one node to another in the network.

This looks like a very demanding list. But if you realize that the ConTract mechanism is nothing less than a

general run-time system for reliable distributed applications, then this is exactly the set of problems that need to

be addressed.

This work was supported by the Deutsche Forschungsgemeinschaft under contract Re 660—2/2.
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1 Introduction

Many large companies use multiple databases to serve the needs of various application systems. One of

the significant problems in managing these databases is maintaining the consistency of inter-related data

in an environment consisting of multiple semi-autonomous and heterogeneous systems. We use the term

interdependent data to imply that two or more data items stored in different databases are related through
an integrity constraint that specifies the data dependency and the consistency requirements between these

data items. Management of such data implies that the requirement of mutual consistency among the

interdependent data is recognized and maintained by the system. Therefore, the manipulation (including
concurrent updates) of the interdependent data must be controlled to ensure that the mutual consistency
of data is preserved.

With the current emphasis on data as a corporate asset, whose integrity is of basic importance, the

management of interdatabase consistency is receiving more attention. Distributed transaction technologies
can be used to address some of these problems. However, distributed concurrency control and commitment

present serious problems when long-lived transactions span across systems with vastly different capabilities.
In this paper, we propose a transaction model which may be more suitable for maintaining consistency among
interdependent data stored in multiple systems. An important feature of the model is that the declarative

definitions of data dependencies and the mutual consistency requirements can be used to automatically

generate a set of related transactions that manage interdependent data.

The paper is organized as follows. In Section 2, we briefly discuss the specification of interdatabase

dependencies for data managed by multiple, autonomous databases. This information is stored in the

interdatabase dependency schema. In Section 3, we introduce the concept of polytransactions and discuss

how they can be derived from transaction specifications and interdatabase dependency schema. Finally, we

discuss a strategy for executing polytransactions.

2 Specification of Interdatabase Dependencies

The relationships between data items stored in multiple databases can be described by defining the data

dependencies and the mutual consistency requirements SR9O, RSK91].
Data Dependency is characterized by two aspects, structure of data dependency and control. The struc

tural dependencies may include full or partial replication, overlap of the informational content of the data,
vertical or horizontal partitioning, value or existence constraints, etc. The control aspect specifies the con

straints on updating the interdependent data. For example, the derived data may always be extracted or

aggregated from one database and stored in another one which is not directly updatable. In the case of

primary-secondary copies, the updates to the primary database are propagated to the secondary databases

through a coordinator-subordinate relationship.
Mutual Consistency Criteria specify the consistency requirement among related data items. In general,
the consistency requirements can be specified using three parameters: time, data states, and operations. The

immediate consistency SK89J requirement specifies that as soon as a transaction completes, all inter-related
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data are also mutually consistent. The immediate consistency can be provided by multi-site transactions

that commit updates at multiple sites together. The deferred consisiency allows specification of various levels

of time-delayed consistency, where it is possible that one of the interdependent data items is up-to-date

while the others may not be fully up-to-date (e.g., evenlualor lagging consts~ency SK89, WQ9O, SR9O]).

The requirements related to the data states determine “how far” the related data may be allowed to

diverge before the mutual consistency must be restored ABG88, BG9O). They may be specified by limiting

the number of data items that can be changed, specifying maximum allowed change in the value of a data

item, or limiting the number of operations allowed during the period the related data are inconsistent. The

consistency requirements may also state that the mutual consistency should be restored before or after a

specific operation is performed (or, before or after a specific event takes place).

Data Dependency Descriptors (DDDs) can be used to capture data dependencies and mutual consistency

requirements among interdependent data items RSK91]. A DDD is a triple < D,C,A >, where D is the

interdatabase dependency specification, C defines mutual consistency requirements, and A is the action that

must be performed when the consistency requirements are violated. The dependency specification defines

the relationship that exists between the set of the source data objects and the ~argeL data object. The action

routines can be used to specify complementary transactions that must be invoked when an udate performed

on an interdependent data item violates the mutual consistency requirements.

A In~erda~abase Dependency Schema (IDS) is a set of all DDDs to be enforced in a multidatabase

system.

3 The Concept and Properties of Polytransactions

The fundamental requirement to define a sequence of operations as a transaction is the correciness of the

update. We will assume that an update is correct if it does not result in a transformation of a data from

a consistent state to an inconsistent state ~. The interactions among concurrent updates and retrievals

must also be correct, as determined by the semantics of the application (this involves both, transaction

specification and IDS).
Transactions we are interested in may not have all the ACID properties. Depending on the application,

requirements other than correctness may optionally be imposed on updates performed on interdependent

data. In the case of compensaiable operations, their effects can be “undone” by issuing compensating

operations. For example, the flexible Lransac~ions in ELLR9O] allow specification of alternative actions

that can be invoked when some actions fail. A multidatahase transaction may accomplish its objectives

and complete successfully, even if some of its actions are not executed, thus relaxing the requirements of

atonuicity.

Sometimes, the interactions of concurrent update transactions require transaction isolation. In many

traditional applications, such as banking, this requirement is a very natural one. However, this requirement

becomes completely impractical in long-lived transactions where an operation may last several hours and

involve multiple data items of large granularity. Enforcing isolation in such cases may mean that no

concurrent activities are allowed. Sagas {MS87] divide long-lived transactions into subtransactions, such

that each subtransaction can be compensated, if necessary, and the isolation property of the transactions

is relaxed. Flexible transactions ELLR9O] may also relax isolation by allowing both compensatable and

noncompensatable subtransactions within a single global transaction.

Another frequent requirement towards transactions is durability, which states that once the transaction

is committed, its results must survive successive system failures. However, durability may not be required

for transactions that do not manipulate persistent data (e.g., a flight reservation transaction may specify

an expiration date, after which the reservation is withdrawn, if not confirmed.)

In a mnultidatabase environment consisting of multiple autonomous systems, the concept of global (multi-

database) transaction that is composed of well-defined subtransactions may be too restrictive. For example,

We say that interdependent data is in an inconsistent state if the consistency criteria (including interdatabase dependencies

in corresponding DDDs) are not satisfied.

45



the assumption that all subtransactions are defined at the time the global transaction is specified may be

unrealistic and impossible to enforce. Therefore, we introduce a more flexible notion of a polytransaction to

describe a sequence of related update activities.

A polytransaction (T+) is a “transitive closure” of a transaction T submitted to an interdependent
data management system. The transitive closure is computed with respect to the interdatabase dependency
schema IDS. A polytransaction can be represented by a tree in which the nodes correspond to its component
transactions and the edges define the “coupling” between the parent and children transactions. Given a

transaction T, the tree representing its polytrasaction T+ can be determined as follows. For every data

dependency descriptor DDD, such that the data item updated by T is among source objects of the DDD,
we create a new node corresponding to a (system generated) new transaction T’ to update the target object
of the DDD. T’ is a child ofT and updates the related data item(s) specified in the D-component of DDD.

When a user submits a transaction that updates a data item that is related to other data items through
one or more DDDs, this transaction becomes the root of a polytransaction. Subsequently, the system

responsible for the management of interdependent data uses the dependency schema to determine what

descendent transactions should be generated and scheduledthem in order to preserve interdatabase de

pendency. Execution of a descendent transaction, in turn, can result in generating additional descendent

transactions. This process continues until the consistency of the system is restored as specified in the IDS.

The ways by which a child transaction is related to its parent transaction within a polytransaction is

specified in IDS, possibly indirectly through the consistency requirements. This relationship is indicated

as a label of the edge between them in the polytransaction tree. A child transaction is coupled if the parent
transaction must wait until the child transaction completes before proceeding further. It is decoupled if the

parent transaction may schedule the execution of a child transaction and can proceed without waiting for

the child transaction to complete.
If the dependency schema requires immediate consistency, the nested transaction model may be used,

iii which the descendent transactions are treated as subtransactions that must complete before the parent
transaction can commit. Two-phase commit protocol may be used in this case. A coupled transaction can

be vital in which case the parent transaction must fail if the child fails, or non — vital in which case the

parent transaction may survive the failure of a child GGKKS9O].
Several new transaction paradigms have been proposed recently in the literature that are based on

various degrees of decoupling of the spawned activities from the creator (e.g., KR88]). Triggers used in

active databases DHL9OJ are probably the best known mechanism in this group. The main problem with

asynchronous triggers is that the parent transaction has no guarantee that the activity that was triggered
will, in fact, complete in time to assure the consistency of the data. An early application of this idea in

the management of interdependent data was discussed in WT89]. They used a table driven approach to

schedule complementary updates whenever a data item involved in a multi-system constraint was updated.
The parent transaction would then terminate, without waiting for a chain of complementary actions to take

place.
To allow the parent transaction some degree of control over the execution of a child transaction, the

concept of a VMS mailbox has been generalized in GGKKS9O]. Similar ideas have been presented in

BHM9O], and in HS9O], where the notion of a persistent pipe has been introduced. Both the generalized
mailboxes and persistent pipes allow the parent transaction to send a message to a child process and know

that the message will be eventually delivered. If such a guarantee is sufficient, the parent transaction may

then commit, without waiting for the completion of the actions that were requested. The parent or its

descendant may check later if the message has been indeed received and take a complementary or corrective

action.

4 Executing Polytransactions

Most of the work on multidatabase transaction management assume the existence of a multidalabase man

agemeni system (MDBS) which is responsible for the processing of all global transactions. Such MDBS
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architectures have transactions that are either local (execute at a single database without passing through
the MDBS interfaces) or are global CR90]. We propose an architecture that uses a dependency schema at

each site that stores the DDDs involving the interdependent data that can be updated at that node. Using
the concept of polytransactions, many of the transactions that are global transactions in the traditional

architecture can be performed as a collection of related single database transactions.

Two approaches to control the execution of niultidatabase transactions have been discussed in the liter

ature. Under the first approach, the MDBS controls the scheduling of all subtransactions of a transaction.

A disadvantage of this approach is that the set of all subtransactions and the precedence dependencies be

tween them must be known in advance. The second approach is used in active databases and uses triggers
to asynchronously schedule subtransactions based on sonie events, usually in a decoupled fashion DHL9O].
This approach involves procedural specification of triggers and is event driven.

We propose to schedule the polytransaction activities based on the information in the dependency schema

and the database states. This approach allows the transactioti schedule to be determined dynamically based

on the information stored declarativ#~ly in the dependency schema. Unlike triggers, this approach is state

driven and not event driven. We will illustrate this approach using an example.

Example: Consider a collection of telecommunication databases used by applications2 for planning and

establishing new services. Let us consider four databases as follows:

• DB1 contains information about each switch (an equipment that establishes circuits and routes tele

phone calls) and its contents (e.g., the equipment each of its slots contains).

• DB2 contains summary information about the equipments used in different switches for use by a

statistical application.

• DB3 is an operational database containing status information about each switch.

• DB4 contains planning information about the switches whose capacities are close to being exhausted.

Now consider the transaction Ti submitted to DB1 that modifies the status of one of the slots in the switch

as a result of installing new equipment in an available slot. Let us suppose that the in terdatabase dependency

specifies that database DB2 should be eventually updated to reflect the changes of the status of each of t.he

switches. Hence, transaction T2 will be scheduled to make required changes in DB2. Due to the eventual

consistency requirement of data between the data updated by Ti in DB1 and the interdependent data in

DB2, T2 can be a decoupled transaction. Let us further suppose that DB3 must be updated immediately
to reflect the change in the status of the switch. Therefore a transaction T3 must be scheduled. Because

of the immediate consistency requirement between the data Ti modifies in DB1 and the interdependent
data in DB3, T3 should be a coupled transaction and Ti cannot commit until T3 does. To continue our

example, if the change of the status of the switch (as stored in DB3) brings its capacity above a threshold

specified in the dependency schema, transaction T4 will be scheduled to add the relevant switch information

to DB4. If there is a lagging consistency requirement between the data in DB3 that is modified by T3 and

the interdependent dat.a in DB4, transaction T3 caii terminate before T4 is executed. When all transactions

resulting from Ti complete, the polytransaction completes.

Summary

Managing the consistency of interdependent data in a multidatabase environment is one of critical data

management issues. We introduced the concept of database dependency descriptor, that can be used to

specify the relationships between data in multiple databases together with the mutual consistency require
ments. These descriptors constitute the Interdatabase Dependency Schema. The information stored in the

dependency schema can be used to convert a transaction updating a data item in a single database into

2No imp1ica~ion about real applications in Beilcore or its clients is intended.
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a. polytransaction that spawns various activities needed to maintain the consistency of the interdependent
data. The activities constituting a polytransaction, can be either coupled to the parent transaction, or

decoupled from it. In the latter case, we can guarantee better response times if the weaker consistency

guarantees (e.g., lagging consistency) are sufficient in a given application. We believe that the polytransac
tion paradigm provides an attractive alternative to the traditional inultitransaction models, since it provides
the flexibility needed to support complex interdatabase consistency requirements. The concepts presented
in this paper are preliminary and we are currently investigating their applicability.
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1. Introduction
The traditional approach to transaction processing works very well as long as transactions are rather short

and simple. However, it falls short of meeting the much more sophisticated demands of advanced database

applications, as has been stated in numerous papers (see, e. g., /Katz84/, JKLMP84/, /KoKB85/, JKSUW85/,

/UnSc89f). Some buzzwords in this context are long-duration, interactive transactions, synergistic cooperative
work, and application or user supported consistency. A first answer to these requirements was an extension of

the traditional concept of transactions in the way that the otherwise flat transaction model is allowed to include

transactions within transactions. This kind of transaction is called nested transaction. In the commonly known

approach of Moss (jMoss82f) a nested transaction recursively consists of a set of children that execute atomi

cally with respect to their parents and their siblings. The main achievements of this approach are the support of

modularity and failure handling since the nesting allows the user to structure and delegate his work and to

define more graceful units of recovery (namely subtransactions), and a higher degree of parallelism since sub-

transactions can be executed concurrently. The nested transaction model is the fundamental basis of all ‘advan

ced transaction models’ which are proposed in literature. The difference between the various models lies in the

number and meaning of the constraints and rules which they place on the way how (nested) transactions have to

look like and how they have to interact with each other. Prominent examples of these constraints and rules are:

* Most approaches provide different transaction types. However, these types can only be nested in a special,
predefined order. For example, /K0KB85/ present a model in which a design transaction consists of a

number of project transactions each of which consists of a set of cooperating transactions, and so on.

IKSUW85/ define a database transaction to be the basis for a set of user transactions. /UnSc89/ add to this

model group transactions.
* Some proposals require all transactions to run a strict two-phase lock protocol (locks can not be released

before end-of-transaction (EOT)), e. g., Moss (JMoss82f) or Katz (JKatz84f).
* Almost all proposals restrict children to commit objects (or locks) to their parents only, e. g., JKLMP84/,

/KoKB85/, /KSUW85/, /Moss82/, /UnSc89/.
* Some approaches, e. g., IKLMP84/, /KoKB85/ or /lJnSc89/, only allow leaf transactions to pei’form

operations on data. Inner transactions only serve as a kind of database for their children.

Most of these rules and constraints reflect the individual view of the authors on the requirements and

conditions of the application area which is supposed to be the target class of the respective transaction model.

Consequently, the transaction model may be suitable for a number of application areas, whereas it may be

inappropriate for others.

Another observation is that a large number of approaches to advanced transaction modeling concentrate first

of all on modularity, failure handling and parallelism while a support of cooperative work is subordinated to

serializability. Mostly, the assumption is stifi made that (sub)transactions are competitors rather than partners.
However, appropriate support of cooperative work can only be achieved if the stifi predominant rigid concur

rency control measures (strict isolation) are weakened, e. g., by moving some responsibility for the integrity of

the data from the database management system to the application. Of course, this has to be done in a controlled

and application-specific way and the database management system has to offer as much help as possible.

Finally, it has to be considered that the field of new application areas is diversified to a large extent. Appli
cations may differ substantially in their demands and even in their understanding of consistent operations on

data. This has led to a number of different, sometimes even contradictory demands on transaction management.

*

This work has been supported by the German Research Community (DFG) under Contract No. SchI 209/2-1
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At the point of time when we staited our project we had several basic requirements in mind which we

wanted to be fulfilled by our approach. The most important are that the approach should not be suited to a

special application area but should be application independent, and that it should be capable of intensively
supporting synergistic cooperative work. However, as the above discussion already indicates, there are a lot of

serious arguments which strongly suggest that one given transaction manager can only be a more or less satis

factory compromise. Therefore, we came to the conclusion that the most promising solution is a concept very
similar to the tool kit approach of database systems (e. g., EXODUS (JCaDe87I)): a tool kit for transaction

management. This tool kit is meant to be part of the general tool kit (or erector set of modules) of the database

(kernel) system; i. e., it serves a sophisticated applications designer or database implementor (DBI) to model

‘his’ application-specific transaction manager in an appropriate and natural way.
An application-specific transaction manager is supposed to provide the application with a number of trans

action types, which are especially suited to the requirements of the application. Transaction types may differ, e.

g., in their structure, their behaviour or the way in which they fulfill their task. Of course, we want these

different transaction types to be usable in any order within a nested transaction to form a heterogeneously
structured transaction tree which is capable of supporting such different concepts as strict isolation of

(sub)transaciions (in the sense of serializability) and non-serializable cooperative work in one hierarchy.
Therefore, we need to define some general rules which have to be obeyed by each transaction type.

The remainder of this paper is organized as follows. The general rules of our approach are presented in

section 2. The characteristics which make up different transaction types are discussed in section 3. Section 4

gives a brief overview of the structure of the tool kit. Due to space restrictions we can only outline the most

salient features of our approach. A more comprehensive discussion can be found in /Unla9O- 1/ (lock modes),
IUnla9O-2/ (transaction model) and II.Jnla9l/ (general concepts of the tool kit and implementation concepts).
Moreover, it should be acknowledged that part of this work profited from the fundamental discussion of

properties of nested transactions in IH~Ro87I.

Before we discuss the general rules of the approach some simplifications are to be clarified first:
* The current version of the tool kit concentrates on locks as the means for concurrency control.
* The following discussion focuses on long duration transactions. Other transaction types (e. g., conventional

transactions) are not considered.
* For reasons of simplicity we assume that long duration transactions maintain their own object pool (an

object pooi is a (logical) container for the set of objects which are associated with the transaction at a given
point of time).

2. Fundamental rules of the tool kit approach
In order to support the essential semantics involved in advanced database applications the serializability-

based transaction models have to be replaced by models which make it possible to express semantics beyond
serializability; e. g., a transaction manager which asks for human or applications involvement to ensure

correctness of the system as a whole. On the basis of the locking approach this goal can, in principle, be

achieved in two different ways:
1. By using lock protocols which allow transactions to exchange or release data at an earlier point of time.

2. By offering lock modes which facilitate a higher degree of concurrent work on data; i. e., which allow the

concurrency control component to exploit application-specific semantics.

A first step in the direction of alternative 1 would be to run a simple two-phase lock protocol instead of a

strict one. This means that a transaction consists of a growing phase in which objects can be acquired and a

following shrinking phase in which objects can be released. However, an early release of objects has to be

handled with care since it can violate the principles of two-phase and isolation if a transaction acquires an

object from an ancestor different from its parent without considering the status of the transactions on the path to

the ancestor (for more details, see fUnla9O-2/). To avoid these problems and to facilitate the installation of

different concurrency control schemes for different transaction types the rule of stepwise transfer was intro

duced.

Stepwise transfer

The general principle of the stepwise transfer is that a transaction T can directly acquire objects from its

parent only. However, if T needs an object 0 from some other ancestor TA this is realized by a stepwise check

out of 0 from the object pool of TA via the transactions on the path to T (successions of downward check-outs).
If, for example, T12 wants to acquire an object 0 from the parent of T3 such a demand is satisfied by a
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stepwise check-out of 0 from the parent of T3 to T3 to T5 to T12. On each level the concurrency control

scheme of that level (transaction) is employed to safely transfer 0 to its destination.

In a similar way we define a stepwise check-in of an object 0. This means, that we do not require a

transaction T to pass 0 to its parent. T may transmit 0 to some superior TS if the status (lock protocol) of each

transaction T~ on the path to TS allows such a proceeding.

Besides the stepwise transfer the two-stage control-sphere is another fundamental concept of our approach.

Two-stage

control-sphere
,/ T3’s sphere \~ The underlying principle of the two-stage control-sphere is that a parent

T3 I is only responsible for the correct coordination and execution of the work

(task) on its level. It may define subtasks and start children to deal with

these subtasks. Each child, again, is by itself responsible for the correct

coordination and execution of its task and, therefore, can decide

autonomously, how this task can be executed best. In other words, the

characteristics which were established on the level of the parent are only
valid for its children. The children, in turn, may establish a different environ

ment for their children (see fig. 2.1). The two-stage control-sphere establi

shes the foundation for the possibility to execute transactions of different

types within one transaction hierarchy.
The two-stage control-sphere requires that the acquisition (release) of an

object from (to) a superior (other than the parent) is realized by a stepwise
transfer. However, whether an object is accessible to a transaction depends

Figure 2.1 Two-stage on the states of the transactions which are affected by the stepwise transfer.

control-sphere In general, the object pools which are accessible to a transaction are

described by the access (release) view of a transaction.

Access and release view

The set of objects which are accessible to a transaction T is described by the access view of T. The access

view consists of all objects of the object pools of the chain of ancestors (inclusively the public database) up to

the first ancestor which runs a two-phase lock protocol and is already in its shrinking phase. The access view

changes dynamically during the lifetime of T (more precisely: it decreases) since, at any point of time, an

ancestor may start its shrinking phase.
In figure 3.1 the access view of T38 consists of the objects of the object pools of T38, T26, T15, T8, T4, Tl,

and the database, if T8, T4 and Tl are not in their shrinking phase (extended predeclaring means that objects
can be requested as long as no lock was released. If the requested objects are not locked in an incompatible
mode they are granted. Otherwise, the lock request is rejected but the transaction is not blocked).

Similar to the notion of access view we define the notion of release view. A release view defines up to

which object pool an object of a given transaction T can be released at most (if no other lock on the object
prevents this). The release view consists of all object pools of the chain of ancestors (inclusively the public
database) up to the first ancestor which runs a two-phase lock protocol and is still in its growing phase.

3. Characteristics of transaction types
In this section the various characteristics which make up a transaction type in the tool kit approach will be

discussed. These characteristics can be subdivided into two parts: characteristics which describe the physical
structure of a type and characteristics which describe its behaviour and semantics.

Structure of transaction types
As already mentioned, we want the tool kit to provide a wide range of different transaction types. This set is

meant to include conventional (short duration) transactions as well as all kinds of long duration transactions or

compensating transactions. This requires that transaction types are made up of different components. For

example, a long duration transaction may maintain its own object pool and lock table for this object pool. Or, a

transaction type may run an optimistic concurrency control scheme instead of a pessimistic one. Moreover,

since the tool kit supports a large number of fine grained lock modes we allow a transaction type to maintain its

own compatibility matrix for its object pool. By this, the access to the objects of the object pool can be

individually suited to the requirements of a specific environment (more or less restrictive).
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Concurrency control scheme

The two stage control-sphere stands for the possibility that each transaction type T can establish its own

concurrency control scheme. This means, that each T can independently determine according to which rules

descendants of T have to acquire objects from T. Such a free choice of concurrency control scheme is possible
since the stepwise transfer of objects guarantees that each transaction which is involved in the stepwise transfer

will use the concurrency control scheme which is required by its parent. For example, in figure 2.1, if

transaction T3 wants locks to be used to synchronize access to its object pool its children T5, T6, and T7 need

to run a lock protocol if they want to acquire objects from T3. However, each of the children may apply its own

type of lock protocol, e. g., T5 may run two-phase locking with predeclaring, T6 simple two-phase locking, and

T7 strict two-phase locking. On the other hand, each child may run a different concurrency control scheme for

its own object pool. T5, for instance, may run optimistic concurrency control (0CC) with the consequence that

the children of T5 (T1O, TI!, T12) have to run an optimistic concurrency control scheme if they want to

acquire objects from T5. For example, if T12 wants to acquire an object 0 from T3 the stepwise transfer

ensures that 0 is first transferred from the object pool of T3 to the object pool of T5 by using a lock protocol
and then from the object pool of T5 to the object pool of T12 by using 0CC.

Lock modes

One major reason why traditional transaction management fails in the context of advanced database appli
cations is that it can not consider the application-specific semantics of operations. If such semantics were

exploited, the concurrency control scheme would be able to provide higher concurrency than by simply looking
at the operations as reads and writes (using only exclusive and shared locks). The tool kit approach indicates a

possible solution for the inclusion of such application-specific semantics since it provides a rich set of fine

grained lock modes which can individually be adapted to the semantics of the operations of a given application.
Moreover, the tool kit does not only allow to link locks temporarily to transactions (as in the classical case) but

also temporarily to users I applications, and permanently to objects. Due to space restrictions we can’t discuss

the different lock modes in more detail here. The interested reader is refered to /IJnla9O-l/.

Task

Some approaches to nested transactions require work on objects to be exclusively performed in the leaf

transactions of the transaction tree. Inner transactions only serve as a kind of database for their children. How

ever, in many applications it is desirable that an inner transactions T can also perform operations on its objects.
Of course, in such a case the work of T on its objects has to be synchronized with the work of T’s children on

these objects. The tool kit allows the DBI to define a transaction to be of type service transaction (transaction
which only serve as a database for its children) or operational transaction (transaction which is, additionally,
allowed to operate on its objects) independently of the position of the transaction in the transaction tree.

Parallelism

A transaction T must define whether its children (inclusively T itself) can execute concurrently. If

concurrent execution is prohibited no synchronization measures are established on the level of the object pool
of T (since no concurrency is possible). Again this characteristic is only valid on the level of T and the children

of T. A child may decide to allow its children to execute concurrently.

Explicit Cooperation
The support of cooperation is a mandatory feature, especially in design environments. Our approach

supports the possibility to explicitly install a direct cooperation between two or more transactions from

different branches of the transaction tree (however, certain conditions must be fulfilled). Transactions which are

involved in a cooperation may directly lend, transfer, or exchange objects among themselves.

Recovery
To exploit the advantages of nested transactions, recovery has to be refined and adjusted to the demands of

the control structure of nested transactions. Moreover, it must be suitable to fulfill the requirements of the

various applications. Due to space limitations and the inherent complexity of recovery we don’t want to discuss

this topic here. The interested reader is referred to ftJnla9l/.

Figure 3.1 gives an example of a heterogeneously structured transaction tree (in which all transactions run a

lock protocol). Higher levels of the transaction hierarchy use stricter types of lock protocols (e. g., the first three
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strict two-phase non two-phase

The different boxes indicate different transaction types:
lock lock

protocol task

Figure 3.1 Heterogeneously structured transaction Figure 4.1 Structure of the tool kit

4. Brief overview of the structure of the tool kit
The tool kit can be regarded as a kind of object-oriented transaction manager development facility for the

following reasons:

* Each component of the tool kit belongs to a class; each class represents a different type of component.
* Components are realized as abstract data types. This means in particular that transaction types are

characterized by the operations which come with them. A number of operations are common to all

transaction types; e. g., operations to suspend, continue and commit the transaction and to acquire or release

objects. However, these operations may be implemented differently for different transaction types (with
different semantics or with different implementation part (data structure)). Other operations are only
specific to some transaction types since they come with the features by which these transaction types differ

from other transaction types. Note, that the concept of abstract data type makes it possible to easily react to

changing requirements. If, e. g., in a workstation I server environment the maintenance of an object pool is

to be moved from the server to the workstation this can easily be realized due to the locality of such

changes. Moreover, this concept leaves some leeway for the implementation of logical structures; e. g.,
while the logical structure of a transaction type may require a local object pool the implementation may lean

on a global object pool (one pool for all transactions).
* The assembly and refinement of a transaction type is realized via (multiple) inheritance.

A transaction type is developed in the following way: First, the basic constituents are chosen from the set of

basic components of the tool kit. These constituents are suited to each other to form a kind of blank of a first

levels of the nested transaction Tl) while lower

levels partly provide a more cooperative
environment (since they use the non two-phase
lock protocol; for a discussion of different lock

protocols see e. g. /BeHG87I).

T26~

T38

The arcs represent different types of lock protoco~:

I two-phase with extended • two-phase with simple
I predeclaring (1) I predeclaring (2)

(3) (4)

task protocol

(1)

(1)

(2)

data

operational

operational E

(3)

(3)
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data

operational
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specialization

~ non executable
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basic transaction type. For example, in figure 4.1 a long duration transaction (2) is assembled from the basic

components object pool and transaction (at this level a transaction is nothing more than a frame within which

operations can be executed) (1). A blank can be specialized to more specific blanks by integrating additional

components. In figure 4.1, the long duration transaction is specialized to a long duration pessimistic transaction

(transaction which runs a lock protocol, (4)) by adding a compatibility matrix and a lock table (3). A blank

corresponds to a general transaction type which is not yet executable since it does not realize the specific
semantics of any given transaction model. For example, a blank already provides a check-out operation.
However, the rule that objects can only be acquired from an ancestor is not yet laid down. This kind of seman

tics is added in the next step in which blanks are equipped with semantics (5) to constitute executable trans

action type (6) which are especially adapted to a specific transaction model. Of course, by adding further rules

or constraints executable transaction types can b specialized to more specific transaction types (7). The basic

components and the blanks make up the fundamental layer of the tool kit while the executable transaction

types constitute the model layer.
Altogether the tool kit consists of a number of basic components, a set of blanks and a set of executable

transaction types. An application specific transaction manager consists of a subset of the executable transaction

types. In case the tool kit does not provide all transaction types of interest the missing types have to be added; i.

e., the tool kit has to be extended. This can be achieved in several ways: The fundamental layer can be

augmented either by new basic components (e. g., a new concurrency control scheme) or by newly constructed

blanks. The model layer can be augmented by newly constructed executable transaction types (e. g., more

specialized ones). If a different global transaction model is to be installed (e. g., a model which allows a nested

transaction to be netlike instead of treelike) a new model layer has to be developed; i. e., the blanks have to be

equiped with different semantics.

A first prototype of the tool kit, which was implemented on top of the relational DBMS ORACLE, is

currently in its test phase. This prototype serves as a testbed for the investigation of the weakness and strong

points of our approach. We intend, as a second step, to integrate a revised version of the tool kit, which reflects

the experiences with the prototype, into a database kernel system.
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Abstract

The database transaction model and its implementations were originally developed for the business environment where

atomicity, consistency, isolation, and durability (ACID) are important properties. The semantic transaction model adopts
such transactions as the basic building blocks, combining them, the “higher level” computation, and control flow, into

distributed hierarchical transactions, s-transactions. Isolation among different s-transactions is abandoned and the tradi

tional atomicity is replaced by a probabilistic one. S-transactions are dynamically generated, they preserve local consis

tency and are exactly as durable as usual transactions they are based on. In s-transactions, the local transactions are the

concurrency control units and any sub-s-transaction can be dynamically chosen to become a recovery uniL

1. Introduction

The s-transaction model discussed here was initially developed in a European project’ during 1985-1988. The environ

ment was S.W.I.F.T. II network, that is to replace the current S.W.I.F.T. I network. The latter has been operable in the

international banking environment since the late seventies, being one of the first large distributed systems supporting
what is currently known as Electronic Data Interchange (EDI). Conceptually, such systems are based on a small set of

standardized message types, whose instances are shipped from site to site through a communication network.

The practical goal of the project was to develop mechanisms that would help to associale the processing of differ

ent messages together and to offer multidatabase services through an open network MAP86]. Autonomy was recog

nized as an important subject in such an environment {Eli87], Vei88], and its preservation is pervasive in the s-transac

tion model. Technically, the initial ideas for the model came and from the (hierarchical) transaction models, notably
those in Gray8l], Banc8S] and Moss85J, from the notion of objects, and multidatabases LitS6]. The implementation
of the model constitutes the kernel of the developed prototype multidatabase system called MUSE E1188}. A thorough
analysis of autonomy in distributed system design and the rationale for the s-transaction model can be found in Vei9O].

2. Banking environment and its requirements

The international banking environment served by S.W.I.F.T. consists of over 2000 organisationally autonomous (0-
autonomous) banks connected to the network, meaning that no bank is controlled by another bank. Indeed, banks might
cooperate and compete with each other at the same time. This implies that a cooperative system can only have such

functionality that the interests of a participant bank cannot be not harmed. 0-autonomous banks want to decide them

selves what kind of data processing facilities they are going to use and who gets access to them, i.e. they are design au
tonomous (D-autonomous) with respect to their computer systems. D-autonomy implies that the environment is defini

tively heterogeneous in all respects (different local hardware and software, database management systems, database

schemas, and different consistency constraints embedded in application programs). For international banking, this situa

tion is likely to be a permanent state of affairs, i.e. banks will express effective D-autonomy by constantly developing
their systems as they like. The s-transaction model must consequently cope explicitly with heterogeneity in order to be

applicable for a longer period of time.

Banking systems typically should have communication autonomy (C-autonomy), i.e. they should have a possi

bility to decide when to communicate through the network and with whom. A direct communication between two banks

1 Multidatabase Services on ISO/OSI Networks for Transnational Accounting (MUSE), performed by
I.N.R.I.A.(France), Gesellschaft für Mathematik und Datenverarbeitung mbH (Germany), Society for Worldwide

Interbank Financial Telecommunications s.c.(Belgium), and University of Dortmund (Germany), and financed partly
by the Commission of the European Communities under contracts MAP761 and MAP761B.
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in different time zones is impossible during working
hours, unless the network stores the messages and

forwards them when the receiver is willing to accept them.

Such a network supports the effective C-autonomy of the

banking systems and it is typical in cooperative
environments.

Another consequence of 0-autonomy is that an or

ganisation does not need to execute all messages it re- AU

ceives, i.e. a banking system has execution autonomy (E

autonomy) with respect to the corresponding message

types. Thus, it can refuse the service for variety of rea

sons, like mistrust of the business partner, erroneous in

formation in the message, authorization failure - or be

cause the message does not always require further actions

(e.g. an offer to buy or sell currency).

Effective E-autonomy means making use of the

possibility not to execute a message. Its implications be

come clearer when considering e.g. the 2PC protocol

Gray78]; if a participant system really refuses to execute

COMMIT or ABORT message sent by the Coordinator,

the protocol does not meet its goals. The 2PC protocol is,

in this environment, useless also because the s-transac

tions can last hours or even weeks. Blocking pertinent Fig. 1 The site architecture
data of a bank is unacceptable for a long time Vei8S].

Further, a bank involved in an s-transaction decides during execution, which other banks it would like to involve in the

s-transaction, and so on. In response to these requirements, the s-transaction protocol, supports long lived, dynamically

generated, tree-structured executions, called s-transactions (see Fig. 2).

3. An architecture supporting s-transactions

The software architecture supporting s-transactions (Fig.l) preserves maximally all autonomy aspects of a banking sys

tem. Only the local database system (LDBS) is a pre-existing module, other modules are added to support the coopera

tion of organizations - without modifying the existing database system software or applications. The s-transaction

Managers (STM) are able to interpret/compile the system-wide homogeneous, Turing-equivalent transaction language. A

particular s-transaction definition is collectively designed by the transaction designer. The agreed upon definition is rep
resented as a finite set of programs Pi,....Pn, called program parts. The computation, parameters, and the calling rela

tionships between programs are all embedded in the set of program pans.
The global program parts are programs represented with the transaction language. The abstract local transactions

(ablocal transactions) are the smallest, indivisible global program parts. Their interface is of form Pi(IN;OUT), where IN

is the (relational) input parameter schema and OUT is the (relational) output parameter schema. Ablocal transactions are

hosted by the Ablocal Transaction Manager (ATM) modules. Their interfaces, taken together, form the Abstract Local

Interface (AL!) at a site. All other global program parts refer directly or indirectly to ablocal transactions, which are the

only global gate into/from the LDBS. AL! thus hides all aspects of heterogeneity.
An ablocal transaction P1 can be seen as a saga Gar87] and ATM as a saga manager Vei9OJ. Thus, P1 refers to a

positive local transaction program Pj~, and possibly to a compensating local transaction program Pi... Pi÷ and ~ form

the local program parts of the s-transaction definition and only they access the local database. To ensure the local correct

ness, both of them are programmed by the D-autonomous organisation controlling the LDBS. The programs ate perma

nently stored at the local database system, or are part of the database management system, like an SQL-interpreter. Pi+
and Pi~’ if it exists, implement Pi(IN;OUT), i.e. they give the operational semantics for the ablocal transaction P~.

The global program parts Pj, that are not hosted by any ATM, are real programs written in the transaction lan

guage. They are stored permanently at STMs or shipped dynamically to them, through the communicating Com
munication Servers (CS) from other sites, or through the multidatabase interface from the same site (in case of query

processing). In order to cope with the effective C-autonomy of sites, CS modules are based on X.400 protocols
X.400].

Rgn

U Legend:
MDBI = Multidatahase Interface

STM = S-transaction Manager
ATM = Abstract Local Transacation

Manager
LDBS = Local Database System
CS = Communication Server
LI = Local Interface

RSTI = Remote S-transaction Interface

STI = S-Transaction Interface
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S-transaction in the narrower sense is a distributed

execution of an s-transaction definition. It always begins Legend: b-trwisacluon Protocol

at the root program started by a user. Root program pos-
~~->child)

sibly requests execution of some ablocal transactions at

the same site and remote program parts, sub-s-transac- fResponse (chJd->paent)

lions, at other sites. The latter ones can again request fur- /~
ther ablocal transactions and remote program executions,

‘

and so on. This invocation relationship between the supe- ~ ,Ack (parei1->ch~d)

nor and the sub-s-transactions is modeled through the

spanning tree of the s-transaction. It is rooted at the root

program execution and it contains all global, ablocal and

local transactions invoked (including the compensating
ones). Note that several program parts Pj, Pk,... might

semantically be equivalent with each other, which indeed

makes it possible to choose dynamically the execution

site of a sub-s-transaction.

Operationally, a sub-s-transaction is invoked by
sending an s-transaction protocol message carrying the ac

teal input parameters inj. and the name of the global pro- s~e 3 S4e 4

gram part P1. The response carrying the output parame
ters OUtj is communicated from the sub-s-transaction ~ Legend: subtransact,ons:~ globelsi~-s-transa~on

the superior. The response can be “positive’ or “negative”. Qatiocai transac*ion (ATM-level)
In the latter case the sub-s-transaction has abolished all its

~ compensabng transa~Ion

results, if any, and in the former case it might have al- r~l.~.don~ ve~ ~ (f~~ LDBS-leVel)

ready committed its results at the local databases that it did ~ compensating transa~ion

manipulate. The results of a sub-s-transaction remain W (su~sstuI. LDBSIBVOI)

valid, unless a superior decides to force an abolishment of

the results. Since the abolishment is always possible, the Fig 2. An s-transaction spanning four sites

superior must always inform the sub-s-transaction of the

ultimate decision either by an ABORT-message (abolish) or by an ACK message (run to end). Only the root transaction

can decide that the whole s-transaction is definitively successful, but any sub-s-transaction is entitled to decide that it

itself is definitively not successful. This is different from e.g. nested transactions Moss8S]. In particular, each local

trans—action might either commit or abort its results in the local database, before issuing the response to the ATM. This

expresses the effective E-autonomy. Consequently, when the root-s-transaction decides on the fate of the whole s

transaction, the results are often already released for other s-transactions and local transactions (local users). In this way

the global isolation is abandoned, although the local one can at the same time be kept.

Abandoning global isolation is reasonable if the purpose of the databases involved is for example to record pur

chase orders, or any kind of reservations (flight, hotel, etc.) that by definition can be canceled. There is no reason to hide

the reservations or orders from the other transactions (i.e. from the local staff), but rather make them visible as quickly
as possible, since they must have an immediate impact within the organization.

In Fig. 2 we have an example of an s-transaction having sub-s-transactions at four sites. Let site 1 be a travel

agency ordering flights for a customer from city A to city C, via city B. Site 2 is an airline that only can offer a flight
from A to B. Site 2 records it in its local database (the positive local transaction, white circle) and asks site 3 (another

airline) for a connecting flight from B to C (a request from site 2 to site 3). Site 3 can offer a late flight which it

records a reservation for (local transaction) and responds to site 2 positively (thin arrow upwards). The flight is too late

for the customer, and so site 2 asks site 4 (yet another airline) for a reservation (request from site 2 to site 4). This

records a reservation for a flight starting earlier from B (local transaction) and responds positively (arrow from site 4 to

site 2). Site 2 now chooses this flight and asks site 3 to cancel the reservation (dotted arrow downwards). Site 3 starts a

canceling (compensating) local transaction which first fails because of a deadlock problem at a local database (the striped
ball). Another attempt succeeds (the black ball) and site 3 ceases to execute the s-transaction. Meanwhile, site 2 issues a

positive response to site 1 (arrow upwards) with the complete flight information. Site I (the travel agency) accepts the

reservations and acknowledges them (a thin arrow downwards). Site 2 informs site 4 of the fact that the reservation is in

effect (a thin arrow downwards).

Root

Site 2

4.
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This example exemplifies several things. The sub-s-transactions (at site) 3 and (at site) 4 are alternative s-trans

actions, since they both offer a suitable connecting flight. They could be started also in parallel, since the sub-s-transac

tions are not conditionally dependent on each other, neither is site 2 is restricted by the travel agency to apply an order.

However, if the first reservation did not succeed, the sub-s-transaction 4 would befailure dependent on sub-s-transaction

2. Because a good business practice requires to cancel superfluous reservations, there is a dependency between the sub-s

transactions 3 and 4: only one should remain effective. In general, a successful s-transaction can thus contain sub-s

transactions that have been compensated (in the example the whole sub-s-transaction at site 3). Further a trial to com

pensate a transaction can fail either for semantical reasons or for technical reasons (the striped ball in Fig. 2).

4. Consistency preservation of s-transactions

The purpose of s-transactions is to preserve both local and global consistency. We separate between static and dynamic
consistency. The dynamic local consistency at the ith database can be expressed by a binary state transition relation

Devj. The state transition from a local database state s~ to state ~2 is legal if Dev~(si ,s2). Since all databases are empty

at the beginning, the possible states can be represented as the set of statically consistent stales CS1, reachable from the

empty database by legal state transitions. It holds s E CS1 iff Devi*(ø,s), where Dev1* is the transitive closure of Dev~.

CS1 expresses the static consistency and can also be understood as a predicate on states, as was done e.g. in Esw761.

Thus, dynamic consistency is more expressive than the static one. Note, that Dev~ is always reflexive, since aborts and

read-only transactions are always allowed.

Only the local transaction programs manipulate the local databases and obey - or violate - any local and global
consistency, expressed by the state transition relations. Let LP~~(IN;OU1’) denote the jth local transaction program at ith

site and let LTij(in,sj; s2,out) denote its complete execution. sj is the database state it is started at, s~ is the state after

its execution, in is the input parameter, and out the values output by it to ATM or local user. Program P~j that only
causes state transitions occurring in Dev1, nomatter which input parameter is used, is locally sound.

Let us assume that each local transaction program P,~,, executed as part of an s-transaction is locally sound at

database x. Then, it can be shown by induction on the number of the local transactions in the spanning tree (c.f above)
that any s-transaction preserves local dynamic and static consistency at each local database. This result can be extended

in an obvious way for any set of interleaved s-transactions and other sound local transactions. The latter result relies on

the assumption that each LDBS only allows correct interleaving of the local transactions, i.e. produces view serializable

R-W histories Bern87] among the local transactions hosted by it. Thus, if the STMs (or ATMs) do not perfonn any

kind of concurrency control, the class of R-W histories achieved is a proper superset of quasi-serializable histories

Du89]. It is for further study, whether, and in which cases, it makes sense to prohibit some histories by ordering or

aborting sub-s-transactions at STM or ATM level. it is also unclear how this could be done.

Because no isolation between s-transactions is enforced, the atomicity of s-transactions and their correctness are

related in an unexpected way: The compensating local transaction can fail because it would violate consistency. As a re

sult, the global s-transaction cannot run into completion, i.e. it “crashes”. On the other hand, if the compensating local

transaction is guaranteed not to abort for semantical reasons, e.g. by denying abort operations in the corresponding pro
grams Gar87], then one can show that it is not always sound Vei9O, p. 217]. The consistency embedded in local

transaction programs is primarily a semantical issue and thus influences the D-autonomy.
The trade-off atomicity vs. correctness is a new phenomenon in the context of transactions and it is not well un

derstood. The further exploration requires a formal analysis of the local and global consistency and the behavior of the

local and global transactions. A complete model and the first results can be found in Vei9O].

S. Implementation experiences and application areas

The s-transaction model was implemented in the MAP761B project in a Micro-VAX II (VMS) environment Ho188].
The software developed in the project consists of about 100000 lines of C, linked with the ORACLE database manage

ment system, and an X.400 compatible message handling system. The main part of the code is needed to implement the

STM, which is a full-scale compiler and a run-time language interpreter for the transaction language called STDL. The

MDBI module consists of about 20000 lines of code and it supports a multidatabase query language, facilities to import
schemas, and to produce execution plans for queries, expressed in the transaction language. The ATM module mainly
contains code supporting the export schema mechanism, query processing and a simple compensation support. The CS

module consist of programs implementing the set of X.400 protocols X.400] and, on top of it, a protocol that supports
REQUEST, RESPONSE, ACK and ABORT messages of the s-transaction protocol.
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The basic ideas of the s-transaction model have been adopted in other projects, too. E.g. in conjunction with the

development of a flexible transaction model for a distributed infrastructure providing language support for inter-operable
heterogeneous applications Eli90], s-transaction concepts like autonomy preservation, alternative transactions and com

pensation are central. Similar properties can also be found in the transaction model for the Interbase system Elm9O].
The s-transaction model has been considered to be used in CIM environment Hol87]. Usual EDI environments are also

a promising field.
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1 Introduction

Advanced transaction models and new correctness criteria for transaction executions have been proposed for

the following reasons:

1) to provide better support for long—lived activities in advanced DBMS applications,
2) to relax the classical ACID paradigm, e.g., provide more flexibility as to when updates are made visible

to concurrent transactions,

3) to support cooperation between the members of a group of designers (in CAD or CASE),
4) to fit more smoothly with object—oriented data models,

5) to capture more semantics about the operations of advanced DBMS applications,
6) to enhance (inter—transaction) parallelism by exploiting these semantics,
7) to model intra—transaction parallelism,
8) to allow user—defined or system—defined intra—transaction savepoints (“partial rollbacks”),
9) to deal with conversational transactions, and

10) to deal with multiple autonomous subsystems in a federated DBMS environment.

This paper gives an overview on multi—level transactions (MLTs) and its generalization toward open nested

transactions (ONTs). These models meet some of the above demands, namely items 5, 6, 7, 8, 10, and, to a large
extent, items 1,2, and 4. Moreover, ONTs can serve as a basic building block in more sophisticated models for

cooperative transactions and other long—lived activities.

Unlike many other advanced transaction models, MLTs and ONTs preserve two fundamental virtues of

the classical transaction concept:
• they are based on a rigorous theoretical foundation that preserves the classical serializability theory as

a special case, and

• they can reuse much of the well—proven implementation techniques that account for the high performance
of current transaction processing systems.

This paper does not discuss implementation issues of ONTs, though (see 11, 16, 24, 26, 27]). Rather its main

purpose is to show that even a relatively moderate extension of the classical transaction concept already pro
vides a fairly powerful model that meets many of the above listed requirements yet stays within a well—defined
theoretical framework.

2 A Summary of the Multi—Level Transaction Model

The idea of ONTs 8, 191 grew out of the seminal work on “spheres of control” by Bjork and Davies 3]. The
special case ofMLTs (also known as “layered transactions”) is a variant of nested transactions where the nodes
in a transaction tree correspond to operations at particular levels of abstraction in a layered system. The edges
in a transaction tree represent the implementation of an operation at level L(i + 1) by a sequence of operations
at the next lower level Li (for i = 0,

...,
n—i in bottom—up order). The key idea of multi—level concurrency control

is to exploit the semantics of operations in level—specific conflict relations CON1 that reflect the commutativ

ity or compatibility 6] of operations. This idea is applied to each of the levels.

Fig. 1 shows a schedule, i.e., concurrent execution of two MLTs (with execution order from left to right).
Both transactions T1 and T2 withdraw some money from bank accounts a and b and deposit the money in

account c. These high—level operations are implemented by read and write accesses to the underlying records.

In terms of these read/write operations at the bottom level LO, the schedule of Fig. 1 is not (conflict—) serializ
able with respect toT1 and T2. However, at the higher level Li, one can exploit that the two Deposit operations
commute, so that the LO conflict on c becomes a pseudo—conflict. Therefore, the schedule can be regarded as

serializable at the top level Li.
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Ti T2

Withdraw(a) Witbdraw(b) Deposit(c) Deposit(c) Level Li

R(a) R(b) W(a) W(b) R(c) W(c) R(c) W(c) Level LO

Fig.1: Concurrent Execution of MLTs

Casting these considerations into a more rigorous framework renders the following definition: a multi—level

schedule is multi—level serializable iff between each pair of adjacent levels L(i + 1) and Li, the L(i + 1) serial

ization order ~ + i is acyclic and compatible with the execution order <1 + 101 conflicting L(i + 1) operations.
In this definition, the order ~+ ~ corresponds to the usual serialization graph that is obtained by viewing
Ui + 1) operations as transactions and Li operations as actions.

A practically important result of the multi—level serializability theory 1, 2, 10, 13, 23, 24] is the following.
Suppose that for each pair (f,g) of conflicting L(i + 1) operations, there is at least one pair of Li operations
among the children off and g that conflict with respect to CON1. Under this reasonable assumption, multi-le

vel serializability is already guaranteed by the property of level—by—level serializability, that is, by requiring
that the serialization graph between each pair of adjacent levels is acyclic. This means that different concur

rency control mechanisms can be used at different levels as long as each of them ensures (conflict—) serializ

ability in the classical sense.

MLT management allows more concurrency compared to conventional (single—level) concurrency con

trol. On the other hand, transaction aborts can no longer be implemented by restoring the pre—transaction
state of the modified LO objects, since low—level modifications become visible to concurrent transactions at the

end of each subtransaction (SI). The solution to this problem is to perform transaction aborts by means of

inverse high—level operations that compensate complete STs rather than backing them out 2, 9, 13, 24, 25]. In

the scenario of Fig. 1, for example, aborting transaction T2 after Ti is committed requires two compensating
STs Withdraw(c) and Deposit(b).

By viewing the compensating STs as additional regular operations of the transaction that is to be

aborted, transaction aborts can be handled within the framework of multi—level concurrency control, too. The

resulting correctness criterion is complete serializability, that is, multi—level serializability of the schedule in

which the compensating STs are explicitly represented 2, 24, 25]. Complete serializability is an elegant treat

ment of recoverability in that it does not require a new correctness criterion, but rather extends the scope of

serializability to the compensating STs.

3 The Generalization Toward Open Nested Transactions

The difference between MLTs and ONTs is that, in the more general model, the structure of the transaction

trees is not restricted to layering; that is, siblings in the transaction tree are allowed to have different nesting
depths. This generalization of MLTs is illustrated in the example of Fig. 2. Compared to Fig. 1, the example
transactions have additional Insert operations that write into an application—managed transaction journal.

Ti T2

Withdraw(a) Withciraw(b)

N.
R(a) W(a) R(b) W(b) R(c) W(c) R(c) lnsert(y) :(x)

Fig.2: Concurrent Execution of ONTs

Because of the structural limitations of MLTs, the correctness of the concurrent execution shown in Fig. 2

cannot be proven within our multi—level serializability theory as sketched in Section 2. However, a rigorous
correctness proof can be conducted in the general nested transaction models developed in 1] and 5]. Note
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that these models go beyond the conventional notion of nested transactions 12] in that they allow for STs that

make updates visible to other top—level transactions before their parents commit.

A proof that the schedule of Fig. 2 is serializable, based on the model of 1], would run as follows. Be

cause of the commutativity of Insert(y) and W(c), we can exchange the order between these two nodes, thus

separating the Deposit ST of Ti and the Insert action of T2. Next, because the set of nodes labeled Withdraw,

Deposit, or Insert now form a front of serial computations, we can reduce the Withdraw and Deposit STs, i.e.,

prune their descendants. This results in a flat schedule that can be shown to be serializable by commutativity
ai guments. In general, the serializability proof for a schedule of arbitrarily deep ONTs involves the alternating
application of commutativity and reduction.

4 Relaxing the ACID Paradigm

The so—called ACID paradigm of the classical transaction concept comprises the four properties atom icity,

Qonsistency—preservation, isolation, and durability. In the classical transaction concept, all four properties are

bundled together. Ideally, however, these properties should be orthogonal in the sense that each of them can be

waived without affecting the remaining properties (cf. 20]). The purpose of this section is to show that, in the

ONT model, orthogonality can be achieved to some extent.

4.1 Consistency—preservation
In the classical transaction concept, only consistency—preservation can be viewed as orthogonal to the other

three properties. Existing transaction managers take care only of atomicity, persistence, and isolation, where

as application programs are responsible for consistency—preservation. This is still true for ONTs.

4.2 Isolation

The strict isolation of transactions can be relaxed in the following two ways:

• by exploiting the semantics of the operations in the definition of conflicts, and

• by specifying which STs are “open” and which STs are “closed”.

The first step toward more semantics is to incorporate general or state—dependent commutativity in the con

flict definition between operations 14, 22]. For example, two Deposit operations on the same account are gen

erally commutative, and two Withdraw operations are commutative in a state that allows both withdrawals to

succeed (i.e., if there are sufficient funds). A more aggressive approach is to substitute commutativity by com

patibility 6, 18], where two operations can be specified as compatible if their execution order is insignificant
from the application point of view.

Exploiting commutativity or compatibility allows that incomplete transactions can make uncommitted

updates visible to those transactions that perform a commutative or compatible operation. Note that this

weaker notion of isolation does not leave the solid ground of serializability, since the conflict definition be

tween pairs of operations is essentially a module that is “imported” into serializability theory. Furthermore,

exploiting semantics to relax the definition of isolation has no impact on the validity of the other three ACID

properties.
The programmer of an ONT can specify which STs do effectively make updates visible to compatible

operations. He or she simply attaches one of the attributes “open” or “closed” to each node in the transaction

tree (see also 4, 21] for similar approaches). An “open” node spawns a new “sphere of control”; that is, all

updates of its descendants become visible to other transactions when the node’s computation is completed. It

is up to the node’s parent to take measures that further protect the uncommitted updates, e.g., by acquiring a

semantically higher lock. A “closed” node, on the other hand, simply extends the “sphere of control” of its

parent; that is, its updates are still isolated against concurrent transactions as in the conventional model of

nested transactions. Note that “sagas” 7] correspond to a special case of this model: the restrictions are that

the children of a top—level transaction must not have further descendants, and that the operations that corre

spond to open STs are compatible with all possible operations.
Fig. 3 shows an example of a nested transaction with both open and closed STs, illustrated by striped and

grey patterns, respectively. Suppose a transaction the purpose of which is to pay all monthly bills of a person,

using electronic funds transfer rather than mailing checks. The Transfer transaction of the previous examples
is now used as an operation of the entire transaction, i.e., as a ST Withdraw/Deposit semantics is not exploited
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here; i.e., updates on accounts are modeled as closed STs. Suppose further that withdrawals make an entry in a

special journal that is kept for security auditing. This Append operation is executed as an open ST so that its
effect becomes immediately visible.

_____

1
Transter(a,c) Transfer(a,d)

—

Insert( ...) , lnsert(x)

Fig.3: ONT with Open and Closed STs

4.3 Atomicity

By default, atomicity holds for transactions and STs at all nesting levels. For failures in closed STs, atomicity is

achieved by restoring the old state of the objects that are modified within the ST To roll back a completed open
ST~ this state—oriented undo method is not feasible, since the updates of the ST have already become visible to

all compatible operations. Rather all completed open STs must be compensated by executing additional
“counter—STs”. In this sense, an ONT is never really rolled back but always completes successfully, possibly
after having compensated its original effects.

Note that compensating a completed ST requires that both the forward ST and the compensating ST arc

atomic. Further note that, like in all nested transaction models, ST failures can be dealt with by undoiiig and

restarting only the failed ST, which provides intra—transaction savepoints.

4.4 Persistence

In applications such as CASE, it is unacceptable that the work of a long—lived transaction is completely un
done if the transaction eventually aborts (e.g., because of a crash). On the other hand, simply modeling a long
design session as a sequence of shorter (top—level) transactions may not be an acceptable solution, because
this would automatically make the (intermediate) results of each transaction visible to other transactions. The

two requirements — long “spheres of control” with respect to isolation and shorter “spheres” with respect to

persistence — can be reconciled by allowing the programmer of an ONT to attach a “persistent” attribute to

individual STs.

The updates of a persistent ST are made persistent when the ST successfully completes; if the ST aborts

before its completion then all its updates are undone. The programmer of an ONT can undo a completed
persistent ST only by explicitly invoking a compensating ST Compensating STs that are implicitly invoked by
the system to undo a completed open ST affect only non—persistent STs.

Persistent STs (sometimes called “nested top—level actions” 11]) relax the atomicity of their parents
since they survive the abort of a parent. In the example of Fig. 3, it may be reasonable to specify the Append ST
as persistent. That is, an entry in the security journal is not removed if the entire transaction aborts. A persist
ent ST may have non—persistent as well as persistent descendants. The difference is that the non—persistent
descendants are made persistent when their lowest persistent ancestor completes successfully, whereas per
sistent descendants are made persistent upon their own successful completion.

6. Conclusion

The MLT model and its generalization toward ONTs can be viewed as an evolutionary path from the classical

transaction concept to more advanced transaction models. While being relatively conservative compared to

other models, ONTs are yet a fairly powerful instrument that satisfies many of the requirements stated in the

introduction.
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MLT and ONT management is useful for a variety of potential applications, namely for

— extending data managers by an additional application—specific layer, such as building a filing and re

trieval service for office documents on top of an existing DBMS 27],
— coping with the coexistence of global and local transactions in a federated multi—DBMS 17],
— building transaction management for’ object—oriented database systems such that the semantics of

methods is exploited for enhanced concurrency 15, 18],
— supporting intra—transaction parallelism, by handling parallel subtransactions uniformly regardless of

whether they belong to different transactions or to the same transaction, and

— exploiting the transaction support provided by advanced operating systems.
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