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From the Issue Editors

Sushil Jajodia and Won Kim

On December 5—7, 1988, an IEEE—sponsored symposium named the International Symposium on Da

tabases for Parallel and Distributed Systems was held in Austin, Texas. The symposium was an attempt

to encourage interested professionals to focus their research on extending the technology developed

thus far for homogeneous distributed databases into two major related directions: databases for paral

lel machines and heterogeneous distributed databases.

We selected seven papers from the symposium, and added two new papers to form this special issue

on Databases for Parallel and Distributed Systems. The selection of papers in this issue was based on

our decision to maximize the breadth of research topics to be introduced to the readers. We regret

that we did not have enough space to include a paper on heterogeneous databases. The papers

selected from the symposium had to be condensed because of page limits on our bulletin. The inter

ested reader may obtain the proceedings of the symposium from IEEE for a broader perspective on

this area.

Adding Intra—Transaction Parallelism to an Existing DBMS: Early Experience by Lone, et. al., and Paral

lelizing FAD Using Compile—Time Analysis Techniques by Hart, et. al. describe approaches to exploit

parallelism in databases in two major research efforts in parallel database machines. Friecler, et. al.

describe a text—retrieval subsystem which uses a parallel VLSI string—search algorithm in JAS: A Paral

lel VLSI Architecture for Text Processing.

Parallel Query Evaluation: A New Approach to Complex Object Processing by Haerder, et. al., and

Multiprocessor Transitive Closure Algorithms by Agrawal and Jagadish discuss issues in exploiting par

allelism in operations involving complex data structures, namely, complex objects and transitive clo

sures, respectively. Exploiting Concurrency in a DBMS Implementation for Production Systems by Ras

chid, et. al. describe parallelism in a database implementation of a production system. In Checkpoint

ing and Recovery in Distributed Database Systems, Son outlines an approach to checkpointing in dis

tributed databases and its adaptation to systems supporting long—duration transactions.

Robust Transaction—Routing Strategies in Distributed Database Systems by Lee, et. al., and Sharing the

Load of Logic—Program Evaluation by Wolfson discuss approaches to load sharing in distributed and

parallel systems.

The authors who contributed papers to this issue were very prompt in meeting our tight deadlines; they

were all very professional. The printing and distribution of this issue has been made possible by a

generous grant from the Office of Naval Research.

From the TC Chairman

Larry Kerschberg

I am pleased to welcome Don Potter as Secretary of our TC. Further, on behalf of our TO, I want to

congratulate John Canlis, Richard L. Shuey and their team on the excellent organization and program

of the Fifth International Conference on Data Engineering, held February 6—10, 1989 at the Los Angeles

Airport Hilton and Towers. Over 315 people attended the conference.
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Adding Intra-transaction Parallelism to an Existing DBMS:
Early Experience

Raymond Lone, Jean-Jacques Daudenarde

Gary Hallmark, James Stamos, Honesty Young

IBM Almaden Research Center, San Jose, CA, 95120-6099, USA

Abstract: A loosely-coupled, multiprocessor backend database machine is one way to construct

a DBMS that supports parallelism within a transaction. This software architecture was the ba

sis for adding intra-transaction paralielism to an existing DBMS. The result is a configuration

independent system that should adapt to a wide variety of hardware configurations, including
uniprocessors, tightly-coupled multiprocessors, aud loosely-coupled processors. This paper evalu

ates our software-driven methodology, presents the early lessons we learned from constructing an

operational prototype, and outlines our future plans.

1 Jntroduction

A database machine based on multiple processors that share nothing is one way to provide the

functionality of a conventional DBMS. Proponents of the loosely-coupled approach claim such an

architecture can achieve scalability, provide good cost-performance, and maintain high availabil

ity DGG*86,DHM86,NecS7,Tan87]. Current database machine activity, both in the lab and in

the marketplace, is often driven by an emphasis on customized hardware or software. Although
hardware and software customizations may improve performance, they reduce the portability and

maintainability of the software, increase the cost of developing the system, and reduce the leverage
one gets by tracking technology with off-the-shelf hardware and software.

We believe the costs of customization outweigh the performance benefits and have taken a

software-driven approach to database machine design that focuses on intra-transaction paralielism.
Our approach is to make minimal assumptions about the hardware; design the DBMS for a generic
hardware configuration; support intra-transaction parallelism; and show how to map the system

to particular hardware configurations. To test our beliefs we are prototyping a configuration-

independent relational DBMS that is applicable to individual uniprocessors, to tightly-coupled

multiprocessors, and to loosely-coupled multiprocessors. We intend to use simulation, modeling,
and empirical measurements to evaluate this approach to database machine design.

The rest of the paper is structured as follows. Section 2 discusses parallelism in the context of a

DBMS. Section 3 presents the goals of our project, which is calied ARBRE, the Almaden Research

Backend Relational Engine. Section 4 discusses the ARBRE design and shows how to apply it

to different hardware configurations. Section 5 compares ARBRE to existing work, and Section 6

presents and evaluates the research methodology used in the project. Section 7 relates our early

experiences and lessons from putting our methodology into practice. The last section describes the

current status of the ARBRE prototype and outlines future plans. Throughout the paper we shali

use the words transaction and query interchangeably.

2 Parallelism in a DBMS

Most currently available database systems have been implemented to run on a single processor and

use multiprogramming to support inter-transaction parallelism: while some transactions are waiting
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for I/O’s, another transaction may execute CPU instructions. Tithe processor is a multiprocessor

system with N engines, then N transactions may execute CPU instructions simultaneously. Most

systems execute each transaction as a single thread and thus do not support intra-transaction

parallelism. Intra-transaction parallelism could be achieved by having multiple threads run on

behalf of the same transaction in order to reduce the response time for that transaction. On a

uniprocessor, the threads not waiting for I/O share the one processor. On a multiprocessor, several

processors could simultaneously execute the threads in parallel.

3 Goals

To gain insight into the costs and benefits of intra-transaction paralielism, we established four goals
for the AR,BRE project. First, we wanted to use parallel processing in a full-function, relational

DBMS to reduce the response time for a single data-intensive SQL request. This includes exploiting

parallel disk I/O and CPU-I/O overlap inside the request. Second, we wanted to be able to use

additional processors to reduce the response time further for data-intensive operations. Third,

we wanted to be able to use additional processors for horizontal growth to increase throughput.

Fourth, we wanted to maintain an acceptable level of performance for on-line transaction processing

(OLTP) environments.

To meet these goals we could first propose various hardware configurations with different num

bers of processors, different speeds, and different communication topologies and primitives. For each

configuration we could then design the most appropriate software organization. Such a methodol

ogy would be very time-consuming, especially if simulation and prototyping activities were needed

to evaluate and validate the various possibilities.
We instead designed the DBMS software to be independent of the hardware configuration, hop

ing to demonstrate that the approach is viable, and that the performance can be almost as good as

if the software had been customized for each hardware configuration—provided the communication

scheme has enough bandwidth, low latency, and reasonable cost.

Our intention is to reuse most of the code of a single-site relational DBMS with no parallelism

and to use several instances of such a DBMS to exploit intra-transaction parallelism. Each DBMS

instance is responsible for a portion of the database. It may execute on a private processor, or it

may be one of several instances sharing a large processor. We call the latter approach virtualization,

because each instance of the DBMS is associated with a virtual processor. Code to support the

distribution of functions must be added to the existing DBMS base under both approaches.

Since we are strictly interested in the parallelism issues, we are not trying to improve the

performance of local operations performed on a single processor. We accept current systems as

they are and assume that the hardware and software technology will improve with time.

4 System Overview

ARBRE is best viewed as being a multiprocessor backend database machine that is connected to

one or more hosts. Connections to local area networks are also possible. The interface to the

database machine is assumed to be at a sufficiently high level so that we can exploit parallelism

within a query and minimize the communication delays incurred by separating the backend database

machine from the host.

We discuss the ARBRE system in three steps. First, we present our assumptions about the

processor and communication hardware. Then we focus on the software and execution strategy.

Finally, we describe how to map ARBRE onto real hardware configurations.
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4.1 A Generic Hardware Configuration

We assume, but do not require, that ARBRE runs on a loosely-coupled multiprocessor. The

hardware of this multiprocessor consists of a fixed number of processing sites interconnected by a

communication network that lets each pair of sites communicate. We make no further assumptions
about the network. Each site has its own CPU, memory, channels, disks, and operating system.

The sites run independently, share nothing, and communicate only by sending messages.

4.2 ARBRE Software and Execution Strategy

We assume every site runs the same software. Every site has one instance of the DBMS, and this

instance alone manages the data kept at that site. The data is partitioned horizontally RE78]:
each table in the relational model is partitioned into subsets of rows, and each subset is stored

at one site. The partitioning can be controlled by hashing or by key ranges. Key ranges can be

determined by the user, or can be derived automatically by the system as in Gamma DGG*86}.
ARBRE supports both local and global indexes. A local index contains entries for tuples stored at

the site containing the index. A global index is a binary relation associating a secondary key with

a primary key. That binary relation is itself partitioned as is any base table.

Since data is not shared, a site executing a request that involves data managed by another site

uses function shipping CDY86} to manipulate remote data. A function that returns a small amount

of data returns the result directly to the caller. For example, a function that fetches a unique tuple

or computes an aggregate function falls into this category. Other functions may return large sets

of tuples in the form of tuple streams. A tuple stream is a first-in-first-out queue whose head and

tail may reside at different sites.

The host runs the application program, which contains SQL calls to the database. Each call

to the database causes an asynchronous request in the host, so it is important to minimize the

interaction between the host and the backend database machine. Fortunately, relational queries

are at a high level and tend to return all and only the information requested. If host-backend

interaction is a problem, one simple way to reduce it is to have the host batch requests inside the

same transaction as long as no processing is done between requests. A more general approach is to

have the host batch requests from different transactions if the resulting increase in response time

is tolerable. Raising the level of the query language can also reduce host-backend interaction. For

example, the query language could express complex object fetch and recursion. The ultimate step

is to have the backend do general computation, and we have chosen this approach in our prototype

to give us maximum flexibility.
Before being executed the application program and the SQL statements it contains must be

compiled. The query compiler, which converts an SQL statement into a set of one or more compiled

query fragments, uses the database machine for interrogating the catalogs and storing the query

fragments.1 Some compiled query fragments are executed at one site, and other fragments are

sent to multiple sites and executed in parallel. One fragment is called coordinator fragment, and it

is responsible for coordinating the execution of the other fragments, which are called 3ubOrdiflate

fragments.
Each compiled query fragment is executed as a separate lightweight thread. Threads at the

same site or at different sites communicate by sending messages and by using tuple streams. When

the host sends a request to some site in the database machine, this site fetches the corresponding
coordinator fragment and executes it as a thread. This thread becomes the coordinator for the

transaction and receives all further calls the host sends on behalf of this transaction.

1The compiler can reside in the host or in the database machine; there are arguments in favor of both approaches,
but the final decision is irrelevant to the paper.
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The coordinator uses function shipping to execute subordinate fragments. Each subordinate

fragment executes as a separate thread and generally involves one base table. To decide the site(s)
that execute a subordinate fragnent when that fragment involves a base table, the coordinator

consults the hashing function or key-range table that indicates how the table is horizontally parti

tioned.

How the results of an SQL statement are returned to the host depends on the expected size of

the results. If the amount of data produced by executing the query is small, the results are returned

to the coordinator which then assembles them and forwards them to the host. On the contrary, if

the amount of returned data is large, and if the data does not need to be combined with other data

in order to be returned to the host, we send it directly from each subordinate to the host without

involving the coordinator.

A dataflow approach, similar to the one used in Gamma and proposed in {BD82], controls the

simultaneous work of many query fragments on behalf of the same data-intensive transaction. Frag

ments may collectively produce a stream, send their substreams to others, receive the substreams

sent by others, and consume them. The communication software uses message buffering and a

windowing mechanism to prevent stream producers from flooding stream consumers.

When fragments must exchange large amounts of data, the communication may become a

bottleneck. One way to reduce communication is by a judicious choice of algorithms. For example,

a hash-based join works well in a distributed environment, but it requires sending practically both

tables on the network. We are also investigating other ideas such as the use of semi-join, the

possibility of completing a join in the host, and the use of algorithms that tolerate skewed data

access patterns.

4.3 Mapping Sites to Processors

Most database machine research projects and commercial products use the simplest mapping from

sites to processors: these systems devote an entire physical processor to each site. This approach

is also applicable to AUBRE. In this approach, each site has an operating system that supports a

single instance of the DBMS executing in its own address space. Each DBMS instance supports

multiprogramming for inter-transaction parallellsm, but it has no intra-transaction parallelism.

Intersite communication corresponds to interprocessor communication.

Alternatively, one can map several sites to a single processor. The processor then contains as

many instances of the DBMS as there are sites, and all the instances share a single copy of the

code. The same communication interface is used, but the implementation exploits fast memory-to-

memory transfer, rather than actual communication via a network, among sites that are mapped

to a single processor.

4.4 Other Issues

To keep our task manageable, we postponed detailed consideration of several important issues. In

particular, we examined the following issues only superficially: automatic query planning; catalog

management; management and replication of key-range tables; data replication and reorganization;

operational management of a large number of sites; and fault tolerance.

5 Related Work

Several projects, both in universities and industrial labs, are concerned with using multiple pro

cessors to improve performance of relational systems. Among the systems that are most com

parable to ARBRE are Gamma DGG*86], Tandem’s NonStop SQL2 product Tan87], and the

‘NonStop SQL is a trademark of Tandem Computers Incorporated.
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DBC/lOl23machine built by Teradata Nec87]. All three systems use loosely-coupled general pur

pose processors, employ customized operating systems, and support one or more kinds of horizontal

partitioning and some degree of intra-transaction parallelism. The unusual features of these sys

tems are listed below. Gamma has diskless processors to add processing power for operations such

as joins. Tandem’s NonStop SQL is a stand-alone computing system that executes applications
and supports end users. There is no support, however, for intra-transaction parallelism except

for FastSort, which uses several processors for a single sort. Teradata’s DBC/1012 has a pro

prietary Ynet3, which implements reliable broadcast and tournament merge in hardware. The

DBC/1012 exhibits non-uniformity of processors: each processor module has specialized software

and controllers and is connected to different kinds of peripherals.
The ARBRE project differs clearly from these other systems on two accounts. First, ARBRE is

the only project we are aware of that is studying multiple mappings of logical sites onto real proces

sors. Second, unlike other multiprocessor backend database machines, AR.BRE tries to increase the

level of parallelism in the return of data to the host by avoiding the coordinator whenever possible.
Another feature of AILBRE is that no site is distinguished by having special hardware or special

software, at least at execution time.

6 Methodology

We chose a research methodology to support our main objective, which is to draw some conclu

sions, as quickly as possible, on the architecture of a configuration-independent parallel DBMS, its

feasibility, and its expected performance. As a result our methodology was designed around three

principles: (1) build an operational prototype by using sturdy components for the hardware, oper

ating system, and access method instead of constructing our own; (2) concentrate on the run-time

environment, postponing any development of the query compiler; and (3) complement the proto

type evaluation with simulation and modeling. The rest of this section discusses each principle in

turn.

We reused existing components rather than construct new specialized ones because the incre

mental benefits would not justify the cost of construction. We used a general purpose, existing

operating system (MVS) that supports multiple processes in a single address space. We also used

the low-level data manager and transaction manager in System It (B*8l}, an experimental relational

database management system. In addition, we used a prototype high-performance, interprocessor
communication subsystem (Spider) implemented by our colleague Kent Treiber. For hardware we

used brute force, relying on a channel-to-channel communication switch interconnecting multiple
IBM 4381 machines, which are midrange, System/370 mainframes.

We postponed the development of a query compiler and concentrated on query execution strate

gies that exploit parallelism without causing communication bottlenecks. We believe the develop
ment of a query compiler should be relatively straightforward once we have determined a repertoire
of good execution strategies. To support our investigation of execution strategies, we implemented

a toolkit of relevant abstractions. These abstractions fail into 4 categories: a generalization of func

tion shipping, virtual circuits and datagrams, single-table-at-a-time database access, and primitives

dealing with the horizontal partitioning of data. We used the same programming language (C++)
to implement these abstractions as we do to write compiled query fragments. This will make it easy

to migrate useful algorithms from query execution strategies into the database machine interface.

An operational prototype will give us enough information to drive simulations and validate the

results. First, we will instrument and measure a working environment. The information obtained

will then be submitted to a simulator to predict how the same workload will behave on different

3DBC/1012 and Ynet are trademarks of Teradata Corporation.
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configurations. To obtain meaningful results we plan to record events produced by executing real

applications as well as those produced by executing synthetic workloads. From the event traces

we will determine data and processing skews and produce probability distributions that concisely
describe these skews. The probability distributions, and not the raw event traces, will drive the

simulations. Given our flexibility in mapping logical sites onto multiple configurations, we anticipate

valldating the simulation results on multiple physical configurations that are easy to produce.

Configuration independence has improved our programming and debugging productivity be

cause we do not work exclusively with the target hardware, operating system, access method, and

communication system. Most of the time we use an IBM RT PC running AIX, which is IBM’s

implementation of the UNIX operating system.4 We use a single address space on the ItT PC and a

simple, main-memory based access method to emulate a multiple site system. Almost all software

is developed and thoroughly debugged in this user-friendly environment before it is run on a target

system.

The following are drawbacks to our methodology: (1) The simulations are based on probability
distributions rather than actual data dependencies. (2) Simulation runs may be time consuming.
For this reason we plan to use modeling which, when validated with a more detailed simulation, may
be used to extrapolate our results to other configurations in much less time. (3) Our methodology
does not consider configuration-specific optimizations; these should be identified and studied inde

pendently. Nevertheless, we believe that these drawbacks are tolerable and that our methodology
is appropriate for gaining valuable insight into DBMS parallelism in a short time period.

7 Early Lessons

Over two years of preliminary research, design, and prototyping have taught us three things: good

building blocks are indispensable, language design is hard, and simulation has its limitations.

One lesson we learned is not to start from scratch even though software simplification because

of specialization is often highlighted as an important advantage of backend database machines. It

is less fruitful to spend time rewriting mature, highly-tuned code than it is to implement intra

transaction parallelism.
If you don’t start from scratch, you will most likely modify existing code, in which case it

is important to have modifiable software components. For example, the transaction manager we

used already had hooks for two-phase commit and distributed recovery, and adding a two-phase

commit protocol was straightforward. We have added message queues and timers to the DBMS

thread scheduler, and if we implement global deadlock detection we must be able to extract the

transaction waits-for graph from the lock manager.

A second lesson we learned is that language design is hard. We initially tried to design a custom

language for coding the query fragments, but discovered that language design without sufficient

experience in the domain of discourse is too slow and required too many iterations. Instead we

are using an existing programming language (C++) and have built a toolkit of useful abstractions.

The toolkit lets us experiment with algorithms without designing and freezing a language and its

interpreter. As we gain experience we will progressively develop our toolkit, using more predefined
constructs and less ad-hoc programming in the fragments. Eventually, a “language” will emerge

that succinctly expresses good execution strategies for query fragments. This language will be the

target of the query optimizer and compiler.
A third lesson we learned is that some interesting issues may be difficult to study in simulation.

We initially thought we could use the raw event traces in simulations of different hardware config
urations, but simulating the exact data dependencies would make the simulations too expensive to

4RT PC and AIX are trademarks of the IBM Corporation. UNIX is a trademark of the AT&T Corporation.
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run. Instead, data dependencies and other nonuniformities will be approximated with probability
distributions.

8 Status and Plans

The prototype is operational on three interconnected dyadic-processor 4381 systems. Although we

have begun measuring the system for complex queries involving sorts and joins, the results are

too preliminary to be reported here. Suffice it to say that for a single data-intensive transaction

we have illustrated all aspects of parallelism. We used multiple sites on a single 4381 processor

(i.e., virtualization) to exploit I/O parallelism; we used multiple sites on tightly-coupled dyadic

processors to exploit CPU parallelism; and finally we used multiple sites on separate 4381 systems

to exploit loose coupling.
The prototype will be extremely useful as we begin to study issues that are inherent to DBMS

parallelism, including: the need for sophisticated parallel algorithms; load balancing and process

scheduling; and communication problems, such as convoys, network congestion, and deadlock.

We are also beginning to investigate query optimization and support for high rates of simple
transactions. Skewed data access patterns and a larger number of smaller processors will exacerbate

some of the above problems and may demand innovative solutions.

Our approach to DBMS parallelism, which distinguishes logical sites from physical proces

sors, is a promising approach that can adapt to different hardware configurations, different cost-

performance trade-offs, and different levels of required performance. We envision a single code

base that is applicable to a cluster of high-end mainframes as well as to a network of powerful

microprocessors.
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PARALLELIZING FAD

USING COMPILE-TIME ANALYSIS TECHNIQUES

Brian Hart, Patrick Valduriez, Scott Danforth

Advanced Computer Architecture Program

Microelectronics and Computer Technology Corp.

Austin, Texas 78759

ABSTRACT

FAD is a database programming language with much higher expressive power than a query

language. FAD programs are to be executed efficiently on Bubba, a parallel computer

system designed for data—intensive applications. Therefore, parallelism inherent in a FAD

program must be automatically extracted. Because of the expressive power of FAD, tradi

tional distributed query—optimization techniques are not sufficient. In this paper, we pre

sent a general solution to the parallelization of FAD programs based on compile—time

analysis techniques.

1. Introduction

FAD Ban87, Dan89] is a strongly typed functional—programming language designed for manipulating

transient and persistent data within Bubba, a highly parallel database system Bor88] developed at MCC.

As a database programming language, FAD reduces the “impedance mismatch” of the traditional approach

that embeds a query language (e.g., SQL) into a programming language (e.g., C). The FAD data model

allows arbitrarily complex combinations of data structures based on atomic values, tuples, sets, disjuncts and

objects. 1n particular, referential object sharing KhoS7] is fully supported. FAD incorporates a blending of

proven concepts from the worlds of functional programming and relational databases. The result is a

strongly typed language with clean semantics whose implementation on Bubba directly benefits from pro

gress in both parallel processing and relational—database technology. To increase performance, FAD is

compiled into low—level code to be executed on the parallel database system.

The FAD compiler extracts parallelism inherent in (“parallelizes”) a FAD program by transforming it

into a set of communicating FAD subprograms, called components, which can be executed in a parallel

(SIMD or MIMD) fashion. The problems to be addressed are to determine the most efficient division of a

program into components and the most efficient location of their execution. Traditional distributed query—

optimization techniques serve as the basis for the compiler but these must be extended considerably due to

expressiveness of FAD. In particular, the use of object identity can create difficult aliasing problems. Also,

the presence of a number of powerful programming constructs, such as iteration and conditionals, adds

complexity. In this paper, we give a solution to these problems based on compile—time analysis techniques.

In this paper, we provide a short overview of the compile time analysis techniques employed for

parallelizing FAD. After an introduction of Bubba and of the most salient features of the FAD program

ming language, we focus on FAD parallelization which plays a central role in compiling FAD for execution

on Bubba.
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2. Bubba

Bubba is a parallel computer system for data—intensive applications. Bubba is intended as a replace

ment for mainframe systems providing scalable, continuous, high—performance per—dollar access to large

amounts of shared data for a large number of concurrent application types.

Three constraints shape the problems to be addressed by Bubba: concurrent multiple workload types

on shared data, large databases, and high—availability requirements. Multiple workloads, particularly trans

action processing and knowledge—based searches for complex patterns, imply the need to support a power

ful programming language through a rich environment for program management and execution. Large data

bases imply minimization of data movement and thus program execution where the data lives. High—avail

ability requirements imply the need for redundancy and real—time fault recovery mechanisms.

Bor88] gives the rationale for picking the army of ants approach for the Bubba architecture. The

simplified hardware architecture is illustrated in Figure 1. Each node, called Intelligent Repository (IR),

includes one or more microprocessors, a local main memory (RAM) and a disk unit on which resides a

local database. Diskiess nodes are also used to interface Bubba with other machines. An JR is believed to be

“small” for two reasons: 1) they provide cheap units of expandibility and conversely, the loss of an IR is

likely to have little impact on overall performance, and 2) knowledge that IRs are “hefty” will lead to

attempts to exploit locality through clever physical—database design, thereby limiting the class of applications

for which Bubba would be useful.

The only shared resource is the interconnect which provides a message—passing service. Each JR runs

a copy of a distributed operating system which, among other things, provides low—level support for task

management, communication and database functions. In particular, local object identity is supported within

an JR but global object identity is not supported.

To favor parallel computation on data, the database consists of relations which are declustered across

IRs. Declustering is a placement strategy which horizontally partitions and distributes each relation across a

number of IRs. This number is a function of the size and access frequency of the relation Cop88]. The

basic execution strategy of Bubba is to execute programs where the data is Kho88] to avoid moving data.

Therefore, the degree of parallelism in an individual program is determined by the number of nodes the

data referenced by the program occupies.

High availability is provided through the support of two on—line copies of all data on the IRs as well as

a third copy on checkpoint—and—log IRs.

Figure 1: Simplified Hardware Organization of Bubba
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3. FAD

The central ideas of FAD are relatively few: types, data, actions, and functions (action abstractions).
The FAD type system corresponds closely to that of an order—sorted algebra Dan88b]. A type in FAD

provides a domain of data, as well as functions for creating and performing actions on elements of that

domain. FAD data are distinguished between values and objects: only objects can be shared and updated

Kho87]. The structure of FAD data can be simple or complex (using constructors such as tuple, set and

disjunct). The term action is used to indicate a computation that accesses data, returns data, and may

change existing objects. Application of a function to its arguments denotes an action. Abstraction in FAD

allows the creation of user—defined first—order functions, actions that are parameterized with respect to the

data on which they act. In addition, FAD provides a fixed set of higher order functions, called action

constructors, for writing programs. These are operators that construct aggregate actions from actions, data,

and functions. A number of FAD action constructors are provided for operating on sets in a parallel fash

ion. The most important set—oriented action constructor is the filter statement, which applies a function in

parallel to each element of the Cartesian product of a number of sets to produce a new set, thus providing a

generalized select—project—join (SPJ) capability. Other action constructors are provided for set manipula

tion (group, pump), variable definition (let), conditional (if—then—else), iteration (whiledo), and control

(do—end, begin—end, abort).

FAD essentially provides Bubba users with a centralized execution model. Parallel FAD (or PFAD)

Har88] is an enhancement to the FAD language that captures aspects of the parallel execution model of

Bubba not visible in FAD. PFAD is an abstraction of Bubba that supplements FAD with the concepts of

component and inter—component communication primitives. PFAD is used as an intermediate language by

the FAD compiler to reflect decisions concerning the locations at which actions will be executed, and the

manner in which actions at different locations communicate. The similarity between FAD and PFAD elimi

nates the difficulty of translation to a very different language. A FAD program is partitioned into one or

more components and because the data is declustered, each one may be executed by the parallel system at

one or more IRs. A component may produce transient data which are used as input to other components.

Those transient data establish dataflow dependencies between components.

4. The FAD Compiler

The FAD compiler Va189] transforms a FAD program into a low—level object program that may be

executed on Bubba. Designing a FAD compiler is a challenging research project that combines compilation,

parallel processing and distributed query—optimization issues. A FAD program expresses a computation on

conceptual objects based on a centralized execution model and may use constructs such as set operators

that favor parallel computation. The compiled program accesses physical objects (actually stored in the

database) based on a parallel execution model with explicit intra—program communication.

The compiler performs static type checking, correct transformation and optimization of a FAD pro

gram. To achieve those functions, the compiler has precise and concise knowledge of the Bubba database

which includes schema (typing), statistics, cost functions and data placement information. Utilization of this

information leads to efficient low—level programs for execution on Bubba. Static type checking avoids ex

pensive run—time type checks while helping the FAD programmer to write correct programs. The compiler

will infer transient types when appropriate. The major characteristic of the compiler is to make a number of

crucial optimization decisions. The compiler optimizes a FAD program with respect to communication, disk
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access, main—memory utilization and CPU costs Va188]. Optimization may be biased towards minimizing

response time or total work. The. latter is more suitable to maximize throughput.

The compiler comprises four subsequent phases: static type checking (type inferencing and type as

signment), optimization, parallelization, and object—code generation. The optimization decisions are con

veyed using FAD (e.g., filter ordering) and annotations to be used by the next compilation phases.

The parallelizing approach is to use a dataflow analysis to flag potential correctness problems that may

arise when parallelizing a FAD program, followed by the heuristic application of several parallelization

techniques that provide a tradeoff space between conservative (and always correct) and speculative (and

sometimes correct) options. Selection of a parallelization technique in a given instance is influenced by

several factors: 1) correctness, using the dataflow—analysis results; 2) performance, using input from the

optimizer when available; and 3) performance, using a heuristic evaluation of a search tree of possibilities

when input from the optimizer is unavailable or irrelevant because of correctness constraints

5. Analysis Techniques for Parallelizing FAD

The parallelizer (see Har88] for more details) transforms a FAD program into an equivalent PFAD

program. It does most of its work incrementally with a local viewpoint. Because of the complexity of the

input and output languages and aggressiveness of the techniques used, and similar to the problem that this

local viewpoint may produce locally optimal decisions, but not globally optimal, there are some correctness

issues discussed below such that this local viewpoint may produce only locally correct decisions. So the

parallelizer needs to pursue alternate translations.

The parallelizer explores a search tree whose nodes are possible translations (PFAD programs). The

root of the search tree is a trivial translation which is simple and guaranteed correct, but only minimally

parallel. It generates a centralized PFAD program which retrieves all needed persistent data at the IRs it is

stored on, sends it to a single central IR, executes all the operations from the FAD program at that central

IR, sends all persistent data updates back to the IRs it is stored on, and performs the updates there.

Successor nodes are incremental transformations from their parents, generated using a set of strategies

(they generate the choices in the search tree). The optimizer uses heuristics to explore the search tree.

Because of the problems discussed below, the choices must also be checked; the parallelizer uses a set of

analyses to check the choices.

The strategies generally involve moving another increment through the program and transforming it so

that some (more) operations will be executed in parallel at the IRs which hold some persistent data, rather

than at the central IR. Then any data the operations need, but is not already at those IRs, must be sent to

those IRs. For example, consider a FAD program for the relational algebra expression: T t’< S 1~1 o R.

The parallelizer translates this to the centralized PFAD program in which relations R, S, and T are retrieved

from the IRs they are stored on and sent to a central IR, where the select and the two joins are performed.

(There are no updates to send back.) Then the parallelizer considers executing the select at IRs other than

the central IR. In general, the set of IRs holding data from relation R is a good choice. So now there are

two possible translations. The parallelizer proceeds as illustrated in Figure 2; the select at R, joini at 5, and

join2 at T is the resulting translation.

But there are several possible problems. One is to determine whether the operations involved make

sense to be run in parallel, with the data that they will be getting at run time. Others are to determine what

data the operations need, to parallelize operations that are sequentialized in the input FAD program, to
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select at central

joini at central

join2 at central

select at R

join 1 at central

join2 at central

I select at A select at A select at A

jjoinl at A joini at S joinl at hash—join
Ljoin2 at central join2 at central join2 at central

select at A select at A 1 select at R

joinl at S joini at S I joini at S

join2 at S join2 at T J join2 at hash—join

Figure 2: Search Tree Example

handle updates to aliases and non—local objects, and to emulate global object identity using only local object

identity.

5.1 Abstract Evaluation

The analyses that check the problems discussed above are based on abstract evaluation (called sym
bolic or abstract interpretation elsewhere), a tool for reasoning about a program at compile—time. It ab

stracts the domain of data that the programs execute on, and then evaluates the program using that abstrac

tion. The particular abstraction is based upon the particular program properties we wish to reason about.

The results of the abstract evaluation tell us something about the program, specifically whether the transfor

mations are correct and how they might be corrected if not.

The analyses are data—distribution (DD) analysis and object—sharing (OS) analysis. A data—distribu

tion analysis checks whether operations make sense to be run in parallel, with the data that they will be

getting at run time. An object—sharing analysis checks the others.

5.2 Data—Distribution Analysis

The motivation for a data—distribution analysis is best illustrated with the following FAD program:

prog()

let x f()

in if p(x) then g(x) else h(x)

If the “if—then—else” executes at several IRs, then “x” might have different values at different IRs,

meaning “p(x)” might have different values at different IRs, meaning that “g(x)” might be executed at

some IRs and “h(x)” might be executed at other IRs. While this might give us equivalent (to the non—par

allel program) results, we cannot say for sure when it will and when it will not. So the data items used by an

if—part must be the same or “wholly” present at each IR executing the if—part.

An abstract evaluation of data—distribution (DD) determines this. Before we describe DD, we define

two terms. With respect to a PFAD data item, placed means that (1) if the data item is an atom, then the
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atom’s value can be considered with respect to the database relation’s declustering function for the JR it is

on; (2) if the data item is a tuple, then the tuple contains an attribute that is an atom and is placed; or (3) if

the data item is a set, then each data item in the set is an atom or tuple and is placed. With respect to a

PFAD data item, placed correctly means that the data item is placed and the atom’s value involved agrees

with the database relation’s declustering function for the IR it is on. There are six DD values.

W whole item. The whole data item is present at each IR, and either it is placed correctly or there

is only one IR containing the data item. It does not contain duplicates.

W~, whole item, wrong place. The whole data item is present at each IR, but it is not placed cor

rectly. It does not contain duplicates.

D distributed item. The data item is a set, is placed correctly, and is fragmented over more than

one JR. It does not contain duplicates.

D~ distributed item, wrong place. The data item is a set, is placed but not correctly, and is frag

mented over more than one JR. It does not contain duplicates.

DwDdistributed item, wrong place, with duplicates. The data item is a set, is placed but not correctly

and is fragmented over more than one IR. It may contain duplicates.

0 other. This is anything else and means useless data.

The operations on DD correspond to FAD operations. As an example, consider the “if—then—else” in

the above FAD program. If the DD of “p”, “g”, and “h” were all “W”, then the DD of the “if—then—else”

would be “W”. If the DD of “p”, “g”, and “h” were “W”, “D”, and “Dw”, respectively, then the DD of

the “if—then—else” would be “DW”.

5.3 Object—Sharing Analysis

When a data item is updated, and that data item aliases another data item (possibly at another JR),

the update must be performed on the proper JR. This is done by either placing the update so that it is

executed at the IR where the data is, or by placing the update somewhere else, but also placing a compen

sating update so that it is executed at the IR where the data is.

An abstract evaluation of object sharing is used to determine this. Let P be the set of paths to objects

in FAD. For example, “db.D1” is the path to the database relation “db.Dl”, “db.D1@1” is the path to

the element of “db.Dl” with the key “1”, and “db.D1@1.wage” is the path to the wage of the element of

“db.D1” with the key “1”. The paths form a partial order. For example, “db.D1” includes the object

“db.D1@1” which includes the object “db.D1@i .wage”. Unnamed objects are not a problem because they

cannot be aliased.

The operations on paths correspond to the FAD operations. For example, the OS of the union of two

sets of objects is the union of the objects in the two sets. The OS of the difference of two sets of objects is

the set of objects in the left argument.

Aliases are also kept track of. For example, if the variable “x” aliased the object “db.D1@1”, then

the OS for “x” is “x=db.Di@?1 “. This object—sharing information determines the data needed by the opera

tions and the operations which may be parallelized. Further, when an object is updated, it and all the

objects it aliases are marked as updated with a subscript “u”. For example, if the variable “x” above was
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