
JUNE 1991, Volume 14, No. 2

a quarterly bulletin of the

IEEE Computer Society
technical committee on

Data

Engineering
CONTENTS

Letter from the Issue Editor 1

Rakesh Agrawal

The Two Facets of Object—Oriented Data Models 3

Serge Abiteboul and ParisC. Kanellakis

Theoretical Foundations for OODB’s — a Personal Perspective 8

Catriel Been

A First—Order Formalization of Object—Oriented Languages 13

Michael Kifer

On Data Restructuring and Merging with Object Identity 18

Richard Hull, Surjatini Widjojo, Dave Wile, and Masatoshi Yoshikawa

Data Structures and Data Types for Object—Oriented Databases 23

Vat Breazu—Tannen, Peter Buneman, and Atsushi Ohori

Foundations of the 02 Database System 28

C. Lecluse and P. Richard

Updating the Schema of an Object—Oriented Database 33

Alberta Coen—Porisini~ Luigi Lavazza, and Roberto Zicari

An Overview of Integrity Management in Object—Oriented Databases 38

Won Kim, Yoon—Joon Lee, and Jungyun Seo

Supporting Views in Object—Oriented Databases 43

Marc H. Scholl and H.—J. Schek

Algebraic Query Processing in EXTRA/EXCESS 48

Scott L. Vandenberg and David J. DeWitt

ENCORE: An Object—Oriented Approach to Database Modeling and’Querying 53

Stanley B. Zdonik and Gail Mitchell

Query Optimization in Revelation, an Overview 58

Scott Daniels, Goetz Graefe, Thomas Keller, David Maier, Dun Schmidt, and Bennet Vance

Calls for Papers 63

SPECIAL ISSUE ON FOUNDATIONS OF OBJECT—ORIENTED DATABASE SYSTEMS

+ 1951-1991
THE EISTTTUIE ~ ELECTEJCAL —

IEEE

~~.



June 1991, Volume 14, No.2

Editor—In—Chief, Data Engineering
Dr. Won Kim

UNISQL, Inc.

9390 Research Boulevard

Austin, TX 78759

(512) 343—7297

Associate Editors

Dr. Rakesh Agrawal
IBM Almadon Research Center

650 Harry Road
San Jose, Calif. 95120

(408)927—1734

Prof. Ahmed Elmagarmid

Department of Computer Sciences

Purdue University
West Lafayette, Indiana 47907

(317)494—1998

Prof. Yannis Ioannidis

Department of Computer Sciences

University of Wisconsin

Madison, Wisconsin 53706

(608) 263—7764

Prof. Kyu—Young Whang
Department of Computer Science

KAIST

P.O. Box 150

Chung—Ryang, Seoul, Korea

Chairperson, TC
Prof. John Carlis

Dept. of Computer Science

University of Minnesota

Minneapolis, MN 55455

Past Chairperson, IC

Prof Larry Kerschberg

Dept. of Information Systems and Systems Engineering
George Mason University
4400 University Drive

Fairfax, VA 22030

(703) 764—6192

Distribution

IEEE Computer Society
1730 Massachusetts Ave.

Washington, D.C. 20036—1903

(202)371—1012

Data Engineering Bulletin is a quarterly publication of

the IEEE Computer Society Technical Committee on

Data Engineering. Its scope of interest includes: data

structures and models, access strategies, access

control techniques, database architecture, database

machines, intelligent front ends, mass storage for

very large databases, distributed database systems
and techniques, database software design and im

plementation, database utilities, database security
and related areas.

Contribution to the Bulletin is hereby solicited. News

items, letters, technical papers, book reviews, meet

ing previews, summaries, case studies, etc., should

be sent to the Editor. All letters to the Editor will be

considered for publication unless accompanied by a

request to the contrary. Technical papers are unre

formed.

Opinions expressed in contributions are those of the

individual author rather than the official position of

the TC on Data Engineering, the IEEE Computer
Society, or organizations with which the author may
be affiliated.

Membership in the Data Engineering Technical

Committee is open to individuals who demonstrate

willingness to actively participate in the various acti

vities of the TC. A member of the IEEE Computer
Society may join the TC as a full member. A non—

member of the Computer Society may join as a par

ticipating member, with approval from at least one

officer of the TC. Both full members and participat
ing members of the TC are entitled to receive the

quarterly bulletin of the TC free of charge, until fur

ther notice.

S



Letter from the Issue Editor

Theoretical Foundations of Object-Oriented Database Systems

Object-orientation has emerged as a major theme in current work on database systems, and several

reseaith prototypes and commercial database products based on object-oriented paradigm are in different

stages of development. The enthusiasm and energy devoted to the development of object-oriented
database systems match, if not exceed, the development effort spent on relational systems in the late

seventies and early eighties. Interestingly, however, the development of object-oriented database systems

has taken a very different evolutionary path. While the relational systems started with a strong theoretical

foundation, there is no consensus yet on a formal theory for object-oriented database systems.

Experimental systems and products seem to be driving this field at this stage.

This issue presents a sampling of some recent attempts to provide a theoretical foundation for object-
oriented database systems. The issue cuntains 12 papers. These papers cover various aspects of object-
oriented database systems, including modeling, schema evolution, integrity constraints, views, and queries.

Abiteboul and Kanellakis point out the two facets of object-oriented data models — structural and

behavioral — that reflect the two origins of object-oriented database systems — relational database theory
and object-oriented programming. They formalize and analyze these two facets and give examples of their

integration.

Been argues for the extension of the existing logic-based approaches to databases and programming

languages for modeling object-oriented database systems. He presents an initial model approach that

unifies the theories of relational databases, deductive programming, and abstract data types. He also

argues for functions as first class values and a flexible function definition facility to model behavioral

aspects of object-oriented database systems.

Kifer presents the salient features of F-logic that make it possible to provide a full logical formalization of

object-oriented languages. F-logic breaks the distinction between classes, objects, and attributes which

allows queries that may return sets of attributes, classes, or any other aggregation that involves these

higher-order entities. It is also possible to define parametric classes in F-logic.

Object identity is a central concept in object-oriented database systems. Hull, Widjojo, Wile, and

Yoshikawa differentiate between object identities and values, describe a formal model which encompasses

object identities and values, and examine the impact of object identity in the contexts of data structuring
and merging.

Breazu-Tannen, Buneman, and Ohori argue that the object-oriented database systems can be best

understood in the framework of typed languages. They address the demands placed on programming

languages by the addition of operations on records and “bulk” data types such as sets.

Lecluse and Richard describe the foundations of the 02 database system. The 02 data model

differentiates between values and objects, and between types and classes. It also supports the notions of

the consistency of a class hierarchy and database schema.

Coen-Ponsini, Lavazza, and Zicari address the problem of schema evaluation in object-oriented database

systems. They differentiate between structural and behavioral consistency of a schema and outline their

solutions for maintaining schema consistency in the presence of schema modifications.

Object-oriented data models give rise to additional constraints beyond those meaningful under the

relational model. Kim, Lee, and Seo present a framework for classifying integrity constraints in the

context of an object-oriented data model on the basis of their performance impact.

Scholl and Schek describe how views may be supported in object-oriented database systems. They
introduce object-preserving query semantics of a generic object-oriented query language and show how

views defined by such query expressions may be updated. Dynamic reclassification allows objects to gain
and loose types.
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Vandenberg and DeWiu describe the algebraic fundamentals underlying the processing and optimization
of EXCESS queries in the EXTRA/EXCESS DBMS. They describe the algebraic structures and their

operators, the algebra’s expressive power, and the algebraic query optimization.

Zdonik and Mitchell present the ENCORE data model and its query algebra, called EQUAL. This algebra
generalizes relational operations by providing the capability to access and produce encapsulated, logically
complex objects.

Finally, Daniels, (Iraefe, Keller, Maier, Schmidt, and Vance discuss query optimization in object-oriented
databases in the context of Revelation project. They descnbe modeling features that support user-defined

data types, consider their impact on query optimization, and discuss the Revelation approach to these

problems.

Before closing, I would like to thank the authors for providing excellent papers at a short notice. It is my

fond hope that this issue will provide impetus for further reseaith in this important area.

Rakesh Agrawal
IBM Almaden Research Center

San Jose, California 95120
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The Two Facets of Object-Oriented Data Models

SERGE ABITEBOULS PARIS C. KANELLAKISt

0. Introduction: Object-oriented database systems (OODBs) are new software systems built using techniques from

databases, object-oriented languages, programming environments and user interfaces; for examples of this emerging
technology see the edited collections KL 89, ZM 90, BDK 91]. Unfortunately, there has been less progress on

understanding the principles of OODBs. This is”in marked contrast with the elements of relational database theory,
see U 88] and vL 90—ch.17]. Generally accepted definitions of object-oriented data models (as in A+ 89]) are still

no more than a list of desirable concepts, with little integration or analysis. The concepts themselves can be divided

in two categories, which reflect their origins: from relational database theory or from object-oriented programming.
Each of these two facets of object-oriented data models involves both data description and data manipulation. So the

division is not one of type-description vs type-manipulation, but rather one of concrete (or structural) vs abstract

(or behavioural) type disciplines. Key issues are formalizing the individual facets and their integration.

In this short survey we: (1) present succinct, but still fairly detailed, formalizations for the two facets, and

(2) summarize their analysis from AK 89], for the structural, and AKW 90], for the behavioural part. For each the

format is an example-driven, two page outline. We close with examples A 89, LR 89, BDK 91] integrating the two

facets, a description of some promising research directions and a selected (but incomplete) list of references.

1. The Structural Data Model: The data description generalizes existing “nested relation” and “complex struc

ture” data models, in particular AB 87, KV 84]. Our data. manipulation language IQL generalizes existing rule-

based, statically typed database query languages, and can be used to compare their expressive power. After some

preliminary notation, we define database schemas and their instances, almost as succinctly as for the relational data

model! Assume the following countably infinite and pairwise disjoint sets: (1) relation names {R, R’, .. . , }, (2) class

names {C, C’,. . . , }, (3) attributes {A, A’, .. . , }, (4) base constants B = {b, b’,.. . , }, and (5) object identifiers or

oids 0 = {o, o’, .. . , }. The set of o-values is the smallest set containing B and 0 and closed under finite tupling
A1 : v1, .. . , A,~ : vk] for distinct A’s) and finite subseting ({vi, .. . ,v~}). An o-value assignment p maps relation

names 11 to finite sets of o-values. A disjoint] oid assignment ir maps class names C to pairwise disjoint] finite sets

of oids. A value map of an oid assignment r is a partial function ii associating the oids in r to o-values. Intuitively,
o-value assignments are like “relational database instances”, oid assignments put “objects” into “classes”, and value

maps associate “objects” to “values” or when undefined to “null values”. A fine point is the cyclic use of class names

C and oid assignment ir, respectively, in the syntax and semantics of types as follows: (1) Type ex~ressions types(C)
are defined by the grammar r = C I 0 I B I A1 : r,. .. ,Ak : r] I {r} I (rVr) I (TAr). (2) The matching type domains

are the sets Dom= ~r(C) I {} I {b,b’,...} I Ai: Dom,...,A, : Dorm] I {Dom} I (DomUDorrt) I (DornflDorm).

Definition DB: A database schema consists of a finite set of relation names R, a finite set of class names C and a

function T from RuC to types(C). A database instance of such a schema consists of an o-value assignment p to R,
a disjoint oid assignment ir to C, and a value map t’ of r such that:

(1) each R in R contains o-values of the right type, p(R) C Dom(T(R)),
(2) each C in C contains oids mapped to o-values of the right type, v(ir(C)) ç Dom(T(C)), and

for o not] a set-valued oid, undefined v(o) is u(o) = 0 undefined u(o) is a null value]. C

‘INRIA Rocquencourt, FRANCE. (abitebou@inria.inria.fr). Supported by the Projet de Recherche Coordonnée BD3.

tBrown Univ., Providence RI, USA. (pck©cs.brown.edu). Supported by NSF grant IRI-8617344 and ONR grant N00014-83-K-0146

ARPA Order No. 6320-1. Also, would like to thank Sridhar Ramaswamy for his help with the presentation.
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The types provided in this structural data model are concrete, as opposed to abstract. They include records,
sets (lists could be handled similarly) and pointers. In addition, non-disjoint oid assignments and intersection and

union types can be used for expressing structural polymorphism and in particular structural inheritance; because of

limited space we refer to AK 89] for details on this issue. Also in AK 89], we present a corresponding pure value

data model without oids, based on the regular infinite trees produced by iterated applications of the value map i’.

We now present an example that illustrates the data model’s substantial descriptive power (from Genesis no less!).

Example DB: Consider a schema with two class names C-lst-generaticn, C-2nd-generation and with two relation

names R-founded-lineage, Il-ancestor-of-celebrity. Their types refer to a base domain, e.g., B-string, and to class

names, e.g., C-lst.generation, but not to relation names. Union is allowed. Then consider an instance of this schema,

whose oid’s are o-adam, 0-eve, c-cain, c-abel, o-seth, o-nameless. Note the cycles.

T( C-lst.generation) = name: B-string, spouse: C-lst-generaiion, children: {C-End-generation}]
T( C-2nd-generation) = name: B-string, occupations: {B-siring}]
T(R-founded-lineage) = C-2nd-generation

T(R-ancestor-of-celebrity) = anc: C-2nd-generation, desc: (B-string V spouse: B-string])

ir(C-lst-generation) = { c-adam, 0-eve } and ~r(C-2nd-generation) = { c-cain, o-abel, c-seth, o-nameless },
p(R-founded-lineage) = { c-cain, c-seth, o-nameless },
p(R-ancestor-of-celebrity) = { anc: c-seth, desc: Noah], anc: c-cain, desc: spouse: Ada]] },
u(c-adarn.) = name: Adam, spouse: c-eve, children: { c-cain, c-abel, c-seth, c-nameless }],
v(o-eve) = name: Eve, spouse: c-adam, children: { c-cain, c-abel, c-seth, c-nameless }]
v(c-cain) = name: Cain, occupations: { Farmer, Nomad, Artisan }],
z~(o-abe() = name: Abel, occupations: { Shepherd }],
v(o-seth) = name: Seth, occupations: {}], ii(o-nameless) is a null value. 0

The structural data model comes with a “complete” query language. This language, IQL, is Datalog with

negation combined with set/tuple types, invention of new oid’s, and a weak form of assignment. With no additional

syntax, inflationary negation can express sequential execution and while-loops. IQL was designed as a minimal

rule-based formalism for expressing all computable queries. This precise expressive power was achieved — modulo

a technical condition (copy elimination). The design was influenced by both the COL language of AG 88], for the

manipulation of sets, and the detDL language of AV 88], for the invention of new oid’s. The following example
illustrates all of its important features on an efficiently executable query. This query is not expressible in most other

database languages, but is easily expressible in any programming language (e.g., Pascal).

Example IQL Query: Our type system allows multiple representations of the same information. For example, a

directed graph may be represented as a binary relation whose tuples are the arcs of the graph or as a class whose

type is cyclic. In the second representation each node has an oid, a name, and a set of descendant nodes. IQL allows

converting the first representation into the second and vice-versa. More formally, let the input schema be just a

relation Il with 7~R) = Aj:B,A2:B] and the output schema be a class C with T(C) = Ai:B,A2:{C}]. The input
instance I represents directed graph C over B nodes. The desired query is to transform the “flat” I into a “deep”

output instance J that also represents G (where now the nodes are “objects”). Let us examine the computation in

IQL in four separate stages. Using simple techniques from AV 88], one can modify the rules (adding inflationary

negation) to force the stages’ sequential execution.

Ro(z) i— R(z, y) and Ro(z) i—-— R(y, a). In this first stage, we produce (in standard Datalog fashion) the set

of node names. We use a relation R0 with T(R0) A1 : B].

R’(a,p,p’) i— Ro(x). In this second stage, we invent two oid’s per node, using the semantics of AV 88]. We

use a relation R’ whose tuples contain oid’s from class C and from a temporary class C’, that is, we have the types

T(R’) A1 : B, A2 : C, A3 : C’] and T(C’) ={C}. This stage’s rule invents two oid’s for each node, one of which

will go into class C and the other into class C’. Note how the variables p,p’ in the head are not in the body. When

the new oid’s 0,0’ are invented by instantiating p, p’ they are placed in the proper classes and they are automatically

assigned default values: v(o) is undefined and v(o’) is the empty set, because of the set valued type of C’.
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~(q) i— R’(z, p, yl), R’(y, q, q’), R(z, y). In this third stage, we nest the oid’s representing nodes in C into sets

of successors of a node. Here p’ is set valued and its value, noted ~, is a set in which the corresponding q’s are

collected. The nesting is done by using the oid’s of C’ as temporary names that simulate AG 881’s data-functions.

(fr := z,~]) ~— R’(x,p,p’). In this final stage, the nodes of C have been grouped into C’, and the connection

in R’ between z, p, p’ is used to produce the desired result. This weak form of assignment is performed only when ~,
the value of p, was undefined. It is a single-assignment-form, i.e., no further changes are made to ~3. 0

Analysis of the Structural Data Model: Our main contributions in AK 89] are the succinct description of the

data model, and the design/analysis of IQL. This query language can be statically type checked, can be evaluated

bottom-up and naturally generalizes many rule-based languages. Interestingly, IQL uses oid’s for three critical

purposes: (1) to represent data-structures with sharing and cycles, (2) to manipulate sets and (3) to express any

computable database query — up to copy elimination. This last property is a “completeness” theorem — modulo copy

elimination (which is not expressible in IQL). However, IQL can express all computable queries on pure values. 0

2. The Behavioural Data Model: We propose method schemas as a core data model of the object-oriented

programs used in most 00DB prototypes. We believe that our functional formalism is the most natural one and

that, independent of formalism, the cases stressed in AKW 90] (small-arity, recursion free method schemas) should be

central to any object-oriented data model. The formalism is program schemas vL 90—ch.9], that express composition,
recursion and if-then-else, and that respect encapsulation; the manipulation of’objects only via methods. We do not

use the lambda calculus vL 90—ch.7], because most 00DB prototypes do not have higher order functions.

A method schema is an isa forest (or single inheritance) hierarchy of classes, that is associated with method (or
program) definitions, see Figures 1—3. Each object, in a database instance of a method schema, is created in a single
class where it belongs. All objects belonging to the same class have the same methods, so methods are part of the

schema. Objects have methods explicitly defined at their class or implicitly inherited from the ancestor classes of

their class in the isa hierarchy (see syntax below). Programs are interpreted operationally using graph rewriting (see
semantics below). Each object has no other visible structure, so we have algebraic specifications vL 90—ch.13].

Method Syntax: There are two kinds of explicit method definitions at class names c1,..., c,~, n ~ 0, where at most

one explicit definition is allowed at each c1, ..., c~. A base method definition m©c1, ..., c1,~ is a finite function (of arity
n> 0) which has name m and has a signature c1, ..., c~ —~ c~1. A coded method definition m©c1, ..., c,,~ has name

m and is associated with an n-term, that is, a finite rooted directed acyclic graph whose nodes are labeled by method

names and class names c1, ..., c,~ (at input nodes 1, .. . , n) and whose arcs are ordered at each node. (The idea is

that n-terms represent functions, built from the base functions via composition and recursion; method inheritance

will provide if-then_else). Three 1-terms t, t’, t” are shown in Figure 2, where arcs are ordered left-to-right. Figure 3

contains an explicit method definition example. In addition to explicit definitions, methods of a class can be implicitly
inherited by its descendants. (The idea is to have a restricted form of code polymorphism for the convenience of code

reuse). For flexibility, we allow reusing method names in different parts of the isa hierarchy, however, we keep the

sets of base and coded method names distinct. Inheritance means that we can have at most one explicit and possibly
several implicit definitions for a method name at the same class names, i.e., it implies method name overloading.
Resolution of method name overloading consists of finding, for a given method name and given classes, a unique
definition. We use the closest ancestor in the isa hierarchy resolution rule. For the multi-argument case we take the

argument-wise closest ancestor, see AKW 90]. For example, the method cost in Figures 1—3 is explicitly defined on

part, implicitly inherited by basepart, comp_part, and explicitly redefined on basepari (the overloading here is resolved

in favor of the explicit definition); it is also explicitly defined for pair_of_parts. 0

Method Semantics: For the base methods each database instance contains finite interpretations that respect the

given signatures. That is, m©c1, ..., c,~ —, c,~1 is materialized as a finite function which for any tuple of objects

belonging to c1, ..., c,, gives an object belonging to ~ or to one of its descendant classes. The interpretations of

coded methods are defined recursively using graph rewriting, just like program schernas. However, because of name

overloading, a given method name in a term is interpreted based on its context, i.e., on the classes of its arguments.
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(The idea is to model late binding). We now give some intuition for the rewriting of coded methods. Consider

a depth-one n-term, whose one internal node is labeled m and whose inputs have been replaced by objects, as a

procedure call to m. Based on the classes of the arguments, we can replace (or reduce or graph rewrite) this call

either by some object/code if it is defined in a base/coded fashion, or by an error message if it is undefined. In

general, given the n-term with objects substituted for class name inputs, in order to compute we reduce the first (in
the term’s depth first ordering) method name with instantiated leaves as children. If this deterministic reduction

process terminates after a finite sequence of graph rewritings then we will either (1) obtain a result (i.e., an object)
or (2) reach an inconsistency (i.e., get an error message). A partial sequence of graph rewritings for the method cost

in Figure 3 is shown in Figure 4, where o is in class pair_of..parts and o’,o” are in class basepart. 0

In AKW 90] we analyze the nontrivial problem of method schema consistency. More precisely, we want to check

whether a given method schema can produce an inconsistency, for some finite interpretation of the base methods as

part of some finite terminating computation. The Problem of Type Inference in OODBs can be modeled by the static

method schema consistency question. Our analysis of this reachability problem primarily produces signatures for

the coded methods. The Problem of Managing Schema Evolution in an 00DB can be modeled by the incremental

method schema consistency question. This is an example of dynamic type inference. In general, the static method

schema consistency problem is undecidable. The difficulties come from the simultaneous presence of recursion and

the use of multi-argument methods to represent contexts. As in program schemas linear recursion and two arguments

suffice for undecidability. Practical programs are often less complex. Practical method schemas involve mostly the

one-argument (monadic) and/or the recursion-free cases. Also, signatures are covariant or coniravariant.

Analysis of the Behavioural Data Model: In AKW 90] we show that in the monadic and recursion-free case,

consistency checking can be done using finite state automata in PTIME, just like lexical analysis in compilers. In this

case, inheritance and name overloading introduce nondeterminism but covariance removes it. In favor of covariance,

we give DLOGSPACE vs NLOGSPACE arguments and linear vs quadratic time algorithm arguments. In the monadic

recursive case we also have decidability, using context free language emptiness. In the multi-argument recursion-

free case decidability follows from an exhaustive search, at the expense of co-NP-completeness even for arity two.

Interestingly, in the recursion-free covariant case there is a PTIME test for a single two-argument coded method.

We use our case analysis as the basis for a general heuristic for the static consistency problems. Enhancements (such
as varieties of multiple-inheritance, more precise or less precise signatures, attachment of methods to first argument,

and virtual classes with no objects belonging to them) can be integrated and studied with this core data model. 0

3. Combining the Two Facets: Despite their different nature, it is possible to combine the two facets in one data

model. Two examples, familiar to the authors, are the 02 object-oriented prototype (Vi version) BDK 91] and the

extension of IQL with abstract data types A 89]. The integration of the two styles of data description is relatively

simple. The more complicated task is the integration of data manipulation; for imperative formalisms in 02 see

LR 89] and for logical formalisms see A 89]. One technical problem, for OODBs, is the interaction of structural and

behavioural inheritance with type checking and type inference. In AK 89], we propose a compilation of structural

inheritance into union types, that preserves static type checking and the “completeness” of IQL. However, this

static solution does not capture the common dynamic use of inheritance in object-oriented programming languages

(as is done in LR 89] at the expense of full static type checking). The reason is that union types are hard to

implement. Is it possible to have dynamic use of inheritance in the query language, without giving-up static type

checking or “completeness”? Another technical problem, important for OODBs, is managing schema evolution. This

is motivation for the analysis of incremental method schema consistency, with structural features.

4. More Expressive and Efficient Types: We close our exposition with a description of two additional problem
areas. (1) How does one add polymorphism and higher order functions to the type system? Inheritance provides only

limited polymorphism. There has been a great deal of research on ML with records and inheritance. Can one use

such a programming language for an object-oriented data model? Can one take advantage of the various polymorphic

higher order calculi developed in recent years, surveyed in vL 90—’ch.8]? (2) The most important question, concerns

efficient implementations. The structural data model inherits much of the existing database optimization technology

U 88], but query optimization remains open for the behavioural (and the combined) data model(s).
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1 Introduction

Object-orientation is a major paradigm in current database research. An enormous amount of

system work is invested in development of object-oriented databases (OODB’s); but all seem to

agree that the theoretical foundations can best be described as fuzzy. For me, ‘theory’ or ‘formal

foundations’ means logic (not necessarily predicate calculus). There is much to be said for the

logical approach to 00DB theory, but for brevity I assume that the reader is already convinced.

Let me only emphasize that I am looking only for logics that are axiomatizable, for obvious reasons.

The following is/a short account of some directions that I believe are relevant to the development

of a logical foundations for 00DB.

The 00DB paradigm is rich in ideas and concepts. I do not believe that a comprehensive

theoretical foundation for it can be developed easily, in one big step. My approach has been to

take as a starting point a familiar and well understood theory, and try to develop extensions that

each covers a useful and interesting category of 00DB concepts. Hopefully, such extensions can

be merged into progressively more general theories. I try to argue below that, indeed, there are

several directions to go, that each can ~be used to provide ~ foundation for some interesting features

of OODB’s, and that they can be cómbinedwith each ~ther. In the given space, it is impossible

to provide a detailed account. T discuss one (simple) direction rather extensively, and others only

fleetingly. (But be warned: the really interesting results are to be found in those other directions).
Note: The ideas below are not all originally mine; some have been discussed extensively in the

literature. I have not included a bibliography, but some pointers are provi4ed.

2 The Initial Model Approach

During the 80’s we have witnessed the appearance of models such as nested relations and complex

objects. Add to these object identity, the ability to define and use ADT’s, and finally the often

expressed requirement that the database and the application programming language should have

compatible type structures. In short, a primary characteristic of OODB’s is a powerful and exten

sible data type facility. Data types belong to the programming language domain. What can we

Research partially supported by a grant from the USA-ISRAEL Binational Science Foundation.
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borrow there? Let us consider the theory of ADT specifications.1
Recall that our viewpoint about relational databases changed about ten years ago from model

theoretic to proof theoretic: a database is a set of (ground atomic) formulas. The semantics of such

a database was delineated in works by Reiter, that introduced additional, implicit, axioms, and

defined the meaning of a database as the logical closure of the explicit and the implicit axioms. The

implicit axioms state that the constants in the database are the only elements (domain closure),
that they are distinct from each other (unique naming), and lastly, the well known CWA: relation

ships not given explicitly in the database are false. There is also an equivalent model-theoretic

semantics since, given these axioms, the model is unique. The theory of deductive programming is

a generalization: the domain is Obtained from the constants given in a program by closure under

(syntactic) function application — this is the Herbrand universe. The elements of this universe are

assumed to be distinct. Obviously, this is a generalization of the domain closure and unique naming

assumptions. Finally, the semantics of a program is the set of ground atomic formulas it implies,

or equivalently the minimal model in the Herbrand universe — a generalization of the CWA.

Now, consider how abstract data types are specified. The approach is logic-based: The language

contains function symbols (including constants), and the only predicate symbol is equality. Thus,

the only atomic formulas are equations. Specifications are presented as sets of (universally quanti

fied) equations or conditional equations, that is, Horn-clauses. The models are algebras. The most

common definition of the semantics of a specification is its initial algebra or model.2 Initial models

are unique, up to isomorphism, so this definition is indeed abstract — it defines the semantics

uniquely only up to isomorphism, hiding representation details.

A well known construction of an initial model is the following: Start with the term algebra, whose

domain is the Herbrand universe — the collection of all terms, and where the ‘application’ of a

function f to terms ti,. . . , tT~ is defined to be the term f(t1,. . ., t,~). The extension of the equality

predicate defined by (conditional) equations is a congruence relation on the terms. The quotient of

the term algebra by this relation is also an algebra, and it is an initial model. (We take the quotient

so that equality behaves ‘normally’, that is, two elements are ‘equal’ if they are the same element.)
For some intuition, consider the definition of stacks, with operations push, pop, top, empty, where

the equations include, e.g., pop(push(n, s)) = s. The ‘stack’ elements of the term algebra are those

obtained from empty by applications of push and pop; but the equations make elements like s and

pop(push(n, s)) equivalent. The quotient algebra is precisely what we intuitively expect.

An important property of the initial model is that elements denoted by different ground terms

are the same, that is a ground equation holds in it, precisely when the equation is logically implied

by the specification. This reflects a proof-theoretic interpretation of the semantics, as the logical

closure of the specification. Note the similarity to the semantics of deductive programming. Can

then the two approaches be unified? Yes, easily! Take a language with both function and predicate

symbols. For any set of Horn clauses, there exists a (unique up to isomorphism) initial model.

Its elements are the equivalence classes of terms modulu the congruence relation defined by the

1The ideas below have been discussed in several papers by Goguen et a!; see, e.g, in D. DeGroot, G. Lindstrorn

(eds.) Logic Programming: Functions, relations, and Equations, Prentice Hall, 1986.

2lnitiaiity is easy to define, but we cannot go into details for lack of space.
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formulas for the equality predicate and, in particular, the domain is the Herbrand universe 1ff there

are no nontrivial equations in the logical closure. It is still the case that a ground atomic formula

holds in it if it is logically implied from the given program. Thus, the logic programming paradigm

is obtained as a special case, where the equality predicate is not used. Relational databases are

obtained by also dropping the function symbols, and allowing only atomic ground formulas. All

the theorems that underlie deductive programming hold in this more general framework. In short,

it unifies the theories of relational databases, deductive programming, and ADT’s.

A unification of several theories is in itself a gratifying achievement. But, there are also imme

diate benefits: We can now (try to) generalize techniques and results of the more limited theories;

this often succeeds, and even when it fails it provides insight. We can relate results that were

obtained independently in seemingly distinct domains, and often reinterpret them as special cases.

We can also investigate issues that exist oniy in the generalized framework. All this, of course, is

just advertisement; let me mention some concrete examples.

The initial model approach allows one to define a variety of generic data types, in particular

tuples, finite sets, lists, and so on. Thus, this framework includes nested relations/complex objects

models, in which the values are atoms, tuples, and sets. It also allows user defined ADT’s. For

example, to define finite sets, we use the constant empty, and the function insert, that takes an

element and a set, and outputs a new set obtained by inserting the element into the given set. The

equations state that the order of insertion is irrelevant, and inserting an element twice has the same

effect as inserting it once. Membership, union, and so on can similarly be defined.

Why should we care to formalize a simple concept such as sets? A restricted formalization of sets

is embedded in the notion of model of the predicate calculus, and is used in relational databases:

Certain sets (of tuples) are given, namely the predicate extensions, other sets are defined from

them by formulas; one can ask if an element is in a set, or print all elements of a set. But, in

the new models sets are values that can be manipulated, taken apart and reconstructed. We must

tell the system how we understand sets. Trying to manipulate set naively may be dangerous: In

unrestricted LDL one can express the paradoxes of set theory. A formalization, as above, helps us

to discover what can be done with sets safely and efficiently. As an example, the existence of a least

fixpoint semantics for LPS, proved by Kuper using specialized techniques, follows as a corollary of

the general theorems. Features of languages that allow sets as elements such as LPS, LDL, COL

can now be compared and explained These are the benefits of having a general theory.

In this approach we cannot model updates, hence we cannot model the fact that object identity

does not change even when its value is updated. But, a simple static notion of object identity can

be modeled by a specification that defines pairs where one component, the identity, is taken from

some abstract domain (where the only operation is comparison), and the other component is the

value.3 For query languages, this is sufficient.

Traditionally, there have been two approaches to query languages: calculus-based and algebraic.

Now, we can view a database in our framework in two ways: First, as a set of formulas involving,

say, predicates Pr,. . . , p~ second, as a collection of named sets s1,. . . , Sn (whose contents is defined

3This may be rather disappointing, but without modeling updates, we cannot hope for much more.
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by equations). In the first approach, a query is obtained by augmenting the database by additional

formulas, then asking what are the elements t such that p(t) holds, for some p. This is the calculus-

based approach: a formula defines an unnamed predicate, which is the query predicate. Deductive

languages also fall in this category. In the second approach, we apply functions to the given sets,

to produce new values. Appropriate generalizations of all the relational algebra operations are

definable as functions in this framework4, and so are other useful functions such as aggregates.

This sheds new light on the algebra vs. calculus dychotomy: these are functional and predicative

programming styles, respectively. Are they equivalent in this general setting? The answer is

positive, for both the nonrecursive and the recursive cases, under certain conditions. this generalizes

many previous results, and also uncovers some limitations.

The theory of ADT specification is usually couched in terms of ri-zany-sorted logic, where the

algebras, or models, have distinct domains for the sorts. But, actually we have here two independent

ideas: that equality can be used to define (state properties of) data types, and that typing can

be incorporated into the calculus, allowing functions that are meaningful only on certain subsets

of the domain. These ideas can be used independently or together. ~ The many-sorted approach

has the benefit of simplicity. For example, one may model subtyping (a form of isa relationship)

by mappings between domains in the initial model, and investigate its properties.6 Of course,

ultimately we would like to generalize the framework to more sophisticated type disciplines.

3 Higher-Order Concepts

Some relational systems now store queries; all OODB’s store functions in the form of methods.

Various features of the behavioral aspects of OODB’s, such as inheritance and overiding, are neatly

modeled when new functions can be defined from given functions (see my paper in DOOD89). The

requirement of having a complete database programming language also entails having a powerful

function definition facility. In short, we want functions as first class values, and a flexible function

definition facility.

The formalism underlying functional languages is the (untyped or typed) A—calculus. This is

also a logic, but it does not contain connectives and quantifiers, nor predicates. In the 30’s, Church

tried to extend A—calculus to a full logic; his system was shown to be inconsistent. Nevertheless, he

later presented a consistent logic that combines the predicate calculus and the typed A—calculus.7

I believe that the idea also works for the untyped A—calculus.8 An important benefit of this logic

is that A-abstraction can be applied to predicates, not just to functions. This further increases

its power. This logic is a considerable generalization of the framework of the previous section,

where the first-order functional language with equality is replaced by the A—calculus. A database

41t is well known how to define a function map that given a function f and a list, outputs the list with f applied
to each element. There is no difficulty to adapt thdefinition to obtain such as select and project on sets.

5We can define, say, integers and stacks in a mono-typed logic, but then we have to careful never to write an

expression that applies + to a stack. Typing is a natural solution.

6See my paper with T. Milo in PODS 91.

7See the paper by Nadathur and Miller in JACM, Oct. 90.

8However, in view of Church’s experience, do not believe until you see a proof in print.
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is described, as before, by a collection of Horn clauses. If we carry over the rest of the paradigm,

that is the semantics as the logical closure, we have a very attractive framework, combining the full

powers of relational and functional programming, that can be used with various expressive type

systems.

An important characteristic of OODB’s is the ability to treat higher-order, or schema-level,

entities as first class values. Functions are just one example. Others include sets, attributes,

relations, classes and types. For example, isa relationships relate such entities, and we would like

to reason or query about such relationships. The issue of a logic where higher-order elements can

be manipulated as if they were first-order has been investigated by Kifer and coauthors; see his

paper in this journal. Let me consider just one issue. We have seen above how to models sets as

values. There is another approach to sets. If we make a selection from .a binary relation on an

element that appears in the first position, we can view the result as representing a set associated

with that element, and the element as an object id. Thus, we can in this way model (some aspects

of) set-valued objects, which we may call classes. We can now model relationships between classes;

e.g., isa is a binary predicate with axioms that make it a partial order.9 These are two of the

‘secrets’ of F-logic. We can similarly model binary-relation valued objects, and with axioms that

make the relations functional, we k~ave function-valued objects. Interestingly, the A—calculus has

an axiomatization and ‘first-order’ models, and the constructions of these models utilizes precisely

this idea of associating functions with elements, with certain closure properties that ensure that

A abstraction is always defined. Thus, there are common ideas underlying the various ‘feasible’

higher-order logics. It is important to note that the idea above is important for the designer of the

logic, since he needs effective proof procedures. A language should contain enough sugar to let the

users see just sets, functions, classes and so on. Users need not be bothered about how the proof

or model theory were developed.

4 Conclusion

I have shown that existing logic-based approaches to databases and programming languages promise

to be useful for modeling OODB’s. I hope that this extremely sketchy outline has convinced you

that the approach is interesting and potentially useful. In particular, that there is a small set

of concepts underlying the various higher-order logics. Often they are independent, and can be

combined to suit our needs. By elucidating them, we can hope to obtain a toolkit for constructing

expressive logics to suit our needs.

Much remains to be done in constructing new theories and extending known results, and in

providing satisfactory modeling of OODB’s. For the theoretically inclined, there is a wealth of

problems waiting to be investigated. I see the development of a full scale foundation for OODB’s

as an endeavor that may require several years. This is no reason to be alarmed; this is how science

progresses. I see a good reason to be excited and interested about this research; for if the approach
I have described works, then the results will be a unified foundation for two of the central fields of

Computer Science — databases and programming languages.

9The tricky part is, however, how to model inheritance. See F-logic.
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1 Introduction

The last few years saw a number of attempts to provide a formal foundation to the object-oriented program

ming paradigm. In a nutshell, one of the most salient features of this paradigm is the use of data abstraction,

i.e., encapsulated objects with complex internal structure accessible through publicly known functions, called

methods. Semantically similar objects are classified into classes and the latter are organized in a hierarchy,
sometimes called IS-A hierarchy.

IS-A hierarchies are useful because they help factor out information that is shared by most of the members

of a class. Such information is explicitly stated for the class and then is implicitly inherited by subclasses and

individual objects. Subclasses and objects that do not share the common information constitute exceptions

and can overwrite the inheritance. This kind of inheritance is called non-monotonic and has been extensively

studied in the literature.

Another important idea underlying object-oriented languages is the notion of a type. Generally, the term

type refers to an arbitrary set of abstract values. The collection of all types used in the language is called a

type system and is specified via a type expression sublanguage. In object-oriented languages, types are used

to specify collections of structurally similar objects, where the “similarity” is manifested by a common set

of methods applicable to the objects of the same type. Methods are also typed, i.e., they are declared so as

to expect arguments of certaln types and return objects of certain types.

Since objects populating a class share semantic similarity,1 it is reasonable to expect that they would be

structurally similar as well. Moreover, the type of objects in a class C is inherited by every subclass of C and

so the type of a subclass is a subset of the type of a superclass. We therefore believe that in object-oriented

languages typing is secondary to the semantic classification into classes. This also explains why in many

languages classes and types are closely, yet mysteriously, related.

In this short paper, we shall provide an elementary introduction into the results of our recent work on the

logical foundations of object-oriented and frame-based languages. Our goal is to clarify the central concepts

of such languages and outline a simple logical theory for them. We start with a very basic object-centered

language, roughly corresponding to Maier’s 0-logic 8] (but, in fact, dating back to the mid-seventies to the

little-known works of Pawlak 9, 10]), and proceed by adding more features, going on the way past what is

‘Work supported in part by the NSF grant IRI-8903507

1Classes that represent heterogeneous collections of objects do not contradict this claim, for—from the data modeling point
of view—semantic affinity is the only proper reason for placing different objects in the sante class.
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known as C-logic 1], the revised 0-logic 5, 6], and eventually accounting for many of the features of F-logic

2, 3].

2 Object-Centered Languages

By an object-centered language we mean one that supports (to various degree) the concept of an object with

a complex internal structure. We start with what we call a “simple 0-logic” and continue to add features

until we (almost) reach the functionality of the full 0-logic, as described in 6].

Central to all object-centered languages is the notion of object identity—a simple concept that generated

heated debates in the database community. Our view is that objects are abstract or concrete entities in the

real world and object identity is a syntactic wherewithal needed to refer to these objects in the programming

language. More accurately, object identity is a purely implementational notion, a surrogate or a pointer to

an object, while the syntactic counterpart in the programming language is a denotation of an object.

For the reason that is not completely clear to me, some recent proposals tried to incorporate the notion

of object identity without introducing object denotations explicitly into the language. This was essentially

the reason why Maier’s 0-logic 8] was unsuccessful in dealing with databases that contain anything more

complex than a simple collection of objects. LDM of Kuper and Vardi 7] was more lucky in that respect,

but only at the price of severely limiting the language and the queries.

In our model, objects are referred to via their denotations, which are nothing else but first-order terms,

such as 13, .156, john32. Function symbols can be used to construct more complex denotations, such as

father(mary), head(csdept(stonybrook)).

2.1 Simple 0-logic—The Dual of the Relational Model

The central concept of the relational model, the relation, is defined as a set of tuples, where a tuple is a

function from the set of attributes of the relation into the domain.2 The dual concept can be stated as

follows:

An attribute is a function that maps the set of objects into the domain.

This dual data model is actually rather old; it appeared in a little-known paper by Pawlak 9] and was

subsequently used in 10] and in some of the later papers of Lipski.3

It is interesting to note here that Pawlak’s model is not value-oriented, i.e., it is perfectly legal that all

attributes will map two distinct objects into the same values. In contrast, the relational model is value-

oriented: it is impossible for two different tuples to map attributes in the same way. hi other words, if .4

denotes the set of all attributes then in Pawlak’s model Va E A(a(obji) = a(obj2)) & obj1 � obj2 is possible,
while in the relational model Va E A(ti(a) = t2(a)) &ti � t2 is impossible.

Being cast in the concrete syntax used by Maier in 8] and incorporating the aforesaid idea about object

identity, Pawlak’s model yields what we call Simple 0-logic—a logical, object-centered language that Maier

would have arrived at, should he overcome the problems encountered on the way (which, in my view,

2Assuming, for simplicity, that all attributes share the same domain.

3lronically, these works were published long before the beginning of the recent crase with object-oriented languages and so

Pawlaic did not get due credit. This also applies to LDM of Kuper and Vardi whose work might have attracted more attention

if they only used the “right” buss-words.
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stemmed from an attempt to emulate ad hoc implementational ideas too closely). Simple O-logic allows for
the representation of facts such as

ohnname —* “John Doe”; salary —* 20000]
at.her(mary)address — “MainSi. USA”; spouse —, sally]

where john, father(mary), and sally are denotations of objects that are intended to represent information
about persons, “John Doe”, “Main St. USA” are denotations of string-objects, and 20000 is a denotation of
an integer-object; name, salary, address, and spouse, are attributes. Besides the basic facts about objects,
one can write deductive rules, just as in regular deductive databases. Details can be found in 5, 6].

2.2 0-logic Revisited

Simple O-logic accounts only for a very limited type of complex objects. For instance, there is no straight
forward way of saying that John has childrei, Mary, Bob, and Alice. Nevertheless, it is very easy to extend
this logic to support full-fledged complex objects. We just have to allow some attributes to be set-valued,
i.e., be defined as functions from objects to the powerset of the domain, rather than to the domain itself. For

instance, we could define a set-valued attribute children and assert ohnchildren —÷‘ {mary, bob, alice}].
What we called “attributes” in case of the Simple O-logic will be now called functional (scalar, or single-
valued) attributes. Details of the semantics can be found in 5, 6].

The next step is to define the class hierarchy—a common way of grouping semantically related objects
together. To this end, we introduce a separate sort C of constants, called class-objects, and a new kind
of formulas, called IS-A atoms. With their help we could write john : student, meaning that john is an

instance of the class student € C; or student : person, meaning that the class student is a subclass of
the class person. Introduction of the class hierarchy and IS-A atoms enables one to write class-sensitive
deductive rules, e.g.,

X : asketball_playersalary — high] i— X : tudenthealth —‘ good; height —~ H] & H> 7/t

(Tall students inevitably become highly paid basketball players.)
The addition of set-valued attributes and classes gives us almost all of the functionality of O-logic as

presented in 5, 6]. By removing the single-valued attributes from O-logic we obtain C-logic 1].

3 Going Higher-Order: F-logic

It was not until the higher-order syntax was introduced in 2] when a full logical formalization of object-
oriented languages became possible. There are several reasons why a higher-order syntax is needed:

• In object-oriented languages, one needs to reason about classes and their instances in the same language.

• Often one has to create classes using deductive rules, just as in 0-logic one does this with plain objects.

• One should be able to define the properties of classes (i.e., values of their attributes) the same way as

this is done for objects.

• Higher-order syntax makes inheritance of properties from classes to subclasses easier and more elegant.

• One should be able to browse through the database schema in a natural way, withQut having to know
the internal representation of the system catalogue. (This applies to relational languages as well.)
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The danger in flirting with higher-order languages is that the resulting syntax may turn out to be non-

computable, even for the monotonic part of the logic. To avoid this, while designing the language of F-logic

we kept a constant eye on the possibility of encoding the language in first-order predicate calculus.

The higher-order syntax was achieved by breaking the distinction between classes, objects, and attributes.4

In other words, we allow any object denotation to be construed as a reference to an object, a class, or an

attribute, depending on the syntactic position of that denotation in the formula. Logical variables can now

be instantiated by attribute names as well as objects. This creates the opportunity for asking queries that

return sets of attributes, classes, or any other aggregation that involves these higher-order entities. For

instance, to inquire about all classes to which the object john belongs, write:

?— john : X

To find all superclasses of the class student, write:

?— student : X

The capabilities for browsing are actually quite extensive. To get a feeling of what can be.expressed, consider

Objinterestingsttrs_of(Class) —‘-‘ {A}] 4— bjA —, V] & V : Class

For each class Class this defines an attribute interestingsttr&of(Class), whose value for any object Obj is

the set of functional attributes (because of the single-headed arrow “—+“) that are defined on Obj and return

values that are instances of Class. We could then ask the query

?— ohninterestingsttrs..nf(person) —÷÷ {A}]

to find out which functional attributes are defined for the object john and return values of type pen

The next example shows how parametric classes can be defined in F-logic.

nil : list

cons(X, L) : list(T) 4— X : T & L : list(T)

4 Types and Signatures

The ability to define parametric classes opens the door for parametric polymorphism, which brings in the

issue of types and type-correctness. Since it is impossible to do justice here to these important issues, the

motivated reader is referred to 3, 4]. Very briefly, we introduce yet another kind of logic formulas, called

signatures, that specify the types of various attributes and methods. For instance,

employeename =~ string; friends =~ person]

says that every object in the dass employee has a single-valued attribute name and a set-valued at

tribute friends. The former returns objects that belong to the class string, while the latter returns sets

of person-objects. There is also a semantic type-correctness condition, which sorts ill-typed logic specifica

tions (databases) from the well-typed ones.

4If necessary, this distinction can be re-established without loosing the benefits of higher-orderness. The key idea is to use

a sorted language ~I~
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For another example, the next program defines a polymorphically typed method append that, being
invoked on a list-object with another list-object passed as an argument, returns a concatenation of the two

lists:

isi(T)append~list(T) =~‘. list(T)]

ist(T)append~flnil —‘ L] 4— L : list(T)
cons(X, l)append©L2 —* cons(X, L3)] 4— 1avpend~L2 —i L3] & X : T & Li: lisi(T)

The first clause above is a signature that defines a parametric polymorphic type for append. The last two

clauses actually define the append method. (The symbol “~“ separates method names from their lists of

proper arguments.) As defined, append is consistent with the typing constraint represented by the signature

3].

5 Conclusion

It is hoped that this short communication will motivate the reader to look into the exciting developments

that have taken place in the past few yearsin an effort to develop a formal model for object-oriented logic lan

guages, databases in particular. There are many issues that we did not have a chance to mention in this paper,

due to the space limitation. These include structural and behavioral inheritanée, the proof theory for F-logic,

the programming methodology, and several others. A comprehensive report on F-logic can be obtained from

the anonymous FTP account at “cs
. sunysb . edu”, file “pub/TechReports/kifer/flogic .dvi

.
Z”. Other

papers in this special issue advocate alternative research directions.

References

1] W. Chen and D. Warren. C-logic for complex objects. In Proc. of PODS, pages 369—378, March 1989.

2] M. Kifer and G. Lausen. F-logic: A higher-order language for reasoning about objects, inheritance and

schema. In Proc. of the ACM SIGMOD Conf. on Management of Data, pages 134—146, 1989.

3] M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented and Frame-Based Languages.

Tech. Report 90/14, Dept. of Computer Science, SUNY at Stony Brook, July 1990.

4] M. Kifer and J. Wu. A first-order theory of types and polymorphism in logic programming. In Intl.

Symp. on Logic in Computer Science, Amsterdam, The Netherlands, July 1991.

5] M. Kifer and J. Wu. A logic for object-oriented logic programming (Maier’s 0-logic revisited). In Proc.

of PODS, pages 379—393, March 1989.

6] M. Kifer and J. Wu. A logic for programming with complex objects. JCSS, 1991. to appear.

7] G. Kuper and M. Vardi. A uew approach to database logic. In Proc. of PODS, 1984.

8] D. Maler. A logic for objects. In Workshop on Foundations of Deductive Databases and Logic Program

ming, pages 6—26, Washington D.C., August 1986.

9] Z. Pawlak. Mathematical foundations of information retrieval. In Proc. of Symp. on Mathematical

Foundations of Computer Science, pages 135—136, High Tatras, Czechoslovakia, 1973.

10] W. Marek and Z. Pawlak. Information storage and retrieval systems: Mathematical foundations. The

oretical Computer Science, 1:331—354, 1976.

17



On Data Restructuring and Merging with Object Identity*t

Richard Hull Surjatini Widjojo
Dave Wile Masatoshi Yoshikawa

1 Introduction

Object identity, a powerful abstraction used in databases and other fields, corresponds closely to mechanisms

which humans use to organize their perceptions and understanding of the physical and conceptual worlds

that we live in. The emergence of semantic and object-oriented database models is now making it possible for

database designers and users to utilize this abstraction in an explicit manner. The use of object identity in

these models has placed a spotlight on a number of interesting, fundamental problems in data modeling, and

at the same time provides the basis for resolving them. The WorldBasé project WHW89], an ongoing project
at USC/Information Sciences Institute, is focused on the development of novel architectures and techniques
for supporting simultaneous access to heterogeneous databases. We describe here a number of concepts and

results concerning the conceptual and theoretical impact of object identity in the general contexts of data

restructuring and merging, which have emerged from the WorldBase project.
In Bee89], Been provides a good articulation of the distinction between OlDs and values as they arise

in the database context. A value is something which has intrinsic meaning, which is universally understood

(relative to the family of databases being considered); values typically include the integers, the floats, strings,
booleans, and other name-based types constructed from these. In contrast, an OlD has no intrinsic meaning
— and derives its meaning only from its relationship to values and other OlDs in a given database instance.

In particular, then, if an OlD is considered independently from its associated database instance (e.g., in

a database view or a query answer), then it conveys essentially no information other than its identity as

distinct from all other OIDs. As illustrated below, this opaqueness of OIDs has impact on queries, data

restructuring, and data merging (and also updates, which are not considered here).
Section 2 informally describes a formal model which encompasses OlDs and values. Section 3 presents

the family of ILOG languages; these are variants of datalog which are used to specify data restructurings in

the context of OlDs. Section 4 gives a more informal discussion presenting a framework for specifying data

merging in the presence of OIDs. The discussion here is extremely terse; fuller exposition of many of these

issues, numerous theoretical and practical results, and additional references may be found in HY9O, HY91,

WHW89, WHW9O, Wid9O].

2 A formalism for OlDs

Been’s categorization of database objects partitions the world into values and OlDs. The distinguishing
feature of OIDs is that they uniquely idenlify objects from the real world — the objects being modeled. Of

course, values can play this role in certain situations 1
— such as Social Security number or part number

— but there are many situations in which it is more convenient to use pure OIDs than to artificially create

printable surrogates. Examples include applications involving entity sets arising in disparate geographical,
political and/or organizational contexts; objects arising in engineering design, which do not have a natural

name; geographical objects; individual chips on a circuit board; and in some applications, documents, which

are uniquely identified only by lengthy strings having a variety of structures.

The simple database schema of Figure 1(a) shows an abstract class (or entity set) person, which “holds”

R. Hull is at the University of Southern California; S. Widjojo is at the Institute of Systems Science, Singapore; D. Wile is

at USC/Information Sciences Institute; and M. Yoshikawa is at Kyoto Sangyo University.
tR. Hull was supported in part by NSF grant IRI-8719875; R. Hull and D. Wile in part by the Defense Advanced Research

Projects Agency under DARPA grant MDA9O3-81-C-0335; and M. Yoshikawa in part by Science Foundation Grant # 02750298

of the Ministry of Education, Science and Culture of Japan, and a grant from the Obase Consortium.

1Our model formally distinguishes such values as surrogaies for the objects, but here we only consider OlDs for unique
identification.
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Ii OlD name age II OlD name age

ll~oi ‘John’ 32 05 ‘John’ 32

II 0~ ‘Mary’ 37 j] 06 ‘Mary’ 37

(b) (c)

Figure 1: A simple schema and two pre-instances

OlDs, with two simgle-valued attributes giving name and age, which map to character string and integer2
types, respectively. (This, and the other schemas shown in the document are 1F0 schemas as defined in

HY9O]; the diagramatic conventions are essentially those of AH87, HK87].) Parts (b) and (c) show two

tabular representations of data sets that might be associated with this schema. Note that these two data

sets are identical to each other, up to renaming of the OlDs. Following AK89}, we say that these two data

sets are OlD-isomorphic.
To capture the equivalence of the data sets of Figure 1(b) and (c) we call such data sets pre-instances, and

define an instance to be an equivalence class of pre-instances, where two pre-instances are equivalent if there

is an OID-isomorphism between them. Under these definitions, the notion of instance captures precisely the

information that a database state can convey to a database user. (In contrast, a DBA may typically work

directly with pre-instances.)

3 OlDs and data restructuring

We now consider the impact of OlDs on data restructuring, as it arises in database queries, schema aug

mentation (which arises, e.g., in derived data), and schema translation (which arises, e.g., when defining
stand-alone database views). A significant impact of OlDs in these contexts stems from the axiom that

OlDs independent of an associated data set have no intrinsic meaning. Thus, a query such as “List all OlDs

of persons having age > 35” against the schema of Figure 1(a) yields a set of OlDs, and gives no useful

information except for a cardinality. More generally, while OlDs do not carry independent meaning in query

answers, they can be useful in indicating connections between different data elements (e.g., see AKS9]).
The second fundamental impact of OlDs on data restructurings is that restructurings should be capable of

building, in their output, complex data sets which may involve newly “created” OlDs. Figure 2(a) shows an

1F0 schema modeling hypothetical data concerning purchases made by governmental agencies. The schema

includes abstract classes for government—agency, invoice, and supplier, and a subclass of supplier called

foreign—supplier. The multi-valued attribute purchases maps each government agency to a set of invoices.

The aggregation (or tuple) construct indicates that each item is an ordered pair, consisting of a part—name
and a quantity.

Consider now the issue of augmenting this schema with the schema components highlighted in 2(b). This

calls for the creation of a new entity set audit—unit, and two single-valued attributes. We will create an

audit-unit object corresponding to each agency-supplier pair (a, s) where a has at least one invpice with

foriegn supplier s. Intuitively, each audit-unit can serve as a locus for data concerning audits of such agency-

supplier pairs.
ILOG is an extension of datalog, and thus uses the natural simulation of semantic models by the relational

model. For an instance I = I] and ILOG program P, P(I) is defined in terms of P(I), that is, in terms of

pre-instances representing the instance. The following ILOG program, which has output or target relations

audit-unit, agency-of, supplier-of and total-of, can be used to specify the derived data definition desired

for Figure 2(b). (ini-aud-un is used as an intermediate relation.)

int-aud-un(*, a, s) i— purchases(a, i), supplied-by(i, s), foreign-supplier(s)
attdit-unit(u) i— ini-aud-un(u, a, s)
agency-of(u, a) ~— int-aud-un(u, a, s)
supplier-of(u, s) ~— int-aud-un(u, a, s)
Lotal-value(u, sum(v)) ~— int-aud-un(u, a, s) ,purchases(a, i), supplied-by(i, s), value(i, v)

2Although not emphasized in this document, types give structural information and have immutable ext~nts, whereas classes

give structural information and have mutable, typically finite, extents.

p~ (a)
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(a) source schema

Figure 2: Schemas used to illustrate derived data and data translation

Intuitively, execution of this program on a pre-instanee results in the creation of (new) OlDs for each (a, s)
pair satisfying the conditions of the body of the first rule given above. The relation int-aud-un is used to

“create” each such OlD, and to “hold” its correspondence to the wiiness (i.e., tuple of values and OlDs

which lead to its creation.) As with conventional datalog, variables in the rule body not occurring in the

head (e.g., the variable i ranging over invoices) are viewed as existentially quantified within the body. The

remaining rules are used to describe how the four components added to the schema are to be populated.
With regards to OlD creation, ILOG follows the lead of Mai86] and subsequent logics (e.g., KW89,

CW89]), by using a semantics based on Skolem functors. This permits the creation of OlDs in a systematic,
set-at-a-time fashion, and forms a close tie between data restructuring and logic programming. Figure 3

illustrates the two phases of execution of the ILOG program given above. Part (a) of that figure shows a

small fragment of a pre-instance for the schema of Figure 2(a). To make the presentation more intuitive, we

use strings to denote OlDs representing agencies, invoices, and suppliers, and show only foriegn suppliers.
Part (b) of the figure shows (part of) the output pre-instance computed by the first phase of execution.

Here “OlDs” for type audit—unit are represented as terms constructed using the Skolem functor f~-~ in

general a distinct Skolem functor is used for each intermediate relation of a program which creates OlDs

(i.e., by which a
“i’ is used). This output reflects the perspective on OlDs taken in KW89, CW89], called

here “exposed” semantics. (In this example, only one audit-unit OlD is created for a pair (a, s), regardless of

how many invoices relate a with s; this follows from the rule defining int-aud-un. A different ILOG program

could be used to obtain other policies for OlD creation.) Part (c) of the figure shows (part of) an output

pre-instance of the second phase; here a “new” OlD is associated with each distinct term occuring in the

pre-instance computed during the first phase. This “obscured” semantics for OlDs corresponds closely to

those found in most of the data restructuring languages in the literature. The instance corresponding to this

pre-instance serves as the output of the program.

The full language ILOG’ supports both recursion and stratified negation. This leads to six natural

families of ILOG language, based on two dimensions: negation or no negation; and full recursion, no recursion,

or “weak” recursion, which does not permit recursion through OlD creation. These sublanguages correspond
to various languages in the literature, for example, nonrecursive ILOG (nrecILOG) can be viewed as unions

of conjunctive queries bundled with OlD creation, and nrecILOG’ can express the core of most schema

translation languages.
There are strong similarities between ILOG and IQL AK89] — both are relatively declarative langauges

which support OlD creation. We note here three fundamental differences. ILOG is essentially relational,
whereas IQL supports full complex objects (in particular, sets). ILOG is essentially untyped whereas IQL
is strongly typed. Finally, OlD creation in ILOG is based on Skolem functors while in IQL it is based on

(b) schema with augmentation
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purchases
IRS inv32 zni-aud-un

IRS inv56 f0-~(IRS,UK2l) IRS UK~T~JI
SS mvii fa-u(IRS,PRC5) IRS PFtC-5

SS inv88 f0-~(SS,DR-1O) SS DR-IO

supplied-by agency-of

inv32 UK-21

inv56 PRC-5

mvii DR-b

inv88 DR-b

(a) input

OLD name ci~
05 ‘John’ ‘LA’

06 ‘Sue’ ‘NY’

agency-of

0~. IRS

______ ________

II 038 IRS

f0~(IRS,UK-21) IRS FLc~ ss

f0-~(IRS,PRC-5) IRS

f0-~(SS,DR-lO) SS

(b) output with OlDs “exposed” (c) output with OlDs “obscured”

Figure 3: Partial pre-instances illustrating ILOG semantics

(b)

Figure 4: The NAME-CITY schema and a pre-instance of it

something subtley different. As a result, the IQL analog of nrecILOG (i.e., positive, set-free, non-recursive

IQL) is non-monotonic, while nrecILOG is monotonic.

Importantly, the Skolem functor based approach to OlD creation can be used in the context of other

langauge paradigms. For example, a formal semantics based on Skolem functors can easily be given for the

OOAlgebra Day89]. Thus, research concerning ILOG is “portable” to these other languages.

4 OlDs and data merging

We now turn to the impact of OlDs on database merging. This is a particularly crucial problem in the context

of heterogenous databases, where users may wish to combine data from multiple autonomous databases.

Under the approach of WorldBase, we assume that before merging a family of data sets, their schemas have

been restructured so that they are compatible, in the sense that there exists a single schema which contains

subschemas isomorphic to the schemas of the data sets of be merged.
The schemas of Figures 1(a) and 4(a) are compatible. Suppose now that name is known to be a key for

the person entity class, which is universal across both databases. Then the instances represented by Figures
1(b) (or (c)) and 4(b) can be merged in an unambiguous fashion, to yield an instance represented by the

pre-instance of Figure 5(a) (permitting age and city to be partial attributes). On the other hand, if name is

not known to be a universal key for person, then the problem of merging the data of the NAME-AGE and

NAME-CITY databases is ambiguous. For example, instances corresponding to either of the pre-instances
of Figure 5(a) and (b) could arguably be the result of such a merge.

This example highlights two of the fundamental problems that arise in data merging: (i) determining
when OlDs from two (or more) distinct databases refer to the same object “in the world”, and (ii) providing
a systematic formalism for specifying the “merging” of these two OlDs (or the creation of a new OlD which

is “linked” to these OlDs).
There is a spectrum of possibilities for determining when OlDs from different database (pre-)instances

should be merged, ranging from using value-based keys, through approaches which permit OlD-based keys
which recursively “bottom out” with values, to approaches based on subgraph isomorphisms (e.g., identify

persons from distinct databases if they both correspond to a chief executive officer of a Fortune 500 corpo

ration whose husband serves as treasurer). A suitable formal model for specifying OlD merging is yet to be

developed. One possible approach is to form some kind of merger of ILOG and techniques from algebraic
specifications (these come into play because of the apparent need to equate initially distinct OlDs.)

Another fundamental issue arises in database merging if the databases to be merged hold inconsistent
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~~D name age city Fl
‘LAfl]

‘NY’

II 010

Il 0i~

~2

‘John’

‘Mary’
‘Sue’

32

37

OlD name age city

020 ‘John’ 32

021 ‘John’ ‘LA’

022 ‘Mary’ 37

023 ‘Sue’ ‘NY’

(a) (b)

Figure 5: Possible merges of data from NAME-AGE and NAME-CITY databases

information Day83]. For example, suppose again that name is a universal key for the two schemas under

discussion, and suppose that in one instance John is listed as having age 32, and in the other he has age 31.

What value for John’s age should be given in the merged database?

In WorldBase, data merging is accomplished through a two-phase process. In the first phase, the set of

pairs of OlDs to be merged is determined, and in the second phase the target schema is populated using
the (possibly merged) OlDs, and also all attribute and relationship data held in the source schemas. Two

mechanisms are provided for dealing with inconsistent data during the second phase. The first focuses on

single-valued attributes, and permits the specification of conflict resolution strategies (e.g., prefer data from

one of the source databases, or compute the average value). The second mechanism provides tools to relax

the integrity constraints on the target schema. In particular, a preliminary formalism is provided which

permits the specification of natural combinations of the constraint sets on the source schema to serve as

the constraint set on the target schema. As a simple example, the single-valued attribute phone in source

schemas for personal and business data might be combined to form a single multi-valued attribute in the

target schema, with a restriction permitting at most two phone numbers per person.
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Data Structures and Data Types for Object-Oriented
Databases

Val Breazu-Tannen, Peter Buneman and Atsushi Ohori*

1 Introduction

The possibility of finding a static type system for object-oriented programming languages was initiated by
Cardelli {Car88,CW85] who showed that it i~ possible to express the polymorphic nature of functions such

as

fun age(x) = thisyear — x.year_ofJirth

which may be regarded as a method of the “class” of record values that contain a numeric age field. It is

possible both to integrate this form of record polymorphism with the parametric (universal) polymorphism
and also to express a number of object-oriented programming paradigms by combining higher-order functions

with field selection. Since then a number of alternative schemes Wan87,5ta88,0B88,3M88,Rem89,HP91]
have been developed that include the possibility of type inference and the use of abstract types 0B89J. The

extent to which these typing schemes give a satisfactory account of all aspects of object-oriented languages
remains an open question, and it may therefore be premature to complicate the picture by introducing
database concepts. Nevertheless, if we are to treat databases of any kind (object- oriented or otherwise)
properly in typed programming languages there are certain issues that must be resolved, and it is these that

we shall briefly investigate in this paper.

Unlike the languages associated with the relational data model which have simple and more or less

coincident operational and denotational semantics, the authors know of no equivalent formulation of an

object-oriented data model. While several papers, e.g. ABD+89] describe certain desiderata of object-
oriented databases, a consensus has yet to emerge on a formalism for an object-oriented data model, nor is

there yet an adequate explanation of what is fundamentally new about such a model. The issues we discuss

in this paper are relevant to object-oriented databases because they are of general concern in languages

5ch77,ABC+83,AC085} that integrate database structures with their type systems, and object-oriented
databases surely fall into this category.

We shall be mainly concerned with operations on records and some “bulk” data type such as sets. Any
database programming language AB87J must surely be capable of expressing a function such as

fun wealthy(s) = select x.Name

fromx cc-s

where x.Sal > 100,000

The syntax here is taken from Machiavelli OBBT89], but very similar definitions are to be found in

object-oriented languages such as 02 LRV88]. We would like a type system to express exactly what is

required of the argument S in order for the function wealthy to be well defined. S contains records (perhaps
objects) with appropriate properties. S must be a set (or some other bulk type such as a bag or list.) Finally
we must allow that in some databases S may be heterogeneous: the individual records may not all have the

same structure. These three demands on a programming language are the issues we discuss in this paper.

‘Authors addresses: Buneman and Breazu-Tannen, Department of Computer and Information Science, University of Penn

sylvania, Philadelphia, PA 19104-6389, USA; Ohori, Kansai Laboratory, OKI Electric Industry, Crystal Tower, 1-2-27 Chuo-ku,
Osaka 540, Japan. Breazu-Tamien was partially supported by grants OMIt N000-14-88-K-0634 and NSF CCR-90-57570. Bune..

man was partially supported by rants ONR N000-14-88-K-0634, NSF 1111-86-10617 and by a UK SERC visiting fellowship
at Imperial College, London
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2 Operations on records

In OBBT89] the function wealthy is given the type

(‘a) Nazue:’b, Sal:num]} —> {‘b}

The ‘a and ‘b are iI,pe variables and may, subject to restrictions discussed below, be instantiated by any

type. The notation { ‘b} describes the type of sets of values of type ‘b, and the notation (‘a) Name: ‘b,

Sal : nun] describes the restriction that an instance of ‘a must be a record type that contains the fields Name

a and Sal:num where a is any instance of ‘b. For example

Naxne:string, Sal:num, Weight:nuin]} —> {string}
Name: First :string, Last: string], Sal:num]} —> First : string, Last: string]}

are legal instantiations of the type of wealthy.

Using such a syntax it is not only possible to express the exact polymorphic type of a function like

wealthy; it is possible to infer a type by means of an extension of ML’s type inference system. If the

only operations on records were record formation and field selection, the necessary techniques are now well

established (in fact the approaches given in Wan87,Sta88,0B88,JM88,Rem89] would agree.) The differences

arise when we add operations that extend or combine records, and this is where databases place an unusual

demand on the type system. An operation common in databases is to join two records on consistent infor

mation. For example Name=’Joe’, Lge=21] and Name=’Joe’, Sal30,000] join to form (Name=’Joe’,

Age~21, Sal=30,000]. On the other hand there is no type that can be given to the join of Id=1234] and

Id= ‘ A123’]. This join can be extended to sets of records i.e. relations, and in fact to arbitrary structures

on which equality is provided, to define the naiural join of complex objects Oho9Ob]. it is arguable that

natural join is needed in a database programming language, but even if it is not, a very similar typing rule

is needed for the intersection of heterogeneous sets (see below).
There is a well-known result Mil78] that underlies the polymorphic type system of ML that every

expression has a principal type scheme, i.e. every possible ground type for an expression can be obtained

by instantiating the type variables of its principal type. If we add the typing rules for record formation and

field selection:

(RECORD)
A I~ej : r~, ...,

A I~’e~ :
(DoT~

A I~e : ..., 1: r,...

l~ : r1,.. .,l~ : r,~] ‘ / AF?e.l :

we retain the principal typing property Oho9Oa]. However, the rule for join is unusual in that it can only

be used provided a “side condition” is satisfied:

Ai>ei : ‘5i Ai>e2 : ‘52
(JOIN) . .

ifö=61U52
AF~Jo1u(eI,e2) : ‘5

The requirement that any ground type also satisfy the side conditions means that we need to relax the notion

of the principal typing property to include these conditions; nevertheless it is still decidable whether a given

expression has a type, and by suitably delaying the checks for satisfaction, the process of type inference can

be made efficient and to operate interactively.

3 Operations on sets

The operations of the relational algebra suggest one way in which operations on sets may be added to a

programming language. While these are adequate for a large number of database applications, there are a

number of useful operations, such as transitive closure of a binary relation, that cannot be expressed with

the relational algebra alone. Moreover, there is no way of expressing the cardinality, sum, or other aggregate

operations on a set. Relational query languages provide these as special operations, but there is no general

way to construct new aggregate operations.
The problem is this: the relational algebra provides us with an adequate set of operations for mapping

sets of tuples (records) into sets of tuples, but provides us with no way of moving outside this domain;

we cannot expect the relational algebra to produce a set of sets or an integer. One could get rounds this

by adding a choose operator, which picks arbitrarily an element of a set, and using general recursion to
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program functions mapping sets to other types. However, choose introduces a nondeterministic semantics,
and makes it difficult to ensure that our programs are well-behaved. A better approach, we claim, is to use

structural recursion as the general technique for carrying sets into other structures. As opposed to general
recursion, which most of the times requires destructors like choose, this form of programming works by
matching arguments against data type constructors. One form of structural recursion on sets is given by the

combinator$whjchtakes E:8, F:a—~/3 and U :~3x8—.$ totheunique 4’(E,F,U):{cr}—.$
satisfying

4’(E, F, U)(ø) = E

$(E, F, U({~e}) = F(z)
4’(E, F, U)(si U 82) = U(4(E, F, U)(si), 4’(E, F, U)(s2))

provided that on the range of 4’(E, F, U), U is associative and E is an identity for U (a monoid structure), and

moreover that U is commutative and idempotent. This is similar to the pump operator of FAD BBKV88} and

the horn operator of Machiavelli OBBT89], except that in those languages the requirement of idempotence
is dropped and the requirement that the sets s~, ~2 be disjoint in the third clause is added. Pump and horn

have a natural denotational semantics, but their operational semantics is contrived. The evaluator must

evaluate sets eagerly and then do time consuming dynamic tests for equality of values. Of course, this rules

out working with sets of functions for example. Even for sets of, say, integers, mapping a function over a

disjoint union may yield a non-disjoint one, which fed into horn would yield a run-time error. One would like

to obtain statically an assurance that the program goes through, but it seems that only a few very simple

programs can be shown correct in this sense. On the other hand pump and horn can be implemented in 4’

style, by converting sets to bags and then doing structural recursion on those.

Appropriate uses of 4’ are, for example, $~(F) = 4’(O,F,u) and 4’A(P) 4’(true,P,A) where F: a

{-‘} and P : a —~ bool. Using these, we can construct the following functions on sets:

map f =

pairwith 8 x = map (Ay.(z, y)) s

cartprod(81, 82) = 4’u(pairwith 82)(3i)
powerset = 4’({O} , Ax.{ø}U{{x}}, A(sj,s2). map U cartprod(si,s2))

(checking the commutative-idempotent monoid requirement for the use of 4’ in the last definition is quite

interesting).
The denotational and operational semantics as well as an appropriate logic for reasoning about programs

that compute with structural recursion over bulk data types such as lists, bags and sets is studied in BS91],
where transformations to other presentations of these datatypes are also given. In BBN91J, it is shown how

to compute transitive closure efficiently with structural recursion, and it is noted that relational algebra
can be characterized using restricted forms of structural recursion: the expressions of relational algebra are

semantically equivalent to precisely those expressions that can be constructed using the structural recursors

4’u and 1A together with elementary operations (concatenation, projection and conditionals) on tuples.

4 Heterogeneous collections

The ability to deal with heterogeneous collections is claimed Str87] as an important feature of object-oriented

programming, and we believe it is of special importance in object-oriented databases, where it appears to

be the only way to reconcile two natural views of inheritance BO9O]. Before looking at this issue we should

remark that we have so far been working in a framework of typed languages. These are languages in which

the only meaningful expressions are those that have a (declared or inferred) type. In such a language 3 +

“cat” is not a program because it has no type. Compare this with the situation in “dynamically typed”

languages in which such expressions can be evaluated, but may yield run-time type errors. In any persistent

programming language AB87] it is desirable, for safety, to maintain a structure that describes the type of

a database along with the database. However, in order to reason about these external types in a typed

language requires some extra apparatus.
The need for this is seen in any language that has some form of subtype rule in conjunction with a bulk

data type such as lists. If 1 is an expression of type list(Person) and e is an expression of type Employee, the

expression cons(e, 1) that “inserts” e into 1 also has, because of the subtype rule, list(Person). The expression
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head(cons(e, 1)) now has type Person, and we have “lost” some of the structure of e; more generally we can

no longer use the equation e = head(cons(e, 1)) to reason about our programs. In B090] we have proposed
an extension of the dynamic types ACPP89] in which values in a programming language are “views” that

express the partial type of some completely typed object.
The way we achieve this is to incorporate into our type system a distinction bçtween the type of an object

and its kind. In object-oriented terminology the former specifies the class of an object and hence its exact

structure, while the latter specifies that certain methods are available. In order to incorporate assertions on

kinds of objects in the type system, we introduce a new form of assertion e : 2(n) denoting that e has the

kind n. For example, e :2 (<Name: string, Age :num>) means that at least Name and Age fields are available

on e. <Name: string, Age :nujn> describes a kind, which we can think of as a set of types — the set of record

types that contain Name: string and Age :num components.
Kinds are most useful in conjunction with heterogeneous collections, which may not have a uniform

type, but may have a useful kind. For example, e:{2(<Name:string, Age:num>)} means that e is a set

of records, each of which has at least a Name and Age field, and therefore queries involving only selection

of these fields are legitimate. To construct such a heterogeneous collections of uniform kind, an operation
filter n (S) is defined which selects all the elements of 5 which have the fields specified by n and makes

those fields available, i.e. filter n (5) :{P(k)}.
An advantage of this approach is that it reconciles the database “isa” hierarchies (with extent inclusion)

with the hierarchies of object-oriented languages (with method sharing.) To show this, let us assume that

the following names have been given for kinds:

PersKind for <Name:string, Address:string>
ErnpKind for <Name:string, Address:string, Sal:num>

Also suppose that OB is a set of type {P (any) }. The meaning of any is the set of all possible types, so that

we initially have no information about the structure of members of this set.

Since kinds denote sets of types, they can be ordered by set inclusion. In particular, Empkind is a

“sub-kind” of PersKind. From this, the inclusion filter EnpKind (5) c filter PersKind (S) will always
hold for any heterogeneous set S. This means that the “data model” (inclusion) inheritance is derived as a

static property from an ordering on kinds rather than being something that must be achieved by the explicit
association of extents with classes with dynamic maintenance of extents. Moreover, object-oriented (method
sharing) inheritance is also derived from a polymorphic type of a method. For example, the type inference

method we have described in section 2 guarantees that any polymorphic function applicable to P(PersKind)
is also applicable to P(EmpKin.d). Thus, we achieve the desired coupling of the two forms of is-a in a static

type system.

5 Conclusions

We have attempted to show that typed languages are a natural medium for many aspects of database

programming languages. There are certain topics such as object identity, abstract types, views (and the

interaction between these) that require further investigation. However we are confident that these can

be resolved and that object-oriented databases will be best understood in the same framework of typed
languages.
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Foundations of the 02 Database System
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1 Introduction

In this paper, we describe the data model of the 02 system as it is implemented. We first implemented,
in December 87, a throw away prototype BBB*88] in order to test and show the functionalities of the

system. This gave us a lot of feed back and we completely redesigned the system, its data model LR89J,
its language and its architecture. The first prototype convinced us that the object-oriented approach was

a good choice for databases. However, we also deduced from this experience that a lot of points should be

carefully designed otherwise object-oriented databases might not reach their goals and might even be a step

backward. Among the new features which we think are necessary to implement, let us quote: (i) complex
values together with objects, (ii) names for objects and values with an automatic persistence mechanism

attached to names, (iii) the list type constructor, (iv) the possibility of separating classes and method

definitions from the implementation, (v) the need for a design mode where emphasis is made on dynamicity
and evolution and an execution mode where performance are crucial. The 02 data model relies on two kinds

of concepts: complex values, on which we can perform a predefined set of primitives, and objects which

have an identity and encapsulate values and user defined methods. Values have types which specify their

structure and objects belong to classes.

2 Values and objects

The presentation of this section has been largely influenced by the works of LR89] and also AK89]. We

suppose given: (1) A set of atomic types names {integer, string, float, boolean) and their corresponding

domains, Dnteger, D,grjng, Djioat, Dboolean, which are pairwise disjoint. The set D of basic values is the

union of these basic types domains. (ii) A set A of symbols called attributes: age, name (iii) A set I of

object identifiers: #32, #765 (iv) A set of class names C.

In the following, we shall use capitals for class names, typewriter for attribute names and # followed by
numerals for object identifiers.

Definition 1 Let I be a subset of I. A value over I (or just value if i is understood) is recursively defined

as follows:

• The symbol nil is a value.

• Every element of D or I is a value.

• If v1, .., v~, are values then al : Vj, .., a,~ : v~] is a (tuple) value. ] is the empty tuple value.

• If v1, .., v,~ are distinct values then {v1, .., v,~} is a (set) value. {} is the empty set value.

• If vl,..,vn are values then <~ > is a (list) value. < > is the empty list value.

We denote V(I) the set of all values over I and V = V(I). An object is the association of an object

identifier of I with a value of VI. We note 0 the set of all objects. Classically, in object-oriented data

models, every piece of information is an object. In the 02 data model, we allow both the’~concept of object

and value. This means that, in the definition of an object, the component values of this object do not

necessarily contain objects, but also other values. Here are some examples of values and objects:
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ILa.me: “Eiffel_tower”,
address: city: #432,

Street: “Champ de mars”],
description: “Paris Monument”,
a~mission..fee: 25]

{#23, #54)

#23 —~ name: “Eiffel_tower”, #432 —. name: “Paris”,
address: city: #432, cou.ntry: “France”,

street: “Champ de mars”], population: 2.6,

description: “Paris Monument”, monuments: {#23, #54)]
admission.iee: 25]

In object-oriented database systems, this value is classically a tuple or a set of objects since databases

must provide flexible management of large sets of data. However, this value is always a flat value, as it can

only contain identifiers of other objects, and not directly other complex values. This limitation is exactly like

the limitation of relational systems which has motivated the introduction of nested relations and complex

objects. In 02, we provide the user with the possibility of manipulating, not only objects, but also values

as in standard programming languages or in the so-called complex objects’ languages. Of course, complex

(nested) structures can always be modeled through the use of identifiers but we think that this solution is

awkward, like the modeling of nested relations with surrogates in relational systems. The address of the

object #23 above could have been written using an intermediary objet. However, this address is conceptually

nothing else than a pair of strings and is totally local to the object #23.

3 Types and classes

Definition 2 Let C be a subset of C. We call types over C (or just types, if C is understood), the expressions
constructed as follows:

• The symbol any is a type.

• The atomic types integer, float, boolean, and string are types.

• The class names of C are types.

• Ifi1,...,t~ are types, then a1 :~ : t~] is atype.

• If t is a type then {t} is a type.

• If t is a type then <t> is a type.

We shall note T(C) the set of all types and T = T(C).

The following are examples of types. Notice that these two types are referencing classes Monument and

City.

name: string, name: string,
address: city: City, country: string,

street: string], population: float,

description: string, monuments: {Monument}]
adinission.iee: integer]

are not objects in the object-oriented terminology but rasher complex values.
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4 Class hierarchy and subtyping

Inheritance is a central concept in object-oriented (database) systems. It allows the user to derive new classes

from existing classes by refining their properties. For example, the Monument class can be specialized into

a HistoricaLmonument class. We say that the HistoricaLmonument class inherits from the Monument class.

Following the abstract data type theory, the concept of subtype is based on the idea that a type is a form

of behavior and a subtype is a compatible specialization of the behavior. A class hierarchy is made of two

components: a set of class names with types associated to them, and a subclass relationship. The type
associated to a class describes the structure of the objects which are instances of the class. The subclass

relationship describes the (user-defined) inheritance properties between classes.

Definition 3 A class hierarchy is a triple (C, o•, -<) where C is a finile set of class names, o~ is a mapping
from C to T(C), and —< is a strict partial ordering among C.

The type tr(c) is the structure of the class of name c. We derive a sublyping relationship < from the

subclass relationship as follows:

Definition 4 Let (C, u, -<) be a a class hierarchy, the subtyping relationship <on T is the smallest partial

ordering which satisfies the following axioms:

•I-c<c’,forallc,c’inCsuchthatc-.<c’.

• I— a1 : ii,.., an : i,~, .., a~+~ : in+p] < a1 : Sj , .., a,~ : sn], for all types i~ and s, i=1, ...,
n such that

ii � si.

• I- {t} < {s}, for all types s and t such that a < t.

• I- <t> < <s >, for all types s and t such that s ~ t.

• t <any, for all types t.

The first rule just expresses that subclasses are subtypes. We then have one rule per type structure.

Notice that we can refine tuples by refining some fields or by adding new ones. We do not allow two related

classes (c -~ c’) to have arbitrary associated types. The type associated to a class describes the internal

structure of the instances of the class. An instance of a class (say Employee) being also an instance of its

superclass Person, we want the instances to share common structures. More precisely, if c and c’ are two

related classes (c —< c’), then we want to ensure that o(c) < o(c’). The following definition characterizes

consistent class hierarchies.

Definition 5 We say that the class hierarchy (C, ~, -<) is consistent if for all classes c and c’, if c -< c’

then o(c) <

Methods are associated to classes and define the behavior of objects of the corresponding class. One

important feature of the object-oriented paradigm is the encapsulalion. The objects of a class can only be

manipulated using the methods associated to this class. A method can be seen as a function from a source

domain to a range domain. For example, the method geLname: Monument —p string can be applied to

objects belonging to class Monument and the result will be a value of type string. A method is represented
in the 02 model by a signature. A method signaiure on C is an expression m : c x i.~ x

...
x i~ —+ I, where

m is the name of the method, and c, ij . . . 1,~ are types over C. We also impose that the first type c is a class

name. The first type of a method signature is the class to which the method is attached and it is called the

receiver class of the method. An important feature of object-oriented systems is the notion of overloading
and lale binding. A method m can be defined with Me same name in several classes. Given an object and a

method name, the code to be executed is determined at run-time by searching for a method of that name in

the class hierarchy. Of course, the redefinitions of a method in subclasses of a class must follow some typing
rules in order to avoid typing inconsistencies (see Definition 8).
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5 Database schema

Definition 6 A database schema is a 5-tuple S = (C, c, -<, M, G) such that: (i) (C, c, -<) is a consistent

class hierarchy, (ii) M is a set of method signatures on C, (iii) G is a set of names with a type associated

to each name.

A database schema models both the structural and the behavioral parts of the database. Its main

component is the class hierarchy and the method signatures which describe the programming interface of

the instances of the classes. The names of G are the entry points in the database. They serve as handles

for some objects (or values) which are of a particular importance. In many object-oriented systems, the

database entry points are the extensions of the classes. We want to be more general and define entry points
which are arbitrary values or objects. Moreover, as database entry points, the names of G (global names)
are also used to define the persistence semantics with the following rules (i) every object or value attached

to a global name is persistent, (ii) every objett or value attached to a persistent object or value is also

persistent. The global names are the roots of the persistence mechanism. In order to define a notion of

schema consistency, we first state the following working definition:

Definition 7 Let S be a database schema. If m is a method name and c a class of C, we say that m is

defined in c if there is a signature m : c x ij .. . t,~ —it in M. We say that m is reachable from c if there is

(at least) one superclass of c in which m is defined.

The notion of reachability above defines method inheritance. Indeed, if we view a method as a function,
this function is defined in a class c but is reachable from (can be applied to) any subclasses of c. Methods

inheritance must also follow some typing rules in order to avoid inheritance conflicts. If two non comparable
classes defining a method m have a common subclass (say c”), then the method m can be inherited from any

of these superclasses. The semantics of method inheritance must ensure that the application of a method to

an object is uniquely defined. We now define the notion of a consistent database schema.

Definition 8 A database schema S = (C, a, -<, M, G) is consistent if and only if it satisfies the following
properties: (i)ifc-.cc’andm: cxtn...in—+tandm: c’xt~...i~—~t’areinM,theni1<iandt<t’
(covariant condition), (ii) if there are classes c and c’ having a common subclass c”, with a method of name

m defined on both c and c’, then there is another subclass c” of c and c’ of which c” is a subclass in which

mis also defined.

The first property ensures that the method overloading is done with compatible signatures, and the

last one eliminates the multiple inheritance conflicts. In the following, we shall always consider consistent

database schemas.

6 Instances of a database schema

In order to define the instances of a database schema, we have to define the interpretation of a type. This

interpretation is defined, given an oid assignment AK89J which describes the instances of the classes in the

hierarchy.

Definition 9 Let (C, a, -<) be a subclass hierarchy. An oid assignment is a function w mapping each class

name on a set of object identifiers and such that for pairs of classes (c, c’) in C verifying c -< c’, we have

ir(c) c ir(c’).

The constraint satisfied by an oid assignment maps the inheritance links from the classes to the instances.

It means that an employee is a person and that a hotel is a monument.

Definition 10 Let S be a (consistent) database schema. Given an oid assignment, the interpretation dom(t)
of a type t in T( C) is defined as follows.

• If I = u{ir(c) c E C} then dom(any) = V(I).
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• For every atomic type d, dom(d) is the domain associated in Subsection 2.

• dom(c) = {nil} U ir(c) for all c E C.

• om(aj :i~,... ,a~ : 2,2]) = aj : v1,...,a~ : v~,a~÷j : v,,~1.1,. .. ,an+m : v E dom(t1), i=1,

• dom({i}) = {{vj,... ,v~} I vj E dom(t), i=1, . .., n}.

• dom(<t>) = v1 ,v~ >~ v, E dom(t), i=1, ..., n}.

The domain function is built in the usual way. Condition 1 expresses that the only valid object identifiers

are those of the existing instances. We follow the Cardelli approach C84] for the domain of tuple types and

allow tuple values with extra attributes. This definition leads to a domain inclusion semantics for subtyping,
as shown in the following lemmas which generalize the inclusion of domains from classes to arbitrary types.

Lemma 1 Let S = (C,o~,-<,M, G) be a consistent database schema. For all types t and t’ in T(C) such

that t < t’ we have dom(t) C dom(t’).

Lemma 2 Let S = (C,oy.<,M, C) be a consistent database schema. For all types t and t’ in T(C), t ~ t’

if and only if dom(t) C dom(t’) for all oid assignment ~r.

We now define the instance of a database schema.

Definition 11 An instance of a database schema S consists of a 4-tuple (7r, v, 6, a), where:

• ir is an oid assignment for the schema and I = u{7r(c) I c E C}.

• u is the mapping from object identifiers to the associated values, that is ii is a function from I to

V(I). This function defines the value associated to all the database object identifiers. Of course, these

values must be consistent with the type of the corresponding classes, and we impose that: Vj E ~r(c),
zi(j) E domfr(c)).

• ö is an assignment for each method signature in M, such that 6 (m: w —~ t) E dom(w)~~0m(t). If the

method m is overloaded with two different signatures w —p ~ and w’ —~ t’, such that w<w’ and t�t’,
then we impose that the functions 6 (m: w —~ t) and 6 (m: w’ —+ t’) agree on dom(w).

• a is a function associating each name of G, of type t, on a value of dom(t). This value is the value

currently assigned to the global name.
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1. INTRODUCTION

Schema evolution is a concern in object-oriented systems because the dynamic nature of typical object-oriented database

applications calls for frequent changes in the schema Pan88].

Therefore, updating the schema is an important facility for object-oriented databases. However, updates should not result

in inconsistencies either in the schema or in the database. Ensuring the consistency for an object-oriented database is a

difficult task. This difficulty is due to the richness of the object-oriented data model and to the use, in most systems, of

an imperative language to implement methods.

One of the authors of this paper began addressing the problem in 1989 for a specific object-oriented database system: 02
developed by GIP Altair.

We assume in the rest an object-oriented database system with the characteristics illustrated in the next subsection, but

we do not refer to a specific oodbms.

1.1 Basic Assumptions

We consider a database system with both the notion of types and classes. Instances of a class are objects which

encapsulate data and behavior. Instances of a type are values. To every class is associated a type describing the structure

of the class instances. Types can be complax; they are created recursively using atomic types (integer, boolean, etc...),
class names, and the set, list, and tuple constructors. Objects have a unique internal identifier and are encapsulated, their

values are not directly accessible and they are manipulated by methods. Method definition is composed of two parts: a

signature, that is the type of the arguments (if any) and the type of the result (if any), and a body which contains the

code of the method. We assume an imperative language for specifying the body of methods. (This contrasts with other

object-oriented database systems based on “pure” object-oriented paradigms such as SmallTalk). Methods are attached to

classes and therefore they are part of the schema. We consider multiple inheritance and assume a semantics for

inheritance based on the notion of subtyping. Inheritance between classes defines a class hierarchy.

A schema is composed of a set of classes related by inheritance which follows the type compatibility rules of

subtyping, and/or by composition links, plus a set of methods. Class attributes and methods are identified by name.

The system uses late binding and allows polymorphism. We also assume the system offers a compile-type checker to

statically detect as many illegal manipulations as possible of objects and values. Examples of such OOL languages are

the Eiffel programming language Mey881, and the schema definition language of the 02 object-oriented database

system LR89].

1.2 Schema updates: What is the problem?

Informally, the problem with schema updates can be stated as follows: We want to change the structure and behavioral

part of a set of classes without resulting in run-time errors, “anomalous” behavior and any other kinds of uncontrollable

situations. In particular, we want to assure that the semantics of updates are such that when a schema is modified, it is

still a consistent schema.

Consistency can be classified as follows:

1. Structural consistency. This refers to the static part of the database. An object-oriented database is structurally
consistent if:

i) its class structure is a direct acycic graph (DAG);

ii) its attribute and method name definitions, attribute and method scope rules, attribute types and method signatures
are all compatible. In particular we assume a covariance condition to ensure that method overloading is done with

compatible signatures;

iii) no multiple inheritance conflicts (also denoted as name conflicts) must occur.

This work has been partially supported by CNR - Progetto Finalizzato Sistemi Informativi e Calcolo Parallelo.
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2. Behavioral consistency. This refers to the dynamic part of the database. An object-oriented database is behaviorally
consistent if execution of methods does not result in run-time errors or unexpected results. Checking the signature of a

method is not sufficient to ensure behavioral compatibility of the method. There are two distinct notions of behavioral

inconsistencies: method’s failure, i.e. run-time errors, and method’s change of behavior, i.e. no run-time errors occur,

but the result of the method is different than the one expected. In the rest of this paper we will only consider the first

case.

2. SCHEMA UPDATES PRIMITIVES

For reason of space we do not report the syntax and semantics of the full list of schema update primitives we have

defined for changing the schema. A minimal set of schema updates is the following:

1. Add an attribute in a class, Delete an attribute in a class.

2. Add a method in a class, Delete a method in a class,

3. Add a class, Delete a class, Make a class a superclass (subclass) of another class, Re~nove a classfrom the superclass
(subclass) list of a class, Change the name of a class.

Updates can be further classified as type-preserving and non-type preserving.

It is also worth noticing how the notion of completeness of a set of basic updates at schema level, that is whether the

set of basic updates subsumes every possible type of schema change, is not necessarily the same one at data base

instance level. For example, consider the update: change the name of a class, at schema level this is equivalent to

deleting the class and then adding a new class. However this obviously does not hold at (object) instance level.

There are different ways to define the semantics of updates, especially of the ones listed at point 3. One way to go is to

define very basic updates with a default semantics, the other is to define higher-level parametrized primitives allowing
the designer to define his/her own semantics. The following simple example shows this point. Consider the schema of

Figure 1 composed of three classes: Person, PhD, and Employee (with associated types Ta, Tc, Th).

Person type Ta

PhD typeTc

Employee type Th

Figure 1

Suppose we perform the update: remove class PhD from the superclass list of Employee. The effect of this update is in

disconnecting the class Employee from the DAG (PhD is the only superclass of Employee). To preserve schema

consistency, the class Employee has to be connected to some other class(es) in the DAG. There are two possibilities:

- Class Employee is made a direct subclass of direct superclasses of PhD (class Person in the example);

- Class Employee is made a direct subclass of the root class of the DAG: OBJECT.

Moreover, we need to define what happens to the type of Employee Tb. There are again two possibilities:

- class Employee loses all attributes inherited from PhD;

- class Employee does not lose attributes inherited from PhD; attributes which were inherited become locally defined in

Employee.

Same considerations hold for methods as well.

The use of parametrized update operators allows the definition of all these different update semantics. A more precise
definition of the set of basic schema updates primitives and of the parametrized ones is reported in Zic9O], Zic9la],

Zic9lb].

3. ENSURING STRUCTURAL CONSISTENCY

An update to a schema is a mapping which transforms a schema S into a (possibly) different schema S’. Schemas S and

S have to be structurally consistent. The semantics of the schema update primitives will have to ensure at least that

structurally consistent schemas are produced as a result of an update.

The approach is to use a graph-theoretic tool set to enforce necessary conditions for the structural consistency of a

schema: name conflicts, type conflicts, requirements for signatures, and cycle conflicts. This is obtained by mapping
the partially ordered set of classes of a schema into a graph structure.

By definition a schema S is structurally consistent. Every time an update is performed on a schema S and results in a

new schema S’, the graph corresponding to S is analyzed to check whether S’ is a schema.

For more details the reader is referred to DelZi9l] where a graph-theoretic approach is used to ensure the 02 schema

structural consistency when performing schema updates.
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While most of the work done on schema updates has concentrated on preserving structural consistency B*871, PS871,
an important and difficult area of investigation is behavioral consistency. In Section 4 we sketch a new data-flow

technique to detect behavioral inconsistencies.

4. A DATA FLOW TECHNIQUE TO DETECT BEHAVIORAL INCONSISTENCIES

Our goal is to find a pragmatical workable solution to avoid the risk of behavioral inconsistency due to run-time type
errors. It is known that type safeness of a general schema is an undecidable problem AKW9O, HTY89]. However,

using a simple data flow analysis technique we can express sufficient conditions ensuring type safeness. If such

conditions arc not satisfied then a run time error might occur; whether a run time error really occurs or not depends on

the actual execution flow of the application using the schema. This research is currently in progress. We present in the

sequel our preliminary results.

Examples of run-time type errors are: a wrong input to a method, an incorrect assignment. a reference to a non existing
method or class type. We do not consider the case of non-terminating method execution.

Standard compilers are not always able to detect all type errors. Let us consider the following example:

Class A Class Example
type tuple (a: Integer) type tuple (x : X; y: Y; p: A)
method get_a: Integer is public method m3 : Integer is public
body { return (self.a) } bodyf

end A 1 p= new(A);

Class B inherits A 2 y= new(Y);

type tuple (b: Integer)
method get_b: Integer is public

3 x
.

= y,;

body { return(self.b))
4 return (self.x.m 1(p)))

end B /* Returns the value obtained by adding
the value of the attribute xl of x and the

Class X value of the attributeaofp*/
type tuple (xl : A) end Example
method ml(t:A): Integer is public
body{return (self.xl.get_a + t.get_a)}

end X

Class Y inherits X

type tuple (yl : B)
end Y

Suppose we want to redefine the method ml in class Y as follows:

Add method ml(t:B): Integer in class Y is public
body {. return(self.yl.get_b + t.get_b)

Note that the new definition of ml in class Y satisfies the covariance rule and most compilers (e.g. Eiffel, 02) will

accept this change. After the update method m3 will invoke the new method ml defined at Y since x is bound to an

object of class Y (because of the assignment at line 3). Hence ml will try to access the attribute b of its actual

parameter p. But p is bound to an object of class A which does not have an attribute named b and this causes a run time

error to occur.

We sketch in the rest of this section the data flow technique which detects this kind of errors.

4.1 The Data Flow Analysis

We associate to each attribute Xj belonging to a class C1 a set S1 that contains the type of any object that X1 may be

bound to at run time. S1 is called the type set of xi. Initially S1 contains the static type of Xj (i.e. the type specified in

the declaration of x) and all of its subtypes (if any). In the example, the type set S~ of the attribute x in Class Example
is (X, Y}.

It is possible to prove that by looking at the type set associated to each attribute in the schema it is possible to identify
run time type errors.

Let us define the set of all pairs <x~,S~> where Xj is an attribute belonging to a class C1 and S1 is its associated type

set. We call this set the T-Descriptor of C1. To build type sets we introduce the function exec(l, TD) which given a

statement I, and a T-Descriptor TD returns the T-Descriptor after the execution of I. In what follows we provide the

definition of the function exec for some typical statements of an imperative language:

Sequence of statements (Ii; 12;..

exec(I1; I2;...;In, TD) = exec(12;...;In, exec(Ii, TD))

The T-Descriptor is computed recursively by applying exec to each statement.
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Object dynamic creation (Xj = new(Cj))

exec(xj= new(Ci), TD) = TD’, where

TD: {<xi,S1> <xi,Si> <xn,Sn>J, ID’: (<xl,S1> <xi,(Ti)> <x~,S~>} and I~ is the type of class Ci.

The type set of the variable bounded to the newly created object initially contains just the type of the object created.

In the example in method m3 the I-Descriptor after the analysis of the statement at line 2 is (x retains its initial type
set value {X,Y}):

ID: {<x,{X,Y}>, <y,{Y}>, <p,{A}>}

Assignment statement (Xj := xj.m(xI
exec(xi := xj.m(xl ,,...,xn), TD) = TD’

,
where

TD: {<xi,Si> <xi,Si>,<xj,{Tjl Tjm)> <xn,Sn>)

Let Iji (T11 Tni) —4 Ui Ijm (Ilm Inm) 4 Urn be the signatures of every occurrence of m defined

respectively in T~i Ijm and suppose all such occurences of m conform to the covariance rule. Thus TI)’ becomes:

TD’: {<xi,Si>,. ..,<x1,{U! Um}>,<Xj,(Tjl Tjm}> <xn,Sn>}

The variable xi in the left hand side of the assignment has the same type set of the expression in the right hand side of

the assignment.

Referring to the example, in the body of m3 the I-Descriptor after execution of line 3 is:

ID: {.czx,(Y}>,<y,{Y}>,<p,{A}>}

Conditional statement (if C then Ii else 12 fi)

exec(if C then!! else 12 fi, ID) = exec(Ii, TD) . exec(12, TD), where

<xn,Sn>) . (<xi,Ui> <xn,Un>1 = t<xi,Si U UI> <xn,Sn U Un>)

The type set associated to each variable is the set union of the type sets resulting at the end of both branches of the

conditional statement.

For reason of space limitation we omit the definition of the function exec for the other typical statements of an

imperative language. The interested reader is referred to CLZ9 1] for such definitions.

Sufficient Conditions

A (run time) type error may occur if one of the following sufficient conditions for type safeness is violated:

1) Type sets contain the types that the associated attribute may be bound to at run-time; therefore, at each step of

the data flow analysis~ every type set should be totally ordered with respect to the subtyping relation. In addition,
the type set should be superior limited by the static type of the associated attribute. Attributes cannot refer to

objects belonging to a superclass of their static type. For example, in the class Example the type set of the

attribute x should contain only X and/or subtypes of X.

2a) If a method is invoked on an attribute (e.g. x.m) then there must exist a definition of the method, either locally
or inherited, for every type belonging to the type set of this attribute (x).

2b) Type sets associated to every actual parameter of a method should be superior limited by the static type of their

corresponding formal parameter. As a consequence any object that is passed as a parameter to a method conforms

to the defmition of the corresponding formal parameter.

In the example, the T-D descriptor for method m3 in class Example during the call of ml (line 4) is: {<x,{Y}>,

<y, { Y }>, <p. { A }> }. Condition 2b is violated at line 4, since the type set of the actual parameter p contains the type A

and we have that p is not superior limited by the class B. Therefore we conclude that executing method m3 will cause a

run-time type error.

5. OBJECT UPDATES

Object instances have to be modified in accordance to the schema change. There are three basic approaches to perform
schema updates with respect to the database:

- Screening,

I We consider only assignment statement of the form xi := xj.m(xl, xn); this should not be viewed as a restriction

since any assignment can be transformed into an equivalent (sequence of) new one(s) having the previous form. For

instance x := y; can be transformed into x := y.m, where method m simply returns self. The composition of methods

such as x := y.m2.ml can be transformed into the following sequence of assignments:
temp := y.m2; x := ternp.mi.



- Immediate conversion,

- On demand conversion.

The comparison of these approaches is not simple, as it requires a cost-analysis and simulation techniques. A first

preliminary analysis is reported in Zic9 ib].

6. CONCLUSIONS

We have designed and implemented a first prototype of a tool which ensures structural consistency when updating an 02
schema. The tool, called Interactive Consistency Checker (ICC), allows an interactive dialogue with the schema

designer. The ICC given a schema and a proposed update, detects whether structural inconsistencies may occur. It then

refuses those updates which produce structural inconsistencies. The reason for the refusal of the update is always given
to the user. A detailed description of the ICC is reported in DelZi9l]. We have implemented a second version of the

ICC tool for the object-oriented database language SQL developed in the Esprit project 2443 “Stretch” ZCT9 1].

We are now designing a new tool which is a front-end of the compiler with the following goals:

- Reducing the number of recompilations every time a schema update is performed. We are extending well known

techniques for smart recompilation to the object-oriented paradigm.

- Detect possible behavioral inconsistencies due to run-time type errors. The tool will use the data flow technique
shown in section 4.

- Helping the schema designer in performing schema updates. To this purpose, it is useful to group updates together:
The notion of transaction updates allows the transformation of certain illegal updates into a sequence of updates which

result in legal schema manipulations.

The most obvious evolution of our approach consists in the integration of the various tools in the compiler itself.

Moreover, we are studying the problem of schema updates in the presence of a set of constraints associated both to the

schema and to the instance database.
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1 Introduction

Ideally, a database system should be designed to enforce arbitrary integrity conditions that the user

may be able to specify 3, 2]. Although in the mid-seventies, researchers investigated the semantics

and implementation architecture of integrity constraints and triggers, current commercial database

systems enforce a minimal set of integrity conditions, largely because of the performance overhead

that enforcement of integrity conditions incurs. However, during the past several years there has

been a perceptible renewed interest in integrity constraintè and triggers 7], both in the context of

active data management and method support in object-oriented database systems. We feel that a

classification of integrity conditions on the basis of their performance impact may prove to be a

useful basis for the current research and development efforts. It may provide a good basis for the

design and implementation of database systems that can support a significantly richer environment

for automatic preservation of user-specified database integrity than is provided by the current

database systems.

In this paper, we provide a preliminary discussion of a framework for classifying integrity con

straints in the context of an object-oriented data model. An object-oriented data model gives rise

to additional types of constraints beyond those meaningful under the relational model. A fuller

treatment of the issues of integrity management in object-oriented databases is given in 5].

2 Types of Integrity Constraints

We identify five types of integrity constraints in the context of relational databases on the basis of

a qualitative complexity of their evaluation. We note that the classification does not presume the

existence of special data structures (e.g., indexes, sorted tables). This classification, with certain

extensions, is also applicable to object-oriented databases.

Type-i: A single column within a single record: constraints which can be checked in a single
column within a single record.
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Type-2: A single record: constraints which can be checked in multiple columns within a single
record.

Type-3: A set of records of a table: constraints which require access to a set of records in a

table.

Type-4: All records of a single table: constraints which require access to all records of a table.

Type-5: Records of multiple tables: constraints which require access to records of multiple
tables.

If we adopt the view that an object-oriented data model is a generalization of the relational

data model, the five types of integrity constraint for the relational model have direct counterparts
under an object-oriented model. All that is necessary is to substitute the terms record and relation

with object and class, respectively.

However, an object-oriented data model includes several concepts that the relation model does

not have. We now examine how these additional concepts gives rise to additional constraints in

object-oriented databases. The following are the additional concepts supported in object-oriented
databases.

• An object encapsulates attribute values and methods.

• An attribute may have an arbitrarily complex neseted object as its value.

• An attribute may have a set of values.

• Classes are organized in a class hierarchy.

Methods

There is no corresponding notion of methods in the relational data model. Methods can be

written in any programming language, and, as such, have universal computing power. Since a

method is defined for a class, it can be used in specifying constraints on the objects of the class.

Therefore, users are not limited to using only query expressions to specify constraints as in relational

database systems. However, users must be aware of the complexity of the methods used in constraint

specifications and be prudent in the use of methods so as not to degrade system performance due

to constraint checking.

Nested Attributes

Unlike the relational model, an object-oriented model allows an attribute to have as its value an

instance of an arbitrary class. If an attribute of an object, say Obj 1, has as value another object,

say Obj2, users can use attributes of Obj2 (and the objects that attributes of Obj2 has as their

values, and so on) in the constraint specifications for Obji.

The traversal of a nested attribute is equivalent to a join in relational databases. To check a

constraint on a nested attribute, the system must access objects in more than one class. Therefore,

a constraint specification on a nested attribute is in general type 5 in our classification.1

1Depending on implementations, the system may not have to check all instances of multiple classes for a constraint

on a nested attribute; the check may be limited to a constant number of data ccesses.4]
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Vehide

Another interesting question concerning constraints on nested attributes is whether the con

straint logically belongs to the starting class or the terminal class of the nested attribute. For

example, let us consider the following constraint specification for the class Vehicle in Figure 1

which shows relevant classes in the schema and objects of the classes.

( manufacturer.president.salary < 300000 )

This constraint involves objects of three different classçs: Vehicle, Compa.ny, and Employee.

Intuitively, since the constraint is defined in the class Vehicle it should be placed in the defini

tion of Vehicle, the starting class of the nested attribute. In this case, the constraint is applicable
to every instance of Vehicle. The constraint will be checked when the system attempts to access

the value of an instance of Vehicle, say V1001.manufacturer.president.salary.

On the other hand, since the actual value which must be compared is in one of the objects of

the class Employee, the constraint may need to be part of the definition of the class Employee, the

terminal class of the nested attribute. The justification of this approach is that in object-oriented
databases, an object, identified by a unique identifier, is a logical unit of access, and therefore a

constraint may be associated with a single object, rather than a class. However, since this conStraint

is meaningful for the class Vehicle and only one instance, E1928, of Employee, it does not seem

appropriate to place the constraint in the class definition of Employee.

Set-Valued Attributes

The fact that an attribute may have a set of values from its domain gives rise to a new type of

constraint; namely constraints on the cardinality of the set of values for the attribute.

Ex. 2.1 A new class definition for CountryClub.

(manufacturer.president.salary <600000)

Figure 1: Placement of a constraint on a nested attribute
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( CREATE—CLASS CouxitryClub
:ATTRIBUTE ( (member :cardinality MAX 370

:domain person ) ) )

In this example, the maximum number of members of a country club is 370. The constraint may

also be specified with MIN or EXACT to specify the minimum and exact number of elements in a set

of values. This type of constraint falls into type 3 in our classification.

Complex Objects

A complex object is in general a cluster of related objects in which an object may recursively
reference any number of other objects. A complex object is modeled by combining the concepts

of a nested attribute and a set-valued attribute. In general databases for engineering-oriented

applications are collections of complex objects, in which an object references other objects and

an object may in turn be referenced (shared) by any number of other objects. When an object is

updated or deleted, or a new version of the object is created, some or all other objects that reference

it may become invalid, and thus need to be notified of the change 6, 1].

It is desirable for users to be able to specify constraints for change notification. For example,
a user may need to specify the following constraint for a CAD application: when memory-layou~
101 is updated or deleted, send a change notification to board-design-groupi. We note that this

constraint is defined not on the class memory—layout, but on one instance (memory-instance—lol)
of the class. This type of constraint falls into type 1 in our classification, since it can be checked

against the single object on which the constraint is defined. In relational databases, users can only

specify constraints on a table, rather than on a single tuple of a table.

Class Hierarchy

A class hierarchy represents the isa relationship between classes. The isa relationship means,

among other things, that any instance of a class is logically an instance of the superclasses of the

class. For example, when a user is to select all instances of Vehicle, the system may need to access

all (direct) instances of Vehicle and all instances of the subclasses of Vehicle (indirect instances).

A constraint involving only direct instances of a class is of type 3, since it may be evaluated by

accessing only the instances of the class. However, a constraint on all direct and indirect instances

of a class requires access to more than one class, and is of type 5 in our classification.

3 Conclusion

In this paper, we discussed integrity constraints to which the paradigm shift from the relational

model to an object-oriented model of data gives rise. This is one of the aspects of research into

object-oriented database systems which have not received adequate attention up to now. The

preliminary results we presented are a part of our broader research into integrity managment in

active object-oriented database systems. The broader research is motived by our wish to establish

a classification of events, conditions, and actions in triggers in active data management systems

which will be useful in helping system developers and users to understand the tradeoff between the

performance and flexibility in specifying integrity constraints.
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4 Types of Triggering Events and Actions

Due to space limitations, in this section we provide only a brief outline of our classifications of

events that trigger constraint checking, and actions that a database system may take upon being
triggered. More details are provided in 5].

In the context of database systems, we can categorize events into two classes; database access

event and non-database access event (or external event). The “intuitive” criterion we use for

classifying events is the overhead to the system for processing the events. For events involving a

small number of objects (e.g., an update of a single record), users will expect fast response; while

users will be more tolerable of slower responses for events involving a large number of objects (e.g.,
a timer interrupt to checkpoint the database). When users can be expected to tolerate slower

responses, complex triggering-event specifications may also be tolerable. However, for events which

require quick responses, complicated trigger specifications may not be desirable.

In most existing database systems, the only action taken in response to a violation of constraints

is to reject the transaction and set a pre-defined parameter with some error code. This is often

inadequate, and database systems should allow a set of more useful actions. Actions can roughly
be categorized as follows:

• reject transaction

• database updates

• other general events

“when deleting the table Department, update Employee.dept# to NULL”, and “if the object

memory—layoutlOl is updated, set the update-timestamp to the current time” are examples of

triggered database updates. Other general events include any action not related to the database,
such as “call system operator”, and “send an e-mail to cpu-design-group” are examples of general
events not related to the database.
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1 Introduction

Relational database systems provide a powerful abstraction mechanism: any query, since it returns a relation, can

be used to define a view, that becomes a derived (or virtual) relation. Views are defined by a statement such as

“define view <name> as <query>.” Views can be used to tailor the global database schema.

• Query formulation is simplified, if frequent subexpressions are predefined.
• Application programs are insulated from changes to the underlying schema.

• Information can be restructured to better suit an application programs’ requirements.
• Derived information is kept consistent with base data.

• Access restrictions (for authorization) can be enforced by hiding data.

In contrast to base relations, views are typically not stored permanently, but rather computed on demand. Queries to

view relations are modified by query substitution so as to operate on the underlying base relations. Therefore, any

update to a base relation propagates automatically to all views defined over it. Conversely, view relations can not

be updated freely, since it is often ambiguous how to trace view updates back to updates of base tuples. 1~’pically,

only views containing the key of their (one) underlying base relation can be updated.

The view mechanism should also be offered by the next generation, object-oriented DBMSs. Object identity

(Old) will alleviate the view update problem. If objects are identified independent of the values associated with

them, it is possible to propagate view updates back to base objects.1 If we want to define views as in relational

DBMSs, by queries, this has important consequences on the query language. Most importantly, queries will have to

preserve object identity. The other possibilities discussed in the literature are object-generating queries and queries

returning data values (e.g., relations). We will resthct ourselves to queries returning existing objects. Otherwise,

updates to query results would not propagate to the original objects. If queries return original objects, the main

questions are: How can we allow restructuring operations (if they change the type of objects)? Is it possible to

use query operators similar to the relational projection or join, and still have queries deliver base objects? What

flexibility is needed in the type system, and can we still apply (some) static type checking?

These issues are addressed in this brief overview of the work performed in the COCOON project at ETh Zurich

8, 9]. We first discuss object-preserving query semantics of a generic object-oriented query language in the style
of a relational algebra. Then we show how views defined by such query expressions can be updated: We elaborate

on certain fundamental properties of the object model, such as the separation between types and classes, multiple
instantiation (an object may be an instance of several types at the same time), and multiple class membership (an

object may be a member of several classes at the same time).

2 Terminology
We use the object-function model called COCOON 9], that has been developed as an evolution from and

generalization of the nested relational model 7]. The IRIS model II] with its roots in DAPLEX has similar

features. Objects are pure abstractions, all data (or objects) are associated to them (as “state” or “related” objects)

by functions.2 This means that “attributes”, “components”, or “instance variables” are not distinguished from

“derived” or “computed” values. Similarly, we can often neglect the difference between (retrieval) functions and

(update) methods, and treat them in the same way. We use the following terminology:

• Objects are instances of abstract types, specified by their interface operations. Data are instances of concrete

types (e.g., numbers, strings) or constructed types, such as tuples or sets 2, 9].

Formally, object identity is a prerequisite for updates: without Old we could only replace, but never modify data.

2
In implementation terms, this means: the object itself is just an identifier. The “state” of the object is the collection of

return values of all functions defined on it (that map the Old to other objects, i.e., Olds
,
or values).
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• Functions are either retrieval functions or update methods. They are described by their name and signature
(that is, domain and range types). Functions may be set-valued.

• Types are described by their name and the set of functions that are applicable to their instances. Types
are arranged in a subtype hierarchy, where subtypes inherit functions from their supertypes. Objects can be

instances of more than one type at the same time (“multiple instantiation”).
• Classes are typed collections of objects (sometimes also called “type extents”). Classes are arranged in

a subclass hierarchy that is exactly the set inclusion between the sets of objects they represent. Objects
are “members of” classes, possibly more than one at a time (“multiple class membership”). Particularly,
superclasses contain all members of their subclasses.

We note that the separation of types and classes is essential. In the relational model, a type corresponds to a

relation’s schema (the structure), a class to a relation’s extent (the set of tuples). At first glance, classes could be

viewed as (persistent) sets of objects. However, a set is data, whereas a class is an object 2, 9]. That is, it has

an identity that is independent of that set of class members. Each class object is an instance of the type classtype,
which has (among others) two important functions: For each class C, membertype(C) returns the associated type,
and ex:ent(C) returns a set of objects of this type, the class members. Class extents are polymorphic sets: member

objects may be instances of many different types. However, they are uniform in that every member is (among
others) an instance of membertype(C). In the query language, where we use classes as arguments, type checking
is based on this unique member type.

An important additional feature distinguishes our model from others: class predicates. These are usually found

in knowledge representation (classification) languages such as KL-ONE 4, 3]. Our classes may be constrained by a

predicate that must be satisfied by all members of the class. We distinguish two cases: class predicates may be only
necessary or necessary and sufficient conditions. Class predicates can serve several purposes: first, they allow the

specification of integrity constraints (necessary predicates). Second, they are our means of separating compile-time
type checkable aspects of object types from run-time checks: the former are part of type definitions (e.g., function

signatures), the latter are expressed as class predicates (e.g., cardinality restrictions for set-valued functions). Third,
and most importantly, class predicates can be used to handle updates to (selection) views: if class predicates are

necessary and sufficient conditions, then all (common) members of the superclass(es) that satisfy the predicate are

automatically classified into the subclass. Conversely, if objects in a class (due to updates) no longer satisfy the

class predicate, they are re-classified (recursively) to belong to the superclass only.

As an example, consider two classes Persons and Adults, both of the same type personlype. We know that a

person is an adult, if and only if his or her age is over 17. So we define a necessary and sufficient class predicate
for class Adults that will automatically include members of the Persons class into the subclass whenever their age
is 18 or more. The system should automatically remove persons from the subclass (and keep them in the superclass
only) whenever their age is changed to a value below 18. In COCOON, this situation is represented as follows:

define type persontype isa objeduype = name: string, age: integer
define class Persons: persontype some Objects;
define class Adults: persontype all p:Persons where age(p) > 17;

Type definitions list the (set of) supertypes (objecuype, the predefined top of the type hierarchy in our example)
and the applicable functions with their range types. Class definitions include the membertype and the (set of)

superclasses (Objects, the predefined top of the class hierarchy, for Persons and Persons for Adults). The optional
predicate (none is present for the class Persons), is a necessary condition in case of a some qualifier, and necessary
and sufficient in case of an all qualifier. Therefore, in all valid database states, the extent of class Adults will always
be exactly those members of class Persons for which the age function returns a value over 17. Notice, that this

class definition of Adults is just what we would expect from a (selection) view defined over the Persons class.

3 Object-Preserving Query Semantics

We use a set-oriented query language similar to relational algebra, where the inputs and outputs of the operations
are sets of objects. Hence, query operators can be applied to extents of classes, set-valued function results, and

query results. Many such object-oriented algebras have been proposed in the literature. We can distinguish three

approaches to the exact semantics of queries, depending on what the result of queries are:
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I. “Relational semantics”: query results are data values, not objects. For example, every query may return a

set of tuples containing some values describing properties of objects. This semantics is useful for generating

query outputs (we do not want to deliver objects, or Olds, to the user), but it is not suited for the definition

of (updatable) views, since object identity is lost, so updates make no sense.

2. “Object-generating semantics”: queries generate new objects. The states of the new objects are (J)artial) copies

of the states of qualifying objects. Again the problem is how to propagate updates back to the original objects.

This kind of query semantics is motivated by object models that do not allow objects to be instances of more

than one type (class). If the type (“structure”) of objects is modified by the query (e.g., a projection), the

result has to be a set of new objects.

3. “Object-preserving semantics”: queries return (some of) the input objects. As an immediate consequence of

type-changing query operators, such as projections or “joins”, we have to allow multiple instantiation. Multiple

class membership is a consequence of making query results classes. This semantics for queries allows the

application of methods and generic update operations to results of a query, since these contain base objects.

To define updatable views by means of queries, we should opt for object-preserving operator semantics. Otherwise,

one must play some implementation tricks when voting for other query semantics in order to provide updatable

views. For example, one can internally keep the original Olds together with the new objects. However, object-

preserving query semantics is the cleaner concept. Then views are additional (virtual) classes that need to be

positioned in the class hierarchy, and their membertypes need to be positioned in the type hierarchy. The objects

in these view classes are base objects.

In the sequel, we give a brief overview of the COOL query language and its semantics in terms of result

types and extents. In COOL, operands are sets of objects, the operators are the relational algebra operators with

appropriate extensions (syntactically, operands may be classes: formally, the operands are the extents of the classes).

Query results are also sets of objects. View definitions introduce new (virtual) classes, whose extent is defined by

the query. For views defined by each of the basic COOL operators, we describe what the membertype and extent

is, and how these are positioned in the type and class hierarchies. For ease of presentation, assume that all views

are defined over base classes. In general, views may also be defined over other views, or by composite queries (see

8] for a detailed exposition). In the following, let C be a class with member type T.

Selection (define view V as select P] (C) ). The view class V is a subclass of the base class C, with the same

member type T. We now have two classes, V and C, of type T. The extent is the subset of C-members satisfying

P. In fact, the effect of the view definition is precisely the same as if class V were defined with a necessary and

sufficient class predicate: “define class V:T all C where P”.

Projection (define view V as project ~f, f,j (C)). The view class V is a superclass of C. The member type, say

T’, of V is a supertype ofT (less functions are defined, only those listed in the projection: Ii f~), the extent of V is

that of C. The effect is the same as a schema definition containing a statement “define class V: T’ all C where true”.

Extend (define view V as extend /:=<expr1>,... I (C) ). Projection eliminates functions, extend defines new

derived ones. <expr1> can be any legal arithmetic, boolean, or set-expression. The view V is a subclass of C: their

extents are the same and the member type of V. say T’, is a subtype of T (it has the old functions plus the new

ones). The effect is the same as “define class V: T’ all C where true”.

Set operations. As the extent of classes are sets of objects, we can perform set operations as usual. Their

effects on class extents is their standard set theoretic semantics. Due to the polymorphic type system, we need no

restrictions on the operands’ member types (ultimately, all objects are instances of objecttype). The member type

of the result, however, depends on the operands’ types: A union view is a common superclass of the base classes,

whose member type is the lowest common supertype (in the type lattice) of the input types. Difference views are

subclasses of their base class with the same membertype; finally, an intersection view is a common subclass with

a member type that is the greatest common subtype of the input types.

4 View Updates

Beyond type-specific update operations (i.e., methods), we provide a collection of generic update operators to

facilitate set-oriented processing. First, there is a set-iterator for updates, update m] (<sel-expr>), that take as
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arguments a set of objects and an update operation, m, to be performed on all elements. The other generic update

operators are insert and delete for creating and destroying objects, add and remove for including and excluding

existing objects into/from sets (in contrast to insert and delete, add and remove have no effect on the existence

of the objects), and set to assign values (data or objects) to functions.

For type-specific update operations (methods), there are no restrictions whatsoever on view classes and all

methods included in the view’s membertype can be invoked. Notice, that type-changing operations, such as

projections, deal with update methods and retrieval functions in the same way: a projection list includes the

methods that shall be visible in the view! For the generic update operators of COOL, the semantics of their

application to view classes is always defined to be exactly the same as if the view class were defined as a base

class with a necessary and sufficient class predicate (“define class V...all...where...”). Therefore, the foundation

of our update semantics is automatic classification: updating objects may cause the objects to dynamically change
class memberships. The alternative solution of disallowing all object modifications that cause class predicates to

change their truth value is too resthctive.

Consider the following scenario: Let a class Persons have a subclass Myfriends. Certainly, we can not

express a sufficient predicate on persons to decide who are my friends. So, we need to tell the system explicitly,
by the add operation, which persons to put into that subclass. Suppose there is another subclass, NewYorkers.

Obviously, this subclass can be defined with a (necessary and) sufficient predicate, namely “define class NewYorkers:

personlype all Persons where addr=’NewYork”. Alternatively, we could define NewYorkers as a view by the

statement “define view NewYorkers as select addr = ‘NewYork’](Persons)”. In any case, we expect from the

system to (i) automatically add a Persons member to NewYorkers, if the ad4r function is set to New York, and (ii)

to remove an object from NewYorkers, if addr is set to some other value. The latter is also true if we apply the

update to class NewYorkers. On the other hand, suppose we add some person object p to NewYorkers explicitly
(by using the generic add operator). If the person fails to have a New York address, the update will not succeed,

because the necessary class predicate is not fulfilled.

In general, due to the dynamic reclassification of objects based on class predicates, we need to apply only
few restrictions to view updates, since most “exceptions” are detected during the evaluation of class predicates.
An example for updates that are disallowed is the assignment to derived functions (e.g., in extend-views), the

insertion/addition into union views (that could only be allowed if the two base classes have a discriminating

predicate, because otherwise we can not disambiguate the insertion), or—the symmetric case—removals from

intersection views. Details for each kind of views and update operations are discussed in 8].

We did not mention join views yet. COOL has no join operator. We can express the same semantics by the

extend operator. Instead of joining two classes, we extend one of them by a new function. The other one may

automatically be extended by the inverse function. The new function returns, for each member of that class, the set

of “join partners” from the other class 9]. The derived function is defined using a selection applied to the other

class, where the predicate depends on the current member of the first class. For example, a view over Persons that

shows for each person the neighbors, that is, those persons living at the same address is defined as

define view NeighborPersons as extend eighbors:=selectaddr(n) = addr(p)](n:Persons)](p.Persons).

This way of expressing joins is object-preserving, NeighborPersons contains base objects, namely all members of

Persons. Therefore, we can also update “join views”: we can modify all information about the person objects
and their neighbors, the only restriction is that we disallow setting the neighbor function to a new value. We can,

however, change its value indirectly by modifying persons’ addresses.

5 Fundamental Properties

The following properties of the query language have been essential for the view definition capability and the view

update semantics. If some of these properties are not met by a language, our solutions will fail, partly or completely.
Thus, the results we obtained are not bound to the COOL language, but to these properties.

Object preservation is the central concept. It is crucial for a view definition facility. Object preserving operator
semantics means that the results of queries are existing objects from the database, in contrast to object-generating
(results are newly generated objects) or tuple-generating (results are data, not objects) semantics.
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The type/class separation is a consequence of object preservation: if both projections and selections are to

preserve objects, and if composite select/project queries are permitted, we need this separation in order to connect

the view class properly with the base class. The position of query results in the type and class hierarchies have

to be less precise without this distinction (see 6], where all query results are direct subclasses of “OBJECT”).

Furthermore, no operation changes both, type and extent, except for union and intersection of two classes with

differing types. So, the separation is a clarification of distinct concepts.

Multiple instantiation and multiple class membership are other consequences of object preservation: since we

have type-changing operators (project, extend) all objects in their results “acquired” a new type. If we consider

objects in results of queries as being members of the result class as well as the input class(es), we can treat updates

to query results in the same way as updates to stored classes and the updates propagate automatically.

Dynamic reclassification during updates: Automatic classification functionality known from AL systems

becomes necessary when we take into account, that objects can dynamically gain and loose types during their

life time and that changes of an existing object can make it a member of a more specific class (because now it

satisfies it’s class predicate) or a more general one (if the class predicate of it’s current class is violated by the update).

Reclassification is the central concept in our view update semantics. While classification (predicate subsumption) is

undecidable in general, we try to identify tractable predicates. Furthermore, reclassification—relative to an original

class and a specific update operation—is simpler than classification in general.

6 Related Work

Recently, there have been other proposals for view support in ooDBMSs 1, 5, 101. These are different from our

approach in that we use the standard way of defining views by nothing else than query language expressions. They

either introduce special view definition features that duplicate parts of the query language capabilities 1] or use other

facilities of their systems. FUGUE 5] uses type hierarchies for information hiding: the user can implement a new

type for the view that uses some base type(s) and offers only a restricted functionality or extends the functionality.

Also, not all instances of the base type may be exported. POSTGRES 10] uses the rule system to simulate views.

Derived tables (views) can be defined by rules and other rules may define specialized update semantics for them.
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1. Introduction

The EXTRA/EXCESS DBMS Care8SJ consists of an advanced data model (EXTRA) and a non-procedural
query language (EXCESS), each of which is described briefly in Section 2. The system is implemented using the

EXODUS extensible database system toolkit Care9OJ. Motivations for EXTRA/EXCESS, as well as detailed com

parisons of it with similar systems, can be found in Care88]. The goal of this paper is to describe the algebraic fun
damentals underlying the processing and optimization of EXCESS queries The relationship of these fundamentals

to other work is detailed in Vand9l]. Here we concentrate on describing the algebraic structures and their opera
tors (Section 3), results on the algebra’s expressive power (Section 4), and algebraic query optimization (Section 5).
Section 6 summarizes the current status of this work. Many of these results are covered more completely in

Vand9l].

2. The EXTRA Data Model and EXCESS Query Language

Two concepts are central to the design of EXTRA/EXCESS: extensibility and support for complex structures

with optional identity. In addition, the model incorporates the basic themes common to most semantic data models.

Extensibility in EXTRA/EXCESS is provided through both an abstract data type mechanism, where new types can

be written in the E persistent programming language Care9O] and then registered with the system, and through sup
port for user-defined functions and procedures that are written in the EXCESS query language to operate on (user-
defined) EXTRA types. The EXTRA data model includes support for complex structures with shared subobjects, a

novel mix of object- and value-oriented semantics for data, a multiple inheritance hierarchy for tuple types, and sup

port for persistent structures of any type definable in the EXTRA type system (i.e., a strict type-instance dichotomy

define type Person: define type Student:

( (
ssnum: int4, dept ref Department,
name: har], advisor har I

birthday: Date ) inherits Person

)
define type Department

define type Employee: (
( name: harJ,

dept ref Department, floor int4

salary: int4, )
kids: (Person)

) inherits Person create Employees: (own ref Employee)
create Students: (own ref Student)
create TopTen: array 1.. 10] of ref Employee

Figure 1: A simple EXTRA database

This research was partially supponed by the Defense Advanccd Research Projects Agency under enntnct N00014-85-K-0788. by an IBM

Graduate Fellowship. and by a donation from Texas Insiniments.
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exists). Figure 1 shows a simple database defined using EXTRA. In EXTRA, the tuple, multiset,, and array con

structors for complex objects arc denoted by parentheses, curly braces, and square brackets, respectively. Object
identity is denoted by the ref keyword, and the own keyword indicates object ownership Care88]. In EXTRA,
subordinate entities are treated as values (as in nested relational models Sche86]), not as objects with their own

separate identity, unless prefaced by ref in a type definition or an object creation statement. The declaration ref x

indicates that x is an object identifier (OlD).

Briefly, Figure 1 defines four types, all cI which happen to be topic types. The Student and Employee types
are subtypes of Person. The semantics of this inheritance are that all attributes and methods of Person are also attri

butes and methods of Student and Employee, and that all Students and Employees are also Persons (substitutability).
Any inherited method can be ovenidden with a new method body. Figure 1 creates a university database that owns

three named (i.e., top-level), persistent objects: Students (a set of Student objects), Employees (a set of Employee
objects), and TopTen, a fixed-length array of references to Employees.

The EXCESS query language provides facilities for querying and updating complex structures, and as men

tioned above it can be extended through the use of ADT functions and operators (written in E) and procedures and

functions for manipulating EXTRA schema types (written in EXCESS). EXCESS queries range over structures

created using the create statement EXCESS is designed to provide a uniform query interface to multisets, arrays,

tuples, and single objects, all of which can be composed and nested arbitrarily in EXTRA. The language thus

allows for the retrieval, combination, and dismantling of any structure definable in EXTRA. The user-defined func

tions (written both in E and in EXCESS) and aggregate functions (written in E) are supported in a clean and con

sistent way.

As an example, the following query finds the names of the children of all employees who work for a depart
ment on the second floor, additional examples appear in Sections 3 and 5.

range of E is Employees
retrieve (C.name) from C in E.kids where E.dept.floor = 2

3. The EXCESS Algebra

EXCESS queries are processed algebraically — the algebraic paradigm historically has proved useful for

optimization, models of execution, and theoretical results. The EXCESS algebra Vand9O] provides direct support
for many of the advanced constructs of EXTRA/EXCESS, notably arrays, multisets, grouping, inheritance, object
identity, and orthogonality of type constructors. The algebra Consists of structures and operators. A structure is an

ordered pair (S, I), where S is a schema and I is an instance. Schemas are digraphs whose nodes represent type con

structors and whose edges represent a “component-or relationship. That is, an edge from A to B signifies that B is

a component of A. Each node is labelled with either “set” (short for multiset), “tup” (for tuple types), “arr” (for
arrays), “mr (for object identity), or “val” (an atomic value with no associated structure). These-correspond to the

four type constructors plus simple values. As in EXTRA, these constructors can be composed arbitrarily — they are

completely orthogonal. We also associate a unique type name with each node. Components (fields) of tuples are

also named. Every schema has a distinguished root node. “Tup” nodes may have any number of components, “val”

nodes have no components, and the other type constructors have exactly one component. Cycles in the graph must

contain a node of type “rer. Instances of a schema are elements of the appropriate domain, and the domain associ

ated with a node of a schema graph has been defined (formally; see Vand9lJ) to account for object identity and.

multiple inheritance.

The orthogonal nature of the type constructors of EXCESS (and those of the algebra) has been incorporated
into the operator definitions. The algebra is many-sorted, so instead of having all operators defined on “sets of enti

ties” (as in most algebras), we have (for each sort”, or type constructor) a collection of operators that apply only to

structures whose outermost type constructor is that sort In particular, the algebra is not set-oriented. For each con

structor we introduce a collection of primitive operators that together allow for arbitrary restructurings involving
one or two structures of that sort. We list the operators here, but do not describe them in detail; some of them will

be more fully defined in the next section (also see Vand9O]). There are eight primitive operators for multisets (—,
~, x, DE, GRP, SET_COLLAPSE, SET_APPLY, SET); three for tuples (TUP_CAT, TUP EXTRACT, TUP); two

for references (DEREF, REF); and nine for arrays (SUBARR, ARR_CAT, ARR_EXTRACT, ARR_COLLAPSE,
ARR_DE, ARR_CROSS, ARR_DIFF, ARR_APPLY, ARR). We emphasize that these operators do not depend at

all on the schemas of their inputs’ components (except, of course, that both inputs of a binary operator must be of

the same type, moduto inheritance rules). For example, the unary multiset operators work on any multiset, no

matter what it contains. Each operator accepts only inputs of the sort with which it is associated, with the excep
tions of the SET, TUP, ARR, and REF operators, which accept any structure as input and place their input inside the
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corresponding type constructor (e.g.. SET returns a singleton multiset containing its input).

Since algebras are functional languages, we treat predicates in a functional manner. That is, a predicate is an

operation (called COMP) that retun~ its (unmodified) input exactly when the predicate is satisfied (true). Otherwise

COMP returns nothing (see Vand9O] for a discussion of nulls in EXTRA/EXCESS). COMP, whose input can be of

any type, is the only operator that has a predicate parameter. Isolating predicates within this operator simplifies the

other operator definitions as well as their implementations.

We now present a simple query (see Figure 2) to illustrate the flavor of the algebra; more complicated queries
appear in Section 5. The query in Figure 2 returns the name and salary of the 5th element of the TopTen array

(defined in Figure 1). This query uses the following algebra operators: ARR_EXTRACT, which returns a single,
specified element of an array (the result is the element itself, not an array containing the element); DEREF, which,

given an OlD, returns the value referred to by the Oil); and it, which returns a tuple containing only the specified
fields of its input (it operates on a single topic, not on a set of topics).

Clearly, the operator definitions are heavily influenced by the structures of EXTRA objects. The operator

definitions are also motivated by the fact that a rich set of primitive operators enables the derivation of an equally
rich set of transformation rules for use in optimization. Furthermore, primitive operators are easier to implement
than are complex ones. It is also easy to define non-primitive operators in terms of the primitives. For example, a

relational-like join can be defined as follows:

reljoin9(A, B) = SET_APPLY~~ (SET_APPLY~~T(fi~dI fi~)(A x B)),

where 8 is the join predicate and “field I” and “fieldT are the names of the two fields of the Cartesian product.

4. Expressive Power of the Algebra

The algebra was designed to implement the EXCESS query language, not to reflect a database-style calculus

such as the relational calculus. Thus the interesting question of expressive equivalence for this algebra is not

whether it can express the queries of some formal calculus but whether it can express exactly the queries of

EXCESS. This is one motivation for not forcing the algebra to be set-oriented. Naturally, it is crucial that any

EXCESS query be expressible in the algebra. The other direction of the eqwpollence is interesting in that it restricts

the optimization alternatives to the smallest set possible given the power of EXCESS and the structure of the algebra
and its rules. It also ensures that intermediate steps in the optimization process are always correct representations of

EXCESS queries and that any expressiveness results regarding the algebra also apply to EXCESS. We only sketch

the proof here; more details are available in Wand9lI and in a forthcoming thesis.

Theorem: The EXCESS query language and algebra are equipollent.

Sketch of Proof: Reduction of EXCESS to algebra: The proof that EXCESS is reducible to the algebra is essen

tially an algorithm that translates any EXCESS query to an algebraic query tree. The proof is an inductive proof that

follows the structure of the algorithm (the induction is on the number of certain EXCESS constructs appearing in a

query). Reduction of algebra to EXCESS: The other direction of the proof is a case-based inductive proof. The

induction is on the number of operators in an algebraic expression. An expression in the algebra consists of one or

more named, top-level database objects and 0 or more operators. 0

A few general remarks about the algebra’s power are in order. First, it is capable of simulating most of the

algebras mentioned in the literature as long as these algebras do not contain the powerset operator. We conjecture
that our algebra is incapable of expressing the powerset, but we have not proved this yet. Such a result would pro

vide an important upper bound on the algebra’s expressiveness and computational complexity. This is because the

powerset operator, which returns the set of all subsets of its input set, is inherently exponential in nature and (in

retrieve TopTen5] .name, TopTen(5] .salary)

itname salary
(((

Figure 2: A Simple Query
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many algebras) it allows for the formulation of least fixpoint queries EGyss88]. Second, it has been observed that
the addition of the powerset operator to some algebras has the same effect as adding while-loops with arbitraiy con
ditions GyssS8]. Such loops are fundamentally different from the style of loop provided by the SET_APPLY
operator. The latter style of ioop executes a statement on each element of a (multi)set in turn. The former kind of

loop executes a statement many times, but is not restricted to operating on successive elements of a set. Finally, the

EXCESS algebra contains some constructs that are second-order in nature. Since the semantics of the algebra are

defined operationally (rather than proof-theoretically, as in many calculi), it is not clear that the drawbacks of
second-order logics (i.e. incompleteness) have corresponding drawbacks in an algebraic setting.

5. Algebraic Query Optimization in EXCESS

EXTRA/EXCESS queries are optimized by a rule-based optimizer which uses algebraic transformation rules

to rearrange a query Vand9l, Grae8l]. It determines the cost of each rearrangement using cost functions and

statistics and chooses the cheapest one for execution. This section describes a few of the new transformation rules

that can be used to optimize EXCESS queries and illustrates them via an example. The algebra is capable of simu

lating nearly all of the transfonnations found in the literature. The example presents an EXCESS query over the

database of Figure 1 and a series of algebraic representations of that query. None of these query trees is necessarily
intended to be the final or optimal plan for the query. Each one represents an alternative execution strategy to be

examined by the optimizer. In the example we take some liberties with the details of the algebra in order to clarify
the presentation, but we lose none of the essence of the queries. We also use a graphical notation to represent the

queries — data flows upward in these graphs, following the arrows. A complete list of new transfonnations would

contain several dozen rules, each of which can be proved sound using the operator definitions. More rules can be

found in Vand9ll.

The example query retrieves, without duplicates, the names of all advisors of Students, grouped by their stu

dents’ departments. It demonstrates the use of both object-based accesses (use of the Studenidept reference field)
and value-based accesses (the relational-like join). The EXCESS query is:

range of S is Students, E is Employees
retrieve unique (S.dept.name, E.name) by S.dept

where S.advisor = E.name

Figure 3 is one way to execute the query — it is similar to what would be produced as an initial query tree by
the EXCESS parser and translator. In the query plans shown we make use of the following algebra operators:
SET_APPLY, which applies an algebraic expression to all of the occurrences in a multiset DE, which eliminates

duplicates from a multiset GRP, which groups the occurrences in a multiset into equivalence classes based on the

result of an algebraic expression applied to those occurrences; it, which is similar to relational projection but

operates on a single tuple1 and “reljoin”, which is essentially a relational join. “Reljoin” is not a primitive in the

algebra, but is one style of join we have defined using the primitives; see Section 3. Subscripts to an operator indi

cate parameters to that operator, not its input(s). The plan in Figure 3 joins the two sets using “reljoin”, then

groups the result (producing a multiset of multisets), performs the final projection, and eliminates duplicates. The

final projection actually includes an object-based access (using the algebra’s DEREF operator to get to a Student’s

Department tuple), but we have omitted this for brevity. Note that to process sets nested within sets, the parameter
to SET_APPLY can itself contain a SET_APPLY, as in Figure 3. Figure 4 shows the application of a rule pushing
DE before GRP:

SET_APPLYDE(GRPE(A)) = GRPE(DE (A))

This is especially advantageous when the duplication factor is large, as it is likely to be here. We simultaneously
take advantage of the ability to move it ahead of GRP if the it produces the attributes used by GRP. In Figure 5 we

optimize the query further by pushing the DE and it past the ‘reljoin” node, making use of this rule (among others):

DE (A x B) = DE (A) x DE (B)

This results in DE operating on S and on I El occurrences rather than on IS I * I E I occurrences. The DE and it have

been separated into two nodes in Figure 5 to clarify the presentation.

‘Then used here is easily defined in terms of the three primitive wpIe operators listed earlier.
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GRP DE (SET APPLY )
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DE DE

reijoin reljoin
advisor=namc advuog~name SET APPLY SET APPLY

—

S E S E

S E

Figure 3: Initial Query Figure 4: 1st Transformation Figure 5: 2nd Transformation

The algebra also provides for compile-time optimization of overridden methods. This particular technique,
described in Vand9lj, can be used to avoid run-time type checking in some quezie&

6. Conclusions, Status, and Future Work

The algebraic paradigm for query processing, as shown here, can be used to successfully model, implement,
and optimize many aspects of advanced data models. More complete results may be found in Vand9O, Vand9l].
As mentioned in Section 4, the algebra can simulate most other database algebras found in the literature, as long as

these do not include recursive capabilities. Any operator of such an algebra can be simulated using an EXCESS

algebra expression, and this is true for both object- and value-based algebras, due to the orthogonal introduction of

object identity into the EXCESS algebra. This implies that the optimizations used in EXCESS can also be applied
to these other algebras and that some systems without algebras can benefit from using the EXCESS algebra.

Much of the system is now operational, including the parser, many of the algebraic operators, the runtime

query execution system, the DML support, and support code for the EXODUS optimizer generator, which is being
used to build the optimizer. Many of the algebraic rules are present in the current generated optimizer. Some

queries have been executed at low levels of the system, and the full system is expected to begin running shortly.
Interesting areas requiring future research include normal forms for complex objects, alternative approaches to

incomplete information in a complex object database, and the development of more sophisticated statistics for use

by the optimizer.
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1 Introduction

The ENCORE’ 7] object-oriented database system has been used at Brown University for a number of

years as a vehicle for experimentation in many aspects of next-generation database technology. It was

designed as a medium for combining database and programming language technology. It was also designed
as an extensible database in which the basic extension mechanism is the abstract data type. As a result,
extensions are programmed in a way that conforms to good software engineering practice.

The ENCORE DDL is, as in most conventional database systems, a means for describing data that

will be kept in a persistent, shareable store. It can be thought of as a type system. The DML is defined

by the ability to invoke methods of abstract types on objects. Thus, ENCORE is a means for creating and

manipulating persistent instances of abstract types. A collection of ENCORE type definitions is analogous
to a database schema.

The ENCORE type system is a language-independent data model. The implementation of any given

type can, in theory, be provided in any programming language. In fact, it is our intention to allow a type T1

to be implemented in programming language P, and a type T2 to be implemented in programming language
P2. Instances of T, and T2 can be freely mixed in a given ENCORE database. This is possible because

the only things that are passed between methods are atomic values and system defined object identifiers

(oi4’s) which serve as handles for ENCORE objects. If a method receives an oid for an object, the only

thing that it can do to it is invoke a legal method for objects of that type. For atomic types, we provide
translation functions that convert between two different representations (say, a C integer and a LISP integer

representation). This does not add much programming overhead because there are only a small number of

atomic types. We also disallow the transmission of object representations outside of ENCORE since any

safety criteria (e.g., constraints or type checking) that are defined within ENCORE may not be consistently
enforced on data while it is outside of the system.

This approach retains the impedance mismatch of conventional databases, but it easily accommodates

the implementation of types by multiple languages. ENCORE provides one type system, while each method

implementation language provides another. Unlike most current object-oriented database systems, ENCORE

is not a complete database programming language. Notice, however, that it would be possible to wrap a

programming language around the ENCORE type system (something we are planning to do). The impedance
mismatch problem would disappear for types whose methods are implemented in this language.

2 The ENCORE Data Model

ENCORE is based strongly on abstract data types 4]. All types are defined by their interface which is

specified in terms of a set of method signatures. A signature for method M is a name plus an ordered list

tSupport for this research was provided by IBM under contract No. 559716, by DEC under award No. DEC686, by ONR

under contract N0014-88-K-0406, by ONR and DARPA under contract N00014-83-K-0146 and ARPA Order No. 4786, by

Apple Computer, Inc., and by Texas Instnnnents.

‘Many years ago ENCORE stood for Extensible and Natural Common Object REsource. These days it stands for itself.
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of types that correspond to the legal types for the arguments of M. Objects can be related to each other by
means of these methods. The ENCORE type system has been designed to allow for static type checking.
Type equivalence is determined by name equivalence.

ENCORE defines a set of atomic types, Integer, Real, Bool, and String. These types define the only
values in the system. A value is something which is guaranteed to be immutable. Unlike other object-oriented
database systems (e.g. 23]), ENCORE does not allow users to define new value types. All user-defined

types describe objects.
A user-defined abstract type is a tuple (S,I) in which S is a specification and I is an implementation.

The specification S is a pair (N,M) in which N is a name (i.e., a string) and M is a set of method signatures.
The implementation I of an abstract type is a pair (R,P) in which R is a representation type, and P is a set

of programs that implement the methods in M in terms of the representation type R. The type R can be

any type including an atomic type, an instance of a parameterized type, or any other abstract type. Users

of an abstract type are forbidden from knowing the implementation I.

A parameterized type is a mechanism for specifying a family of related types with one textual definition.

The parameters for a parameterized type may include other types. In order to retain our ability to do static

type checking, we restrict the parameters to be expressions which are statically typed. A parameterized type

is like a metatype in that it is a generator for other types. An instance of a parameterized type is a type.
For example, etInteger] is an instance of etT: Type~.

ENCORE defines two very important parameterized types, etT] and upleai:Ti, .. . ,a,~:T,,]. These

two types play a crucial role in the query facility, where they are used to construct types for query results.

When the parameterized type etT] is given a value such as Integer for the parameter T, it generates

a new type etInteger]. The name of this type is SetInteger]”. The type etInteger] has instances

that are sets whose members are constrained to be integers. There can be multiple instances of a type Set

containing exactly the same members.

A parameterized type P defines a set of methods, each of which can be parameterized by the type

parameter(s) of P. For example, the etT] type defines an operation with a parameterized signature

Insert(S: etT],x: T). When etT] is supplied with a value for parameter T, the Insert operation is also.

parameterized with the same value; i.e. type etInteger] has method Insert(S: etInteger],x: Integer).
The methods defined by a parameterized type do not apply to instances of that type. Instead, when a

parameterized type is given a parameter, the newly generated type N is given parameterized versions of the

methods, which now apply to the instances of N. For example, Insert does not apply to the type etInteger]
but applies to instances of that type.

The basic type constructor in ENCORE is the abstract data type, in that it takes a type for its

representation (concrete type) and generates a new type as the abstract type. The parameterized types also

provide a more standard type construction mechanism.

ENCORE abstract data types are related to each other through subtyping. A type may have many

subtypes and many supertypes. Subtyping requires that instances of a subtype can be substituted as instances

of any of its supertypes (substitutability). The subtyping mechanism is designed to support strong static

typing when the ENCORE type system is embedded in a compiled programming language.
The collection of all current instances of an ENCORE type is the extent of the type. Extents as well

as arbitrary sets of instances can be maintained by ENCORE. Sets can be explicitly created or defined by a

predicate over some existing set. For example, if set Cars has type Set Carl, we can define a predicate-defined
subset BlueCars as all members of Cars with a value of “blue” for their color property. A predicate-defined
subset has the same type as its superset (i.e. BlueCars has type etCarl). We call a predicate-defined set,

a class. Classes give us the ability to separate constrained sets, requiring run-time membership tests, from

the type system that is reserved for compile-time checking. It is important to note that while a subtype

relationship between two types induces a subset relationship between their extents, a subset relationship
between two classes does not necessarily imply a subtype relationship.

A class definition can be defined to either constrain its membership or provide a view of its parent class.

If a class C defined by predicate P is defined as a constrained-class, then any attempt by a transaction T to

change the state of c, an element of C, such that P( c) is false will cause T to abort. A class C defined by

predicate P may also be defined to be a view. If the state of some object c in class C changes such that c no

longer obeys predicate P, c is automatically removed from the class. Object c may now satisfy some other

predicate P’ that defines class C’, in which case it is automatically inserted into C’.

An instance z of a type T has a unique identity that is independent of the state of z. Although an

object’s identity may be implemented by a system supplied object identifier, the existence of the identifier
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is transparent to the language interface. Logically, the language always sees an object, and must access that

object through the interface defined for its type. Object identity allows the implementation of references

between objects. When an object z refers to an object y by means of a method M (i.e., M(x)=y), applying
M to z produces object y (and does not give access to an identifier for y).

Propeflies in ENCORE reflect the abstract state of an object. The notion of property is modelled by one

or more of the methods defined on a type. A property value is accessed by a special observer method which

is required to have no side-effects on the observable state of the object. This method for property P is called

GetY. The GeLP method can return the value of a stored field or it may perform a more sophisticated

computation based on the stored representation of the object. A property P may also support another

function called Set_P that allows the value of P to be changed.
ENCORE, like many object-oriented programming languages 1], treats many parts of the language

itself as objects. This includes types, methods, and properties. In particular, the treatment of properties as

objects complicates the discussion in the previous paragraph. This reflective capability is useful to allow the

database system to manage its own metadata. We will not discuss this capability any further here.

3 Querying in ENCORE

The ENCORE Query Algebra (EQUAL) is a collection of operators, defined for parameterized type Set, that

can be used to construct queries over sets of ENCORE objects. A query is a request for information about the

state of the database, thus our query operators provide an environment for gathering and organizing objects

(and sometimes values, such as integers) in an ENCORE database. The operators support abstract data

types and encapsulation by accessing objects only through the methods defined for their type, in particular
the Get methods for properties. All queries are strongly typed, and can be statically type-checked.

The result of a query is a new database object. The creation of new objects leads to two questions:
What is the type of the object? and What is its identity? Our requirement for static type-checking means

that we cannot build new abstract data types. As a result, we define the type of any object built by a query

to be etT], where type T is either an existing database type or a parameterized Set or Tuple type. In

this way EQUAL combines complex objects with abstract data types. The query operators build new set

and tuple objects, intermixed in any order, above the abstract types. Unlike some complex object models,

EQUAL treats sets and tuples as objects. Each object built by a query is a new object with a unique identity.
This means that we can build alternative paths to the same object, and also that we might build objects
that are considered to be duplicates. Our algebra does not build, however, recursive objects.

The support for object identity implies that we also need to support more than one notion of object

equality. Two objects are identical when they are the same object (i.e. an object can only be identical to

itself). We define a family of equality operations we call i-equality where i specifies the level, in a traversal of

object structures, at which two objects refer to identical objects. We discuss these equalities in more detail,
and also discuss some implications of support for object identity on query optimization, in 5].

As stated above, the EQUAL notion of a query is as an expression that, when evaluated, produces a

new object. This is consistent with many programming language models that, for example, build a new

array object every time a new declaration is encountered. Programs are free to mutate the object returned

by a query at any time. Thus, we see that query results are not views. If we select, with a query, the blue

cars from a set of cars, nothing prevents us from later placing a yellow car into this set. This query language
characteristic implies that queries can be used as another kind of object creation mechanism in application

programming.
EQUAL includes operations that are the analogs of relational algebraic operations as well as operations

to manipulate the logical structure of ENCORE objects. The Select, Project and Ojoin (object join) op
erations are similar to their relational counterparts in meaning, but generalize the relational operations by

applying functions (i.e. property methods or query operations) to the database objects. For S a Set and

p a predicate, we define Select(S, p) = {s I (s in 5) A p(s)}. For S a Set, A~ a string, and .f~ a function,

Project(S, (A1 : Ii), ..., (A~ : f,~)]) = A1 : li(s), ...,
A,~ : f~(s)] s in S}.

As an example, the query Project(People, Ap (P : p), (Toys : Select(p.Cars, Ac c.cost > p.salary)])
builds a set of tuples each of which contains a Person object (P) and a etVehicle] object (Toys).2 For

each p in the People set, a tuple is created with a P attribute whose value is p and a Toys attribute whose

2We assume here that People has type etPerson] and that type Person has a Cars property that returns an object of

type etVebicle]. The Ap is simply a way to generate a bound variable that will range over the meiTlbers of People.
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value is built by applying the GeLCars method to object p. Note that in this example, the Project operation
is similar to a relational Outer-join; each result tuple contains a Person object and may have an empty

Toys attribute.

The application of a property to an object p (i.e. the application of a GeLproperty method) is a nav

igation from p to the object representing the value of the property. A navigation can be a single property
retrieval, or a string of retrievals (e.g. p.mother.mother.cars to find one’s grandmother’s cars). Such naviga
tion follows pre-defined relationships between objects. We also provide an Ojoin operation to explicitly join
two sets of objects that are not necessarily related navigationally. For sets of tuple objects, Ojoin is analogous
to a relational Theta-join. When a etT] is involved in an Ojoin (for T some abstract, non-tuple type), it is

treated as a set of single-attribute tuples etupleA:T]J. In other words, we define Ojoin(S, R, A, B, p) =
A : s, B : r] s in S A r in R A p(s, r)} for S and R sets of objects of abstract types, A and B strings,
and p a predicate. For example, an Ojoin of the set People with itself can be used to find pairs of people
who are co-owners of a vehicle (Ojoin(People, People, “Owner”, “CoOwner”, Api,p2 p1.Cars fl p2.Cars)
results in a set whose members have type upleOwner:Person,CoOwner:Person]). Our definition of

Ojoin retains the associativity of the relational join, while still respecting the encapsulation of objects having
abstract types.

Other operations that retrieve information are Image, Union, Intersection and Difference. Image is like a

LISP mapcar; it allows the application of a function (which again may be a property or an EQUAL method)
to each object in a set, collecting the results in a set object. We define Irnage(S, 1) = {f(s) s in S} where

S is a set and f is any function that can be applied to members of S. The Union, Intersection and Difference
operations are like the relational operations, but also account for subtyping. An operation that combines a

etT] with a etQJ results in etR] where R is the closest common supertype of T and Q. The equality
test that naturally occurs in the definition of Union, Intersection and Difference can potentially add an extra

level of complexity. If we assume that we always use the identical operation, then our definitions are the

same as in most other models. But we could allow equality to be any of the other varieties of equality. This

induces a family of Union, Intersection and Difference operations, one for each equality operator.
EQUAL also includes operations that manipulate the structure and identity of objects. The Nest,

UnNest and Flatten operations work only with the structure of objects. DupEliminate and Coalesce manip
ulate identities. DupEliminate is necessary because we often build new tuple objects that may contain the

same attribute values. The Coalesce operator is useful when we build new objects in a subquery. If two

queries are executed, the results will be two distinct objects even though those objects may represent the

same values. For example, suppose in the Project query matching people and their toys that two people are

co-owners of the same two (expensive) cars. The query will build a new set object for each person, both

sets containing the same two cars. A Coalesce operation could be used to ensure that both Toys attributes

reference exactly the same set of cars.

Accessing and creating complex structures leads to the regular use of nested query expressions. In such

expressions, query variables are not always used locally and can appear in nested scopes. For example, in

the query matching people and their Toys, the variable p, representing a Person object, is nested in the

predicate of the nested Select operation. The algebra also allows us to build flatter query expressions (using,
for example, the Ojoin operator). The different types of expressions give us different opportunities for query

optimization, so it is important that we be able to translate between them. Such transformations, however,
are often context-sensitive since they involve arbitrarily nested scoping of query variables. As a result, the

optimization of such expressions may be very difficult.

EQUAL generalizes relational operations by giving us the ability to access and produce encapsulated,
logically complex objects. The algebra differs from most other proposed algebras for object-oriented sys

tems in its treatment of abstract data types, encapsulated objects, and object identity. For more detailed

information about the algebra see 6].

4 Research Directions

Although the basic ENCORE database system has been implemented, we are still extending it in a number

of fundamental ways. These extensions are still under development at the time of this writing.
The optimization of queries is of major importance in a database system and we have found that an

object-oriented database requires new optimization strategies to support features such as abstract data types,

methods, and object identity. We are exploring a variety of strategies for query optimization to meet the
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requirements imposed by our model and operators. For example, we are looking at strategies for transforming
nested queries (such as the query about people and their toys in the previous section) and strategies that

consider the effects of method cost on query transformation. Existing optimizers have a fixed set of strategies
for controlling the optimization process. We have found that object-oriented database systems generate a

need for many different optimization strategies. To manage this need, we are designing a new architecture

for a query optimizer that can incorporate many different strategies for optimization and can be extended

with new strategies. This architecture, although motivated by the object-oriented model, represents a novel

approach to the optimization process for any database model.

The ENCORE model, like many type systems, supports constraints in a limited way by means of static

type-checking and constrained collections. These facilities do not provide the kind of global constraints that

one would like to express in a database. Global constraints span multiple types. For example, the classic

constraint, No Employee can make more than his/her manager, involves the types Employee, Manager,
and Department. The Department type is involved indirectly since an employee e’s manager can only
be discovered by navigating from e to e’s department d, and from d to d’s manager. We are looking at

techniques for taking constraints, such as the one expressed above, and decomposing them into a set of

conjuncts such that each conjunct involves a single type T and together the conjuncts are equivalent to the

original constraint. In this way, the conjuncts can only be violated by invoking an method of T on one of

its instances. This approach limits the amount of checking that is required on database update.
View definition is an area in which most object-oriented database systems suffer. We have been studying

the requirements for a view definition facility that could be added to the ENCORE model. Our current

approach allows a view to be defined over a database, called the base, by means of a combination of data

abstraction and queries 2]. The query returns a set of objects from the base that must conform to the type
of the representation of an abstract type that is available in the view. In otl~er words, the query provides
the representation for the view type and the data abstraction allows the view definer to layer arbitrary new

interfaces over this representation. We are currently looking at efficient ways to implement this idea.

An ENCORE prototype has been implemented on Sun 4 and SparcStation platforms running SunOS

4.1.1. It makes use of the ObServer object storage system, also developed at Brown.
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Introduction

The Revelation project is an experiment in query optimization in object-oriented databases Graefe88].
Our goal is to expand query optimization and processing technology to address and exploit new modeling
and query extensions. Since encapsulation (an important feature in object-oriented systems) works against
query optimization, we provide a system component that may cross the encapsulation boundary and reveal

implementation data. Our project draws its name from that component, the Revealer.

The single feature early users of next-generation database prototypes and products value most is type
extensibility—the ability to add their own application-specific data types to the DBMS, giving more natural

building blocks for modeling. It also provides logical data independence, allowing data reorganization or

reimplementation of behavior while providing a constant interface to applications. Further, user-defined
data types are well suited to re-usability, combining data structure and operations in logical units.

Some commercial products already support some user extension of system types, but we believe users want

more potent type extensibility, as suggested in “The Object-Oriented Database Manifesto” Atkinson9Oj.
User-defined types should be first-class, immediate, and abstract. Instances of first-class types can appear
wherever instances of system-supplied types can. Immediate type definition is available as readily as schema

modification and does not require rebuilding the DBMS. This implies that types should be defined in the

Data Definition and Manipulation Languages, rather than the implementation language of the DBMS. An

abstract type can hide its implementation; data and function can be encapsulated from clients of the type. It

is desirable (and possibly vital to query optimization) that the functions associated with a type be understood

by the database system, and not be simply black-box routines invoked at appropriate moments.

We have accordingly concentrated Revelation’s efforts on handling modeling features that support user-

defined data types, retaining as much set-processing technology from relational databases as we can. Features

that provide this support include encapsulation, complex state, object identity, polymorphism, ordered data

structures (such as vectors, matrices, and grids), and specification and implementation hierarchies.

Modeling Features and Their Impact on Query Optimization

Imagine a database for scene description, as might be used for rendering images or motion planning. One

type in this database is Polygon, a basic building block for scenes. The behavior of a polygon includes

returning an ordered list of its vertices, computing its intersection with a given line or plane, and moving its

vertices. It has subtype Coloredpoly which has its own subtype, PatternedPoly.

Encapsulation allows multiple implementations of a type to co-exist in the database. Consider various pos

sible implementations of Polygon—an explicit list of Point values, a list of references to Point objects, or a

reference to another Polygon and a transformation (such as scaling or rotation) to apply to all its Points.

One can imagine using several implementations simultaneously (for different Polygons) within the same

database. Encapsulation says the particular choice can be hidden from clients of the type, because each

supports the same operations. It also gives control over certain invariants during update. If a Polygon is

represented as a list of points that applications can modify directly, it is difficult to enforce invariants such as

coplanarity and convexity. If the update operations for a Polygon are encapsulated with its representation,
then invariants can be checked there, rather than in the application code. Current query optimization as

sumes that a complete description of the query is available, in terms of structural operators. Encapsulation,
with its separation of behavior from structure, implies that the structural component may not be discernible

during query optimization. It also causes problems with defining and maintaining indices, as well as making
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it difficult for the optimizer to get the “big picture;”— with encapsulation, a single message expression may
hide an arbitrary amount of data manipulation. With just a small expression to optimize, the range of

transformations to apply is limited. Yet another problem with encapsulation comes with multiple implemen
tations of a type. Current set processing depends a great deal on homogeneity of structure, for example, in

allocating temporary space for records in intermediate results, or in computing offsets for record fields.

Complex Slate means a rich set of structuring mechanisms is available for specifying the representation of

a type, and that these constructors can be freely composed. Thus, the representation of a Polygon in

one implementation might be (offset: (X, Y, Z: Integer), vertices: list of CX, Y, Z: Inte

ger)). The list vertices captures the points that define the shape and the triple offset positions the

polygon in 3-space. Note the nesting of the tuple constructor inside the list constructor inside the tuple
constructor. However, only a small part of that state may be needed for a particular query. Reading the

entire state of an object (especially if “entire” includes referenced objects) can fill memory with irrelevant

information. Reading pieces of an object only as demanded for computation may not be efficient, either.

Object Identity allows shared references to subcomponents of an object irrespective of their values. We might
want to have an implementation of Polygon that uses list of Point as a representation, where Points are

objects. Two polygons can share points in their representations, in order, say, to keep a edge in common

while updates are made to underlying points. The problems this causes for query optimization resemble

those of complex state; straightforward implementations quickly degenerate into pointer chasing on disk.

Hierarchies exploit similarities among classes of entities, for type specification or implementation. A spec
ification example assumes ColoredPoly (a subtype of Polygon) responds to a color message, as does

PatternedPoly (a subtype of ColoredPoly and therefore Polygon). If a Polygon responds to a message
-

asking for its surface area, then ColoredPoly and PatternedPoly must also respond to that message. Thus,
a heterogeneous set of Polygon, ColoredPoly, and PatternedPoly can be uniformly queried to select those

larger than a certain area, since that is behavior common to all three types. Similarly, a set of ColoredPoly
and PatternedPoly could be uniformly queried to select red ones, though a simple Polygon could not be

included in such a set and maintain correct typing. Type hierarchies allow heterogeneous collections of ob

jects to be queried on their common protocol. This means the language bears a polymorphic interpretation
that reduces the efficiency of set processing. This polymorphism (much like encapsulation) causes problems
in defining and maintaining auxiliary access structures.

Many of the new data models provide more general persistent name spaces than conventional data models.

These name spaces resemble those of programming languages, with variables declared of arbitrary types,
and arbitrary numbers of variables of a given type. Moreover, the variables can have their values reassigned.
Contrast this situation with that in relational databases, where the persistent variables may only be relations

(as opposed to tuples or scalars). One major problem for optimization is where to attach statistics that an

optimizer would use in cost estimation. In a relational system, for example, relation names are statically
bound to relation instances, and there is no distinction between associating statistics with a relation or its

name. With a set-valued variable that can be reassigned during a transaction, it seems that statistics should

be associated with set instances. However, it is the variable name that is available during query optimization.

In examining ordered structures, we see the “iteration idioms” supported by operators in record processing

systems (such as select and join) are not expressive for common manipulations on scientific data types.

Biochernists are interested in correlating patterns of amino acids with structural features. Supporting such

pattern searching efficiently at the physical level means scanning the underlying list structure with a window

of elements. Typical physical scans in relational implementations are built for record-at-a-time access.

The Revelation Approach

In the Revelation project we are looking at approaches to deal with each of the problems above.

For encapsulation, we introduce a Revealer, a trusted system component that is allowed to break encap

sulation in order to expand messages into more detailed expressions. It provides the Optimizer with more

transformation choices and thus a larger scope for planning the query. To deal with hierarchies and polymor

phism we employ two approaches. One approach looks across multiple implementations for “coincidences”—

commonalities of definition. The other is an algebra operator that partitions a collection into multiple data

streams based on type. For ordered structures, we want our object algebra to contain operators that can
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represent their most common iterators. We are looking at scientific codes and statistical analysis packages
such as S for insights here. To avoid the inefficiencies of object-at-a-time access from naive handling of

complex objects and object identifiers, we add the “assembly” operator for query evaluation.

Finally, in dealing with a more general naming scheme for persistent data items, we are tracking stability
of bindings in our name space. Thus, a variable name can be bound more or less statically to a type,
a constraint, an implementation, an object identity, an auxiliary access path, a statistic, or even a state.

The query optimizer can incorporate this information based on the expected lifetime of a query (e.g., one

transaction, one execution of an application program, or multiple executions of an application program).

Query Architecture

The Revelation architecture has four levels. The top level consists of the In~erpreler and Schema Manager.
The schema language is used to define type interfaces (protocols) and their implementations Daniels9O]. It

also provides a name space in which to declare persistent variables. The Interpreter can naively evaluate

expressions, or alternatively it can pass an expression to the next level, the Revealer. The Revealer expands
an expression into a tree in an object algebra, through replacement of operations by their methods, and

obtaining information about bindings and statistics from the name space. The resulting algebra tree, with

possible annotations, is passed to the third level, the Oplimizer. The Revelation query optimizer will be

produced by a second-generation optimizer generator based on the EXODUS Optimizer Generator Graefe87].
The generator takes rules involving algebraic equivalences and cost metrics and produces an optimizer
incorporating that knowledge. The Optimizer produces a query plan, which is a program for the Revelation

Query Evaluaior, the fourth level.

Interpreter and Schema Manager

A Revelation schema has three parts: protocols, implementation and the name space. Protocols describe

the interfaces to database elements in terms of the permitted operations on instances and give signatures
to those operations—protocols (types) for arguments and the result. Note that nothing about data struc

tures or layout is included in a protocol. Protocols are related in a hierarchy by conformance, where if

protocol ColoredPoly conforms to protocol Polygon, an instance of ColoredPoly can be substituted where

an instance of Polygon is expected. Implementations consist of a representation and method definitions.

Representations for instances are constructed by free composition of data structures, such as integer and

array(T). Methods are defined in a language that extends the object algebra with control structures and

assignment. We allow one implementation to satisfy several protocols, and one protocol may be satisfied

by multiple implementations. The name space contains persistent variables that may be typed by any of

the defined protocols; These variables may have properties besides types statically bound to them, such as

implementation or even state. The name space is where constraints such as referential dependencies and

subset relationships are defined.

The Schema Manager keeps track of protocol and implementation definitions and declarations in the name

space, supplying information as requested by the Interpreter and Revealer. It can also track information

relating to the relative permanence of the bindings and statistics on the numbers of instantiations of each

implementation in the database. The Interpreter can execute expressions (queries) involving the persistent
variables in a straightforward manner. Each object carries a reference to its implementation. When the

Interpreter encounters an operation on an object, it looks up the method for that operation in the appropriate
implementation and evaluates the expressions in it recursively.

Revealer

If the Interpreter passes an expression to the Revealer, the Revealer attempts to expand that expression by

incorporating information from the schema and name space. The reason for the expansion is to gain more

foreknowledge of the computation steps and data elements used in a query. The expression as given may

contain operations whose methods are encapsulated from its issuer, and leaving them encapsulated limits

the choices for transformations available to the query optimizer. The Revealer may break encapsulation
on operations, expanding them to their methods where possible. The goal of the Revealer is to expand as

many message nodes in the object algebra tree as possible. Complete expansion may not be possible because

of differing implementations per protocol or because general control constructs such as recursion prevent
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it. In such cases, expressions are passed to the Optimizer as unexpanded subtrees, to be evaluated by the

Interpreter at run time. In some cases, even though the method for a message cannot be determined, the

Revealer may be able to provide partial information about such a subtree, such as the portion of the object’s
representation accessed by the method or whether the method is read only.

The conversation between the Revealer and the Schema Manager is through the Anno~aier. A collection of

annotation kinds are defined for nodes in an expression tree, such as protocol, implementation, representation,
and accessed structure. The Revealer makes requests of the Annotater to derive a particular annotation for

a specific expression node, which deduces and records the value of the annotation. The Annotater may

return a collection of values, due to ambiguity arising from multiple implementations of a single protocol.
Expansion of an operation to its implementing method is one such annotation. The Revealer can specify
the level of stability the Annotater should assume when deriving annotations, such as whether to assume

the set of implementations or protocols is fixed. Here is wkere the notion of coincidences comes in. If,
for example, we are optimizing assuming no change in implementations, the Annotater can determine all

possible implementations of a particular protocol. If there is only one implementation (or if there are several

that all share a single method), it may expand a message into the corresponding method body. This may

convert the access to a simple structural access. We note that the Annotater operates on a single expression
node at a time—the Revealer controls the oçder and extent of expansion.

Optimizer

The expanded expression tree is handed to the Optimizer for optimization and transformation to a query

plan. The expression tree is mostly operators from the object algebra, with possibly embedded Interpreter
invocations on schema-level types. The object algebra is structural, operating on values formed by free com

position of a fixed set of constructors, which will contain at the least base types (such as integer and string),
tuples, multi-dimensional arrays, bags, and object references. In addition to the operators of relational al

gebra such as select and join, we include operators that capture common control patterns of scientific data

manipulation like matrix algebra operations, time-series averaging, and time-step computations on grids.
The Optimizer itself will be produced by an optimizer generator and providing rules for algebraic identities

on algebra operators should be straightforward. However, rules for translating algebra trees into query plans
and cost estimates will require more work.

A querij plan is a directive as to what physical operators to run, where to run them and in what order to

run them. The physical operators correspond largely to those in the logical object algebra in terms of the

functions they compute. However, the physical operators use different algorithms to realize those functions,
and their execution costs depend greatly on dataset sizes and layouts. We are undertaking a methodical

examination of physical properties of data and their interaction with different physical operators. Examples
of physical properties are clustering, partitioning, size, auxiliary access paths, and location in the memory

hierarchy. We categorize physical operators by whether they require, preserve, enforce, or destroy a particular

property. For example, a nested-loops join might preserve a certain sort order, while hash join will destroy
it. We are looking at how to construct cost functions that incorporate information on these data properties.

Query Algebra

Our query algebra must include bulk operations, beyond the traditional set operations, for ordered data

such as lists and matrices. We also need algebraic identities on these new operators, for query ciptimization.
Matrix algebra is an obvious starting point, but we anticipate other identities.

In examining scientific applications, we have seen other common classes of operations on ordered struc

tures that we should support. One is conversions between bulk types. An example involves a relation with

attributes (Altitude, Temperature, Pressure). We want to sort on Altitude, and then project Tem

perature and Pressure into two parallel one-dimensional arrays to provide input for statistical operations.

Relational query languages don’t work on this query since, although most can express sort orderings, they

don’t guarantee order preservation after the sort key is projected away. Another common manipulation is

structural selection such as taking a slab or pencil from a multi-dimensional array. We are seeking a small

set of operations on ordered structures that expresses a large variety of the desired manipulations.

Another query algebra problem is subtyping, for which we hope to use discriminated unions Vance9l]. A

powerful feature of object-oriented systems is the late binding of message names to methods. An object

oriented database will complete this binding as much as possible before evaluating a query, but the ambiguity
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of message names at optimization time still presents a challenge. Because of substi.tutability, a set over type
Polygon may include objects both of type Polygon and type ColoredPoly. Suppose a query, over such a

set sends a message area to each object in the set. If the same method for area is used by all Polygon and

ColoredPoly objects, references to area may safely be replaced with that method body. This extends the

query expression tree and permits optimizations across the method boundary.

If ColoredPoly provides a different method for area, this optimization is invalid. However, if the Polygon
and ColoredPoly objects can be distinguished, the operations on the two cases can be optimized separately.
Internally each object has a tag indicating its implementation. A query evaluator, cooperating with a query
optimizer, can use this tag to execute different optimized query plans for the different kinds of objects.

In the algebra we use discriminated unions to distinguish objects of different but conforming types. Thus,
a set over type Polygon is represented in the algebra as a set over type (ColoredPoly + Polygon), and
each object in the set is injected into this type. Using this abstraction does not change the way a set over

type Polygon is stored, but it offers conceptual advantages. At times it may be beneficial to split a set of

(ColoredPoly + Polygon) into sets of ColoredPoly and Polygon, and then operate on those sets separately.
The use of the union type allows this split operation to be expressed algebraically. Moreover, the result sets

contain strictly monotype, untagged objects, affording more efficient processing.

Query Evaluator

The Query Evaluator executes query plans from the Optimizer. It is based on the Volcano extensible query
execution software Graefe9o], which implements the physical operators and handles data flow between them.
We have used Volcano’s extensibility to add a pair of operations for these new access forms. The assembly
Keller9l] operator supports complex state. It takes a template that describes some fragment of an object’s
state and a set of object references and then assembles the required pieces of each referenced object in main

memory. Unlike the naively ordered access of the Interpreter, the assembly operator re-orders the accesses

to take advantage of clustering. Another operator we have used to extend Volcano invokes the Interpreter
during query execution, thus resolving unrevealed subtrees passed through the Optimizer.

Conclusion

We have described a number of features of next-generation databases, and shown both their utility and the

challenges they present to query optimization. We have also laid out our basic attack on these challenges.
We expect to complete our first prototype system this summer, and use it as a testbed for our optimization
ideas. While the system we are building has an object-oriented model, we expect this work to provide useful

insights to anyone trying to improve query optimization in databases with user-extensible types.
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