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Letter from the Issue Editor

This is a special joint issue of ACMSIGMOD RECORD and IEEE Data Engineering Bulletin on Dl

rectlons for Future Database Research and Development. In the past some senior researchers,

singly and collectively, attempted to provide directions for future database research in the form of

so—called “manifestos” and reports of workshops sponsored by a few organizations. Further, each

issue of the IEEE Data Engineering Bulletin during the past decade has focused on a single topic

of “current” database research topics, thereby providing directions for near—term research. My ob

jective in organizing this special joint issue is to bring these recent disparate efforts to a grand cul

mination with a compendium of the thoughts of some of the leading authorities in each of a dozen

or so areas of database research and development that many believe to be the most important.

I have held the belief for some time that, as the report of the recent Lagunita workshop concludes

also, the primary challenges facing database professionals today are to bring about the transition

from the current relational database systems to the next generation of database systems in order

to dramatically expand the scope of applicability of database technology to beyond the convention

al transaction—oriented business data processing; to allow interoperability of a wide variety of data

sources managed by existing (and emerging) database systems and file systems; and to evolve

the architectures of database systems in keeping with the rapidly unfolding revolutions in hardware

technology. The first challenge requires significant additional research in various subdisciplines

within databases, including object—oriented databases, extensible databases, spatial databases,

deductive databases, temporal databases, imprecise databases, real—time databases, scientific

databases, database security, data dredging, database programming languages, and nonpro

grammer’s application development environments. The second area of challenge is global or multi-

database systems. The third area of challenge is parallel database systems and distributed data

base systems.

I selected the above areas of research, and then for each are’a invited a few of the leading authori

ties to provide a report on the current status of the area and directions for further research and de

velopment. For six of these areas, I invited one expert from academia and one expert from industry

to jointly author the report to achieve a balanced view of the area. For database programming lan

guages, I elected to include a condensed report of a recent workshop on the subject co—sponsored

by the National Science Foundation (NSF) and INRIA. For heterogeneous databases and scientific

databases, I invited and edited the reports of workshops on the subjects that NSF sponsored during

the past year. I also invited the report of the recent Lagunita workshop, also sponsored by NSF, as

the extended introduction to the joint issue. I failed to find authors willing to do a report on friendly

user interfaces. (I should add that Maria Zemankova should receive at least a figurative bouquet

of flowers and a case of champagne from the database community for her efforts in securing NSF

funds to sponsor these three timely workshops.)
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I elected to include some of the reports in both SIGMOD RECORD and Data Engineering, but others

in only one of the two publications. This is to accommodate the 64—page space limit in Data Engi

neering, and to avoid repeating in the same publication any topic which was the subject of a special

issue within the past few years. Further, ACM SIGMOD and IEEE TO on Data Engineering both

charge membership fees to partially offset the cost of publishing and distributing their respective

newsletters, and I believe that members of these professional societies would not care to see a

completely overlapping joint issue. I included in both publications reports on the topics that in my

view have potentially the most impact on the future of database technology, even if they may have

been subjects of special issues in the recent past: the reports on imprecise databases and database

security are cases in point. The following reports are included in both publications: heterogeneous

databases workshop report, object—oriented databases, spatial databases, database security, and

distributed databases. The following are included only in the SIGMOD RECORD: Lagunita work

shop report, scientific databases workshop report, database programming languages workshop re

port, extensible databases, deductive databases, temporal databases, and parallel databases.

The following reports are included only in Data Engineering: real—time databases, data dredging,

and on the future DBMS architecture.

The contributors to this issue are all leading authorities in the areas they report on (I hope my includ

ing myself as a co—author of one of the reports will not disturb anyone’s sensibilities), making this

joint issue a true “all—star” issue. It certainly was a privilege and pleasure to have worked with these

outstanding professionals; all in earnest efforts and considerable time on their reports, and (more

or less) met all my deadlines. I hope that this special issue will have a significant and lasting influ

ence on the course of our field.

I request that those interested in obtaining copies of this joint issue to contact directly ACM Head

quarters in New York City and IEEE Computer Societyin Washington, D.C.: the demands of my job
makes it impossible for me to be responsible for distributing complimentary copies of this issue to

anyone who calls.

Won Kim

UniSQL, Inc.

Austin, Texas

October 25, 1990
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Report on the Workshop on Heterogenous Database Systems
held at Northwestern University

Evanston, Illinois, December 11-13, 1989

Sponsored by NSF

General Chair Program Chair

Peter Scheuermann Clement Yu

Program Committee

Ahmed Elmagarmid Frank Manola Arnon Rosenthal

Hector Garcia-Molina Dennis McLeod Marjorie Templeton

Executive Summary

Advances in networking and database technology during the past decade have changed
dramatically the information processing requirements of organizations and individuals. An

organization may have heterogenous database systems which differ in their capabilities and

structure and which may be dispersed over a number of sites. In addition to these charac

teristics of heterogeneity and distribution, the ever larger number of databases available in

the public and private domain makes it imperative to allow shared access to these databases

in such a way that individual systems maintain their autonomy. Thus it becomes necessary

to develop new techniques and provide new functionality to support the interoperability of

autonomous database systems without requiring their global integration. Furthermore, the

demands for interoperability extend beyond database systems to include office information

systems, information retrieval systems and other software systems.

Research into the interoperability of heterogenous database systems plays an important

role in the development of high level open systems. This important fact has been recognized
not only in the United States but also in Japan and in Europe, with Japan having allocated

around $120M over five years for research and development in this area.

The objective of this workshop was to explore current approaches to interoperability of

autonomous information systems and to identify the most important research directions to

be pursued in this area. This report summarizes our discussions and broadly classifies the

issues into the following categories: 1

1. Semantic Heterogeneity and Schema Integration

2. The Role of the Object-Oriented Approach

3. Transaction Processing

4. Query Optimization

5. Standardization Efforts

‘Any opinions, findings, conclusions, or recommendations expressed in this report are those of the panel

and do not necessarily reflect the views of the National Science Foundation.
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Introduction

We are currently at a crossroads in the development of heterogenous distributed database

systems. Advances in the networking and database technology have added two new dimen

sions to the problems to be solved, namely size and autonomy. The proliferation of public
and private databases implies that for effective sharing of information we must provide tools

to help users locate the information sources and learn something about their contents. In

addition, organizations must maintain a certain degree of autonomy over their data in or

der to allow access to their information. We can distinguish different types (degrees) of

autonomy: design autonomy, communication autonomy and execution autonomy. Design
autonomy refers to the capability of a database system to choose its own data model and

implementation procedures. Communication autonomy means the capability of a system to

decide what other systems it will communicate with and what information it will exchange
with them. Execution autonomy refers to the ability of a system to decide how and when

to execute requests received from another system. Design autonomy usually has been as

sumed in distributed database systems, and this assumption brought with it the issue of

heterogeneity. Here we can distinguish between data heterogeneity and system heterogene
ity. Examples of system heterogeneity are differences in data model, data manipulation

language, concurrency control mechanism, etc.

The workshop examined the impact of heterogeneity, autonomy and size on the devel

opment of federated database systems, in particular with respect to schema integration,
transaction processing and query processing. We use the term federated database system

or multidatabase system to refer to a collection of predefined database systems, called local

database systems, that cooperate to achieve various degrees of integration while preserving
the autonomy of each local database system. We explored the techniques and functional

ities required to support the interoperability of federated database systems as well as the

interoperability of database systems with other software systems.
This report summarizes the invited talks and position papers presented as well as the

open discussion held with all the participants on the last day of the workshop.

Semantic Heterogeneity and Schema Integration

Each local database system in a federated architecture has its own conceptual schema,
which describes the structural and dynamic properties of its information. Structural prop

erties refer to the specification of object types and their relationships and constraints at

various levels of abstraction. Structural description included both data and meta-data spec

ifications. Dynamic properties describe how constraints are to be enforced and give the rules

for update propagation in response to various operations.
We can observe a spectrum of database coupling that has been proposed (at the schema

level) to support the interoperability of pre-existing database systems in a federation. At

one end of the spectrum we find advocates of total integration, one global federated schema

constructed under the responsibility of a global administrator. At the other end, we find

systems that use partial integration, with the users themselves specifying which subsets of
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the conceptual schemas should be grouped into partially federated schemas. While total

integration may be feasible for a small number of databases, it appears that the partial
integration approach is more desirable for an environment with many databases, some of

which may appear and disappear on a daily basis. However, the problems of enforcing
constraints and view update propagation across a number of partially federated schemas

remain to be solved.

The schema integration process, whether it results in one or multiple federated schemas,

presents a number of problems caused by various aspects of semantic heterogeneity and design
autonomy. Schema integration includes the resolution of naming conflicts (e.g. homonyms
and synonyms), scale differences, structural differences and missing data. Some tools for

schema integration are being proposed to aid in identifying various object relationships such

as equality, overlap, containment, etc. An issue that has not been addressed is that of

determining relationships among objects that also exhibit behavioral abstractions as is the

case in object-oriented systems. More importantly, it remains to be seen to what extent

these tools can be automated and to verify their validity on real life systems.
If the federated database schema(s) uses a different data model from the local conceptual

schemas, a schema translation module(s) must be provided for in the federated architecture.

Efforts have been reported towards the development of specification languages for mapping

among different data models. Although the problem of translation among data models

received much attention in the early 1980’s, the usual approach requires that a new mapper

be implemented any time a new DBMS is added in the federation. The advantage of a

specification language is that it would enable automatic generation of model mappers. While

this seems a promising approach to the schema translation issue, it is not always possible to

map from one data model to another and the extent to which this process can be automated

for arbitrary models also is not known.

The approach to federated integration discussed so far assumes that the users or the

database administrators have complete knowledge of the local conceptual schemas. How

ever, in an environment consisting of hundreds of databases, the first step prior to any

possible integration is to learn what information sources exist, where they are located, and

what their contents are. A number of concepts have been proposed, but it appears necessary

to couple these with Al techniques in order to help incorporate semantic knowledge into this

learning process.

The Role of the Object-Oriented Approach

Object-oriented approaches are being considered as potential solutions to problems that

exist in a number of software environments. Object-oriented DBMSs (OODBMSs) are be

ing developed to allow databases to include “unconventional” data types such as text, voice,

graphics, CAD data, etc. In a more general context, several papers at the workshop addressed

the problems of using object-oriented approaches to provide interoperability of heteroge
nous computing resources, including both data and software components, and of integrating

object-oriented databases with conventional relational database systems. Technology sup

porting these types of data and component integration will be crucial to the development of
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the National Collaboratory, an infrastructure proposed by NSF to foster remote interaction

between multi-disciplinary teams of scientists. The use of object-oriented approaches both

complicates and eases the integration of heterogenous databases with other components.

First, increasing use of object-oriented systems will increase the complexity of the prob
lem. The enhanced capabilities of object-oriented systems create the potential for increased

heterogeneity of systems, since a richer collection of data types, as well as software compo

nents, will be included. Moreover, distributed object-oriented systems create the potential
for users and programs to access vast areas of resources. This implies the need for increased

assistance in simply selecting, let alone using, appropriate resources within the network.

This problem was also mentioned in papers at the workshop.

Second, object-oriented approaches provide a natural framework for use in integrating
heterogenous components. As a design approach, thinking of the components in a federa

tion as objects or collections of objects allows a common design methodology to be applied
to objects at all levels of granularity. As an implementation approach, an object-oriented
approach provides a rich data model for use in problems of semantic heterogeneity. Behav

ioral modeling provides a framework for procedures required in inter-object communication,
such as data conversion procedures, to be incorporated directly in the objects. Inheritance

facilities found in most object systems provide a means of organizing similar data found in

heterogenous components.

However, the papers at the workshop suggest that object-oriented approaches, at least

so far, have had relatively little impact on some key aspects of problems in heterogenous
systems. The architectures currently proposed for object-oriented heterogenous systems seem

reasonably straightforward extension of those found in many existing heterogenous database

systems. Although the use of objects provides a natural framework for including additional

metadata such as units, time information, etc. that may be useful in attribute integration
it is not clear how the complexity of this problem is simplified in object-oriented systems.

Similarly, considerably more research is required in such problems as query optimization
and concurrency control in the context of both object-oriented and heterogenous database

systems. At the same time, since OODBMSs are, in a sense, inherently heterogenous (since
they may include data of widely varying structure), work on OODBMSs and heterogenous
databases will be mutually supportive in these key areas.

In addressing these problems, it will be necessary to make use of work in related technolo

gies. Since object-oriented approaches deal with objects that include both procedures and

data, the required technology overlaps such areas as database, programming languages, and

operating systems technologies. Research in these areas is already becoming interrelated, as

illustrated by emerging work in areas such as persistent programming languages and object-
oriented distributed operating systems. It will be necessary to determine how these related

technologies interact with the specific problems of heterogenous DBMSs. For example, as al

ready mentioned, the development of advanced modeling facilities in object-oriented systems

may well help in heterogenous database system development. On the other hand, work on

data storage mechanisms in OODBMSs may have less effect, since the storage requirements
in heterogenous systems will be handled primarily by the underlying local DMBSs.

It also will be necessary for researchers to gain more experience with real systems that

include many large databases of realistic complexity. It is only this way that both the scope

of the problems, and those aspects of real systems that sometimes allow for simplifying
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assumptions, will become evident.

Transaction Processing

One of the key issues in federated database systems is transaction management. The

problem is to make a collection of different database systems, running on different computers,

cooperate and execute a transaction.

In conventional systems, a transaction is a collection of database actions that must be

executed with three properties:

1. Atomicity: The entire transaction must be completed, or none of its actions should be

executed.

2. Serializability: The execution of a transaction must be isolated from other concurrent

transactions.

3. Durability: The values written by a transaction must persist in the database after the

transaction completes.

Guaranteeing these properties in a federated system is difficult mainly for three reasons:

1. The actions of a transaction may be executed in different systems, each of which has

different mechanisms for ensuring the properties of transactions. For instance, one

system may use locks to guarantee the serializability property, while another may

employ timestamps.

2. Guaranteeing the properties of transactions may restrict node autonomy, which may be

undesirable in a federated system. For example, to guarantee the atomicity property,
the participating systems must execute some type of a commit protocol. During this

protocol, some systems must become subordinate to other systems, and the subordi

nates may not unilaterally release the resources, thereby compromising autonomy.

3. The local database systems may not provide the necessary “hooks” (functionality) to

implement the required global coordination protocols. Again referring to the commit

protocol, it is usually necessary for local systems to become “prepared,” guaranteeing
that the local actions of a transaction can be completed. Existing systems may not al

low a transaction to enter this state (without committing all changes of the transaction

to the local database), and providing this functionality may violate design autonomy.

Current efforts in this area may be classified into four (not necessarily mutually exclusive)
approaches:

1. Develop strategies for meshing together existing but different transaction processing
mechanisms. For example, some researchers have looked into mixed concurrency con

trol algorithms (e.g., locking, timestamps, optimistic) and mixed commit protocols

(e.g., centralized, distributed). Each local database system continues to use its native

strategy, although there may have to be modifications so that the global mechanism

can work.
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2. Coordinate existing systems without any modifications. It is usually assumed that the

systems share some basic concurrency control and recovery strategies, but that they
must be globally coordinated. Each local system receives transactions either locally
or from a global execution component; it treats all transactions in the same fashion.

The global execution component must assure to it that the transaction properties are

guaranteed for non-local transactions.

3. Weaken the properties that are guaranteed for transactions. In other words, new con

cepts are defined that encompass some, but not all, of the desirable properties of trans

actions. These new models make it easier to execute “transactions” in a heterogeneous
environment.

4. Restrict the types of transactions and/or when they can run. If we can limit trans

actions a-priori, then it may be easier to guarantee the desired properties. As a very

simple example, suppose that node a contains object x, while node b contains y. Local

transactions at a and b can read and write the local objects. Suppose there is a single

type of global transaction, which only reads x and writes y. In this case no global
coordination is required. Each site can use its local concurrency control mechanism,
and the resulting schedule will be serializable.

We note that among these four approaches, the first violates design autonomy, the second

may violate execution autonomy, and the last two approaches aim to preserve autonomy at

all levels.

Research in this area is at an early stage. A number of solutions to the heterogeneous
transaction management problems have been suggested, but the solution space has not been

fully explored. The exploration of weaker transaction models is at a particularly early stage.
It is clear that the payoff in this direction can be significant, but a critical problem is finding
a new transaction model that is useful in practice while at the same time allows efficient

execution in a heterogenous environment. An almost completely open problem is the com

parison of proposed solutions. A first step would be the definition of meaningful metrics for

this environment. A second step would be a comparison of the options and tradeoffs.

Query Processing and Optimization

Query optimizers are optimizing compilers with the one notable difference that many

query optimizers use quantitative estimates of operation costs to choose among alternative

execution plans. Query optimization in homogenous distributed database systems has been

an area that has received considerable study. The optimization techniques developed include,
at one end, heuristic solutions that cannot guarantee optimality and, at the other end,
exhaustive enumeration techniques that potentially may be very slow. In the middle of

this spectrum we find techniques based on semijoin algorithms that obtain exact solutions

in polynomial time for restricted types of query classes but are also of heuristic nature for

arbitrary queries.
When dealing with a single real world object that comes from multiple local databases,

the global query processor must solve the problem of data integration, e.g., how to assign ap
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propriate values to attributes in a global request when some of the underlying local databases

overlap and disagree on the information or when some of it is missing. The outerjoin op
eration has been introduced to model an extended join operation in which null values are

assigned to missing data. While it is easy to provide a reasonable implementation of the

outerjoin, optimization of queries involving outerjoins is an unsolved problem. In particular,

expressions that involve several outerjoins, joins and selections may need a new parenthe
sization (i.e. reassociation) to avoid computing large intermediate results, and the necessary

theory is progressing slowly. Some papers at the workshop proposed more sophisticated
interpretation of information combination by which some information that is not explicitly
represented in the outerjoin can be deduced, rather than simply set to null. But these

schemes will see little use if they require a complete overhaul of the query evaluator of the

database system - they need to be implemented as extensions rather than replacements for

the current algebras that underlie query processing.
One of the major problems in query optimization in a federated architecture is to develop

an appropriate cost model, because many local systems have no facilities for estimating or

communicating cost information. One option is to emphasize global optimization techniques
that rely only on qualitative information such as semantic query optimization (perhaps
using information from a generalization hierarchy). Another option is to implement a global
optimizer based on a set of parameterized, modifiable cost equations. But customizing this

optimizer to a particular local database system is difficult and must be repeated for every

new database system release. In either case, cost information in a federated database system
is likely to be inaccurate so it may be desirable to incorporate into the optimizer techniques
for learning from past experiences.

Early federated database systems used a fixed high-level language, such as DAPLEX, as

the multidatabase query language. A query in the multidatabase language must be translated

into subqueries of the local database systems. Different translations can yield executions with

widely different costs since some older DBMSs have little optimizing capability. Thus, it is

important to provide translators that yield optimal or near-optimal subqueries in the local

database systems.
Another important issue to be addressed in query optimization and processing is exten

sibility. It had been assumed that the multidatabase query language had more power than

any of the local query languages. But new local systems may support additional operators
on attributes that correspond to new data types or on entire relations (e.g., outerjoin, recu

sion) that are not available in the multidatabase query language. Researchers in extensible

optimizers are examining ways in which one may declare the properties of new operators so

that they can be exploited by the global optimizer. Thus, a new operator may require ex
tensions to the multidatabase query language, to the optimizer’s model of the local system’s
capabilities, to its cost model and its ability to exploit the new operator’s properties. It is

imperative to minimize the amount of effort it takes to modify the optimizer in response to

the addition of a new local system or a new operator.
Standard optimization algorithms may also need changes to take into account hitherto

unconsidered operations. Current optimizers assume that predicate evaluation should be

done as early as possible because attribute comparison is cheap; this assumption may fail
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for spatial and other user-defined data types.

Standardization Efforts

Although the goal of standardizing all hardware and software interfaces cannot be achieved,
without some basic standards federated database systems are not feasible.

Standardization of network interfaces, file transfer formats, and mail formats has allowed

extensive interconnection of computers for loosely coupled applications such as electronic

mail. The next step is to move toward closer coupling at the data and program level, ulti

mately allowing programs to process data from any location and to pass partial results from

an application on one computer to a second computer. This objective requires well defined

standards for locating data, for understanding the semantics of the data, for understanding
the capabilities of the data source, for connecting to the data source, for specifying data to

be retrieved or updated, for transferring data, for controlling data access, for accounting for

resource usage, and for dealing with errors.

Current efforts towards standardization are well underway in some important areas:

• RDA (Remote Data Access) defines a generic interface to a DBMS including database

open/close, command execution, and transaction start/end.

• SQL defines a standard data manipulation language.

• TP (Transaction Processing) defines the behaviour and language for transaction pro

cessing.

• RPC (Remote Procedure Call) defines interprocess communication at the program call

level.

• API (Application Program Interface) is being defined by a group of vendors.

The challenge is to extend standards to meet new requirements without making the

systems that implement the standards obsolete. The SQL standard is a good example of

a standard that is difficult to extend. SQL is based on the relational model and does not

address DBMSs with extended functionality such as OODBMSs or older DBMSs and file

systems which will continue to held data for many years.

Concurrent processing is not well supported by the present standards. RPC is a blocking
protocol designed for client-to-server communication. RDA is also a peer-to-peer protocol.
These standards need to evolve to support a model of multiple autonomous cooperating
processes.

The TP protocol needs to support multiple models of transaction processing that can be

negotiated between the client and server(s). Traditional protocols use serializability as the

criterion for correctness. This may be too slow and too restrictive for some applications.
CAD/CAM applications require very long transactions where availability for concurrent

updates may be more important than serializability. Real-time applications may have hard

time constraints that are more important than data consistency.
In addition to the extensions required in the current standards, new standards are needed.

Tension between users who want easy access to all resources and owners of resources who
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want to protect their resources. Before we can expect resource owners to open their systems

to remote users, access control standards must be devised. Current data dictionaries provide
insufficient semantic information and new standards for data definition are needed to include

such information as level of abstraction, granularity and so on. Finally, we need standards

for describing the capabilities and behaviour of systems, as well as standards for systems to

advertize their data and services and for negotiating shared access.
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1. Introduction

Communication networks make it feasible to access remote data or databases,

allowing the sharing of data among a potentially large community of users. There is

also a potential for increased reliability: when one computer fails, data at other sites is

still accessible. Critical data may be replicated at different sites, making it available

with higher probability. Multiple processors also open the door to improved perfor
mance. For instance, a query can be executed in parallel at several sites.

We have so far avoided the term distributed database. For some people, this term

implies a particular type of distributed data management system where users are given
transparent, integrated access to a collection of databases. In other words, a user is

given the illusion of a single database with one global schema. Queries on this data

base are automatically translated into queries on the underlying databases. In the

early days (before 1980) this was thought to be the ultimate goal for all distributed

data management systems, and hence the term distributed database became associ

ated with transparency and integration. Nowadays most researchers agree that tran

sparency and integration may be incompatible with requirements for autonomy and

diversity of implementations. They are using the term “distributed database” in a more

general sense to mean a collection of possibly independent or federated database sys
tems. Each system has some set of facilities for exchanging data and services with

other members. In this paper we take the broader meaning of distributed databases in

order to cover a wider spectrum of the challenging problems facing researchers.

This paper forms part of a collection of articles on current and future research

issues in the database area. Since it is impossible to cleanly partition research areas, it

is natural to expect overlap between the articles. In our case the overlap is more

significant because two of the most important distributed database issues are being
discussed in separate articles: heterogeneous and parallel databases. Many of the

topics covered by other articles also have strong connections to distributed databases:

security is especially critical in a distributed environment, scientific databases are

often distributed, future DBMS architectures must have distribution in mind, etc.
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In an attempt to reduce overlap, in this paper we will focus on distributed data

base issues that are not central to the other papers in this collection. Thus, we stress

that our coverage here will be incomplete. Of course, even for the remaining issues,
our discussion must be viewed as illustrative, not comprehensive. We are simply trying
to point out some research areas that in the author’s opinion have potential. For this,
we have grouped our ideas into four broad areas and covered each in one of the fol

lowing sections.

Before starting we would also like to clarify that due to space limitations this will

not be a survey of relevant papers and work. We will actually avoid making refer

ences, for as soon as one reference is made, for fairness others must follow.

Interested readers may refer to a Special Issue of the IEEE Proceedings (May 1987)
on Distributed Databases. It contains many valuable references, as well as a discus

sion of state of the art distributed database processing. Current database textbooks

are also a good source of references.

2. Distributed Data Architecture

Consider a user local to a database management system. Consider also a second

remote database that the user wishes to access. How should the local system present
the remote data? As discussed in the introduction, under a transparent, fully
integrated architecture, the remote database is made to appear as part of the local

one. Operations on the remote data, e.g., joining a remote table with a local one, can

be done (at least from the point of view of the user) as easily as fully local operations.
At the other end of the spectrum, the remote site may simply offer a set of services

that may be invoked by explicit calls. For example, if the remote computer handles an

airline database, it may let a user request the schedule for a given flight or reserve a

seat on a flight.

Transparency is not an all or nothing issue. It can be provided at various levels,
and each level requires a particular type of agreement between the participants. In

the fully transparent case, the sites must agree on the data model, the schema

interpretation, the data representation, the available functionality, and where the data

is located. In the service (non-transparent) model, there is only agreement on the

data exchange format and on the functions that are provided by each site.

The tradeoffs involved with providing or not transparency revolve around simpli
city of access and ability to integrate data from diverse sources versus issues of site

autonomy and specialized functions. Clearly, from the point of view of a user desiring
remote access, a transparent architecture is desirable. All the data at the remote site

is accessible, just as if it were local. However, from the point of view of the adminis

trator of the remote site, transparency provides access that is difficult to control. The

remote site could only make visible certain views on its data, but view mechanisms in

many systems are not powerful enough to provide the desired protection. For

instance, at a bank site funds transfer may only be allowed if the account balance is

positive and the customer has a good credit rating. A simple view mechanism cannot

express this.

It is much easier to provide these checks within a procedure that is called

remotely. Although the data may be freely accessible to local users, remote users see

the data encapsulated by a set of procedures, much like in an object oriented
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programming environment. This type of remote service or federated architecture is

simpler to implement than full transparency. Less agreement is needed between the

participants, and complex algorithms such as a multi-site join need not be imple
mented. Sites have greater autonomy to change the services they provide or how they
provide them.

The research challenge in this area is to fully understand the spectrum of alterna

tives. While we have sketched the two extreme solutions (full transparency and a ser

vice model), the intermediate models are not well defined. The fundamental issue is

the level at which remote requests and responses are exchanged. Great care is needed

to avoid weakening remote access functionality to the lowest common denominator

while, at the same time, avoiding a proliferation of service and implementation
specific protocols. Fruitful research directions include extending data access and

manipulation protocols to support database procedures (to encapsulate services and

policies), authentication standards, and relaxed serializability levels (with special
authorization required for full serializability). In addition, further research is needed

on technologies for exporting type definitions and behavior to allow remote users to

exploit the semantic content of retrieved information (i.e., object distribution).

3. Problems of Scale

Current trends indicate that the number of databases is rapidly growing, while at

the same time their size is also increasing. Some database and distributed data algo
rithms do not scale up nicely as the number of components in the system grows. In a

conventional database, for example, one may need to place data off-line to make a

backup or for reorganization. Typically, this is done during the night. As the database

grows in size, the backup or reorganization time grows, and a night is no longer long
enough.

In a distributed database, one is faced with such problems of scale as individual

databases grow, and also as the number of databases and the scope of the system

grows. For instance, in a world-wide distributed system, there is no night time to do

reorganizations or backups. Key system algorithms may break down in larger systems.
For example, in a small system, it may be feasible to search for a particular file of

interest by broadcasting a request to all nodes. In a very large system, this becomes

impractical. Having a central directory of all resources is also a bad idea, not just
because of its large size, but because it is prone to failures and because not all sites

may want to advertise their resources to everyone. Thus, the problem of resource

finding in a very large distributed data system is quite challenging. When one starts a

search, one not only does not know where the resource is, but one does not know what

directories are available for this type of resource.

As an illustrative example, consider a scientist searching for a database of ozone

readings over antarctica for the year 1980. (For one thing, “antarctica” and “ozone” are

denoted differently in Russian databases.) Different organizations have directories of

their own databases, but there is no reliable directory of organizations. Heterogeneity
is an added complication here: it is not clear how to make our query understandable

to different organizations, and if a relevant database is found, how to know what it

really contains, expressed in our terms. While some progress has been made with yel
low and white pages servers, the mechanisms for describing data resources in human
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or machine readable form are quite crude. One only needs to try to use today’s biblio

graphic search systems to realize that capturing and encoding the semantic or techni

cal essence of data collections is not well advanced.

In addition to the resource finding protocols, there are other algorithms that may
not scale up. The challenge is to identify them and to find alternatives. For instance,
what deadlock detection, query processing, or transaction processing algorithm will

work best in a very large system, or in a system with very complex queries, or with

many participants in a transaction?

Administration of large distributed databases is another problematic area. As

the number of components, users, and transactions rapidly grows, it becomes harder

and harder to manage the system effectively. The volume of accounting, billing, and

user authentication information grows. The number of choices for improving or

speeding up a system grows. The size and number of database schemas grows. It

becomes harder to evaluate the performance of the system and to predict its behavior

under changes. Upgrading or installing new software also is harder, as there are more

sites that are affected and it is impractical to halt the entire system to do an operating
or database system upgrade. A related problem is the management of the underlying
computer communication network. The problems are analogous: handling growing
information on links, protocols, and performance. Also, key network algorithms do

not scale up, e.g., those for initializing a network after its failure.

4. Information Management

Distributed systems are increasingly used for retrieving information on a wide

variety of topics, ranging from stock prices, to cars for sale; from news items to jokes.
In some cases the information is stored in commercial database services and a fee is

paid. In other cases, computers are interconnected in ad-hoc networks and informa

tion exchanged between end-users, as in “net-news” or in bulletin boards. In still other

cases, the communications companies themselves are providing information services.

This is the case of MiniTel in France. Traditionally, these information networks have

not been considered a distributed database. However, there is no reason why the

mechanisms developed for formal distributed databases could not be extended to

informal and/or loosely coupled information repositories.
In simple terms, the problem of information management is one of matchmak

ing. On one hand we have a user desiring some type of information (e.g., who has

found this bug in this program?). On the other hand we have suppliers of information

that may fully or partially match those needs. The goal is to make a connection

between the supplier and the consumer. The problem is related to that of resource

finding described in Section 3, but there are added complications.
Sometimes information requests are not for a single item, but are “standing ord

ers”, e.g., send me all future news items on this topic. This means the system must not

only find the appropriate sources, but it must also set up the data paths for ongoing
communication. Batching data transmissions is also important. For example, if two

users at neighboring computers request the same information, it may be more

effective to route the information to one computer, and to then forward it to the other.

Existing systems such as net-news provide batching, but they make many restrictions

as to what users may read and when they can read.
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A provider of information often wishes not only to track who has received it, but

also may need to be able to control how it is to be used. This will require facilities for

access tracking and for “contracting” with the recipient. Important social, legal, politi
cal, and scientific issues must be addressed before open information distribution sys

tems can be used for anything other than the exchange of “trivial” information.

Existing information systems usually do not provide reliability. In particular, a

user may miss information if his machine is down. Thus, one challenge is to incor

porate exiting distributed database crash recovery technology into information net

works.

Distributed data and information can also be used in non-traditional ways, i.e.,
more than simply submitting “queries” and getting replies. For instance, electronic

newsletters with user contributions are one such interaction. Users submit articles or

news items to an editor or a group of editors. The editors check the articles, trimming
them or eliminating uninteresting ones. The accepted articles are then distributed on

the network to “subscribers” or are made available for queries. The National Science

Foundation has recently suggested a “colaboratoiy,” a distributed electronic laboratory
where researchers can share information and conduct their research. Clearly, shared,
distributed data must play a critical role here. The challenge is to expand the models

and mechanisms of distributed database to encompass these new applications.

5. Transaction Models

In a federated database architecture, computers provide services to other sites.

The glue that ties together the system is the transaction management system. It coor

dinates a sequence of interactions with different nodes, providing data consistency and

atomicity.

Conventional transaction models based on locking and two phase commit may be

inadequate. One reason is that they force participants to use the same model, and to

possibly give up their autonomy. For instance, a participant in a two phase commit

must become a subordinate of the coordinator(s), not releasing resources held by a

transaction (locks) until instructed to do so. Another problem is that a large transac

tion may last for a long time, holding up critical resources. In a sense, this is a prob
lem of scale: as the number of participants in the protocol grows, or that amount of

work each participant must do grows, the time that resources are tied up also grows.

This is unacceptable if these are critical, often accessed resources.

The need for relaxed concurrency control protocols in the local case has been

recognized in some products and standards proposals. For distributed systems, there

have already been numerous proposals for weaker transaction models that give parti
cipants more autonomy and improve performance, while still guaranteeing some basic

correctness properties. For example, a sequence of steps at various sites can be con

sidered a saga and not a full fledged transaction. After each step completes, a local

transaction commits. If the saga needs to be aborted later on, a compensating step is

run at nodes where transactions committed. This eliminates the need for two phase
commit. However, sagas can now see intermediate results of other sagas, so program

ming such applications may be trickier. Also, the need for compensating steps creates

more work for the application programmers. Tools for developing applications in a

saga environment would be a very valuable contribution.

16



Without global transactions (as is the case with sagas and similar approaches),
only consistency constraints local to a single site are maintained. Global constraints,

e.g., object X at site A must be a copy of object Y at site B, are not necessarily
guaranteed. If the inter-site constraints are known, it is possible to maintain them in

an “approximate” way, e.g., making X approximately equal to Y or X equal to a rela

tively recent value of Y. Such approximate constraints may be adequate for some

applications, e.g., an ATM machine may not need to know precisely how much money

a customer has in his account; a rough estimate may be enough to make the decision if

funds can be withdrawn. Approximate constraints may make it possible to operate
without two phase conmiit for many steps or sub-transactions, improving autonomy
and performance.

In general terms, there is a need for more options for transaction management in

a distributed database. For each option it is necessaly to precisely define the type of

correctness it provides, and to evaluate the performance and autonomy it yields.

6. Conclusions

In order to extend data distribution to large scale environments, the requirements
and characteristics of different DBMS implementations and information collecting
organizations must be addressed. The challenge is to support integration of informa

tion from diverse sources without retreating to a low-function common protocol (e.g.
NFS) while, at the same time, avoiding a proliferation of high-level, service-specific
interfaces. Future research should consider carefully the role of remotely invoked

procedures (which might have interfaces similar to other, general data accessing inter

faces) as a mechanism to respond to organizational autonomy and control issues.

Such interfaces could encapsulate local control procedures but execute in the context

of a larger information interchange environment (e.g., authenticated user, transac

tions, accounting, data exchange formats, etc.).

We also believe that any success in providing distributed information processing
facilities in a heterogeneous environment will probably rely, ultimately, on standard

protocols for authentication, accounting / billing / contracting, data access

specifications, schema exchange, typed object transport, and information resource

characterizations. Accommodating multiple data models will increase the difficulty of

developing mechanisms for information exchange and integration. The alternative is

to provide the user with an array of information accessing tools, each of which can

extract or manipulate data in a single type of DBMS using a unique user interface and

communication protocol. Information integration from different sources in such an

environment would be the user’s problem.

Finally, we believe that one fruitful direction for data distribution technology is

the extension of data semantics. This means that mechanisms for defining type
specific behavior (procedures, functions, or methods) should, somehow, be extended

to allow data objects to retain their semantic qualities as they are transported from

one location to another. In some sense, this challenge echoes the earlier efforts to

develop seamless functional distribution for the data model and its operations.
Without techniques for transmitting objects without losS of their semantic qualities,
information is pinned to the environment in which it is created and cannot interact (be
integrated) with information (objects) from other cultures (environments).
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Abstract

This paper explores the architecture of future DBMSs by posing a collection of questions that affect

the construction of DBMSs and associated application development systems. These questions are grouped
into ones which impact basic DBMS function, ones that impact operating systems, ones that deal with dis

tributed data bases, and ones that consider user interface issues.

1. INTRODUCTION

This paper is motivated by numerous lengthy discussions that I had had with my colleagues over the

last couple of years. Over and over again, we are drawn to examining the same questions. Moreover, on

many of the questions there is fundamental disagreement over the desired (or correct) answer. Hence, I

have taken the liberty to write them down, along with my opinion where appropriate, in the hope that the

discussion will be illuminating. There are a total of 15 questions which are grouped into 4 categories:

Basic DBMS function

Operating system issues

Distributed data base issues

User interface issues

and we discuss them in the following 4 sections in turn.

2. BASIC FUNCTION

Our first question is motivated by the ever falling price of CPUs, main memory and disks.

B!: Will performance of DBMSs become unimportant.

If one wants to perform 100 transactions per second on a 100 megabyte data base, then it is probably cost

effective to buy 100 megabytes of main memory connected to a high speed RISC processor. With such a

configuration, it is straightforward to perform 100 TPS on the resulting main memory data base. Conse

quently, meeting the performance requirements of many current transaction processing applications can be

cost-effectively accomplished by applying the appropriate amount of hardware to the application. In such

a world, the performance of DBMS software becomes increasingly unimportant, resulting in the

irrelevance of much of the current DBMS research.

On di eother hand, I firmly believe that performance will remain significant for the forseeable future

for two reasons. First, most data bases are getting very large very quickly. Not only is average data base

size going up at 35% per year, but also users are beginning to put very large objects into data bases such as

text, image, and signals. As a result, I expect many data bases will continue to be large compared to avail

able memory technology. Second, the complexity of transactions is also increasing rapidly. For example,

many clients of airline reservation systems wish the lowest fare from point A to point B, no matter how

This research was sponsored by the Defense Advanred Research Projects Agency under contract N00039-84-C-0089, the Army
Research Office under contract DAA~3-87~~I,and the National Science Foundation under contract MIP-8715235.
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many intermediate stops are required. This query requires the transitive closure of the route map to be cal

culated, a much more complex task than that specified in standard benchmarks such as TP/1.

Because data base size and transaction complexity are increasing rapidly, I expect performance will

continue to be very important. However, the most difficult data base problems will probably shift from

transaction processing applications to decision support applications. As noted in SILB9O], the largest and

most complex data bases occur in this arena. Consequently, there should be a corresponding shift in the

research agenda to decision support issues. For example, traditional concurrency control and crash

recovery will probably become less important and query optimization for large multi-way joins more

important.

The second question is motivated by the desire to provide a better interface between DBMSs and

general purpose programming languages.

B2: How will seamlessness and multi-lingualness co-exist?

Clearly, persistent X, for any programming language X, can be built. However, persistent X will satisfy
very few users because it has no capability to specify queries, except by laboriously constructing algo
rithms for them based on low level primitives. Therefore, I expect many programming languages will be

extended to have query language support., and such support may well be language specific. An example of

such an approach is that of AGRA89]. Because it is prohibitively expensive to implement a query optim
izer and execution engine for each programming language, language designers will translate queries
expressed in X into whatever query language the DBMS actually supports.

In addition, future DBMSs will clearly support functions that operate on data stored in the data base.

Such functions are available in most current relational DBMSs and are called data base procedures. Such

functions are coded in whatever programming language has been chosen by the DBMS vendor. However,
the user would clearly like to use a given function to operate on transient data in his address space. This is

the ultimate definition of a seamless DBMS interface. Unfortunately, this requires that the DBMS and X

have exactly the same side effects and execution model. However, there are at least a dozen popular pro
gramming languages, and it is hopeless for the DBMS to seamlessly support them all. I have no idea how

to resolve this apparent contradiction between multi-lingualness and seamlessness.

The third question is motivated by discussions with application designers.

83: Where is major leverage in supporting application design?

Application designers universally state that they are required to model the “real world”, i.e. the client’s

problem as he describes it, and they perform this modelling exercise using some abstract model. To be

effective, this abstract model should have constructs that are semantically close to those of the real world.

In business applications, this abstract model is often most usefully expressed as processing steps taking
input from other processing steps and generating output to other processing steps. There are many rules

which control the operation of the processing steps as well as the next processing step to perform.

The application designer must now translate this abstract model into a data base design and collec

tion of application programs. Performing this translation is difficult because the data model supported by
current DBMSs is semantically distant from the abstract model. Moreover, the current trend toward mak

ing the data model richer will not make a significant difference because the extended models have no

notion of processing steps, For example, if a purchase order is filled Out wrong, then it should be sent

back to the originator for correction. Current and proposed data models do not contain constructs that could

support such office procedures. In order to provide leverage to application developers, DBMS tools will

have to include a process model as well as a data model, and work in this area should be encouraged.

The fourth question is motivated by a comment made to me by an MIS manager in at large applica
tion shop.

84: What can be done to assist users with migration paths out from under their “sins of the

past”?

Basically, he lamented that the research community is very good at dreaming up new functionality for
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DBMSs, which is generally useful. however it does not address his crucial problem, i.e. he has a collection

of 20 years worth of applications that he must maintain. These make use of previous generation DBMSs or

no DBMS at all, and he can only afford to rewrite them over many years. Therefore, he needs migration
tools, and the research community should focus on making a contribution in this area.

3. OPERATING SYSTEM ISSUES

The first question concerns the delivery of transaction services.

01: Who will provide transactions?

Traditionally, DBMSs have contained significant code to provide transaction management services (con

currency control and crash recovery). However, such services are only available to DBMS users and not to

general clients of the operating system such as mail programs and text editors. There has been consider

able interest in providing transactions as an operating system service, and several OSs have done exactly
that. Moreover, if a user wishes to have a cross system transaction, i.e one involving both a DBMS and

another subsystem, then it is easily supported with an OS transaction manager but is nearly impossible with

a DBMS-supplied one. Hence, the basic issue is whether DBMSs will continue to provide transaction sup

port with DBMS specific code and algorithms or whether they will use the service provided by the operat

ing system.

I am fairly optimistic that during the 1990s, transaction support will migrate from DBMSs into the

operating system. I base this prediction on the following observations. First, the performance of the Iran

saction system may become less important as users buy massive amounts of main memory to solve their

performance problems as noted earlier. Second, it is plausible that transaction support may move into the

disk controller. If so, the operating system will assuredly control such hardware or firmware. it is difficult

to imagine that transaction software inside the DBMS will be competitive with an OS solution in the disk

controller. Lastly, it is plausible that disk arrays PATF88] will become the dominant style of i/O system.
If so, there is a large incentive to perform sequential writes, since they are nearly free compared to random

writes. This may cause file systems to change to log-structured ones. Such file systems support transac

tions much more efficiently than today’s file systems SELT9O].

For these reasons, I believe that OS transaction support will ultimately prevail, and DBMS develop
ers will not be required to implement transaction management. If so, it is important that there be a high
bandwidth dialog between DBMS and OS developers to ensure that OS transaction systems are usable by
the DBMS.

The second issue deals with the provision of buffer pool management services.

02: Will virtual memory file systems prevail?

Some operating systems are moving toward providing file system services through virtual memory. In this

architecture, when a file is opened, it is bound into a virtual memory segment and then read by referencing
a page in virtual memory, which is then loaded by the operating system. Similarly, a write causes a virtual

memory page to become dirty and be eventually written to disk.

If virtual memory file systems are successful, then buffer management code can be removed from

DBMSs, resulting in one less problem to worry about. On the other hand, a virtual memory file system

requires the efficient management of a very large (say 1 terrabyte) address space. Hence, I am unclear how

this question will ultimately be resolved.

The third issue arises in DBMSs that are extended with user supplied functions.

03: Will protection domains appear?

Extendible data base systems are clearly desirable, and there has been considerable research on how to

provide them. Researchers have typically assumed that user written functions (methods) simply run in the

same address space as the DBMS. Fundamentally no security is provided by such a system, as a malicious

user can arbitrarily change DBMS data whether or not he is so authorized.
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To do better, some help from the hardware and the operating system is required, namely the concept
of protection domains or rings ORGA72I. This would allow a DBMS to execute a protected procedure
call to a user-written function with reasonable performance. Unfortunately, I see no reason to be optimistic
that this capability will be forthcoming from the major hardware vendors. Therefore, I see secure, extendi

ble DBMSs as a significant problem.

The last issue concerns the operating system notion of processes.

04: When are OS processes going to get fixed?

A DBMS would prefer to fork an operating system process for each application program that uses its ser

vices. This so-called “process-per-user” paradigm is the easiest one to implement. However, it suffers

from three fundamental flaws. First., there is no reasonable way to control the multiprogramming level in

the resulting system. Second, a process-per-user DBMS tends to use excessive amounts of main memory.

Lastly, every DBMS file must be opened and closed by each process, resulting in high overhead.

An improvement is to run the DBMS as a so-called server process. Hence, all users run in the same

OS process and are multi-threaded by the DBMS code. Unfortunately, a server is a failure on a multipro
cessor computer system, such as the IBM 3090-XXX or the DEC 58XX, because it can utilize only one

physical processor. In order to run effectively on a multiprocessor, one must move to a multi-server (or
server class) architecture. Here, there are a collection of N DBMS server processes, where 1 <= N <=

#users, and each user submits his queries to one server.

Essentially all commercial DBMSs have implemented servers or multi-servers for these reasons.

Therefore, they have paid the extra development effort required to write a task management system and

associated scheduler. In effect, they have implemented an operating system running within a single OS

process. All this pain and suffering is required because the operating system notion of a process is flawed.

I would urge OS developers to proceed aggressively in this area. It is silly for the DBMS to be implement
ing an operating system on top of an operating system.

4. DISTRIBUTED DATA BASES

It seems clear that distributed data bases will be a dominant theme in the 1990’s. Distributed DBMS

issues have been well investigated in the past decade, and strategies for distributed query processing, con

currency control, crash recovery and multiple copies have been worked out CERI84]. Moreover, many of

the issues surrounding heterogeneous distributed DBMSs have also been considered. However, there are

several questions in this area that may have significant ramifications. The first one concerns so-called

block servers.

Dl: Will distributed data bases prevail over block servers as a distributed processing
model?

In a distributed DBMS, query execution will naturally occur at the site where the data resides. Put dif

ferently, queries are sent to the data they operate on, rather than bringing the data to the query.

However, consider a collection of data servers and diskless client workstations. Suppose a client

repeatedly references a single record, e.g:

retrieve (EMP.all)
where EMP.name = “Bill”

Using distributed DBMS technology, the query will be sent from the client to one of the servers and a

result returned in a second message.

On the other hand, consider a second architecture in which the DBMS is run on each of the clients

and accesses data blocks as necessary from the servers. Consequently, query execution moves from the

servers to the clients, leaving the servers only with the job of satisfying disk block requests. In this case,

repeated reference to Bill’s record can be satisfied from the local buffer in the DBMS at the client’s site,
and no messages need be exchanged. A benchmark showing the superiority of this block server architec

ture is presented in CATF9OJ.
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On the other hand, the block server architecture is unlikely to be viable in a wide area network

environment and has the same difficult synchronization problems present in any “shared disk” architecture.

The most likely scenario is that both architectures will have a place, and commercial systems will be

required to operate in either mode.

A second question concerning distributed architectures is the role of a transaction monitor such as

IMSIDC, CICS or Tuxedo in a distributed application. Transaction monitors expect to manage the interac

tions between a client program and a collection of local or remote data bases managed by (perhaps) several

DBMSs. Each is expecting to coordinate a two-phase Commit and take appropriate recovery actions when

crashes occur. Hence, a transaction monitor performs part of the function of a distributed DBMS. Hence

the second question arises:

D2: Will distributed DBMSs prevail over transaction monitors?

It should be obvious that transaction monitors provide less function than a distributed DBMS. With a tran

saction monitor it is difficult to perform a distributed join and multiple copies of data objects are trouble

some. As a result, distributed DBMSs have a considerable advantage. On the other hand, transaction mon

itors are in place today and present a natural evolutionary path forward into the future.

The last distributed data base question concerns heterogeneous distributed DBMSs. Clients want to

have local data bases managed by a variety of general purpose DBMSs and to have such local data bases

participate as members of a heterogeneous distributed data base. Therefore, most vendors are writing distri

buted DBMSs and are constructing gateways that map from their version of SQL to those of their competi
tors.

However, all major vendors are hard at work on extensions to SQL. None of the significant exten
sions (procedures, rules, type extension, inheritance) are covered by SQL 2 or SQL 3. Hence, each vendor

has (or will soon have) an incompatible superset of SQL. Moreover, in each vendor’s version of SQL there

are functions that are essentially impossible to map through a gateway. Therefore, each vendor of a distri

buted DBMS will choose to support a subset of his extended version of SQL in each gateway.

Consequently, a user of a heterogeneous distributed DBMS has an inherent problem. He can choose

to code his application in the superset of SQL supported by one particular distributed DBMS vendor.

However, this locks him in to the set of gateways supported by the vendor of choice as well as makes his

application non-portable to another vendor’s distributed DBMS. On the other hand, he can remain within

the subset of SQL that is standard across vendors, i.e the lowest common denominator. If so, he can easily
move from one vendor of distributed DBMSs to another but must give up valuable function to do so.

Hence, users are presented with a perplexing question:

D3: Should one bind oneself to the distributed DBMS from a particular vendor or use the

lowest common denominator approach?

5. USER INTERFACES

There has been a great deal of interest in GtJIs (Graphical User Interfaces) for data base applications.
It is evident that end users will get powerful workstations on their desks with multiple windows, a mouse,

display of icons, etc. In such an environment, all the traditional user interfaces, based on a glass terminal

paradigm, are instantly obsolete, and new presentation services must be implemented. To support the con

struction of GUIs, a new collection of report writers, form systems, fourth generation languages, graphics
packages, etc. must come into existence, and I fully expect these new toolkits to completely replace the

current set. The only question is the amount of time that this transformation from glass terminals interfaces

to GUIs will take.

U!: How long will it take for glass terminal interfaces to disappear?

A second question concerns the absorption of mips on the desktop. My Berkeley students have

always complained about the performance of their current workstation and yearned for the next faster

model. However, this viewpoint is changing rapidly. At the moment, they have 10-15 mips on their desk

top, and view the move to 25 mips as nice but not remarkable. The problem is that their computing
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environment is becoming both 1/0 bound and network bound, and a faster processor doesn’t help much.

Moving to a faster network requires extensive rewiring and considerable money and may take some time to

occur. Hence, it is plausible that users will stop upgrading the workstation on their desk every couple of

years. If this situation is widespread, then workstations may begin to have a much longer lifetime, and

growth of the workstation market will slow markedly. Hence we are led to the next question:

U2: Is there a limit to absorption of mips on the desktop?

The next question is even more compelling. Speech recognition hardware and software will certainly
mature in the 1990s. At the very least, it will be possible to economically process continuous speech from

a single speaker who has taken the time to train the software to understand him. Vocabulary is now in the

1000-3000 word range with low error rates (< 1%), and this situation will only improve as the decade con

tinues.

Therefore, it seems very likely that I will abandon text editing in favor of dictation as the means of

interacting with my document processing and mail systems. This is a dramatic shift of paradigm which

will require such systems to be rethought completely. Hence we are led to the question:

U3: What impact will speech processing have on user interfaces to DBMSs?

Finally, there is the perennial problem, namely data base design. At present, users have a lot of trou

ble performing this function for relational systems. Data base design in the future will clearly be more com

plex, because DBMSs will have a richer data model and execution environment. Distributed data bases

will arrive with the resulting required optimization of location and replication of data. Hence, we are led to

ask the last question:

U4: Will data base administration become impossible in the 1990s?

I am mildly uneasy that DBMS function will overrun the ability of users to manage it. Moreover, there is

very little (if any) research on how to help users with this problem.
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1. Introduction

An object—oriented database management system (00DB) is a database system which supports an object—o
riented data model. Just as any traditional database system, it must provide disk management, data sharing,
data integrity, security, and a query language. Further, in support of an object—oriented data model, it must

manage complex objects with object identity, support objects that encapsulate data and behavior, structure

objects in classes, and organize dasses in a hierarchy.

Starting around 1983, the field of object-oriented databases has rapidly turned into a major area of re

search and become reasonably mature. It has attracted significant attention from the research community,
the business community, and the user community. During the past 7 years much has been accomplished:

• Existing database andprogramming language technologies have been reusedandadapted: Concur

rency control, recovery techniques, storage techniques, distributed data management, query optimiza
tion and processing, type theory, and compilation techniques are examples of such technologies.

• New technologies have been developed for OODBs: Data models, query languages, indexing tech

niques, query optimization, schema modification, user interfaces, authorization mechanisms, perform
ance metrics, client/server architecture, and in—memory object managers are examples of such new de

velopments.

• Considerable experimentation hasbeenperformed: Complete and partial prototypes have been built,
with IRIS Fishman etal. 87], ORION Kim eta!. 90], and 02 Deux etaL 90] being the major prototypes.
These prototypes have been used as vehicles of experimentation with most of the design and implemen
tation issues for OODB5; they have also been used to evaluate the performance and functionalities of

the 00DB technology.

• A first consensus on the definition and core concepts concerning OODBs has been stablishedDit
trich 86], Kim 90] and Atkinson et al. 89]; and standards committees are currently attempting to forge
standards for various aspects of the 00DB technology.

• Someproducts have been introducedin the market. Gemstone Maier etal. 86], Vbase and its succes

sor Ontos Andrews 87], and the commercial version of ORION are examples of currently available prod
ucts. Further, a few additional products are being readied for release in 1990 and 1991.

This high level of productivity in research and development is mainly due to the fact that 00DB researchers

and designers have reused and adapted the technology and experiences accumulated from the development
of relational systems in the 1970s. We believe that the exploratory and experimentation phase for the 00DB

technology is rapidly winding down, and the technology is poised to shift gear into the next phase to take root

in production environments to fulfill the needs that traditional database systems have failed to satisfy. Further,
we believe that the transition from the current phase to the nextwill take at least a few years, requiring intensive

further research and consolidation. The research must be focused on bridging and negotiating the gap be

tween the 00DB technology and traditional database technology; and the best results of the past and current

research and development efforts, not only in the field of OODBs but also extensible databases, distributed

databases, and user interfaces, must be consolidated in building the next generation of OODBs for production
environments. On the basis of these observations, we outline in this paper five topics we regard as the most

important and promising, in terms of relevance to 00DB developers and/or technical challenges to 00DB

researchers.
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• query model and query optimization

• user interfaces

• design methodologies and tools

• view mechanism

• performance benchmarks

We note that there are other, albeit less pressing in our opinion, topics of relevant research, including the fol

lowing.

• type theory and its integration into database languages

• architectural issues in implementing object managers
for both client/server and distributed machine configurations

• specification and enforcement of integrity constraints

• design, usage and maintenance of libraries of reusable objects

2. Query Model and Query Optimization

2.1 query model

Although some promising research has been done on queries (query model, query languages, and query opti
mization), various problems remain. The major one is the definition of a query model that would account for

encapsulated objects:

• Unlike traditional query languages which only access data, query languages for 000Bs must access

data encapsulated in objects by invoking methods. A method may be system—defined or user—supplied;
in either case, a method defines a far richer set of operators on data than those supported in traditional

database systems.

• It may be desirable to extend the closure property of the relational query languages to OODBs. A

query language with the closure property takes as input a schema (and a database) and generates as

output another schema (and another database). An 00DB schema usually consists of a set of classes,
classes consist of objects which have a structure and a set of methods. The query languages proposed
for OODBs thus far are in general able to map structured objects into other structured objects. However,
the objects returned do not necessarily belong to any of the existing classes; that is, to save the result

of a query seems to require the creation of some artificial new classes somewhere on the hierarchy of

classes. Further, query languages may take methods as “input” but do not generate objects with new

methods.

If we are to define a formal foundation for OODBs as an extension of the relational framework, it is highly
desirable to define a query model with the closure property. The notion of a complete query language defined

for relational query languages will be helpful to formalize the power of the query languages for 000Bs. Acorn

plete query language with the closure property will also serve as the basis for a view mechanism for OODBs,
as we will see in Section 5.

2.2 query optimization

Query optimization for OODBs, just as for relational databases, involves enumeration of logically correct

scan orderings for the classes, generation of query—execution plans, cost estimation for each of the plans,
and application of algorithms and heuristics to reduce the search space for query—execution plans. However,
it is more complex than in relational systems because

1. data has a more complex structure,

2. queries involve method invocation and thus optimizing a query can mean optimizing an entire program,

and
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3. there is no object—oriented equivalent of the simple and concise relational algebra (and it may be impos
sible to define such an algebra).

The complex structure of data in OODBs simply adds to the computational overhead in generating query—
execution plans, but does not appear to introduce fundamentally new and significant problems that designers
of relational systems have not addressed. However, queries involving methods have no relational equivalent,
and pose some serious problems. If a method is used as an operator in a query, conventional access methods,
such as a B—tree index, are no longer useful in optimizing the query; as such, new access methods are neces

sary to expedite the evaluation of a query involving such an operator. Further, the selectivity of such a general
operator must be defined to augment the selectivities defined for conventional operators in the query optimizer
of conventional relational database systems.

3. User Interfaces

Despite the longstanding consensus on the importance of user interfaces for non—programming users of data

base systems, the area of user interfaces for database systems remains largely barren. Most of the work has

been focused on the design of a specific user interface for a specific system, rather than on the development
of a generic user—interface technology.

It is tempting to leave the problem to researchers in the user interface discipline: after all,the database commu

nity does not develop operating systems to support database systems, so why should it develop user—inter

face management systems (UIMS) specifically for database systems and users? We believe that the problems
that 00DBs pose are particular and challenging, and they will be best addressed by the database community.

First, a specific data model, a specific schema structure, and a specific query language all require a specific
user interface. At the very least, one has to design such an interface using available user—interface technology
and tools. User interfaces for 000Bs may very well become applications for a UIMS.

Second, even if one is to design a specific user interface for a specific 00DB, the nature of the 00DB intro

duces some new challenges, beyond those addressed for traditional databases. In particular, user interfaces

for 0ODBs must deal with

• complex objects and their representations on the screen, either by graphs, by embedded graphical
structures or by indented text structures (object sharing also requires an adequate visual representation
on the screen),

• multimedia objects,

• display and manipulation of very large objects on the screen, and

• active objects.

Interfaces to traditional databases only had to deal with “passive data” which simply needs to be displayed
and edited. In an 00DB, objects have associated methods which may be activated directly on the screen,

objects may reference other objects, and objects may be cut and pasted on other objects.

Thus, we believe that one must use existing user interface technology and eventually develop a new one

to build systems which display complex interactive objects and connect them to an application. These systems
should display interactively very large objects on the screen,display multimedia objects, provide a clean sepa
ration between the application and the interface and allow users to design interactively the display they want
for objects.

4. Design Methodology and Tools

There is currently a need for a design methodology for 00DB applications. It is one of the consistent feedbacks

users have been giving to 00DB experimenters. The standard questions are “where and how do we start”

and “where do we go next?”

We must also address some cultural problems. There is a set of available object-oriented software design
methodologies; however, they take little or no account of databases. Further, database application program
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mers have used existing methodologies for the past decade, based on some formal theories, and sometimes

with associated tools. It is not reasonable to simply expect that the programmers will discard all this technology
and culture. We must therefore devise new design methodologies for 00DB application by either generalizing
the existing ones or by providing a migration path from the old to the new methodologies.

5. View Mechanism

Views, as provided by relational systems, form a simple and powerful mechanism for data representation and

structuring. The three—level ANSI/SPARC architecture which uses the view mechanism is a useful architec

ture to design complex applications involving several designers. Current OODBs do not offer a general view

mechanism. A few of them offer some degraded form of views, either through exports of schemas or through
encapsulation, but no complete and simple mechanism is yet available.

One of the reasons was mentioned in Section 2: current query languages are neither closed nor complete.

Another reason is the added complexity the view—derivation relationship introduces to the schema; that

is, the view—derivation relationship results in a directed graph of classes and views along which some aspects
of the class or view definition may be inherited. This “view hierarchy” is in addition to the class hierarchy and
nested attributes of classes.

Object identity also makes view support in OODBs more difficult than in traditional systems. Typically, view
definitions are stored in databases; but this seems to be difficult to do in OODBs because of the need for the

generation of new identifiers. For example, let us consider a database of people, with some of them being mar
ried. Assume the schema describes this by objects of the class PERSON with an attribute spouse of class

PERSON. Suppose now we need to extract a view of this database with objects of the class COUPLE with

attributes HUSBAND and WIFE of the class PERSON. Then, this view must contain new object identifiers for

the COUPLE objects. One interesting question is whether these identifiers should be persistent or transient/

virtual.

6. Performance Benchmarks

The question of the performance of systems is raised every time a new system or a new generation of systems
is proposed. One of the important contributions the research community should make is to answer the ques
tion “what is a fast system?”. This is usually done through benchmarks. The two traditional database bench

marks are the Wisconsin Benchmark which measures relational systems; and the ET1/TP1 benchmarkwhich

measures transaction systems.

A few benchmarks have already been proposed for OODBs: the SUN benchmark CatteD 90], the Hyper
model benchmark Anderson eta!. 90], and the ACOB benchmark DeWitt et a!. 90]. All these benchmarks

have been designed for engineering applications. Further, they only exercise complex object manipulation in

OODBs.

We believe that a more general benchmark is necessary for OODBs. Such a benchmark should be de

signed for a much broader spectrum of application areas than just engineering applications, since applicability
of OODBs is not confined to engineering applications. Further, the benchmark should be designed to exercise

the large set of new database functions that 00DB designers have been incorporating into the systems; ex

amples are message passing, schema modification, version management, multimedia data management,
etc. Finally, the benchmark should subsume relational benchmarks to allow a comparison across different

00DB systems as well as a comparison between 00DB systems and relational systems; this is an objective
since there is a large degree of overlap in functions provided by 00DB and relational systems, and an 00DB

data model can subsume the relational model of data.

7. Concluding Remarks

00DB research has been very active and productive during the past seven years, and the first batch of sys

tems, incomplete as they may be, have reached the market in response to a growing demand for better solu

tions to data management problems than what the traditional systems offer. We believe that, although the

00DB technology has significantly matured, there is much room for further research and experimentation
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which should result in significantly more satisfactory next generation of systems. In this paper, we focused

on five topics of research in OODB5 which we regard as the most important and relevant in responding to the

demands of the applications and which hold promise for exciting technical challenges.
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Abstract

Most database systems are designed under assumptions of precision of both the data stored

in their databases, and the requests to retrieve data. In reality, however, these assumptions are

often invalid, and in recent years considerable attention has been given to issues of imprecision in

database systems. In this paper we review the major solutions for accommodating imprecision,
and we describe issues that have yet to addressed, offering possible research directions.

1 Introduction

Information stored in a database is precise if it is assured to be identical to the “real world”

information which it represents. When precise information is unavailable, it is often the case that

some relevant information is nonetheless available. In these cases, it may be advantageous to design
methods by which this information, termed imprecise information, can be stored, manipulated
and retrieved. Imprecision may also be present in requests to retrieve data, when users, either

intentionally or by necessity, formulate their queries in imprecise terms.

Depending on the data model used, the information stored in a database may take different

forms, and imprecision could affect each and every one of them. For example, in the entity-
relationship model, imprecision could occur in both entities and relationships. However, as virtually
all recent research work in the area of database imprecision has been in the context of the relational

data model, our discussion here is limited to this model. The structures of the relational model

admit two different kinds of imprecision. The first kind involves imprecision at the level of data

values; for example, the values of SALARY in the relation EARN (EMPLOYEE, SALARY) may be

imprecise. The other kind involves imprecision at the level of the tuple; for example, the values

of each of the attributes of the relation ASSIGN (EMPLOYEE, PROJECT) may be precise, but there

may be uncertainty as to the precise assignment of employees to projects.

The relevant information that is available in the absence of precise data may take different

forms. First, consider these examples of imprecision at the level of data values. It may be known

that the true data value belongs to a specific set of values. Such imprecise data is often referred

This work was supported in part by the AT&T Affiliates Research Program.
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to as disjunctive data. If the set to which the value belongs is simply the entire domain, then

the imprecise data is referred to as unavailable (or unknown, or missing). If each of the candidate

values is accompanied by a number describing the probability that it is indeed the true value (and
the sum of these numbers for the entire set is 1), then the imprecise data is probabilistic. Note

that probabilistic data subsumes all the types of imprecise data described so far, as well as precise
data. Occasionally, the information available in the absence of precise data is a descriptive term.

Such imprecise data is referred to as fuzzy. Imprecision is also possible at the level of tuples. For

example, it may be known that the true tuple belongs to a set of tuples (disjunctive data), or a

particular number may be available that describes the possibility that a given tuple belongs to the

relation (fuzzy data).

It is useful to distinguish between the ability to accommodate imprecise data and the ability to

handle imprecise queries, as each capability could be provided separately. It is possible to develop
a model that accommodates imprecise data, and yet retain the standard query language, with its

semantics extended to define when imprecise data match queries. On the other hand, it is possible
to allow only standard databases, but extend the query language and the query processing methods

to permit imprecise queries. By accommodating imprecise data, a database system provides for

databases (and, therefore, answers) that are better approximations of the real world (the alternative

being to ignore altogether information which is “imperfect”). The ability to handle imprecise queries
is very helpful for requests which are intrinsically vague. With a database system that can only
evaluate standard (specific) queries, the user must emulate such requests with standard queries.
Usually, this means that the user is forced to retry a particular query repeatedly with alternative

values, until it matches data that are satisfactory (if the user is not aware of any close alternatives,
then even this solution is infeasible).

2 Solutions

Many of the approaches to the modeling of imprecision in databases are based on the theory of

fuzzy sets 11, 12]. The approach described here is derived from 9, 14, 10].

The basic concept of fuzzy set theory is the fuzzy set. A fuzzy set F is a set of elements, where

each element has an associated value in the interval 0,1] that denotes the grade of its membership
in the set. For example, a fuzzy set may include the elements 20, 30, 40, and 50, with grades of

membership 1.0, 0.7, 0.5 and 0.2, respectively.

As a relation is a subset of the product of several domains, one approach is to define relations

that are fuzzy subsets of the product of fuzzy domains. Since each such relation is a fuzzy set, each

of its tuples is associated with a membership grade. This definition admits imprecisions at the tuple
level. For example, the tuple (Dick, Pascal) belongs to the relation PROFICIENCY(PROGRAMMER,
LANGUAGE) with membership grade 0.9 ~. To represent such relations, the usual attributes are

supplemented with a column that assigns the membership grades to the tuples of the relation.

Consider the fuzzy set defined earlier, and assume it is named YOUNG. It is also possible to

interpret this set as the definition of the term “young”: it is a term that refers to 20 year olds with

possibility 1.0, to 30 year olds with possibility 0.7, etc. Thus, fuzzy sets may be applied to describe

imprecise terms.

1Alternatively, this tuple may be interpreted as stating that Dick’s proficiency in Pascal is 0.9.
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Consider now standard (nonfuzzy) relations, but assume that the elements of the domains are

not values, but fuzzy sets of values. This definition admits imprecisions at the data value level.

Having fuzzy sets for values permits specific cases where a value is one of five types: (1) A set;
for example, the value of DEPARTMENT can be {shipping, receiving} or the value of SALARY can be

40,000—50,000. Note that the interpretation of such sets is purely disjunctive: exactly one of the

elements of the set is the correct value. (2) A fuzzy value; for example, the value of AGE can be

young. (3) An estimate; for example, the value of SMART can be 0.8. (4) A null value. (5) A simple
value.

Finally, by defining a fuzzy relation as a fuzzy subset of the product of fuzzy domains of fuzzy

sets, both kinds of imprecision can be accommodated.

To manipulate fuzzy databases, the standard relational algebra operators must be extended

to fuzzy relations. The first approach, where relations are fuzzy sets but elements of domains

are “crisp”, requires relatively simple extensions of these operators. The second approach, where

relations are crisp but elements of domains are fuzzy, introduces more complexity because the

“softness” of the values in the tuples creates problems of value identification (e.g., in the join,
or in the removal of replications after projections). Also, in analogy with standard mathematical

comparators such as = or <, which are defined via sets of pairs, the second approach introduces

fuzzy comparators such as similar-to or much-greater-than, which are defined via fuzzy sets of pairs.
These fuzzy operators offer the capability of expressing fuzzy (imprecise) retrieval requests.

Experimental database systems based on ideas similar to those described here have been im

plemented by various researchers. One example is the FRDB system 141. Its overall architecture

involves three components: (1) A database for storing extended relations (standard relations over

domains of fuzzy sets). (2) An auxiliary database that stores the definitions of fuzzy sets that are

used for domain values (e.g., YOUNG) and fuzzy comparators (e.g., much-greater-than). (3) Rules

that define additional fuzzy concepts via the concepts stored in the auxiliary database (e.g., the def

initions of “young age” and “high salary” may be combined to define “successful”). Each statement

in the query language of FRDB performs one fuzzy relational operation, and a query is executed

with a sequence of such statements. An optional argument of each statement is a threshold value

between 0 and 1. This value is used to filter the tuples of the result, retaining only tuples whose

membership grade exceeds the threshold value. Users of the FRDB system can present queries
such as “select person, who is young and very smart”, “select person who is much more intelligent
than athletic, or who is not very young” and “select city, where summer-temperature is not much

greater than winter-temperature, and is not so large”.

An alternative approach to imprecise querying is to define distances among the elements of the

domain, and then use these distances to derive measures of equality and similarity. By dividing
each distance by the diameter of the domain (the largest distance among its elements), a measure

of dissimilarity is obtained. Its complement to 1 is then a measure of similarity. Equality is defined

as similarity with value 1. With an appropriate radius to serve as a threshold distance, every two

values are either similar or dissimilar. A selection condition such as A a would then be satisfied

by every element of the domain of A, that is similar to a. VAGUE 8] is an example of an extension

to a conventional database system that uses data distances to interpret vague queries (another such

example is ARES 4]). VAGUE extends the relational model with the concept of data metrics, and

its query language with a similar-to comparator. A data metric defines the distance between every

two elements of a domain; for example, in a personnel database there may be metrics to measure

distances between titles, between salaries, between qualifications, as well as a metric to measure
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distances between employees. Database designers are provided with several different methods for

defining data metrics, and users are offered several features with which they can adapt the available

metrics to their own needs. A similar-to comparison is satisfied with data values that are within a

predefined distance of the specified value; for example, the vague comparison “language similar-to

Pascal” may be satisfied by Pascal, Algol and Modula. To present queries, users need only to know

about the new comparator. In contrast with a standard query, that establishes a rigid qualification
and is concerned only with data that match it precisely, a vague query of the kind that can be

handled by VAGUE establishes a target qualification and is concerned with data that are close to

this target.

Buckles and Petri 1] define fuzzy databases differently. Relations are extended to allow values

that are sets of domain elements. Therefore, a fuzzy tuple is a sequence of sets (d1,d2, . . . ,d,,);
it represents a set of specific tuples (ai,a2,. . .,a,,), where a, E d,, for all i. Thus, a fuzzy tuple
models uncertainty: each of the specific tuples that it represents is equally likely to be the “correct”

tuple. Additionally, each database domain has an associated similarity matrix that assigns a value

between 0 and 1 to each pair of domain elements. The output of standard relational algebra

operators, such as join or project, is post-processed to merge tuples (by performing unions of their

respective components), if a pre-specified similarity threshold is not violated.

Recently, Garcia-Molina and Porter 3] suggested modeling uncertainty by using traditional

probability distributions (rather than the possibility distributions of the fuzzy models). A prob

ability distribution function of a variable X over a domain D assigns each value d E D a value

between 0 and 1, as the probability that X = d. One important difference between probability and

possibility distribution functions is that the sum of the probabilities assigned to the elements of

X must be exactly 1. The definition of a probabilistic database is similar to the second definition

of fuzzy databases: standard relations, but with domain values that are, in general, probability
distribution functions. A feature of this model is that it allows probability distributions that are

incompletely specified: each such distribution is complemented with a “missing value” which is

assigned the balance of the probability.

If a model such as a fuzzy data model is not used, then all imprecise information must be ignored,
and the information is then considered unavailable. When the value of a particular attribute for a

particular tuple is unavailable, a special value, called null, is stored instead. Hence, unavailability
is the least informative form of imprecision. Recall that in many of the models mentioned earlier,

unavailability, also called incompleteness, is handled as a special case. Due to the prevalence of

this type of imprecision, and the relative simplicity of the “information”, unavailability has been

the subject of intensive research (see 6, Chapter 12]). Much of this research focuses on the precise
semantics of null values, and on the appropriate extension of the relational algebra to databases

with null values (e.g., 2]).

The models described so far incorporate modeling extensions that permit modeling imprecise
information. An alternative approach is discussed in 7]. Instead of modeling the “imperfections”
of the available data, it suggests declaring the portions of database that are assured to be prefect
models of the real world (and thereby the portions that are possibly imperfect). With this infor

mation included in the database, the database system can qualify the answers it issues in response

to queries with regard to their precision: each answer is accompanied by statements that define the

portions that are guaranteed to be perfect.

32



3 Discussion

Commercial database systems have been relatively slow to incorporate imprecision capabilities: the

only capabilities widely available are for handling null values, and for specifying imprecise queries

through the use of regular expressions. Examining the possible reasons for this slow acceptance

may suggest directions for further research. First, database practitioners are concerned primarily
with the performance of a database system. However, many of the query evaluation algorithms
for matching imprecise data or for processing imprecise queries are fairly complex and inefficient.

Practitioners are also concerned with compatibility. This dictates that capabilities for accommo

dating imprecision should be offered as strict extensions of existing standards. Third, database

practitioners have often been dissatisfied with various idiosyncratic implementations of imprecision

capabilities (minor examples are the inability to specify an incomplete date value, or the inabil

ity to sort answers with null values flexibly). This may have had a chilling impact on further

implementations.

Another hindrance for database systems with imprecision capabilities may lie in the expecta

tions of users. A fundamental principle of database systems has been that queries and answers are

never open to “subjective” interpretations, and users of database systems have come to expect their

queries to be interpreted unambiguously and answered with complete accuracy. In contrast, users

of information retrieval systems would be pleased with a system that delivers high rate of recall

(proportion of relevant material retrieved) and precision (proportion of retrieved material that is

relevant). A database system that must adhere to the principles of unambiguity and complete

accuracy cannot accommodate the full range of imprecise information; for example, it can accom

modate null values or disjunctive data, but not (due to its subjective nature) probabilistic or fuzzy
data. Further research is required on systems that would integrate the capabilities of information

retrieval systems and database systems attractively.

As mentioned earlier, most of the research effort on imprecision has been in the context of the

relational data model. At present, much research and development efforts in the area of databases

is focused on “next generation” database systems 2• It appears advantageous to incorporate impre
cision capabilities into early versions of these systems, as such extensions are more difficult to effect

once “standards” have been agreed upon. Preliminary work in this area includes investigation of

incompleteness in logical databases 5] and the design of a knowledge-rich system that can deal

with various aspects of imprecision 13].

The ability to respond to imprecise queries may be considered as one aspect of generalized

(non-standard) query answering. Other aspects include intensiorzal answering (where answers are

described with predicates or constraints), cooperative answering (where information considered

relevant to the query is delivered along with, or in place of, the standard answer), and approximative

answering (where an approximation is provided in lieu of the standard answer, possibly because of

limited computational resources). Various models and techniques have been developed to handle

these individual aspects of generalized query answering, and further research is required to integrate
them into a single model of retrieval.

2The term is used loosely to refer to object-oriented or knowledge-rich systems.
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1. Introduction

With a recent emergence of applications that rely heavily on spatial data, the database research

community is currently devoting considerable attention to spatial database issues. While the main

thrust came initially from the geosciences and mechanical CAD, the range of possible applications
has expanded to areas such as robotics, visual perception and autonomous navigation, tracking,
environmental protection, and medical imaging.

Just as broad as the range of applications is the range of interpretations given to the term “spatial
data management.” One interpretation comes from mechanical CAD and its need for processing 3-

dimensional solids, whereas VLSI CAD and cartography are typical for applications that rely
mostly on 2D- or layered 2D-data. Other applications emphasize the processing of unanalyzed
images, such as X-rays and satellite images from which features are extracted.

The terms spatial database and image database are often used interchangeably. Strictly speaking,
however, spatial databases contain n-dimensional data with explicit knowledge about objects, their

extent and position in space. The relative position of objects may be implicit (derived from the

internal representation of their absolute positions) or explicit. Image databases, on the other hand,
often place less emphasis on the need for analyzing the data and provide storage and retrieval for

unanalyzed pictorial data. Techniques developed for the storage and manipulation of image data can

be applied to more general signals as well, such as infrared sensor signals and sound. in the

remainder of this paper we will assume that the goal is to manipulate analyzed spatial data, and that

unanalyzed images are only handled as the source from which spatial data can be derived. The

operations performed are often domain-specific, and some of the features we have come to

associate with a full-fledged DBMS, such as transaction management, may be less important in

some applications. However, the handling of multiple spatial representations and data models,
spatial access methods, pictorial/spatial query languages, and optimization form a significant subset

of today’s database research.

The challenge for the developers of DBMSs with spatial capabilities lies not so much in providing
yet another special-purpose data structure that is marginally faster when used in a particular
application, but in defining abstractions and architectures to implement systems that offer generic
spatial data management capabilities and that can be tailored to the requirements of a particular
domain.

In this paper we do not attempt a comprehensive review. Instead, we will summarize application
requirements, identify areas in which considerable progress has been made, and discuss several

problems that require a stronger emphasis.

2. Application Requirements

The spatial data management needs differ widely between applications. Mechanical CAD is perhaps
the application with the most demanding geometrical requirements. Early representations consisted

of line drawings of the three views of a solid. Cell decompositions, in which solids are

decomposed into simpler polyhedric cells (such as convex polytopes or simplices), are best suited
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for finite element methods. Constructive solid geometry (CSG), which represents solids as

compositions of primitive components and regularized set operations, is best for composing
regular objects and deriving other properties. Boundary representations, which map a solid’s

surface into patches that are represented via edges and vertices, are best suited for modelling
irregular surfaces. Because no single approach satisfies all requirements, the same object is often

represented in multiple forms. In addition to the representation and manipulation of the spatial data,
mechanical CAD applications often require its association with descriptive properties, such as

material and weight (which may itself be derived from volume and density data). Database

retrievals and updates are frequent, but often performed in individual workspaces.

VLSI CAD has received most attention in the database community, both because it is easily
accessible to computer scientists and because its geometric requirements are relatively simple and

tractable. Most objects are represented sufficiently well by rectilinear polylines or polygons whose

edges are all parallel to the axes of the same coordinate system. This makes for regular boundaries

and clean intersection of the geometric shapes, all properties that help when indexing on an object’s
spatial properties.

Geographic/cartographic applications are characterized by massive volumes of data, both spatial
and non-spatial, as well as the need to record their evolution in time. Spatial data are mostly two-

dimensional with points, lines, and polygons as the basic primitives, and are characterized by
extreme irregularity. The third dimension is usually reduced through well-established conventions

for the representation of elevation. Cartographic applications require the ability to overlay maps,
extract common features and make independent data sources compatible. Feature extraction from

aerial photographs and spatial images is common. The operations most often performed are

overlay, containment, distance operations, and spatial searches. The sheer volume of geographic
data prompted early application of database technology. However, the integration of spatial and

non-spatial data in a common database approach, although desirable, has been limited.

Vision systems have been evolving in the areas of robotics and manufacturing, as well as

autonomous navigation Good89, Bro189]. The general problem is one of identifying and

determining the position of a 3D object based on 2D images. Vision systems are driven by tight
time constraints, and generally depend on the extraction of relevant features, such as descriptions
of junctions, that are stored in structures used for fast matching. Features are often extracted from

the underlying CAD databases to produce models of the objects off-line.

3. Research Areas in SpatiaL Data Management

The spatial properties of objects have to be captured both at the conceptual level, and at the physical
data structure level. How tightly these two are coupled will determine the flexibility (or lack

thereof) in a spatial database system. We will analyze the issues by looking first at the

representations of spatial data and working from there outward to the conceptual level, query

languages, optimization, and problems derived from intrinsic spatial properties, such as precision.

3.1 Representations

The goal of a spatial data structure is to provide a scheme for partitioning the entire space into cells,
and to provide a two-way mapping between these cells and the region in space occupied by an

object Niev89]. A variety of representations have been proposed; for a review see Nagy79,
Requ8O, Gunt88, Same89]. The simplest approach is a raster representation in which the spatial
extent of an object is represented by pixels. 2D objects can also be represented by polygons made

up of lines (so-called vector representation). The equivalent for 3D is the representation of a solid

through surface patches. Solids can also be composed of primitive objects and a specification of

their relationships, which is the basic representation in CSG systems. Each of these representations
supports a certain class of spatial operators, such as intersection, containment, or the set
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operations. However, some operations are not defined for certain representations. For example,
outline and endpoints of a line are not defined for a pixel representation. Operations are also

performed with varying efficiency in different representations. For example, raster representations
support intersection well but vector representations are more efficient for distance operations.
When choosing a data structure it is therefore important to take into account what operations are to

be supported primarily.

However, no matter how carefully one selects a representation, operations across representations
will be required. This is even more so as systems with different underlying representations will be

integrated. A variety of open research problems have hindered data exchange and integration of

spatial databases, and has confined spatial databases to the use of a single representation.

For most of the representations the specification of the spatial operators is incomplete. No

comprehensive list of operators exists, no minimal sets of operators have been identified, and the

semantics of many operators are ill-defined. Presently, no known generalizations exist for spatial
operations across representations. For each of the representations an algebra is required and a

“superalgebra” for cross-representation operations has to be defined if the user is to be shielded

from the physical representation and if any kind of optimization across representations is to be

performed. The need for representation-independent abstractions is discussed below.

3.2 Spatial Access Methods

A typical spatial database query may ask for all objects that contain a given point (point search) or

that overlap a given search space (range search). In all of these cases, it is necessary to retrieve

from the database those objects that occupy a given location in space. To support such search

operations, one needs to use spatial index structures that enable the user to access efficiently the

objects in a certain spatial neighbourhood.

A large variety of such structures have been proposed, both hash-based and tree-based; see

Gunt88J or 0oi88} for a survey. However, due to a lack of comparative studies it is not clear yet
which structure has the best expected performance for a given application, and how robust each is.

It is an important issue for future research to classify spatial search applications according to a

small set of parameters (such as database size, average object size, or object distribution), and to

determine the most promising structures for a given set of parameters. For initial experimental
results see 0oi88, Free9O, Krie9O, Gunt9O, Smit9OJ; no analytical results are known to us.

Unfortunately, many spatial access methods are rather inefficient if the database contains objects of

varying shapes and sizes Six88]. In geographic applications, for example, where a spatial
database may contain geometric objects representing geographic entities such as states, roads, and

buildings, this problem may have a significant impact on average performance. The reasons for

these inefficiencies depend on the particular properties of the various index structures. Most of

these structures have originally been designed to manage point data only, that is, to provide
efficient spatial access to large sets of points. Usually, the points in the database are organized in a

number of buckets, each of which corresponds to some partition of the data space. The buckets are

then accessed by means of a search tree or some hashing scheme.

Problems arise when these point access structures are modified to manage extended spatial objects
such as polygons. As discussed in Seeg88], there are three basic methods: clipping, where objects
are divided along the partitioning lines of the underlying access structure; overlapping regions,
where each partition of the access structure may contain any object it overlaps (rather than just
those objects it encloses); and transformation, where extended spatial objects are mapped into

higher-dimensional points.
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Transformation only works for relatively simple objects, such as rectangles. More complicated
entities, such as arbitrary polygons (as they typically occur in geographic applications), can only be

represented by means of their bounding boxes Niev84]. However, this principle has led to the

development of spatial filters, which return approximate (conservative) results which can then be

refined by more precise searches based on the actual geometry Oren86].

Overlapping region schemes tend to experience major performance problems when the spatial
database contains objects whose size is large relative to the total size of the data space. Each

insertion of a new data object may increase the overlap. Eventually, the overlap between regions
may become large enough to render the index inefficient: one ends up searching a significant
portion of the whole index for a single point query. A well-known example where this behavior

has been observed is the R-iree Gutt84; Gree89].

In the case of clipping schemes, the problems with large objects are of a somewhat different

nature. During insertion, each data object is divided along the partitioning hyperplanes of the

access structure. This fragmentation effect gets worse as the spatial database and its index continue

to become more populated. The net result of this fragmentation effect is not only an increase in the

average search time but also an increase in the frequency of node overflows, which in turn leads to

an increase in fragmentation, and so on Gunt89]. Such an endless loop may cause the whole

index to collapse and therefore has to be avoided at all cost.

It is evident that ever more specialized access methods can be devised. While these may perform
well in a narrow application with “well-behaved” data, it is more important in a database

environment to develop a sound understanding of the behavior of a few robust access methods

under varying conditions, and to develop performance metrics that can be employed by an

optimizer. It is important to realize that spatial indexes and filters can be constructed on most

underlying representations, and can be substituted at a moderate cost. However, changing the

representation of the data is a major undertaking and is often coupled with a loss of information or

the introduction of imprecisions or inconsistencies.

3.3 Conceptual Models and Architectural Considerations

The objects handled in spatial database systems are usually complex. Some objects may be atomic

(e.g., a building in a city map) while others may have a molecular structure (e.g., a city that is

made up of districts, which consist of streets and buildings). For the representation of structured

objects, one may resort to semantic networks Luge89, Ch. 9], or object-oriented techniques
Luge89, Ch. 14; Ditt88; Oost89]. Depending on the scale at which one views such an object, its

components may or may not be visible. Associated with each object is a geometric entity
representing its spatial extension. For the lowest level objects this is usually a point, a line, or a

polygon. The spatial extent of more complex objects may be explicit or derived from that of the

component objects, for example, by inferring their geometry using cartographic generalization
techniques McMa87; McMa88]. In many cases, however, this is not a practical solution, since

derivation algorithms do not consistently produce “nice” geometric representations. The utilization

of object-oriented techniques for spatial data management is an active research topic, but the

application of inheritance has not been researched thoroughly and deserves further attention.

The fundamental question is how to embed the spatial aspects in a data model and the underlying
DBMS such that acceptable interfaces (optimizable query languages and pictorial interfaces) can be

defined.

Early attempts decomposed the spatial data and forced them into relations, which resulted in

unacceptable performance Kemp87]. Other systems implement the spatial operations in a “hard

wired” form using conventional DBMS technology for non-spatial data and special-purpose file
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structures for the spatial data Moor8S]. A more general approach consists in providing abstract

data types (ADTs) to customize the DBMS. Examples are INGRES Ston84] and PSQL {Rous88].
Both approaches, hardwiring and ADTs, leave the spatial semantics outside the DBMS’s query

processor. It is desirable for the DBMS to perform set-oriented queries on abstract objects that are

representation independent, leaving the detailed spatial operations to be performed by specialized
object classes that understand a specific representation.

To formulate abstract operations on spatial objects it is desirable to define a structure that is

independent of any underlying representation. The notion of point sets Mant83, Mano86] serves

this purpose. It is a specialization of type “object” that acts as a placeholder and introduces a

collection of spatial operators, such as union, intersection, and difference, as well as spatial
predicates, such as overlap, containment, and proximity. It is similar to the abstraction of integers
and floating point numbers on which operations can be defined independently of the particular
representation of these numbers in a computer. The type Point-set can be further specialized, for

example, creating subtypes for 2D and 3D. Each of these can, in turn, be specialized by defining
representation-specific point-sets. The operations (or methods) defined on these lower level types
are the implementations of operations such as intersection or overlap for a particular representation,
for example, boundary representation. Operations performed on spatial objects of different

representations are defined as methods of more general types.

While point sets are a good abstraction for expressing relationships of equality, inclusion, and

intersection, they lack the power for describing relationships such as neighborhood in the

topological sense. This has led to the definition of data structures for topological relationships
based on simplices, and the formulation of theories of topological relationships Egen89].

Further research is required in the specification of representation-independent spatial abstractions

and their operations as a basis for seamless integration of spatial and non-spatial data in query

languages. These issues will be addressed further in Section 3.5.

3.4 Spatial Database Languages

The goal of a spatial query language is to allow the easy formulation of queries that involve both

spatial and non-spatial predicates without loss of spatial semantics. The query should be

optimizable by a DBMS query optimizer. While the former has been accomplished in several ways,
the latter, optimizability, has been elusive.

Most spatial query languages are extensions of a relational query language, either QUEL
(e.g.GEO-QUEL Go75], QBE (e.g. Query-by-Pictorial-Example Chan8O] and GEOBASE

Barr8lJ which also incorporates inheritance and aggregation), or SQL (e.g. PSQL Rous88] and

Extended SQL Herr88J). A good review and comparison can be found in Egen89]. The

widespread use of SQL for non-spatial data has made SQL extensions popular. Recently, a variety
of object-oriented languages have been proposed (e.g. Oost89], Moha88]). They are able to

represent the semantics of complex objects better and encapsulate specialized operations. A fully
pictorial approach to constraint definition is taken in Piza89].

As pointed out in Egen89], all existing languages use a diverse set of spatial relationships
(containment, adjacency, distance, overlay, etc.). In most cases the semantics of these spatial
relationships have not been rigorously defined, and would benefit from a mathematical grounding.

Depending on the method chosen for embedding spatial characteristics in a data model and the

underlying DBMS, the query languages may be of varying complexity. For example, if one

chooses ADTs to represent the objects, then the internal structure of the object representation is

hidden to the database system (encapsulation). In this case, it is sufficient to enhance the query
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language by some simple constructs that allow the embedding of user-defined data types and

operators. However, the performance characteristics of the ADTs are unknown to the optimizer.

On the other hand, it is possible to use object representations that allow the user to access the

structure of an object explicitly, for example, by embedding in non-first normal form relations

Sche82]. In this case, the database contains information about the hierarchical structure of a given
object and the query language may have to be extended significantly in order to access this

information efficiently Kemp87].

In systems that use an object-oriented approach, user-defined object classes and encapsulation of

their behavior make it difficult to optimize queries. The optimization of object-oriented query

languages and the definition of optimizable object algebras is an active research topic. Once the

generic problem is solved, it will be possible to apply those solutions to spatial query languages.

3.5 Optimization of Spatial Operations

Queries that contain both spatial and non-spatial attributes may require optimization algorithms that

are significantly different from those that have been used for conventional business databases.

Existing spatial data management systems (many of them prototypes) have basically ignored the

optimization issues, not only because they often have only one underlying representation and one

spatial index, but also because little is known about the cost of executing alternate sequences of

spatial operations.

Research is required to establish cost estimates for spatial operations. Many optimal algorithms for

spatial operations that are derived from computational geometry have not matured enough in

practice; they often optimize for the worst case and require very complex data structures.

Suboptimal algorithms that perform adequately in the majority of cases, and for which detailed cost

functions are known, may be preferable.

The use of spatial filters appears to be a reasonable optimization strategy. Filters that are based on

space-filling curves, such as Z-order encoding, allow for a two-phased optimization strategy. The

filtering phase returns an approximate answer that is conservative and includes all the objects to be

retrieved, and possibly more. Filtering reduces the set of candidate objects on which detailed

operations have to be performed. The second phase then uses the specific spatial operations
discussed above.

Much more research is required in this direction; for a more detailed discussion of related problems
see Oren89, Kemp87, Ooi88].

3.6 Scale and Precision

In spatial applications the spatial extent of an object has a limited precision. Handling spatial
objects with varying precision is difficult at best. Errors in spatial data representations can

propagate leading to topological inconsistencies (known also as wandering points). To avoid the

problem of points contained within a region at one scale to appear outside the region at another

scale, and false intersections, it is necessary to introduce additional topological structures. This

property of spatial objects affects also the algebraic operations across representations that were

discussed before. A good discussion of operation robustness can be found in Hoff89, Ch. 4].
Furthermore, the management of uncertain information is a major issue in current artificial

intelligence research Bouc88}. At this point it is not clear which of these techniques could be

applied to spatial data as well.

There has been a trend in spatial database research towards so-called scaleless maps, that is, digital
maps where each entity is represented only at the largest available scale to minimize redundancy.
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Given a query, one first selects the qualifying objects via some access method before scaling them
down to the specified target scale. In order to evaluate such queries more efficiently, it would be

advantageous to have access methods that take the target scale into account from the beginning.
Ideally, there should be a positive correlation between the target scale on the one hand and the

response time on the other hand for a given query, that is, one could receive a coarse (small-scale)
answer to a query rather quickly, whereas it would take longer to receive a more accurate response.
This approach has an effect similar to filters, and has only recently been studied Beck9O}.

4. Conclusions

There is a steadily increasing demand for spatial data management capabilities, and a growing
volume of spatial data. The techniques developed for spatial data management have been driven by
the applications and are, therefore, often case-specific. The database community can contribute to

the generalization of these techniques. So far it has concentrated on spatial access methods and on

providing a spatial veneer on top of existing query languages. For database technology to have

more impact on spatial data management, we need to address the problems of representation-
independent spatial operations, their mapping into representation-specific operations, cross-

representational algebras, and optimization of spatial queries. These issues have to be addressed if

we want to exploit spatial data repositories fully, and eventually integrate existing spatial
repositories.
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1 Introduction

Computer security is concerned with the ability of a computer system to enforce a security policy

governing the disclosure, modification, or destruction of information. The security policy may be

specific to the organization, or may be generic. For example, the DoD mandatory security (or mul
tilevel security) policies restrict access to classified information to cleared personnel. Discretionary

security policies, on the other hand, define access restrictions based on the identity of users (or
groups), the type of access (e.g., select, update, insert, delete), the specific object being accessed,
and perhaps other factors (time of day, which application program is being used, etc.). Different

types of users (system managers, database administrators, and ordinary users) may have different

access rights to the data in the system. The access controls commonly found in most database

systems are examples of discretionary access controls.

This paper discusses discretionary security and mandatory security for database systems. We

outline the current state of research in database security and briefly discuss some open research

issues.

2 Discretionary Security

Discretionary Access Control (DAC) models can be represented by the access matrix model de

veloped by Lampson in 1971 23] and further refined by Graham and Denning 13]. This model

defines an access matrix in which the rows represent subjects (users, processes), the columns repre

sent objects (files, records, programs, subsystems, etc.), and the intersection of a row and a column

contains the access types that the subject has authorization for with respect to the object. This

model was extended with predicates and other components to make it more useful for database sys

tems 4, 11, 18]. For example, predicates can represent content-dependent access control. Detailed

discussions of the meaning of the model components can be found in Chapter 7 of 10] and in 9].
Implementation aspects are discussed in Chapter 10 of 10]. Harrison, Ruzzo, and Uliman 16, 17]
showed that the general safety problem for this model is undecidable.

From 1970 through 1975, there was a good deal of interest in these models, in particular in their

application to relational databases 11, 14, 18]. Then, most of the database security research turned

to multilevel models (see Section 3). The appearance of semantic and object-oriented databases

‘Lunt’s work was supported by the U. S. Air Force, RADC, under contract F30602-89-C-0158.
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has created a renewed interest in DAC models. These database models are much richer and more

complex than the relational model, and aspects such as inheritance, semantic associations, and

composite data structures allow the expression of flexible and arbitrarily specific discretionary

policies. The research issues currently under investigation include:

a. A fundamental property of object-oriented systems is inheritance. This is often complemented
with semantic associations such as aggregation or relationship. A class object may have many

descendants or instances. If a user is authorized to access a class, should that user also be

authorized to access all of its instances? Should this inherited authorization also include

authorization for attributes that do not exist in the parent class?

b. For practical reasons it is necessary to define groups of users with similar authorizations. If

authorizations can be defined both for individuals and for groups, or if a user can belong
to more than one group, how should we determine the user’s effective authorizations? If

groups can be structured in hierarchies or partial orders, how does one define the effective

authorizations of a given group?
c. Inheritance of authorization brings along the need to override inherited authorizations. One

way to do this is to use negative authorization, which is given a higher priority than positive
authorization. Another way is to use explicit authorization to override implicit inherited

authorization. Related issues are the combination of access predicates defined a different

levels in the object hierarchy and how to combine the effects of multiple inherited rules.

d. Should users own data or does all data belong to the institution? If we adopt the latter

approach, then users with special authorizations (adminstrators) should handle the definition

of authorization rules. Even in the latter case, should we still allow private subdatabases?

e. What framework can we use to ensure that new authorization rules satisfy institution policies?
1. How can we decentralize the functions of a security administrator, necessary for distributed

environments?

Recent work on discretionary models include (the labels in parenthesis refer to which of the aspects

above they have especially contributed):

• W. Kim and his group at MCC developed a detailed formal model for object-oriented sys

tems using ORION as an illustration (the ORION object-oriented database system was also

developed at MCC) 36]. Implied (inherited) authorization are obtained through the object

hierarchy, i.e., from the class, to its components, to its instances. They use the concept of

weak and strong authorizations, where strong authorizations can override weak authorizations

(overriding is performed using negative authorization rules). (a)(c)

• U. Kelter at the University of Hagen, W. Germany, is developing models for distributed

structurally object-oriented database systems 22]. In this type of database there is a hier

archy of nested, overlapping, complex objects describing typically a CAD or CASE design
environment. Complex objects are the units of access control, and authorization conflicts

may arise if complex objects share components. Group authorizations are inherited, that is,
a lower group can inherit authorizations from a higher-level group, rather than through the

data hierarchies. Explicit denial of authorzation (negative authorization) is handled using a

four-valued logic. The first authorization model for this type of database was developed by
K. Dittrich and his group at the University of Karlsruhe, W. Germany, for the DAMOKLES

database system 7]. (a)(b)(c)
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• E. B. Fernandez and his group at Florida Atlantic University, Boca Raton, Florida, developed

an authorization model for object-oriented semantic databases specially tailored to OSAM*,

a CAD/CAM database system being implemented at the University of Florida 24, 37]. This

authorization model can also be applied to other data models. The model consists of a set

of policies that define authorization inheritance through the data hierarchies, authorization

evaluation algorithms (since the rules can be scattered through the hierarchy, tree searches are

necessary), and an adminstrative structure that considers policies for delegation and revoca

tion of administrative authorizations as well as the effect of database schema changes. Recent

work also considers how to handle negative authOrizations and the use of predicates 15].
(a)(c)(d)(f)

• J. D. Moffet and M. Sloman at the Imperial College of London use a model in which adminis

tration is separated from the use of the data 34]. They also include the concept of ownership,
where owners are those entities in an enterprise, such as managers, that control the operations

of the enterprise and that can grant administrative authorizations to security administrators.

Recent work from this group considers decentralization aspects of their model 35]. (d)(e)(f)

• T. F. Lunt at SRI International, Menlo Park, California, has developed a model of discre

tionary security for SeaView, a secure multilevel database system 25, 26]. She is also modeling

a discretionary access control mechanism that allows the implementation of arbitrary access

control policies. The intent is to allow users to implement a discretionary access contol policy

that is tailored to their application, rather than having to work around a specific policy that

is wired into the computer system. (b)(c)

3 Mandatory Security

A multilevel database system supports data having different classifications or access classes and

users having different clearances. In the most general case, the ability to individually classify atomic

facts in a database is required. In the relational model, this means that data is classified at the level

of individual data elements. Special cases of multilevel relations may be classified at the attribute

level (i.e., all the data associated with a particular attribute has the same classification); at the

row level (i.e., every tuple has a single classification); or at the relation level (i.e., all the data in

the relation has the same classification).
The mandatory access control requirements are formalized by two rules, the first of which pro

tects data from unauthorized disclosure, and the second of which protects data from contamination:

1. A subject S is not allowed to read data of access class c unless class(S) > c, and

2. A subject S is not allowed to write data of access class c unless class(S) ~ c.

In the above rules, a subject is a process acting on a user’s behalf; a process has a clearance level

derived from that of the user.

Mandatory security means that a multilevel relation will appear differently to users with different

clearances, because not all data are authorized to all users. Other requirements include the ability

to derive classification labels for derived data (as in views, for example).
We represent a multilevel relation R by a schema R(A1,C1,. . . ,AT~,C,,), where each data at

tribute A2 has a corresponding classification attribute C~. Figure 1 illustrates a multilevel relation
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with three data attributes. In the figure, the label “S” means the data is classified SECRET; the

label “TS” means TOP SECRET.

Al Cl A2 C2 A3 C3

mad S 17 S x S

foo S 34 S w TS

ark TS 5 TS y TS

Figure 1: Multilevel Relation R

The name of a relation R also has a classification, which we denote by class(R). Class(R) must

be at least as low as the classification of any data contained in the relation. A relation R can be

accessed by any user S where class(S) � class(R). However, S can see only data that S is cleared

to see. Figure 2 shows a SECRET view of the multilevel relation of Figure 1.

Al Cl A2 C2 A3 C3

mad S 17 5 x S

foo S 34 5 null S

Figure 2: SECRET Relation Instance

Multilevel security affects the data model because not all data are visible to all users. One effect

involves two basic properties: entity integrity and referential integrity. Another is polyinstantiation,
which we describe shortly.

Entity integrity states that no tuple can have null values for any primary key attribute. In

the multilevel case, within a tuple all the primary key elements must have the same access class.

Otherwise, a low user would see null values for some of the key elements. For example, if the

first two data attributes form the primary key, the tuple (10, 5, X, TS, 17, TS) has primary key
elements with different access classes. A SECRET user’s view of the tupleis (10, S, null, 5, null, S),
which violates entity integrity because part of the key appears to be null.

The key class must also be at least as low as the access classes of all other elements in the

tuple; otherwise a low user would see nulls for the primary key. For example, if the first two data

attributes form the primary key, the tuple (20, TS, Y, TS, 34, S) has a key class greater than the

class of the remaining data element. A SECRET user’s view of the tuple is (null, S, null, 5, 34, S)
which violates entity integrity because the key appears to be null.

Referential integrity states that no tuple in a relation can refer to another tuple unless the

referenced tuple exists. In a multilevel database, this means that a tuple of a low access class

cannot reference a tuple of a high access class because the referenced tuple would appear to be

nonexistent to users with low clearances.

Multilevel security has a further unexpected but unavoidable effect, which we call polyinstan
tiation 29]. To illustrate, consider what happens when a user inserts a tuple that has the same

primary key value as an existing but invisible (because it has a high classification) tuple. Notifying
the user of the conflict would tell the user the value of high information. Thus we add a second
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tuple to the relation with the same primary key but different access class; we call these polyinstan
tiated tuples. For example, if a SECRET user adds a tuple with primary key “ark” to the relation

instance shown in Figure 2, then the outcome, as seen by a TOP-SECRET user, is as shown in

Figure 3.

Al Cl A2 C2 A3 C3

mad S 17 5 x S

foo 5 34 S w TS

ark TS 5 TS y TS

ark S 22 5 z S

Figure 3: A Polyinstantiated Tuple

Now consider what happens if a user updates what appears to be a null element in a tuple, but

which actually hides data with a higher access class. For example, if a SECRET user now replaces
the perceived null value for tuple “foo,” attribute A3 (see Figure 2) with the value “u,” the outcome,

as seen by a TOP-SECRET user, is as shown in Figure 4. We call these polyinstaritiated elements.

Al Cl A2 C2 A3 C3

mad 5 17 S x S

foo S 34 5 w TS

foo S 34 S u S

ark TS 5 TS y TS

Figure 4: A Polyinstantiated Element

To implement mandatory security, we assign security levels to processes, derived from the

clearance of the user. Traditional practice is to segregate those functions enforcing mandatory

security in a security kernel or reference monitor. The reference monitor mediates each reference to

an object by any process, allowing or denying the access based on a label comparison. The reference

monitor must be tamperproof; it must be invoked for every reference; and it must be small enough
to be subject to complete analysis and test. When assurance is important, the reference monitor is

formally verified through a formal mathematical proof (that may be carried out using automated

tools) that it correctly enforces the mandatory security policy. The DoD has developed evaluation

criteria for trusted computer systems 6] that incorporate the concept of reference monitor and

include requirements for assurance as well as many other security requirements. The most stringent
of the evaluation classes is called Class Al.

There have been three efforts to design Class Al relational database systems.

• SeaView, being developed at SRI by T. Lunt et al., provides element-level labeling and derives

labels for derived data. It includes a multilevel query language called MSQL for defining and

manipulating multilevel data. Its design has been partially verified using EHDM, a formal

verification system developed at SRI 1, 2, 3, 5, 39, 40, 41, 42]. SeaView uses a conventional

relational engine and a commercially available reference monitor 29, 31, 32].
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• A group at Secure Computing Technology Corporation (SCTC) has produced a design for

LOCK Data Views (LDV), a relational system that allows an application to specify rules for

how incoming and outgoing data are to be labeled. LDV relies on special-purpose security
hardware being developed at SCTC 38].

• ASD is a prototype developed at TRW. It provides row-level labeling 19].

In addition, several vendors, including Oracle Corporation and Sybase, have announced or released

products designed to meet some of the DoD criteria.

Ongoing research is focused on the following areas:

• Defining an operational semantics for multilevel database operations 301. There is a need

to define the intended semantics for the basic data manipulation operations insert, update,
and delete for a multilevel database system with classification at the element level. This will

effect, for example, how much polyinstantiation can occur as a result of an update operation,
and which polyinstantiated instances are deleted in a delete operation.

• Extending multilevel security to other data models 12, 20, 21, 28, 33]. Preliminary work has

begun to develop multilevel security models for object-oriented databases, entity-relationship
databases, and knowledge- based systems.

• Extending multilevel security to distributed database systems 8]. Researchers are beginning
to address such issues as architectures for secure distributed database systems and balancing
the security, consistency, and availability of distributed data.

• Solving inference problems 27]. The inference problem arises when a collection of data is

more sensitive than the individual pieces (this is sometimes called the aggregation problem, or

when a collection of data can be used to partially infer data of a higher sensitivity. In some

cases, even learning of the existence of the information may be unacceptable. This problem
commonly arises when the individual data items may be classified low, but the relationship

among the data items is considered to be highly sensitive. Data design strategies have been

proposed to segregate the sensitive associations and to give those sensitive associations high
classifications while giving the individual data items low classifications. This has the result

that low data is available to users with low clearances while users with high clearances can

make sensitive associations among the data.
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ABSTRACT

The design and implementation of real-time database systems presents many new and challenging problems.

Compared with traditional databases, real-time database systems have a distinct feature: they must satisfy timing
constraints associated with transactions. Transactions in real-time database systems should be scheduled consider

ing both data consistency and timing constraints. In addition, a real-time database system must adapt to changes in

the operating environment and guarantee the completion of critical transactions. In this paper we address the issues

associated with transaction modeling, scheduling and concurrency control, consistency, and predictability require
ments for real-time database systems.

1. Introduction

Real-time database systems (RTDBS) are database systems where transactions have timing constraints such

as deadlines. The correctness of the system depends not only on the logical results but also on the time within which

the results are produced. In RTDBS, transactions must be scheduled in such a way that they can be completed
before their corresponding deadlines expire. For example, both the update and query on the tracking data for a mis

sile must be processed within given deadlines.

RTDBS are becoming increasingly important in a wide range of applications, such as aerospace and weapon

systems, computer integrated manufacturing, robotics, nuclear power plants, and traffic control systems. In recent

real-time computing workshops sponsored by the Office of Naval Research IEEE9O, ONR89], researchers pointed
to the need for basic research in database systems that satisfy timing constraints in collecting, updating, and retriev

ing shared data, since traditional data models and databases are not adequate for time-critical applications. Very few

conventional database systems allow users to specify or ensure timing constraints. Interest in the time-critical appli
cation domain is growing also in database community. Recently, a number of research results have appeared in the

literature Abb88, Abb89, Buc89, Kor9O, Lin89, Lin9O, Raj89, Sha88, Sha9O, Son88b, Son89, Son9O].

It is useful to categorize transactions in real-time database systems as hard and soft transactions Son88b].
We define hard real-time transactions as those transactions whose timing constraints must be guaranteed. Missing
deadlines of this type of transaction may result in catastrophic consequences. In contrast, soft real-time transactions

have timing constraints, but there may still be some justification in completing the transactions after their deadlines.

Catastrophic consequences do not result if soft real-time transactions miss their deadlines. Soft real-time transac

tions are scheduled taking into account their timing requirements, but they are not guaranteed to make their dead

lines. There are many real-time systems that need database support for both types of transactions.

Conventional database systems are typically not used in real-time applications due to two inadequacies: poor

performance and lack of predictability. In conventional database systems, transaction processing requires access to

a database stored on secondary storage; thus transaction response time is limited by disk access delays, which can be

in the order of milliseconds. Still these databases are fast enough for traditional applications in which a response

This work was supported in part by ONR contract# N00014-88-K-(1245, by CIT c*,ntract# CIT-INF-90-O1 1. and by IBM Federal Systems
Division.
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time of a few seconds is often acceptable to human users. However, those systems may not be able to provide a

response fast enough for high-performance real-time applications. One approach to achieve high performance is to

replace slow devices (e.g., a disk) by a high speed version (e.g., a large RAM). Another alternative is to use

application-specific knowledge to increase the degree of concurrency. For example, by exploiting the semantic

information associated with transactions and data, we may use the notion of correctness different from serializabil

ity. As observed by Bernstein Bern87], serializability may be too strong as a correctness criterion for concurrency
control in database systems with timing constraints, because of the limitation on concurrency. If necessary, data

consistency might be compromised to satisfy timing constraints.

In terms of predictability, current database systems do not schedule transactions to meet response-time
requirements and they commonly lock data to assure consistency. Locks and time-driven scheduling are basically
incompatible. Low priority transactions may block higher priority transactions, leading to timing requirement
failures. Consequently, the requirements and design objectives of real-time database systems differ widely from

those of conventional database systems. New techniques are necessary to manage database consistency. They
should be compatible with time-driven scheduling, and meet the system response times and temporal consistency
requirements. A natural question is how a conventional database system must be modified so that its performance
and predictability can be acceptable for real-time applications.

In RTDBS, the timeliness of a transaction is usually combined with its criticality to calculate the priority of

the transaction. Therefore, proper management of priorities and conflict resolution in real-time transaction schedul

ing are essential for predictability and responsiveness of RTDBS.

While the theories of concurrency control in database systems and real-time task scheduling have both

advanced, little attention has been paid to the interaction between concurrency control protocols and real-time

scheduling algorithms Stan88]. In database concurrency control, meeting the deadline is typically not addressed.

The objective is to provide a high degree of concurrency and thus faster average response time without violating
data consistency. In real-time scheduling, on the other hand, it is customary to assume that tasks are independent, or

that the time spent synchronizing their access to shared data is negligible compared with execution time. The objec
tive here is to maximize resources, such as CPU utilization, subject to meeting timing constraints. Data consistency
is not a consideration in real-time scheduling, and hence the problem of guaranteeing the consistency of shared data

is ignored. In addition, conventional real-time systems assume advance knowledge of the resource and data require
ments of programs.

One of the challenges of RTDBS is the creation of a unified theory for real-time scheduling and concurrency

control protocols that maximizes both concurrency and resource utilization subject to three constraints: data con

sistency, transaction correctness, and transaction deadlines. Several recent projects have integrated real-time con

straints with database technology to facilitate efficient and correct management of timing constraints in RTDBS

Buc89, Son88b, Son9O]. There are several difficulties in achieving the integration. A database access operation, for

example, takes a highly variable amount of time depending on whether disk I/O, logging, buffering, etc. are

required. Furthermore, concurrency control may cause aborts or delays of indeterminate length.

The design and implementation of a real-time database system presents many new and challenging problems:
What is an appropriate model for real-time transactions and data? What are the language constructs that can be used

to specify real-time constraints? What mechanisms are needed for describing and evaluating triggers? What are the

measures of system predictability? How are transactions scheduled? What is the effect of real-time constraints on

concurrency control? In this paper we address some of these issues and review current approaches to the design of

RTDBS.

2. Research Issues and Approaches

2.1. Scheduling and Concurrency Control

The goal of scheduling in RTDBS is twofold: to meet timing constraints and to enforce data consistency.
Real-time task scheduling methods can be extended for real-time transaction scheduling, yet concurrency control

protocols are still needed for operation scheduling to maintain data consistency. However, the integration of the two

mechanisms in RTDBS is not straightforward. The general approach is to utilize existing concurrency control pro

tocols, especially two-phase locking (2PL) Bern87], and to apply time-critical transaction scheduling methods that

favor more urgent transactions AbbS8, Sha88, Son89b]. Such approaches have the inherent disadvantage of being
limited by the concurrency control protocol upon which they depend, since all existing concurrency control proto
cols synchronize concurrent data access of transactions by a combination of two measures: blocking and roll-backs
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of transactions. Both are barriers to meeting time-critical schedules. Concurrency control protocols induce a seriali

zation order among conflicting transactions. In non-real-time concurrency control protocols, timing constraints are

not a factor in the construction of this order. This is obviously a drawback for RTDBS. For example, with the 2PL

protocol, the serialization order is dynamically constructed and corresponds to the order in which conflicting tran

sactions access shared data. In other words, the serialization order is bound to the past execution history with no

flexibility. When a transaction TH with a higher priority requests an exclusive lock which is being held by another

transaction, TL, with a lower priority, the only choices are either aborting TL or letting TH wait for TL. Neither

choice is satisfactory. The conservative 2PL uses blocking, but in RTDBS, blocking may cause priority inversion.

Priority inversion is said to occur when a high priority transaction is blocked by lower priority transactions Sha88].
The alternative is to abort low priority transactions when a priority inversion occurs. This wastes the work done by
the aborted transactions and in turn also has a negative effect on time-critical scheduling, Various scheduling poli
cies with lock-based concurrency control mechanisms for real-time transactions have been investigated in Abb88,

Abb89].

The priority ceiling protocol, which was initially developed as a task scheduling protocol for real-time operat

ing systems, has been extended to RTDBS Sha9O]. It is based on 2PL and employs only blocking, but not roll-back,

to solve conflicts. This is a conservative approach. For conventional database systems, it has been shown that

optimal performance may be achieved by compromising blocking and roll-back Yu90]. For RTDBS, we may

expect similar results. Aborting a few low priority transactions and restarting them later may allow high priority
transactions to meet their deadlines, resulting in improved system performance. A drawback of the priority ceiling
protocol is that it requires knowledge of all transactions that will be executed in the future. This is too harsh a condi

tion for most database systems to satisfy.

For a concurrency control protocol to accommodate the timeliness of transactions, the serialization order it

produces should reflect the priority of transactions. An optimistic method Bok87, Kung8lJ is one way of achieving
this goal. Due to its validation phase conflict resolution, it can be ensured that eventually discarded transactions do

not abort other transactions and transaction priorities are considered. Several concurrency control protocols based

on optimistic approach have been proposed Har9O, Son9Ob, Lin9O]. They incorporate priority-based conflict reso

lution mechanisms, such as priority wait, that makes low priority transactions wait for conflicting high priority tran

sactions to complete. However, this approach of detecting conflicts during validation phase degrades system predic
tability. A transaction is detected as being late when it actually misses its deadline, since the transaction is only
aborted in the validation phase. An integrated scheduler may solve this problem if a lock-based concurrency control

protocol supports a mechanism to adjust dynamically the serialization order of active transactions.

An algorithm integrating priority-based locking and optimistic approach is proposed in fLin9O]. The goal is to

execute transactions with higher priorities first so that high priority transactions are never blocked by uncommitted

low priority transactions, while lower priority transactions may not have to be aborted despite conflicting operations.
It is surprising that for RTDBS, such integrated approaches outperform lock-based pessimistic approaches over a

wide range of system load and resource availability, since performance studies of concurrency control protocols for

conventional database systems (e.g. Agr87]) have concluded that locking protocols perform better than optimistic
techniques. More theoretical as well as experimental studies are necessary in this area before we can draw definitive

conclusions.

Another important problem that needs further study is a different notion of “correct execution” in transaction

processing. Based on the argument that timing constraints may be more important than data consistency in RTDBS,

attempts have been made to satisfy timing constraints by sacrificing database consistency temporarily to some

degree Lin89, Vrb88]. It is based on a new consistency model of real-time databases, in which maintaining exter

nal data consistency has priority over maintaining internal data consistency. Although in some applications weaker

consistency is acceptable Gar83], a general-purpose consistency criterion that is less stringent than serializability
has not yet been proposed. The problem is that temporary inconsistencies may affect active transactions and so the

commitment of these transactions may still need to be delayed until the inconsistencies are removed; otherwise even

committed transactions may need to be rolled back. However, in real-time systems, some actions are not reversible.

The use of semantic information in transaction scheduling and multiversion data is often proposed for RTDBS

applications Liu88, Son88, Son9Oc, Song9O]. Multiple versions are useful in situations that require the monitoring
of data as values are changing with time. In such situations, the trends exhibited by the values of the data are used to

trigger proper actions Kor9O]. Examples include falling values in stock-market trading and rising temperature of a

furnace in a nuclear reactor. Another objective of using multiple versions is to increase the degree of concurrency

and to reduce the possibility of transaction rejection by providing a succession of views of data.
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There are several problems that must be solved in order to use multiple versions effectively. For example, the

selection of old versions for a transaction must ensure the required consistency of the state seen by the transaction.

In addition, the need to save old versions introduces a storage management problem.

2.2. Temporal Consistency

Often a significant portion of a real-time database is highly perishable in the sense that it has value to a mis

sion only if used in time. In addition to deadlines, therefore, other kinds of timing constraints could be associated

with data as well as transactions in RTDBS. For example, each sensor input could be indexed by the time at which it

was taken. Once entered into the database, data may become out-of-date if it is not updated within a certain period
of time. To quantify this notion of “age”, data may be associated with a valid i,Uerval Liu88, Song9O]. Data out

side its valid interval does not represent the current state. What occurs when a transaction attempts to access data

outside its valid interval depends on the semantics of data and the particular system requirements.

A real-time transaction may include a temporal consistency requirement that specifies the validity of data

values accessed by the transaction. While a deadline can be thought of as providing a time interval as a constraint in

the future, temporal consistency specifies a temporal window as a constraint in the past. As long as the temporal
consistency requirement of a transaction can be satisfied, the system must be able to provide an answer using avail

able (may not be up-to-date) information. The answer may change as valid intervals change with time. In a distri

buted database system, sensor readings may not be reflected to the database at the same time, and may not be

reflected consistently due to the delays in processing and communication. A temporal data model for RTDBS must

therefore be able to accommodate the information that is partial and out-of-date. One of the aspects that distin

guishes a temporal data model for RTDBS from that of conventional database systems is that values in RTDBS are

not necessarily correct all the time, and hence the system must be cautious in interpreting data values.

2.3. System Modeling and Performance Evaluation

Most research in RTDBS assumes a set of transactions and associated deadlines. In such a database system
model, it is the responsibility of the transaction manager to find a correct schedule that will ensure that the deadlines

are met. An interesting alternative model of real-time transaction processing, in which deadlines are associated with

consistency constraints, has been proposed Kor9O]. Instead of applying timing constraints directly to transactions, it

applies timing constraints directly to states of the system. Timing constraints on the states of the system enforce

similar timing constraints on transactions that are triggered by those states. For example, consider a RTDBS applica
tion in a manufacturing environment. Suppose that the state of the information maintained in the database indicates

that the temperature in a furnace has fallen below a particular threshold value. This state of the system may necessi

tate the triggering of some actions that restore the temperature to a value above the threshold. The application may
enforce a maximum period of time that the temperature is permitted to remain below the threshold, and that enforces

a deadline on the actions that are triggered by the low value. Furthermore a selection must be made if several

actions may be candidates for the restoration of the temperature.

This approach is based on a set of explicitly defined consistency constraints for the database. Each transaction

ensures that upon completion, the database remains in a state that satisfies these consistency constraints. However,
in addition to such transactions that maintain a correct database state, transactions may be invoked to record the

effects of some external event that is generated outside the system. The ensuing change in the database state may

render a consistency constraint invalid, and that constraint may need to be restored within a specific deadline. The

system restores constraints by choosing one or more transactions from a pre-defined library of transactions. These

transactions restore certain constraints but may invalidate other constraints. In the absence of further external

events, the system must eventually return the entire database to a consistent state.

To be useful, any ideas or proposed techniques should be evaluated. There have been extensive studies on

alternative queueing disciplines with lock-based concurrency control and scheduling of real-time transactions

Abb88, Abb89, Car89, Har9O, Hua89, Hua9O, Lin9O, Son89b, Son9O, Son9Ob}. While most of the results are based

on simulation, some of techniques have been implemented on a testhed system Hua89, Hua9O]. These studies pro
vide insight into many of the issues encountered in the design of RTDBS. However, the results reported in the litera

ture are incomplete. For example, even though timing constraints and criticality are two important factors in speci
fying real-time transactions, the relation between the two factors and their combined effect with respect to system

performance has not been addressed in depth. It is difficult to compare various scheduling algorithms without a

proper benchmark that is representative of applications. Because research on RTDBS is still in its infancy, none of

the known benchmarks addresses transaction processing in a real-time environment.
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3. Research Directions

RTDBS of tomorrow will be large and complex. They will be distributed, operate in an adaptive manner in a

highly dynamic environment, exhibit intelligent behavior, and be characterized as having catastrophic consequences

if the logical or timing constraints of transactions are not met. Meeting the challenges imposed by these characteris

tics depends on a focused and coordinated research efforts in several areas listed below:

• development of modeling techniques for real-time transactions and databases to specify timing properties and

temporal consistency in a precise manner. Validity of stored data and relationships between consistency con

straints and timing constraints need to be specified clearly.

• development of methodologies to analyze timing properties of the system with a large number of interacting tran

sactions and constraints. Given the timing properties of a RTDBS and a set of timing requirements expressed as

assertions, the objective is to relate each assertion to the timing specification. If the assertion is a theorem deriv

able from the timing specification, then the system is safe with respect to the requirement denoted by the asser

tion, as long as the implementation is faithful to the timing specification. Otherwise, the system is inherently
unsafe because the timing properties will cause the assertion to be violated.

• development of time-driven priority-based scheduling protocols and concurrency control protocols that can, in an

integrated and dynamic fashion, manage complex transactions with resource and precedence constraints, manage

resources (e.g., communication resources and I/O devices), and manage timing constraints of varying granularity.
In particular, time-driven resource allocation policies and distributed transaction management protocols (e.g.,
timed atomic commit protocols) need to be developed to meet the real-time scheduling requirements. Since

recovery by “undoing’ operations may not be applicable in many circumstances, a form of forward recovery

might be necessary.

• integration of operating system functions with data management in a highly integrated and cooperative, and fast

and predictable manner. Since a database system must operate in the context of available operating system ser

vices, correct functioning and timing behavior of database management algorithms depends on the services of the

underlying operating system. In many areas such as buffer management and consistency control, operating sys

tem facilities have to be duplicated by database systems because they are too slow or inappropriate. Research is

needed to identify a set of efficient OS primitives required to support the database management protocols, espe

cially addressing real-time constraints.

• integration of artificial intelligence techniques with data management protocols to provide the capability to reason

about time-constrained processes and to control or schedule those processes, to adapt system behavior to dynami

cally changing timing constraints. A key consideration in triggered RTDBS is to determine the best available exe

cution sequence when several choices are available with different timing constraints and precedence require
ments.

• architecture support for fault-tolerance, for efficient data management, and for time-constrained communication.

Due to advances in VLSI technology, it is possible to develop a new distributed architecture that is suitable for

broader class of RTDBS applications. Important issues in this new architecture include interconnection topology,

interprocess communications, and support of fault-tolerant database operations. It is essential to have hardware

support for fast error detection, reconfiguration and recovery. In addition, new architectures need to support real

time scheduling algorithms.
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Abstract

Data dredging is a paradigm of the next-generation DBMS applications. It involves inductive

learning by the controlled scanning of large volumes of low-level historical data so as to formulate

and verify certain high-level hypotheses.

In this short paper we review some of the issues related to this problem area, formulate some of

the requirements of a technology to support it and briefly elaborate on a data dredging example.

1 Introduction

Data Dredging or Data Mining’ is a term used to denote an emerging paradigm of next-generation
DBMS applications. One feature of some of the next-generation DBMS applications involves very

large volumes of data. The “Lagunita Report” on future directions in DBMS research, a copy of

which appears in this issue, lists some of the sources of this data:

• Satellite image data, collected by NASA.

• Complete project data, as collected by hundreds of independent subcontractors.

• DNA sequence data, collected within the human genome initiative.

• Data collected by large commercial organizations; e.g., airline passenger and seat-reservation

data.

In all cases the data are not collected for any particular purpose, but rather to serve as a histor

ical repository that will be used for a variety of different analyses, many of which are unspecified
when the data are collected. Other features of these sources are that, after their collection, already
recorded data are seldom updated—only when found to be incorrect, but additional data are added

over time.

Typical analyses over such repositories would include:

• Support for planning tasks. Historical cash register repositories may be scanned for outstand

ing demand, or the lack thereof, for particular items. Demand may be correlated with other

factors such as economical or demographic data.

‘The terms are used synonymously, this author prefers the former.
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• Airline seat-reservation data are scanned to maximize yield per seat. This analysis is known

as “yield management” 4].

• System performance data may be scanned for evidence of abnormal behavior. The definition of

abnormal behavior is often non-trivial and may involve a large number of low-level, measurable

factors that need to be combined in a variety of ways for this purpose.

• “Mature” databases. Relational database technology has been in use for more than a decade

and many of the existing applications are coming of age. One sign of this aging process is that

in many cases the data in these systems were carelessly entered or the systems were modified

in some undocumented way, resulting in contents of incomplete, contradictory or simply
unknown data. There is a need for the cleanup and reassessment of these data sources—often

they are of an unexpected economical value to their owners.

In principle, it should be possible to separate between the specification of tasks of this kind, and

their verification given the data at hand. In practice however, these aspects are seldom independent.
A more realistic situation is that initially the task is ill-specified and only barely understood. The

refinement of the specification and its subsequent verification are intertwined in an iterative process

that eventually leads to a well-specified and verified task using the available data. During each of

these iterations, human judgment is exercised: the user observes the results of the last iteration

and decides whether the process has terminated and the task has been defined or whether further

refinement is called for—involving thus new iterations.

In the next sections we elaborate on this process. We will contrast it with other forms of

machine-assisted learning, formulate some of the requirements for the support of this activity, and

show some specific examples.

2 Modes of Learning

Expertise about some application domain can be obtained in the following ways:

1. With the aid of a human expert whose expertise can be articulated and encoded in some

knowledge representation scheme, e.g., a network of frames or a logical rule set. This is the

mode commonly assumed by the Al expert system paradigm.

2. By generalizing the understood behavior of given examples. We will refer to this mode as

inductive learning.

These modes are not exclusive. We will first review the latter. Typical examples of inductive

learning include: statistical estimation of parameter values and their significance from sample data,
the formulation of diagnostic rules from data or the inference of classification trees from sample
data. For a recent selection of applications of this type the reader is referred to 5]. The common

denominator in these applications is that the methods used in the inference process are “closed”—

they progress automatically from some initial hypothesis via refinements, introduced by the method

itself, to some result-form that represents the knowledge obtained. There is an implicit monotonicity

assumption that can be stated as: “the more data used, the better the result approximates the

‘true’ knowledge”. Little control can be exercised over this process barring limiting the amount

of training data used. Another problem with these methods is that the results do not reflect any

theory with which the user can reason: it is impossible to ask, for example, why certain parameter

values are significant and others are not. The result must be accepted as is.
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Knowledge derived from a human expert, on the other hand, can be formulated as an “open”

theory that allows for reasoning and modification if required. The difficulty is of course that in

many domains there are no human experts, and even if they were available, it is unclear whether

their expertise could be articulated and formally encoded. Given the right tools however, it is

possible to combine the best of both worlds by formulating a theory directly from the data. This

is the essence of the data dredging method. The tool of choice in our case is £V~ which we briefly
describe in the next section.

3 Language and System Requirements

Lye—Logical Data Language 8, 2] is a deductive database system that supports a declarative logic-
based language and integrates relational database and logic programming technologies. The system

can be used for data dredging by loading data into the (extensional) database and formulating a

theory using rule-based intentions. The theory can be verified against the data via the execution

of selected queries. The convergence from an initial idea to a well-defined concept can be described

by the following abstract iterative process:

Formulate hypothesis;
while results do not verify or deny hypothesis do

begin (revise and) translate hypothesis into LP~C rule set and query;

Execute query and observe results;
end.

The convergence of this process is of course not guaranteed. Rather, it depends on the subjective

judgment of the user who, after (hopefully) a small number of iterations, may decide that the

modified rule set indeed defines the concept that he/she had initially in mind, or alternatively,
that the data used did not support or deny the hypothesis in which case he/she might try it with

different data. In principle this process might be attempted using any procedural programming
language. In practice however, each iteration entails the usual coding/compiling/testing/debugging
cycle, hence resulting in a lengthy process. The use of a system like LVL significantly shortens each

iteration since the logical specifications are translated directly by the system into an executable

query against the data. The major requirement for the support of tasks of this kind is thus

for a high-level, declarative language that can be flexibly used in a variety of ways to formulate

very complex queries against the data. Other requirements have to do with assisting the user in

exploring the results at each stage of the iteration. These include support for different forms of the

visualization of the results and an interaction capability which enables the user to modify his/her
theory via a graphical interface. An overview of the desiderata for a system of this type is given by
Brice and Alexander 1]. Parsaye et a! 10] describe some features of an intelligent database system

that includes a data discovery capability. However, this capability is of the closed form, described

in the previous section, and produces rules that were statistically obtained but cannot be used for

any further reasoning.

3.1 Example: the Convoy Problem

The example that we illustrate here comes from the area of computer system performance evalua

tion. As a model for a computer system we use a network of queues and servers. Dynamic entities,

representing different parts of computational tasks, move through this network. The network may
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be open i.e., entities arrive at certain nodes and depart from other nodes. It may be closed i.e., the

same entities move in the network forever; or it can be mixed for different classes of computations.
An attribute of normal behavior of the entities is stochastic independence—the probability of mov

ing an entity from a given node to any of its successor nodes is independent of the other entities in

the system. In practice however, anomalous behavior is occasionally observed: subsets of entities

group together for some time and follow the same paths in the network. Thus, intuitively, one can

think of this behavior as a “convoy”. Performance data is collected at each of the network nodes

and is of the type

data(Entity#, Node# , ArrTirne, DepTime)

that is, for each entity number, the arrival and departure times at some node. The problem in this

case can be stated as:

1. How do we define this high-level and intuitive notion of a convoy?

2. Given the definition, is there evidence of convoys from the given data?

We will only show a sketch of the solution here. The problem was encoded into £~ by L.

Slepetis. For a complete description of this problem the reader is referred to 8]. A convoy can be

described by the following characteristics:

1. Lumpiness: A transient in the queue length of some node. For some time interval the queue

length is well above the average length.

2. Succession: The lump moves from a node to one of its successor nodes. This behavior is

generalized over paths of any length in the network.

3. Overlap: There is a significant degree of overlap between the entity set of a lump at some

node and the lump at its successor node.

Thus, the following rule2 describes the succession relation:

succession(i,j, t1, t2) +— lump(i, t1, ),
lurrip(j,t2,_),j€ succ(i),t2 — ti � ~.

The succession relation between nodes i and j exists if at time t1 there exists a lump at node

i, at time t2 there exists a lump at node j, j is a successor node of i and the time interval between

these occurrences does not exceed z~. We have omitted the definition of the lump relation, which

is derived from the given data relation.

The rule defining overlap is as follows:

overlap(i,j,ti,t2) ~— S = S~(ti) fl S1(t2),
IS? /31 S~(t1)uS5(t2) I,
j E succ(i),t2 > ti.

S1(t1) and S1(t2) denote respectively entity sets at nodes i and j at times ti and t2. /9,0 � /3 ~ 1,
is a controlling threshold parameter for overlap. /3 = 0 implies no overlap and /3 1 implies total

overlap.
A migration is a convoy of path length 1, defined as

2The syntax used here is for exposition only. It is a straightforward matter to translate this format into £DE.
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migration((i, t1), (j, t2)) ~— 8uccessson(:,j, t1, t2),
overlap(i, j, t1, t2).

and convoy is the transitive closure over the migration relation, recursively defined as:

onvoy((i, t1), (j, t2)]) #— migration((i, t1), (j, t2)).
convoy(L) i— migration((i,t1), (j,t2)),

convoy(L1),
Li =

ppend((i,ti)], Li, L).

Note that these rules are the end product of the iterative process described above. In this case

the number of iterations was small, the definition of the lump relation was modified 4 times before

the definitions were derived in the form presented here.

3.2 Training, A Mixed-Mode Paradigm

How do we know that the definition of the convoy concept, presented in the previous section, is

correct? In the process we have introduced numerous parameters: i~, 13 and others that we have not

mentioned here. Notice that many of these parameters may be node-dependent so that in reality
we have introduced ~,~ . , th, 132,. . .

How do we estimate the values of these parameters? The

answer to these questions is, as in other inductive learning situations, by training, i.e., the use of

data sets that have a known interpretation. Training can be facilitated in a number of ways:

• By the use of data sets with given interpretations i.e., “expert-solutions”. In this case the

rule set is induced from these training sets. We are using this method in a data-dredging

problem for the interpretation of DNA sequences from low-level gel electrophoresis data 91.

• By the use of artificial data that exhibits the behavior we want to analyze. This is the method

that we used with the convoy problem. By means of a simulation we generated data that

displayed convoy behavior and used it to induce the definitions.

The proliferation of parameters is an integral feature of data dredging, regardless of the domain

studied. This is not surprising given that the introduction of these is to compensate for our limited

understanding of the system behavior. The estimation of parameters can be done using any of the

inductive learning methods that we have mentioned. Observed in another way, the parameters that

we introduce are a way of expressing the normal behavior of the system. The abnormal behavior

is given by the rule definitions. We conjecture that any system studied this way exhibits a mixture

of normal and abnormal behavior. The normal behavior can be obtained by a variety of methods

e.g., the training of neural networks 6, 7J or the use of genetic algorithms 3]; whereas abnormal

behavior e.g., the knowledge of certain imperfections in the experiments that produced some of the

DNA data, can only be formulated by utilizing background knowledge. It appears that the more

successful methods will employ this mixed-mode paradigm.

4 Conclusion

In this short article we presented a brief overview of an emerging application area for next-generation
database management systems. We reviewed some of the issues and suggested that successful

solutions to the problems that will come up in this area require a blend of different technologies.
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The real research problem is of course: What is the exact blend? And what is the relation of this

blend to different domains of data? Our limited experience so far suggests that deductive database

systems have a big role to play in this respect. Our future efforts in this area will concentrate on

the mixed-mode paradigm that we have suggested and on related issues that we are aware of but

have not examined, in particular, the control and manipulation of stream data.
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