
JUNE 1991, Volume 14, No. 2

a quarterly bulletin of the

IEEE Computer Society
technical committee on

Data

Engineering
CONTENTS

Letter from the Issue Editor 1

Rakesh Agrawal

The Two Facets of Object—Oriented Data Models 3

Serge Abiteboul and ParisC. Kanellakis

Theoretical Foundations for OODB’s — a Personal Perspective 8

Catriel Been

A First—Order Formalization of Object—Oriented Languages 13

Michael Kifer

On Data Restructuring and Merging with Object Identity 18

Richard Hull, Surjatini Widjojo, Dave Wile, and Masatoshi Yoshikawa

Data Structures and Data Types for Object—Oriented Databases 23

Vat Breazu—Tannen, Peter Buneman, and Atsushi Ohori

Foundations of the 02 Database System 28

C. Lecluse and P. Richard

Updating the Schema of an Object—Oriented Database 33

Alberta Coen—Porisini~ Luigi Lavazza, and Roberto Zicari

An Overview of Integrity Management in Object—Oriented Databases 38

Won Kim, Yoon—Joon Lee, and Jungyun Seo

Supporting Views in Object—Oriented Databases 43

Marc H. Scholl and H.—J. Schek

Algebraic Query Processing in EXTRA/EXCESS 48

Scott L. Vandenberg and David J. DeWitt

ENCORE: An Object—Oriented Approach to Database Modeling and’Querying 53

Stanley B. Zdonik and Gail Mitchell

Query Optimization in Revelation, an Overview 58

Scott Daniels, Goetz Graefe, Thomas Keller, David Maier, Dun Schmidt, and Bennet Vance

Calls for Papers 63

SPECIAL ISSUE ON FOUNDATIONS OF OBJECT—ORIENTED DATABASE SYSTEMS

+ 1951-1991
THE EISTTTUIE ~ ELECTEJCAL —

IEEE

~~.

June 1991, Volume 14, No.2

Editor—In—Chief, Data Engineering
Dr. Won Kim

UNISQL, Inc.

9390 Research Boulevard

Austin, TX 78759

(512) 343—7297

Associate Editors

Dr. Rakesh Agrawal
IBM Almadon Research Center

650 Harry Road
San Jose, Calif. 95120

(408)927—1734

Prof. Ahmed Elmagarmid

Department of Computer Sciences

Purdue University
West Lafayette, Indiana 47907

(317)494—1998

Prof. Yannis Ioannidis

Department of Computer Sciences

University of Wisconsin

Madison, Wisconsin 53706

(608) 263—7764

Prof. Kyu—Young Whang
Department of Computer Science

KAIST

P.O. Box 150

Chung—Ryang, Seoul, Korea

Chairperson, TC
Prof. John Carlis

Dept. of Computer Science

University of Minnesota

Minneapolis, MN 55455

Past Chairperson, IC

Prof Larry Kerschberg

Dept. of Information Systems and Systems Engineering
George Mason University
4400 University Drive

Fairfax, VA 22030

(703) 764—6192

Distribution

IEEE Computer Society
1730 Massachusetts Ave.

Washington, D.C. 20036—1903

(202)371—1012

Data Engineering Bulletin is a quarterly publication of

the IEEE Computer Society Technical Committee on

Data Engineering. Its scope of interest includes: data

structures and models, access strategies, access

control techniques, database architecture, database

machines, intelligent front ends, mass storage for

very large databases, distributed database systems
and techniques, database software design and im

plementation, database utilities, database security
and related areas.

Contribution to the Bulletin is hereby solicited. News

items, letters, technical papers, book reviews, meet

ing previews, summaries, case studies, etc., should

be sent to the Editor. All letters to the Editor will be

considered for publication unless accompanied by a

request to the contrary. Technical papers are unre

formed.

Opinions expressed in contributions are those of the

individual author rather than the official position of

the TC on Data Engineering, the IEEE Computer
Society, or organizations with which the author may
be affiliated.

Membership in the Data Engineering Technical

Committee is open to individuals who demonstrate

willingness to actively participate in the various acti

vities of the TC. A member of the IEEE Computer
Society may join the TC as a full member. A non—

member of the Computer Society may join as a par

ticipating member, with approval from at least one

officer of the TC. Both full members and participat
ing members of the TC are entitled to receive the

quarterly bulletin of the TC free of charge, until fur

ther notice.

S

Letter from the Issue Editor

Theoretical Foundations of Object-Oriented Database Systems

Object-orientation has emerged as a major theme in current work on database systems, and several

reseaith prototypes and commercial database products based on object-oriented paradigm are in different

stages of development. The enthusiasm and energy devoted to the development of object-oriented
database systems match, if not exceed, the development effort spent on relational systems in the late

seventies and early eighties. Interestingly, however, the development of object-oriented database systems

has taken a very different evolutionary path. While the relational systems started with a strong theoretical

foundation, there is no consensus yet on a formal theory for object-oriented database systems.

Experimental systems and products seem to be driving this field at this stage.

This issue presents a sampling of some recent attempts to provide a theoretical foundation for object-
oriented database systems. The issue cuntains 12 papers. These papers cover various aspects of object-
oriented database systems, including modeling, schema evolution, integrity constraints, views, and queries.

Abiteboul and Kanellakis point out the two facets of object-oriented data models — structural and

behavioral — that reflect the two origins of object-oriented database systems — relational database theory
and object-oriented programming. They formalize and analyze these two facets and give examples of their

integration.

Been argues for the extension of the existing logic-based approaches to databases and programming

languages for modeling object-oriented database systems. He presents an initial model approach that

unifies the theories of relational databases, deductive programming, and abstract data types. He also

argues for functions as first class values and a flexible function definition facility to model behavioral

aspects of object-oriented database systems.

Kifer presents the salient features of F-logic that make it possible to provide a full logical formalization of

object-oriented languages. F-logic breaks the distinction between classes, objects, and attributes which

allows queries that may return sets of attributes, classes, or any other aggregation that involves these

higher-order entities. It is also possible to define parametric classes in F-logic.

Object identity is a central concept in object-oriented database systems. Hull, Widjojo, Wile, and

Yoshikawa differentiate between object identities and values, describe a formal model which encompasses

object identities and values, and examine the impact of object identity in the contexts of data structuring
and merging.

Breazu-Tannen, Buneman, and Ohori argue that the object-oriented database systems can be best

understood in the framework of typed languages. They address the demands placed on programming

languages by the addition of operations on records and “bulk” data types such as sets.

Lecluse and Richard describe the foundations of the 02 database system. The 02 data model

differentiates between values and objects, and between types and classes. It also supports the notions of

the consistency of a class hierarchy and database schema.

Coen-Ponsini, Lavazza, and Zicari address the problem of schema evaluation in object-oriented database

systems. They differentiate between structural and behavioral consistency of a schema and outline their

solutions for maintaining schema consistency in the presence of schema modifications.

Object-oriented data models give rise to additional constraints beyond those meaningful under the

relational model. Kim, Lee, and Seo present a framework for classifying integrity constraints in the

context of an object-oriented data model on the basis of their performance impact.

Scholl and Schek describe how views may be supported in object-oriented database systems. They
introduce object-preserving query semantics of a generic object-oriented query language and show how

views defined by such query expressions may be updated. Dynamic reclassification allows objects to gain
and loose types.

1

Vandenberg and DeWiu describe the algebraic fundamentals underlying the processing and optimization
of EXCESS queries in the EXTRA/EXCESS DBMS. They describe the algebraic structures and their

operators, the algebra’s expressive power, and the algebraic query optimization.

Zdonik and Mitchell present the ENCORE data model and its query algebra, called EQUAL. This algebra
generalizes relational operations by providing the capability to access and produce encapsulated, logically
complex objects.

Finally, Daniels, (Iraefe, Keller, Maier, Schmidt, and Vance discuss query optimization in object-oriented
databases in the context of Revelation project. They descnbe modeling features that support user-defined

data types, consider their impact on query optimization, and discuss the Revelation approach to these

problems.

Before closing, I would like to thank the authors for providing excellent papers at a short notice. It is my

fond hope that this issue will provide impetus for further reseaith in this important area.

Rakesh Agrawal
IBM Almaden Research Center

San Jose, California 95120

THE JUHF~ H~IFhIN~

~U9T~~IFIL ~EElF1E~H

(.i.s ~urwui:r~i~u i~:sr

FEIISF~ W1TF~ U~LITE~

A National Search for computer based

applications to help persons with

physical or learning disabilities is be

ing conducted by The Johns Hopkins
University with grants from the Na

tional Science Foundation and MCI

Communications Corporation.

A grand prize of$ 10,000 and more than

100 other prizes will be awarded for

the best ideas, systems, devices and

computer programs developed by
Professionals, Amateurs, and Students.

Entry deadline is August 23, 1991.

For more information write to

Computing to Assist Persons

with Disabilities

P.O. Box 1200

Laurel, MD 20723

2

The Two Facets of Object-Oriented Data Models

SERGE ABITEBOULS PARIS C. KANELLAKISt

0. Introduction: Object-oriented database systems (OODBs) are new software systems built using techniques from

databases, object-oriented languages, programming environments and user interfaces; for examples of this emerging
technology see the edited collections KL 89, ZM 90, BDK 91]. Unfortunately, there has been less progress on

understanding the principles of OODBs. This is”in marked contrast with the elements of relational database theory,
see U 88] and vL 90—ch.17]. Generally accepted definitions of object-oriented data models (as in A+ 89]) are still

no more than a list of desirable concepts, with little integration or analysis. The concepts themselves can be divided

in two categories, which reflect their origins: from relational database theory or from object-oriented programming.
Each of these two facets of object-oriented data models involves both data description and data manipulation. So the

division is not one of type-description vs type-manipulation, but rather one of concrete (or structural) vs abstract

(or behavioural) type disciplines. Key issues are formalizing the individual facets and their integration.

In this short survey we: (1) present succinct, but still fairly detailed, formalizations for the two facets, and

(2) summarize their analysis from AK 89], for the structural, and AKW 90], for the behavioural part. For each the

format is an example-driven, two page outline. We close with examples A 89, LR 89, BDK 91] integrating the two

facets, a description of some promising research directions and a selected (but incomplete) list of references.

1. The Structural Data Model: The data description generalizes existing “nested relation” and “complex struc

ture” data models, in particular AB 87, KV 84]. Our data. manipulation language IQL generalizes existing rule-

based, statically typed database query languages, and can be used to compare their expressive power. After some

preliminary notation, we define database schemas and their instances, almost as succinctly as for the relational data

model! Assume the following countably infinite and pairwise disjoint sets: (1) relation names {R, R’, .. . , }, (2) class

names {C, C’,. . . , }, (3) attributes {A, A’, .. . , }, (4) base constants B = {b, b’,.. . , }, and (5) object identifiers or

oids 0 = {o, o’, .. . , }. The set of o-values is the smallest set containing B and 0 and closed under finite tupling
A1 : v1, .. . , A,~ : vk] for distinct A’s) and finite subseting ({vi, .. . ,v~}). An o-value assignment p maps relation

names 11 to finite sets of o-values. A disjoint] oid assignment ir maps class names C to pairwise disjoint] finite sets

of oids. A value map of an oid assignment r is a partial function ii associating the oids in r to o-values. Intuitively,
o-value assignments are like “relational database instances”, oid assignments put “objects” into “classes”, and value

maps associate “objects” to “values” or when undefined to “null values”. A fine point is the cyclic use of class names

C and oid assignment ir, respectively, in the syntax and semantics of types as follows: (1) Type ex~ressions types(C)
are defined by the grammar r = C I 0 I B I A1 : r,. .. ,Ak : r] I {r} I (rVr) I (TAr). (2) The matching type domains

are the sets Dom= ~r(C) I {} I {b,b’,...} I Ai: Dom,...,A, : Dorm] I {Dom} I (DomUDorrt) I (DornflDorm).

Definition DB: A database schema consists of a finite set of relation names R, a finite set of class names C and a

function T from RuC to types(C). A database instance of such a schema consists of an o-value assignment p to R,
a disjoint oid assignment ir to C, and a value map t’ of r such that:

(1) each R in R contains o-values of the right type, p(R) C Dom(T(R)),
(2) each C in C contains oids mapped to o-values of the right type, v(ir(C)) ç Dom(T(C)), and

for o not] a set-valued oid, undefined v(o) is u(o) = 0 undefined u(o) is a null value]. C

‘INRIA Rocquencourt, FRANCE. (abitebou@inria.inria.fr). Supported by the Projet de Recherche Coordonnée BD3.

tBrown Univ., Providence RI, USA. (pck©cs.brown.edu). Supported by NSF grant IRI-8617344 and ONR grant N00014-83-K-0146

ARPA Order No. 6320-1. Also, would like to thank Sridhar Ramaswamy for his help with the presentation.

3

The types provided in this structural data model are concrete, as opposed to abstract. They include records,
sets (lists could be handled similarly) and pointers. In addition, non-disjoint oid assignments and intersection and

union types can be used for expressing structural polymorphism and in particular structural inheritance; because of

limited space we refer to AK 89] for details on this issue. Also in AK 89], we present a corresponding pure value

data model without oids, based on the regular infinite trees produced by iterated applications of the value map i’.

We now present an example that illustrates the data model’s substantial descriptive power (from Genesis no less!).

Example DB: Consider a schema with two class names C-lst-generaticn, C-2nd-generation and with two relation

names R-founded-lineage, Il-ancestor-of-celebrity. Their types refer to a base domain, e.g., B-string, and to class

names, e.g., C-lst.generation, but not to relation names. Union is allowed. Then consider an instance of this schema,

whose oid’s are o-adam, 0-eve, c-cain, c-abel, o-seth, o-nameless. Note the cycles.

T(C-lst.generation) = name: B-string, spouse: C-lst-generaiion, children: {C-End-generation}]
T(C-2nd-generation) = name: B-string, occupations: {B-siring}]
T(R-founded-lineage) = C-2nd-generation

T(R-ancestor-of-celebrity) = anc: C-2nd-generation, desc: (B-string V spouse: B-string])

ir(C-lst-generation) = { c-adam, 0-eve } and ~r(C-2nd-generation) = { c-cain, o-abel, c-seth, o-nameless },
p(R-founded-lineage) = { c-cain, c-seth, o-nameless },
p(R-ancestor-of-celebrity) = { anc: c-seth, desc: Noah], anc: c-cain, desc: spouse: Ada]] },
u(c-adarn.) = name: Adam, spouse: c-eve, children: { c-cain, c-abel, c-seth, c-nameless }],
v(o-eve) = name: Eve, spouse: c-adam, children: { c-cain, c-abel, c-seth, c-nameless }]
v(c-cain) = name: Cain, occupations: { Farmer, Nomad, Artisan }],
z~(o-abe() = name: Abel, occupations: { Shepherd }],
v(o-seth) = name: Seth, occupations: {}], ii(o-nameless) is a null value. 0

The structural data model comes with a “complete” query language. This language, IQL, is Datalog with

negation combined with set/tuple types, invention of new oid’s, and a weak form of assignment. With no additional

syntax, inflationary negation can express sequential execution and while-loops. IQL was designed as a minimal

rule-based formalism for expressing all computable queries. This precise expressive power was achieved — modulo

a technical condition (copy elimination). The design was influenced by both the COL language of AG 88], for the

manipulation of sets, and the detDL language of AV 88], for the invention of new oid’s. The following example
illustrates all of its important features on an efficiently executable query. This query is not expressible in most other

database languages, but is easily expressible in any programming language (e.g., Pascal).

Example IQL Query: Our type system allows multiple representations of the same information. For example, a

directed graph may be represented as a binary relation whose tuples are the arcs of the graph or as a class whose

type is cyclic. In the second representation each node has an oid, a name, and a set of descendant nodes. IQL allows

converting the first representation into the second and vice-versa. More formally, let the input schema be just a

relation Il with 7~R) = Aj:B,A2:B] and the output schema be a class C with T(C) = Ai:B,A2:{C}]. The input
instance I represents directed graph C over B nodes. The desired query is to transform the “flat” I into a “deep”

output instance J that also represents G (where now the nodes are “objects”). Let us examine the computation in

IQL in four separate stages. Using simple techniques from AV 88], one can modify the rules (adding inflationary

negation) to force the stages’ sequential execution.

Ro(z) i— R(z, y) and Ro(z) i—-— R(y, a). In this first stage, we produce (in standard Datalog fashion) the set

of node names. We use a relation R0 with T(R0) A1 : B].

R’(a,p,p’) i— Ro(x). In this second stage, we invent two oid’s per node, using the semantics of AV 88]. We

use a relation R’ whose tuples contain oid’s from class C and from a temporary class C’, that is, we have the types

T(R’) A1 : B, A2 : C, A3 : C’] and T(C’) ={C}. This stage’s rule invents two oid’s for each node, one of which

will go into class C and the other into class C’. Note how the variables p,p’ in the head are not in the body. When

the new oid’s 0,0’ are invented by instantiating p, p’ they are placed in the proper classes and they are automatically

assigned default values: v(o) is undefined and v(o’) is the empty set, because of the set valued type of C’.

4

~(q) i— R’(z, p, yl), R’(y, q, q’), R(z, y). In this third stage, we nest the oid’s representing nodes in C into sets

of successors of a node. Here p’ is set valued and its value, noted ~, is a set in which the corresponding q’s are

collected. The nesting is done by using the oid’s of C’ as temporary names that simulate AG 881’s data-functions.

(fr := z,~]) ~— R’(x,p,p’). In this final stage, the nodes of C have been grouped into C’, and the connection

in R’ between z, p, p’ is used to produce the desired result. This weak form of assignment is performed only when ~,
the value of p, was undefined. It is a single-assignment-form, i.e., no further changes are made to ~3. 0

Analysis of the Structural Data Model: Our main contributions in AK 89] are the succinct description of the

data model, and the design/analysis of IQL. This query language can be statically type checked, can be evaluated

bottom-up and naturally generalizes many rule-based languages. Interestingly, IQL uses oid’s for three critical

purposes: (1) to represent data-structures with sharing and cycles, (2) to manipulate sets and (3) to express any

computable database query — up to copy elimination. This last property is a “completeness” theorem — modulo copy

elimination (which is not expressible in IQL). However, IQL can express all computable queries on pure values. 0

2. The Behavioural Data Model: We propose method schemas as a core data model of the object-oriented

programs used in most 00DB prototypes. We believe that our functional formalism is the most natural one and

that, independent of formalism, the cases stressed in AKW 90] (small-arity, recursion free method schemas) should be

central to any object-oriented data model. The formalism is program schemas vL 90—ch.9], that express composition,
recursion and if-then-else, and that respect encapsulation; the manipulation of’objects only via methods. We do not

use the lambda calculus vL 90—ch.7], because most 00DB prototypes do not have higher order functions.

A method schema is an isa forest (or single inheritance) hierarchy of classes, that is associated with method (or
program) definitions, see Figures 1—3. Each object, in a database instance of a method schema, is created in a single
class where it belongs. All objects belonging to the same class have the same methods, so methods are part of the

schema. Objects have methods explicitly defined at their class or implicitly inherited from the ancestor classes of

their class in the isa hierarchy (see syntax below). Programs are interpreted operationally using graph rewriting (see
semantics below). Each object has no other visible structure, so we have algebraic specifications vL 90—ch.13].

Method Syntax: There are two kinds of explicit method definitions at class names c1,..., c,~, n ~ 0, where at most

one explicit definition is allowed at each c1, ..., c~. A base method definition m©c1, ..., c1,~ is a finite function (of arity
n> 0) which has name m and has a signature c1, ..., c~ —~ c~1. A coded method definition m©c1, ..., c,,~ has name

m and is associated with an n-term, that is, a finite rooted directed acyclic graph whose nodes are labeled by method

names and class names c1, ..., c,~ (at input nodes 1, .. . , n) and whose arcs are ordered at each node. (The idea is

that n-terms represent functions, built from the base functions via composition and recursion; method inheritance

will provide if-then_else). Three 1-terms t, t’, t” are shown in Figure 2, where arcs are ordered left-to-right. Figure 3

contains an explicit method definition example. In addition to explicit definitions, methods of a class can be implicitly
inherited by its descendants. (The idea is to have a restricted form of code polymorphism for the convenience of code

reuse). For flexibility, we allow reusing method names in different parts of the isa hierarchy, however, we keep the

sets of base and coded method names distinct. Inheritance means that we can have at most one explicit and possibly
several implicit definitions for a method name at the same class names, i.e., it implies method name overloading.
Resolution of method name overloading consists of finding, for a given method name and given classes, a unique
definition. We use the closest ancestor in the isa hierarchy resolution rule. For the multi-argument case we take the

argument-wise closest ancestor, see AKW 90]. For example, the method cost in Figures 1—3 is explicitly defined on

part, implicitly inherited by basepart, comp_part, and explicitly redefined on basepari (the overloading here is resolved

in favor of the explicit definition); it is also explicitly defined for pair_of_parts. 0

Method Semantics: For the base methods each database instance contains finite interpretations that respect the

given signatures. That is, m©c1, ..., c,~ —, c,~1 is materialized as a finite function which for any tuple of objects

belonging to c1, ..., c,, gives an object belonging to ~ or to one of its descendant classes. The interpretations of

coded methods are defined recursively using graph rewriting, just like program schernas. However, because of name

overloading, a given method name in a term is interpreted based on its context, i.e., on the classes of its arguments.

5

(The idea is to model late binding). We now give some intuition for the rewriting of coded methods. Consider

a depth-one n-term, whose one internal node is labeled m and whose inputs have been replaced by objects, as a

procedure call to m. Based on the classes of the arguments, we can replace (or reduce or graph rewrite) this call

either by some object/code if it is defined in a base/coded fashion, or by an error message if it is undefined. In

general, given the n-term with objects substituted for class name inputs, in order to compute we reduce the first (in
the term’s depth first ordering) method name with instantiated leaves as children. If this deterministic reduction

process terminates after a finite sequence of graph rewritings then we will either (1) obtain a result (i.e., an object)
or (2) reach an inconsistency (i.e., get an error message). A partial sequence of graph rewritings for the method cost

in Figure 3 is shown in Figure 4, where o is in class pair_of..parts and o’,o” are in class basepart. 0

In AKW 90] we analyze the nontrivial problem of method schema consistency. More precisely, we want to check

whether a given method schema can produce an inconsistency, for some finite interpretation of the base methods as

part of some finite terminating computation. The Problem of Type Inference in OODBs can be modeled by the static

method schema consistency question. Our analysis of this reachability problem primarily produces signatures for

the coded methods. The Problem of Managing Schema Evolution in an 00DB can be modeled by the incremental

method schema consistency question. This is an example of dynamic type inference. In general, the static method

schema consistency problem is undecidable. The difficulties come from the simultaneous presence of recursion and

the use of multi-argument methods to represent contexts. As in program schemas linear recursion and two arguments

suffice for undecidability. Practical programs are often less complex. Practical method schemas involve mostly the

one-argument (monadic) and/or the recursion-free cases. Also, signatures are covariant or coniravariant.

Analysis of the Behavioural Data Model: In AKW 90] we show that in the monadic and recursion-free case,

consistency checking can be done using finite state automata in PTIME, just like lexical analysis in compilers. In this

case, inheritance and name overloading introduce nondeterminism but covariance removes it. In favor of covariance,

we give DLOGSPACE vs NLOGSPACE arguments and linear vs quadratic time algorithm arguments. In the monadic

recursive case we also have decidability, using context free language emptiness. In the multi-argument recursion-

free case decidability follows from an exhaustive search, at the expense of co-NP-completeness even for arity two.

Interestingly, in the recursion-free covariant case there is a PTIME test for a single two-argument coded method.

We use our case analysis as the basis for a general heuristic for the static consistency problems. Enhancements (such
as varieties of multiple-inheritance, more precise or less precise signatures, attachment of methods to first argument,

and virtual classes with no objects belonging to them) can be integrated and studied with this core data model. 0

3. Combining the Two Facets: Despite their different nature, it is possible to combine the two facets in one data

model. Two examples, familiar to the authors, are the 02 object-oriented prototype (Vi version) BDK 91] and the

extension of IQL with abstract data types A 89]. The integration of the two styles of data description is relatively

simple. The more complicated task is the integration of data manipulation; for imperative formalisms in 02 see

LR 89] and for logical formalisms see A 89]. One technical problem, for OODBs, is the interaction of structural and

behavioural inheritance with type checking and type inference. In AK 89], we propose a compilation of structural

inheritance into union types, that preserves static type checking and the “completeness” of IQL. However, this

static solution does not capture the common dynamic use of inheritance in object-oriented programming languages

(as is done in LR 89] at the expense of full static type checking). The reason is that union types are hard to

implement. Is it possible to have dynamic use of inheritance in the query language, without giving-up static type

checking or “completeness”? Another technical problem, important for OODBs, is managing schema evolution. This

is motivation for the analysis of incremental method schema consistency, with structural features.

4. More Expressive and Efficient Types: We close our exposition with a description of two additional problem
areas. (1) How does one add polymorphism and higher order functions to the type system? Inheritance provides only

limited polymorphism. There has been a great deal of research on ML with records and inheritance. Can one use

such a programming language for an object-oriented data model? Can one take advantage of the various polymorphic

higher order calculi developed in recent years, surveyed in vL 90—’ch.8]? (2) The most important question, concerns

efficient implementations. The structural data model inherits much of the existing database optimization technology

U 88], but query optimization remains open for the behavioural (and the combined) data model(s).

6

sum sum

pair_of_parts
price

assembhngcost cost cost cost

SUbL Id

term t term t’ term t”

Figure 2: terms

method sum @int,int : mt method subparts @part : pair_of_parts
method head @pair_of_parts : part method assemblingcost @part : mt

method tail @pair_of_parts : part method cost @basepart = t”

method price @basepart : mt method cost @pair_of_parts =

method cost @part = t

Figure 3: Methods

c st cost cost cost cost pnce cost 17 COSt 17 cost

* * I ~.*
0

h\,7
0’

ta~
~‘

ta~ ta~
0”

Figure 4: A (partial) seuuence of rewritings

5. References

A 89] S. Abiteboul. “Towards a Deductive Object-Oriented Database Language”. lrst DOOD, 419—438, 1989.

AB 87] S. Abiteboul, C. Been. “On the Power of Languages for the Manipulation of Complex Objects”. INRIA-846, 1988.

AG 88] S. Abiteboul, S. Grumbach. “COL: a Logic-based Language for Complex Objects”. lrst EDBT, 271—293, 1988.

AK 89] S. Abiteboul, P.C. Kanellakis. “Object Identity as a Query Language Primitive”. SIGMOD, 159—173, 1989.

Also, INRIA-1022, 1989.

AKW 90] S. Abiteboul, P.C. Kanellakis, B. Wailer. “Method Schemas”. 9th PODS, 16—27, 1990.

ÀY 88] S. Abiteboul, V. Vianu. “Procedural and Declarative Database Update Languages”. 7th PODS, 240—250, 1988.

A+ 90] M. Atkinson, etal. “The Object-Oriented Database System Manifesto”. 1st DOOD, 40—57, 1989.

BDK 91] F. Bancillion, C. Delobel, P.C. Kanellakis (eds). “Building an Object-Oriented Database System: the Story of

02”. Morgan Kaufmann, to appear 1991.

KL 89] W. Kim, F.H. Lochovsky (eds). “Object-Oriented Concepts, Databases, and Applications”. ACM Press, 1989.

KY 84] G. Kuper, M.Y. Vardi. “The Logical Data Model: a New Approach to Database Logic”. 3rd PODS, 86—96, 1984.

Lii. 89] C. Lecluse, P. Richard. “The 02 Database Programming Language”. 15th VLDB, 411—422, 1989.

U 88] J.D. TJllman. “Database and Knowledge-Base Systems: Volumes I and II”. Computer Science Press, 1988.

vL 90] J. van Leeuwen (ed). “Handbook of Theoretical Computer Science: Volume B”. North Holland, 1990.

ZM 90] S.B. Zdonik, D. Maier (eds). “Readings in Object-Oriented Database Systems”. Morgan Kaufmann, 1990.

Figure 1: isa hierarchy

7

Theoretical Foundations for OODB’s — a Personal Perspective *

Catriel Been

Department of Computer Science

The Hebrew University of Jerusalem

1 Introduction

Object-orientation is a major paradigm in current database research. An enormous amount of

system work is invested in development of object-oriented databases (OODB’s); but all seem to

agree that the theoretical foundations can best be described as fuzzy. For me, ‘theory’ or ‘formal

foundations’ means logic (not necessarily predicate calculus). There is much to be said for the

logical approach to 00DB theory, but for brevity I assume that the reader is already convinced.

Let me only emphasize that I am looking only for logics that are axiomatizable, for obvious reasons.

The following is/a short account of some directions that I believe are relevant to the development

of a logical foundations for 00DB.

The 00DB paradigm is rich in ideas and concepts. I do not believe that a comprehensive

theoretical foundation for it can be developed easily, in one big step. My approach has been to

take as a starting point a familiar and well understood theory, and try to develop extensions that

each covers a useful and interesting category of 00DB concepts. Hopefully, such extensions can

be merged into progressively more general theories. I try to argue below that, indeed, there are

several directions to go, that each can ~be used to provide ~ foundation for some interesting features

of OODB’s, and that they can be cómbinedwith each ~ther. In the given space, it is impossible

to provide a detailed account. T discuss one (simple) direction rather extensively, and others only

fleetingly. (But be warned: the really interesting results are to be found in those other directions).
Note: The ideas below are not all originally mine; some have been discussed extensively in the

literature. I have not included a bibliography, but some pointers are provi4ed.

2 The Initial Model Approach

During the 80’s we have witnessed the appearance of models such as nested relations and complex

objects. Add to these object identity, the ability to define and use ADT’s, and finally the often

expressed requirement that the database and the application programming language should have

compatible type structures. In short, a primary characteristic of OODB’s is a powerful and exten

sible data type facility. Data types belong to the programming language domain. What can we

Research partially supported by a grant from the USA-ISRAEL Binational Science Foundation.

8

borrow there? Let us consider the theory of ADT specifications.1
Recall that our viewpoint about relational databases changed about ten years ago from model

theoretic to proof theoretic: a database is a set of (ground atomic) formulas. The semantics of such

a database was delineated in works by Reiter, that introduced additional, implicit, axioms, and

defined the meaning of a database as the logical closure of the explicit and the implicit axioms. The

implicit axioms state that the constants in the database are the only elements (domain closure),
that they are distinct from each other (unique naming), and lastly, the well known CWA: relation

ships not given explicitly in the database are false. There is also an equivalent model-theoretic

semantics since, given these axioms, the model is unique. The theory of deductive programming is

a generalization: the domain is Obtained from the constants given in a program by closure under

(syntactic) function application — this is the Herbrand universe. The elements of this universe are

assumed to be distinct. Obviously, this is a generalization of the domain closure and unique naming

assumptions. Finally, the semantics of a program is the set of ground atomic formulas it implies,

or equivalently the minimal model in the Herbrand universe — a generalization of the CWA.

Now, consider how abstract data types are specified. The approach is logic-based: The language

contains function symbols (including constants), and the only predicate symbol is equality. Thus,

the only atomic formulas are equations. Specifications are presented as sets of (universally quanti

fied) equations or conditional equations, that is, Horn-clauses. The models are algebras. The most

common definition of the semantics of a specification is its initial algebra or model.2 Initial models

are unique, up to isomorphism, so this definition is indeed abstract — it defines the semantics

uniquely only up to isomorphism, hiding representation details.

A well known construction of an initial model is the following: Start with the term algebra, whose

domain is the Herbrand universe — the collection of all terms, and where the ‘application’ of a

function f to terms ti,. . . , tT~ is defined to be the term f(t1,. . ., t,~). The extension of the equality

predicate defined by (conditional) equations is a congruence relation on the terms. The quotient of

the term algebra by this relation is also an algebra, and it is an initial model. (We take the quotient

so that equality behaves ‘normally’, that is, two elements are ‘equal’ if they are the same element.)
For some intuition, consider the definition of stacks, with operations push, pop, top, empty, where

the equations include, e.g., pop(push(n, s)) = s. The ‘stack’ elements of the term algebra are those

obtained from empty by applications of push and pop; but the equations make elements like s and

pop(push(n, s)) equivalent. The quotient algebra is precisely what we intuitively expect.

An important property of the initial model is that elements denoted by different ground terms

are the same, that is a ground equation holds in it, precisely when the equation is logically implied

by the specification. This reflects a proof-theoretic interpretation of the semantics, as the logical

closure of the specification. Note the similarity to the semantics of deductive programming. Can

then the two approaches be unified? Yes, easily! Take a language with both function and predicate

symbols. For any set of Horn clauses, there exists a (unique up to isomorphism) initial model.

Its elements are the equivalence classes of terms modulu the congruence relation defined by the

1The ideas below have been discussed in several papers by Goguen et a!; see, e.g, in D. DeGroot, G. Lindstrorn

(eds.) Logic Programming: Functions, relations, and Equations, Prentice Hall, 1986.

2lnitiaiity is easy to define, but we cannot go into details for lack of space.

9

formulas for the equality predicate and, in particular, the domain is the Herbrand universe 1ff there

are no nontrivial equations in the logical closure. It is still the case that a ground atomic formula

holds in it if it is logically implied from the given program. Thus, the logic programming paradigm

is obtained as a special case, where the equality predicate is not used. Relational databases are

obtained by also dropping the function symbols, and allowing only atomic ground formulas. All

the theorems that underlie deductive programming hold in this more general framework. In short,

it unifies the theories of relational databases, deductive programming, and ADT’s.

A unification of several theories is in itself a gratifying achievement. But, there are also imme

diate benefits: We can now (try to) generalize techniques and results of the more limited theories;

this often succeeds, and even when it fails it provides insight. We can relate results that were

obtained independently in seemingly distinct domains, and often reinterpret them as special cases.

We can also investigate issues that exist oniy in the generalized framework. All this, of course, is

just advertisement; let me mention some concrete examples.

The initial model approach allows one to define a variety of generic data types, in particular

tuples, finite sets, lists, and so on. Thus, this framework includes nested relations/complex objects

models, in which the values are atoms, tuples, and sets. It also allows user defined ADT’s. For

example, to define finite sets, we use the constant empty, and the function insert, that takes an

element and a set, and outputs a new set obtained by inserting the element into the given set. The

equations state that the order of insertion is irrelevant, and inserting an element twice has the same

effect as inserting it once. Membership, union, and so on can similarly be defined.

Why should we care to formalize a simple concept such as sets? A restricted formalization of sets

is embedded in the notion of model of the predicate calculus, and is used in relational databases:

Certain sets (of tuples) are given, namely the predicate extensions, other sets are defined from

them by formulas; one can ask if an element is in a set, or print all elements of a set. But, in

the new models sets are values that can be manipulated, taken apart and reconstructed. We must

tell the system how we understand sets. Trying to manipulate set naively may be dangerous: In

unrestricted LDL one can express the paradoxes of set theory. A formalization, as above, helps us

to discover what can be done with sets safely and efficiently. As an example, the existence of a least

fixpoint semantics for LPS, proved by Kuper using specialized techniques, follows as a corollary of

the general theorems. Features of languages that allow sets as elements such as LPS, LDL, COL

can now be compared and explained These are the benefits of having a general theory.

In this approach we cannot model updates, hence we cannot model the fact that object identity

does not change even when its value is updated. But, a simple static notion of object identity can

be modeled by a specification that defines pairs where one component, the identity, is taken from

some abstract domain (where the only operation is comparison), and the other component is the

value.3 For query languages, this is sufficient.

Traditionally, there have been two approaches to query languages: calculus-based and algebraic.

Now, we can view a database in our framework in two ways: First, as a set of formulas involving,

say, predicates Pr,. . . , p~ second, as a collection of named sets s1,. . . , Sn (whose contents is defined

3This may be rather disappointing, but without modeling updates, we cannot hope for much more.

10

by equations). In the first approach, a query is obtained by augmenting the database by additional

formulas, then asking what are the elements t such that p(t) holds, for some p. This is the calculus-

based approach: a formula defines an unnamed predicate, which is the query predicate. Deductive

languages also fall in this category. In the second approach, we apply functions to the given sets,

to produce new values. Appropriate generalizations of all the relational algebra operations are

definable as functions in this framework4, and so are other useful functions such as aggregates.

This sheds new light on the algebra vs. calculus dychotomy: these are functional and predicative

programming styles, respectively. Are they equivalent in this general setting? The answer is

positive, for both the nonrecursive and the recursive cases, under certain conditions. this generalizes

many previous results, and also uncovers some limitations.

The theory of ADT specification is usually couched in terms of ri-zany-sorted logic, where the

algebras, or models, have distinct domains for the sorts. But, actually we have here two independent

ideas: that equality can be used to define (state properties of) data types, and that typing can

be incorporated into the calculus, allowing functions that are meaningful only on certain subsets

of the domain. These ideas can be used independently or together. ~ The many-sorted approach

has the benefit of simplicity. For example, one may model subtyping (a form of isa relationship)

by mappings between domains in the initial model, and investigate its properties.6 Of course,

ultimately we would like to generalize the framework to more sophisticated type disciplines.

3 Higher-Order Concepts

Some relational systems now store queries; all OODB’s store functions in the form of methods.

Various features of the behavioral aspects of OODB’s, such as inheritance and overiding, are neatly

modeled when new functions can be defined from given functions (see my paper in DOOD89). The

requirement of having a complete database programming language also entails having a powerful

function definition facility. In short, we want functions as first class values, and a flexible function

definition facility.

The formalism underlying functional languages is the (untyped or typed) A—calculus. This is

also a logic, but it does not contain connectives and quantifiers, nor predicates. In the 30’s, Church

tried to extend A—calculus to a full logic; his system was shown to be inconsistent. Nevertheless, he

later presented a consistent logic that combines the predicate calculus and the typed A—calculus.7

I believe that the idea also works for the untyped A—calculus.8 An important benefit of this logic

is that A-abstraction can be applied to predicates, not just to functions. This further increases

its power. This logic is a considerable generalization of the framework of the previous section,

where the first-order functional language with equality is replaced by the A—calculus. A database

41t is well known how to define a function map that given a function f and a list, outputs the list with f applied
to each element. There is no difficulty to adapt thdefinition to obtain such as select and project on sets.

5We can define, say, integers and stacks in a mono-typed logic, but then we have to careful never to write an

expression that applies + to a stack. Typing is a natural solution.

6See my paper with T. Milo in PODS 91.

7See the paper by Nadathur and Miller in JACM, Oct. 90.

8However, in view of Church’s experience, do not believe until you see a proof in print.

11

is described, as before, by a collection of Horn clauses. If we carry over the rest of the paradigm,

that is the semantics as the logical closure, we have a very attractive framework, combining the full

powers of relational and functional programming, that can be used with various expressive type

systems.

An important characteristic of OODB’s is the ability to treat higher-order, or schema-level,

entities as first class values. Functions are just one example. Others include sets, attributes,

relations, classes and types. For example, isa relationships relate such entities, and we would like

to reason or query about such relationships. The issue of a logic where higher-order elements can

be manipulated as if they were first-order has been investigated by Kifer and coauthors; see his

paper in this journal. Let me consider just one issue. We have seen above how to models sets as

values. There is another approach to sets. If we make a selection from .a binary relation on an

element that appears in the first position, we can view the result as representing a set associated

with that element, and the element as an object id. Thus, we can in this way model (some aspects

of) set-valued objects, which we may call classes. We can now model relationships between classes;

e.g., isa is a binary predicate with axioms that make it a partial order.9 These are two of the

‘secrets’ of F-logic. We can similarly model binary-relation valued objects, and with axioms that

make the relations functional, we k~ave function-valued objects. Interestingly, the A—calculus has

an axiomatization and ‘first-order’ models, and the constructions of these models utilizes precisely

this idea of associating functions with elements, with certain closure properties that ensure that

A abstraction is always defined. Thus, there are common ideas underlying the various ‘feasible’

higher-order logics. It is important to note that the idea above is important for the designer of the

logic, since he needs effective proof procedures. A language should contain enough sugar to let the

users see just sets, functions, classes and so on. Users need not be bothered about how the proof

or model theory were developed.

4 Conclusion

I have shown that existing logic-based approaches to databases and programming languages promise

to be useful for modeling OODB’s. I hope that this extremely sketchy outline has convinced you

that the approach is interesting and potentially useful. In particular, that there is a small set

of concepts underlying the various higher-order logics. Often they are independent, and can be

combined to suit our needs. By elucidating them, we can hope to obtain a toolkit for constructing

expressive logics to suit our needs.

Much remains to be done in constructing new theories and extending known results, and in

providing satisfactory modeling of OODB’s. For the theoretically inclined, there is a wealth of

problems waiting to be investigated. I see the development of a full scale foundation for OODB’s

as an endeavor that may require several years. This is no reason to be alarmed; this is how science

progresses. I see a good reason to be excited and interested about this research; for if the approach
I have described works, then the results will be a unified foundation for two of the central fields of

Computer Science — databases and programming languages.

9The tricky part is, however, how to model inheritance. See F-logic.

12

A First-Order Formalization of Object-Oriented Languages *

Michael Kifer

Department of Computer Science

SUNY at Stony Brook

Stony Brook, NY 11794

kifer@cs.sunysb.edu

1 Introduction

The last few years saw a number of attempts to provide a formal foundation to the object-oriented program

ming paradigm. In a nutshell, one of the most salient features of this paradigm is the use of data abstraction,

i.e., encapsulated objects with complex internal structure accessible through publicly known functions, called

methods. Semantically similar objects are classified into classes and the latter are organized in a hierarchy,
sometimes called IS-A hierarchy.

IS-A hierarchies are useful because they help factor out information that is shared by most of the members

of a class. Such information is explicitly stated for the class and then is implicitly inherited by subclasses and

individual objects. Subclasses and objects that do not share the common information constitute exceptions

and can overwrite the inheritance. This kind of inheritance is called non-monotonic and has been extensively

studied in the literature.

Another important idea underlying object-oriented languages is the notion of a type. Generally, the term

type refers to an arbitrary set of abstract values. The collection of all types used in the language is called a

type system and is specified via a type expression sublanguage. In object-oriented languages, types are used

to specify collections of structurally similar objects, where the “similarity” is manifested by a common set

of methods applicable to the objects of the same type. Methods are also typed, i.e., they are declared so as

to expect arguments of certaln types and return objects of certain types.

Since objects populating a class share semantic similarity,1 it is reasonable to expect that they would be

structurally similar as well. Moreover, the type of objects in a class C is inherited by every subclass of C and

so the type of a subclass is a subset of the type of a superclass. We therefore believe that in object-oriented

languages typing is secondary to the semantic classification into classes. This also explains why in many

languages classes and types are closely, yet mysteriously, related.

In this short paper, we shall provide an elementary introduction into the results of our recent work on the

logical foundations of object-oriented and frame-based languages. Our goal is to clarify the central concepts

of such languages and outline a simple logical theory for them. We start with a very basic object-centered

language, roughly corresponding to Maier’s 0-logic 8] (but, in fact, dating back to the mid-seventies to the

little-known works of Pawlak 9, 10]), and proceed by adding more features, going on the way past what is

‘Work supported in part by the NSF grant IRI-8903507

1Classes that represent heterogeneous collections of objects do not contradict this claim, for—from the data modeling point
of view—semantic affinity is the only proper reason for placing different objects in the sante class.

13

	40979_DataEngineering_Jun1991_Vol14_No2.pdf

