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Message from the TC Chair

It gives me great pleasure to announce that Professor Sham Navathe of the University of Florida
has accepted to serve as our TC’s representative to the Standards Activities Board of the IEEE
Computer Society. We look to Dr. Navathe for leadership in helping our TC to participate in
standards activties related to Data Engineering. If you are interested in working with Sham, please
contact him at:

Professor Sham Navathe

Computer and Information Sciences
Weil Hall

University of Florida

Gainesville, FL 32611

Phone: (904) 335-8456

E-Mail: sham@bikini.cis.ufl.edu

By this time all of you should have received a letter from me requesting your Dues Payment for
membership in the TC on Data Engineering. The IEEE CS Board of Governors approved our
request to charge dues. We need your support on this matter to be able to bring you our Bulletin
and to continue to sponsor and co-sponsor the many conferences that push the state-of-the-art in
Data Engineering.

The Board of Governors has determined that in the future all TCs will have to be run in a more
business-like manner based on dues and the profits from conferences and other sponsored events.
So our Dues Policy is actually an experiment for all TCs to watch. Please take the time to make out
your check to help our efforts in building a financially strong TC.

If you haven’t paid yet, you will be receiving another letter from me in September. For our
non-USA colleagues, we now have a credit card payment system in place. It will be explained in the
next mailing.

Finally I have been receiving E-Mail and letters from many of you who want to get more involved in
TC activities. As opportunities arise I will be contacting you.

Best Regards,
Larry Kerschberg



Letter from the Editor

"Database Programming Languages" is the theme of this issue of Data Engineering. The database
programming language (DBPL) area is a broad and very active area of research; work in the area
addresses problems faced by those who must design, implement, and maintain large, data-intensive appli-
cations. The seven papers included in this issue are extended abstracts of full papers from the Second
International Workshop on Database Programming Languages, which was held on the Oregon coast this
past June. This set of seven papers was recommended by the workshop’s program committec as a good set
to give the Data Engineering readership a taste of the broad range of problems and solutions that were
addressed at the workshop. For readers who would like to learsn more about the DBPL area, the full
proceedings of the workshop will be available shortly as:

Proceedings of the Second International Workshop on Database Programming Languages, Hull, Stemple,
and Morrison, eds., Morgan-Kaufmann Publishers, Inc., San Mateo, CA (1989).

Since the co-chairs of the DBPL program committee kindly contributed a nice overview of both the
area and the workshop, I will turn things over to them at this point. However, before I do, I would like to
thank each of the authors for agreeing to write extended abstracts for this special issue of Data Engineer-
ing. I would also like to thank the three DBPL program committee co-chairs, particularly Rick Hull, for
helping to make the issue possible. Enjoy!

Michael J. Carey
August, 1989



Current Directions in Database Programming Languages

Work in database programming languages represents an approach to integrating the technologies and
paradigms of programming languages and database management in order to address the problems of modern
data-intensive applications. The applications that are driving these efforts tend to have combinations of the
following attributes:

o large amounts of complex, shared, concurrently accessed, persistent data
o reliability requirements
e distribution of data storage and processing over networks

e design orientation, e.g., computer-aided design of complex artifacts such as circuits, manufactured
goods and software

e complex behavior often involving inference or rule-based computation

o sophisticated graphical interfaces.

A number of successful approaches, each with its subculture of practitioners, have been advanced for relatively
narrow combinations of these concerns: Database Management Systems deal realiably with large amounts of
distributed persistent data; Computer- Aided Design uses special standalone software packages (e.g., software
engineering environments and VLSI design systems) written in standard programming languages with file
systems; Expert System Shells support certain kinds of inferencing; and Object-Oriented Systems facilitate
the development of systems with complex data or sophisticated graphical interfaces.

A database programming language (DBPL) is meant to be a facility addressing all the aspects of
performing sophisticated computations over large amounts of complexly structured, distributed, shared,
reliable, persistent data. One of the first forums for studying the problems of integrating these technologies
was provided by the First International Workshop on Persistence and Data Types, held in Appin, Scotland
in August 1985, and organized by Malcolm Atkinson, Peter Buneman and Ron Morrison. This workshop
spawned four others, including the First and Second International Workshops on Database Programming
Languages; another two are scheduled for 1990 and 1991.

At present there is no consensus that all aspects of the DBPL problem can or should be addressed in
one language. The research presented at the 2nd DBPL workshop focused largely on particular aspects of
the problem, for example developing the felicitous addition of one paradigm’s features to those of another,
or exploring ways to extend the capabilities of modelling tools such as type systems and storage managers.
The abstracts included in this issue of Data Engineering provide a small but representative sample of the

papers presented at the workshop, and indicate some of the leading research efforts currently being pursued
in the DBPL area.

A major issue in the workshop concerns type systems for DBPLs. Two of the abstracts included here
indicate the current breadth of the study in this area. The abstract by Ohori, Buneman and Breazu-Tannen
proposes Machiavelli, a polymorphic langiage with static type inference which encompasses several of the
features of object-oriented database systems. (Actually, the more complete version of this paper appears in
SIGMOD 89 rather than the workshop; a companion piece in the workshop provides a philosophic discussion
of the difficulties of extending static type checking to other object-oriented and DBPL features.) The abstract
by Jacobs presents a type system for logic programming langauges, and can be used as the basis for typing
algebraic database programming languages. Another group of papers included in the workshop attempts to
provide a framework for comparing database programming language type systems, and then characterizes
four such systems.

Another major topic of the workshop was persistence in relation to other programming langauge and
database capabilities. Included here is an abstract by Agrawal and Gehani, which indicates some of the



issues involved in adding persistence to a programming language, and presents the solutions proposed in the
language O-++, an extension of C++. Another paper of the workshop offers an alternative approach for
adding persistence, in that case for ADA; and another illustrates how object-orientation can be built on top
of a persistent language. A paper proposing a novel implementation strategy for handling large quantities
of persistent objects was also presented.

Several papers of the workshop addressed the mismatch between set-oriented and item-at-a-time
modes of database languages and programming languages (respectively). Three papers of the workshop
propose query languages for object-oriented database systems, the abstract of Shaw and Zdonik included here
indicates one of the approaches taken. All three use “complex objects” (closely related to nested relations),
but differ on issues of the creation of new types and the breaking of object-oriented encapsulation. Another
workshop paper addressed the issue of extending compiler technology to the set-oriented operators of DBPLs.
Various other combinations of object-orientation, deductive databases, and functional programming in the
context of DBPLs were also explored at the workshop.

The issue of generalizing logic databases received significant attention at the workshop. The abstract
by Chen, Kifer and Warren included here presents an approach for extending the syntax of a deductive
language to higher order while leaving the semantics essentially first order. A second proposal in the same
vein was included in the workshop, and also a proposal which supports a higher-order semantics. The
abstract by Naqvi here argues that “stratification” can serve as a design principle for dealing with a variety
of extensions to basic Horn clause logic.

Another issue addressed in the workshop is that of providing tools for layered database system de-
velopment. The abstract by Borgida et. al. included here stems from the DAIDA project, whose goal is
to build an environment for constructing data-intensive software. As described here, the system will use
three languages: an “assertional knowledge representation languages”, an intermediate design language, a/nd
an underlying DBPL. A second paper of the workshop describes the PROQUEL language, an integrated
specification, data manipulation and programming langauge also intended for use in a layered development
enviroment.

A final group of papers of the workshop, not represented here, attempts to expand and refine our
understanding of DBPL issues by providing taxonomies and/or new perspectives. In addition to the papers
mentioned above which provide a framework for comparing type systems, this includes papers which: raise
global issues such as type evolution arising in the context of persistent types; categorize different kinds of
inheritance; contrast object identity vs. reference; compare the use of objects vs. structured values; and
which formally analyze the expressive power and complexity of various DBPL primitives.

A great deal of research is still needed in the field of DBPLs. In addition to the topics mentioned above,
active research is being pursued in the areas of so-called “long transactions” and collaborative working, query
optimization, and integrity constraint maintenance. In the coming years experimentation with the various
paradigms for DBPLs will continue; it is difficult to predict what approaches will ultimately predominate.

Richard Hull
Ron Morrison
David Stemple



Static Type-checking in Object-Oriented Databases*

Val Breazu-Tannen Peter Buneman Atsushi Ohori

Department of Computer and Information Science
University of Pennsylvania
200 South 33rd Street
Philadelphia, PA 19104-6389

1 Introduction

If a precise definition of object-oriented programming languages is elusive, the confusion surrounding object-
oriented databases is even greater. Rather than attempt to give a comprehensive definition of the subject we
shall concentrate on a few properties of object-oriented databases that we believe to be of central importance.
We want to show that these properties can be concisely captured in a language that has a more-or-less
conventional type system for the representation of data, and that achieves its “object-orientedness” by
exploiting type inference. The advantage of this approach is that programs are statically checked for type
correctness without the programmer having to declare types. By doing this we believe we can eliminate a
major source of errors in programming on databases — type errors, which proliferate as the complexity of the
database increases. In some object-oriented database systems, type errors are not caught until something
goes wrong at run-time, often with disastrous consequences. To the best of our knowledge, none of the

systems or research prototypes developed in the past exploits the flexibility offered by type inference.

Let us briefly discuss three properties of object oriented languages and databases that will figure in our
presentation. There are of course other features, but we shall defer a discussion of these until the end of this
paper.

Method inheritance. This features in all object-oriented languages and describes the use of a programmer-
defined hierachy to specify code-sharing. Code defined for some class is applicable to objects in any subclass
of that class. For example, a programmer could define a class POINT with an associated method Move(z,y)
that displaces a point by co-ordinates z and y. Subsequently, a subclass CIRCLE of point may be defined,
which means that the method Move is also applicable to objects of class CIRCLE.

Object identity. In the precursors to object-oriented languages [DN66], which were used for simulation, an
object could represent a “real-world” object. Since real world objects can change state, the correspondence

between a program object and a real-world object was maintained by endowing the program object with

*This research was supported in part by grants NSF IRI86-10617, ARO DA A6-29-84-k-0061 and ONR NOQO-14-88-K-0634.
The third author was also supported in part by OKI Electric Industry Co., Japan.



“identity” - a property that remained invariant over time and served to distinguish it from all other objects.
Since the purpose of object-oriented databases is also, presumably, to represent the real world, we would

expect it to figure in our discussion.

Ertents. In any database one needs to maintain large collections — lists or sets, for example — of objects with
certain common properties. Typically, a database might contain EMPLOYEES and DEPARTMENTS, each
describing a collection of values with some common properties. For example, we would expect SALARY
information to be available for each member of of EMPLOYFEES. The need to deal efficiently with extents
is one of the distinguishing features of object-oriented databases; and the connection between extents and

classes will be one of the main foci of our discussion.

On initial examination of these properties, it is tempting to tie extents to classes, but this immediately
creates problems. In the case of POINT and CIRCLE there is no obvious relationship between the objects of
these two classes, and even if there is such a relationship — we might implement a circle using an instance of
POINT to describe the cénter — there could be many circles with the same center. On the other hand, when
we say (in the jargon of semantic networks and data models [HK87)) that EMPLOYEE isa PERSON, we
mean that, in a given database, the set of EMPLOYEF instances is a subset of the set of PERSON instances.

There is an immediate contradiction if we think of EMPLOYEES as the set of all objects of class EMPLOYEE
and similarly for PERSON. For if an object is in class EMPLOYEE, it cannot be in class PERSON. Therefore
EMPLOYEES cannot be a subset of the set of instances of PERSON. We probably want to consider the set
of persons to be the union of the PERSON and EMPLOYEE objects, but this does not bode well for static

type-checking because this set is now heterogeneous, and it is not clear what type to give it.

In the following sections, we shall outline an approach to this problem that relies heavily on type inference
for record types. The ideas are embodied in the experimental language Machiavelli [OBB89] that has been

implemented at the University of Pennsylvania. Moreover, this paper summarizes some of the issues discussed
in more detail in [BBO89).

2 Type Inference and Inheritance

To see how we can derive methods through type inference, consider a function which takes a set of records
(i.e. a relation) with Name and Salary information and returns the set of all Name values for which the

corresponding Salary values are over 100K. For example, applied to the relation

{[Name = "Joe", Salary = 22340],
[Name = "Fred", Salary = 123466],
{Name = "Helen", Salary = 132000]}

this function should yield the set {"Fred", "Helen"}. Such a function is written in Machiavelli (whose
syntax mostly follows that of ML [HMT88]) as follows

fun Wealthy(S) = select x.Name
where x <- S
with x.Salary > 100000;

Although no data types are mentioned in the code, Machiavelli infers the type information



Wealthy: {[(“a) Name:"b,Salary:int]l} -> {"b}

by which it means that Wealthy is a function that takes a homogeneous set of records, each of type [("a)
Bame : "b, Salary : int], and returns a homogeneous set of values of type "b, where ("a) and "b are
type variables. "b represents an arbitrary type on which equality is defined. ("a) represents an arbitrary
extension to the record structure that does not contain Name and Salary fields; this is superficially similar to
the “row variables” in [Wan87]. "b and ("a) can be instantiated by any type and record extension satisfying
the above conditions. Consequently, Machiavelli will allow Wealthy to be applied, for example, to relations

of type
{[Name: string, Age:int, Salary: int]}
and also to relations of type

{[Name: [First: string, Last: string],
Weight: int, Salary:int]}.

The function Wealthy is polymorphic with respect to the type "b of the values in the Name field (as in ML)
but is also polymorphic with respect to extensions ("a) to the record type [(Name:"b ,Salary: int]. In’
this second form of polymorphism, Wealthy can be thought of as a “method” in the sense of object-oriented
programming languages where methods associated with a class may be inherited by a subclass, and thus
applied to objects of that subclass. In other words, we can think of {[Name:"b ,Salary: int]} as the
description of an inferred “class” for which Wealthy is an applicable method.

For the purposes of finding a typed approach to object-oriented programming, Machiavelli’s type system has
similar goals to the systems proposed by Cardelli and Wegner [Car84, CW85]. However, there are important
technical differences, the most important of which is that database values have unique types in Machiavelli
while they can have multiple types in [Car84). Based on the idea suggested in [Wan87], Machiavelli achieves
the same goals of representing objects and inheritance (see also [JM88] for a related study). These differences
allow Machiavelli to overcome certain anomalies (see [OB88], which also gives details of the underlying type

inference system).

3 Representing Objects and Extents

The example we have just presented is intented to illustrate how Machiavelli can infer types in a function
defined over a set of records (a relation). In fact, the select ... where ... with ... is a simple
syntactic sugaring of a combination of a small number of basic polymorphic operation on sets and records,
which provide a type inference system for an extended relational algebra. The reader is referred to [OBB89]
for details, for space does not allow us to describe them here. Instead we turn to the problem that we posed
in the introduction of combining the two views of an inheritance hierarchy: as a structure that describes the

inheritance of methods and as a structure that describes containment between sets of extents.

Suppose we have two sets, E' a set of objects of type Employee and S a set of objects of typeStudent and we
wish to take the intersection. We would expect objects in E NS to inherit the methods of both Student and
Employee. But note that our intersection is rather strange because it operates on sets of different types. We

want its type to be something like {r} x {72} — {7 U7}, such that when 7, and 7, are record types which



Figure 1: A Simple Class Structure

have consistent type information in their common fields, 7 U 73 is the union of the field descriptions of 7
and 75. (Throughout the paper, {r} will stand for the type of sets of elements of type r.) Note that the
operation we want looks very much like the natural join since it takes the union of the methods (attribute
names) on something that looks like the intersection of the rows. But without object identity, it is not clear
exactly what the intersection of rows means in this case. Our first task is to introduce some notion of object

identity.

We claim that reference types in ML, upon which Machiavelli is based, capture the essence of object identity.

For example, if we set up a reference to a record type as follows
val d = ref([Dname="Sales", Building=45]);

and from this we define two employee records

val empl = ref([Name = "Jones", Department

dl);
dl);

val emp2 = ref([Name = "Smith", Department

then an update to the building of the department as seen from emp1

let val d = ('empl).Department
in d:=modify('d, Building, 67)
end;

will be reflected in the department as seen from emp2. (In ML, ! stands for dereferencing.) Also, two
references are equal only if they are the result of the same invocation of the function ref which creates
references. For example, ref(3) = ref(3) is false, the two applications of ref generate different (unequal)

references. Thus different references can never be confused even if they refer to the same value.

Now suppose we wish to represent the hierarchy shown in figure 1. Again, note that we want the arrows not

only represent inheritance of properties but also actual set inclusions

To do this we start by considering a PersonObj type as being sufficiently rich to contain all the possible

states of a person; variant types ( <...,...>) are used, for example, to indicate whether or not a person

has a salary (is an employee):

PersonObj = ref([Name: string, Salary : <Nome: unit, Value: int>,

Advisor : <Nome: unit, Value: PersonObj>]

(ML has a convenient “undefined” value, whose type is unit.) This is not a type declaration in Machiavelli



(type declarations are in general not needed). PersonObj is simply a name we shall give to a type that a

particular data structure may or may not posses.

Now PersonObjis a rather complicated type, and its relationship to the hierarchy is not immediately clear.

What we want to deal with are some types that directly provide the information we need:

Person = [Name: string, Id: PersonObjl;
Student = [Name: string, Advisor: PersonObj, Id: PersonObj]
Employee = [Name: string, Salary: Integer, Id: PersonObj]

Again these are just convenient shorthands that we shall use in some of the examples that follow. The
type Person, Employee and Student directly provide the information we want for these classes, but they also

contain a distinguished field, the Id field, that retains the person object from which each record is derived.

Now suppose we are provided with a set of person objects, i.e. a set of type {PersonObj}, we can write in

Machiavelli, functions that “reveal” some of the information in this set. We call such a function a view.

fun PersonView(S) = select [Name=(!x).Name, Id=x]
where x <- S

vith true;

fun EmployeeView(S) =
select [Name=(!x).Name, (Salary=(!x).Salary as Value), Id=x]
where x <- S

with (case (!x).Salary of Value of _ => true, other => false);

fun StudentView(S) =
select [Name=(!x).Name, (Advisor=(!x).Advisor as Value), Id=x]
where x <- S
case (!x).Advisor of
Value of _ => true,

other => h (case (!x).Course of Value of _ => true, other => false);

The types inferred for these functions will be quite general, but the following are the instances that are
important to us in the context of this example.

PersonView : {PersonObs} -> {Person}
EmployeeView : {PersonObj} -> {Employee}
StudentView : {PersonObj} -> {Student}

We are now in a position to write a function that, given a set of persons, extract those that are both students

and employees:



fun supported-students(S) = join(StudentView(S),EmployeeView(S);

In the definition of supported-students, the join of two views models both the intersection of the two classes
and the inheritance of methods. If 7,0 are types of classes, then 7 < o implies that project(View,(S),r) C
View,(S)) where View, and View, denote the corresponding viewing functions on classes r and ¢, and
where < is the order relation generated by field description inclusion. This property guarantees that the
join of two views corresponds to the intersection of the two. The property of the ordering on types and
Machiavelli’s polymorphism also supports the inheritance of methods. Thus the methods applicable to
StudentView(S) and EmployeeView(S) are automatically inherited by Machiavelli’s type inference mecha-
nism and are applicable to supported.students(S). As an example of inheritance of methods, the function
Vealthy, as defined in the introduction, has type {[("a) Name:"b,Salary: int]} -> {"b}, which is appli-
cable to EmployeeView(S), is also applicable to supported.students(s).

Dual to the join which éorresponds to the intersection of classes, the union of classes can be also represented
in Machiavelli. Besides the usual union of sets of the same type, the primitive operation unionc takes
an argument of type {6,} x {6;} for all non-functional types §;,6;, such that 61 N &, exists (the types
are compatible on the common fields). Let sy,s2 be two sets having types {61}, {62} respectively. Then
unionc(s, 8;) satisfies the following equation:

unionc(sy, s;) =

project(s;,§; Mé2) Uproject(ss, §; M éb3)

which is reduced to the standard set-theoretic union when 61 = 63. This operation can be used to give a
union of classes of different type. For example, unionc(StudentView(person), EmployeeView(person))
correspond to the union of students and employees. On such a set, one can only safely apply methods that
are defined both on students and employees. As with Join, this constraint is automatically maintained by
Machiavelli’s type system because the result type is {Person}. In this fashion it is possible to extend a large
catalog of set-theoretic operations to classes.

4 Some Alternative Approaches

While the solution presented above provides a reasonable reconciliation of two forms (method sharing and
subset) of inheritance, there may be alternaive approaches. One problem with our solution is that it requires
the explicit construction of views, and while this follows naturally — perhaps automatically — from the class

hierarchy, having to use some ad hoc encoding is not entirely satisfactory. Consider the following query

1. Obtain the set P of PERSONSs in the database.

2. Perform some complicated restriction of P, e.g. find the subset of P whose Age is below the average
Age of P.

3. Obtain the subset E of P of EMPLOYEEs in P.

10



4. Print out some information about E, e.g. print the names and ages of people in E with a given salary

range.

In Machiavelli, at line 3, one will have to perform an explicit coercion from PERSON to EMPLOYEE.

To avoid this, (1) we could admit that values can have more than one type, or, (2) we can continue to insist
on unique types, but then we must allow sets to contain values of different types. Both of these solutions
require the use of heterogeneous sets. These are discussed in more detail in [BBO89]. We limit ourselves
to a few remarks here. A type system in which values can have more than one type has been suggested
by Cardelli in [Car84] and refined by Cardelli and Wegner[CW85]. A subtype relation was introduced in
order to represent isa hierarchies directly in the type system. For example, we can represent PERSON and
EMPLOYEE by the following record types

PERSON
EMPLOYEE

[Name : string, Age : int]

[Name : string, Age : int, Sal : int]

since the intended inclusion relation is captured by the fact that EMPLOYEE < PERSON holds in the type
system. In these type systems, method sharing simply means type consistency of the desired applications.

The intended type consistency is ensured by the following typing rule (manifest in [CW85] and derivable in
[Car84]) :

[ s TgSTl

(SUb) €Ty
(Here, as before, < is the relation generated by field description inclusion, which is the dual of the inheritance
relation of [CW85].) With such a rule, even simple objects such as records will have multiple types. If we

add a set data type (a set type constructor) and the rule of set introduction

€ :T, € T,y o T

set

(set) {e1,ea,...,en}: {7}
we get a system that actually supports heterogenous sets. For example, if e; : 71 and e; : T then e;,e5 also
have the set of types 71 = {7|r < m1} and 72 = {r|r < 7,}. By applying the rule (set), the set-expression
{e1,e2} has any type {7} such that 7 € 7T N7;. Furthermore, by using the property of the subtype relation
that 7T N7 = 7 U 72, the typechecking algorithm of [Car84) can be also extended to set expressions.

However there are certain drawbacks to this system. It suffers from the problem called “loss of type infor-
mation”, i.e. there are certain terms that one would reasonably expect to type-check, but are not typable
under the given typing rules. This anomaly could be avoided by performing appropriate type abstractions
and type applications. However, giving an appropriate type to the simplest of functions is not always triv-
1al. For example, the function that extracts the Name field from a record is implemented by the following
polymorphic term:

pname = AtyAt; < [Name : t3) Az : t,.2 - Name
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which must be applied to the appropriate types before it can be evaluated. This is practically rather cum-

bersome. Worse yet, there seems no uniform way to find appropriate type abstractions and type applications

to avoid the anomaly.

Another possibility of supporting object-oriented database is to allow heterogeneous sets and to keep partial

type information about such sets. For example it should be possible to assert for a set of records that each

record contains a Name : string field, and to use such an assertion to type-check an application that requires

access to the name field of each record in the set even though those records may be of differing type. The

detailed syntax of such a system have yet to be worked out, but some proposals are given in [BBO89].
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A Type System for
Algebraic Database Programming Languages *
Extended Abstract

Dean Jacobs !
University of Southern California

July 11, 1989

1 Introduction

There is a growing body of research which uses algebraic theory as a framework for integrating notions
from databases and programming languages. The fundamental idea in this work is that database states
are represented by first-order declarative programs. Functions and predicates within such programs are
used uniformly to define the underlying data types, represent values stored in the database, and compute
derived data. Database updates are performed by rewriting the program which represents the state. This
work might be generally classified as the study of algebraic database programming languages.

This extended abstract describes a type system for logic programs which is intended to serve as the
basis for algebraic database programming languages; a more complete description appears in {Jac89].
This type system supports user—defined types, parametric polymorphism, union types, and subtypes. As
an example, the declarations

type etree :- {nil}.
type netree(A) :- {node(tree(A),A,tree(A))}.
type tree(A) :- etree + netree(A).

introduce the type etree of all empty trees, the type netree(A) of all non-empty trees, and the type
tree(d) of all trees. A type represents a set of ground terms, the basic values of computation in logic
programming, e.g., etree represents the singleton set {nil}. Polymorphic types, such as tree(A) have
type parameters, e.g., tree({red}) represents the set

{nil, node(nil, red, nil), node(node(nil, red,nil), red,nil),...}

These declarations arrange it so that etree and netree(A) are subtypes of tree(i). Subtypes are
intended to capture the semantic database notion of isa; elements of netree have all the properties of
elements of tree.

Our type system has a particularly interesting treatment of type equivalence and the subtype rela-
tionship. There are two basic notions of the conditions under which type 7 should be considered to be
equivalent to type 72: structural equivalence, where , and 7 must have the same meaning, and name
equivalence, where 7, and 72 must be textually identical. Similarly, there are two basic notions of the
conditions under which 7y should be considered to be a subtype of r3: structural subtyping, where the
meaning of 7; must be appropriately contained in the meaning of 73, and prescriptive subtyping, where
7, must be explicitly declared to be a subtype of 7. In our system, predefined type constructors, such

*This research was supported in part by AT&T grant 5345990979
tComp. Sci. Dept., University of Southern California, Los Angeles, CA 90089-0782, jacobs@pollux.usc.edu
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as +, are treated structurally and user defined type constructors, such as tree, are treated by name
and prescriptively. For example, tree({red}) is a subtype of tree({red}+{blue}), however, given the
declaration type elist :— {nil}., elist is not a subtype of tree({red}).

We present Milner-style type inference rules for logic programs which can serve as the basis for
type—checking algorithms. These rules rely on our notions of type equivalence and subtypes and on the
notion of a typing for the symbols in a program. The typing for function symbols is derived from type
declarations and the typing for predicate symbols is explicitly specified by predicate declarations. We
briefly discuss a type-checking algorithm which infers the typing of variables.

Type systems for logic programs may be generally classified as being either descriptive or prescriptive.
In a descriptive type system, types and the typing of predicate and function symbols are antomatically
inferred [Mis84, MR85, Red88, Zob87, YS87]). The goal here is to derive safe upper bounds, so called
“optimistic” types, for the purposes of compile-time optimization. In a prescriptive type system, types
and the typing of predicate and function symbols are explicitly declared by the programmer. The
goal here, as in most conventional type systems, is to provide documentation, to catch certain basic
errors, and to support optimization. Prescriptive type systems may be further classified as being either
semantic or syntactic. In a semantic type system, the underlying logic contains an explicit notion of
types and the computational mechanisms are correspondingly enhanced [GM86, Smo88, HV87, Wal88).
Order—sorted logic and order-sorted unification have been extensively studied in this context. In a
syntactic type system, the underlying logic is untyped and conventional computational mechanisms are
used [MO84, DH88]. Here, types are introduced at compile-time simply for the purposes of type checking.

The type system presented in this paper is prescriptive and syntactic. We extend the type system of
[MO84), which is an adaptation of Milner’s polymorphic type system for ML [Mil78] to logic programming,
to include union types and subtypes. [DH88] also extends [MO84] to include subtypes, however, their
work is somewhat problematic. In particular, they use a form of structural subtyping and it is undecidable
in their system whether one type is a subtype of another.

This paper is organized as follows. Section 2 reviews some basic terminology and definitions associated
with logic programming. Section 3 defines the syntax and semantics of types and type declarations.
Section 4 introduces type equivalence and subtypes. Section 5 introduces the notion of a typing for the
symbols in a program. Section 6 presents type inference rules for logic programs. Section 7 presents
concluding remarks.

2 Preliminaries

The language of first order predicate logic has the following countable sets of symbols.
e V of variables, ranged over by z
e F of function symbols with given arity, ranged over by f/n
e P of predicate symbols with given arity, ranged over by p/m

A term is either a variable or an n-ary function symbol applied to n terms. An atom is an n-ary predicate
symbol applied to n terms. A clause h:-b consists of an atom h, called the head, and a list of atoms b,
called the body. A logic program Cj, ..., Cy;q is a collection of n clauses C;, called the rule base, and a
list of atoms ¢q, called the query.

A substitution 8 is a mapping from variables to terms. An explicitly enumerated substitution over
variables {21,...,%;} is written [2; + #1,...,2; — t;]. The application of substitution 6 to term t,
denoted 16, is the term obtained from ¢ by replacing all occurrences of variables in the domain of § by
their associated terms. Term t; has substitution instance ¢, denoted t; ins #,, iff there is a substitution
6 such that ;6 = ¢;. Terms ¢, and ¢, are equivalent up to renaming of variables, denoted ¢, rnm i, iff
t; ins £; and {; ins ;. If {;, rnm ¢, then there is a renaming substitution 8, i.e., a substitution which
maps variables to variables, such that #;0 = t. The set of variables occurring in term ¢ is denoted var(t);
var(1,,t;) abbreviates var(t;) U var(t;).
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Term 1 is said to be ground iff var(t) = 8. Ground terms, such as node(nil,red,nil), are the values
over which computation takes place in our system. We let  denote the set of all ground terms, i.e., the
Herbrand Universe.

3 Types and Type Declarations

Let the following countable sets of symbols be given.
e TV of type variables, ranged over by a
e TC of type constructors with given arity, ranged over by c/k

A type 7 € T'ype is an expression inductively built up from variables a € TV, type constructors c € TC,
function symbols f € F, and the union operator +. For example, A, tree(A), {red}, tree({red}),
{red}+{blue}, and tree({red}+{bluel}) are all types.

Intuitively, a type represents a set of ground terms, i.e., a member of T = P(?). Formally, the
semantics of a type is given in terms of an assignment to type variables and an interpretation for type
constructors. A type variable assignment n € TV A is a partial function from TV to 7. A type constructor
interpretation ¢ € TCT is a partial function over ¢/k € TC such that {(c): T*—T.

Definition 1 (Semantics of Types) The function M:Type +TVAx TCI —T defines the semantics
of lypes as follows.

Mlal(m ) = n(a)

Mle(n, ..., n)l(m <) = () (MIn](mC), . ... MIn](m ()

M[{f(flv seen Tﬂ)}]](n) () = {f(tla LK) tn) | t € M[ﬁ]l(’h C) A...Al E M[Tn]](nv C)}
Mn + n](m ) = MIn](n, ¢) U M[n](n )

The members of a collection of types are usually interpreted with respect to a fixed { € TCZ. We say
ground term ¢ has type T, denoted ¢ : 7, iff t € M[7](n, () for all n € TV.A over var(r). For example,
t : tree(A) iff ¢ = nil; this suggests that free variables in a type may be viewed as being “universally
quantified”. We say type 7 is a structural subtype of 13, denoted n < 13, iff M[n](n,¢) C M[m](n,¢)
for all 7 € TV A over var(n, ;). For example, it is not the case that tree(A) < tree(B). We say type
7, is structurally equivalent to type 13, denoted nn ~ m,iff n < and m < n.

A type declaration for ¢/k € TC has the form

type c(ag,...,ox): — 7.

where the a; are distinct type variables. We say a set of type declarations has domain D C TC iff
it contains a declaration for each member of D and it refers only to type constructors in D. A type
constructor interpretation ¢ over D is said to be a model of a set of type declarations with domain D iff
for every type declaration as above we have 7 < ¢(ay,...,a;). The meaning of a set of type declarations
is taken to be the intersection of its models, i.e., its least model.

We now present some example type declarations. Our first example illustrates enumerated types.

type primary :- {red} + {blue} + {yellow}.
type secondary :- {purple} + {green} + {orange}.
type color :- primary + secondary.

Here, red : color, purple : color, and primary < color.
A marked polymorphic union type can be defined as follows.

type munion(A,B) :- {first(a)} + {second(B)}.

Here, first(red) :munion(color,B) and munion(primary,B) < munion(color, B).
A polymorphic list type can be defined as follows.
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type elist :- {mil}.
type nelist(A) :- {A.List(Ad)}.
type list(A) :- elist + nelist(A).

Here, the cons operation “.” is written in infix form to improve readability. A particular member of this
type has lists nested to a fixed depth, e.g.,

red.nil:list(color)

(red.nil).(blue.nil).nil:list(list(color))

A single type where lists can be nested to an arbitrary depth can be defined as follows.

type xlist(A) :- list(A) + xlist(xlist(Ad)).
Along these same lines, a type of lists of any type can be defined as follows.
type anylist :- list(a).

This definition ensures 1ist(A) < anylist, i.e., M[list(A)}(n,¢) C M[anylist](n, () for all n over
{a}.

4 Type Equivalence and Subtypes

The following definition introduces a binary relation = which determines whether two types are considered
to be equivalent for the purposes of type checking. As described in section 1, predefined type constructors,
such as +, are treated structurally and user defined type constructors, such as 1ist, are treated by name.

Definition 2 (Type Equivalence) = is the smallest congruence relation on types which satisfies the
following properties.

lL.r+r=rT.

2n+nm=n+n.

. (n+m)+ma=n+(r+71).

4o FGorn 1 )= Flr T )+ FenyTayen )

Recall that a congruence relation is reflexive, symmetric, transitive, and allows substitution of equal
terms, i.e., if 3 = 73 then T{a — 1] = 7[a — m]. We can show that = respects structural equivalence
in the following sense. If ; = 73 then 1, ~ =, for all { € TCT over var(n, 12).

We now introduce a binary relation isa® which determines whether one type is considered to be
a subtype of another for the purposes of type checking. As described in section 1, predefined type
constructors, such as +, are treated structurally and user defined type constructors, such as list, are
treated prescriptively. A set of type declarations defines a type hierarchy isa as follows: each type
declaration

type c(ay,...,on):— T

introduces T isa c{ay, ..., ox). The relation isa* is defined to be the closure of isa as follows.

Definition 3 (Closure of a Type Hierarchy) The closure isa® of type hierarchy isa over domain
D C TC is the smallest relation over types from D which satisfies the following properties.

1. If n isa 7y then 110 isa’ 16 for any renaming substitution 6.
2. If n =1 then 1y isa® .

. nisa" 4+ mn
i

If 1 isa® 7y and 1y isa® 15 then 1y isa® 73.
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5. If n isa® m and 7{ isa® 73 then ni[a— 7{] isa® mlar ).

We can show that isa® respects structural subtyping in the following sense. Let { be the type constructor
interpretation associated with a set of type declarations and isa be the associated type hierarchy. If
7 isa’ m then iy < .

5 Typings for Symbols

In this section, we introduce the notion of a typing, a binary relation “::” which associates each function
symbol, predicate symbol, and variable in a program with “extended” types.

Function symbols are associated with extended types of the form (1y,...,7 — 7) where 1,...,a, T
are ordinary types. The function symbol typing associated with a program is derived from its type dec-
larations as follows. Each disjunct {f(71,...,7a)} appearing at the outermost level of a type declaration,
ie.,

type c(ay,...,ax): —...+ {f(71,...,m)} +....
produces f :: (11,...,Tn — {f(n1,...,Ta)}). As an example, the type integer can be defined as follows.
type nat :- {0} + {succ(nat)}.

type unnat :- {0} + {pred(umnat)}.
type int :- nat + unnat.

These declarations produce the typings

0: (— {o0})
succ :: (nat — {succ(nat)})
pred : (unnat — {pred(unnat)})

Function symbols may be overloaded, for example, the declaration
type gnat :- {0} + {succ(gnat)}.

produces
succ :: (gnat — {succ(gnat)})

Predicate symbols are associated with extended types of the form (7,...,7,) where 7y,..., 7, are
ordinary types. The predicate symbol typing associated with a program is given by explicit declarations
of the form

pred p(n,..., Tm).

For example, the predicate append on lists might be declared as follows.
pred append(list(d), list(B), list(A+B)).

Predicate symbols may be overloaded.

Variables are associated with ordinary types and may not be overloaded. This restriction is necessary
to ensure that each variable occurs in at most one type context. As an example of the problems which
can arise if this restriction is not observed, consider the following predicates.

pred p(int).
p(0).
pred q(color).

If we allowed X :: int and X :: color, then the query :- p(X), q(X). would be well-typed, however, it
can lead to the type-incorrect resolvent :- q(0).
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6 Type Inference Rules

In this section, we present type inference rules for logic programs. These rules allow us to derive ex-
pressions consisting of program components annotated with types. A program component is said to be
well-typed if an annotation of it can be derived. A well-typed program is guaranteed not to produce type
errors during its execution. We briefly discuss an algorithm, based on the inference rules, for determining
whether a program is well-typed. In the following, the fact that expression e can be derived is denoted
ke

As a first step, we present inference rules for terms ¢ which allow us to derive expressions of the form
t : . The notation oy < 02, meaning function type oy is compatible with function type o3, is defined
as follows: o < (n,..., 7T — 7) iff there exists a substitution instance (1{,...,7;, — 7’') of & such that
7/ =7; and 7’ isa’ 7.

Definition 4 (Inference Rules for Terms)
Terms: f/n€ F
fuoooa(n,..., T 1), Ft;: 7
Ff(tyy..ovta): T

Variables: x €V
ZUuT, AN T,

z:7

We can show that these inference rules are consistent with the semantics of types in the following sense.
Supposet€ H and F¢: 7, thent: 7.

We now present inference rules for atoms. These rules allow us to derive expressions of the form
P{t1: T,...,tm ¢ Tiy) Where p/m € P. There are two such rules; one for atoms in the head of a clause
and one for atoms in the body of a clause.

Definition 5 (Inference Rules for Atoms)
Head Atoms: p/m € P
puo,ornm(rf,..., L), i=7,Fli: %
Fo(ti:m,..ovtmt Tm)

Body Atoms: p/me P
puo,oins(r,..., 7)), i=n, Fti: =
|"p(t1 :1’1,...,tm:1',,.)

The difference between the rules for head and body atoms is that the parameters of a head atom may
not be instantiated.

A logic program is well-typed if every atom in it is well-typed. The following proposition states
that these inference rules are sound in the sense that every resolvent produced during execution of a
well-typed program is well-typed, thus execution cannot “go wrong”.

Proposition 1 (Soundness IT) Let G be a query :-A,,...,A;, C be a clause B:-B,, ..., B; such that
A, and B have an mgu 6, and G' be a resolvent :-B18,..., B0, A30,...,A;0 of G and C. IfC and G
are well-typed, then G' is well-iyped.

An (inefficient) algorithm for determining whether a program is well-typed can be derived from these
rules by applying them in a top-down manner. This algorithm requires a typing for function and predicate
symbols and derives a typing for variables. To process an atom p(ty,...,%,) where p :: (71,..., Tm), check
if ¢; has a type which is structurally equivalent to 7;. Instantiation of variables in 7; may occur if the
atom appears in the body. If the atom appears in the head, variables in 7; should be effectively viewed
as being ground. To check if f(¢;,...,%,) has type 7 where f :: o, find a type (71,..., Ta — 7) such that
o <(7,..., T — 7) and then check if ¢; has type 7;. The set of all types carried down to instances of
a variable must be unifiable and the type of the variable is taken to be the unification of this set. This
algorithm requires a considerable amount of backtracking.
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7 Concluding Remarks

The next step in this research is to provide support for the dynamic aspects of data modeling. This can
be accomplished by introducing the notion of a class as a set of values of some underlying type. Each
such value will play the role of an object identifier for an instance of its class. Attributes of objects can
then be modeled as predicates on the underlying types of classes. For example, the declaration

class person of nat with
name:string
parent :person

end person

might be translated into

pred person(nat).
pred name(nat,string).
pred parent(nat,nat).

This allows the notion of inheritance to follow naturally from the notion of subtype.

The issue of “class checking”, as distinct from type checking, now arises. As an example, suppose the
user wishes to assert the tuple parent(X,Y) for some ground variables X and Y. Type checking ensures
that the underlying type of the new values is correct. In addition, class checking must be performed to
ensure that person(X) and person(Y) hold. This can be accomplished by analyzing the source of the
values for X and 1.
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Design of the Persistence and Query Processing Facilities in O++: The Rationale*

R. Agrawal
N. H. Gehani

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

Ode is a database system and environment based on the object paradigm [2]. The database is defined,
queried, and manipulated using the database programming language O++ which is an upward compatible
extension of the object-oriented programming language C++ [31] that offers one integrated data model
for both database and general purpose manipulation. The C++ object definition facility is called the
class, which supports data encapsulation and multiple inheritance. O++ extends C++ by providing
facilities for creating persistent and versioned objects, defining and manipulating sets, organizing
persistent objects into clusters, iterating over clusters of persistent objects, and associating constraints
and triggers with objects.

In this paper, we present the O++ facilities for persistence and query processing, the altematives that we
considered, and the rationale behind our design choices. We assume that the reader is familiar with the
basic issues in the design of database programming languages (see, for example, {7, 10, 11,23,29,34] for
an introduction) and concentrate on our design. Our discussion is oriented around O++, but we think
that lessons we learned have wider applicability.

7

2. OBJECT DEFINITION: A BRIEF OVERVIEW

The C++ object facility is called the class. Class declarations consist of two parts: a specification (type)
and a body. The class specification can have a private part holding information that can only be used by
its implementer, and a public part which is the type’s user interface. The body consists of the bodies of
functions declared in the class specification but whose bodies were not given there. For example, here is
a specification of the class item: '

class item {
double wt; /* in kg */
public:
Name name;
item(Name xname, double xwt);
double weight lbs();
double weight kg():;

}i

The private part of the specification consists of the declaration of the variable wt. The public part
consists of one variable name, and the functions item, weight lbs and weight kg.

C++ supports inheritance, including multiple inheritance {32}, which is used for object specialization.
The specialized object types inherit the properties of the base object type, i.e., the data and functions, of
the ‘‘base’’ object type. As an example, consider the following class stockitem that is derived from
class item:

* This paper is an abbreviated version of the paper titled Rationale for the Design of Persistence and Query Processing Facilities
in the Database Programming Language O++ presented at the 2nd International Workshop on Database Programming
Languages [3].
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class stockitem: public item ({
int consumption;
int leadtime;
public:
int gty
double price;
stockitem(Name iname, double iwt, int xqty, int xconsumption,
double xprice, int xleadtime);
int eoq(): /*economic order quantity*/

};

stockitem is the same as item except that it contains other information such as the quantity in
stock, its consumption per year, its price and the lead time necessary to restock the item.

3. PERSISTENCE

We visualize memory as consisting of two parts: volatile and persistent. Volatile objects are allocated in
volatile memory and are the same as those created in ordinary programs. Persistent objects are allocated
in persistent store and they continue to exist after the program creating them has terminated. A database
is a collection of persistent objects, each identified by a unique identifier, called the object identity [16].
We shall also refer to this object identity as a pointer to a persistent object.

3.1 Design Goals
When incorporating persistence in O++, we kept the following design goals in perspective:

» Persistence should be orthogonal to type [7]. Persistence should be a property of object instances
and not types. It should be possible to allocate objects of any type in either volatile or persistent
store.

« There should be no run-time penalty for code that does not deal with persistent objects.

« Allocation and manipulation of persistent objects should be similar to the manipulation of volatile
objects. For example, it should be possible to copy objects from persistent store to volatile store and
vice versa in much the same way as it is possible to copy objects from the stack to the heap and vice
versa.

- Inadventent fabrication of object identities should be prevented.

+ Language changes should be kept to a minimum.

3.2 Persistence in O++

3.2.1 Allocating and Manipulating Persistent Objects Persistent objects are referenced using pointers to
persistent objects (that is, their identities). Persistent objects are allocated and deallocated in a manner
similar to heap objects. We choose to view persistent storage as being similar to heap storage because
most programmers are already familiar with manipulating beap objects. Persistent storage operators
pnew and pdelete are used instead of the heap operators new and delete. Here is an example:

persistent stockitem *psip;

psip = pnew stockitem (initigl-values) ;

psip is allocated on stack but pnew allocates the stockitem object in persistent store and its id
(returned by pnew) is saved in psip. Note that psip is a pointer to a persistent stockitem object,
and not a persistent pointer to a stockitem object.

Persistent objects can be copied to volatile objects and vice versa using simple assignments.
Components of persistent objects are referenced like the components of volatile objects.

32.2 Dual Pointers Having only ordinary pointers and pointers to persistent objects has the following
ramifications:
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i. If a class is used to build a linked data structure, then the same class cannot be used to create the
data structure both in volatile memory and in persistent store.

ii. We cannot write a function that can take as arguments pointers to either volatile objects or to
persistent objects.

We avoid these problems by providing dual pointers that can reference either a volatile object or a
persistent object. Whether the pointer refers to a volatile object or to a persistent object is determined at
run time. Here is an example illustrating the use of dual pointers:

class node {

dual node *next;
public:

dual node *add (dual node *n);
b

persistent node *p, *proot; /*proot refers to a persistent list*/
node *v, *vroot; /*vroot refers to an ordinary list */

proot = proot->add(p);
vroot = vroot->add(v);

3.3 Some Alternatives

O++ has three kinds of pointers: pointers to volatile objects (ordinary C or C++ pointers), pointers to
persistent objects, and dual pointers. We were reluctant to add two new pointer types and gave much
thought to the following two alternatives:

i. Have only one type of pointer that can point to both volatile and persistent objects.
ii. Have two types of pointers: an ordinary pointer that can only point to volatile objects and another
that can point either to a persistent object or a volatile object, i.e., a dual pointer.

3.3.1 One-Pointer Alternative Using one pointer to refer to either a volatile object or a persistent object
has several advantages: the language has two less pointer types and all (including existing) code will
work with both volatile objects and persistent objects. This code compatibility could be at the source
level or even at the object level depending upon the implementation strategy. Having one pointer type
also makes types strictly orthogonal to persistence. Finally, the only syntactic additions required to C++
would be the operators pnew and pdelete.

We rejected the one-pointer alternative mainly on performance grounds: we wanted to have facilities that
were easy to port and efficient to implement on general purpose machines and on standard operating
systems (particularly on the UNIX® system) without requiring special hardware assists.

With the one-pointer altemative, a run-time check must be made to determine whether a pointer refers to
a volatile object or a persistent object. Performing this check for every pointer dereference imposes a
run-time penalty for references to volatile objects. This overhead is unacceptable in languages such as C
and C++ (and therefore O++) which are used for writing efficient programs. Note that in these
languages pointers are used heavily, e.g., string and array manipulation are all done using pointers.

One way of avoiding this run-time overhead is to trap references to persistent objects, for example, by
using illegal values such as negative values for pointers to persistent objects (assuming that the
underlying bardware or operating system provides the appropriate facilities). References to volatile
objects then would not incur any penalty. But this scheme has several problems as discussed in [3].

3.3.2 Two-Pointer Alternative Instead of using three pointers, we seriously considered using only two
pointers: ordinary pointers and dual pointers, but finally decided in favor of the three pointer approach.
The main argument for not having pointers that point only to persistent objects is that the gain in run-
time efficiency by avoiding the check needed in dual pointers would not be significant compared to the

23



cost of accessing persistent store. On the other hand, the use of separate pointers for persistent objects
leads to better program readability and allows the compiler to provide better error checking, e.g.,
flagging arithmetic on pointers to persistent objects as being inappropriate. Based on our limited
experience (which is writing small sample programs in O++), we feel that programmers will use pointers
to persistent objects when appropriate.

3.4 Clusters of Persistent Objects

We view persistent store as being partitioned into clusters each of which contains objects of the same
type. Initially, we decided that there would be a one-to-one correspondence between cluster names and
the corresponding type names. Whenever a persistent object of a type was created, it was automatically
put in the corresponding cluster. Thus, our clusters were type extents [12].

This strategy preserved the inheritance relationship between the different objects in the persistent store,
and worked nicely with our iteration facilities (discussed in the next section) allowing us to iterate over
a cluster, or over a cluster and clusters ‘‘derived”’ from it'. Before creating a persistent object, the
corresponding cluster must have been created by invoking the create macro (in the same program or
in a different program). Additional information (such as indexing) may be provided to the object .
manager to assist in implementing efficient accesses to objects in the cluster. A cluster, together with all
the objects in it, can be destroyed by invoking the dest roy macro.

Bloom and Zdonik [10] discuss issues in using type extents to partition the database. Although this
scheme frees the programmer from explicitly specifying the cluster in which a persistent object should
reside, it suffers from the following disadvantages:

i. Unrelated objects of the same type will be grouped together.
ii. It will not be possible to optimize queries that involve subsets of the objects in a cluster.

In short, the disadvantages were due to the absence of a subclustering mechanism.

Although we used type extents to partition the database, our scheme did not suffer from the above
problems because subclusters could be created with the inheritance mechanism. For example, employees
of a companies A and B could be represented by types A~employee and B-employee derived from
the type employee. Each of these derived types would have a cluster corresponding to it. All
employees could then be referenced using the cluster employee, while employees belonging only to
company A or company B could be referenced by using clusters A-employee or B-employee,
respectively. Different indices could also be created for the two clusters.

Reactions (from our colleagues) to this clustering scheme was unfavorable on the grounds that our
clustering scheme did not allow multiple clusters for the same object type. The use of the inheritance
mechanism for creating subclusters was not appealing for the following reasons:

i. The type inheritance mechanism is a static mechanism.
ii. The type inheritance mechanism is being overloaded to create subclusters.
iti. The use of type inheritance to form subclusters becomes unwieldy if the number of subclusters is
large.

Consequently, we allowed creation of multiple clusters to group together objects of the same type, but
retained the notion that some *‘distinguished’’ clusters represent type extents to preserve the inheritance
relationship between objects in the database. An object implicitly always belongs to the distinguished
cluster whose name maiches the name of its type. However, it may also belong to another cluster which
may be thought of as a subcluster of the corresponding distinguished cluster.

1. To be precise, clusters are not derived; they simply mirror the inheritance (derivation) relationship between the corresponding
classes,
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Subclusters are also created and destroyed with the create and destroy macros. A subcluster name
is a string qualified by the corresponding cluster (object type) name, e.g.,

create (employee: :"A-employee");
destroy (employee: :name) ; /*name is a string variable*/

Objects may be specified to belong to a specific subcluster when they are allocated in persistent store,
e.g.,

ep = pnew employee ("Jack") ::"A-employee”;

4. QUERY PROCESSING CONSTRUCTS
4.1 Design Goals

An important contribution of the relational query languages was the introduction of the set processing
constructs. This capability allows users to express queries in a declarative form without concem for
physical organization of data. A query optimizer (see, for example, [28]) is made responsible for
translating queries into a form appropriate for execution that takes into account the available access
structures. Object-oriented languages, on the other hand, typically do not provide set-oriented processing
capabilities. Indeed, the major criticism of the current object-oriented database systems is that the query
processing in these systems ‘‘smells’’ of pointer chasing and that they may take us back to the days of
CODASYL database systems in which data is accessed by ‘‘using pointers to navigate through the
database’” [18]. One of the design goals of O++ was to provide set-processing constructs similar to
those found in relational query languages.

Object-oriented languages are ‘‘reference’” oriented, in that the relationship between two objects is
established by embedding the identity of one object in another. Frequently, it is not possible to envision
all relationships between the objects at the time of designing the database schema (class definitions).
Relational systems are ‘‘value’’ oriented and relationships between objects (tuples) are established by
comparing the values of some or all attributes of the objects involved. This lack of capability to express
arbitrary ‘‘join’’ queries has been cited as another major deficiency of the current object-oriented
database systems [18]. A design goal of O++ was to correct this deficiency.

In [7], Atkinson and Buneman proposed four database programming tasks as benchmarks to study the
expressiveness of various database programming languages. One of the tasks, the computation of the
bill of materials which involves recursive traversal, was found particularly awkward to express in many
of the database programming languages discussed. Cousiderable research has been devoted recently to
developing notations for expressing recursive queries in a relational framework and designing algorithms
for evaluating them (see, for example, [1,8]). Providing a capability to express recursive queries in a
form that can be used to recognize and optimize recursive queries was another design goal of O++.

4.2 Set-Oriented Constructs

Recall that the persistent objects of a type implicitly belong to the corresponding distinguished cluster
which bhas the same name as the type. Objects in a cluster can also be partitioned into named
subclusters. O++ provides a for loop for accessing the values of the elements of a set, a cluster or a
subcluster:

for i in set-or-cluster-or-subcluster [suchthat-clause] [by-clause] statement

The loop body, i.e., statement, is executed once for each element of the specified set, the cluster or the
subcluster; the loop variable i is assigned the element values in turn. The type of i must be the same as
the element type.

The suchthat-clause has the form suchthat (e;) and the by-clause has the form by (e [.cmp)). If
the suchthat and the by expressions are omitted, then the for loop iterates over all the elements of
the specified grouping in some implementation-dependent order. The suchthat clause ensures that
iteration is performed only for objects satisfying expression e . If the by clause is given, then the

25



iteration is performed in the order of non-decreasing values of the expression e, 1f the by clause has
only one parameter, then e, must be an arithmetic expression. An explicit ortfén'ng function cmp can
also be supplied as the second argument; in this case, expression €py need not be arithmetic.

For example, the following statement prints the name of stockitems heavier than 10kg in order of
increasing price:
for s in stockitem suchthat (s->weight _kg() > 10) by (s->price)
printf ("%s $£f\n", s->name, s->price);

We expect to pass the suchthat and by clauses to the object manager to select only the desired object
ids and deliver them in the right order for the for loop.

To allow expression of order-independent join queries, we allow multiple loop variables in the for
loops:

for iy in set-or-cluster-or-subcluster,, ..., i, in set-or-cluster-or-subcluster,
[ suchthat (e,) ] [by (eby) 1 statement

Such loops allow the expression of operations with the functionality of the arbitrary relational join
operation. For example, we can write

for e in employee, d in dept suchthat (e->dno==d->dno && e->salary>100)
printf ("$s %s\n", e->name, d->name);

to print the names of the employees who make more than 100K and the names of their departments.

When iterating over a set or a cluster, we allow iteration to also be performed over the elements that are
added during the iteration, which allows the expression of recursive queries [4]. We hope to recognize
recursive queries and use efficient algorithms for processing them.

4.3 Accessing Cluster Hierarchies
All objects in hierarchically related clusters can be accessed using a forall loop of the form
forall oid in cluster [suchthat-clause] [by-clause] statement

Except for the inclusion of objects in derived clusters, the semantics of the forall loop are the same
as those of the for loop for iterating over a cluster. Thus, given the class item and the derived class
stockitem as defined earlier, the statement

forall ip in item
tot_wt += ip->weight kg;

computes the weight of all items including stockitems.

5. RELATED WORK

Many research efforts have attempted to add the notion of persistence and database-oriented constructs
in programming languages (see, for example, [5,6,9,13,14,19-23,25-27,30,33]). Some of these
database programming languages have been surveyed and compared in [7]. Issues in integrating
databases and programming languages have been discussed in [7, 10, 11,23,29,34]. In the remainder of
this section, we limit our discussion to some other ongoing work on combining C and C++ with
databases. ’

Closely related to our work is the language E [23,24], which also started with C++ and added
persistence to it. However, persistent objects in E must be of special types called ‘‘db’’ types. Objects
of such types can be volatile or persistent. Persistence orthogonality in E can thus be realized by
programming exclusively in “‘db’’ types, but all references to volatile objects in that case would incur
run time check to see if they need to be read into memory [23]. Otherwise, one has to have two class
definitions, one *‘db’’ type and one ‘‘non-db’’ type, if objects of the same type are to be allocated both
in volatile memory and in persistent store.
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Other efforts to extend C and C++ to provide persistence are Avalon/C++ [15], Vbase [6] which
combines an object model with C, the O2 system [17] which also integrates an object model with C.
More discussion about E and the above efforts can be found in [3].

6. FINAL COMMENTS

An important goal of research in programming languages design is to provide a better fit between the
application domain and the programming notation. We started with the object-oriented facilities of C++
and extended them with features to support the needs of databases, putting to good use all the lessons
leamed in implementing today’s database systems. At the same time, we tried to maintain the spirit of
C++ (and C) by adding only those facilities that we considered essential for making O++ a database
progranming language. We feel that O++ provides a clean fusion of database concepts in an object-
oriented programming language.
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Abstract

We define a query algebra for object-oriented databases that fully supports abstract data types and
object identity while providing associative access to objects, including a join capability that respects
the discipline of data abstraction. The structure of the algebra and the abstract access to objects offer
opportunities for query optimization.

The algebraic operations take an abstract view of objects and access typed collections of objects only
through the public interface defined for the type. The algebra supports access to relationships implied by
the structure of the objects, as well as the definition and creation of new relationships between objects.
We introduce two notions of object equality to support the creation of new objects by the algebraic
operations.

1 Introduction

We are interested in efficiently accessing data in an object-oriented database. Relational database systems
offer efficient access to large amounts of data but place the first normal form restriction on the structure of
the data. This restriction supports the development of query languages and optimization strategies for that
model.

The algebra presented in the next section synthesizes relational query concepts with object-oriented
databases (see also [Sha89b]). The algebra supports an object-oriented model with abstract data types,
encapsulation, type inheritance, and object identity. Unlike other languages proposed for object-oriented
databases (e.g. [Zan83), [Ban87], [Mai87), [Ban88|, [Car88], [Osb88]) our algebra fully supports these object-
oriented concepts and still provides full associative access to the database, including a join capability that
respects the discipline of data abstraction. In addition, the algebra is strongly-typed and can be statically
type-checked.

We consider the type of every object to be an abstract data type. The implementation of objects, and
their attributes and behavior, are invisible to the query algebra, and all access to objects is through the
interface defined for the type. The types are structured as an inheritance hierarchy. The only restriction
the algebra places on type inheritance is substitutability; an object of type A can be used in any context
expecting a supertype of A. We distinguish between type and collections of objects having that type, similarly
to GemStone[Mai87] and EXTRA|[Car88], and query over the collections using the type structure as the
database scheme. The collections are treated as though they are homogeneous; the member type associated
with a collection can be a supertype of the types of the objects in the collection. The result of a query is a
new, typed database collection, with the member type of the collection determined statically using the type
structure.

Our support for object identity leads to a model and algebra in which queries can build new strongly-
typed objects, duplication in set membership is distinguished using objects’ identity, comparisons between
objects can distinguish between value equality and identifier equality, and algebraic operations can manipu-
late identities. Theoretical aspects of support for identity are addressed in the query language IQL [Abi89].

t A fuller version of this paper appears in the Proceedings of the 2d International Workshop on Database Programming
Languages [Sha89a).

{Support for this research is provided by IBM under contract No. 559716, by DEC under award No. DEC686, by ONR
under contract N0014-88-K-0406, by Apple Computer, Inc., and by US West.
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Our algebra addresses many of the same concerns as IQL, and additionally illustrates that data abstraction
can be supported along with identity.

Many systems make the distinction between value equality and identifier equality for objects by providing
operators testing identity, deep equality and, possibly, shallow equality (e.g. [Ban87], [Lec88], [Osb88],
[Car88]). Two objects are identical when they are the same object, shallow equal when they have the same
value, and deep equal when they have the same type and a recursive traversal of the objects eventually finds
identical values (see [Kho86]). Our algebra supports the semantics of these operations by assuming that the
equality operator refers to object identity and using an extended notion of deep equality (see Section 3).

Identity is also an issue when returning objects satisfying query predicates. We use object identity as a
test for set membership, as do most other systems, but we also allow, to a limited extent, the introduction of
deep-equality semantics in determining set membership. The need for deep-equality results from the ability
to create new, strongly-typed objects in response to queries.

Many object-oriented database systems (e.g. [Mai87), [Alb85], [Ban88]) only support selection of objects
already existing in the database. We recognize that many relationships requested by queries will exist in
the database objects, but also note that existing objects in the database may not necessarily reflect all
relationships requested by a query. Thus, we additionally provide operators to create new relationships. The
algebra can be used to join objects from different collections by creating tuples to store relationships between
objects in those collections. These tuples are new objects with well-defined types and unique identities. The
creation of these tuples as statically-typed objects is supported by the existence of parameterized types in
the data model. Our algebra can simulate the join of [Car88] and the unnest join of [Kor88], but not the
combine operation of [Osb88] since the latter does not necessarily maintain the integrity of abstract data
types.

A major aspect in the development of query languages is the potential for optimization. Query algebras
can support optimization through syntactic transformations (e.g., [Ban87], [Osb88]). However, the imple-
mentation of abstract data types involves the introduction of new operations, making optimization more
complicated [Zdo89]. Syntactic transformations are not sufficient for such systems, and may need to be
combined with optimization strategies for encapsulated behaviors (e.g. [Gra88]). We expect the structure
of our algebra and our consistent approach to abstract data types to offer opportunities for combining such
optimization strategies.

In the next section we discuss the Encore object-oriented data model and present our algebra for
querying under that model. The algebraic support for object identity is examined in section 3. This support
leads to special operators for the manipulation of objects and new definitions for object equality, which
are also presented in that section. The algebra forms a basis for our current research into optimization of
object-oriented queries and we introduce that research in section 4.

2 The Encore data model and query algebra

The data model for our query algebra is based on the Encore object-oriented data model [Zdo86]. The model
includes abstract data types, type inheritance, typed collections of typed objects, and objects with identity.
We query over collections of objects using the type of objects in the collection as a scheme for the collection.
The collections are considered to be homogeneous, although the objects in the collection may have a type
which is a subtype of the member type of the collection. We assume subtyping supports substitutability: if
T is a subtype of S then an instance of T can be used in any context expecting S.

A type is an abstract data type, and consists of an interface and implementation. Queries are concerned
with the type interface, although their optimization may be concerned with the type implementation. An
abstract type definition includes the Name of the type, a set of Supertypes for the type, a set of Properties
defined for instances of the type and a set of Operations which can be applied to instances of the type.

Properties reflect the state of an object while operations may perform arbitrary actions. Properties
are typed objects that may be implemented as stored values, procedures or functions. We assume the
implementation of a property returns an object of the correct type and has no side-effects. The query
algebra treats properties as stored values, addressing a property using dot-notation (e.g. s.q where s is an
object of type T and q is a property of T). If necessary, a request for a property will cause invocation of a
function implementing the property, resulting in the return of an object representing the requested property
of the object.

In addition to user-defined abstract data types, we assume a collection of atomic types (Int, String,
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etc.), a global supertype Object, and parameterized types Tuple[< (A1, T1), ..., (4n, Tn) >] and Set[T].! Type
Object defines equality properties for all objects. Property Equal (=) refers to the identical comparison for
objects. We also assume, for now, that shallow-equal (=,) and deep-equal (=4) [Kho86] are available for
object comparisons. Other comparisons may be user-defined for sub-types of Object.

The parameterized types have fixed sets of properties and operations, and they allow the creation of
new, strongly-typed objects. The Tuple type associates types (T;) for attributes (A;) and defines property
Get_attribute_value and operation Set.attribule_value for each attribute. Parameterized type Set[T] declares
T as the type, or supertype, of objects in a collection having type Set, and defines operations in and subset_of
(among others). Duplication in set membership depends on object identity; a set will not contain two objects
with the same identifier.

The query algebra provides type specific operations against collections of encapsulated objects with
identity. The algebraic operations support the notion of abstract data type, and all access to objects in a
collection is through the public interface defined for the collection member type. The operations are also
concerned with object identity; new objects with unique identities can be created and we provide operators
to manipulate the identities of objects.

We define the algebraic operations:

Select(S, p) {s|(sin S) Ap(s)}
Image(S, f) {f(s) | s in S}
Project(S, < (A1, f1), .o, (An, fa) >) =
{< Ay : fi(8),.ey Ant fn(s) >| s in S}
Ojoin(S,R,A,B,p) = {<A:38,B:r>|sin SArin RAp(s,r)}

where S and R are collections of objects?, p is a first-order Boolean predicate, the A;’s are names for
attributes whose values are objects of type T;, and the f;’s are functions returning objects of type T;. We
also define standard set operations Union, Difference and Intersection, formatting types of operations Flatten
(for a set of sets), Nest and UnNest (as in [Jae82], with object identifiers as attribute values), and operators
DupEliminate and Coalesce to manage identity of objects.

The Select operation creates a collection of database objects satisfying a selection predicate. This type
of operation, which returns existing database objects, is standard for querying. We recognize that many
relationships requested by queries will exist in the database objects, but also note that existing objects in
the database may not necessarily reflect all relationships requested by a query. In addition, the relationship
implied by the presence of objects in a particular collection may not be the relationship from which a query
wishes to select. Thus, we provide operators Image, Project, and Ojoin to handle relationships not defined
by an object type.

The Image operation describes the application of a function to each object in the queried collec-
tion. In some ways, this is a selection of objects from a different collection than the one over which the
query is defined. For example, suppose we have a collection Stacks containing stacks of books. The query
Image(Stacks, As s.top) returns a set of objects representing the books that are at the top of some stack.
This selection is not done, however, from the collections of the books themselves.

The Project operation extends Image by allowing the application of more than one function to an
object, thus supporting the maintenance of selected relationships between properties of an object. Project
can also be used to build relationships between objects in different collections. Project returns one tuple
for each object in the collection being queried, and all tuples have unique identifiers. The tuples have type
Tuple[< (A1, T1), ..., (An, Tn) >], where T; is the return type of f;. All properties and operations for type
Tuple are thus defined for the objects of the result set.

Functions for Project and Image are commonly built by composing the application of properties of
objects. For example, Image(Stacks, As s.top.title) returns a set of objects representing the titles of books
at the top of some stack in the collection. A function, however, may be any well-defined operation. For
example, consider the query

Project(Stacks, As < (S, s), (Len, s.length), (Q, Select(Queues, Aq g.length = s.length)) >)

1 Other parameterized types might be useful for forming collections of objects, but we have not yet addressed the semantics
of our algebra on such types of collections. For now, if we want to apply the algebraic operations to other types of collections,
the collection would first have to be coerced into a set.

2We assume in this definition of Ojoin that S and R are collections of non-tuple objects, and discuss joins involving collections
of tuples later. For the other operations, the type of objects in S or R is arbitrary.
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which returns, for each stack in the collection, a tuple containing the stack, its length, and a set of all queues
having the same length as the stack. The length property is defined for each stack and, since Queues is
a collection, the Select operation is defined over Queues. All properties and operations for type Tuple are
defined on the result set. In this example the only valid operations on the result tuples are get_S, get_Len,
and get_Q. However, for any tuple ¢ in the result, all stack operations can be applied to ¢.S and all set
operations to £.Q.

The Ojoin operator is an explicit join operator used to create relationships between objects from two
collections in the database. The operation creates new tuples in the database to store the generated re-
lationships. The tuples are strongly typed using the parameterized type Tuple, with each attribute typed
according to the type of the collection from which it is derived. Each tuple has a unique identity. The objects
involved in the relationships are maintained and can be accessed as the value of the appropriate attribute in
the tuple.

We assumed, in the Ojoin definition given, that S and R are both collections of objects having abstract
data types (not type Tuple). However, if S, for example, is a collection of n-tuples, Ojoin creates (n+1)-tuples
(n attributes from S and one attribute to hold an object from R)3. This definition of Ojoin preserves the
associativity of the operation, which we expect to be useful in query optimization.

For example, suppose we have set Stacks, as before, and a set Queues, containing queues of books.
Then SQ := Ojoin(Stacks, Queues, S, Q, AsAg s.Top = ¢q.Front) returns a set of stack-queue pairs in which
the top of the stack is identical to the front element of the queue. If we then join this result with a set
Lists containing lists of books (i.e. Ojoin(SQ, Lists,, L, AtAl t.S.Top = l.First)) the result is a collection of
3-tuples with attributes S, Q, and L. The only operations available on the result tuples are those operations
defined for tuples (properties get_S, get-Q, and get_L). However, for each element ¢ in the result, all stack
operations are available for ¢.5, queue operations for ¢.Q, and list operations for ¢.L.

Union, Difference and Intersection are the usual set operations with set membership based on object
identity. The result for all operations is considered to be a collection of objects of type T, where T is the
most specific common supertype (in the type lattice) of the member types of the operands. Any two sets
can be combined, since all types have a common supertype of Object. The types of the objects themselves
are not changed; the type of each object will be the member type, or a subtype of the member type, of the
result collection. However, the only operations available to subsequent queries against the result collection
will be those defined for the result member type.

The Flatten operation is used to restructure sets of sets; it takes an object of type Set[Set[T]] and returns
an object of type Set[T]. This operation is useful in conjunction with Image. Image can extract components
with type set from an object; Flatten allows consideration of the set members individually.

Nest and UnNest extend the same operators for non-first normal form relations (see [Jae82]) to sets of
objects with identity. Sets of tuples can be unnested on a single set-valued attribute, or nested to create a
set-valued attribute. The UnNest operation creates a new tuple for each object in the designated attribute.
For example, a tuple £ =< A : 01, B : s5; >, where object s, is a set containing objects oz and o3, is unnested
on the B attribute to create two new tuples: t;, =< A :0y,B: 02 > and t3 =< A : 0y, B : 03 >. Conversely,
a Nest on the B attribute of a set containing tuples ¢; and ¢; would create a tuple shallow-equal to t.

3 Object identity and equality

The result of a query using the algebra presented thus far is a new collection of objects. The collection
will be a newly identified object in the database, and thus there cannot be identical responses to a query.
The objects in a result collection may be either existing database objects or new objects created during the
operation. The creation of new objects means we may be creating multiple objects with unique identifiers
when a single object is desired. The new objects will often be shallow-equal, although nested operations
could create results that are deep-equal. For example, a Select inside a Project would create new collection
objects inside new tuple objects. The nested objects illustrate a need for a refined notion of object equality,
since deep-equality compares not only the new objects built by the query but all properties of those objects
(i.e., eventually the database objects).

We define i-equality, where i indicates how “deep” a comparison should go when examining equality.
Identical objects are 0-equal (=o) and, for ¢ > 0, two objects are i-equal (=;) if they are both collections of

30joining with collections of tuples is similar to cartesian product (with selection) followed by tuple collapse of [Abi88].
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the same cardinality and there is a one-to-one correspondence between the collections such that correspond-
ing members are =;_,, or they both have the same type (not collection) and the values of corresponding
properties are =;_;. We now use the term shallow-equal to refer to =;; deep-equal (=4) refers to i-equality
for some i.

We augment the algebra with operations DupEliminate and Coalesce to handle situations where i-equal
objects are created by a query . Operation DupEliminate(S,i) keeps only one copy of i-equal objects from
collection S. Such duplication of objects can be created by operations Image, Project and UnNest. Project
and UnNest create newly-identified tuples, by definition, and a function applied by the Image operation may
create new objects.

For example, suppose we want to group the stack objects in collection Stacks by length. One way to do
this would be to assemble, for each stack in Stacks, a collection of all stacks with the same length as follows:

Image(Stacks, A\j Select(Stacks, As s.length = j.length)) (1)

However, this result is not exactly what was desired; there may be many collections containing exactly the
same stacks, i.e. many shallow-equal collections. If there are z stacks of a particular length, there will be
z collections all containing the same z stack objects. However, if DupEliminate is applied to the result as
follows

DupEliminate(Image(Stacks, \j Select(Stacks, As s.length = j.length)), 1) (2)

the result would contain the expected collections of stacks with no shallow-equal (1-equal) duplication.
Duplication can be introduced at any level by the algebraic operations. For example, consider an
extension to example 1, where we want to store the length along with the set of stack objects having that
length:
Project(Stacks, A\j < (Len, j.length), (S, Select(Stacks, As s.length = j.length)) >) (3)

The result of this query will be a set of tuples, one for each object in Stacks. Many of those tuples will have
duplicate Len values, and those that are duplicates will have S attribute values that are shallow-equal. In
this case, tuples which would be considered to be duplicates will not be shallow-equal, but will be 2-equal.

Query operations Project, UnNest and Image can be modified with =; as a shorthand for application of .
operation DupEliminate after application of the operation. Problem 2 could be written, for example, using
Image—;, and duplicates could have been eliminated from query 3 by using Project—;. It is interesting
to note that the application of operation DupEliminate can eliminate duplication created by the algebraic
operations, as in the preceeding examples, but may also be used to eliminate duplication inherent in the
data.

Operations such as Project (as in example 3) and Nest can create tuples with components (attribute
values) that are i-equal. We define operation Coalesce(S, Ag,1) which, for collection S of tuple objects,
eliminates i-equal duplication in the A; components of the tuples. If two (or more) tuples in S, call them
t, and i3, are such that ¢;.4; =; t3.4;, then one of the objects is selected (say t;.A:) and replaces the
corresponding attribute values in the other tuples (i.e., the A, attribute of ¢; is assigned the object ¢;.A4x).

For example, when Nesting a collection on a given attribute; a new set is created for each tuple in the
result, and each new set is a distinct object. However, some of these new set objects may be shallow-equal.
Consider the four tuples:

ti =< A:00,B:07 > t2 =< A:03,B:04 >
t3 =< A:0,,B:04 > tg =< A:03,B:0; >

and the operation Nest(S, B). This operation will result in the creation of two set objects (s, and s3), two
tuple objects (5 and tg) and the result R as follows:

8 = {02,04} and s3 {02,04}

ts =< A:01,B:81> and t¢ =< A:03,B:s572>

R = {tB’ tﬁ}

The duplication in objects sy and s3 is similar to that created by the nested Select in problem 3, however
operation DupEliminate does not apply here since the A attribute values are distinct in the result tuples.
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(a) (b)
Figure 1: Graphs of collection objects S and R.

We could, however, execute Coalesce(R, B, 1} to modify R. The Coalesce operation would eliminate sz, and
modify t¢ to have value < A :o03,B: 8 >.

As with operation DupEliminate, the application of Coalesce could eliminate duplication mherent in
the data as well as duplication created by the algebraic operations. Project and Nest can create results with
duplicate components, as noted above, and any application of Coalesce at a level deeper than that created by
Project or Nest would eliminate duplication that was present in the data before application of the algebraic
operation.

We also note that i-equality is not sufficient to distinguish between objects that have, and have not,
been Coalesced. In order to detect the similarities in data, i-equality ignores the identities of the objects
in which the data is stored. We define a stronger notion of equality, called id-equality, which can detect
structural differences in objects.

Objects can be represented graphically, with nodes labelled with object identifiers or atomic values, arcs
connecting collection type objects to all objects in the collection, and arcs also connecting non-collection
type objects to the values of all properties of those objects. For example, in Figure 1, S is a collection of
tuples containing objects ¢; and t3. Each tuple in the collection has two attributes, call them A and B.
Attribute A has an abstract data type and attribute B has type collection. C; and C; are collection objects,
and d; through d4 are database objects having some abstract data type.

We define two objects to be id-equal at depth i if they are i-equal and their graphical representations
are isomorphic. I-equality is necessary, but not sufficient, to ensure id-equality. For example, in Figure 1,
objects S and R are 3-equal; Cy =; C; implies that t; =; t4, thus § =3 R. However, they are not id-equal
at any depth. In particular, in R both ¢3 and ¢4 have identical values for their B attribute (i.e. Cy) but in S
the B attributes of ¢; and ¢; are 1-equal.

Id-equality and i-equality differ in their treatment of object identity. Identities are transparent to i-
equality comparisons. This allows the comparison of objects when identity is not important, for example in
duplicate removal. Id-equality, on the other hand, retains some of the semantics of the data implied by the
identity of the objects. In particular, id-equality recognizes aliasing of properties of objects. In Figure 1,
for example, t3.B and £4.B refer to the same object (C;), thus modification to ¢3 in R can affect t4. S and
R are not id-equivalent because the tuples in S can behave differently than the tuples in R. In particular,
modification to t3.B affects {4 in R while, in S, £ is independent of modifications to ¢;. The support for both
definitions for equality in the model and algebra allows the user to determine the extent to which object
identity is needed in an application.

4 Implications for Query Optimization

We expect the structure of the operations and the redundancies in the operator set presented here to offer
many opportunities for optimization. Query optimization may also depend on the implementations of the
types queried, but we do not consider that aspect yet.

The similarities between our algebra and relational algebra imply that relational optimization results
may prove useful in object-oriented query optimization. For example, consider the transformation rules in
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Select(Select(S,p1),p2) Select(Select(S,p3),p1) (1)

Select(Select(S,p1),p3) = Select(S,p1 A p2) (3)

Union(Select(S,p1), Select(S,p2)) = Select(S,p1 Vp3) 3)
Union(Image(Sy, f), Image(Sa, f)) = Image(Union(S,,S3,)f)) (4)
Select(Ojoin(A,B,p), At p,(t.4)) = Ojoin(Select(A,Na p,.(a)), B,?p) (5)
Select(Ojoin(A, B, dadb p(a, b)), At p,(t.A,t.B)) = Ojoin(A,B, Aarb p(a,d)Ap,(a,d)) (6)
Ojoin(A, B, Aa)bp(a) Ap'(a,b)) = Ojoin(Select(A,ra p(a)), B, Aadb p'(a, b)) (7

Select(Sy, As s.ain S3) = Image(Sz,Aainverse(a)) (8)

Select(Sy,As s.a1.a2 in S3) =  Select(Sy, As a.a; in (9)

Select(52, As 5.a3 in S3))
Table 1: Some Algebraic Identities

Table 1. Selection predicates can be applied in any order (identity 1) and can be combined (identities 2
and 3), as in relational algebra. Identity 5 is equivalent to the relational optimization strategy of pushing
Selection past Join. Similarly, when a Select operation is composed with an Ojoin, it may be possible to
instead compose the two predicates to produce a single operation (identity 6). These two ideas are combined
in identity 7; if an Ojoin predicate contains a conjunct involving only one of the operands, that conjunct can
be extracted from the Ojoin predicate to form a Select predicate on the appropriate operand.

We can also take advantage of knowledge about the database types. For example, consider the following
query that retrieves the departments whose managers are ready to retire:

Select(Departments, Ad d.Manager in RetireThisY ear)

This query relies on the fact that type Department has a Manager property and RetireThisYear is a collection
of managers. If we also know that each Manager also has a Department property (i.e. Dept of Manager is
an inverse of Manager of Dept) rule 8 could be applied to produce the following equivalent query:

Image(RetireThisY ear, Am m.Dept)

The Image will extract the Dept, i.e. inverse, property for each manager in the RetireThisYear set. This
optimization technique relies on the fact that the inverse property exists for the property that was originally
used, i.e. two properties a; and a; are defined to obey the constraint (z.a; = y) < (y.az = z). Although
this is not true in the general case, if the collections in the query are relations, the computation of the
property values and their inverses is all done with a single application of a join operation, which is inherently
bidirectional.

The redundancies present in the operator set may also offer opportunities for optimization. For example,
Ojoin is equivalent to the composition of Select, UnNest and Project as follows:

Ojoin(As, Bs, A, B, Aa)b p(a, b)) =
Select(UnNest(Project(As, Aa < (4,a),(B, Bs) >), B), AaAb p(a, b))

where, if As and Bs are collections of objects of type T4 and Tpg, respectively, the result is a collection
of tuples with attributes A and B having types T4 and Tp, respectively. Other redundant operations
include Flatten (use Project, UnNest and Image), UnNest(use Project, Image and Flatten), Intersection(use
Difference), Nest (use Project, Image and Select), and Coalesce (use Image, Ojoin and Project).

5 Summary

The algebra presented here respects the encapsulation and strong typing rules of our object-oriented database
system, and at the same time provides the ability to construct dynamic relationships. The query algebra
supports abstract data types by accessing objects only through the interface defined by their type. Results
of queries are collections of existing objects or collections of tuples, built by the query. The creation of
collections and tuples with statically determined. types is supported by the existence of parameterized types
in the model.
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The algebra also supports object identity by managing the creation of new objects and by consider-
ing object identity when manipulating these objects. Support for object identity leads to a need for new
definitions for equality of objects. I-equality compares objects based on their type and the values of their
properties. Id-equality extends this definition to also consider, for i-equal objects, the structures implied by
the identifiers associated with their property values.

Our current research involves the optimization of queries using the algebra presented in this paper.
The structure of the operations and the operator set offer many opportunities for optimizations that are
independent of the implementation of the types queried. We expect to combine those with type-dependent
optimizations to provide efficient query access to data in our object-oriented database. We are also inves-
tigating techniques for estimating the cost of query expressions. The encapsulation provided by the object
model complicates this problem.

References

[Abi88] Serge Abiteboul and Catriel Beeri. On the Power of Languages for the Manipulation of Complex

Objects. Technical Report No. 846, INRIA, 1988.
[Abi89] Serge Abiteboul and Paris C. Kanellakis. Object Identity as a Query Language Primitive. In

SIGMOD Proceedings. ACM, 1989.
[Alb85] Antonio Albano, Luca Cardelli, and Renzo Orsini. Galileo: A Strongly-Typed, Interactive Con-

ceptual Language. Commaunications of the ACM, 10(2):230-260, June 1985.

[Ban87] Francois Bancilhon et al. FAD, a Powerful and Simple Database Language. In Proceedings of the
13th VLDB Conference, pages 97-105, 1987.

[Ban88] Jay Banerjee, Won Kim, and Kyung-Chang Kim. Queries in Object-Oriented Databases. In

Proceedings 4th Intl. Conf. on Data Engineering, pages 31-38. IEEE, Feb 1988.
[Car88] Michael J. Carey, David J. DeWitt, and Scott L. Vandenberg. A Data Model and Query Language

for EXODUS. In SIGMOD Proceedings, pages 413-423. ACM, June 1988.

[Gra88] Goetz Graefe and David Maier. Query Optimization in Object-Oriented Database Systems: A
Prospectus. In Advances in Object-Oriented Database Systems, pages 358-363. 2nd International
Workshop on Object-Oriented Database Systems, September 1988.

[Jae82] G. Jaeschke and H. J. Schek. Remarks on the Algebra of Non First Normal Form Relations. In
Proceedings of the Symposium on Principles of Database Systems, pages 124-138. ACM, March

1982.
[Kho86] Setrag N. Khoshafian and George P. Copeland. Object Identity. In Proceedings of the Conference

on Object-Oriented Programming Systems, Languages and Applications, pages 406—416. ACM,

September 1986.
[Kor88] Henry F. Korth. Optimization of Object-Retrieval Queries. In Advances in Object-Oriented

Database Systems, pages 352-357. 2nd International Workshop on Object-Oriented Database Sys-

tems, September 1988.
[Lec88] Christophe Lécluse, Philippe Richard, and Fernando Velez. O3, an Object-Oriented Data Model.

In SIGMOD Proceedings, pages 424-433. ACM, June 1988.
[Mai87] David Maier and Jacob Stein. Development and Implementation of an Object-Oriented DBMS.

In B. Shriver and P. Wegner, editors, Research Directions in Object-Oriented Programming, pages

355-392. MIT Press, Cambridge, MA, 1987.
[Osb88] S. L. Osborn. Identity, Equality and Query Optimization. In Advances in Objeci-Oriented

Database Systems, pages 346-351. 2nd International Workshop on Object-Oriented Database Sys-

tems, September 1988.
[Sha89a] Gail M. Shaw and Stanley B. Zdonik. An Object-Oriented Query Algebra. In 2ad International

Workshop on Database Programming Languages, June 1989.
[Sha89b) Gail M. Shaw and Stanley B. Zdonik. A Query Algebra for Object-Oriented Databases. Technical

Report CS-89-19, Brown University, 1989.
[Zan83) Carlo Zaniolo. The Database Language GEM. In SIGMOD Proceedings, pages 207-218. ACM,

May 1983.
[Zdo86] Stanley B. Zdonik and Peter Wegner. Language and Methodology for Object-Oriented Database

Environments. In Proceedings of the Hawaii International Conference on System Sciences, January

1986.
[Zdo89] Stanley B. Zdonik. Query Optimization in Object-Oriented Database Systems. In Proceedings of

the Hawaii International Conference on System Science, January 1989.

36



HiLog as a Platform for Database Languages*

(or why predicate calculus is not enough)
- Extended Abstract -

Weidong Chen  Michael Kifer David S. Warren

Department of Computer Science
State University of New York at Stony Brook
Stony Brook, NY 11794 -

Abstract

We argue that predicate calculus is not sufficient as a basis for the next generation of database
languages. To fill in the gap, we propose a novel logic, called HiLog, which can be viewed as an extension
of predicate calculus. The distinctive feature of HiLog is its higher-order syntax which makes it possible
to manipulate the database with greater ease. However, the semantics of this logic is essentially first-
order, which makes it possible to define a resolution-based proof procedure for HiLog. We then go on
and compare HiLog with two other well-known database languages, COL and LDL, arguing that HiLog
eliminates some of the problems in these languages caused by their second-order semantics. Finally, we
discuss the utility of HiLog as a platform for implementing object-oriented database languages.

1 Preface

Manipulating predicates, functions, and even atomic formulas is a commonplace in logic programming.
For example, Prolog combines predicate calculus, higher-order and meta-level programming in one working
system, allowing programmers routine use of generic predicate definitions (e.g. transitive closure, sorting) in
which predicates can be passed as parameters and returned as values [8]. Another well-known non-first-order
feature is the “call” meta-predicate of Prolog. Usefulness of higher-order constructs in the database context
has been pointed out in many works, including {17,19,29].

Although Prolog is based on first-order predicate calculus, the latter does not have the wherewithal to
support any of the aforesaid features, and consequently they have an ad hoc status in logic programming.
In this paper, we investigate the fundamental principles underlying higher-order logic programming and, in
particular, shed new light on why and how these Prolog features appear to work in practice. We propose
a novel logic, called HiLog, which provides a clean declarative semantics to much of this higher-order logic
programming.

From the outset, even the terminology of “higher-orderness” seems ill-defined. A number of works have
proposed various higher-order constructs in the logic framework (1,5,10,8,14,17,20,21,30,33] but with such
a diversity of syntax and semantics, it is not always clear what kind of higher-orderness is being claimed.
In our opinion, there are at least two different facets to the issue: a higher-order syntax and a higher-order
semantics. Logicians seem to have understood this separation for quite some time and, for example, in [12]
a first-order semantics is described for the syntactically second-order predicate calculus.

Informally, by higher-order syniaz, logicians mean a language in which variables are allowed to appear
in places where normally predicate and/or function symbols do. In contrast, higher-order semantics is

*This is an extended abstract of the paper with the same title that appeared in the Proceedings of the 2-nd Intl. Workshop
on Database Programming Languages, R. Hull, R. Morison, D. Stemple (eds.), Morgan Kaufmann Publ., Sept. 1989
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manifested by semantic structures in which variables may range over domains of relations and functions
constructed out of the domains of individuals. In first-order semantic structures, variables can only range over
domains of individuals. It should be noted that the classification based upon semantics has no implication
whatsoever regarding the “intrinsic higher-orderness”. It is quite possible to replace higher-order semantics
for some languages by an entailment-equivalent first-order semantics. On the other hand, it is well known that
some semantics (e.g. the standard semantics of second order predicate calculus) are inherently higher-order
and no equivalent first order substitute exists for the corresponding languages.

According to the above classification, we can group higher-order logics into four categories, and some of
the logic systems are listed in the following table.

Syntax

Semantics First-Order Higher-Order

First-Order | first-order predicate calculus [12] | A-Prolog[30,33]
Definite clause programs[4,35] F-Logic[17]
O-Logic[18,25] HiLog
C-Logic[9]

Higher-Order | stratified logic programs[3,24,34] | type theory[10,14]

LPS[20,21) (both standard and Henkin’s semantics)
LDL[5] COL[1]
LDM[22] module theory[8]

Notice that stratified logic programming emerges from this classification as a first-order language with a
higher-order semantics. This is because the semantics of stratified logic programs is given with the aid of a
second-order circumscriptive axiom [24].

In this paper, we present a simple logical framework in which predicates, functions, and atomic formulas
can be manipulated as first-class objects. It is quite clear that in order to support such manipulation naturally
enough, the syntax has to be higher-order. As explained earlier, switching over to such a syntax leaves open
two possibilities for the semantics. Under higher-order semantics, predicates and functions are identified by
their extensions, i.e., say, a pair of predicates represents the same thing if and only if their extensions coincide
in every appropriate semantic structure. Unfortunately, extensions are notoriously difficult to handle in an
efficient manner. '

In contrast, under first-order semantics, predicates and functions have associated entities, called intensions,
which can be manipulated directly. Furthermore, depending on the context, intensions may assume different
roles acting as relations, functions, or even propositions. For instance, in A-Prolog [30,33], a predicate symbol
is viewed as an expression when it occurs as an argument and is treated as a relation in contexts when it
appears with arguments. In F-logic [17], so called id-terms are handled as individuals when they occur as
object identities, they are viewed as functions when occurring as object labels, and as sets when representing
classes of objects.

As a rule of thumb, first-order semantics for higher-order languages are generally believed to be more
tractable than their higher-order counterparts, and this observation motivates our choice for HiLog. The
basic idea is to explicitly distinguish between intensional and extensional aspects in the semantics. Intuitively,
intensions identify different entities allowing one to “get a handle” on them, while extensions correspond to
various roles these entities play in the real world. It has also been argued by Maida and Shapiro [27,26] that
knowledge representation is part of the conceptual structure of cognitive agents, and therefore should not
(and even cannot) contain extensions. The reason is that cognitive agents do not have direct access to the
world, but only to one of its representations. Our approach is in the same spirit and, consequently, extensions
of predicates and functions are not available for direct manipulation. On the other hand, intensions of higher-
order entities such as predicates and even atomic formulas can be freely manipulated. Their extensions come
into the picture only when the respective expressions need to be evaluated. Thus, HiLog combines advantages
of higher-order syntax with the simplicity of first-order semantics, benefiting from both.

This paper and [6] are companions, and have sizable overlap covering the semantics and the proof theory
of HiLog. The present paper, however, gives a more in-depth discussion of the database aspects of HiLog,
while [6] provides a more detailed coverage of logical and logic programming issues.
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The rest of the paper is organized as follows. After a brief motivational discussion, we present the formal
syntax and semantics of HiLog. Then we show the utility of Hilog as a database language and, in particular,
discuss its relationship to COL [1], LDL [5], and the recently proposed object-oriented logics [9,18,17). We
then describe a resolution-based proof theory for HilLog, and then conclude.

2 Syntax and Semantics of HiLog

2.1 Motivation

Prolog syntax is quite flexible, allowing symbols to assume different roles depending upon the context: a
symbol may have different arities, it can be viewed as a constant, a function, a predicate, etc. For instance,
in the clause

(X) = p(X, (a)). a(p(X. (a)), f(p. b).

symbol f occurs as both a unary and a binary function, and p appears as a binary predicate as well as
a binary function symbol. Furthermore, the same syntactic object, p(X, f(a)), is evaluated as an atomic
formula in the first literal of the rule body and as an individual term in the second.

While, in the above example, different occurrences of the same symbol can be semantically disambiguated
simply by renaming the different occurrences of f and p, this cannot be done in the following rule:

p(X.,Y) - q(Y), X.

Here individual variable X occurs as a first-order term and as an atomic formula, and renaming its different
occurrences will, intuitively, yield a semantically different clause.

The syntax of HiLog resembles that of Prolog in that HiLog logical symbols are arityless and the dis-
tinction between predicate, function, and constant symbols is eliminated. Particularly, a HiLog term can be
constructed from any logical symbol followed by any finite number of arguments. Different occurrences of a
logical symbol are viewed as semantically the same object characterized by the same intension. Associated
with such an intension there are several different extensions which capture the different roles the symbol
may assume in different contexts.

HiLog allows complex terms (not just symbols) to be viewed as functions and predicates. For example,
a generic transitive closure predicate can be defined as follows:

closure(R)(X, Y) - R(X, Y).
closure(R)(X, Y) - R(X, Z), closure(R)(Z, Y).

where closure is (syntactically) a second-order function which, given any relation R, returns its transitive
closure closure(R). Generic definitions can be used in various ways, e.g.,

parent(john, bill).
parent(bill, bob).
manager(john, mary).
manager(mary, kathy).
schema(parent).
schema(manager).

john_obeys(X) :- schema(Y), closure(Y)(john, X).

will return { bill, mary, kathy, bob } in response to the query :- john_obeys(X), which is the set of john’s
ancestors and bosses.

In databases, schema browsing is commonplace [29]. In HiLog, browsing can be performed through the
same query language as the one used for data retrieval. For instance,
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relations(Y)(X) :- X(Y,Z).
relations(Z)(X) - X(Y,Z).
- relations(john)(X).

will return the set of all binary relations mentioning the token john. HiLog shares this browsing capability
with another recently proposed language, called F-logic [17].

As seen from the earlier examples, HiLog terms are also atomic formulas. In that capacity their semantics
is indirectly captured through the truth meaning of terms. For instance, instead of saying that a pair < a,b >
is in the relation for a predicate p, we say that the term p(a,b) denotes a true proposition. Formal details
are provided in the next section.

2.2 Syntax and Semantics

In addition to parentheses, connectives, and quantifiers, the alphabet of a language L of HiLog contains a
countably infinite set V of variables and a countable set S of logical symbols. We assume that V and 'S are
disjoint.

The set 7 of HiLog terms of L is a minimal set of strings over the alphabet satisfying the following
conditions:

e YUSCT,;

o Ift,t,...,1, arein 7, then t(1,...,t,) € T, where n > 1.

Notice that according to this definition, terms can be applied to any number of other terms and logical
symbols are arityless. A term is also an atomic formula. More complex formulas are built from atomic ones
in the usual way by means of connectives V, A, = and quantifiers 3, V.

Because of space limitations in this abstract, we do not provide a full account of the semantics of HiLog.
Details can be found in the full version of this paper and in [6]. Just to give a flavour of this semantics,
we note that Herbrand interpretations can be defined as subseis of 7, pretty much in the style of predicate
calculus. Then the notion of satisfaction of formulas by interpretations is defined in a standard way.

3 Examples

As explained earlier, a term can be viewed as an individual, a function, or a predicate in different contexts.
When functions or predicates are treated as objects, they are manipulated as terms through their intensions;
while being applied to arguments they are evaluated as functions or relations through their extensions. By
distinguishing between intensional and extensional aspects of functions and predicates, HiLog preserves the
advantages of higher-order logic and eliminates the difficulties with extensions introduced by a higher-order
semantics.

Since variables may be instantiated to HiLog terms which in turn have propositional meaning, there is no
need for the infamous “call” predicate built into Prolog. For the squeamish, the latter is naturally defined
in Hilog as

call(X) - X.

which has the intended meaning.

Another example is the maplist of Lisp which can be defined as either a higher-order predicate

maplist(F, [J. [)-
maplist(F, [XIR], [Y|Z]) - F(X, Y), maplist(F, R, Z).

or as a generic predicate
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maplist(F)([]. [])-
maplist(F)({X|R], [Y|Z]) - F(X, Y), maplist(F)(R, Z).

The latter is possible since HiLog allows complex terms such as maplist(F) to appear as predicates. This kind
of complex predicate has also been used in COL [1] for modeling complex objects containing sets, and in [8]
for a theory of modules in logic programming. In fact, HiLog provides an alternative, first-order, semantics
to the theory of modules of [8]. It yields the same result in most situations, but differs from [8] in certain
marginal cases where the inherent difference between the intensional treatment of predicates in HiLog and
their extensional treatment in [8] becomes essential.

The example in Section 2.1 shows the usefulness of generic view definitions, such as closure, in databases.
Generic transitive closure can also be defined in Prolog:

closure(R, X, Y) - C =.. [R, X, Y], call(C).
closure(R, X, Y) - C =.. [R, X, Z], call(C), closure(R, Z, Y).

However, this is obviously inelegant compared to HiLog (see Section 2.1), since this involves both constructing
a term out of a list and reflecting this term into an atomic formula using “call”. The point of this example is
that the lack of theoretical foundations for higher-order constructs in Prolog resulted in an obscure syntax,
which partially explains why Prolog programs involving such constructs are notoriously hard to understand.

In natural language processing, there are cases in which generic grammatical rules become necessary.
Optionality of a nonterminal symbol and the occurrence of an arbitrary symbol zero, one, or more times are
some of the examples [2]. Such rules can be specified as follows (adapted from [2]):

option(X} — X.
option(X) — {J.

seq(X) — X, seq(X).
seq(X) — [}
nonempty seq(X) — X, seq(X).

This can be naturally translated into HiLog using the conventional method of translating DCG grammars
into Prolog rules. For instance, the last production is translated into

nonempty_seq(X)(Start, End) :- X(Start, S1), seq(X)(S1, End).

Unfortunately, the latter is not a Prolog rule, since complex terms are not allowed as predicates. Because
of this limitation, special mechanisms for translating such grammars into Prolog are needed, and papers have
been written on that subject (e.g. [2]). In contrast, as we have just seen, translation of gencric grammars
into HiLog is immediate, and does not require special machinery.

As another example, consider relational expressions composed from, say, binary relations connected by
the relational operators minus, union, etc. Suppose that the parser has already produced a parse tree (parsing
is easy using Horn clauses) of the expression in the form of a term, say, minus(union(p, q), inter(q, 7)), or
similar. As the next step, we would like to write an evaluator for such expressions, which in HiLog looks as
follows:

minus(P,Q)(X,Y) - P(X,Y), ~Q(X,Y).
union(P,Q)(X,Y) :- P(X,Y). :
union(P,Q)(X,Y) - Q(X,Y).

etc.
For comparison, we present an analdgue of the above program in Prolog. The simplest approach to this

problem seems to be to define a translation predicate, tr, which converts parse trees into Prolog goals, and
then use call. The rules for tr are as follows:
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tr{ minus(P.Q), X, Y
tr( union(P.Q), X, Y,

etc.

,(G1, not (G2)) ) = tr(P. X, Y, G1), tr(Q. X, Y, G2).
(G1;G2)) = tr(P, X, Y, G1), tr(Q, X, Y, G2).

tr( p. X, Y, p(X,Y) ).
tr( q. X, Y, q(X,Y) ).

etc.

The first observation about this Prolog program is that it is clumsy compared to its HiLog counterpart
(notice that the arguments X, Y in tr are essential for the program to run correctly). Second, in Prolog, we
have to know the alphabet of the language since we have to list all the facts such as tr( p, X, Y, p(X)Y) )
(for each predicate symbol) in advance. This is particularly inconvenient in the database environment when
the user may create or delete new relations, since the above program must be updated each time.

The ease of writing the above program in HiLog stems from the ability to represent intermediate results of
query evaluation in a natural way. For instance, minus(p,q) can be viewed as the name of an intermediate
relation for the result of subtracting Q from P. However, it should be clear that in order to take full
advantage of HiLog, arities of all relations must be known at compile time, since we must know how many
variables should appear in various places in rules. Therefore, rules for the relational operators which do not
change the arities of relations (such as the ones above) look particularly attractive in HiLog. On the other
hand, operators such as join or Cartesian product require a heavier machinery, such as functor and arg
(which can be formalized in HiLog, by the way [6]). Still, this program looks much more elegant in HiLog
than in Prolog.

4 HiLog as a Database Programming Language

In this section, we show that HiLog provides an alternative (first-order) semantics to some of the well-known
database languages with higher-order semantics, thereby eliminating some of their problems. Specifically,
we focus on COL [1] and LDL [5]. We argue that the first-order semantics for COL and LDL that stems
from HiLog is computationally more attractive than the original semantics for these languages described in
[1,5]. After that we discuss various applications of HiLog to object-oriented databases. Details are omitted
in this abstract.

5 Proof Theory of HiLog

In this section, we present a resolution-based proof theory for HiLog. The following issues are examined:
Skolem and Herbrand theorem, unification, and resolution. The discussion follows the development of
resolution-based proof theory for predicate calculus {7]. Details can be found in the full paper.

6 Conclusion

We presented a logic, called Hilog, which combines in a clean declarative fashion the advantages of a
higher-order language with the simplicity of first-order semantics. We have shown that HiLog can naturally
support higher-order database queries, and that database query evaluators can be written in HiLog much
more elegantly than in Prolog. We have also shown that HiLog provides a natural alternative semantics to
such well-known database languages as COL and LDL, and can also be used as a platform for implementing
some of the recently proposed object-oriented languages [9,18,17]. This, together with the extended resolution
principle, makes HiLog a more natural platform for logic programming than the usual predicate calculus.

Acknowledgements: We are grateful to Thom Fruhwirth, Sanjay Manchanda and James Wu for their
comments on the contents of this paper. Thanks also to the anonymous referee who suggested to investigate
the relationship between Hilog and other database languages, such as COL and LDL.
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Abstract

Recently, the author and his colleagues have
been engaged in designing a logic program-
ming language called L)L and providing
declarative semantics for it. In the course
of this work the idea of imposing a prior-
ity on non-monotonic operations and de-
riving a partitioning of the program uni-
verse has found surprising utility and has
led to simple solutions to problems in as-
cribing declarative semantics to L0 L pro-
grams. From this collective experience has
emerged an understanding that this prior-
ity notion plays a role akin to assignment in
logic query languages. This paper presents
three instances of specific design and seman-
tical issues, showing in each case how the
priority notion leads to natural constructs in
logic query languages, and affords straight-
forward solutions to problems in assigning
declarative semantics to programs. How-
ever, stratification is not without its own
problems. We critique stratification by ex-
hibiting what may be termed as stratifica-
tion anomalies.

The complete version of this paper ap-
pears in Database Programming Languages,
Morgan-Kaufmann Publishers, 1989, and in
Proc. of Workshop on Database Program-
ming Languages, Salishan, Oregon, 1989.

1 Motivation

Recently, there has been a stream of results from
the areas of logic programming, data and knowledge
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base systems, and non-monotonic reasoning in Al
systems that are based on the idea of partitioning
the universe of terms in such a manner as to strat-
ify non-monotonic operations. (The use of stratifi-
cation in constructing apparently consistent set the-
ories, such as the von-Neumann-Bernays-Gadel, is
well-known.) For example, this notion has been used
to provide a sound, complete and efficient imple-
mentation of negation in data and knowledge base
systems [CH85, Naq86, ABW88, VG86)], collecting
terms into sets in logic programs [BN*89], semantics
of updates in deductive database languages [NK88],
and higher-order variables in logic programming lan-
guages [KN88]. Some forms of McCarthy’s circum-
scription schema have been shown to be equivalent to
what is called stratified negation in this paper [Lif88].
Two logic programming languages for knowledge in-
tensive applications under development, namely LD £
[TZ86, NT89] and NAIL! [MUVG86], make exten-
sive use of the stratification principle to allow nat-
ural constructs in language design and in provid-
ing declarative semantics for programs. (Not all the
work in these areas uses stratification. For example,
Manchanda [Man86, Man89, AV87| proposes simi-
lar update semantics, higher-order logic languages
have been proposed by [M89, War89, Kif89, Nad87|,
and sets in logic languages have been studied by
[AG87, Kup87, Kup8s|.)

From this collective experience and research re-
sults is emerging an understanding of stratification as
a design principle for logical query languages. In this
paper we provide an abstract view of the stratifica-
tion principle and apply it to three technical problems
that the author and his colleagues faced in designing
LD L constructs and providing declarative semantics
for LD L programs.

It is also shown that stratification is not with-



out its own limitations. In some cases, non-stratified
programs exist for which no equivalent stratified pro-
grams exist, while in other cases, equivalent programs
can be found but by adding exponentially many addi-
tional predicate symbols. The question remains open
whether there exists a more universal design principle
for logical query languages.

The contribution of the paper lies in providing
a unifying view of an emerging body of knowledge.
At the center of this new knowledge is the prime
importance of the concept of stratification as a lan-
guage design principle for Data and Knowledge Based
programming systems. This principle is not without
its problems. We critique stratification by exhibiting
what may be termed as stratification anomalies.

2 Simple LDL

LD L is a Horn clause language constructed from log-
ical symbols V,+— and conjunction represented by
commas. The formulae (called rules) of the language
have the form

A"—Bl,...,Bn

where A, By,..., B, are positive literals and all vari-
ables in the rule are universally quantified. The an-
tecedent is usually referred to as the body and the
consequent as the head of the rule. A rule with an
empty body is called a fact and a rule with an empty
head is called a query. A set of rules with head pred-
icate symbol p are said to be a definition of the pred-
icate (or literal) p.

A program is a finite collection of rules. The
meaning of a program is the minimal model of the
set of formulae comprising the program. Since a pro-
gram is a Horn set it is immediate from Horn’s the-
orem that a program has a unique minimal model.
Thus simple £ D £ programs (of course this class is the
same as pure Horn clause programs) have a unique
declarative meaning.

Given a rule
A+~ By,...,B,

and a database D8, i.e., a collection of ground facts,
we define the application of the rule to D8 as the set

{Ao | (V1 £t < n) B;o € DB}

where o is a substitution of ground terms for vari-
ables. The set obtained by the w-closure of rule ap-
plication of all the rules R of P is called the least
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fixpoint of the program P and is denoted by R(DB).
It is a theorem of van Emden and Kowalski [vEK76]
that the least fixpoint of P is the minimal model of
P,

It was recognized early that the language defined
above will need to be embellished with additional con-
structs in order to render it applicable and usablein a
wide setting. In particular, the need for introducing
set terms as terms of the language, negated predicates
in the body of a rule, imperative control constructs
and higher-order procedures, was recognized. In each
of these cases semantical issues arose which were re-
solved by using the idea of imposing a priority on the
underlying operator. This is the subject of the next
three sections.

3 Set terms

Our first extension of LD L involves introducing set
terms into the universe of LD L programs. This ex-
tension, called grouped sets, allows sets to be con-
structed in the head of a rule and was first explored
in [BN*89]. In standard mathematical notation we
would denote a grouped set as {X | p(X)} where
p(X) is some property of the elements X. The syn-
tax for a grouped set term is (t) in which ¢ is a non-
ground first-order term. It is perhaps best to start
with a particular example of a rule with a grouped
set term. Consider the rule

p(Z,(X)) — b(2, X).

Rules with () in their heads are called grouping rules.
A non-grouping rule is a rule without () in its head.
For a given extension of 4(Z, X) the above rule has
the following meaning: Each distinct value of Z is
in the first column and the set of X-values satisfying
b(Z, X) for that Z-value are grouped into a set term
in the second column. Thus, the extension of p is as
follows:

21 {111)2121'-')11'!1}
22 {z21,%22,...,%2n,}
2K {zkh sz:-"szkng}

where {b(zi,z;;) | 0 < 1 < k;0 < 5 < n;} is the
extension of the relation (i.e., predicate b).
Generally, consider a rule of the form
p(t1,. .. tn, (Y)) — body(X,Y)

where Z are all the variables within t,,...,t, and X
are the variables appearing in the body except for



Y; Z may, however, include Y. Let V be the set
of all the variables in the rule. The meaning of the
rule is given as follows. Construct a relation, R, by
evaluating the body. Next partition R horisontally
for each distinct combination of values in Z. Then
group all the Y-values in each partition into a set.
The derived relation p has a tuple for each distinct
partition of the relation R; the first column of p has
a distinct combination of values of ¢;,...,¢, and the
second column has the corresponding grouped set.

An unrestricted use of grouping may yield pro-
grams that do not have any meaning in our semantics.
Consider, for example, the following program:

P((X)) — p(X).
P(a)-

Proposition[BN*89]: The above program does not
have a model in the given £LD L universe. g

What this means is that we have to rule out such
programs. The device we use towards this purpose is
the priority principle stated as

In grouping rules we require that all the re-
lations in the body of a grouping rule be
computed before the relation in the head of
the rule is computed.

In LD L this is called the stratification condition for
reasons that will become obvious momentarily.

Let us define a partial order on the predicates of
a program as follows.

p > q if there exists a rule of the form
] (O R ) I | () TN
p 2> q for non-grouping rules of the form

p(--) —-.a(.. ).

Program P is admissible if there is no sequence of
predicate symbols in the rules of P of the form

p101p2 .. .Ok—1PK0xp1

where Vi(1 <t < k)6; € {<,<} such that 3j(1 < 5 <
,C)gj is <.

A partitioning {L;}7, of the predicate symbols
of a program P is called a layering if for all p,q € P

a7

1.fp>qp€Li,qe L; thent > 3, and
2. fp>q,p€L;,qg€ L thent > 3.

Observe that there may be more than one layering
for a given program.

Theorem [BN*89]: A program P is admissible if
and only if it is layered. g

We now define a notion of standard model, Mp
of an admissible program P with layering £4,..., L,
on a database DB. Note that a layering of a program
produces a partitioning of the rules of the program.
Let L£;(DB) denote the application of the rules in the
program partition induced by £; on the database D 8.

My = L£,(D8B)
Mz = L2(My)
Mn = Ln(Mn—l)

Using this notion of a standard model it was
possible for Beeri, Naqvi, Shmueli and Tsur [BN*89]
to prove that admissible programs have a standard
model, that the above construction yields a standard
model and that a standard model is a minimal model
of the program. They also advance reasons to con-
sider the standard model as the canonical meaning of
the program.

Shmueli and Naqvi [SN87] consider the power of
the grouping operator under the stratification condi-
tion. Consider the program P defined by

P(3,{1})-

P(G, () —
p(V, G), member(Z,G), member(Y, {£(Z),g(2)}).

Note that this program is non-stratified with re-
spect to the grouping operator. The minimal model
of this program is shown in [SN87].

Theorem[SN87]: There does not exist a stratified
program which has the model M of P. g

Shmueli and Naqvi further show that in this par-
ticular case we may, however, add additional predi-
cate symbols and obtain a program, P’, whose mini-
mal model M’, when restricted to the predicate sym-
bols of P, is equivalent to M {e.g., if we add the



predicate symbol g to P, we will delete all facts with
the predicate symbol ¢ from M’). They leave open
the question whether, in general, by adding predi-
cate symbols we can always find a stratified program
having the same unique minimal model as a given
non-stratified program.

4 Negation

Horn clause programs with negation are strictly more
powerful than programs without negation [Imma86,
Var82]. We may therefore consider allowing the body
of a rule to contain negated literals and ask what
declarative semantics ensue from such an extension.
Immediately we have a problem in that the unique-
ness property of the minimal model is lost, e.g., the
program

a+— b

has two minimal models {a} and {6} and their inter-
section is not a model. If we are to adhere strictly to
the maxim that the meaning of a program is given by
a unique model then we must fix upon one of these
two models and discard the other. Once again we
may take lesson from the previous section and define a
notion of a standard model. People have commented

“that the model {a} is more “natural” than the model
{¢}. The argument is based upon the observation
that since the programmer chose to represent the dis-
junction aVb as a +— —b and not as b +— —a, this choice
of representation is a reflection of the programmers
intended model. The question is how we can for-
malize this notion of the user’s intended model. This
affords us another use of the stratification rule which,
in this context, is formulated as follows: The defini-
tion of a literal must appear prior to its negation. Let
us agree to refer to such uses of negation as stratified
negation.

We can make the idea of stratified negation more
precise by defining relations >,> on the predicate
symbols of a program P as follows.

p 2 q if there exists a rule of the form

P—--1qy---
p > g if there is a rule of the form

Pe—...,7q,...
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Program P is admissible if there is no sequence of
predicate symbols in the rules of P of the form

p101p2...0k_1pibip:

where Vi(1 < ¢ < k)§; € {>,>} and some §; is >,
(1<j<k).

As in section 3 we can show that the admissibil-
ity condition on a program P imposes a partitioning
of the predicate symbols of P.

We are interested in declaratively characterizing
the models for a given program with negation. As-
sume that we have an admissible program P with
layers Lo, Ly,...,L,. Without loss of generality, we
may assume that Lo is free of negation, i.e., has no
negated predicates in any rules. It is possible to make
this assumption because, trivially, we may start with
the empty layer for Ly for any given program. As-
sume that P has two layers Lo, and L;. Thus, Lo
must have a unique least model, My. For every rule
in L; of the form

A*—Bl,...,Bn

where the body may contain negated predicates,
make A true over every element of the universe of
the program. We can do this because A occurs only
positively in L,. Let A denote this set, i.e., set of
positive atoms A(...) constructed from all the terms
of the universe of the program. Define

Mi=MoUA
Clearly, M, is a model of Ly U L;.

We shall now define certain submodels of M;.
These will be called standard models.

Mi11 = Mo UN; where N; C 4
Miz2 = Mo U N; where N> C 4

Thus M11, M2, etc., differ from M; in the extension
of the predicate A, i.e., we consider subsets of A such
that M3, Mjz, etc., are models of Lo U L;.

Lemma [NT89]: Let M;; and M2 be two standard
models for a program. Then M;; N M;2 is a standard
model for that program. g

Theorem|[NT89]: A layered program has a least
standard model. g



The next question one may ask is the following:
Given a non-stratified program having a unique min-
imal model does there exist a program with strati-
fied negation having the same unique minimal model?
The answer to this question is given by Imielinski and
Naqvi [IN88]. They show that, if no additional pred-
icate symbols are allowed to be added to a program,
then there exists a program having a unique mini-
mal model but for which no equivalent stratified pro-
gram exists, i.e., a program having the same unique
minimal model. However, if we do allow additional
predicate symbols to be added, then a program can
always be found whose unique minimal model, when
restricted to the predicate symbols of the original pro-
gram, is equivalent to the unique minimal model of
the original program. The number of additional pred-
icate symbols that have to be added is bounded ex-
ponentially in the size of the program.

5 Imperative Predicates

Our third extension of LD L is to define certain im-
perative predicates, called actions, to allow database
updates and conventional control constructs such as
the conditional if-then and the iterative constructs.
Semantics of these constructs are provided in [NK88]
by resorting to a Dynamic Logic [Har79]. Let us de-
fine informally the imperative actions in £D L.

1. If o is a positive ground atomic formula then +«
and —a are actions.

2. If a and B are actions and P is a predicate then
if(P then @), (a; B), and forever(a) are actions.

Actions have the following intuitive meanings:

+p(t1,..-,tn) inserts the
n-tuple (t1,...,t,) into the n-ary base re-
lation p.

Similarly, —p(t1,...,¢t,) deletes the indi-
cated tuple from the specified relation.

if(P then a) means do a if P is true, other-
wise do nothing.

(a; B) means do « followed by B.

forever(a) means repeat a an unbounded
number of times.

We refer the reader to Naqvi et al. [NK88] where,
using Dynamic Logic, declarative semantics are pro-
vided for LD L with these imperative constructs.
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We now have an informal understanding of the
imperative predicates of £0 L. Unfortunately, we can
show that unrestricted use of imperative constructs
leads to programs without models. We start our ex-
position by considering, by way of example, a pro-
gram with a rule of the form

a «— a;a.

Note that this rule requires that a be computed before
a but where the computation of o depends upon the
extension of a. This is an apparent inconsistency.
Another example is provided by the rule

a + forever(...,a,...)

in which, once again, the computation of a in the
body of the rule depends upon the extension of a in
the head predicate. Clearly, we need to exclude pro-
grams in which imperative predicates refer to pred-
icates that also appear as derived relations, i.e., we
need to make the computation of the predicates in
the body independent of the predicate in the head of
that rule. By now, we recognize, from the above two
examples, that the computation of predicates must
be stratified. As before, we shall define an ordering
on the predicates of the program to enforce stratifica-
tion with respect to imperative predicates and define
the class of legal programs.

We define an ordering between predicate symbols
as follows.

o If there is a rule of the form
A—a

where a = ..., B,... and a is a predicate then A
precedes B written as A < B. If a is an action
then then A is said to strictly precede B, and
written as A < B.

o If there is a rule of the form
head — A,,...,An; By,..., B

then each A;,z = 1,...,n strictly precedes all
Bj;, (V1< j < k), i.e., (A; < B;); otherwise each
(A.- < BJ')-

A program is legal if there does not exist an or-
dering of its predicate symbols

P101p202 .. . prbrp1

where Vi(1 <1 < k)§; € {<,<} such that 3j(1 < 5 <
K)o; is <.



As before, stratification implies a partitioning on

Example: Inadmissible program for simulating uni-

the rules of a program as follows. Using the notion of versal quantification in rules.

legal program, it was possible for Naqvi et al. [NK88]
to provide a definition of a minimal model of the pro-
gram.

We now show how non-stratified uses of set
grouping and negation can be simulated by using up-
date and imperative actions. This shows some of the
limitations in the power of stratification as a univer-
sal design principle. In the last two sections we have
considered the power of stratified grouping and nega-
tion. We have seen that in the case of set grouping,
we have a program which has a unique minimal model
but which does not have an equivalent admissible pro-
gram. In many cases, however, we can use impera-
tive predicates to express an inadmissible collection
of grouping rules as an admissible program. We shall
see an example of this below. In the case of nega-
tion we saw that every non-stratified program with a
unique minimal model can be expressed, possibly by
using additional predicate symbols, as an admissible
program {IN88]. However, we may need exponentially
many (in the size of the predicate symbols in the pro-
gram) additional predicate symbols. We shall show
below an example of an inadmissible program with
negation which can be easily re-expressed as an ad-
missible program without having to add many extra
predicate symbols.

As our first example, consider the program to
define a loyal republican to be a person all of whose
ancestors were loyal republicans. Furthermore, let
it be given that Abraham Lincoln was a loyal re-
publican. We assume the ancestor relation to be
given from which we can easily derive a new rela-
tion ancestors(X,Y) giving the set of ancestors Y
for the person X. We may express the “loyal repub-
lican” problem by using universal quantification as
follows:

(VX)loyalRepublican(X) +
(YW € 8)(ancestors(X, s},
loyalRepublican(¥).

loyalkepublicah(lincoln).

where S denotes the set of all ancestors of X.

The problem is how to simulate the universal
quantifier, V in the body of the first formula, in a
Horn clause language? An inadmissible approach is
shown in the example below where the set grouping
is performed within a recursive set of rules.
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% Group all ancestors for each X.
ancestors(X, (Y)) — ancestor(X,Y).

% For each X, group all ancestors that are
loyal republicans.
a(X, s, (¥)) —
ancestors(X, S), loyalRepublican(¥),
member(¥, S).

% If the set, grouped in predicate a is
equal to S then X is a loyal republican.
loyalRepublican(X) «— a(X,S,S1),S = S1.

The correct solution to the loyal republican prob-
lem is shown below.

ancestors(X, (Y)) — ancestor(X,Y).
loyalRepublican(lincoln).
aux((X)) « ancestors(X,S), -bad(s).
bad(S) «—
member(W, S), ~loyalRepublican(W).
?forever(if(aux(X), +1loyalRepublican(X)
then true)).

Note that in this solution we use the
formal equivalence of

=(VX)p(X) = (3X)-p(X)

For the second example consider the problem of
identifying the set of solvable nodes, in a directed
graph. A solvable node is a node in the graph that
is not a member of any infinite path, i.e., the node is
neither a member of a cycle nor follows a member of a
cycle. To write this in Datalog with negation [Ul188]
we could define two predicates: solvable nodes s(Y)
and unsolvable nodes us(Z). A node is solvable if it
follows a solvable node and it is itself not unsolvable;
similarly, a node is unsolvable if it follows a node that
is not solvable. Below we show the program, G, to
compute the solvable nodes in a directed graph.

B(Y) - S(X), S(x: Y)) _'us(Y)'
us(Z) « g(¥, 2), ~s(¥).



Note that this program has a unique minimal model
for any given database, i.e., any given directed graph.
Further this program is non-stratified. The following
is the equivalent LD L program, P":

s(Y) « s(X), g(X, Y), ~us’(Y).
us(Z) «~ g(W, z), —s’(¥).
?forever(
if (s(Y), us(Z), s’ (Y1), us’'(Z21))
then(—s8' (Y1), +8'(Y),
—us’'(Z1), +us’(Z))).

Note that 8® and us’ are base predicates in the above
program with an empty set of tuples initially.

We claim that the constructed model Mp« of the
program P” is such that when it is restricted to the
predicate symbols of program G it is equal to the
constructed model M of G.

6 Conclusion

The use and power of stratification in the design and
semantics of languages without assignments has been
shown in this paper. Of course destructive assign-
ment completely solves these problems but has only
operational semantics. Single assignment, while af-
fording declarative semantics, is not by itself power-
ful enough to solve these problems. Thus stratifica-
tion may prove to be a useful middle ground between
single and destructive assignment, in that it partially
solves certain design problems and admits declarative
semantics.
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Abstract

Developing an Information System involves requirements gathering, design specification, and, last but
not least, the implementation and maintenance of a large database application program. In the DAIDA
project, the domain and requirements are modeled using the temporal language Telos, the conceptual
design is specified using TDL, and the target implementation language is DBPL; DBPL is a procedural
database programming language with persistent values of a wide variety of types, with database trans-
actions as first-class language constructs, and emphasizing database and program modularity. After a
brief description of TDL and DBPL, this paper concentrates on the iterative refinement of designs into
programs, based on J.-R. Abrial’s formal framework of Abstract Machines and Generalized Substitutions
(for an extended discussion of our approach, see [10}).

1 Motivation and Setting

The authors and their collaborators are involved in project DAIDA, whose goal is to build a novel software
engineering environment for developing and maintaining Information Systems [7]. It is generally agreed
that the development of software systems, including Information Systems, involves stages such as require-
ments definition, design and implementation/testing. One of the key features of the DAIDA project is the
use of three specific (kinds of) languages for the description of the software at each stage: 1) a knowledge
representation language for domain analysis; 2) a semantic data model for the conceptual design of states
and transitions; and 3) an imperative programming language for efficient management of large, shared data
sets, Among the expected contributions of the project will be a better understanding of the problems and
tools/techniques for moving from a problem specification to the implementation of an Information Sys-
tem with data management components of significant complexity but relatively straight-forward procedural
requirements.

For determining the user’s requirements, we have argued that it is important to arrive at, and capture,
an understanding of the application domain [8]. For this purpose, we have progressed through a series
of languages, the latest called Telos, which allows one to represent a temporal model of the application
domain in an assertional knowledge representation language [11]. Telos uses the paradigm of objects related
by temporally qualified relationships to describe the entities and activities (both generic and specific) that
occur in a particular world. The crucial fact about Telos is that every aspect of the description is associated
with time intervals: the occurrence of activities, the membership of objects in classes, the relationships
between objects, activities, etc.; in fact, in a recursive process, not only is the domain viewed temporally,
but also the description itself is temporally indexed.

There are several problems with jumping from the user’s conceptual requirements directly to the code
of a database program :

e not everything seen by the user in the world needs to be part of the final software system - much of it
is contextual information;

1This is a preliminary report on results from DAIDA, a project supported in part by the European Commission under
ESPRIT contract #892.
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e Telos is meant to capture the ontology of the user domain (so a project is viewed as an activity) while
a database usually captures information about the domain (so there may be a data class corresponding
to some activities in the world);

e in most environments there are multiple needs/goals that are being achieved, and these need to be
integrated;

e finally, the descriptions in Telos and DBPL are just too widely different in style.

TDL therefore is concerned with the intermediate stage of conceptual design: identifying, specifying, and
relating the data and procedural components of an information system, which itself is to be implemented in

DBPL.

In this paper we shall briefly discuss some of the features of the TDL [13] and DBPL [21] languages,
and then outline some of the innovative tools and techniques that are used to iteratively map TDL designs
into DBPL programs by successive formal refinements within the framework of Abrial’s Abstract Machines
and Generalized Substitutions [3], [1).

2 TDL: A Language for Conceptual Designs

TDL is a program specification language which can be thought of as an assertional version of the Taxis
language [18], extended with set-valued expressions, whose form was influenced by DBPL and Abrial’s
Abstract Machines [2], [26].

For data design, a number of different kinds of data classes can be defined in TDL. In addition to the
usual base classes and enumerated classes, TDL distinguishes

o aggregate classes, which are essentially labeled Cartesian products, and whose instances have equality
decided structurally; and

o entity classes, which have an associated extent: a set of objects with intrinsic, unchanging identity.
The definition of entity classes specifies, among others, the attributes applicable to their instances, as
well as their ranges.

Moreover, TDL has a small set of built-in attribute qualifiers, which allow constraints to be placed on
attribute values, and their evolution over time:

e UNCHANGING attributes cannot be modified, once assigned a value;

o CHANGING attributes, in contrast, may get different values as states change;

e UNIQUE attributes are required to have different values for all instances of the class (i.e., can act as
“keys” in relational terms).

These qualifiers correspond to constraints that are frequently useful in the practice of data base system
design. (Note also the contrast with Telos, where a user of the language may create arbitrary new attribute
qualifiers in order to abbreviate constraints — this, because attributes are first class citizens in Telos.)

For state change and evaluation , TDL provides for the definition of two kinds of procedures:

e em functions, which are evaluated with respect to a single database state, and leave it unchanged while
returning a value; and
o transactions, which specify atomic transitions between states free of inconsistencies.

The parameters of transactions appear as attributes with the property categories IN and OUT indicating
whether the parameter is used to communicate information into or out of the transaction. A specification is
intended to associate with every transaction a set of acceptable state transitions. One standard approach is
that of asserting constraints on the values of the state variables (attribute functions, parameters and class
extents). For transactions, this is the familiar precondition/postcondition notation relating the initial and
final states; this technique is widely used in such specification languages as VDM [16], Z [23}, [15] and Larch
[14]. In TDL, these assertions are expressed in the usual Taxis-like notation, under two attribute categories:

e GIVEN: conditions required to hold in the initial state when the transaction is invoked;
e GOALS: conditions required to hold in the final state.
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Both conditions are logical assertions, with goals able to relate values in both the initial and final state. For
this purpose, we use the standard technique of distinguishing initial and final state values of variables by
marking with the suffix ’ the values to be evaluated in the final state.

The insertion and removal of objects from the extents of classes can be expressed, among others, through
two attribute categories, PRODUCES and CONSUMES, that assert that the attribute value is (is not, resp.)
an instance of the class specifying its range. An example of a TDL specification is given in the Appendix,
Fig. 1. Additional conditions for “normal-case first” abstraction / exception handling are discussed in [6).

Transactions describe atomic state transitions. Especially in business and administrative environments,
it is often necessary to present more global constraints on sequences of actions (e.g., an employee needs to have
a physical examination before completing the pay form). In order to support such sequencing specifications,
we use scripts, which are composed of locations/states, and iransitions connecting the states, where each
transition contains an atomic transaction. More detailed discussions of scripts and communication facilities
between them can be found in [13], [5], [12], [19].

It should come as no surprise that subclass hierarchies are supported and their use is encouraged
throughout the design, according to the methodology described in [9].

3 DBPL: A Type-Complete Database Programming Language

At the other end - implementation ~ we have available the database programming language DBPL [21], a
successor of Pascal/R [20]. DBPL integrates a set- and predicate-oriented view of database modeling into
the system programming language Modula-2 [25]. Based on integrated programming language and database
technology, it offers a uniform framework for the efficiency-oriented implementation of data-intensive appli-
cations.

DBPL is a strongly and statically typed language equipped with a rich set of base types (Integer, Real,
Boolean, Character, ...) which can be combined by a variety of type constructors (array, record, variants,
set/relation). DBPL is type-complete in the sense that its type constructors can be applied to any base type
and can be combined freely (e.g., to define nested sets). Furthermore, any type can be used in any context,
e.g., in local scopes or in parameter positions. )

A central design issue of DBPL was the development of abstraction mechanisms for database application
programming [22], [17). DBPL’s bulk data types are based on the notion of (nested) sets, and first-order
predicates are provided for set evaluation and program control. Particular emphasis had been put on the
interaction between these extensions and the type system of Modula-2. DBPL extends Modula-2 orthogonally
in three dimensions:

o bulk data management through a data type set/relation;

e abstraction from bulk iteration through first order predicates , iterators and set expressions;

e database modules for sharing and persistence of DBPL objects and transactions for failure recovery and
concurrency control.

DBPL programs can be structured into sets of modules with well-controlled interfaces through which DBPL
objects are exported and imported. Since data-intensive applications require the persistence and sharing of
states across program executions, DBPL has the notion of database module, which makes all its variables
persistent. Persistent variables are protected by disallowing access from outside a transaction. A first
impression of the overall software engineering quality of DBPL implementations is given by the complete
DBPL example presented in the Appendix, Fig. 2.

4 From TDL Designs to DBPL Implementations

A major effort of the DAIDA project concentrates on the production of high-quality database application
software. DAIDA makes the following assumptions about this software production process:
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o for a given TDL-design there may be many substantially different DBPL implementations, and it needs
human interaction to make and justify decisions that lead to efficient implementations;

e the decisions are too complex to be made all at once - let alone automatically; it needs a series of
refinement steps referring to both data and procedural objects;

o the objects and decisions relevant for the tefinement process need to have formally assured properties;

o these properties should be recorded to support overall product consistency and evolution.

To meet the above requirements, DAIDA relies heavily on current work of J.-R. Abrial [3], [1]: TDL designs
are translated into Abstract Machines with states represented by mathematical objects like functions and
sets, and state transitions defined by Generalized Substitutions; then the formal properties of Machines and
Substitutions are assured and organized by Abrial’s interactive proof assistant, the B-Tool [4].

In the remainder of the paper we report on our first experience with a rule-based Mapping Assistant
that helps in refining TDL designs into DBPL implementations via Abstract Machines. First we outline the
formal framework and then we discuss in some detail the refinement process itself.

For an example we use part of the TDL-design given in the Appendix, Fig.1. ResearchCompanies
consists of three entity class definitions (Companies, Employees, Projects) and one transaction definition
(HireEmployee). One of the invariants asserts that the projects a company is engaged in are exactly those
which have this company as a consortium member. Another invariant enforces the projects on which an
employee works to be a subset of the projects his company is engaged in. For some of the classes UNIQUE
attributes are specified, while for the class employees there is no such attribute.

4.1 Abstract Machines and Generalized Substitutions

Abrial’s framework for specifying and developing software systems is based on the notion of Abstract Ma-
chines, a concept for organizing large specifications into independent parts with well-defined interfaces [3].
An Abstract Machine is a general model for software systems and is defined by a state (the statics of the
system) and a set of operations modifying the state (the dynamics).

The statics of a system include the definition of three main Abstract Machine components: Basic Sets,
Variables, and system Invariants. Basic Sets define time-invariant repositories of objects (types) that may
occur in our application. In a first version of a refinement, they may be completely abstract, defined only by
their name. The Contezt allows us to freeze the definition of basic sets as soon as we make decisions on their
properties. Variables are either time-dependent subsets of the Basic Sets and model the state of an Abstract
Machine, or they are binary relations that associate elements of Basic Sets (viewed as functions from the
domain to the range). Finally, the Invarianis express the static relationships within the system. They are
defined in terms of predicates and sets (with a rich choice of operators for set, relation, and function (re-)
definition).

The dynamics of a system are defined by the Operations of an Abstract Machine. The definition of an
operation, for example, HireEmployee, reads as follows?

OPERATIONS HireEmployee (name, belongs, works) =
PRE name € EmpNames A belongs € companies A works € p (engagedIn(belongs))
THEN ANY e IN (Employees - employees)
THEN (empName(e), worksOn(e)), belongsTo(e) |«— (name, works, belongs) ||
employees |— employees U {e} || HireEmployee |— e
END
END HireEmployee;

Operations are specified by the constructs of the Generalized Substitution Calculus with semantics
defined by the weakest precondition under which a construct fulfills a given postcondition. In our exam-
ple operation, the ANY-substitution expresses an unbounded non-deterministic substitution. It chooses an
arbitrary fresh member from (Employees — employees), i.e., from the set of non-instantiated elements con-
sidered for employee representation. Next, the (attribute-) functions for that new employee element are

3Notation: p indicates “power set”, || is parallel composition, and |« is parallel assignment /substitution.
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redefined in parallel. The “type conditions” on the input parameters are expressed by the preconditions of
the Generalized Substitution.

4.2 Consistency of Designs

With Abstract Machines we are in a position to prove the consistency of specifications, a task that is
of particular importance for heavily constrained database applications [24]. In general, we have to prove
for each operation that it preserves the invariants of the Machine. For example, during such a proof of
the transaction HireEmployee, the Employees class invariant onEmpProj gives rise to the following lemma:
belongs € companies A works € p (projects) = works € p (engagedIn ( belongs )). If such a lemma
were not provable (e.g., because the designer had mistakenly omitted the needed precondition) we would be
alerted to the error and could correct it at this stage.

4.3 On Data and Procedure Refinement

In our setting, refinement is defined between Abstract Machines having the same signature, i.e., the same
number of operations and parameters. A Machine, A (the more abstract one) is said to be refined by a
Machine C (the more concrete one) iff the refinement predicate, P ¢, that relates the state variables of both
machines is proven to be an invariant under all operations, S4 and S¢, of both machines, A and C. The proof
obligation also considers the case of a non-deterministic operation in machine A and a less non-deterministic
one in machine C. A mapping process usually consists of a series of procedure- and data-oriented refinement
steps from one Abstract Machine into another. The refinement process can be directed interactively by the
user and controlled formally by the proof assistant.

Data refinement is defined in two steps:

o a data representation has to be chosen that is “closer” to the concrete data structures being offered by
the target programming language used to implement the specification;

o the relationship between the more concrete state space and the more abstract one has to be expressed
by a refinement predicate that involves variables of both machines.

Usually, changes in data representations imply refinements of operations. An operation S, is refined by an
operation S¢ “if S¢ can be used instead of S4 without the ‘user’ noticing it” [3]. More formally, this means
that all postconditions R that are established by S, are also established by S¢. Within the framework
of Generalized Substitutions, algorithmic refinement is formally defined as a partial order relation between
substitutions [3].

Currently, we are experimenting with a standard refinement strategy consisting basically of three steps
[10]. In each step we decide upon one major task in database modeling:

1. identification of data objects in extents of varying cardinalities;

2. alternative ways of organizing data using the data type structures of the language; and

3. introduction of those constraints for variables, parameters, etc. that can be checked efficiently and at
appropriate times (static typing).

After these three refinement steps we are in a position to automatically transform the final Abstract Machine
into an equivalent DBPL program.

For the first refinement step of our example, we make the rather specific but common decision to utilize
the uniqueness constraints on properties for companies and projects for data identification. For employees,
where the application does not provide such a constraint, our refinement introduces an additional property,
empld, for which the implementation assures uniqueness. Due to the change in the data representation,
the operation HireEmployee becomes less non-deterministic: the arbitrary ANY-substitution is replaced by
some operation, newEmpld, that provides a fresh Empld value, which is then associated with the required
properties through function extension. Our refined data and procedure representation can be proven to meet
all the invariants laid down in the initial Abstract Machine.
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Having decided upon identification, we are now ready for the second refinement step: designing the
central data structures of our implementation. While our first Abstract Machine has a purely functional
view of data, we now refine into a representation that is based on Cartesian products. It is at this level that
we have to decide whether our data structures have set-valued attributes (i.e., will finally be mapped into
nested DBPL relations) or will be flattened. In our example we opt for the first alternative.

On our way to implementation there is a third refinement step left that deals with data typing. Since
DBPL is a strongly and statically typed language we want to refine the variables to become partial functions
over the Basic Sets instead of total functions that range over other variables with time-varying cardinalities.
For this reason, the precondition of the hireEmployee operation is weakened to constraints that will finally
become the parameter types of the HireEmployee transaction. However, to meet the inherited specification
we have to strengthen our constraints by introducing a conditional substitution which, due to the semantics
of Generalized Substitutions, will finally result in a first-order query predicate on the variables that represent
database states and transaction parameters (compare DBPL transaction, HireEmployee, Appendix, Fig. 2):

OPERATIONS HireEmployee (name, belongs, works) =
PRE name € EmpNames A belongs € CompNames A works € ProjIdRelType
THEN IF belongs € companies A works € p (engagedIn(belongs))
THEN tEmpld |— newEmpld;
empRel |— empRel U {(tEmpld, name, belongs, works)};
HireEmployee |— tEmpld
ELSE HireEmployee |+— nilEmpld
END
END HireEmployee;

OTHER newEmpld € ( — (Emplds - employees));

Our example demonstrates that a refined operation may have a weaker precondition than the initial
one: HireEmployee is now defined in all cases in which the static type predicate holds (a condition which
can already be verified at compile time). It either performs the required state transition or it returns as an
exception a specific value, nilEmpld.

4.4 Final Mapping into DBPL Programs

A language like DBPL, with a rich typing system and with first-order calculus expressions for set evaluation
and control, turns out to be an appropriate target for the implementation of sufficiently refined Abstract
Machines. Informally speaking, we can compile into equivalent DBPL programs those machines which
have variables constrained by static type predicates and whose operations are defined by deterministic and
sequential Generalized Substitutions.

In the final refinement step of HireEmployee, the “static” condition is transformed into DBPL parameter
types, and the conditional substitution results in a database update statement controlled by a first-order
database query expression (Appendix, Fig. 2).

5 Summary

We have presented, rather sketchily, some of the highlights of two languages, TDL and DBPL, for the
conceptual design and the implementation of an information systems.

TDL is based on the language Taxis, but it has been refurbished to permit the predicative description
of procedures (transactions, functions, script transitions), integrity constraints and coordinated transaction
groups (scripts). TDL’s expression language, unlike Taxis, is based on set theoretic notions. TDL maintains
an object-oriented approach, thus allowing designers who map Telos requirements into TDL designs to
concern themselves mostly with global issues such as view integration and the elimination of omnipresent
temporal indices.
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On the other hand, TDL adopts the standard (destructive) state based model of computation of most
procedural languages. The mapping to DBPL programs can therefore concentrate on the apptropriate choices
for data identification, structuring and typing, as well as corresponding refinement steps on transactions and
functions.

As argued in the previous section, Abrial’s methodology of refining abstract machines appears to be
a promising approach in which to study the issue of provably correct implementation. In this setting, a
language like DBPL, with a set- and predicate-oriented approach to data modeling, a rich typing system,
and abstract support for concurrency, recovery and persistence, turns out to be an appropriate target for
the refinement of TDL designs into database application software.

Acknowledgment: We would like to thank our DAIDA colleagues, in particular M. Jarke, F. Matthes,
and M. Mertikas, for their contributions to this research.

Appendix

TDLDESIGN ResearchCompanies IS
ENUMERATED CLASS Agencies = {‘ESPRIT, ‘DFG, ‘NSF, ...};

ENTITY CLASS Companies WITH
UNIQUE, UNCHANGING name : Strings;
CHANGING engagedIn : SetOf Projects;

END Companies;

ENTITY CLASS Employees WITH

UNCHANGING name : Strings;

CHANGING belongsTo : Companies; worksOn : SetOf Projects;

INVARIANTS onEmpProj: True IS (this.worksOn subsetOf this.belongsTo.engagedIn);
END Employees;
ENTITY CLASS Projects WITH

UNIQUE, UNCHANGING name : Strings; getsGrantFrom : Agencies;

CHANGING consortium : SetOf Companies;

INVARIANTS onProjComp:

True Is (this.consortium = {each x in Companies : this isIn x.engagedIn});
END Projects;

TRANSACTION HireEmployee WITH
IN name : Strings; belongs : Companies; works : SetOf Project;
OUT, PRODUCES e : Employees;
GIVEN works subsetOf belongs.engagedIn;

GOALS (e.name’ = name) and (e.worksOn’ = works) and (e.belongsTo’ = belongs);
END HireEmployee;

END ResearchCompanies;

Fig. 1: TDL Design of the ResearchCompanies Example
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A

DEFINITION MODULE ResearchCompaniesTypes;
IMPORT Identifier,String;

TYPE
Agencies = (ESPRIT, DFG, NSF, ..);
CompNames, EmpNames,ProjNames = String. Type;
Emplds = Identifier. Type;
ProjIdRecType = RECORD name : ProjNames; getsGrantFrom : Agencies END;
ProjIdRelType = RELATION OF ProjldRecType;

CompRelType = RELATION name OF
RECORD name : CompNames; engagedIn : ProjIldRelType END;
EmpRelType = RELATION employee OF
RECORD employee : Emplds; name : EmpNames;
belongsTo : CompNames; worksOn : ProjldRelType END;
ProjRelType = RELATION projld OF
RECORD projId : ProjIdRecType;
consortium : RELATION OF CompNames END;

END ResearchCompaniesTypes.

DEFINITION MODULE ResearchCompaniesOps;
FROM ResearchCompaniesTypes IMPORT EmpNames, CompNames, ProjIdRelType, Emplds;
TRANSACTION HireEmployee(name:EmpNames;belongs:CompNames; works:ProjIdRelType) : Emplds;
END ResearchCompaniesOps.
DATABASE IMPLEMENTATION MODULE ResearchCompaniesOps;
FROM ResearchCompaniesTypes IMPORT CompRelType; EmpRelType; ProjRelType;
IMPORT Identifier;

VAR compRel : CompRelType;

empRel : EmpRelType;
projRel : ProjRelType;

TRANSACTION HireEmployee (name:EmpNames; belongs:CompNames; works:ProjIdRelType) : Emplds;
VAR tEmpld : Emplds; ‘
BEGIN

IF SOME c IN compRel (c.name = belongs) AND
ALL w IN works (SOME p IN compRel[belongs].engagedIn (w = p))

THEN tEmpld := Identifier. New;
empRel :+ EmpRelType{{tEmpld,name,belongs, works}};
RETURN tEmpld

ELSE RETURN Identifier.Nil

END

END HireEmployee;

END ResearchCompaniesOps.

Fig. 2: DBPL Implementation of the ResearchCompanies Example
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