
DECEMBER 1990, VOLUME 13, NO.4

a quarterly bulletin of the

IEEE Computer Society
technical committee on

Data

Engineering
CONTENTS

Letter from the Issue Editor 1

Won Kim

Report on the Workshop in Heterogenous Database Systems 3

Peter Scheuermann and Clement Vu, Eds.

Research Directions for Distributed Databases 12

Hector Garcia—Moilna and Bruce Lindsay

Architecture of Future Data Base Systems 18

Michael Stonebraker

Object—Oriented Database Systems: In Transition 24

François Band/hon and Won Kim

Accommodating Imprecision in Database Systems: Issues and Solutions 29

Amihal Motro

Research Issues in Spatial Databases 35

0. Guenther and A. Buchman

Database Security 43

Teresa F Lunt and Eduardo B. Fernandez

Real—Time Database Systems: A New Challenge 51

Sang H. Son

Data Dredging 58

Shalom Tsur

4 SPECIAL ISSUE ON DIRECTIONS FOR FUTURE DBMS RESEARCH AND DEVELOPMENT
IEEE

DECEMBER 1990, VOLUME 13, NO.4

Editor—In—Chief, Data Engineering
Dr. Won Kim

UNISOL Inc.

9390 Research Boulevard

Austin, TX 78759

(512) 343—7297

Associate Editors

Dr. Rakesh Agrawal
IBM Almaden Research Center

650 Hany Road

San Jose, Calif. 95120

(408) 927—1734

Prof. Ahmed Elmagarmid

Department of Computer Sciences

Purdue University
West Lafayette, Indiana 47907

(317) 494—1998

Prof. Yannis loannidis

Department of Computer Sciences

University of Wisconsin

Madison, Wisconsin 53706

(608) 263—7764

Dr. Kyu—Young Whang
Department of Computer Science

KAIST

P.O. Box 150

Chung—Ryang, Seoul, Korea and

IBM T. J. Watson Research Center

P.O. Box 704

Yorktown Heights, NY 10598

Chairperson, TC
Prof. John Carlis

Dept. of Computer Science

University of Mennesota

Minneapolis. MN 55455

Past Chairperson, TC
Prof Lany Kerschberg
Dept. of Information Systems and Systems Engineering
George Mason University
4400 University Dnve
Fairfax, VA 22030

(703)764—6192

Distribution

IEEE Computer Society
1730 Massachusetts Ave.

Washington, D.C. 20036—1903

(202) 371—1012

Data Engineering Bulletin is a quarterly publication of

the IEEE Computer Society Technical Committee on

Data Engineering. Its scope of interest includes: data

structures and models, access strategies, access

control techniques, database architecture, database

machines, intelligent front ends, mass storage for

very large databases, distributed database systems
and techniques, database software design and im

plementation, database utilities, database security
and related areas.

Contribution to the Bulletin is hereby solicited. News

items, letters, technical papers, book reviews, meet

ing previews, summaries, case studies, etc., should

be sent to the Editor. All letters to the Editor will be

considered for publication unless accompanied by a

request to the contrary. Technical papers are unre

fereed.

Opinions expressed in contributions are those of the

individual author rather than the official position of

the TC on Data Engineering, the IEEE Computer
Society, or organizations with which the author may
be affiliated.

Membership in the Data Engineering Technical

Committee is open to individuals who demonstrate

willingness to actively participate in the various acti

vities of the TO. A member of the IEEE Computer
Society may join the IC as a full member. A non—

member of the Computer Society may join as a par
ticipating member, with approval from at least one

officer of the IC. Both full members and participat
ing members of the TC are entitled to receive the

quarterly bulletin of the TO free of charge, until fur

ther notice.

Letter from the Issue Editor

This is a special joint issue of ACMSIGMOD RECORD and IEEE Data Engineering Bulletin on Dl

rectlons for Future Database Research and Development. In the past some senior researchers,

singly and collectively, attempted to provide directions for future database research in the form of

so—called “manifestos” and reports of workshops sponsored by a few organizations. Further, each

issue of the IEEE Data Engineering Bulletin during the past decade has focused on a single topic

of “current” database research topics, thereby providing directions for near—term research. My ob

jective in organizing this special joint issue is to bring these recent disparate efforts to a grand cul

mination with a compendium of the thoughts of some of the leading authorities in each of a dozen

or so areas of database research and development that many believe to be the most important.

I have held the belief for some time that, as the report of the recent Lagunita workshop concludes

also, the primary challenges facing database professionals today are to bring about the transition

from the current relational database systems to the next generation of database systems in order

to dramatically expand the scope of applicability of database technology to beyond the convention

al transaction—oriented business data processing; to allow interoperability of a wide variety of data

sources managed by existing (and emerging) database systems and file systems; and to evolve

the architectures of database systems in keeping with the rapidly unfolding revolutions in hardware

technology. The first challenge requires significant additional research in various subdisciplines

within databases, including object—oriented databases, extensible databases, spatial databases,

deductive databases, temporal databases, imprecise databases, real—time databases, scientific

databases, database security, data dredging, database programming languages, and nonpro

grammer’s application development environments. The second area of challenge is global or multi-

database systems. The third area of challenge is parallel database systems and distributed data

base systems.

I selected the above areas of research, and then for each are’a invited a few of the leading authori

ties to provide a report on the current status of the area and directions for further research and de

velopment. For six of these areas, I invited one expert from academia and one expert from industry

to jointly author the report to achieve a balanced view of the area. For database programming lan

guages, I elected to include a condensed report of a recent workshop on the subject co—sponsored

by the National Science Foundation (NSF) and INRIA. For heterogeneous databases and scientific

databases, I invited and edited the reports of workshops on the subjects that NSF sponsored during

the past year. I also invited the report of the recent Lagunita workshop, also sponsored by NSF, as

the extended introduction to the joint issue. I failed to find authors willing to do a report on friendly

user interfaces. (I should add that Maria Zemankova should receive at least a figurative bouquet

of flowers and a case of champagne from the database community for her efforts in securing NSF

funds to sponsor these three timely workshops.)

1

I elected to include some of the reports in both SIGMOD RECORD and Data Engineering, but others

in only one of the two publications. This is to accommodate the 64—page space limit in Data Engi

neering, and to avoid repeating in the same publication any topic which was the subject of a special

issue within the past few years. Further, ACM SIGMOD and IEEE TO on Data Engineering both

charge membership fees to partially offset the cost of publishing and distributing their respective

newsletters, and I believe that members of these professional societies would not care to see a

completely overlapping joint issue. I included in both publications reports on the topics that in my

view have potentially the most impact on the future of database technology, even if they may have

been subjects of special issues in the recent past: the reports on imprecise databases and database

security are cases in point. The following reports are included in both publications: heterogeneous

databases workshop report, object—oriented databases, spatial databases, database security, and

distributed databases. The following are included only in the SIGMOD RECORD: Lagunita work

shop report, scientific databases workshop report, database programming languages workshop re

port, extensible databases, deductive databases, temporal databases, and parallel databases.

The following reports are included only in Data Engineering: real—time databases, data dredging,

and on the future DBMS architecture.

The contributors to this issue are all leading authorities in the areas they report on (I hope my includ

ing myself as a co—author of one of the reports will not disturb anyone’s sensibilities), making this

joint issue a true “all—star” issue. It certainly was a privilege and pleasure to have worked with these

outstanding professionals; all in earnest efforts and considerable time on their reports, and (more

or less) met all my deadlines. I hope that this special issue will have a significant and lasting influ

ence on the course of our field.

I request that those interested in obtaining copies of this joint issue to contact directly ACM Head

quarters in New York City and IEEE Computer Societyin Washington, D.C.: the demands of my job
makes it impossible for me to be responsible for distributing complimentary copies of this issue to

anyone who calls.

Won Kim

UniSQL, Inc.

Austin, Texas

October 25, 1990

2

Report on the Workshop on Heterogenous Database Systems
held at Northwestern University

Evanston, Illinois, December 11-13, 1989

Sponsored by NSF

General Chair Program Chair

Peter Scheuermann Clement Yu

Program Committee

Ahmed Elmagarmid Frank Manola Arnon Rosenthal

Hector Garcia-Molina Dennis McLeod Marjorie Templeton

Executive Summary

Advances in networking and database technology during the past decade have changed
dramatically the information processing requirements of organizations and individuals. An

organization may have heterogenous database systems which differ in their capabilities and

structure and which may be dispersed over a number of sites. In addition to these charac

teristics of heterogeneity and distribution, the ever larger number of databases available in

the public and private domain makes it imperative to allow shared access to these databases

in such a way that individual systems maintain their autonomy. Thus it becomes necessary

to develop new techniques and provide new functionality to support the interoperability of

autonomous database systems without requiring their global integration. Furthermore, the

demands for interoperability extend beyond database systems to include office information

systems, information retrieval systems and other software systems.

Research into the interoperability of heterogenous database systems plays an important

role in the development of high level open systems. This important fact has been recognized
not only in the United States but also in Japan and in Europe, with Japan having allocated

around $120M over five years for research and development in this area.

The objective of this workshop was to explore current approaches to interoperability of

autonomous information systems and to identify the most important research directions to

be pursued in this area. This report summarizes our discussions and broadly classifies the

issues into the following categories: 1

1. Semantic Heterogeneity and Schema Integration

2. The Role of the Object-Oriented Approach

3. Transaction Processing

4. Query Optimization

5. Standardization Efforts

‘Any opinions, findings, conclusions, or recommendations expressed in this report are those of the panel

and do not necessarily reflect the views of the National Science Foundation.

3

Introduction

We are currently at a crossroads in the development of heterogenous distributed database

systems. Advances in the networking and database technology have added two new dimen

sions to the problems to be solved, namely size and autonomy. The proliferation of public
and private databases implies that for effective sharing of information we must provide tools

to help users locate the information sources and learn something about their contents. In

addition, organizations must maintain a certain degree of autonomy over their data in or

der to allow access to their information. We can distinguish different types (degrees) of

autonomy: design autonomy, communication autonomy and execution autonomy. Design
autonomy refers to the capability of a database system to choose its own data model and

implementation procedures. Communication autonomy means the capability of a system to

decide what other systems it will communicate with and what information it will exchange
with them. Execution autonomy refers to the ability of a system to decide how and when

to execute requests received from another system. Design autonomy usually has been as

sumed in distributed database systems, and this assumption brought with it the issue of

heterogeneity. Here we can distinguish between data heterogeneity and system heterogene
ity. Examples of system heterogeneity are differences in data model, data manipulation

language, concurrency control mechanism, etc.

The workshop examined the impact of heterogeneity, autonomy and size on the devel

opment of federated database systems, in particular with respect to schema integration,
transaction processing and query processing. We use the term federated database system

or multidatabase system to refer to a collection of predefined database systems, called local

database systems, that cooperate to achieve various degrees of integration while preserving
the autonomy of each local database system. We explored the techniques and functional

ities required to support the interoperability of federated database systems as well as the

interoperability of database systems with other software systems.
This report summarizes the invited talks and position papers presented as well as the

open discussion held with all the participants on the last day of the workshop.

Semantic Heterogeneity and Schema Integration

Each local database system in a federated architecture has its own conceptual schema,
which describes the structural and dynamic properties of its information. Structural prop

erties refer to the specification of object types and their relationships and constraints at

various levels of abstraction. Structural description included both data and meta-data spec

ifications. Dynamic properties describe how constraints are to be enforced and give the rules

for update propagation in response to various operations.
We can observe a spectrum of database coupling that has been proposed (at the schema

level) to support the interoperability of pre-existing database systems in a federation. At

one end of the spectrum we find advocates of total integration, one global federated schema

constructed under the responsibility of a global administrator. At the other end, we find

systems that use partial integration, with the users themselves specifying which subsets of

4

the conceptual schemas should be grouped into partially federated schemas. While total

integration may be feasible for a small number of databases, it appears that the partial
integration approach is more desirable for an environment with many databases, some of

which may appear and disappear on a daily basis. However, the problems of enforcing
constraints and view update propagation across a number of partially federated schemas

remain to be solved.

The schema integration process, whether it results in one or multiple federated schemas,

presents a number of problems caused by various aspects of semantic heterogeneity and design
autonomy. Schema integration includes the resolution of naming conflicts (e.g. homonyms
and synonyms), scale differences, structural differences and missing data. Some tools for

schema integration are being proposed to aid in identifying various object relationships such

as equality, overlap, containment, etc. An issue that has not been addressed is that of

determining relationships among objects that also exhibit behavioral abstractions as is the

case in object-oriented systems. More importantly, it remains to be seen to what extent

these tools can be automated and to verify their validity on real life systems.
If the federated database schema(s) uses a different data model from the local conceptual

schemas, a schema translation module(s) must be provided for in the federated architecture.

Efforts have been reported towards the development of specification languages for mapping

among different data models. Although the problem of translation among data models

received much attention in the early 1980’s, the usual approach requires that a new mapper

be implemented any time a new DBMS is added in the federation. The advantage of a

specification language is that it would enable automatic generation of model mappers. While

this seems a promising approach to the schema translation issue, it is not always possible to

map from one data model to another and the extent to which this process can be automated

for arbitrary models also is not known.

The approach to federated integration discussed so far assumes that the users or the

database administrators have complete knowledge of the local conceptual schemas. How

ever, in an environment consisting of hundreds of databases, the first step prior to any

possible integration is to learn what information sources exist, where they are located, and

what their contents are. A number of concepts have been proposed, but it appears necessary

to couple these with Al techniques in order to help incorporate semantic knowledge into this

learning process.

The Role of the Object-Oriented Approach

Object-oriented approaches are being considered as potential solutions to problems that

exist in a number of software environments. Object-oriented DBMSs (OODBMSs) are be

ing developed to allow databases to include “unconventional” data types such as text, voice,

graphics, CAD data, etc. In a more general context, several papers at the workshop addressed

the problems of using object-oriented approaches to provide interoperability of heteroge
nous computing resources, including both data and software components, and of integrating

object-oriented databases with conventional relational database systems. Technology sup

porting these types of data and component integration will be crucial to the development of

5

the National Collaboratory, an infrastructure proposed by NSF to foster remote interaction

between multi-disciplinary teams of scientists. The use of object-oriented approaches both

complicates and eases the integration of heterogenous databases with other components.

First, increasing use of object-oriented systems will increase the complexity of the prob
lem. The enhanced capabilities of object-oriented systems create the potential for increased

heterogeneity of systems, since a richer collection of data types, as well as software compo

nents, will be included. Moreover, distributed object-oriented systems create the potential
for users and programs to access vast areas of resources. This implies the need for increased

assistance in simply selecting, let alone using, appropriate resources within the network.

This problem was also mentioned in papers at the workshop.

Second, object-oriented approaches provide a natural framework for use in integrating
heterogenous components. As a design approach, thinking of the components in a federa

tion as objects or collections of objects allows a common design methodology to be applied
to objects at all levels of granularity. As an implementation approach, an object-oriented
approach provides a rich data model for use in problems of semantic heterogeneity. Behav

ioral modeling provides a framework for procedures required in inter-object communication,
such as data conversion procedures, to be incorporated directly in the objects. Inheritance

facilities found in most object systems provide a means of organizing similar data found in

heterogenous components.

However, the papers at the workshop suggest that object-oriented approaches, at least

so far, have had relatively little impact on some key aspects of problems in heterogenous
systems. The architectures currently proposed for object-oriented heterogenous systems seem

reasonably straightforward extension of those found in many existing heterogenous database

systems. Although the use of objects provides a natural framework for including additional

metadata such as units, time information, etc. that may be useful in attribute integration
it is not clear how the complexity of this problem is simplified in object-oriented systems.

Similarly, considerably more research is required in such problems as query optimization
and concurrency control in the context of both object-oriented and heterogenous database

systems. At the same time, since OODBMSs are, in a sense, inherently heterogenous (since
they may include data of widely varying structure), work on OODBMSs and heterogenous
databases will be mutually supportive in these key areas.

In addressing these problems, it will be necessary to make use of work in related technolo

gies. Since object-oriented approaches deal with objects that include both procedures and

data, the required technology overlaps such areas as database, programming languages, and

operating systems technologies. Research in these areas is already becoming interrelated, as

illustrated by emerging work in areas such as persistent programming languages and object-
oriented distributed operating systems. It will be necessary to determine how these related

technologies interact with the specific problems of heterogenous DBMSs. For example, as al

ready mentioned, the development of advanced modeling facilities in object-oriented systems

may well help in heterogenous database system development. On the other hand, work on

data storage mechanisms in OODBMSs may have less effect, since the storage requirements
in heterogenous systems will be handled primarily by the underlying local DMBSs.

It also will be necessary for researchers to gain more experience with real systems that

include many large databases of realistic complexity. It is only this way that both the scope

of the problems, and those aspects of real systems that sometimes allow for simplifying

6

assumptions, will become evident.

Transaction Processing

One of the key issues in federated database systems is transaction management. The

problem is to make a collection of different database systems, running on different computers,

cooperate and execute a transaction.

In conventional systems, a transaction is a collection of database actions that must be

executed with three properties:

1. Atomicity: The entire transaction must be completed, or none of its actions should be

executed.

2. Serializability: The execution of a transaction must be isolated from other concurrent

transactions.

3. Durability: The values written by a transaction must persist in the database after the

transaction completes.

Guaranteeing these properties in a federated system is difficult mainly for three reasons:

1. The actions of a transaction may be executed in different systems, each of which has

different mechanisms for ensuring the properties of transactions. For instance, one

system may use locks to guarantee the serializability property, while another may

employ timestamps.

2. Guaranteeing the properties of transactions may restrict node autonomy, which may be

undesirable in a federated system. For example, to guarantee the atomicity property,
the participating systems must execute some type of a commit protocol. During this

protocol, some systems must become subordinate to other systems, and the subordi

nates may not unilaterally release the resources, thereby compromising autonomy.

3. The local database systems may not provide the necessary “hooks” (functionality) to

implement the required global coordination protocols. Again referring to the commit

protocol, it is usually necessary for local systems to become “prepared,” guaranteeing
that the local actions of a transaction can be completed. Existing systems may not al

low a transaction to enter this state (without committing all changes of the transaction

to the local database), and providing this functionality may violate design autonomy.

Current efforts in this area may be classified into four (not necessarily mutually exclusive)
approaches:

1. Develop strategies for meshing together existing but different transaction processing
mechanisms. For example, some researchers have looked into mixed concurrency con

trol algorithms (e.g., locking, timestamps, optimistic) and mixed commit protocols

(e.g., centralized, distributed). Each local database system continues to use its native

strategy, although there may have to be modifications so that the global mechanism

can work.

7

2. Coordinate existing systems without any modifications. It is usually assumed that the

systems share some basic concurrency control and recovery strategies, but that they
must be globally coordinated. Each local system receives transactions either locally
or from a global execution component; it treats all transactions in the same fashion.

The global execution component must assure to it that the transaction properties are

guaranteed for non-local transactions.

3. Weaken the properties that are guaranteed for transactions. In other words, new con

cepts are defined that encompass some, but not all, of the desirable properties of trans

actions. These new models make it easier to execute “transactions” in a heterogeneous
environment.

4. Restrict the types of transactions and/or when they can run. If we can limit trans

actions a-priori, then it may be easier to guarantee the desired properties. As a very

simple example, suppose that node a contains object x, while node b contains y. Local

transactions at a and b can read and write the local objects. Suppose there is a single

type of global transaction, which only reads x and writes y. In this case no global
coordination is required. Each site can use its local concurrency control mechanism,
and the resulting schedule will be serializable.

We note that among these four approaches, the first violates design autonomy, the second

may violate execution autonomy, and the last two approaches aim to preserve autonomy at

all levels.

Research in this area is at an early stage. A number of solutions to the heterogeneous
transaction management problems have been suggested, but the solution space has not been

fully explored. The exploration of weaker transaction models is at a particularly early stage.
It is clear that the payoff in this direction can be significant, but a critical problem is finding
a new transaction model that is useful in practice while at the same time allows efficient

execution in a heterogenous environment. An almost completely open problem is the com

parison of proposed solutions. A first step would be the definition of meaningful metrics for

this environment. A second step would be a comparison of the options and tradeoffs.

Query Processing and Optimization

Query optimizers are optimizing compilers with the one notable difference that many

query optimizers use quantitative estimates of operation costs to choose among alternative

execution plans. Query optimization in homogenous distributed database systems has been

an area that has received considerable study. The optimization techniques developed include,
at one end, heuristic solutions that cannot guarantee optimality and, at the other end,
exhaustive enumeration techniques that potentially may be very slow. In the middle of

this spectrum we find techniques based on semijoin algorithms that obtain exact solutions

in polynomial time for restricted types of query classes but are also of heuristic nature for

arbitrary queries.
When dealing with a single real world object that comes from multiple local databases,

the global query processor must solve the problem of data integration, e.g., how to assign ap

8

propriate values to attributes in a global request when some of the underlying local databases

overlap and disagree on the information or when some of it is missing. The outerjoin op
eration has been introduced to model an extended join operation in which null values are

assigned to missing data. While it is easy to provide a reasonable implementation of the

outerjoin, optimization of queries involving outerjoins is an unsolved problem. In particular,

expressions that involve several outerjoins, joins and selections may need a new parenthe
sization (i.e. reassociation) to avoid computing large intermediate results, and the necessary

theory is progressing slowly. Some papers at the workshop proposed more sophisticated
interpretation of information combination by which some information that is not explicitly
represented in the outerjoin can be deduced, rather than simply set to null. But these

schemes will see little use if they require a complete overhaul of the query evaluator of the

database system - they need to be implemented as extensions rather than replacements for

the current algebras that underlie query processing.
One of the major problems in query optimization in a federated architecture is to develop

an appropriate cost model, because many local systems have no facilities for estimating or

communicating cost information. One option is to emphasize global optimization techniques
that rely only on qualitative information such as semantic query optimization (perhaps
using information from a generalization hierarchy). Another option is to implement a global
optimizer based on a set of parameterized, modifiable cost equations. But customizing this

optimizer to a particular local database system is difficult and must be repeated for every

new database system release. In either case, cost information in a federated database system
is likely to be inaccurate so it may be desirable to incorporate into the optimizer techniques
for learning from past experiences.

Early federated database systems used a fixed high-level language, such as DAPLEX, as

the multidatabase query language. A query in the multidatabase language must be translated

into subqueries of the local database systems. Different translations can yield executions with

widely different costs since some older DBMSs have little optimizing capability. Thus, it is

important to provide translators that yield optimal or near-optimal subqueries in the local

database systems.
Another important issue to be addressed in query optimization and processing is exten

sibility. It had been assumed that the multidatabase query language had more power than

any of the local query languages. But new local systems may support additional operators
on attributes that correspond to new data types or on entire relations (e.g., outerjoin, recu

sion) that are not available in the multidatabase query language. Researchers in extensible

optimizers are examining ways in which one may declare the properties of new operators so

that they can be exploited by the global optimizer. Thus, a new operator may require ex
tensions to the multidatabase query language, to the optimizer’s model of the local system’s
capabilities, to its cost model and its ability to exploit the new operator’s properties. It is

imperative to minimize the amount of effort it takes to modify the optimizer in response to

the addition of a new local system or a new operator.
Standard optimization algorithms may also need changes to take into account hitherto

unconsidered operations. Current optimizers assume that predicate evaluation should be

done as early as possible because attribute comparison is cheap; this assumption may fail

9

for spatial and other user-defined data types.

Standardization Efforts

Although the goal of standardizing all hardware and software interfaces cannot be achieved,
without some basic standards federated database systems are not feasible.

Standardization of network interfaces, file transfer formats, and mail formats has allowed

extensive interconnection of computers for loosely coupled applications such as electronic

mail. The next step is to move toward closer coupling at the data and program level, ulti

mately allowing programs to process data from any location and to pass partial results from

an application on one computer to a second computer. This objective requires well defined

standards for locating data, for understanding the semantics of the data, for understanding
the capabilities of the data source, for connecting to the data source, for specifying data to

be retrieved or updated, for transferring data, for controlling data access, for accounting for

resource usage, and for dealing with errors.

Current efforts towards standardization are well underway in some important areas:

• RDA (Remote Data Access) defines a generic interface to a DBMS including database

open/close, command execution, and transaction start/end.

• SQL defines a standard data manipulation language.

• TP (Transaction Processing) defines the behaviour and language for transaction pro

cessing.

• RPC (Remote Procedure Call) defines interprocess communication at the program call

level.

• API (Application Program Interface) is being defined by a group of vendors.

The challenge is to extend standards to meet new requirements without making the

systems that implement the standards obsolete. The SQL standard is a good example of

a standard that is difficult to extend. SQL is based on the relational model and does not

address DBMSs with extended functionality such as OODBMSs or older DBMSs and file

systems which will continue to held data for many years.

Concurrent processing is not well supported by the present standards. RPC is a blocking
protocol designed for client-to-server communication. RDA is also a peer-to-peer protocol.
These standards need to evolve to support a model of multiple autonomous cooperating
processes.

The TP protocol needs to support multiple models of transaction processing that can be

negotiated between the client and server(s). Traditional protocols use serializability as the

criterion for correctness. This may be too slow and too restrictive for some applications.
CAD/CAM applications require very long transactions where availability for concurrent

updates may be more important than serializability. Real-time applications may have hard

time constraints that are more important than data consistency.
In addition to the extensions required in the current standards, new standards are needed.

Tension between users who want easy access to all resources and owners of resources who

10

want to protect their resources. Before we can expect resource owners to open their systems

to remote users, access control standards must be devised. Current data dictionaries provide
insufficient semantic information and new standards for data definition are needed to include

such information as level of abstraction, granularity and so on. Finally, we need standards

for describing the capabilities and behaviour of systems, as well as standards for systems to

advertize their data and services and for negotiating shared access.

Acknowledgement

Dr. Maria Zemankova, NSF Program Director of the Database and Expert Systems

Program, recognized the substantial potential of this area and actively supported our efforts.

11

Research Directions for

Distributed Databases

Hector Garcia-Molina

Department of Computer Science

Princeton University
Princeton, NJ 08544

Bruce Lindsay
IBM Almaden Research Center

650 Hariy Road
San Jose, CA 95120

1. Introduction

Communication networks make it feasible to access remote data or databases,

allowing the sharing of data among a potentially large community of users. There is

also a potential for increased reliability: when one computer fails, data at other sites is

still accessible. Critical data may be replicated at different sites, making it available

with higher probability. Multiple processors also open the door to improved perfor
mance. For instance, a query can be executed in parallel at several sites.

We have so far avoided the term distributed database. For some people, this term

implies a particular type of distributed data management system where users are given
transparent, integrated access to a collection of databases. In other words, a user is

given the illusion of a single database with one global schema. Queries on this data

base are automatically translated into queries on the underlying databases. In the

early days (before 1980) this was thought to be the ultimate goal for all distributed

data management systems, and hence the term distributed database became associ

ated with transparency and integration. Nowadays most researchers agree that tran

sparency and integration may be incompatible with requirements for autonomy and

diversity of implementations. They are using the term “distributed database” in a more

general sense to mean a collection of possibly independent or federated database sys
tems. Each system has some set of facilities for exchanging data and services with

other members. In this paper we take the broader meaning of distributed databases in

order to cover a wider spectrum of the challenging problems facing researchers.

This paper forms part of a collection of articles on current and future research

issues in the database area. Since it is impossible to cleanly partition research areas, it

is natural to expect overlap between the articles. In our case the overlap is more

significant because two of the most important distributed database issues are being
discussed in separate articles: heterogeneous and parallel databases. Many of the

topics covered by other articles also have strong connections to distributed databases:

security is especially critical in a distributed environment, scientific databases are

often distributed, future DBMS architectures must have distribution in mind, etc.

12

In an attempt to reduce overlap, in this paper we will focus on distributed data

base issues that are not central to the other papers in this collection. Thus, we stress

that our coverage here will be incomplete. Of course, even for the remaining issues,
our discussion must be viewed as illustrative, not comprehensive. We are simply trying
to point out some research areas that in the author’s opinion have potential. For this,
we have grouped our ideas into four broad areas and covered each in one of the fol

lowing sections.

Before starting we would also like to clarify that due to space limitations this will

not be a survey of relevant papers and work. We will actually avoid making refer

ences, for as soon as one reference is made, for fairness others must follow.

Interested readers may refer to a Special Issue of the IEEE Proceedings (May 1987)
on Distributed Databases. It contains many valuable references, as well as a discus

sion of state of the art distributed database processing. Current database textbooks

are also a good source of references.

2. Distributed Data Architecture

Consider a user local to a database management system. Consider also a second

remote database that the user wishes to access. How should the local system present
the remote data? As discussed in the introduction, under a transparent, fully
integrated architecture, the remote database is made to appear as part of the local

one. Operations on the remote data, e.g., joining a remote table with a local one, can

be done (at least from the point of view of the user) as easily as fully local operations.
At the other end of the spectrum, the remote site may simply offer a set of services

that may be invoked by explicit calls. For example, if the remote computer handles an

airline database, it may let a user request the schedule for a given flight or reserve a

seat on a flight.

Transparency is not an all or nothing issue. It can be provided at various levels,
and each level requires a particular type of agreement between the participants. In

the fully transparent case, the sites must agree on the data model, the schema

interpretation, the data representation, the available functionality, and where the data

is located. In the service (non-transparent) model, there is only agreement on the

data exchange format and on the functions that are provided by each site.

The tradeoffs involved with providing or not transparency revolve around simpli
city of access and ability to integrate data from diverse sources versus issues of site

autonomy and specialized functions. Clearly, from the point of view of a user desiring
remote access, a transparent architecture is desirable. All the data at the remote site

is accessible, just as if it were local. However, from the point of view of the adminis

trator of the remote site, transparency provides access that is difficult to control. The

remote site could only make visible certain views on its data, but view mechanisms in

many systems are not powerful enough to provide the desired protection. For

instance, at a bank site funds transfer may only be allowed if the account balance is

positive and the customer has a good credit rating. A simple view mechanism cannot

express this.

It is much easier to provide these checks within a procedure that is called

remotely. Although the data may be freely accessible to local users, remote users see

the data encapsulated by a set of procedures, much like in an object oriented

13

programming environment. This type of remote service or federated architecture is

simpler to implement than full transparency. Less agreement is needed between the

participants, and complex algorithms such as a multi-site join need not be imple
mented. Sites have greater autonomy to change the services they provide or how they
provide them.

The research challenge in this area is to fully understand the spectrum of alterna

tives. While we have sketched the two extreme solutions (full transparency and a ser

vice model), the intermediate models are not well defined. The fundamental issue is

the level at which remote requests and responses are exchanged. Great care is needed

to avoid weakening remote access functionality to the lowest common denominator

while, at the same time, avoiding a proliferation of service and implementation
specific protocols. Fruitful research directions include extending data access and

manipulation protocols to support database procedures (to encapsulate services and

policies), authentication standards, and relaxed serializability levels (with special
authorization required for full serializability). In addition, further research is needed

on technologies for exporting type definitions and behavior to allow remote users to

exploit the semantic content of retrieved information (i.e., object distribution).

3. Problems of Scale

Current trends indicate that the number of databases is rapidly growing, while at

the same time their size is also increasing. Some database and distributed data algo
rithms do not scale up nicely as the number of components in the system grows. In a

conventional database, for example, one may need to place data off-line to make a

backup or for reorganization. Typically, this is done during the night. As the database

grows in size, the backup or reorganization time grows, and a night is no longer long
enough.

In a distributed database, one is faced with such problems of scale as individual

databases grow, and also as the number of databases and the scope of the system

grows. For instance, in a world-wide distributed system, there is no night time to do

reorganizations or backups. Key system algorithms may break down in larger systems.
For example, in a small system, it may be feasible to search for a particular file of

interest by broadcasting a request to all nodes. In a very large system, this becomes

impractical. Having a central directory of all resources is also a bad idea, not just
because of its large size, but because it is prone to failures and because not all sites

may want to advertise their resources to everyone. Thus, the problem of resource

finding in a very large distributed data system is quite challenging. When one starts a

search, one not only does not know where the resource is, but one does not know what

directories are available for this type of resource.

As an illustrative example, consider a scientist searching for a database of ozone

readings over antarctica for the year 1980. (For one thing, “antarctica” and “ozone” are

denoted differently in Russian databases.) Different organizations have directories of

their own databases, but there is no reliable directory of organizations. Heterogeneity
is an added complication here: it is not clear how to make our query understandable

to different organizations, and if a relevant database is found, how to know what it

really contains, expressed in our terms. While some progress has been made with yel
low and white pages servers, the mechanisms for describing data resources in human

14

	40979_DataEngineering_Dec1990_Vol13_No4.pdf

