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Letter from the Editor

This issue of Data Engineering Bulletin is devoted to Statistical and

Scientific Databases. It contains short versions of six papers and two panel
descriptions from the Fifth International Conference on Statistical and

Scientific Databases, which was held in Charlotte, North Carolina on April 3-5,
1990. For interested readers the full proceedings of the conference is also

available as:

Proceedings of the Fifth International Conference on Statistical and Scientific
Databases, Lecture Notes in Computer Science, Vol. 420, Springer Verlag, 1990.

Also included in this issue is a paper summarizing the Scientific Database

Workshop, May 12-13, 1990, which was supported by the NSF. This paper was

presented in the Statistical and Scientific Databases Conference. The papers
included in this issue are recommended by the program committee chairman

of the conference Zbigniew Michalewicz, who also contributed a nice

overview of both the current research in Statistical and Scientific Databases,
and the conference.

I hope this special issue of Data Engineering will help broaden and

increase the research interest in Statistical and Scientific Databases. I would

like to thank each of the authors for writing short versions of their papers,
and to Zbigniew Michalewicz for his help in putting this issue together. Since

this is the last Data Engineering issue that I edit, I would also like to thank

the editor in chief, Won Kim for making my term as an editor an enjoyable as

well as a rewarding experience.

Z. Meral Ozsoyoglu
Cleveland, Ohio

August, 1990
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Current Research in Statistical and Scientific Databases: the V SSDBM

Scientific and statistical databases (SSDB) have some special characteristics and requirements that

cannot be supported by existing commercial database management systems. They have different data

structures, require different operations over the data, and involve different processing requirements.
SSDB’s typically contain static data which are comprised of numeric and discrete values. Data tend

to be large, they contain a large number of nulls; additional adequate description of the quantitative
information must be included. Queries to a SSDB very often are aggregation and sampling, thus

requiring special techniques.

Computer scientists, statisticians, database designers and data analysts agree that there are no

characteristics which uniquely identify statistical/scientific database management system. However, it

can be informaly defined as a database management system able to model, store and manipulate data

in a manner suitable for the needs of statisticians and to apply statistical data analysis techniques to

the stored data.

At the beginning of the previous decade some researchers began to look at some problems char

acteristic for statistical/scientific databases. This resulted in a series of conferences on statistical and

scientific database management (SSDBM).
The V SSDBM (Charlotte, North Carolina, April 3—5, 1990) continued the series of conferences

started nine years ago in California (1981 and 1983), then in Europe (Luxembourg, 1986, and Rome,

1988). The purpose of this conference was to bring together database researchers, users, and system

builders, working in this specific area of activity, to discuss the particular issues of interest, to propose

new solutions to problems, and to extend the themes of the previous conferences, both from the

theoretical and the application point of view.

The Conference was hosted by UNC-Charlotte and sponsored by: UNC-Charlotte; Statistical Of

fice of the European Cominunities—EUROSTAT (Luxembourg); Ente Nazionale Energie Alternative

(Italy); Statistics Sweden; Microelectronics Center of North Carolina; International Association for

Statistical Computing; Department of Statistics (New Zealand); and Istituto cli Analisi dei Sistemi ed

Informatica del CNR (Italy).
The papers presented during the conference cover a wide area of research for statistical and scientific

databases: object oriented database systems, semantic modelling, deductive mathematical databases,
security of statistical databases, implementational issues for scientific databases, temporal summary

table management, graphical and visual interfaces for statistical databases, query optimization, dis

tributed databases, and economic and geographical databases. In addition to traditional topics new

topics of growing importance emerged. These include statistical expert systems, object oriented user

interface, geographical databases, scientific databases for human genome project.
This special issue contains short versions of some of the papers presented at the conference. These

papers reflect the diversity of approaches used to solve considered problems.
The paper, The implementation of area and membership retrievals in point geography by Andrew

Westlake and Immo Kleinschmidt, identifies the conceptual and implementational problems in ge

ographical database systems. The discussion is based on the experience of the Small Area Health

Statistics Unit at the London School of Hygiene and Tropical Medicine which investigate the geo

graphical distribution of some diseases in UK.

In the paper STORM: A statistical object representation model by Maurizio Rafanelli and Arie

Shoshani, the authors discuss the development of a Statistical Object Representation Model (STORM),
which captures the structural semantic properties of data objects for statistical applications. They
discuss the deficiencies of current models, and show that the STORM model captures the basic proper

ties of statistical objects in a concise and clear way. They also develop the conditions for a well-formed

statistical object.
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In A genetic algorithm for statistical database security by Zbigniew Michalewicz, Jia-Jie Li, and

Keh-Wei Chen, the authors demonstrate the usage of genetic algorithms in enhancing the security of

statistical databases. This may constitute the first step towards a construction of Intelligent Database

Administrator, built as a genetic process running in the backround of the system. It has a potential
of taking some of the responsibilities from database administrator like clustering, indexing, provision
of security, etc.

In Temporal Query Optimization in Scientific Databases by Himawan Gunadhi and Arie Segev,
the authors address important issues related to query processing in temporal databases. In order to

exploit the richer semantics of temporal queries, they introduce several temporal operators and discuss

their processing strategies.
The paper A visual interface for browsing and manipulating statistical entities by Maurizio Rafanelli

and Fabrizio Ricci, presents a proposal for a visual interface which can be used by statistical users.

By means of this interface it is possible to browse in the database, to select topic-classified statistical

entities and to manipulate these entities by carring out queries based on an extension of the STAQUEL

query language.
In A Scientific DBMS for Programmable Logic Controllers by Gultekin Ozsoyoglu, Wen-Chi lou

and Adegbemiga Ola, the authors present the design of a programmable logic controller (PLC)
database system which is a single-user, real-time, scalable, and main-memory-only system. PLCs

are special-purpose computers commonly used in scientific computing applications.
There were also two panel sessions: the first one on Scientific Data Management for Human

Genome Applications, chaired by A. Shoshani, the other one on Expert Statistical Systems, chaired

by Roger Cubitt. Members of the first panel described the data structures and operations associated

with Genomic data, which includes DNA structures and various genomic maps. The main observation

made was that the support for data of type “sequence” is essential, a concept which is foreign to

current commercial relational database technology. Another important observation was the need for

extensibility, that is the need for user interfaces, programming languages, and persistent databases

with basic object capabilities that can be extended (customized) to the particular domain of Genomic

data. The most pressing capability is persistent object storage. The second panel concentrated

on problems related to the development of expert systems in the areas of statistical and scientific

data processing and analysis. This topic is of growing concern: the Statistical Office of European
Communities has launched for 1989—1992 a special program “DOSES” of research specifically in the

areas of development of statistical expert systems. The reports from both panels appear in this issue.

On March 12-13, 1990, the National Science Foundation sponsored a two day workshop, hosted by
the University of Virginia, at which representatives from the earth, life, and space sciences gathered
together with computer scientists to discuss the problems facing the scientific community in the area of

database management. During the V SSDBM there was a special presentation On the NSF Scientific
Database Workshop by James C. French, Anita K. Jones, and John L. Pfaltz (Institute of Parallel

Computation). Their paper summarizes the discussion which took place at that meeting.
The proceedings from the conference were published by Springer-Verlag in the Lecture Notes in

Computer Science series (Volume 420) and are available from the publisher.
The Sixth International Conference on Scientific and Statistical Database Management (note the

change in the order of terms: statistical and scientific) is scheduled to take place in Switzerland in

June 1992. At the end of this issue there is the preliminary call for papers for this conference.

Charlotte, N.C., May 21st, 1990

Zbigniew Michalewicz

V SSDBM Chairman
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THE IMPLEMENTATION OF AREA AND MEMBERSHIP RETRIEVALS IN

POINT GEOGRAPHY USING SQL

A. J. Westlake and I. Kleinschmidt

Small Area Health Statistics Unit

Department of Epidemiology and Population Sciences

London School of Hygiene and Tropical Medicine

1 Introduction

1.1 Background

The Black Advisory Group B1ac84], in the course of its enquiry into childhood cancers around the

nuclear reprocessing plant at Sellafield in Cumbria, experienced delays and difficulties, first in assem

bling local statistics and then in assessing them in relation to regional and national experience. The

group concluded (Recommendation 5) “that encouragement should be given to an organisation ...]
to co-ordinate centrally the monitoring of small area statistics around major installations producing
discharges that might present a carcinogenic or mutagenic hazard to the public.”

Subsequent events have underlined the importance of this conclusion, as other reports have arisen

of possible excesses of malignancies near nuclear installations. There are also analogous — and more

numerous questions concerning contamination of the environment by industrial chemicals, effluents,
and smoke. These too call for a similar system to provide ready access to the health statistics of

defined local areas, and means for interpreting them. The need applies primarily but not exclusively
to cancers, and it applies to all ages.

Arising from these concerns the Small Area Health Statistics Unit (SAHSU) was inaugurated in

the latter part of 1987.

1.2 Data

The UK Office of Population, Censuses and Surveys (OPCS) is the primary source of our data, and

we work in close collaboration with them. For events we hold national death certificate data for all

deaths in Great Britain (excluding personal identification) from 1981 to 1988, plus similar records

on cancer registrations (eventually from 1974). All event data is augmented annually, some 900,000
records for each year.

We hold population data from the 1981 census as aggregate records for each of the 142,000 Enu
meration Districts (EDs), with an average population of about 400 persons. Other population data

and estimates are held for whatever aggregation units are available.

2 RDBMS or GIS

Computer Scientists and Geographers have developed many methods of physical database organisation
for spatial structures (a good summary can be found in RhOG89]) and some of these methods are

implemented in the various specialised Geographical Information System (GIS) products which are

commercially available. On the other hand, commercially available relational database management
systems (RDBMSs) do not sup- port directly any of these special structures. RDBMS systems have
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been developed to meet the major commercial market for transaction processing, and so concentrate

on efficiency in that application. In consequence, indexed files are the only form of physical storage
on which we can depend in an RDBMS.

2.1 Postcodes

The postcode system in the UK was begun about twenty years ago and has been in full operation
for the last ten years. All birth, death and cancer registration now carry the postcode of residence of

the individual, and have done so since the early eighties. The accuracy of these files is being checked

by OPCS, and cancer registrations are being postcoded retrospectivly from 1974, using commercial

services and a Post Office directory which links a postcode to each of the 12 million postal household

addresses in the UK.

The most detailed codes are related to individual bundles of mail, and identify on average only
about 12 households, with 1.6 million codes covering the whole of the UK. Individuals generally know

and use their postcodes, since this speeds up postal deliveries. The Post Office and OPCS have

produced a Post-Code Directory (the Central Postcode Directory - CPD) which lists all the postcodes
in use throughout the UK. The CPD also includes a Grid Reference location (see section 3.4), plus a

link to electoral Wards and hence to administrative geography.

2.2 Choice of approach

In many situations the statistical requirements for the storage and retrieval of data with a geographical
component can be met efficiently by using a hierarchical organisation, which is easily implemented
within the standard relational model. What you miss compared with a GIS is the direct representation
of physical structures and the considerable emphasis on the production of maps as output.

The very small postcode areas can be used as building blocks for larger (aggregate) areas. Since

all our areas of interest contain at least several tens of postcodes (and often hundreds or thousands)
the postcode locations provide a perfectly adequate approximation for representing the location and

extent of these larger areas. So after considerable discussion we decided to build the system using a

RDBMS, rather than a specialised GIS. Subsequent sections describe how the required structure and

retrievals have been implemented within the relational model.

3 Implementation of structure

3.1 General structure

The general structure of the SAHSU database is shown in Figure 1.

The geographical structure is centred on postcodes. These have a grid reference which gives them a

physical location. Other geographical areas are represented as separate tables, with links representing
the hierarchical structure of aggregate areas, i.e. small areas contain fields (foreign keys) containing
the ID of the next larger areas of which they are a part.

Note that with this structure we are representing the memberships in the data. We can know that

one administrative area is part of another one, but we do not know directly where anything is (except
for the individual postcodes).

Event records all contain a postcode field, giving a link to both the administrative geographies of

census and local government and to the physical geography of the country through grid references.
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Figure 1: General view of Geographical Aggregate Structure.

Census records link to the ED table, and other statistical data can be linked to any other part of the

structure.

.3.2 Resolution

The hierarchy of administrative geographical units (regions, constituencies, districts, wards, EDs,
postcodes) form irregular nested tessellations. The spatial resolution of these tessellatiofts is variable,
in that districts are of varying physical size. For the small areas (Postcodes, EDs and Wards) the

size is chosen to include approximately equal populations, that is inversely proportional to population
density. Spatial resolution in our units therefore reflects the population density, with administrative

units becoming physically larger where the population is sparse.

Population (census) data are only available for census enumeration districts (EDs) and larger
areas. This presents some problems in the analysis stage, which would disappear if we worked with

EDs as building blocks (and to do so could also simplify the data structures). We decided, however, to

retain the extra precision of postcodes and face the consequent matching and population estimation

problems.

3.3 Temporal Stability

A potential drawback with this data structure is that it is data dependent and so can change over

time. When reporting for aggregate areas the current area definitions are appropriate, and so these

must be updated as they change. Population aggregates must be linked to the areas as defined at

the time of data collection. For event records we must know the date for which the postcode applies.
We maintain the postcode master table in its current form, with an indicator for the existence of any

previous definitions in the postcode changes table.
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3.4 The UK Grid Reference system

Latitude and longitude give a world-wide system for specifying location, but have the disadvantage
that trigonometrical calculations are needed to convert them to distances on the ground. In Great

Britain a grid reference (GR) system is used based on kilometre squares, aligned to true North at the

Greenwich meridian, and with an origin somewhere in the Atlantic south of Ireland. This allows the

calculation of distances using Pythagorus’ Theorem anywhere in GB. Grid references are given as an

Easting coordinate and a Northing coordinate to a specified precision (corresponding to cartesian x

and y coordinates).

3.5 Data volume

The major components of the storage requirement are shown in Table 1. The main data tables (events,
postcodes, census enumeration districts) are very numerous, but the most significant administrative

areas (constituencies, health districts) are relatively few, rarely more than a few hundred. Similarly,
with rare diseases the areas which we study will usually contain only a few cases. So in some senses

the problems we want to study are small even though the overall volume of data is large. The task

we face is to design retrievals (and the corresponding database structure) so that the time taken is

proportional to the size of the problem (or the size of the result table) rather than the size of the

main database tables.

Fields Indexes

Table Rows Num.Bytes Mb Num. Mb Total Mb

Cancer 4,000,000 11 39 163.84 2 169.56 333.40

Death 5,850,000 16 52 323.81 2 247.98 571.79

SAS...81 142,000 201 612 96.94 1 3.10 100.04

Tract_81 68,000 101 312 23.21 1 1.48 24.70

PC 1,600,000 11 51 86.24 6 197.66 283.90

ED_81 142,000 7 40 6.06 5 14.97 21.03

Ward 10,000 3 16 0.17 3 0.57 0.74

Ward_81 10,000 6 31 0.33 4 0.78 1.11

Totals 700.60 24 636.11 1,336.71

Table 1: Space requirements

3.6 Relational efficiency

Many systems for physical storage have been p.roposed and shown to be particularly efficient for

particular modes of data usage. Note that such physical query optimisation choices do not violate

the relational model, provided they do not exclude other queries (though they may make them less

efficient). Unfortunately the option to use such specialised storage structures is not generally available

in the available DBMSs, so we are required to work with the features provided. Even when limited

to the specifIcation of indexes the designer of the database can significantly affect performance by
the choice of physical data organisation. Most real data access makes extensive use of natural joins
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(equality of key fields) for subsets of records, and for these indexes usually prove acceptably efficient.

Thus with the SAIISU data structure we can build indexes to achieve reasonable efficiency for our

pre-defined aggregate area retrievals.

Since most of our queries involve small results (being based on relatively small areas and rare

diseases) we are confident that the large size of the postcode and event tables will not be a problem.
This is certainly borne out by our experience so far, since extending the postcode table from just
Scotland to cover the whole of GB (a tenfold increase) had a barely noticeable effect on performance.
There is a large cost involved in creating an index for a large table, but this is only done once (since
the data are static) and not under the pressure of a real enquiry.

4 Retrievals

Retrievals for administrative areas from the SAHSU database are all of the same general form. For

one or more areas of one or more types we must find the events (usually of a selected type) in the area

(the numerator), and also the size of the population (denominator) in which those events occurred.

We will invariable be interested in classified populations (at least by age and sex) and so the events

must be similarly aggregated. The result will be a record for each subgroup containing the numerator

count and population, from which a rate can (trivially) be computed.

4.1 Problems with Geographical Retrievals

The exact details of retrievals for arbitrary geographical areas cannot, in general, be anticipated, since

a query may be based on any part of the country and may include an area of any shape. It would be

theoretically possible to anticipate a number of different types of query and build appropriate retrieval

structures for them, such as storing the distances from a grid of significant points, for example,
major towns. For any reasonable level of choice, however, this would involve an unacceptable

overhead in storage for the various keys and indexes.

An alternative approach is to use some form of area indexing. The Quad-Tree approach is very

attractive Laur87, Hogg88]. In this model areas are approximated by sets of squares of differing
sizes. Any square can be dis-aggregated recursively into four component squares, and so on down

to a level of resolution that provides an adequate representation of the area in that location. Each

square is represented by a key (based on its location) and a size attribute. This method combines

the advantages of regular tessellations with (roughly) equal representational precision for the target
characteristic. Unfortunately, the data structure is not provided in most available RDBMSs, and

implementation of the algebra required to support the model LaMi89] did not seem to us to be

reasonable with the tools at our disposal. Instead, we decided to look for a simplified method which

could give most of the benefits, at minimal cost for implementation.
We restrict attention here to the simplest case of an arbitrary geographical query, namely one

based on a circle with arbitrary centre and radius (though small compared with the whole country).
As before we need to find the set of postcodes (building blocks) included within the area, and for these

retrieve selected events (numerators) and population estimates (denominators). So far this is the only
form of query implemented, though our procedures are chosen to generalise to more complex areas.

Our solution is to use a simple and efficient intermediate method to select a small superset quickly,
and then to apply an accurate selection to this set. This will now be a small problem so we can afford

to do an expensive calculation.
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For reliably efficient operation we need to construct a key (which we can index) on which we can

do a natural join to select postcodes, since we know that such joins~are efficient. Drawing on the quad-
tree idea we define a set of covering areas (a tessellation), from which we first select an approximation
to the area of interest. We can then find the postcodes located within this set of areas, and finally
select more accurately from within the selected set of postcodes. For this to be efficient overall it is

an essential requirement that the initial operation of selecting the required set of covering areas can

be done cheaply. This requirement is met if we can compute (rather than select) the set.

We required a system which we could implement simply and decided to use equal sized squares

based on the grid reference system. After some experimentation we decided to use one-kilometre

squares for the grid-square system. The ID for each square is obtained by concatenating the kilometre

precision easting and northing coordinates of the south-west corner of the squares.

4.2 Retrievals of postcodes for circles

--~
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Figure 2: Selection of squares covering a circle.

A circle is specified by its centre and radius. The centre may be given as a grid reference point or as

a postcode. The system then finds all the postcodes which have their grid reference within this circle.

It is not feasible to calculate for each postcode its distance from the centre of a specified circle in

order to determine its membership of the circle. Indexing on grid references in the postcode table is of

no help here, since it is the distance from the (arbitrary) circle centre, rather than the grid reference

itself that determines whether a postcode is selected.

Once a circle has been specified a procedure (written in C using embedded SQL) determines all

the grid squares that either completely or partially overlap with the circle. A marker is added to show

whether a square is cut by the circle. A temporary table is constructed containing the IDs of the

included squares and the cutting marker.

This temporary table is then used in a join operation with the postcode table, selecting all postcodes
within the contained squares and computing the inclusion criterion for postcodes in the cut squares.

This takes the following form:

SELECT Postcode,

I I I ! I I I I I I

I I I I
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FROM Postcode, TempSq
WHERE TempSq.GrSq = Postcode.GrSq
AND (Cut = 0

OR (Cut = 1

AND (East - Centre-East)2 + (North - Centre-North)2 � Radius2))

The selected postcodes are placed in another temporary table from where they can be used to select

deaths in the circle and to control the estimation of the population in the circle.

The set of selected postcodes define an area which is an approximation to the underlying circle.

The error in approximation will clearly depend on both the size of the circle and the size of the

postcodes. However, postcodes are large where population is sparse so that large circles are needed,
with the reverse being true in areas of dense population. It is thus a reasonable rule (in areas of

similar population density) that the relative error in the fit of postcodes to the circle depends on the

included population rather than the exact dimensions involved. Since we are usually interested in rare

diseases for which large populations need to be studied we can be confident that the postcodes will

give a (relatively) good fit to the circle.

4.3 Calculation of denominators

As described previously, the smallest area for which denominator data are available are enumeration

districts (EDs) - which are made up of about 10 postcodes on average.
Since numerator and geographic data are given by postcode, and the resolution of the circle

algorithm is such that it selects postcodes rather than EDs, some method is needed for reconstituting
EDs out of their constituent postcodes in order to estimate denominators. If the boundary of a circle

cuts across ED boundaries then it will be necessary to decide what population total to estimate for

the partial EDs.

We use a simple rule to allocate a proportion of the ED population to the circle, ie to project the ED

population down onto the postcodes. In the absence of any other information we use the proportion of

the ED postcodes which are actually selected for the circle. The assumption underlying this method

is that the population of the ED is evenly distributed throughout its constituent postcodes.
The core of the algorithm is the following SQL statement.

SELECT pcs-temp.ED, COUNT (DISTINCT pcs-temp.Postcode)
/ COUNT (DISTINCT Postcode.Postcode)

FROM pcs-temp, Postcode

WHERE pcs-temp.ED = Postcode.ED

GROUP BY pcs-temp.ED

This produces a table with one record for each ED which had at least one postcode in the circle, plus
the proportion of codes in each ED included in the circle. This description is in terms of the total

population, but the system can also operate with classified populations, currently rates for specific
age groups, separately for men and women.

5 Conclusions

There are a number of serious problems in making use of locational information in a statistical

database. Computer scientists and geographers have developed a number of specialised solutions
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to these problems, and by studying their work we are able to develop simplified versions which can be

implemented efficiently using standard DBMS systems.
The other big problem which we face is the organisation of meta data for the geography, attributes

and aggregations in the database, in order to provide simple access to end-users and to control the

classification and aggregation processes performed by our front-end applications. This work is not yet

complete, and will be the subject of a further paper.
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STORM: A STATISTICAL OBJECT REPRESENTATION MODEL
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Abstract. In this paper we explore the structure and semantic properties of the entities stored in
statistical databases. We call such entities “statistical objects” (SOs) and propose a new “statistical
object representation modelt’, based on a graph representation. We identify a number of SO
representational problems in current models and propose a methodology for their solution.

1.0 INTRODUCTION

For the last several years, a number of researchers have been interested in the various problems
which arise when modelling aggregate-type data SSDBM]. Since aggregate data is often derived by
applying statistical aggregation (e.g. SUM, COUNT) and statistical analysis functions over micro-data
the aggregate data bases are also called “statistical databases” (SDBs) Shoshani 82], Shoshani &
Wong 85].

This paper will consider only aggregate-type data, a choice which is justified by the widespread use
of aggregate data only i.e. without the corresponding micro-data. The reason is that it is too difficult to
use the micro-data directly (both in terms of storage space and computation time) and because of
reasons of privacy (especially when the user is not the data owner).

Statistical data are commonly represented and stored as statistical tables. In this paper we show that
these tables are complex structures that may have many possible representations (e.g. tables, relations,
matrixes, graphs). Accordingly, we use the term “statistical object” (SO) for the conceptual abstraction
of statistical data.

Various previous papers have dealt with the problem of how tO logically represent an aggregate data
reality (e.g. Chan & Shoshani 81, Rafanelli & Ricci 83, Ozsoyoglu et al 85]). Starting from those works,
this paper will propose a new “statistical object representation model” (STORM), based on a graph
representation. In the subsequent sections, after the necessary definitions, the proposed structure for a SO
will be discussed and developed. We follow the definition of the STORM model with an investigation of a
well-formed SO, and develop conditions for it.

2.0 PROBLEMS WITH CURRENT LOGICAL MODELS

2.1 BASIC CONCEPTS

We start this section by briefly presenting four basic concepts that are unique to SDBs, and then
discuss deficiencies of currently proposed models.

1. Summary attributes -- these are attributes that describe the quantitative data being measured or
summarized. For example, “population”, or “income for socio-economic databases”, or “production
and consumption of energy data”.

This work was partially supported by the Office of Health and Environmental Research Program and the Director, Office
of Energy Research, Applied Mathematical Sciences Research Program, of the U.S. Department of Energy under Contract
No. DE-ACO3-765F00098.
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2. Category attributes -- these are attributes that characterize the summary attributes. For example, “Race”

and “Sex” characterize “Population counts”, or “Energy type” and “Year” characterize the “production
levels of energy sources”.

3. Multi-dimensionality -- typically a multidimensional space defined by the category attributes is

associated with a single summary attribute. For example, the three- dimensional space defined by
“State”, “Race” and “Year” can be associated with “Population”. The implication is that a

combination of values from “State”, “Race” and “Year” (e.g. Alabama, Black, 1989) is necessary to

characterize a single population value (e.g. 10,000).

4. Classification hierarchies -- a classification relationship often exists between categories. For

example “Cities” can be classified into “States”, or specific “professions” (e.g., “civil engineers”,
“chemical engineer”, “college professor”, high school teacher”, etc.) can be grouped into

“professional categories” (e.g., “engineering”, “teaching”, etc.)

These basic concepts are addressed in different models currently used to describe statistical data by
employing essentially two methodologies: a) 2-dimensional tabular representation and b) graph-
oriented representation. We explore below some of the problems encountered using these

methodologies in current models.

In the rest of the paper, we define a STatistical Object Representation Model (STORM) which is

independent from the above methodologies. As a consequence, a SO can have a graphical
representation, a 2-dimensional tabular representation, or any other representation preferred by the user

(e.g. a “relation”).

2.2 PROBLEMS WITH THE TWO-DIMENSIONAL TABULAR REPRESENTATION

The two-dimensional (2D) representation exists historically because statistical data have been

presented on paper. This representation, although it continues to be practiced by statisticians today, the

semantic concepts discussed above. We point out below several deficiencies.

2.1.1 The concept ofmulti-dimensionality is distorted.

By necessity, the multi-dimensional space needs to be squeezed into two dimensions. This is

typically done by choosing several of the dimensions to be represented as rows and several as columns.
For example, suppose that we need to represent the “Average Income” by “Profession”, “Sex” and
“Year” and “Professions” are further classified into “professional categories”. Figure 1 is an example
of a 2D tabular representation. Obviously, one can choose (according to some other preferred criteria)
other combinations by exchanging the dimensions (e.g., “Year” first, then “Sex”), or put different

dimensions as rows and columns.

Models using this tabular representation technique improperly consider the different tables to be

different statistical objects, while in reality only the 2D representation has changed. In general, the 2D

representation of a multi-dimensional statistical object forces a (possibly arbitrary) choice of two

hierarchies for the rows and columns. The apparent conclusion is that a proper model should retain the

concept of multi-dimensionality and represent it explicitly.

2.2.2 The class~f1cation relationship is lost.

In the 2D representation, classification hierarchies are represented in the same manner as the multi

dimensional categories. Consider, for example, the representation of “Professions”and”Professional

Categories” shown in Figure 1.
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Professional Category

Engineer Secretary Teacher

Profession Profession Profession

Average Income

in California Chemical Civil Junior Executive Elementary College
Engineer Engineer Secretary Secretary Teacher Teacher

80 1,841 2,285 1,733 2,600 1,038 1,541

81 2,012 2,411 1,819 2,678 1,090 1,641

Year 82 2,199 2,637 1,910 2,758 1,166 1,747

88 3,749 4,521 2,560 3,293 1,701 2,500

Sex

80 1,669 1,825 1,698 2,522 1,027 1,525

81 1,825 1,996 1,783 2,597 1,079 1,624

Female
Year

82 1,994 2,184 1,872 2,675 1,154 1,729

88 3,399 3,744 2,508 3,194 1,683 2,524

Figure 1

As can be seen, there is no difference in the representation of “Sex” and “Year” and the representation
of “Profession” and “Professional Category”. However, it is obvious from this example that the values of

average income are given for specific combinations of “Sex”, “Year” and “Profession” only. Thus,
“Professional Category” is not part of the multi-dimensional space of this statistical object. As can be seen

from the above example, there is a fundamental difference between category relationship and multi

dimensionality. Usually, only the low-level elements of the classification relationship participate in the

multi-dimensional space. This fundamental difference should be explicitly represented in a semantically
correct statistical data model.

2.3 PROBLEMS WiTh CURRENT GRAPH-ORIENTED MODELS

An attempt to correct some of the deficiencies of the 2D representation discussed above was made by
introducing graph-oriented models. In these models the concepts of multi-dimensionality and classification
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hierarchies were introduced by having especially designated nodes. For example, in GRASS Rafanelli
83] (which is based on SUBJECT Chan 81]) multi-dimensionality is represented by A-nodes (A stands
for “association”) and C-nodes (C stands for “classification”). Thus, the statistical object of Figure 1

would be represented in GRASS as shown in Figure 2. Note that the node of the type S represents a

“summary” attribute.

2.3.1 Mixing categories and category instances.

We refer to the classification hierarchy of “Professional Category” and “Profession” in Figure 2.
Consider the intermediate node “Engineer”. It has a dual function. On the one hand, it is an instance of the
“Professional Category”. On the other hand, it serves as the name of a category that contains “Chemical

Engineer”, “Civil Engineer”, etc. Note that the category “Profession” is missing in this representation.
The reason is that after we expand the first level (“Professional Category”) into its instances, the next levels
can contain only instances.

Sex

M

Teacher

For the above reasons, we have chosen a graph model that separates the categories and their
instances into two separate levels. For example, the statistical object of Figure 3 will be represented at

the meta-data level (intentional representation) as shown in Figure 3. Underlying this representation the

system stores and maintains the instances and their relationship. The instances can become visible to a

user by using an appropriate command.

Average Income

(Summary attribute)

Professional

Category

F

Chemical
Civil

Engineer Engineer

Figure 2
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Note that an added benefit of representing only categories as in Figure 3 is its compactness as

compared with the previous representations.

3.0 THE STORM MODEL

We can use the following notation to describe a SO:

N (C(l), C(2), ..., C(n): S),

where N and S are the name and summary attribute of the SO, and (C(I), C(2), ..., C~ are the

components of the category attribute set C. There is a function f is implied by the “:“ notation, which
maps from the Cartesian product of the category attributes values to the summary attribute values of the
SO. For example, the following describes a SO on various product sales in the USA:

PRODUCT SALES (TYPE, PRODUCT, YEAR, CITY, STATE, REGION: AMOUN1)

As mentioned in the introduction, a statistical object SO represents a summary over micro-data.
That summary involves some statistical function (count, average, etc.), and some unit of measure of the
phenomena of interest (gallon, tons, etc.). Accordingly, the summary attribute has the two properties
mentioned above: “summary type”, and “unit of measure”. In the example above, the summary type is
SUM (or TOTAL), and the unit of measure DOLLARS. Note that the above SQ is presumed to be
generated over some micro-data, such as the individual stores where the products were sold.

In addition, we need to capture the structural semantics of the SO, i.e. the relationship between the
category attributes as well. In the example above on “product sales”, suppose that product “type” can

assume the values: metal, plastic, and wood, and that “product” can assume the values: chair, table,
bed. How do we know if sales figures are given for products, product types, or both? Further,
suppose that we know that figures are given for products, how do we decide whether these figures can

Average Income

in California

Professional

Category

Sex

Profession

Figure 3
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be summarized into product type? Similarly, we need to know whether sales figures for cities can be

summarized to state levels and to regions. In order to answer these type of questions, we need to

capture the structural semantics between category attributes. For that purpose, we use the STatistical

Object Representation Model (STORM).

It is best to visualize the STORM representation of a SO in a graphical form as a directed tree. The

summary attribute and each of the category attributes are represented as nodes of type S and C,
respectively. The root of the tree is always the node S. In addition, another node type is used,
denoted an A node, to represent an aggregation of the nodes pointing to it. In most cases the nodes

pointing to an A node will be C nodes, but it is possible that an A node will point to another A node.

An example of a STORM representation of the SO “product sales” mentioned previously is given in

Figure 4. Note that an aggregation node has the domain generated by the cross product of its

component domains. Thus, the node A pointed to nodes “type” and “product” in Figure 4, represents
combinations of type and product.

Region

State

City

The STORM model is designed to support directly the four basic concepts of statistical data

mentioned in Section 2.1. However, it puts limits on the structural interaction between the various
constraints. These structural constraints are desirable for the conceptual simplicity of the model, yet are

general enough for describing a rich variety of statistical objects. The structural constraints are

summarized below.

A STORM representation of a SO is a directed tree of nodes of type S. A, and C, with the

following structural constraints:

a) There is only a single S node and it forms the root of the tree.

b) A single A node points to the S node.

c) Multiple C or A nodes can point to an A node.

d) Only a single C or A node can point to another C node.

Product sales

(in Dollars)

Year

Type Product

Figure 4
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4.0 PROPERTIES OF STORM STRUCTURES

There are many possible ways of representing the category attributes and their interaction in a

STORM structure. How do we choose a desirable representation? We illustrate the answer to this

question with several examples.

The STORM representation of a SO implies a mapping between the nodes of the directed tree. We

explore here the properties of the various possible mappings between category attributes. We refer

again to the example given in Figure 4.

Let us first examine the mapping between “city” and “state”. We assume that city names are unique
within states, that is, each state can map into a single state. This mapping is therefore “single-valued”,
or in other words a function. Similarly, if we assume that states are unique within regions, then the

mapping between the corresponding nodes will also be single-valued. In this case, the node that should
be considered as relevant to the aggregation node A is only “city”, because the product sales amounts

are given for cities. However, the nodes “state” and “region” exist in that structure to indicate that the

two single-valued mappings (city --> state, and state --> region) are also specified as part of the SO

description, and therefore the sales amounts for states and regions can potentially be calculated. We call

the ability for such summary type calculation “summarizabiity”. Note that single valued mappings
imply a classification relationship.

Now, let us consider the branch in Figure 4 that includes “type” and “product”. As mentioned

above, a product (such as “chair”) can be of several types (such as “metal” or “wood”). Such a

mapping is called multi-valued (it is obviously not a function). This multi-valued mapping implies that
the sales figures are given for the combinations of “product” and “type” (e.g., “wood chairs”). Thus,
the A node is needed to represent this multi-valued relationship. Note that in this case it is possible to

summarize sales amounts both by “type” or by “product”, in contrast to a single summarizability
implied by single-valued mappings.

Because of space limitation, we cannot show here the precise arguments for desirable STORM
structures. However, from the above examples one can observe the following proposition:

Proposition: A well-formed SO contains no multi-valued mappings along the branches of its tree,
and no single-valued mappings between nodes that point to the same A-node.
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A Genetic Algorithm for Statistical Database Security

Zbigniew Michalewicz* Jia-Jie Lit Keh-Wei Chent

Abstract

One of the goals of statistical databases is to provide statistics about groups of individuals

while protecting their privacy. Sometimes, by correlating enough statistics, sensitive data about

individual can be inferred. The problem of protecting against such indirect disclosures of con

fidential data is called the inference problem and a protecting mechanism—an inference control.

During the last few years several techniques were developed for controlling inferences. One of the

earliest inference controls for statistical databases restricts the responses computed over too small

or too large query-sets. However, this technique is easily subverted. Recently some results were

presented (see Michalewicz & Chen, 1989]) for measuring the usability and security of statistical

databases for different distributions of frequencies of statistical queries, based on the concept of

multiranges. In this paper we use the genetic algorithm approach to maximize the usability of a

statistical database, at the same time providing a reasonable level of security.

1 Introduction

One of the goals of statistical databases is to provide statistics about groups of individuals while

protecting their privacy. Sometimes, by correlating enough statistics, sensitive data about individual

can be inferred. When this happens, the personal records are compromised—we say, the database

is cornprornisable. The problem of protecting against such indirect disclosures of confidential data

is called the inference problem. During the last few years several techniques were developed for

controlling inferences. One of the earliest inference controls for statistical databases (see Deirning et

al., 1979], Schlörer, 1980], and Michalewicz, 1981]) restricts the responses computed over too small or

too large query-sets; later (see Denning & Schlörer, 1983]) it was classified as one of the cell restriction

techniques. This technique is easily subverted—the most powerful tools to do it are called trackers

(we will discuss them later in the text). However, query-set size controls are trivial to implement.

Moreover, they can be valuable when combined with other protection techniques (see Penning &

Schlörer, 1983]), so they are worth some deeper examination.

A statistical database consists of a collection X of some number n of records, each containing a

fixed number of confidential fields. Some of the fields are considered to be category fields and some to

be data fields (the set of category fields need not be disjoint from the set of data fields). It is assumed

that for any category field there is a given finite set of possible values that may occur in this field for

each of the records. Data fields are usually numerical, i.e. it is meaningful to sum them up.

A statistical query has the form COUNT(C), where C is an arbitrary expression built up from

category-values (specifying a particular value forgiven category fields) by means of operators AND(.),
OR(+), and NOT(~). The set of those records which satisfy the conditions expressed by C is called

~Department of Computer Science, University of North Carolina Charlotte, NC 28223, USA

tDepartment of Computer Science Victoria University of Wellington, New Zealand

tDepartment of Mathematics, University of North Carolina Charoitte, NC 28223, USA
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the query set X~. The query-set size inference control is based on the following definition of the

response to the query COUNT(C):

COUNT(C) =
~ iXci if k � iXcI � n — k

I # otherwise

where IXci is the size (cardinality) of Xc; k is a certain integer, fixed for a given database, 0 ~ k < n/2;
and # denotes the fact that the query is unanswerable, i.e. the database refuses to disclose Xci for

the query. Usually the set of allowable queries in statistical database also includes other queries, such

as averages, sums and other statistics, as:

SUM(C;j) =
~iEXc v~3 if k � iXcI <n — k

~ # otherwise

where j is a data field and v~ is the value in field j of record i. Generally, we will deal with arbitrary
additive queries q(C) satisfying the condition

Xc1 fl Xc~ = 0 =~ q(Ci + C2) = q(C1) + q(C2),

or equivalently,

q(C1 + C2) = q(C1) + q(C2) — q(C1 C2)

(this condition is clearly satisfied for COUNT and SUM).
So the query-set size inference control is the following:

c
-I q(C)~ if k<iXcI<n-k

q( ) —
~ otherwise

where q(C) is an additive query and iq(C)i denotes the answer for this query.
As we mentioned in the first sentence of the Introduction, the goal of statistical databases is

to provide statistics about groups of individuals while protecting their privacy. In other words, we

should balance between usability (provision of statistics) and security (protecting privacy) in statistical

databases. These two concepts are essential in evaluating any inference control mechanism and they
work against each other: it is intuitively clear that stronger security measures decrease usability of

statistical database. In particular, a database which refuses to answer any query (null usability) has

perfect security.
Before we proceed further we try to define in a formal way these two fundamental concepts. Having

these definitions we will measure the “goodness” of different inference control mechanisms based on

the idea of multiranges and (later) we use this measure as an evaluation function for our genetic
algorithm.

Let us assume that Q is a set of statistical queries q(C) (we denote by X~ the query set of q(C)).
Let us denote fc~ : (0,n) —i (O,oo), a function which, for any integer j from the range (0,n),
returns the number of queries q(C) from the set Q such that iXci = j. We will call the function

f~ the query distribution function; later (to simplify derived formulae) we assume that it satisfies

fQ(i)=fQ(n—i) for all <i< n.

We will consider a general case of the query-set size inference control, where the formula for the

response to the query q(C) is the following:

-

f iq(C)I if Xci ~ B
—

I # otherwise
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where 13 in an arbitrary subset of (0, n) called the set of restricted ranges.
The usability U of a statistical database is a function of fc~ and 13 and is defined as follows:

U 13 —

~fQU
(fQ, ) -

>:~=ofQ(i)

It is clear that U(fQ, 13) gives the fraction of answerable queries from the set of queries Q. In other
words it measures the richness of the information revealed to the users.

We do not make any assumptions on the set of queries Q (for example, it can be the set of
all statistical queries contained in some applications, against which we build some inference control

mechanism). Because of this we will write f instead of fçj understanding, that the set of queries is
fixed (in fact we need not know anything about this distribution of values for query-sets and we can

assume, for example, the normal distribution).

•

Now we discuss a measure of security in a statistical database. It is clear, that (in general) it is
not possible to provide an absolute security, however, the greatest danger comes from the existence
of (multi)trackers (see Denning et al., 1979], Denning & Schlörer, 1980], Michalewicz & Yeo, 1987],
{Michalewicz & Chen, 1988]). Here, by a tracker, we understand any formula T which can be used
to find the value for any unanswerable query q(C). Because of our experience with general trackers,
double trackers, and multitrackers, we can provide a more detailed description: a tracker is a formula
T such that for any unanswerable query q(C) at least one of the queries q(C . T), q(~ C T) is

answerable, and at least one of the queries q(C + T), q(-..’ C + T) is answerable.
Note also that not all of the restricted ranges are equally important. Obviously, the first and the

last range should be protected by all means; the protection of all other ranges is not so essential.
Indeed, our major reason in introducing multiranges (see Michalewicz & Yeo, 1987]) was prevention
of trackers only, which threaten security in implicit ways. On the other hand, finding a response for
unanswerable query in the first or the last restricted range usually compromises security explicitly.

These observations have two consequences:

1. the set of restricted ranges 13 should always include the following sets: B1 = {0,1,... ,s} and
B2 = {n — s, n — s + 1,.. . , n} for some (possibly small) parameter s,

2. our modified definition of a tracker is the following:

A tracker is a formula T such that for any unanswerable query q(C), where IXcI E B1 U Bm,
at least one of the queries q(C T), q(.~ C T) in answerable, and at least one of the queries
q(C + T), q(’~ C + T) is answerable.

Now we will formulate a necessary condition for the existence of a tracker. Later we assume

that a statistical database is secure, if the necessary condition for the existence of the tracker is not
satisfied. Note again that this requirement will not provide a database an absolute security, but it will
prevent users from finding a (multi)tracker, which is the most serious threat to security of a statistical
database.

-

It is clear that we can uniquely divide the set of restricted ranges 13 into some number (say, m) of
disjoint ranges I~ = (xj,yj), such that

1. a E 13 if and only if (~j) a E (xi, y,),

2. y,~x~~1fori=1,2,...,m_1.
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It is easily seen that B1 c I~ and B2 ~ ‘m and x1 = 0, Ym =

Let us denote by I~ the length of the i-th restricted range given by (x1, ye). Let M be the maximum

length of the first and the last restricted ranges, i.e. M = max{IIij, IImI}, (M > s), and ~ be the

maximum length of all gaps between restricted ranges, i.e. ~ = maxi<*<m_i{xj÷i — yi}.
It is quite easy to demonstrate that the necessary condition for the existence of a tracker is 2M < ~.

Indeed, it is clear that for any unanswerable query q(C) such that Xci E Ii, the queries q(’~ C . T)
and q(C + T) are answerable, provided that the tracker query q(T) is answerable (q(T) lies between

ranges I~ and Ij+1), and the distance between y~ and IXTI is not less than M, and the distance between

I XT~ and x,~1 is not less than M.

The negation of the above necessary condition would provide some reasonable level of security.
Thus (to provide some level of security to a statistical database) we impose an additional constraint:

g < 2M

A statistical database is called secure, if the above condition is satisfied.

Let us introduce some additional notation. Let

F~<~ 1(i
F(x) =

>=~ f(i)~

F(x) is a cumulative distribution function (in statistical sense). Now we can express the usability

U(f, I) of a statistical database in terms of the functionF(x):

U(f, I) =1- ~F(y~) - F(x1)]

In the paper we attept to maximize usability of a statistical database while ~ <2M.

This short paper is organized as follows: Section 2 gives a general description of genetic algorithms
and Section 3 describes our implementation and presents the results. The conclusions are presented
in the last Section.

2 Genetic Algorithms

Genetic algorithms Davis, 1987], Holland, 1975]) are a class of probabilistic algorithms which begin
with a population of randomly generated candidates and “evolve” towards a solution by applying

“genetic” operators, modelled on genetic processes occurring in nature.

For a given optimization problem, at each iteration t of a genetic algorithm we will maintain a

population of solutions P(t) = {a4,.. . , x~,}, where x~ is a feasible solution, t is an iteration number and

n is arbitrarily chosen length of the population. This population would undergo “natural” evolution.

In each generation relatively “good” solutions will reproduce; the relatively “bad” solutions will die

out, and will be replaced by the offsprings of the former ones. To distinguish between the “good” and

“bad” solutions we will use f(x~) which will play a role of the environment.

During iteration t, the genetic algorithm maintains a population P(1) of some solutions x~,... ,

(the population size n remains fixed for the duration of the computation). Each solution x~ is evaluated

by computing f(x~), which gives us some measure of “fitness” of the solution (obviously, the lower

f(x~), the better). Next, at iteration t+ 1 a new population is formed: we select solutions to reproduce
on the basis of their relative fitness, and then the selected solutions are recombined using genetic
operators (crossover and mutation) to form a new set of solutions.
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The crossover combines the features of two parent structures to form two similar offspring. Crossover

operates by swapping corresponding segments of a string of parents.
A mutation operator arbitrarily alters one or more components of a selected structure—this in

creases the variability of the population. Each bit position of each vector in the new population

undergoes a random change with the probability equal to the mutation rate, which is kept constant

throughout the computation process.

The theoretical basis of a genetic algorithm states that, in a given population, chromosomes (solu
tions) better suited to the environment (evaluation) will have exponentially greater chance of survival,

and, therefore, better chance of producing offsprings Holland, 1976]. Moreover, this genetic search

method is far from being a pure hill—climbing, for at any time it provides for both exploitation of the

best solutions, and exploration of the search space.

A genetic algorithm to solve a problem must have 5 components:

1. A genetic representation of solutions to the problem;

2. A way to create an initial population of solutions;

3. An evaluation function that plays the role of the environment, rating solutions in terms of their

“fitness”;

4. Genetic operators that alter the composition of children during reproduction; and

5. Values for the parameters that the genetic algorithm uses (population size, probabilities of

applying genetic operators, etc.).

We discuss these components for our implementation in the next section.

3 Optimal selection of restricted ranges

In the Introduction we defined usability U(f, B) of a statistical database as a function of the set of

restricted ranges B and the cumulative distribution function F. We will try to maximize usability
under the following condition:

(***) c<2M

to provide some reasonable level of security for a statistical database.

In the full version of the paper we considered four different sets B, i.e. four different distributions

of ranges (classical case—two ranges, uniform distribution, arithmetical, and geometrical) and we gave

a formula for usability of a statistical database in each of these cases. In this paper we discuss the

optimal set B found by a genetic algorithm.
We discuss all components of our genetic algorithm (listed earlier) in turn.

a genetic representation of a solution: We have created a solution vector on n bits, 1. .n]. A

query q(C) is restricted if tXcfl = 1. It means that the vector v determines the set B defining
all restricted points which cluster into ranges.

As discussed in the Introduction, we assume that every solution vector v has the following
property:

i]=lfori=1,...,sandi=n—s,...,n.
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It means, that every solution vector restricts queries q(C) such that IXcI <a or IXcI � n — a.

The number of different solution vectors is 2n—2s• In our experiments we took n = 100, 000 (the
size of the database) and a = 5. In such a case the number of different solution vectors is 299,990

which excludes the possibility of an exhaustive search (in fact, the number as “small” as 21~

would exclude this possibility also). The task of the genetic algorithm is to find a near-optimal
solution vector.

an initial population of solutions: We have created an initial population (of size N) of solution

vectors. Each bit in a solution vector was initialized to 0 or 1 accordingly to some probability
distribution function. In our experiments we divided the whole populatioin into five disjoint sets

of equal cardinalities G1,... ,G5 and every solution vector v from the group Gk was initialized

in such a way that robability(vi] = 1) = (k — 1) . 0.1 (for k = 1,. . . , 5).

an evaluation function: Obviously, our evaluation function was based on usability of the statistical

database. Note that any solution vector corresponds to the set of restricted ranges 13 and the

query distribution function f~ is given. Then easily we can determine the usability of the

database as U(fQ, 13) (see Introduction).

However, there is no guarantee that the security condition (~ <2M) is satisfied. So we intro

duced a penalty function penalty(v) —p R with the following characteristic:

fo if c<2M
penalty(v) =

~ . (~ — 2M)2 oiherwise

Then, for a given vector v, the evaluation function Eval is defined as:

Eval(v) = U(fQ,8) — penalty(v)

genetic operators: In our implementation we used two genetic operators: crossover and mutation.

The crossover combines the features of two parent structures (solution vectors) to form two sim

ilar offspring. Crossover operates by swapping corresponding segments of a string of the parents.
For example, if the parents are represented by five-dimensional vector, say (ai, b1, c1, d1, ei) and

(a2, b2, c2, d2, e2), then crossing the vectors between the second and the fifth components would

produce the offspring (ai, b1, c2, d2, e2) and (a2, b2, c1, d1, ei). In our implementation we crossover

to solution vectors of N bits each. The crossover rate C controls the frequency with which the

crossover operator is applied. In each new population, C . N structures undergo crossover.

A mutation operator arbitrarily alters one or more components of a selected structure—this

increases the variability of the population. Each bit position of each vector in the new population
undergoes a random change with the probability equal to the mutation rate M. Consequently,
approximately M . N n mutations occur per generation.

values for the parameters: As mentioned earlier, we perform some experiments with fixed size of

a database (n = 100,000) and a given query distribution function f~. Initially, we assumed that

1 !~
—

(

F(X)=ç~i~ Je 2c2 dt

where ~ = ~, and c = ~ (c is some constant). The equation p = is the consequence of our

earlier assumption 1(i) = f(n — i), and by c = ‘~. (i.e. by the constant c) we can model the

distribution of values for the query-sets.
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Then, the formula for usability of a statistical database is

( )2

U(I)=l-~ 2Z~. dl

However, the computational effort to find the precise value of integral for each vector was enor

mous; this resulted in a change of the query distribution function f:

J 2(b_a)~ if 0<x<n/2
f(x) —

2(a-b
+ (2b — a) if n/2 < x < n.

which will change a cumulative distribution function F to

F
~ an4~(b_a)xx+a if 0<x<n/2

(x) —

j(— ~) + ~ if n/2 < x ~

where (in our implementation) a = 0.000002 and b = 0.000018.

The other parameters were fixed: the population size N 100, the mutation rate M = 0.001

and the crossover rate C = 0.35. The constant c0 for the penalty function was c0 = 0.00002.

The table below gives the best values found of usability function for each case, together with the

parameters (like q and r in the case of the arithmetical distribution).

Sort of

distribution

Evaluation Comments

Classical

case

0.700000

Uniform

distribution

0.666666

Arithmetical

distribution

0.841647 q = 4, r = 910

Geometrical

distribution

0.844444 q = 22, o~ = 2

Genetic

algorithm

0.887030 penalty penalty 0.00648

Figure 1: The usability of a database, n = 100,000

4 Conclusions

If we compare a traditional approach (two restricted ranges, general trackers) and the modified one

(multiranges with uniform or non-uniform distribution) with the genetic algorithm approach, we ob

serve that:

• The inference control mechanism based on genetic algorithm can reveal richer information to

the users.

• All methods are equally feasible,
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• If the user does not know the exact points of restricted ranges 13, it should be relatively harder

to construct a tracker,

• methods based on multiranges have a simple fault: the boundaries of a range (xe, y2) need not

be integer—it means that a range of the lenght 1.9 may restrict only one query size. These

inaccuracies have influence on the final evaluation of the usefulness (usability) of a method.

This sort of inaccuracies was eliminated in genetic algorithm approach.

Note also that the adminsitrator of the system can monitor the real distribution of the pattern of

queries and than apply the algorithm to maximize the usability of the database. If the pattern of

queries changes, a genetic algorithm (as an adaptive procedure derived from principles of evolution)
easily adopts to new requirements—such genetic algorithm can run in the background and update the

set 8 constantly. Also we can tune our penalty function penalty which “describes” the importance of

the security condition (***). Additionally, different applications (queries) may have different “degree
of importance” which would influence the usability of the database—such modifications are easy in

our model.

It seems that a genetic algorithm approach is much more powerful than all other methods studied in

this paper as a method for providing security to a statistical databes based on query-set size inference

control.
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Abstract. Many statistical and scientiñc database applications are inherently time dependent, and can be more

efficiently modeled and managed by temporal data models. We investigate issues pertaining to query processing
of temporal databases in a relational environment. Tuple-versioning of relations is the adopted method of tem

poral data representation. New operators axe necessary in order to exploit the richer semantics of temporal

queries. We define four classes of temporal joins — the theta, time intersection, tune union and event joins. We

will focus on the temporal equijoin and evaluate strategies for its implementation within the framework of a

relational database system.

1. INTRODUCTION AND MOTIVATION

The importance of temporal data models lies in their ability to capture the complexities of real world

phenomena which are inherently dependent on time. Econometrics, time-series analysis, surveys, simulations and

experimental measurements are examples of applications that are time dependent. Traditional approaches, such

as the relational model of data, are incapable of handling all the nuances of such phenomena. Temporal models

open up the possibility for new types of operations to enhance the retrieval power of a database management

system (DBMS). For example, aggregates, moving averages and joins along the time dimension can be carried

out. One of the potential drawbacks of such models is the lack of processing efficiency — the size of data and

the complexity of time-oriented queries may yield unsatisfactory performance.

Many papers have been published on logical models that incorporate to varying degrees the time dimen

sion. Most fall into the following categories: (1) Extensions to the relational model, e.g. Clifford & Tansel 85,

Ariav 86,
,
Clifford & Croker 87, Snodgrass 87]; (2) Enhancements of the Entity-Relationship model, e.g.

Adiba & Quang 86], and (3) Independent modeling such as the concept of the

Time Sequence Collection (TSC) by Shosharn & Kawagoe 86, Segev & Shoshani 871. Many operators have

been introduced in these papers, although in the relational context, the primary emphasis has been on their

integration into the syntax of established query languages, such as SQL and QUEL. This is motivated by the

desire to implement a temporal DBMS by minimal modification to current relational technology.

Our approach is to look into the functional requirements of queries on a temporal relational database.

From there we define a set of fundamental join operators and investigate implementation and optimization stra

tegies. We are motivated in part by the desire to study the feasibility of implementing the TSC model in rela

tional form, or on top of an existing relational DBMS. We define four primary types of temporal joins,
classified according to the nature of attributes and operators specified in the join predicates. it is our belief that

these joins should be capable of capturing the semantics of most, if not all, of the temporal join operators found

in the literature. In this paper, we will look at a specific temporal operator, the temporal equijoin, and evaluate

alternative general strategies for its implementation.

11th work wag supported by the Applied Maihnetasind Sciences Research Program of the Office of Energy

Research. US. Department of Energy under Contra~ DE-ACm-76SR)0098.

27



2. MODELING AND REPRESENTATION

A convenient way to look at temporal data is through the concepts of Time Sequence (TS) and

Tune Sequence Collection (TSC) Segev & Shoshani 87]. A TS represents a history of a temporaYauiibute(s)
associazedwthapularinstanceofanentiraop.Theentityorrelauonshipisideniifiedbya
surrogate. For example, the radiation measurement at a given location is a Th’ with the location ID the surro

gate. A TS is characterized by several properties, such as the time granularity, lifespan, type, and interpolation
rule to derive data values for non-stored time points. Figure 1 illustrates graphically three different time

sequences. Figure la shows the recorded readings from a detector, which is discrete valued and irregular. By

irregular, it is implied that not every data point contains a value for the temporal attribute. Figure lb shows

magnetic field readings, which is a regular and continuous time sequence. The last example pertains to failure

data, which is interval based.

1H ,illH
(a) Detector data: irregular, discrete

(b) Failure data: interval

Figure 1. Examples of Time Sequences

In this paper, for the sake of expositional convenience, we concentrate on two types of data — discrete

and stepwise constant (SWC). SWC data represents a state variable whose values are determined by events and

remains the same between events; the failure data represents SWC data. Discrete data represents an attribute of

the event itself, e.g. the detector data. Time sequences of the same surrogate and awibute types can be grouped
into a time sequence collection (7~C), e.g. radiation measurements for a collection of sites form a TSC. There

are various ways to represent temporal data in the relational model; detailed discussion can be found in Segev
& Shoshani 88a]. Representations can be different at each level (external, conceptual, physical), but we are con

cerned with the tuple representation at the physical level. In order to generalize the analysis, we assume SWC

data using the time-interval representation, as shown in the examples of Figure 2: RADIATION records the radi

ation levels (on the basis of scale as opposed to actual readouts, which are discrete data) at various laboratory
worksites and EMP_LOC keeps track of the location of employees. It should be noted that while the representa

tion in Figure 2 is adequate for the representation of both discrete and SWC data, it is not sufficient for continu

ous data. For such a data type, a function need to be explicitly defined for the assignment of temporal attribute

values to a given time interval.

We use the terms surrogate (S), temporal —attribute (A), and time —attribute (T5 or TE) when referring to

awibutes of a temporal relation. For example, in Figure 2, the surrogate of the RADIATION relation is L#,

LEVEL is the temporal attribute, and T5 and T5 are time attributes. We assume that all relations are in first

temporal normal form (1TNF) Segev & Shoshani 88a1. ITNF does not allow a surrogate instance to have more

(b) Magnetic field: regular, continuous
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RADIATION LU LEVEL Ts T~ EMPLOC EU LU T5 TE
Li 4 120 E1L3 112

L2 1 1 7 El L2 13 20

L2 2 8 20 E2 Li 1 17

L3 2 1 7 E2 L2 18 20

L3 5 820 E3 L3 120

Figure 2. Examples of Temporal Relations

than one value of a temporal attribute at a given time pomi. The implication for a temporal relation is that there

are no two intersecting time intervals for a given surrogate instance. Whenever it is clear from the context, we

will use the term “relation” instead of “temporal relation”, although the two are not equivalent.

3. TEMPORAL JOINS

We will define the primary temporal joins, focusing specifically on the equijoin. Details and examples

elatedtotheotherjoinscanbefoundinGunadhi&Segev9(~,Segev&Gunadhi89].

3.1. Basic Definitions

Let rj(R1) be a relation on schemeRs = (S1,A~1, ...,A~, T5, TEl, where S~ is the surrogate of the relation

with domain dom(S1), Ts and T~ are the time-start and time-end attributes respectively, with

dom(Ts) = dom(TE). A,1 denotes the attribute with a corresponding domain dom(A,1). We distinguish between

the surrogate and other non-time attributes for expositional convenience. It is not necessary to distinguish
between temporal and non-temporal A,1 ‘s. although one or more should be time —varjing in order for temporal
joins to produce non-trivial results. The characteristics and measures of the tune attribute are described in

Segev & Shoshani 87]. It is assumed throughout that we are dealing with a time domain which can be

represented as a finite or countably infinite set of integers.

Define T1 = (T5, TE) as the time -subscheme and R,’ = R• — T~ as the non-time subscheme of r1. Let x,

represent a tuple in r,, and x, (~) the projection of Xj on some relational attribute(s). For a given tuple,

x1(T5), x(T~)] define a bounded interval, and the time-values immediately preceding and succeeding any of

these boundaries are indicated by a decrement or increment of 1 respectively. Define r1 and r2 to be

T-compatible if T~ and T2 are defined over compatible domains. Compatibility does not always mean identical

domains, but we will assume so in this paper. The time intersection operator x1(T1) Cs x2(T2) (or equivalently,
x1 intersects x2) returns true if x1(T5) � x2(TE) Ax1(T~) � x2(T~), and null otherwise, where r1 and r2 are

T-compatible. We shall always assume that any joins on time are always made on T-compatible domains.

Any join between r1 and r2 will produce r3 with schemeR3 =R1’ u R,’ u T3, where the derivation of r3.T5
and r3.T~ which make up r3.T3 is dependent on the type of temporal join. Where null values are involved, we

useøto indicate the value forasinglenull auribute,and (0, ...,ø) forasetof such attributes.

A temporal theta-join, T 9—join, is made up of the conjunction of two sets of predicates, Pr and ~R

represents the set of time join predicates, i.e. those defined over time attributes, while ~R’ represents the set of

non-time join predicates. There are three subclasses of temporal joins that are of special interest, based on the

specification of join predicates: time intersection class, time union join and event—join. Time intersection type

of joins have a time predicate of r1.T1 ri r2.T2. Where the non-time predicate has an equality operator, the join
is called temporal equijoin, or TE—join, while if it is null, the join is a time join or T—join. In the event that

the predicate is a non-equality type, we group it for processing purposes with the rest of the theta-join class. The

semantics of a TE—join in the context of -INF relations is given in Clifford & Croker 87].

3.2. Temporal Equijoin.

In the TE-join, two tuples x1 e r1 and x2 E r2 qualify for concatenation if the non-time join attributes

have the same values and their time intervals intersect. Each concatenated tuple will have time attribute values

that define the non-empty intersection of the two joining tuples. Note that the concatenation of tuples is non

standard, since only one pair of 1’~ and T~ attributes is part of the result tuples. If }‘,~ are the non-time join
attributes, where the subscripts i and j denote the relation number and attribute number respectively, then
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r1TE-JOINr2onY11=Y~A~ AY~1, ~

= (x31x3(R1’) =x1(R1’) A

x3(R2’) = x,.(R2’) A

x1(T1) ~ x2(T2) *0 A

x3(T5) = max (x 1(T5), x2(T5)) A

x3(TE) = mm (xl(TE), x2(T~))

Given the following query on the relations of Figure 2: “Find the radiation exposure levels for all employee?,
we formulate the following join: EMP_LOC TE-JOIN RADIATION on EMP_LOC.L# = RADIATION.L#. The

result of the join is shown in Figure 3.

Result E# LEVEL T~

El L3 2 1 7

El U 5 8 12

El L2 2 13 20

E2 Li 4 1 17

E2 L2 2 18 20

E3 U 2 1 7

E3 U 5 820

Figure 3. Result of TE-join between EMP_LOC and RADIATION relations

33. Time Union Join

The A TtJ-join is characteiized by a union operation on the time intervals. There may be other time

predicates specified, and we denote the set of such operators as Pr. Pft’ can also be made of any arbitrary

predicate. For every pair of tuples x1 and x2 that qualify on the other joining predicates, between one and three

tuples can be produced, depending on the relationship between the time intervals of the operands. A TU-join is

needed if a pair of tuples is considered to satisfy ~R even for cases where x1(T1) r~ x2(T2) = 0. The union

join operation is somewhat analogous to a cartesian product operator in the conventional database context. For

mally,

r1 lu-JOIN r2 on ~R’ AF~ = ~3I U r32 U T33

where

r31 = (x311x31(R() = x1(R11) A

x31(R2’)=x,(R2’)A

PR’& F~A

x1(Tj) ri x2(T2) *0 A

x31(T3) = max(x1(T5), x2(T5)), & x31(TE) = mm (xl(TE), x2(TE))

r32 = (x32Ix~(R1’) = x1(R11) A

PR.& F~A

x1(T5) <x~(T5) A
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x~(Ts) = X, (T5) & x32(T~) = mm (x1 (TE), x1 (T5) — 1)

j =1 or 2; j =2 if i = 1 and j = 1 if i =2

r33 = (x331x33(R1’) = x1(R11) A

x~(R1’) = (0, ..., 0) A

PR’& 13~A

x,(T~) > xj(T~) A

x33(T5) = max(x1(T5), XI(TE) + 1) & x~(T~) = x,(TE)

i =1 or2;j =2ifi = I andj = 1 ifi =2

3.4. Event-Join

An event-join groups several temporal attributes of an entity into a single relation. This operation is

extremely important because due to normalization, temporal attributes of the same entity are likely to reside in

separate relations. When a non-temporal database is normalized, various attributes of a given entity is likely to

be grouped asasingle relation. Ifwe now defineasubsetof the auributesto be temporal and they are stored in

a single relation, a tuple will be created whenever an event affects just one of those attributes. Consequently,
grouping temporal attributes into a single relation should be done if their event points are synchronized. Regard
less of the nature of the temporal attributes, however, a physical database design may lead to storing the tem

poral attributes of a given entity in several relations. The analogy in a conventional database is that the data

base designer may create 3NF relations, but obviously, the user is allowed to join them and create an unnormal

ized result. Since many queries require that different temporal attributes be grouped together as a single rela

tion, we have to account for the fact that differences in the behavior of these attributes over time brings up the

possibility that null values are involved in the join result. Thus the event-join operation combines elements of

the temporal equijoin and two asymmetric outeijoins. Let I denote an arbitrary interval T5, T~] over time; for

two intervals I~ and ‘2, I~ c ‘2 if Ii.T5 � ~ and I1.T~ � I2.TE; the cardinality of an interval, Ill, is meas

uredas ITE -T5 +lLWecannowdefinetheoperator.

r1 EVENT-JOIN r2

= (x31x3(R() = x1(R1’) A

x3(R2’) = x2(R21) A

x3(T3) = x1(T1) r’~ x2(T,.)

forx1E r1&x2E r2,

V x3(R11) = x.(R11) A

x3(R11) = (0,
..., O)A

x3(T3) = maxf Ill, s.t. I~ x1(Tj) A

there does not exist x1 such that x1 (S1) = x3(S ~) & x1 (7)) r~ x3(T3)

fori = 1,] =2ori =2,j = 1

4. IMPLEMENTATION AND OPTIMIZATION OF TE-JOIN

In Gunadhi & Segev 90b] we provide specific algorithms to process the TE-join, but our objective here is

to study the alternatives for implementing the 1E-join within the framework of current relational database

management systems. As an example, we will use the TE-join previously described in section 3 between the

31



EMPLOC and RADIATION relations on L#. Assume the following statistics about the two relations. Relation

size in pages, I EMP LOC I = 2,000 and I RADIATION I = 40, where we assume that each page holds 50 tuples
of either relation. Number of unique IA awibutes, I EMP_LOC(L#) I and I RADIATION(L#) I both equal to 40.

Number of unique E# attributes, I EMP_LOC(E#) I = 5,000. We make the following assumptions: (1) The values

of L# is uniformly distributed throughout both relations; (2) Neither relation is sorted or clustered, and join pro

cessing is carried out by the nested-loop algorithm with RADIATION as the outer relation; (3) The result rela

tion, RESULT has 120,000 tuples or 2,400 pages; (4) The buffer size in main memory is BUF =20 pages and

(5) No pipelining is used, which means that the temporary results (TEMP1) are written to disk. The cost C, of

step j is measured in the number of disk I/O’s.

We consider three approaches to the problem. The first illustrates a naive strategy, which would be the

case if a temporal interface were to be built on top of a conventional system. The second strategy employs a

standard theta-join operator where the time stamps are treated as ordinary attributes. In this case, a change is

needed in the query processor to replace standard concatenation of tuples by its temporal equivalent. The third

is an approach specifically designed for the TE-join, and requires a major change to the optimizer.

4.1. Naive Approach

In this strategy, the handling of the time attributes is ignored at the level of the conventional DBMS.

Thus a simple equijoin on the non-time joining domains is executed, and the result is retrieved by a special tem

poral processor which carries out the restrictions over time attributes, creates the new time stamps for qualifying

tuples, and projects the final result. In other words, the logical steps carried out are as follows:

Step 1. TEMP1 4— EMP_LOC L# = L# ]RADIATION

Step 2. TEMP2 4- a((~MP WC.TS � RADIATJON.Tff) A (EMP LDC.TE � RADIATJON.Ts))(TEMP i)

Step 3. TEMP3 4— flcrg*irp
2~

- TL~,OJ,)(TEMP2) CONCATEWATE

(TEMP3.T5 max(EMP_LOC.T5, RADIATION.T5),

TEMP 3.TE = m~ (EMP_LOC.TE , RADIATJON.TE))

Step 4. RESULT ~ fl(NAME. LS. Ts, 7~)(TEMP3)

We divide the operation into four steps for clarity of exposition. The CONCATENATE operator in Step 3

is introduced to allow the appending of attributes not directly created by a join or cross product. Note also that

in Step 3 we distinguish between the similarly named time-stamps in the tempomry relation by qualifying them

on their original relations. The I/O cost is computed in the following manner. For step 1,

C1 = IRADIATION I + (IRADIATJON I I BUF x IEMP_LOC I) + ITEMP1I, which represents the cost of nested-

loop execution plus the cost of writing the temporary result to disk. TEMP1 is the result of a conventional equi

join, which means that a cross product on the time domains is carried out for qualifying tuples. Given our uni

forniityassumption, C1=40-4.(2X2,000)+(IEMP_LOCIX5O)=104,040. Weassumethatsteps2 to4are

executed in a single scan, i.e. C~ = ITEMP1I + IRESULTI = 102,400. The total cost of this approach is there

fore 206,440 disk I/O’s.

4.2. Theta-Join Strategy

In this strategy, we convert the intersection predicate on time into a conjunction of inequality predicates

on the time attributes, and treat them as “ordinary” predicates. The query is then processed as a conventional

theta-join. Since the creation and concatenation of the new time attributes is unique to temporal data, these

operations will still be carried out separately by a temporal processor. The strategy is made up of the following

steps:

Step 1. TEMP1 4—EMP_LOC L# = IA ]RADIATION WHERE

EMP_LOC.T3 � RADIATJON.Tg A

EM?_LQC.Tg � RADIATION.T5

Step 2. TEMP2 (—flçzw1 - - r~~,4(TEMP i) CONCATENATE
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(TEMP 2.Ts = mar (EMP_LOC.T5, £4DIATION.T5),

TEMP2.TE = mm (EMP_LOC.Tg,RADIATJON.TE))

Step 3. RESULT 4— fl.,~~,~)(TEMP2)

Steps 2 and 3 are identical to steps 3 and 4 of the previous strategy. The total cost is the sum of the cost of

reading in the two relations by the nested-loop method, the cost of writing TEMP1 and the cost of reading in

TEMP1 and writing RESULT. Since TEMP1 and RESULT are of the same size, the total cost comes to

4,040+3 x 2,400 = 11,240. This is considerably lower than the previous method. In this case we were able to

transform a temporal operation to an equivalent conventional one (from the point of view of optimization); we

axe constrained, however, in this approach to the non-temporal nature of a traditional optimizer. Also, some tem

poral operators cannot be translated into equivalent relational operators, ~e.g. the event-join operator.

4.3. Directly Implementing TE-JOIN

The TE-join operator can be implemented independently. There are two primary issues: (1) The manner

in which comparison between the tuples is camed out and (2) How concatenation of the new time attributes is

achieved. The previous approaches required time-stamp comparisons to be evaluated twice, but we can create

the new time stamps for the result tuple, i.e. find T max(EMP_LOC.T5, RADIATION.T3) and

= mm (EMP_LOC.T~, RADIATJON.T~), then concatenate them if they are satisfied by the predicate
T � T. This test substitutes for the intersection predicate on the two relations’ time subschemes.

In algebraic terms, we execute the quay as follows:

ll(R1’ u oCr;. ;))aArlA11 ~r2A2J ~ �r.]((ni x r7) CONCATENATE (T, T))

The following procedure executes it.

Foreachx1 E r1

for each x2 E r2

find T and T

forp E PR’APT
if not p. do the nextx2

elseoutputweonscheme(R1’iR2u(T,T))

I

The total cost is merely the cost of reading in the relations for the nested-loop method and the cost of

writing the output. This comes to 6,440 pages, which is cheaper than the cost of the second strategy. Bear in

mind that the sizes of the example relations are relatively small, and the savings would be even more significant
for joins involving very large relations.

S. FUTURE RESEARCH

We have introduced and defined four classes of temporal joins: Theta, intersection, union and event joins.
We believe that these joins can be used for a large number of join-t~e queries which have been introduced but

not formally defined or identified by others. Moreover, we have developed a framework within which we can

evaluate techniques that can optimize the execution of queries involving such joins. We show by example that

there are inherent differences between using conventional query processors and developing specialized pro

cedures and algebra to solve these queries. We must remember that the time attributes in a tuple-versioning
model must always be treated differently than other attributes, although in many algebraic operations, they may

be qualified with the same type of predicates as non-time awibutes.

Current and future reseanth address the following issues:

• Developing selectivity estimates based on the model presented, and to expand the scope and sophistication
of the model itselL There is also a tradeoff between accuracy of estimates, and the expense of maintain

ing the necessary statistics and deriving the estimates.
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• Investigating the optimization of each class of join. For the temporal equijoin, we are looking at algo
rithms that exploit data ordering and specialized indexing. Further, the event-join operator is likely to be

a commonly used operator, and yet it has no equivalence in the “snapshot” database context. Comprehen
sive tests of the efficiency of alternatives algorithms are necessary.

• Extending the investigation of temporal operators to those involving temporal ordering and aggregation.

• Continuing our study into the design of efficient data ~uctures, in order to improve the data retrieval

capability of a temporal DBMS.
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A VISUAL INTERFACE FOR STATISTICAL ENTITIES
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1. Introduction

In this paper a proposal for a visual interface, able to browse into a graphical representation of a

statistical database, to select parts of this data base, to query it and to manipulate the statistical

entities selected is discussed. This proposal presents two advantages, with respect to the current

solutions: a) to give an integrated environment both of browsing and of querying; b) to have two

different windows for the intentional and the extensional level of the metadata (linked

dynamically), which assure the possibility to carry out browsing not only of “short-sighted” type.

The kind of macro-data which can be represented by a complex data structure is called, in this

paper, Statistical Entity (SE). It consists of:

a) a single summary attribute (quantitative data), representing a property of the statistical

phenomenon described by the SE; its instances (summary values) are the numeric values

contained in the SE;

b) a set of category attributes (qualitative data), that is, the variables which describe the

summary attribute unequivocally. In such a set classification hierarchies or cross products

among category attributes can appear;

c) a set of values which defines a domain, for each category attribute. Such a domain is

called “statistical entity category attribute domain” (SECAD). Each SECAD is enclosed in

the power set of a primitive definition domain (which is the base for eventual different

SECADs);

d) a set of parameters, such as “summary type”, “unit of measure”, “source of data”, etc.,

which characterize every SE.

We note that with the term “summary type” we intend the type of summary attribute (for example

“average”) which is obtained applying an appropriate aggregate function to the disaggregate

(micro) data.

Three levels of abstraction are necessary in order to model the statistical entities:

- the first level (the most abstract) shows the set of category attributes used to describe the

phenomenon;

- the second level shows the extensional description of the modalities chosen to aggregate the

information on the phenomenon; at this level the SECADs of each category attribute are

described;
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- the third level shows the logical description of the statistical entities, in terms of the

statistical-mathematical function which generated the entity itself and in terms of the universe

of reference to which the function was applied.

Therefore, with respect to the traditional data bases, there are a further two levels in this

approach, because for statistical data bases it is not sufficient to logically describe the attributes

which express the point of view from which the phenomenon is represented; in fact, it is

necessary to describe the modality used to aggregate the micro-data (the second level) and the

calculation function which generated the summary attribute (the third level).

Manipulating SE generally means changing the reference pattern of data, that is changing the

descriptive elements of the SE, changing their characteristics. As a result of this process, it is

generally required that the corresponding summary values are recomputed.

With regard to the summary type management, in literature two types of approach were

described:

1) complete control exerted by the user (it is the one most frequently considered KIug 82],

Ghosh 86], Ozsoyoglu 87]);

2) management transparent to the user; different proposals exist for this second approach

Johnson 81], Ikeda 81], Su 83], Fortunato 86].

Starting from these last papers, the authors proposed a functional model, called Mefisto Rafanelli

90-a], which represents a statistical entity described by an ordered pair (r, g), where:

- r is a relation, whose attributes are category attributes describing an SE to which the pair

refers;

- g is a function which maps from the category attributes, describing the macro-data, to the

macrodata themselves.

This model has the capacity to manage transparently the summary type of the statistical entities by

means of all the operators necessary for the SE management, without having to define the

calculation procedures fQr each SE.

Let us now take a look at the Mefisto operators:

- Summarization. One of the most typical operations which can be carried out in the

manipulation of SEs is the summarization of the summary data with respect to a category

attribute; in practice this operator eliminates a category attribute. The summary attribute values are

calculated in a way which depends on the summary type of the SE.

- Disaggregation. If we imagine that the SE values are distributed along a further category

attribute which was not contemplated amongst the SE category attributes according to a

distribution law represented by another table, the disaggregation operator generates a table whose

category attributes are the union of the category attributes of the two input SEs.

- Classification. This operator carries out a grouping (or a partition) of the values of the

category attributes of the SE according to a correspondence relation, by aggregating the relative

values of the summary attribute according to the summary type of the SE.
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- Extension. This operator enlarges the set of category attributes with another whose modality

is a singleton.

- Restriction. This operator gives as a result a sub-table of the initial SE. In the case of percent

summary type in the initial SE, the data contained in the resulting SE are calculated in function of

the values of the initial SE.

- Enlargement. This operator can be considered as the inverse operator of the previous one.

Given two SEs with the same category attributes, which differ in at least one domain, this

operator gives a unique SE in output, as the ‘fusion’ of the input SEs. In the case of percent

summary type in the initial SE.

- Comparison. This operator carries out a binary operation that compares each value of the

summary attribute of an SE with all the values of the summary attribute of another SE and

provides in output a relation obtained by the concatenation of the category attribute values which

satisfy the comparison.

2. The graphical representation model of the visual interface

The visual model proposed in this paper uses both an extension of the Grass model Rafanelli

83], called Grass*, and a set of operators for macro-data defined in the Mefisto functional model.

In Grass* the following nodes were therefore defined:

S-node. This node semantically groups a number of SEs or of other S-nodes regarding the

same phenomenon or the same part of reality described.

T-node. This node represents the quantitative part (summary value) of an SE. The relative

summary type is associated with this T-node, like the parameters, defining further information

(some of which are always present) which are linked to its name (which defines the universe of

observation of the phenomenon described in the SE). These parameters are:

a) the summary type, which depends on the aggregation function which has been applied to the

disaggregate data to obtain the summary data;

b) the unit ofmeasure, which obviously refers to the summary data;

c) the infor,nation source, which determines the ‘quality’ (reliability, etc.) of the information;

d) other eventual parameters, that is all the “virtual” category attributes, that is the category

attributes which appear only in the name of the SE (for example, in the SE whose name is

“Population_in_the_USA_by_year_and_sex “, the virtual category attribute is “country = USA”).

X-node. This node has been added to represent complex SEs, that is SEs where there is

more than one unit of measure and/or more than one summary type and/or which has been

obtained by means of a “macro-union” operation Fortunato 87] between two or more T nodes

which describe different universes or phenomena, etc.
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R-node. This node has however been added to represent both the relation models stored in

the statistical database definition phase, and the relation models obtained during the manipulation

of statistical entities (for example with the previously mentioned ‘comparison’ operator).

A-node. This node represents the aggregation of all the category attributes which describe

the statistical entity. It represents the cross product between all the instances of definition domain

of the above-mentioned category attributes and is organized at various levels of aggregation.

C-node. This node represents a single category attribute which describes an SE. Two or

more of them can be organized in different levels into a hierarchical classification (for example,

“State-County-City”). A category attribute domain is implicitly connected to each C node.

3. The rules of connection of the graphical model

The rules of connection between the previously defined nodes are the following:

Rule I - All the S nodes are joined together forming a direct acydic graph (DAG).

Rule 2 - The T nodes, as well as the X nodes, are all joined to at least one S node, which is a

leaf of the DAG; moreover they are always the root of a tree, which consists of a T node, an A

node and a set of C nodes (and sometimes other A nodes). This tree represents graphically an SE.

Rule 3 - Under a T node or an X node there is always an A node, unless the T node (or X

node) represents a scalar or a vector (see Fig. 1); (for a statistician the term ‘scalar’ means a

statistical entity whose summary attribute is made up of only one number which summarizes ‘the

phenomenon under observation).

Rule 4 - An R node is always linked to one or two A nodes with incoming edges while, as it

does not have outcoming edges, it always results to be suspended upwards. The edge which

joins an A node to an R node is clearly a mapping; in fact the relation represented by an R node is

a subset of (at the limit all) the Cartesian product which the A node.

Rule 5 - If an R node is used for subsequent operations of generation of statistical entities,

the following two important observations must be made:

- the T node generated by an R node automatically leads to the generation of another A node,

linked to the A nodes which generated the R node; the latter is kept (but remains suspended,

according to its semantic meaning).

- the statistical entity generated will, in all probability, have null values amongst its summary

values; this means that the user must specify, for each one of these, the semantic meaning, which

in this visual model, as in those normally used by statistical users, is reduced to just two types:

‘not available’ (symbol -) and ‘impossible’ (symbol 0, often called “structural zero”).

Rule6- ACnodecanbe linked:

a) to another C node, thus forming a classification hierarchy;

b) to an A node, contributing to the Cartesian product which the latter realizes;

c) to a T (or X node) directly, in the previously mentioned case of vector representation.
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An example of graphical representation of a SE is shown in Figure 1.

4. The browser of the visual interface

The aim of the browser is to help the statistical users both to know the three metadata levels, by

navigating in the Grass* graph, and to build the statistical entities starting from the SEs stored

and using the algebra operators defined in Mefisto.

The primitives to browse are of two types:

a) to establish a starting point;

b) to change the point of view in the adjacency structure.

The former is characterized (by the user) by means of queries regarding the type of node, the

information associated to it, the existence of links between them and/or carrying out a search on

the words enclosed in the text of the remarks ~v1üch refer to that node. The latter is characterized

by different ways to browse:

- to pass from a node to another node (adjacent to the former), which verifies, if

specified in the query, defined conditions;

- to jump from a node to another node, specifying the conditions to individualize it

Journey data

Geographical
data

Passenger
data

classification

hierarchy

Fig. 1
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- to select entire sub-graphs (which satisfy given conditions).

These commands are realized both by using an iconic language, and an equivalent query

language. The query language defined for querying the SE database is based on the operators of

Mefisto. In browsing in a GRASS* graph, we can highlight and therefore isolate part of the

graph. The way in which this happens enables new SEs to be deduced according to the

previously defmed operators. There is therefore a correspondence between the operators defined

in Mefisto and the rules of manipulation of SE.

The main rules for the browsing into a Grass* graph and for the deduction of new graphs and,

therefore, new SEs, are the following:

Rule I - selecting an S node means reproducing the entire sub-graph of which it is the parent.

Rule 2 - selecting a T or an X node means reproducing the entire SE which the node represents.

Rule 3 - selecting (or cutting) a number of incoming edges in an A node means that a

summarization operation is to be carried out.

Rule 4 - adding a C node, with only one modality, to an A node means that an extension

operation is to be carried out.

Rule 5 - adding a C node, with more than one modality, to the ones entering an A node means

that a disaggregation operation is to be carried out.

Rule 6 - cutting under an intermediate C node means doing a classification operation.

Rule 7- joining into one C node, two different C nodes relative to two different T nodes, means

that an enlargement operation is to be carried out.

Rule 8 - replacing an A (or C) node with another A (or C) node, specifying the relation along

which to carry out the substitution, means that a classification operation is to be carried out.

Rule 9 - selecting a modality means that a restriction operation is to be carried out.

Rule 10 - choosing different classifications relative to the variables of the same T node means

generating an X node, by applying the classification operation various times.

Rule 11 - substituting the modality of a C node with other C nodes means that a disaggregation /

reclassification operation is to be carried out.

In Figure 2 an example of application of these rules is shown.

The user also has the possibility, by direct manipulation, to enrich the information present (for

example, to add remarks or synonyms, etc.), to change the classifications (or the classification

hierarchies), to add new SEs (these last activities are admitted only “at local level”, that is for that

user view), etc. It is also possible to memorize the current section before closing it.

5. The implementation of the visual interface

We give now a brief description of the visual interface Rafanelli 90-b], showing the prototype

version, in which only the windows regarding the Grass* graphical representation, the instances,

the infor,nation, the printformat and the Staquel query language have been implemented.

40



where
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- Grass* window. In this window the intentional form of the Grass*model is graphically

represented; in it the various logical representation levels of the statistical database (node levels S.

T, X, R, A, and C) are represented. In this window it is possible to browse in (and to manipulate

the SEs of) the graph.

- Information window. Here it is possible to ask for information regarding the parameters

which characterize each statistical entity, such as, for example, the summary type, the unit of

measure, the information source etc.

- Instance window. In this window all the SECAD values regarding each category attribute

(relative to each statistical entity) are shown, as well as the relations which eventually link two or

more category attributes, which are written extentionally. This window is, obviously, strongly

linked to the Grass* window.

- Printformat window. In this window it is possible to define how to print the statistical entity

(that is, which category attributes to put as rows and which as columns, the order along the two

dimensions, etc.).

- Print window. Here the system displayed the statistical entity according to the defmiuon of the

print format window; the difference from the previous window is that in this window it is

Type_of_car
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city
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displacement
country

It displacement

C state
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Fig. 2
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possible to see explicitly how both the descriptive (category) attributes and the summary attribute

will appear on the paper, or, in general, in output.

- Staquel window. In this window the queries, set by means of the Staquel query language, the

command of man~ipu1ation or the instructions of the data definition language in the database

planning phase (planned in this interface), are reported in full.

In this interface other windows are planned. In the screen there is an “icon menu bar” displayed

at the top and a palette, whose symbols are icons, which represent an operation for querying, for

browsing, for enlarging the schema, for inserting new SEs, etc. In figure 3 en example of how

this visual interface presents itself to the user is shown; in it the two cuts (interrupted lines) under

the two C nodes “Type of car” and “State” in the Grass* window is the result of a direct

manipulation of a user in order to generate a new SE (and expressed by the formula written in the

Staquel window); the two cuts are equivalent to two applications of the “classification” operation,

derived from the rule 6 above-mentioned.
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6. Conclusions

The visual interface proposed can be easily used by statistical users. In order to better understand

this interface from a graphical point of view, we have briefly presented and discussed the data

structure (SE), a functional model with the relative operators and the graphical models for the

representation of statistical data.

The commands for the manipulation of the statistical entities which have been realized in this

interface are based on these operators.
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By means of this interface it is possible to browse in the database, to select topic-classified

statistical entities and to manipulate these entities by carrying out queries based on an extension

of the Staquel query language.

The interface has been realized by the definition of windows for graphic visualization of the

statistical entities, for data analysis options, information and functions (planned so far), for the

print format and for the expressions of “data definition language” and “browsing query

language”.

Our attention has focused on the study of macro-SDBs; in particular we are studying the

problems connected with the manipulation of macro-data in order to obtain other data, but

without defming new statistical indicators.
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A Scientific DBMS for Programmable Logic Controllerst

Gulte/dn Ozsoyoglu, Wen-Chi Hou and Adegbe,niga Ola

ABSTRACT

We identify database issues associated with programmable logic controllers (PLC), special-purpose computers used in

scientific applications and experiments. We propose as a PLC scientific database system a single-user, real-time, scalable

main-memory-only relational database system with a two-level architecture having historical data modeling and manipulation

capabilities, and query processing techniques incorporating time- and/or error-constrained query evaluation. We revise the

ladder logic language, the most common PLC language, to incorporate data manipulation language instructions. We add a

separate time component into the PLC processor scan time to handle database updates, backup, integrity enforcement and

data archival issues.

1. Introduction

A programmable logic controller (PLC) is a special-purpose computer used within real-time scientific

computing systems. In scientific applications and experiments, PLCs are used for signal data gathering and prel

iminary data processing. Thus, for some scientific applications, a PLC database may also serve as a

local/transient part of a larger scientific database.

A PLC automatically controls the operation of a scientific application by running a user-written “applica

tion program~~#. The input to the application program consists of the status of the application, transmitted to the

main memory of the PLC at fixed intervals by autonomous I/O processors and stored into the input buffer#. At

its steady state, the application program is continuously scanning its input, solving some boolean equations and

setting its output. The functionality of a PLC directly effects the overall flexibility of the scientific application

or experiment.

With the rapid advances in computer hardware and falling memory prices, in recent years, the capabilities

of new PLCs in the marketplace have been increasing dramatically. We propose the aithitecture in Figure 1 as

the architecture of an environment where real-time data gathering (from multiple sensors) and real-time data

manipulation takes place. We now list the advantages of having a database system directly inside a PLC.

(1) Data Modeling Techniques : The input and output buffers represent a rather unorganized transient model

of the real world, and hence, can be modeled better using the traditional data modeling techniques of data

bases.

(2) Data Manipulation Languages: The fields in the input buffer are monitored by the user’s application

program. The most common language used for application programs in PLCs is called the ladder logic

language, which is a graphics-oriented, low-level programming language (similar to assembler). equipped

with special relay logic, timer and counter instructions. The input and output buffer manipulations can be

specified much more precisely and in a compact manner if a database manipulation language (DML) is

f This research is supported by the National Science Foundation under Grants DCR-860554, IRI-88 11057, IRI-9009897, and IRI-9008632.

Address of G. Ozsoyoglu : Department of Computer Engineering and Science, Case Western Reserve University, OH 44106. Address of W

C. Hou Department of Computer Science, Southem Illinois University at Carbondale, Carbondale, IL, 62901. Address of A. Ola : Depart
ment of Computer Science, North Carolina State University. Raleigh, NC, 27695.

4 Our terminology. The PLC community term for the application program, input and output buffers are control program, and input and output

image tables, respectively.
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used.

(3) Historical Databases : PLCs routinely deal with different versions of data over time. Therefore, histori

cal data modeling techniques as well as historical data manipulation techniques can replace the ad hoc

ways of manipulating historical data in PLCs.

(4) User-Friendly Interfaces The current PLC software allows a limited display of messages and variable-

data information in memory. For example, the contact histogram function displays the on/off history of a

specific main memory bit.. A suitable user-friendly visual data manipulation language (such as a revised

version of Query-By-Example Zloo 77]) based on graphically drawn tables may permit more complicated

and useful queries specified in a user-friendly manner.

(5) Handling Large Volumes of Data : With the added capabilities of a database and a query language, the

PLC may analyze much larger volumes of data.

(6) Data Reduction and Compaction at the PLC Level In some scientific experiments and applications, the

data gathered is so large that arguments have been raised for “processing the data on-the-fly” during the

execution of an experiment/transaction SSDB 86]. The result is that the host computer gets overburdened

with too much raw data. With additional data analysis capabilities at PLC levels, .PLCs can aggregate data

and send only a fraction of the data produced at the PLC level. This also reduces the overloading of the

communication lines between the host computer and the PLCs which is presently a common problem.

We now discuss the properties of a PLC database.

(a) Real-Time Database : The data in the input

buffer must be scanned within reasonably

short “real-time” intervals ranging from

microseconds to seconds. Therefore,

responses to queries must be guaranteed to be

less than a certain “realtime” time bound,

almost always less than 5 to 10 seconds.

(b) Main Memory Database

Microseconds/seconds query response restric

tions necessitate main-memory-only databases.

Figuie 1. Proposed Azthiiecture for a Scientific Applicatixi

(C) Scalable Database : Once the environment of a PLC and the requirements of the associated application

program are determined, the possible query types to the database stay fixed for a reasonably long period of

time. Since the response time of queries is of utmost importance, the DBMS should be scaled so that only

the needed mutines/functions (e.g., access methods, data structures, etc.) are incorporated.

(d) Time-Constrained Queries : The database system must be able to process queries with sthct time con

siraints, i.e., queries of the type “get the output of query q in no more than t time units”. For aggregation

queries, our approach, discussed in detail in HOOT 88, HOOT 89, HouO 90a, HouO 90b], is as follows.

When a response to a query within the given time units is not possible, we use data samples and construct

an approiima:e response to the query. In principle, the actual query response may be a single value (e.g.,

aggregation queries such as COUNT, SUM, MAX, etc) or it may simply be a set of values. For the latter

case, we are currently researching graceful time control and query revision algorithms.
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(e) Error-Constrained Queries : In some applications, users may specify an acceptable error range for the

query response, in addition to (or in place of) a time constraint. An example may be “get the output of a

query aggregate(E) such that the variance of the relative error in the response is less than 3%”. Clearly, in

such an environment, the user is also very much interested in the degree of the error committed due to the

approximation. We are currently investigating the techniques for processing error-constrained queries.

In section 2, we discuss the general characteristics PLCs, and briefly present the ladder logic language.

Section 3 discusses the features of our design for a database system for PLCs.

2. General Characteristics of PLCs and Ladder Logic Language

In general, the PLC hardware is mostly custom-built with occasional off-the-shelf hardware, and consists

of a CPU (or multiple CPUs), main memory, an “industhal” terminal, and high- and medium-speed data com

munications hardware. Although the CPU has an instruction set similar to those found in CPUs of 16-bit and

32-bit machines, it is especially equipped with fast bit manipulation instructions. The industrial terminal comes

with a special keyboard to make the programming of the PLC easier and/or to intervene with the application

program.

The PLC software consists of an operating system, high-speed communications software for communicat

ing with I/O processors, medium-speed communications software to the industrial terminal and to other “intelli

gent” devices.

General-purpose computers and PLCs differ in the programming languages that they use, environmental

specifications, and their user types. PLCs are rugged, and work in hostile environments with no special climate

controls, tolerating extremes of temperature (60° C), humidity (95%) and air contamination.

The primary programming language for PLCs is the ladder logic language, which is a visual language that

attempts to capture relay logic schematic, the industry standard for specifying control functions in scientific

applications. In general, the following description of the ladder logic language is common to most implementa

tions.

A rung is an ordered set of PLC instructions drawn on a single line. Instructions on a rung are classified

as input instructions (those that monitor the input buffer) and output instructions (those that set the output

buffer), and are executed from left to right, sequentially (Please see figure 2). A PLC application program con

sists of a main program and a set of subroutines, each of which containing an ordered set of rungs. Rungs in a

main program or a subroutine are executed sequentially from top to bottom using the following rules

(i) When the “Jump to rung with label A” is encountered on a rung, execution jumps to the rung with label A,

(ii) A logical switch# S is a boolean variable with values “on” or “off’ (representing, perhaps, a physical switch

or a relay contact). A logical switch condition is an atomic formula of the form “S1 = on” or “S1 = off “.

Each input instruction has the so-called logical switch condition that is evaluated to true or false when the

instruction is executed. For example, two instructions of the ladder logic language are “examine logical

switch condition S = on “, described graphically by — I~ I—, and “examine logical switch condition S = off,

described by (please see figure 4). During a left-to-right instruction execution on a rung, the output

instruction is executed if and only if the logical switch conditions of all the input instruction of the rung are

true.

# Logical switch and logical switch condition are our terminology, an attempt to simplify the PLC terminology.
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(b) A Rung with Four Instnictions

Figure 2. Rungs in Ladder Logic Language

Ladder logic instructions include relay-type instructions, timers and counters, data transfer/comparison and

arithmetic instructions, bit manipulation, and branching instructions.

The application program has begin and end statements. Application program scan refers to the execution

of the application program starting with the begin statement and ending with the end statement. At the end of

the application program scan, control is transferred to the PLC operating system which performs an I/O scan

(please see figure 5). During the 1/0 scan, the data in the output buffer is copied into the main memory loca

tions for autonomous 1/0 processors to set I/O devices, and the data in the input buffer is entered from the main

memory locations already refreshed by autonomous I/O processors#. There are provisions for sending output to

slow (e.g., electromechanical) devices as follows. The programmer of the application program, knowing the

time needed to, say, set the slow device, sets directly in his application program the main memory area

inspected by the autonomous processor so that the rest of the application scan time and the I/O scan time are

sufficient to set the device. At the other extreme, the application program scan time may be long enough for an

1/0 processor to enter multiple data from a device@. Too much data from a device in a single application scan

time, however, indicates a delay on the part of PLC to recognize and act on emergencies, which is not desirable.

To summarize, the application programmer deals with actual (realtime) clock times, and needs to have

precise estimates for program scan times and I/O scan times. For time estimations, the PLC manufacturers sup

ply information such as 4 mseconds for 1000 ladder logic instructions, and 1 mseconds for copying 256 words

into an input buffer during the 1/0 scan. In most applications, the processor scan time is kept below 10 seconds.

Thus, database manipulation instructions also need to have precise time limits available to (or set by) users.

After the completion of an 1/0 scan, a new scan of the

application program starts. Thus, a PLC is a nonstop com

Appitcatteft Proq~ Sc.a puter, and its processor repetitively executes the application

iio .c&n program scan and the I/O scan controlling from hundreds to

a few thousand scientific application devices.

Figuzt3. APLCP,oceuorScan

3. Features of the Database System

From the discussions above, it is clear that a PLC database is a continuously growing database. At the

steady state, to limit the size of the database, histori~ial data that were collected before (t,~~—&), where t,.~ is

the present time and & is a time interval, must be archived and removed from the current database.

# When there are no 1/0 processors (e.g., a simple PLC) the I/O scan simply refers to reading from some input devices and setting other out

put devices.

@ This case does not exist when there are no I/O processors.

(a) Two Rungs (with Labels A and B) in Ladder Logic Language
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3.1 Architecture

We have designed a two-level, single-user database system architecture. We have omitted from the archi

tecture the external model of the traditional database architecture not because PLCs are not powerful, but

because concurrently running application programs using different views create problems in accurately estimat

ing the application program scan times. That is, in a multitasking environment where tasks compete for the

resources such as database relations and communication lines, deciding a single top-to bottom execution time of

a task in actual time is rather difficult (if at all possible). As far as the hardware computing power is concerned,

the present day PLCs are as powerful as personal computers (and, indeed, in some recent products,PLCs are per

sonal computers), and can certainly support concurrent data sharing among the application programs.

3.2 Data Modeling Issues

The traditional data modeling techniques directly apply to PLC databases. There is no reason why, say,

the Entity-Relationship Model of the data in the PLC database cannot be designed. All the well-known advan

tages of data modeling directly cany over to the PLC database environment, and will not be elaborated here.

The PLC environment naturally deals with historical data, e.g., the last reading of a temperature sensor, its

value yesterday, etc.. Again, there are various historical data modeling approaches in the literature. For our

prototyping effort, we have chosen tuple time stamping with begin-time, end-time values. Perhaps, timestamp

ing tuple components individually may be a better approach in terms of expressiveness and reduced redundancy.

However, such an approach produces too many timestamps for individual tuple components, creating a space

problem in a main-memory database.

It is important to note that, usually, autonomous I/O processors are not very intelligent devices. Therefore,

they simply provide input data from I/O scan to I/O scan. The I/O scan transmits this data into the input buffer.

Data in the input buffer must be converted into sets of tuples to be inserted into various relations of the data

base, and each tuple must be time-stamped by the PLC DBMS software.

33. DBMS Issues

There are a number of issues that need to be resolved in a time-constrained, single-user DBMS environ

menL These are (a) Data Archival, (b) Database Backup, (c) Database Integrity enforcement, and (d) Database

Recovery.

Implementing the mechanisms for each of the above issues

as independently executing tasks interferes with accurate

scan time estimations, and is not an option. Each mechan
DatSb4..—,ss~fltIaiI

c::)
ism must be implemented sequentially during a PLC proces

?ppiLcatto~ ~roqT~ Scan
sor scan. Thus, we create a third component in the PLC

ZIO Scan processor scan, called the database-essentials time. (Please

see figure 4).

Figure 4. Revised PLC Processor Scan

Archival data is not necessarily the same with the contents of the database. For example, every 1,000th

reading of a sensor, or the average, maximum and minimum values in every hour of a sensor device may be

archived. Therefore, archived data may first be obtained as a result of some DML manipulations and then can

be made part of the current database instance.
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Since presently PLCs do not have secondary storage, archived data and database backup copies must be

kept in the host computer. There are also arguments in the PLC community for incorporating secondary storage

to PLCs for another reason : fast coding, revision and testing of the application program. In either case, the

database backup process must be time constrained. It should also be incremental in the sense that only the

recent data updates to the database are recorded. Integrity checking and enforcement must also be time-

constrained with additional attention to minimize the time needed. Integrity checking involves both the data

obtained from the input buffer and the data produced and entered into the database by the application program.

Finally for recovery, we do not propose to have any special mechanisms, the most recent backup copy can be

used to restart the database.

3.4. Query Language Issues

For our implementation Liu89], we have chosen the relational model for conceptual modeling. The PLC

instructions are augmented with a Data Manipulation Language to allow for the querying of the relations, i.e.,

the structured data in the main-memory-only database relations. (Please note that the database is different from

the input/output buffers). An instruction box in the rung of a ladder logic program can be (a) a relational alge

bra (RA) query, (b) an SQL query, or (c) a QBE-like query, called Ladder-Logic-by-Example (LLBE) query.

The relational algebra language is used in HoOT 88, HOOT 89. HouO 90a, HouO 90b] for time-

constrained query processing, and
, presently, we have the most insight into it in terms of estimators for aggre

gate queries of RA. SQL is very commonly used in the industry, and may be advantageous because of its com

mon use. LLBE, being a graphics-oriented language, fits in well with the graphical ladder logic language.

An RA expression in an instruction box on a rung is extended by time- and error-control clauses of TIME

= time-limit and ERROR = (error type, error-limit), where time-limit specifies a time duration (e.g., 5

microseconds), error-type specifies the error type to be measured due to the estimation used (e.g., relative error

for the variance of the estimator for COUNT(E) query, where E is an RA expression HouO 88]), and error-

limit gives an upper bound on the error to be produced for the error-constrained query evaluation (e.g., 10%

error in the estimated query output value for the COUNT(E) query). For our prototype development, we have

chosen the RA language.

An SQL query can easily be extended by TI~vIE and ERROR clauses, and needs no further explanation.

Due to space constraints, we skip the discussion of the LLBE language.

For speed considerations, the compiled query processing approach must be used as opposed to the inter

pretive query processing approach. Also, the application program is revised rarely, and, therefore, the compiled

approach does not create problems.

Since there is one RA expression in a given instruction box on a rung, the time and error clauses directly

apply to a single RA query. For the choices of SQL or LLBE as the ladder logic database language, first there

is at the compilation time the extra steps of SQL-to-RA or LLBE-to-RA translation, respectively, and minimiza

tions of the produced set of RA expressions. These extra steps are reasonably well investigated, and do not

present major problems. An additional issue that needs to be solved is: when an SQL or an LLBE language is

used then a given database query in an instruction box may translate into multiple RA expressions. In such a

case, policies and mechanisms must be developed for splitting the time quota of the original query given by the

user over multiple RA expressions.

The output of a query may be a relation or a single value resulting from applying an aggregate function to

a relation. The output relations and values can be referred to by name like other relations or application program
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variables. Since query results would, in general, be relations, a facility to sequentially scan the wples of a rela

tion is provided. A pointer or a cursor can be defined to reference the tuples of the relation, in a loop, until a

required number of tuples has been read or some logical switch condition is satisfied.

We can associate a pointer PTR with a query output relation, OPEN PTR (to activate the pointer), perform

SCAN PTR (to read next tuple) and CLOSE PTR (to deactivate the pointer). PLC arithmetic instructions such

as ADD, DIVIDE and COMPUTE can be used to perform aggregation functions during the relation scan. Any

pointed tuple component is treated like a “read-only” variable, and may participate in any expression. However,

tuples and their components are updated with explicit database primitive update commands (of

insert/delete/modify).

Some basic PLC instructions have also been extended to increase their functionality. For example, we

have extended the “examine logic switch” instructions, the “examine input closed” and the “examine input

open”, to test the logical value of a propositional calculus formula, rather than testing a bit value corresponding

to the condition of a physical I/O. An “examine F” instruction causes the formula F to be evaluated and the true

value is then examined as in the basic examine instructions. In general, the formula F may contain a constant, a

variable, a component of a tuple being scanned by the pointer, and f(E) where f is an aggregate function and E

is a relational algebra expression. The functionality of the PLC Timer and Counter instructions have also been

enhanced. With the introduction of a time dimension into the database, events and intervals can also be

“counted” using database queries.

At times, the user is interested in timing the actual application program scan times and counting events in

time scales much larger than the PLC processor scan time. For such cases, there are retentive timer and counter

instructions that, say, count the PLC processor scans. Therefore, it is important for the user to precisely estimate

the evaluation times of database queries. This then necessitates not only an upper bound, but also a lower

bound on the time spent for a database query.
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Panel: Scientific Data Management
for Human Genome Applications

Panelists:

Stan Letovsky (Yale University)
Rob Pecherer (Los Alamos National Laboratory)
Arie Shoshani (Lawrence Berkeley Laboratory)

Genomic data refers to DNA structures in organisms, its stucture and function. Biolo

gists use various techniques to characterize the data, which result in “sequence” structures

(DNA, RNA, protein), and “map” structures (called genetic maps, cytogenetic maps, physical

maps, etc.) The panelists discussed the specific data management requirements needed to sup

port such data.

The main observation made is that the support for data of type “sequence” is essential.

Current commercial relational database technology is based on set theory, and do not support

the concept of ordered sequences and operators over such sequences. The only support

currently offered is in a form of “blobs” (Binary Large Objects), but the interpretation and

manipulation of such objects is left to the application program.

For Human Genome applications there are specific manipulations needed over sequences,

such as approximate string matching. This implies that the a scientific data management sys

tem that supports the concept of a sequence will need to allow for domain specific operators to

be defined and supported. This implies that such a system should be extensible. One of the

more promising approaches is the emerging object oriented database technology. The panelists

noted that other approaches, such as the extended relational approach, or logic databases arc

also potentially useful. The belief was that a technology that will combine the benefits of the

various approaches will eventually emerge.

The above points were further elaborated by emphasizing the need for integrated tools.

Tools development for solving complex problems in DNA structures is difficult because we

lack the building blocks which are integrated by a general purpose object paradigm.

Specifically, we need user interfaces, programming languages, and persistent databases with

basic object capabilities that can be extended (customized) to the particular domain of Genomic

data. The most pressing capability is persistent object storage.
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Panel Session On Statistical Expert Systems

Panel Members:

• David Hand — Open University, Milton Keynes, UK.

• Gultekin Ozsoyoglu — Case Western Reserve University, Cleveland, Ohio, USA.

• Roger Cubitt (Chairman) — Statistical Office of European Communities (EUROSTAT),

Luxembourg (Grand Duchy).

Opening remarks:

• Roger Cubitt

There has been a long standing and active interest in this conference in the development

of Expert Systems in the areas of Statistical and Scientific Data Processing and Analysis.

A number of papers have been presented over the years, and an excellent summary of the

various aspects of this area of interest has been published as part of the report of the third

meeting, (then still a workshop), in 1986 in Luxembourg.

EUROSTAT has launched for 1989 - 1992, a programme of research specifically in the

areas of Development of Statistical Expert Systems, “DOSES”.

This programme is organised in a way which is similar to other community research pro

grammes, with a majority of the funding designated for shared cost projects (maximum
EUROSTAT contribution, 50%) and a small proportion for fully financed projects. The

areas in which proposals have been sought are:

1. Preparation of a complete system for automated information processing.

2. Documentation of data and of statistical methods.

3. Access to statistical information.

4. Forecasting.

The proposals received thus far, have resulted in a number of acceptable projects in themes

1 and 4. Themes 2 and 3 have proved much more difficult to find proposals of a nature

and content to be accepted for funding.

Professor Hand who is an active researcher in the field of Statistical Expert Systems and

an independent evaluator of the DOSES project, gave his perspective of the European

research in this area and some views on his own research.

Professor Ozsoyoglu is active in the area of statistical and scientific databases and is a

regular attendee at these conferences. His remarks hinged on the general orientations of

work in this area and its likely results.
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• David Hand

Having been active in this field of research for nearly eleven years, I feel it is relevant to

give some of the fundamental motivations that were current at the time my research work

started. These were principally to help tile user of statistics design better experiments

and conduct better analysis. The problem of inadequate understanding of the statistical

techniques being used has been exacerbated by the increasing availability of software, and

hence the case of use—and misuse—of highly sophisticated statistical methods. Interest

in the field is still growing; there are many hundreds of research teams worldwide. This

is because statistics appears to be well suited to the E.S. Philosophy and researchers in

general, need to find statistical expertise which they do not themselves have in the face

of a general shortage of statisticians. Progress is now being made, however. Whereas ten

years ago, the tendency was to promise “My system will solve all these problems—when I

have built it”, it is now more on the lines of “My system does this—it’s not much but it

does it successfully”. There is now a better understanding of statistical expertise and an

appreciation of what might be achieved. A number of themes have become apparent, viz:

— Statistical strategy.

— Meta data.

— Second opinion for “experts”.

— “Consultation” or “knowledge enhancement” systems.

The last theme, which to some extent arises out of a wish to avoid the term “expert

system”, is where my own research is currently directed.

The motivation for this research results principally from the problems inherent in a rule

based system. It is ideal for some problem types but by no means for all, as it is funda

mentally diagnostic in approach and forces a structure onto the knowledge. This structure

is by its nature somewhat inflexible and thus, a whole class of questions a user might
wish to answer, are not possible. In addition, the interactions with a rule based system

tend to be unsatisfactory in that the client is rarely seeking a highly specific solution. A

final problem is a result of the current information explosion and the associated growth in

techniques available. Rule based systems tend to have difficulties in locating and accessing
information about this growing armoury of techniques. Thus my current orientation is not

towards an “expert in a box” type “expert system”, but a system to augment the users

own knowledge and expertise, i.e. a knowledge enhancement system.

On an implementation front, I would mention that the “mechanism” or “tool” I am ex

perimenting with in my research, is “hypertext” and a few implementations of this type

of system have been tried already (e.g. KENS, NONPARIEL).

• Gultekin Ozsoyoglu
First a disclaimer: I am neither an “Expert Systems” expert nor a Statistics Expert. That

said, let us just review the classical paradigm for Expert Systems aiid see where this leads

us for our subject. An “Expert System” is a system which is intended, to some extent

or another, to replace an Expert i.e. users who traditionally ask an Expert questions and

receive answers, re-direct their questions to an Expert System and get answers. In the
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field of statistics, one supposes that the user is some application domain expert (e.g. social

scientist, economist, etc.), and the Expert System provided answers some of the questions
of a statistical nature. Thus already we appear to have a problem in that on the face of

it, we have two Experts, one in a subject matter field, and one (a system) in a statistics

field, so the basis for any meaningful question/answer situation becomes less obvious.

There appears to be a requirement for evolutionary learning cycle between the user and

the Expert System, as indeed there would probably have been with an Expert. It is not

clear that this process can be automated in a Statistical Expert System and certainly not

in the general case. The problems of learning, evolving and adapting, appear to be a

significant one for Statistical Expert Systems.

There are then other problems that impinge on Statistical Expert Systems, such as inter

preting and clarifying the data which is often ambiguous or incomplete. Just the size and

complexity of a statistics area can pose a significant challenge for Expert Systems. Think

just of sampling or estimation, for example.

Having faced up to all this, we are still a long way from what any implications may be for

the Database Management System containing the Statistical or Scientific Data. What the

research is that needs to be done to even start to shed light on some of the issues involved,

is far from clear.

Points From The Ensuing Discussion:

The role of the Computer Scientist in the general domain of Statistical Expert Systems was

questioned. What could he provide and what framework was required in the research environ

ment to ensure that all necessary expertise was available? First questions concerned the nature

of the required system; was one seeking a domain specific system with significant capability in

a narrow application field, or a more general purpose system? Little evaluation appeared to

have been done on this. Behind this was the problem essentially already posed by David Hand;

Who was the system intended for? There appeared to be a consensus that the objective was to

capture the knowledge of the statistician but to do this, any system required the acceptance by

the statistician to succeed. The system needs to be adaptive to facilitate the learning curve of

the user and enable the system to be extended to cover new data sources and techniques.
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A Summary of the NSF Scientific Database Workshop

James C. French, Anita K. Jones, John L. Pfaliz

Department of Computer Science

University of Virginia
Charlottesville, VA

“... the Earth system science initiative will founder on the rocks of ind~fference to data access and

information management unless an aggressive and supportive new approach is taken— beginning no’1

1. Introduction and Background

This quote applies equally well to the space and life sciences. Over the next decade the problems
posed by the exponential growth of data in a variety of scientific disciplines will become increasingly
pressing. For this reason, an interdisciplinary workshop on scientific database management was organ

ized to look at these problems.

This workshop, conducted at the University of Virginia on March 12-13, 1990, was sponsored by
the National Science Foundation. It brought together computer scientists and serious user/proprietors of

scientific data collections in several fields of the space, earth, and life sciences. Our objective was to dis

cuss the issues involved in establishing and maintaining large scientific data collections, and to identify
opportunities for improving their management and use. More particularly, we sought to assess the current

state-of-the-art, assess whether the needs of the sciences are being met, identify the pressing problems in

scientific database management, and identify opportunities for improvement. We are still assimilating
the results of the workshop and will, in the final report, make recommendations toward improving the

usefulness and availability of science data.

Most of the issues arising in connection with scientific databases are similar to those in conven

tional business environments, but the focus is different. For example, transaction processing and con

currency control issues are more relevant to high volume data processing applications than to DNA

sequence analysis, seismic data analysis, or computational astrophysics. Query processing, however, is

equally important in each environment.

The relative importance of the issues associated with any data management undertaking is deter

mined by the characteristics of the data and the anticipated operational environment. Much scientific data

can be characterized by large volume, low update frequency, and indefinite retention. In fact, it is gen

erally safe to assume that scientific data resulting from experimental observations is never thrown away.

The volume of data can be truly staggering. Mapping the three billion nucleotide bases that make up the

human genome will result in an enormous volume of data. The Magellan planetary probe will generate a

trillion bytes of data over its five year life — more image data than all previous planetary probes com
bined. This suggests that much scientific data will not even be on-line.

A recent article2 describing the state of NSFNET characterized the problem of access to the net as

being hampered by a diversity within the computer world that “verges on anarchy.” This same diversity

This workshop was supported by the National Science Foundation under grant number IRI-89 17544. A summaly of the workshop
proceedings was presented at the 5th International Conference on Statistical and Scientific Database Management hosted by the University of

North Carolina at Charlotte in April, 1990. The workshop participants have not checked this draft for accuracy and balanced representation.

‘Earth System Science: A Closer View, Report of the Earth System Sciences Committee of the NASA Advisory Council, Jan. 1988.

2”Waiting for the National Research Network,” AAJ%S Observer, March 3, 1989.
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poses an equally substantial barrier to the access of scientific data by those who need it. Indeed, one of

the significant problems with scientific databases is largely logistical. According to a recent NASA study
of astrophysical data:

Analyses using multiple data sets from different missions, with support from ground-based observations,
are becoming an increasingly important and powerful tool for the modem-day astronomer. However,

locating the required observations and accessing and analysing the multiplicity of data sets is not easy at

present.3

Perhaps the greatest problem facing the scientist is the bewildering array of commercial and custom data

base interfaces, computer operating systems, and network protocols to be mastered in order to examine

potentially relevant data.

From the point of view of the practitioner, there are some relatively simple questions that must be

answered in order to enhance the scientific research environment:

What data is available to me?

Where is it located?

How can I get it?

To provide the scientific community with the means to answer these and other questions, database

researchers must examine the issues peculiar to scientific database management and the sharing of scien

tific data.

For these reasons, NSF decided to fund a workshop to examine the issues in more detail with the

goal of producing a planning document to guide the foundation as it considered a new research initiative

in this area. This two day workshop was held at the University of Virginia in early March. In addition to

the computer science representation, the workshop participants were drawn from among the various dis

ciplines of the earth (e.g., oceanography, climatology, geology), life (e.g., microbiology), and space (e.g.,
astronomy, astrophysics) sciences. The overall representation was approximately 40 percent computer
science and 20 percent from each area of the physical sciences. Besides NSF a number of government

agencies were represented including Department of Energy (DOE), National Oceanic and Atmospheric
Administration (NOAA), National Aeronautics and Space Administration (NASA), National Radio

Astronomy Observatory (NRAO), and National Center for Atmospheric Research (NCAR).

The workshop began with invited talks from each represented area with the objective of exposing
both common and distinctly different data management problems. The participants were then assigned to

one of four panels to examine the relevant issues more closely. Panel representation was proportional
across all disciplines. The panel topics were: (I) Multidisciplinary interfaces: standards, metadata, mul

timedia, etc.; (2) Extensibility; (3) Core Tools: access methods, operators, analysis tools, etc.; and (4)
Case Study: Ozone Hole. The case study was used as a vehicle for investigating data management needs,

successes and failures in a real mission environment.

2. Dimensions of Scientific Database Systems

The workshop observed that there is a spectrum of database types, which can be characterized in

terms of a number of dimensions (which need not be independent). The three we clearly identified (we

suspect there may be more) are:

level of interpretation,
intended analysis, and

source.

Many fruitless hours of argument and controversy can be avoided if the protagonists will first identify
where the data sets of interest to them lie with respect to these three characterizing dimensions. All too

3Astrophysics Data System Study. Final Report, NASA. March 1988.
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often, major disagreements occur because the participants are implicitly assuming different database

types.

2.1. Level of interpretation: A scientific database may be a simple collection of raw data, or real world

observations, or it may be a collection of highly processed interpretations. At least two of the panels
observed that this dimension manifestly affects what one expects of the data set, and how one employs it.

One proposed subdivision of this dimensional axis consists of

raw/se,tsor data: (seldom saved) raw values obtained directly from the measurement device;

calibrated data: (normally preserved) raw physical values, corrected with calibration operators;

validated data: calibrated data that has been filtered through quality assurance procedures,
(most commonly used data for scientific purposes);

derived data: frequently aggregated data, such as gridded or averaged data;

interpreted data: derived data that is related to other data sets, or to the literature of the field.

This sequence of successively greater interpretation need not be precisely correct. But it does indicate

that the type of data in a data set can be highly dependent on its level of processing.

2.2. Intended Scientific Analysis: Our assumption is that all scientific data sets are subject to further

analysis, otherwise there is little reason to retain them. The nature of such subsequent analysis frequently
determines what data should be retained and whether a particular representational format is adequate.
Much earth science data is analyzed statistically, time sequenced, multidimensional tables are common.

A predominant activity in biological genome databases is elaborate pattern matching over linear, charac

ter data. Multi-spectral analysis in the space sciences apply transformations (e.g. Fourier) to very large
two and three dimensional arrays. For each type of analytic processing, a database with different charac

teristics is most appropriate.

The criticism of the relational data model and its attendant technology is largely because this model

is designed for commercial applications, and seems unsuited to any of the analysis domains above.

23. Source: This dimension, which is not generally mentioned in the database literature, may be the

most fundamental. In Figure 1, we illustrate a familiar single-source database environment. Here we

envision a single mission, such as the Hubble Space Telescope generating the data that is collected.

Either raw or physical data may be retained in its original state in a raw data archive. Commonly, the raw

data will be processed, by instrument calibration or by noise filtering, to generate a collection of more

usable calibrated or validated data. Finally, this processed data will be interpreted in light of the original
goals of the generating mission.

Both the syntactic complexity and the semantic complexity of the interpreted data will be much

greater than either of its antecedent data collections. It will have different search and retrieval require
ments. Possibly, only it alone will be published.

In contrast to such a single-mission/single-source data archive one has data archives that are derived

from multiple sources employing multiple data generation protocols. Figure 2 illustrates a typical mul
tisource data collection. This structure would characterize the Human Genome project in which several

different agencies, with independent funding, missions, and methodologies, generate processed data

employing different computing systems and database management techniques. All eventually contribute

their data to a common data archive, such as GENBANK, which subsequently becomes the data source

for later interpretation by multiple research laboratories that also manage their local data collections

independently. In each of the local, multiple, and probably very dynamic, database collections one would
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expect different retrieval and processing needs, as well as different documentation requirements.

This classification of data collection types, however imperfect, helped clarify discussions at the

workshop. Readily, the data collections associated with most scientific enquiries will occupy middle

Multi-source Data Collections

Figure 2
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positions along these various dimensions. In the following sections summarizing the perceived issues in

scientific database management, the urgency and importance of a particular problem is frequently depen
dent on one’s position in the multidimensional space of all scientific database applications.

3. Problems

All sciences have major data management problems, for example: handling volume increases;

metadata management; integration of database facilities with applications; finding data; access policy;
ease of use; and consistent long term funding. With the exception of long term funding, different sci

ences seem to have different problems. Technical data management techniques are often domain specific.
In the following sections we have subdivided the problems raised at the workshop into two large
categories, main issues and lesser issues, and described them more fully within each category. This sub

division has been imposed to indicate a sense of relative importance to the reader without attempting a

fruitless exercise of exactly ranking the problems.

3.1. Main Issues in Scientific Database Management

The issues and problems discussed in this section received most of the attention of the participants.
For this reason they were deemed to be most worthy of immediate attention.

3.1.1. Metadata: The data within scientific databases covers a wide spectrum of classes: raw data —

values measured by a sensors or other instruments; calibrated data — normalized raw data correcting for

instrument, environment, or other experimental differences; validated data — errors removed; derived

products — computed values, graphs, and models; and interpreted data. In addition, the metadata asso

ciated with the data must be preserved and accessible. This is the information required to identify data of

interest based on content, validity, sources, or other selected properties. This data encapsulates informa

tion such as:

Who did what and when

Device characteristics

Transform definition

Documentation and citations

Structure

It is imperative that the metadata remain attached to the data or the data become meaningless and unus

able.

3.1.2. Locating Data: Early in any scientific inquiry, the need to find data becomes critical to the suc

cessful outcome of the investigation. Hypotheses need to be corroborated, or pethaps, archived data is

being mined for possible undiscovered properties. It becomes necessary to address questions such as:

What data collections exist?

Is the data relevant to my interests?

Do useful data items exist?

This implies the need for a rather general data browse capability providing facilities for locating data sets,

and further scanning them for indications of probable interest.

3.1.3. User Interfaces: Interdisciplinary investigations are becoming more widespread. Interfaces to

database management facilities will have to support the domain specific jargon of the various sciences in

order to foster this kind of investigation. Practitioners can not be expected to master all domain jargon to

engage in casual collaboration.

In addition to managing domain specific lexicons, interfaces must provide facilities for better integration
with applications. Much of scientific database management is driven by stringent computational require
ments. To facilitate flexible investigations and high performance analyses, there must be better means
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foc hooks to special application programs; audit trail provision; communication with outside users; user-

transparent storage media hierarchy. Above all, data management systems must be extensible allowing
the user to define new types, structures, manipulation operators and displays.

3.1.4. More flexible Representational Structures: Perhaps the single unifying cry is that existing
data models are inadequate for science data needs. The relational model has some advantages. Chief

among them is that it is well-defined and has solid theoretical underpinnings. And, more pragmatically, it

exists within successful commercial products. However, the semantic gap between the relational model

and what scientists need must be addressed. We must seek alternatives such as extending the relational

paradigm, object-oriented database technology, extensible tool kits, and logic databases. We must also

consider alternatives to the relational model for efficiently supporting temporal, spatial, image,

sequences, graph, and other more richly structured data.

3.1.5. Appropriate Analysis Operators: One area of concern noted by most of the participants was the

lack of appropriate operators within existing DBMS for manipulating the kinds of data encountered in

scientific applications. More flexible comparators are necessary when attempting to match DNA

sequences or retrieve image data. There was not universal agreement as to where these operators belong
— within the DBMS as intrinsic operators or external to the DBMS as utilities or part of an analysis

package. The approach used now is to have a commercial DBMS export data for use by external utilities.

Often the data can not be exported in a format compatible with the utility program so ASCII files are

created and subsequently massaged into an appropriate form. If results of the analysis are to be saved, the

process must be reversed and the updated data imported back into the DBMS. Since there are no stan

dards this is a tedious and time consuming process.

Extensible database technologies provide the mechanism for embedding custom operators into the

DBMS. A philosophical question arises as to how much custom functionality is desirable within the

DBMS. It may be more appropriate to create an integrated analysis environment in which a DBMS can

interact in a standard way with a variety of useful tools.

3.1.6. Standards: Heterogeneity in data and operational environments is a fact of life. We must find

ways to promote consistency within scientific disciplines. It is clearly unreasonable to expect all discip
lines to converge on some unifying standard, so heterogeneity will continue to be a force to be reckoned

with. However, there are already instances of standardization within disciplines (e.g., the astrophysics

community has endorsed FITS as its data interchange standard) and this trend should continue.

It was noted that the most successful standardization efforts arise when an organization creates a useful

data format and associated analysis tools and then distributes them widely at no charge.

3.1.7. Standards for Data Citation: There was strong sentiment that data used in the conduct of an

investigation should be cited prominently. A standard citation mechanism would allow other researchers

to locate and examine precisely the data used in the investigation.

In a related problem, it was noted that much of the interesting metadata is actually citations into the scien

tific literature. These citations should be handled in a standard way so that where possible their content

may be examined as part of a search for important data or to help access the quality of data which is being
browsed.

3.2. Other Issues in Scientific Database Management

The following issues and problems associated with scientific database management arose in the dis

cussions of the workshop. We have rated them as less important issues because, either (1) there exist par

tial, although imperfect, solutions to the problem, (2) they seemed to be less frequently encountered, or

(3) the problems are not readily amenable to a technological solution. While these may be less important
from our perspective, there exist views in the scientific database management world (using the general
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dimensions described in section 2) in which they can be very important.

3.2.1. Data Set Transmission: Data sets residing at one site (usually the collecting set or a designated
repository) may have to be transmitted to the site where subsequent analysis will take place. Participants
observed that there exist a number of wide area networks of sufficient bandwidth and reliability to handle

most reasonably sized data sets. However, transmission of very large data sets may be slow. The delay
in response time may associated with the time to access and transmit the data set at the host site, as much

as network delays.

3.2.2. Conversion of Data Sets to Local Site Format: A data set received from a foreign site may be

in a format that is incompatible to the analysis system at the local site. Issues of subsequent data set

conversion tend to involve those of adequate metadata to interpret the format and structure of the data dis

cussed above, and the more general issue of standards for scientific data. Some discipline specific models
for data exchange already exist, such as FITS in the astronomical community.

3.2.3. Making Multiple Data Sets Comparable: Analysis involving multiple data sets from disparate
sources can be difficult. Relations obtained from Oracle, Ingres, or other relational DBMS need not be

immediately comparable. With data coming from even less rigid data models, such as OODBMS, the

problem is magnified. A straightforward technical approach involves converting all data sets to a local

standard as described above. At a much deeper level, this problem involves the general issue of data

fusion, which must take into account the semantics (or intended meaning) of the data items in order to

make meaningful comparisons.

3.2.4. Need for Interoperability of Multivendor DBMS: In some ways this is a subset of the preced
ing issue, in some ways it is a superset. The goal would be to allow analysis programs running under the

aegis of one DBMS to directly query/access data stored in a different DBMS.

31.5. Quality Assessment of a Data Set: Participants repeatedly noted the difficulty in assessing the

quality of a received data set. While quality assessment has always been a fundamental scientific prob
lem, many of the technical barriers revolve around the problem of insufficient metadata to interpret the

data.

3.2.6. Volume of Scientific Data, Need for Permanent Archiving: The expected volume of sensor

generated scientific data is awesome. In the coming decade it will far out strip the resources available to

analyze it. The issue is: should (can) all of it be archived for possible later interpretation, or should (can)
it be passed through some preliminary filter to determine what should be saved.

A directly related issue — that data collection is often well-funded, while data management is poorly
funded, if funded at all, was a recurrent theme.

3.2.7. Proprietary Behavior of P1’s with Respect to Data Sets: Data collecting P1’s and their funding
agencies have little incentive to release verified, but uninterpreted data sets, in a timely fashion. In fact

there are a number of sociological and monetary disincentives to do so.

3.2.8. Data Management is not Respected in Scientific Communities: It was repeatedly noted that

data management is not an attractive career path within any of the scientific disciplines, whose primary
goal is one of discovery.

This summary should convey to the reader the variety of problems faced by scientists in the

management of their data. Unless these problems are addressed now, scientists in the 90’s will find data

management an increasing barrier to continued progress in their fields.
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6 SSDBM

Preliminary Call for Papers

Sixth International Conference on Scientific and Statistical Database Management

Zurich, Switzerland, June 16-18, 1992

The Conference:

This international conference provides a forum for the presentation and exchange of current work in the

field of scientific and statistical database management. We are particularly soliciting papers on new con

cepts, novel ideas, and state-of-the-art research results relevant to database and knowledge base design from

a theoretical as well as applicative point of view. To encourage the dialog between practitioners and

researchers, we invite contributions also from domain-scientists, reporting experiences in data management

from their field. Topics of interest include but are not limited to: modelling and semantics, query languages

and user interfaces, physical organization, security, scientific databases, data analysis and visualization,

management of temporal and spatial data, evolution of scientific, engineering, or statistical applications.

Submission of Papers:

Authors are requested to submit five copies of the complete paper, not exceeding 20 pages, as follows.

• Contributions from the American continent • All other contributions to (general chairman):

to (co-chairman): Hans Hinterberger

James C. French Institute for Scientific Computing

Institute for Parallel Computation ETH-Zentrum

School of Engineering and Applied Science CH-8092 Zurich

Thornton Hall Switzerland

University of Virginia

Charlottesville, VA 22901 USA

Time Schedule:

December 15, 1991 Deadline for Submission of Papers

April 10, 1992 Notification of Acceptance

May 29, 1992 Final Paper to be Included in Proceedings

Program Committee: (not complete)

R. Cubitt (Luxembourg), J.C. French (USA) co-chairman, P. Golder (UK), H. Hinterberger (Switzerland) General

Chairman, J. KJensin (USA), M. McLeish (Canada), Z. Michalewicz (USA), G. Ozsoyoglu (USA), lvi. Rafanelli (Italy),

R. Pecherer (USA), D. Rotem (USA), A. Shoshani (USA), A. Westlake (UK), M. Zemankova (USA).

Organizing Committee: (not complete)

R. Cubitt (Luxembourg), H. Hinterberger (Switzerland), J.L.A. Van Rijckevorsel (Netherlands).

Sponsors: (not complete)

Swiss Federal Institute of Technology, Zurich.

62



COMPLETEAND RETURN THIS FORM TO:
IEEE COMPUTER SOCIETY
1730 Massachusetts Ave~ NW

Washington, DC 2(V36- 1~93

__

-
Initial Ot~MriMrsiMsjMis~jP,of

I I H
L~pt. Mail Slo~ld?O.Boz/Apai1ment

~::i New Apphc~tion

____

~L] ~ Che~ &~.
~ Inlonnation Update

Day Year

w I
Slate Postal Code

H H HW H H
Office F17O~w Home Phone (optional)

IILJIHIHIHI

lam a member o!tbe Computer Society fl
Ys No

The Computer Society shares Its mailing lists with other organizations which have Information of Interest to computer professionals. If you do not

wish to be Included on those lists, please check here: E

IEEE COMPUTER SOCIETY

® Technical Committee Membership Application

INSTRUCTIONS~
Please print in ink or ~i,e, one character per box. INFORMATION OUTSIDE BOXES WILL NOT BE RECORDED. Street addresses are preferable to P.O. boxes formal!

delivery. International members are requested to make best use of available space for long addresses.

HIWI.HHWHWHHHHHHHH
_

____

Last Name First Name

I
__________

CoEr~anyNniwrsity/AgenCy Name

_____________________

H
__

__

~jealA~r~siP.O. Box Date: Month

I H
_______

City

Countiy

I
____________

________

E-mail Network E-mai!Addres.s (Mailbox)

I I H Ii
Telex Number IEEE Member/Affiliate Number

Ifyou are presently a member of the IEEE Computer Society, Place an X in the left- For each committee, please indicate activities of the Technical Committee in

side box below corresponding to a TC of which you would like lobe a member. If which you would like to become involved.

you are not a member of the Computer Society and would like to be a member of a

TC, place an X in the right-side box below. I would like to become Involved In the Technical Committee and:

MEMBER NON-MEMBER Conferences Newsletters Standards Development Education

01 i Computational Medicine 01

02 Computer Aichllecture 02

03 Computer Communications 03

04 Computer Elements 04

05 I Computer Graphics 05

06 Compute, Languages 06

07 Computer Packaging 07

08 Computers in Education 08

89 Computing and the HandIcapped 09

10 Data Englneering~ 10

11 DesIgn Automation 11 H
12 DistrIbuted ProcessIng 12

H
13 Fault-Tolerant Computing 13

14 Mass Storage Systems & Technology 14

15 MathematIcal Foundations of ComputIng 15

16 MIcroprocessors and Microcomputers 16

17 Mlcroprogramming 17

18 Multiple-Valued Logic 18

19 Oceanic Engineering and Technology 19

20 Office Automation 20

21 OperatIng Systems 21

22 Optical Processing 22

23 Pattern Analysis and Machine intelligence 23

24 Personal Computing 24

25 Real-Time Systems 25

26 Robotics 26

27 Security and Privacy 27

28 SImulation * 28
29 Software Engineering 29
30 Test Technology 30
31 VLSI 31
32 Computer and Display Ergonomics 32
33 Supercomputing 33

~PIeese note that the Technical Committees on Data Engineering and on Simulation now charge an annual membership
fee. The rates are $15 for Computer Society members, and $25 for non-members. Checks should be made out to IEEE

Computer Society and sent to the address above. Credit canis are accepted ONLYFROM NON-U.S. MEMBERS!

63







NON-PROFIT ORG.

U.S. POSTAGE,~, ThE IEEE COMPUTER SOCIETY
PAID~ 1730 MASSACHUSE1~rS AVENUE, N.W

SILVER SPRING, MDWASHINGTON, DC 20036-1903
PERI\AIT 1398

Mr. Tirnoleon K. Sellis

Dept. of Computer’ Science
Univ. of Md.

University of M~r~1and
College Park, MD ~O742
USA


	40979_DataEngineering_Sep1990_Vol13_No3.pdf

