
MARCH 1989 VOL. 12 NO. 1

a quarterly bulletin of the

IEEE Computer Society

technical committee on

Data
eeri

CONTENTS

Letters to the TC Members 1

S. Jajodia and W. Kim (issue editors), and Larry Kerschberg (TC Chair)

Adding Intra—Transaction Parallelism to an Existing DBMS: Early Experience 2
R. Lone, J. Daudenarde, G. Hallmark, J. Stamos, and H. Young

Parallelizing FAD Using Compile—Time Analysis Techniques 9
B. Hart, P. Valduriez, and S. Danforth

JAS: A Parallel VLSI Architecture for Text Processing 16
0. Fnieder, K.C. Lee, and V. Mak

Parallel Query Evaluation: A New Approach to Complex Object Processing 23
T. Haerder, H. Schoning, and A. Sikeler

Multiprocessor Transitive Closure Algorithms 30
R. Agrawel, and H.V. Jagadish

Exploiting Concurrency in a DBMS Implementation for Production Systems 37

L. Raschid, T. Se//is, and C. Lin

Checkpointing and Recovery in Distributed Database Systems 44

S. Son

Robust Transaction—Routing Strategies in Distributed Database Systems 51

V. Lee, P. Vu, and A. Leff

Sharing the Load of Logic—Program Evaluation 58

0. Wolfson

SPECIAL ISSUE ON DATABASES FOR

PARALLEL AND DISTRIBUTED SYSTEMS

+ flE II5TflWE ~ ~ECT~M

NC ELEC1~S ENOI€E~. IC

IEEE

IEEE Computer Society

Editor-In-Chief, Data Engineering
Dr. Won Kim

MCC

3500 West Baicones Center Drive

Austin, TX 78759

(512) 338—3439

Associate Editors

Prof. Dma Bitton

Dept. of Electrical Engineering
and Computer Science

University of lilinois

Chicago, iL 60680

(312) 413—2296

Prof. Michaei Carey
Computer Sciences Department

University of Wisconsin

Madison, WI 53706

(608) 262—2252

Prof. Roger King

Department of Computer Science

campus box 430

University of Colorado

Bouider, Co 80309

(303) 492—7398

Prof. Z. Moral Ozsoyoglu
Department of Computer Engineering and Science

Case Western Reserve University
Cleveland, OhIo 44106

(216) 368—2818

Dr. Sunhl Sarin

Xerox Advanced Information Technology
4 Cambridge Center

Cambridge, MA 02142

(617) 492-8860

Chairperson, TC

Prof. Larry Kerschberg
Dept. of Information Systems and Systems Engineering
George Mason University
4400 University Drive

Fairfax, VA 22030

(703) 323—4354

Vice Chairperson, TC

Prof. Stefano Ceri

Dipartimento di Matematica

Universita’ di Modena

Via Campl 213

41100 Modena, italy

Secretary, TC

Prof. Don Potter

Dept. of Computer Science

University of Georgia
Athens, GA 30602

(404) 542—0361

Past Chairperson, TC

Prof. Sushli Jajodia
Dept. of Information Systems and Systems Engineering
George Mason University
4400 University Drive

Fairfax, VA 22030

(703) 764—6192

Distribution

Ms. Lori Rottenberg
IEEE Computer Society
1730 Massachusetts Ave.

Washington, D.C. 20036—1903

(202) 371—1012

The LOTUS Corporation has made a generous donation to partially offset the cost of

printing and distributing four issues of the Data Engineering bulletin.

Database Engineering Bulletin is a quarterly publication of

the IEEE Computer Society Technical Committee on Database

Engineering .
its scope of interest includes: data structures

and models, access strategies, access control techniques,
database architecture, database machines, intelligent front

ends, mass storage for very large databases, distributed

database systems and techniques, database software design
and implementation, database utilities, database security
and related areas.

Contribution to the Bulletin Is hereby solicited. News items,

letters, technical papers, book reviews, meeting previews,

summaries, case studies, etc., should be sent to the Editor.

All letters to the Editor will be considered for publication
unless accompanied by a request to the contrary. Technical

papers are unrefereed.

Opinions expressed In contributions are those of the mdi

vidual author rather than the official position of the TC on

Database Engineering, the IEEE Computer Society, or orga

nizations with which the author may be affiliated.

Membership In the Database Engineering Technical Com

mittee Is open to individuals who demonstrate willingness to

actively participate in the various activities of the TC. A

member of the IEEE Computer Society may Join the TC as a

full member. A non-member of the Computer Society may

Join as a participating member, with approval from at least

one officer of the TC. Both full members and participating
members of the TC are entitled to receive the quarterly
bulletin of the TC free of charge, until further notIce.

From the Issue Editors

Sushil Jajodia and Won Kim

On December 5—7, 1988, an IEEE—sponsored symposium named the International Symposium on Da

tabases for Parallel and Distributed Systems was held in Austin, Texas. The symposium was an attempt

to encourage interested professionals to focus their research on extending the technology developed

thus far for homogeneous distributed databases into two major related directions: databases for paral

lel machines and heterogeneous distributed databases.

We selected seven papers from the symposium, and added two new papers to form this special issue

on Databases for Parallel and Distributed Systems. The selection of papers in this issue was based on

our decision to maximize the breadth of research topics to be introduced to the readers. We regret

that we did not have enough space to include a paper on heterogeneous databases. The papers

selected from the symposium had to be condensed because of page limits on our bulletin. The inter

ested reader may obtain the proceedings of the symposium from IEEE for a broader perspective on

this area.

Adding Intra—Transaction Parallelism to an Existing DBMS: Early Experience by Lone, et. al., and Paral

lelizing FAD Using Compile—Time Analysis Techniques by Hart, et. al. describe approaches to exploit

parallelism in databases in two major research efforts in parallel database machines. Friecler, et. al.

describe a text—retrieval subsystem which uses a parallel VLSI string—search algorithm in JAS: A Paral

lel VLSI Architecture for Text Processing.

Parallel Query Evaluation: A New Approach to Complex Object Processing by Haerder, et. al., and

Multiprocessor Transitive Closure Algorithms by Agrawal and Jagadish discuss issues in exploiting par

allelism in operations involving complex data structures, namely, complex objects and transitive clo

sures, respectively. Exploiting Concurrency in a DBMS Implementation for Production Systems by Ras

chid, et. al. describe parallelism in a database implementation of a production system. In Checkpoint

ing and Recovery in Distributed Database Systems, Son outlines an approach to checkpointing in dis

tributed databases and its adaptation to systems supporting long—duration transactions.

Robust Transaction—Routing Strategies in Distributed Database Systems by Lee, et. al., and Sharing the

Load of Logic—Program Evaluation by Wolfson discuss approaches to load sharing in distributed and

parallel systems.

The authors who contributed papers to this issue were very prompt in meeting our tight deadlines; they

were all very professional. The printing and distribution of this issue has been made possible by a

generous grant from the Office of Naval Research.

From the TC Chairman

Larry Kerschberg

I am pleased to welcome Don Potter as Secretary of our TC. Further, on behalf of our TO, I want to

congratulate John Canlis, Richard L. Shuey and their team on the excellent organization and program

of the Fifth International Conference on Data Engineering, held February 6—10, 1989 at the Los Angeles

Airport Hilton and Towers. Over 315 people attended the conference.

1

Adding Intra-transaction Parallelism to an Existing DBMS:
Early Experience

Raymond Lone, Jean-Jacques Daudenarde

Gary Hallmark, James Stamos, Honesty Young

IBM Almaden Research Center, San Jose, CA, 95120-6099, USA

Abstract: A loosely-coupled, multiprocessor backend database machine is one way to construct

a DBMS that supports parallelism within a transaction. This software architecture was the ba

sis for adding intra-transaction paralielism to an existing DBMS. The result is a configuration

independent system that should adapt to a wide variety of hardware configurations, including
uniprocessors, tightly-coupled multiprocessors, aud loosely-coupled processors. This paper evalu

ates our software-driven methodology, presents the early lessons we learned from constructing an

operational prototype, and outlines our future plans.

1 Jntroduction

A database machine based on multiple processors that share nothing is one way to provide the

functionality of a conventional DBMS. Proponents of the loosely-coupled approach claim such an

architecture can achieve scalability, provide good cost-performance, and maintain high availabil

ity DGG*86,DHM86,NecS7,Tan87]. Current database machine activity, both in the lab and in

the marketplace, is often driven by an emphasis on customized hardware or software. Although
hardware and software customizations may improve performance, they reduce the portability and

maintainability of the software, increase the cost of developing the system, and reduce the leverage
one gets by tracking technology with off-the-shelf hardware and software.

We believe the costs of customization outweigh the performance benefits and have taken a

software-driven approach to database machine design that focuses on intra-transaction paralielism.
Our approach is to make minimal assumptions about the hardware; design the DBMS for a generic
hardware configuration; support intra-transaction parallelism; and show how to map the system

to particular hardware configurations. To test our beliefs we are prototyping a configuration-

independent relational DBMS that is applicable to individual uniprocessors, to tightly-coupled

multiprocessors, and to loosely-coupled multiprocessors. We intend to use simulation, modeling,
and empirical measurements to evaluate this approach to database machine design.

The rest of the paper is structured as follows. Section 2 discusses parallelism in the context of a

DBMS. Section 3 presents the goals of our project, which is calied ARBRE, the Almaden Research

Backend Relational Engine. Section 4 discusses the ARBRE design and shows how to apply it

to different hardware configurations. Section 5 compares ARBRE to existing work, and Section 6

presents and evaluates the research methodology used in the project. Section 7 relates our early

experiences and lessons from putting our methodology into practice. The last section describes the

current status of the ARBRE prototype and outlines future plans. Throughout the paper we shali

use the words transaction and query interchangeably.

2 Parallelism in a DBMS

Most currently available database systems have been implemented to run on a single processor and

use multiprogramming to support inter-transaction parallelism: while some transactions are waiting

2

for I/O’s, another transaction may execute CPU instructions. Tithe processor is a multiprocessor

system with N engines, then N transactions may execute CPU instructions simultaneously. Most

systems execute each transaction as a single thread and thus do not support intra-transaction

parallelism. Intra-transaction parallelism could be achieved by having multiple threads run on

behalf of the same transaction in order to reduce the response time for that transaction. On a

uniprocessor, the threads not waiting for I/O share the one processor. On a multiprocessor, several

processors could simultaneously execute the threads in parallel.

3 Goals

To gain insight into the costs and benefits of intra-transaction paralielism, we established four goals
for the AR,BRE project. First, we wanted to use parallel processing in a full-function, relational

DBMS to reduce the response time for a single data-intensive SQL request. This includes exploiting

parallel disk I/O and CPU-I/O overlap inside the request. Second, we wanted to be able to use

additional processors to reduce the response time further for data-intensive operations. Third,

we wanted to be able to use additional processors for horizontal growth to increase throughput.

Fourth, we wanted to maintain an acceptable level of performance for on-line transaction processing

(OLTP) environments.

To meet these goals we could first propose various hardware configurations with different num

bers of processors, different speeds, and different communication topologies and primitives. For each

configuration we could then design the most appropriate software organization. Such a methodol

ogy would be very time-consuming, especially if simulation and prototyping activities were needed

to evaluate and validate the various possibilities.
We instead designed the DBMS software to be independent of the hardware configuration, hop

ing to demonstrate that the approach is viable, and that the performance can be almost as good as

if the software had been customized for each hardware configuration—provided the communication

scheme has enough bandwidth, low latency, and reasonable cost.

Our intention is to reuse most of the code of a single-site relational DBMS with no parallelism

and to use several instances of such a DBMS to exploit intra-transaction parallelism. Each DBMS

instance is responsible for a portion of the database. It may execute on a private processor, or it

may be one of several instances sharing a large processor. We call the latter approach virtualization,

because each instance of the DBMS is associated with a virtual processor. Code to support the

distribution of functions must be added to the existing DBMS base under both approaches.

Since we are strictly interested in the parallelism issues, we are not trying to improve the

performance of local operations performed on a single processor. We accept current systems as

they are and assume that the hardware and software technology will improve with time.

4 System Overview

ARBRE is best viewed as being a multiprocessor backend database machine that is connected to

one or more hosts. Connections to local area networks are also possible. The interface to the

database machine is assumed to be at a sufficiently high level so that we can exploit parallelism

within a query and minimize the communication delays incurred by separating the backend database

machine from the host.

We discuss the ARBRE system in three steps. First, we present our assumptions about the

processor and communication hardware. Then we focus on the software and execution strategy.

Finally, we describe how to map ARBRE onto real hardware configurations.

3

4.1 A Generic Hardware Configuration

We assume, but do not require, that ARBRE runs on a loosely-coupled multiprocessor. The

hardware of this multiprocessor consists of a fixed number of processing sites interconnected by a

communication network that lets each pair of sites communicate. We make no further assumptions
about the network. Each site has its own CPU, memory, channels, disks, and operating system.

The sites run independently, share nothing, and communicate only by sending messages.

4.2 ARBRE Software and Execution Strategy

We assume every site runs the same software. Every site has one instance of the DBMS, and this

instance alone manages the data kept at that site. The data is partitioned horizontally RE78]:
each table in the relational model is partitioned into subsets of rows, and each subset is stored

at one site. The partitioning can be controlled by hashing or by key ranges. Key ranges can be

determined by the user, or can be derived automatically by the system as in Gamma DGG*86}.
ARBRE supports both local and global indexes. A local index contains entries for tuples stored at

the site containing the index. A global index is a binary relation associating a secondary key with

a primary key. That binary relation is itself partitioned as is any base table.

Since data is not shared, a site executing a request that involves data managed by another site

uses function shipping CDY86} to manipulate remote data. A function that returns a small amount

of data returns the result directly to the caller. For example, a function that fetches a unique tuple

or computes an aggregate function falls into this category. Other functions may return large sets

of tuples in the form of tuple streams. A tuple stream is a first-in-first-out queue whose head and

tail may reside at different sites.

The host runs the application program, which contains SQL calls to the database. Each call

to the database causes an asynchronous request in the host, so it is important to minimize the

interaction between the host and the backend database machine. Fortunately, relational queries

are at a high level and tend to return all and only the information requested. If host-backend

interaction is a problem, one simple way to reduce it is to have the host batch requests inside the

same transaction as long as no processing is done between requests. A more general approach is to

have the host batch requests from different transactions if the resulting increase in response time

is tolerable. Raising the level of the query language can also reduce host-backend interaction. For

example, the query language could express complex object fetch and recursion. The ultimate step

is to have the backend do general computation, and we have chosen this approach in our prototype

to give us maximum flexibility.
Before being executed the application program and the SQL statements it contains must be

compiled. The query compiler, which converts an SQL statement into a set of one or more compiled

query fragments, uses the database machine for interrogating the catalogs and storing the query

fragments.1 Some compiled query fragments are executed at one site, and other fragments are

sent to multiple sites and executed in parallel. One fragment is called coordinator fragment, and it

is responsible for coordinating the execution of the other fragments, which are called 3ubOrdiflate

fragments.
Each compiled query fragment is executed as a separate lightweight thread. Threads at the

same site or at different sites communicate by sending messages and by using tuple streams. When

the host sends a request to some site in the database machine, this site fetches the corresponding
coordinator fragment and executes it as a thread. This thread becomes the coordinator for the

transaction and receives all further calls the host sends on behalf of this transaction.

1The compiler can reside in the host or in the database machine; there are arguments in favor of both approaches,
but the final decision is irrelevant to the paper.

4

The coordinator uses function shipping to execute subordinate fragments. Each subordinate

fragment executes as a separate thread and generally involves one base table. To decide the site(s)
that execute a subordinate fragnent when that fragment involves a base table, the coordinator

consults the hashing function or key-range table that indicates how the table is horizontally parti

tioned.

How the results of an SQL statement are returned to the host depends on the expected size of

the results. If the amount of data produced by executing the query is small, the results are returned

to the coordinator which then assembles them and forwards them to the host. On the contrary, if

the amount of returned data is large, and if the data does not need to be combined with other data

in order to be returned to the host, we send it directly from each subordinate to the host without

involving the coordinator.

A dataflow approach, similar to the one used in Gamma and proposed in {BD82], controls the

simultaneous work of many query fragments on behalf of the same data-intensive transaction. Frag

ments may collectively produce a stream, send their substreams to others, receive the substreams

sent by others, and consume them. The communication software uses message buffering and a

windowing mechanism to prevent stream producers from flooding stream consumers.

When fragments must exchange large amounts of data, the communication may become a

bottleneck. One way to reduce communication is by a judicious choice of algorithms. For example,

a hash-based join works well in a distributed environment, but it requires sending practically both

tables on the network. We are also investigating other ideas such as the use of semi-join, the

possibility of completing a join in the host, and the use of algorithms that tolerate skewed data

access patterns.

4.3 Mapping Sites to Processors

Most database machine research projects and commercial products use the simplest mapping from

sites to processors: these systems devote an entire physical processor to each site. This approach

is also applicable to AUBRE. In this approach, each site has an operating system that supports a

single instance of the DBMS executing in its own address space. Each DBMS instance supports

multiprogramming for inter-transaction parallellsm, but it has no intra-transaction parallelism.

Intersite communication corresponds to interprocessor communication.

Alternatively, one can map several sites to a single processor. The processor then contains as

many instances of the DBMS as there are sites, and all the instances share a single copy of the

code. The same communication interface is used, but the implementation exploits fast memory-to-

memory transfer, rather than actual communication via a network, among sites that are mapped

to a single processor.

4.4 Other Issues

To keep our task manageable, we postponed detailed consideration of several important issues. In

particular, we examined the following issues only superficially: automatic query planning; catalog

management; management and replication of key-range tables; data replication and reorganization;

operational management of a large number of sites; and fault tolerance.

5 Related Work

Several projects, both in universities and industrial labs, are concerned with using multiple pro

cessors to improve performance of relational systems. Among the systems that are most com

parable to ARBRE are Gamma DGG*86], Tandem’s NonStop SQL2 product Tan87], and the

‘NonStop SQL is a trademark of Tandem Computers Incorporated.

5

DBC/lOl23machine built by Teradata Nec87]. All three systems use loosely-coupled general pur

pose processors, employ customized operating systems, and support one or more kinds of horizontal

partitioning and some degree of intra-transaction parallelism. The unusual features of these sys

tems are listed below. Gamma has diskless processors to add processing power for operations such

as joins. Tandem’s NonStop SQL is a stand-alone computing system that executes applications
and supports end users. There is no support, however, for intra-transaction parallelism except

for FastSort, which uses several processors for a single sort. Teradata’s DBC/1012 has a pro

prietary Ynet3, which implements reliable broadcast and tournament merge in hardware. The

DBC/1012 exhibits non-uniformity of processors: each processor module has specialized software

and controllers and is connected to different kinds of peripherals.
The ARBRE project differs clearly from these other systems on two accounts. First, ARBRE is

the only project we are aware of that is studying multiple mappings of logical sites onto real proces

sors. Second, unlike other multiprocessor backend database machines, AR.BRE tries to increase the

level of parallelism in the return of data to the host by avoiding the coordinator whenever possible.
Another feature of AILBRE is that no site is distinguished by having special hardware or special

software, at least at execution time.

6 Methodology

We chose a research methodology to support our main objective, which is to draw some conclu

sions, as quickly as possible, on the architecture of a configuration-independent parallel DBMS, its

feasibility, and its expected performance. As a result our methodology was designed around three

principles: (1) build an operational prototype by using sturdy components for the hardware, oper

ating system, and access method instead of constructing our own; (2) concentrate on the run-time

environment, postponing any development of the query compiler; and (3) complement the proto

type evaluation with simulation and modeling. The rest of this section discusses each principle in

turn.

We reused existing components rather than construct new specialized ones because the incre

mental benefits would not justify the cost of construction. We used a general purpose, existing

operating system (MVS) that supports multiple processes in a single address space. We also used

the low-level data manager and transaction manager in System It (B*8l}, an experimental relational

database management system. In addition, we used a prototype high-performance, interprocessor
communication subsystem (Spider) implemented by our colleague Kent Treiber. For hardware we

used brute force, relying on a channel-to-channel communication switch interconnecting multiple
IBM 4381 machines, which are midrange, System/370 mainframes.

We postponed the development of a query compiler and concentrated on query execution strate

gies that exploit parallelism without causing communication bottlenecks. We believe the develop
ment of a query compiler should be relatively straightforward once we have determined a repertoire
of good execution strategies. To support our investigation of execution strategies, we implemented

a toolkit of relevant abstractions. These abstractions fail into 4 categories: a generalization of func

tion shipping, virtual circuits and datagrams, single-table-at-a-time database access, and primitives

dealing with the horizontal partitioning of data. We used the same programming language (C++)
to implement these abstractions as we do to write compiled query fragments. This will make it easy

to migrate useful algorithms from query execution strategies into the database machine interface.

An operational prototype will give us enough information to drive simulations and validate the

results. First, we will instrument and measure a working environment. The information obtained

will then be submitted to a simulator to predict how the same workload will behave on different

3DBC/1012 and Ynet are trademarks of Teradata Corporation.

6

configurations. To obtain meaningful results we plan to record events produced by executing real

applications as well as those produced by executing synthetic workloads. From the event traces

we will determine data and processing skews and produce probability distributions that concisely
describe these skews. The probability distributions, and not the raw event traces, will drive the

simulations. Given our flexibility in mapping logical sites onto multiple configurations, we anticipate

valldating the simulation results on multiple physical configurations that are easy to produce.

Configuration independence has improved our programming and debugging productivity be

cause we do not work exclusively with the target hardware, operating system, access method, and

communication system. Most of the time we use an IBM RT PC running AIX, which is IBM’s

implementation of the UNIX operating system.4 We use a single address space on the ItT PC and a

simple, main-memory based access method to emulate a multiple site system. Almost all software

is developed and thoroughly debugged in this user-friendly environment before it is run on a target

system.

The following are drawbacks to our methodology: (1) The simulations are based on probability
distributions rather than actual data dependencies. (2) Simulation runs may be time consuming.
For this reason we plan to use modeling which, when validated with a more detailed simulation, may
be used to extrapolate our results to other configurations in much less time. (3) Our methodology
does not consider configuration-specific optimizations; these should be identified and studied inde

pendently. Nevertheless, we believe that these drawbacks are tolerable and that our methodology
is appropriate for gaining valuable insight into DBMS parallelism in a short time period.

7 Early Lessons

Over two years of preliminary research, design, and prototyping have taught us three things: good

building blocks are indispensable, language design is hard, and simulation has its limitations.

One lesson we learned is not to start from scratch even though software simplification because

of specialization is often highlighted as an important advantage of backend database machines. It

is less fruitful to spend time rewriting mature, highly-tuned code than it is to implement intra

transaction parallelism.
If you don’t start from scratch, you will most likely modify existing code, in which case it

is important to have modifiable software components. For example, the transaction manager we

used already had hooks for two-phase commit and distributed recovery, and adding a two-phase

commit protocol was straightforward. We have added message queues and timers to the DBMS

thread scheduler, and if we implement global deadlock detection we must be able to extract the

transaction waits-for graph from the lock manager.

A second lesson we learned is that language design is hard. We initially tried to design a custom

language for coding the query fragments, but discovered that language design without sufficient

experience in the domain of discourse is too slow and required too many iterations. Instead we

are using an existing programming language (C++) and have built a toolkit of useful abstractions.

The toolkit lets us experiment with algorithms without designing and freezing a language and its

interpreter. As we gain experience we will progressively develop our toolkit, using more predefined
constructs and less ad-hoc programming in the fragments. Eventually, a “language” will emerge

that succinctly expresses good execution strategies for query fragments. This language will be the

target of the query optimizer and compiler.
A third lesson we learned is that some interesting issues may be difficult to study in simulation.

We initially thought we could use the raw event traces in simulations of different hardware config
urations, but simulating the exact data dependencies would make the simulations too expensive to

4RT PC and AIX are trademarks of the IBM Corporation. UNIX is a trademark of the AT&T Corporation.

7

run. Instead, data dependencies and other nonuniformities will be approximated with probability
distributions.

8 Status and Plans

The prototype is operational on three interconnected dyadic-processor 4381 systems. Although we

have begun measuring the system for complex queries involving sorts and joins, the results are

too preliminary to be reported here. Suffice it to say that for a single data-intensive transaction

we have illustrated all aspects of parallelism. We used multiple sites on a single 4381 processor

(i.e., virtualization) to exploit I/O parallelism; we used multiple sites on tightly-coupled dyadic

processors to exploit CPU parallelism; and finally we used multiple sites on separate 4381 systems

to exploit loose coupling.
The prototype will be extremely useful as we begin to study issues that are inherent to DBMS

parallelism, including: the need for sophisticated parallel algorithms; load balancing and process

scheduling; and communication problems, such as convoys, network congestion, and deadlock.

We are also beginning to investigate query optimization and support for high rates of simple
transactions. Skewed data access patterns and a larger number of smaller processors will exacerbate

some of the above problems and may demand innovative solutions.

Our approach to DBMS parallelism, which distinguishes logical sites from physical proces

sors, is a promising approach that can adapt to different hardware configurations, different cost-

performance trade-offs, and different levels of required performance. We envision a single code

base that is applicable to a cluster of high-end mainframes as well as to a network of powerful

microprocessors.

References

B*81] M. W. Blasgen et al. System R: An architectural overview. IBM Systems Journal,

20(1):41—62, January 1981.

BD82J Haran Boral and David J. DeWitt. Applying data flow techniques to data base machines.

IEEE Computer, 15(8):57—63, August 1982.

CDY86] D. W. Cornell, D. M. Dias, and P. S. Yu. On multisystem coupling through function

request shipping. IEEE Transactions on Software Engineering, SE-12(1O):1006—1017,
October 1986.

DGG*86] David J. DeWitt, Itobert H. Gerber, Goetz Graefe, Michael L. Heytens, Krishna B.

Kumar, and M. Muralikrishna. Gamma—a high performance datafiow database ma

chine. In Proceedings of the 12th International Conference on Very Large Data Bases,

pages 228—237, August 1986.

DHM86J Steven A. Demurjian, David K. Hsiao, and Jai Menon. A multi-backend database system

for performance gains, capacity growth and hardware upgrade. In Proceedings of the

2nd International Conference on Data Engineering, pages 542—554, 1986.

Nec87J Philip M. Neches. The anatomy of a data base computer system. In Proceedings of the

2nd International Conference on Supercomputing, pages 102—104, 1987.

RE78] D. Ries and It. Epstein. Evaluation of Distribution Criteria for Distributed Database

Systems. UCB/ERL Technical Report M78/22, University of California—Berkeley, May
1978.

Tan87} The Tandem Database Group. Non-stop SQL, a distributed, high-performance, high

availability implementation of SQL. In Proceedings of the 2nd International Workshop

on High Performance Transaction Systems, September 28—30 1987.

8

PARALLELIZING FAD

USING COMPILE-TIME ANALYSIS TECHNIQUES

Brian Hart, Patrick Valduriez, Scott Danforth

Advanced Computer Architecture Program

Microelectronics and Computer Technology Corp.

Austin, Texas 78759

ABSTRACT

FAD is a database programming language with much higher expressive power than a query

language. FAD programs are to be executed efficiently on Bubba, a parallel computer

system designed for data—intensive applications. Therefore, parallelism inherent in a FAD

program must be automatically extracted. Because of the expressive power of FAD, tradi

tional distributed query—optimization techniques are not sufficient. In this paper, we pre

sent a general solution to the parallelization of FAD programs based on compile—time

analysis techniques.

1. Introduction

FAD Ban87, Dan89] is a strongly typed functional—programming language designed for manipulating

transient and persistent data within Bubba, a highly parallel database system Bor88] developed at MCC.

As a database programming language, FAD reduces the “impedance mismatch” of the traditional approach

that embeds a query language (e.g., SQL) into a programming language (e.g., C). The FAD data model

allows arbitrarily complex combinations of data structures based on atomic values, tuples, sets, disjuncts and

objects. 1n particular, referential object sharing KhoS7] is fully supported. FAD incorporates a blending of

proven concepts from the worlds of functional programming and relational databases. The result is a

strongly typed language with clean semantics whose implementation on Bubba directly benefits from pro

gress in both parallel processing and relational—database technology. To increase performance, FAD is

compiled into low—level code to be executed on the parallel database system.

The FAD compiler extracts parallelism inherent in (“parallelizes”) a FAD program by transforming it

into a set of communicating FAD subprograms, called components, which can be executed in a parallel

(SIMD or MIMD) fashion. The problems to be addressed are to determine the most efficient division of a

program into components and the most efficient location of their execution. Traditional distributed query—

optimization techniques serve as the basis for the compiler but these must be extended considerably due to

expressiveness of FAD. In particular, the use of object identity can create difficult aliasing problems. Also,

the presence of a number of powerful programming constructs, such as iteration and conditionals, adds

complexity. In this paper, we give a solution to these problems based on compile—time analysis techniques.

In this paper, we provide a short overview of the compile time analysis techniques employed for

parallelizing FAD. After an introduction of Bubba and of the most salient features of the FAD program

ming language, we focus on FAD parallelization which plays a central role in compiling FAD for execution

on Bubba.

9

2. Bubba

Bubba is a parallel computer system for data—intensive applications. Bubba is intended as a replace

ment for mainframe systems providing scalable, continuous, high—performance per—dollar access to large

amounts of shared data for a large number of concurrent application types.

Three constraints shape the problems to be addressed by Bubba: concurrent multiple workload types

on shared data, large databases, and high—availability requirements. Multiple workloads, particularly trans

action processing and knowledge—based searches for complex patterns, imply the need to support a power

ful programming language through a rich environment for program management and execution. Large data

bases imply minimization of data movement and thus program execution where the data lives. High—avail

ability requirements imply the need for redundancy and real—time fault recovery mechanisms.

Bor88] gives the rationale for picking the army of ants approach for the Bubba architecture. The

simplified hardware architecture is illustrated in Figure 1. Each node, called Intelligent Repository (IR),

includes one or more microprocessors, a local main memory (RAM) and a disk unit on which resides a

local database. Diskiess nodes are also used to interface Bubba with other machines. An JR is believed to be

“small” for two reasons: 1) they provide cheap units of expandibility and conversely, the loss of an IR is

likely to have little impact on overall performance, and 2) knowledge that IRs are “hefty” will lead to

attempts to exploit locality through clever physical—database design, thereby limiting the class of applications

for which Bubba would be useful.

The only shared resource is the interconnect which provides a message—passing service. Each JR runs

a copy of a distributed operating system which, among other things, provides low—level support for task

management, communication and database functions. In particular, local object identity is supported within

an JR but global object identity is not supported.

To favor parallel computation on data, the database consists of relations which are declustered across

IRs. Declustering is a placement strategy which horizontally partitions and distributes each relation across a

number of IRs. This number is a function of the size and access frequency of the relation Cop88]. The

basic execution strategy of Bubba is to execute programs where the data is Kho88] to avoid moving data.

Therefore, the degree of parallelism in an individual program is determined by the number of nodes the

data referenced by the program occupies.

High availability is provided through the support of two on—line copies of all data on the IRs as well as

a third copy on checkpoint—and—log IRs.

Figure 1: Simplified Hardware Organization of Bubba

10

3. FAD

The central ideas of FAD are relatively few: types, data, actions, and functions (action abstractions).
The FAD type system corresponds closely to that of an order—sorted algebra Dan88b]. A type in FAD

provides a domain of data, as well as functions for creating and performing actions on elements of that

domain. FAD data are distinguished between values and objects: only objects can be shared and updated

Kho87]. The structure of FAD data can be simple or complex (using constructors such as tuple, set and

disjunct). The term action is used to indicate a computation that accesses data, returns data, and may

change existing objects. Application of a function to its arguments denotes an action. Abstraction in FAD

allows the creation of user—defined first—order functions, actions that are parameterized with respect to the

data on which they act. In addition, FAD provides a fixed set of higher order functions, called action

constructors, for writing programs. These are operators that construct aggregate actions from actions, data,

and functions. A number of FAD action constructors are provided for operating on sets in a parallel fash

ion. The most important set—oriented action constructor is the filter statement, which applies a function in

parallel to each element of the Cartesian product of a number of sets to produce a new set, thus providing a

generalized select—project—join (SPJ) capability. Other action constructors are provided for set manipula

tion (group, pump), variable definition (let), conditional (if—then—else), iteration (whiledo), and control

(do—end, begin—end, abort).

FAD essentially provides Bubba users with a centralized execution model. Parallel FAD (or PFAD)

Har88] is an enhancement to the FAD language that captures aspects of the parallel execution model of

Bubba not visible in FAD. PFAD is an abstraction of Bubba that supplements FAD with the concepts of

component and inter—component communication primitives. PFAD is used as an intermediate language by

the FAD compiler to reflect decisions concerning the locations at which actions will be executed, and the

manner in which actions at different locations communicate. The similarity between FAD and PFAD elimi

nates the difficulty of translation to a very different language. A FAD program is partitioned into one or

more components and because the data is declustered, each one may be executed by the parallel system at

one or more IRs. A component may produce transient data which are used as input to other components.

Those transient data establish dataflow dependencies between components.

4. The FAD Compiler

The FAD compiler Va189] transforms a FAD program into a low—level object program that may be

executed on Bubba. Designing a FAD compiler is a challenging research project that combines compilation,

parallel processing and distributed query—optimization issues. A FAD program expresses a computation on

conceptual objects based on a centralized execution model and may use constructs such as set operators

that favor parallel computation. The compiled program accesses physical objects (actually stored in the

database) based on a parallel execution model with explicit intra—program communication.

The compiler performs static type checking, correct transformation and optimization of a FAD pro

gram. To achieve those functions, the compiler has precise and concise knowledge of the Bubba database

which includes schema (typing), statistics, cost functions and data placement information. Utilization of this

information leads to efficient low—level programs for execution on Bubba. Static type checking avoids ex

pensive run—time type checks while helping the FAD programmer to write correct programs. The compiler

will infer transient types when appropriate. The major characteristic of the compiler is to make a number of

crucial optimization decisions. The compiler optimizes a FAD program with respect to communication, disk

11

access, main—memory utilization and CPU costs Va188]. Optimization may be biased towards minimizing

response time or total work. The. latter is more suitable to maximize throughput.

The compiler comprises four subsequent phases: static type checking (type inferencing and type as

signment), optimization, parallelization, and object—code generation. The optimization decisions are con

veyed using FAD (e.g., filter ordering) and annotations to be used by the next compilation phases.

The parallelizing approach is to use a dataflow analysis to flag potential correctness problems that may

arise when parallelizing a FAD program, followed by the heuristic application of several parallelization

techniques that provide a tradeoff space between conservative (and always correct) and speculative (and

sometimes correct) options. Selection of a parallelization technique in a given instance is influenced by

several factors: 1) correctness, using the dataflow—analysis results; 2) performance, using input from the

optimizer when available; and 3) performance, using a heuristic evaluation of a search tree of possibilities

when input from the optimizer is unavailable or irrelevant because of correctness constraints

5. Analysis Techniques for Parallelizing FAD

The parallelizer (see Har88] for more details) transforms a FAD program into an equivalent PFAD

program. It does most of its work incrementally with a local viewpoint. Because of the complexity of the

input and output languages and aggressiveness of the techniques used, and similar to the problem that this

local viewpoint may produce locally optimal decisions, but not globally optimal, there are some correctness

issues discussed below such that this local viewpoint may produce only locally correct decisions. So the

parallelizer needs to pursue alternate translations.

The parallelizer explores a search tree whose nodes are possible translations (PFAD programs). The

root of the search tree is a trivial translation which is simple and guaranteed correct, but only minimally

parallel. It generates a centralized PFAD program which retrieves all needed persistent data at the IRs it is

stored on, sends it to a single central IR, executes all the operations from the FAD program at that central

IR, sends all persistent data updates back to the IRs it is stored on, and performs the updates there.

Successor nodes are incremental transformations from their parents, generated using a set of strategies

(they generate the choices in the search tree). The optimizer uses heuristics to explore the search tree.

Because of the problems discussed below, the choices must also be checked; the parallelizer uses a set of

analyses to check the choices.

The strategies generally involve moving another increment through the program and transforming it so

that some (more) operations will be executed in parallel at the IRs which hold some persistent data, rather

than at the central IR. Then any data the operations need, but is not already at those IRs, must be sent to

those IRs. For example, consider a FAD program for the relational algebra expression: T t’< S 1~1 o R.

The parallelizer translates this to the centralized PFAD program in which relations R, S, and T are retrieved

from the IRs they are stored on and sent to a central IR, where the select and the two joins are performed.

(There are no updates to send back.) Then the parallelizer considers executing the select at IRs other than

the central IR. In general, the set of IRs holding data from relation R is a good choice. So now there are

two possible translations. The parallelizer proceeds as illustrated in Figure 2; the select at R, joini at 5, and

join2 at T is the resulting translation.

But there are several possible problems. One is to determine whether the operations involved make

sense to be run in parallel, with the data that they will be getting at run time. Others are to determine what

data the operations need, to parallelize operations that are sequentialized in the input FAD program, to

12

select at central

joini at central

join2 at central

select at R

join 1 at central

join2 at central

I select at A select at A select at A

jjoinl at A joini at S joinl at hash—join
Ljoin2 at central join2 at central join2 at central

select at A select at A 1 select at R

joinl at S joini at S I joini at S

join2 at S join2 at T J join2 at hash—join

Figure 2: Search Tree Example

handle updates to aliases and non—local objects, and to emulate global object identity using only local object

identity.

5.1 Abstract Evaluation

The analyses that check the problems discussed above are based on abstract evaluation (called sym
bolic or abstract interpretation elsewhere), a tool for reasoning about a program at compile—time. It ab

stracts the domain of data that the programs execute on, and then evaluates the program using that abstrac

tion. The particular abstraction is based upon the particular program properties we wish to reason about.

The results of the abstract evaluation tell us something about the program, specifically whether the transfor

mations are correct and how they might be corrected if not.

The analyses are data—distribution (DD) analysis and object—sharing (OS) analysis. A data—distribu

tion analysis checks whether operations make sense to be run in parallel, with the data that they will be

getting at run time. An object—sharing analysis checks the others.

5.2 Data—Distribution Analysis

The motivation for a data—distribution analysis is best illustrated with the following FAD program:

prog()

let x f()

in if p(x) then g(x) else h(x)

If the “if—then—else” executes at several IRs, then “x” might have different values at different IRs,

meaning “p(x)” might have different values at different IRs, meaning that “g(x)” might be executed at

some IRs and “h(x)” might be executed at other IRs. While this might give us equivalent (to the non—par

allel program) results, we cannot say for sure when it will and when it will not. So the data items used by an

if—part must be the same or “wholly” present at each IR executing the if—part.

An abstract evaluation of data—distribution (DD) determines this. Before we describe DD, we define

two terms. With respect to a PFAD data item, placed means that (1) if the data item is an atom, then the

13

atom’s value can be considered with respect to the database relation’s declustering function for the JR it is

on; (2) if the data item is a tuple, then the tuple contains an attribute that is an atom and is placed; or (3) if

the data item is a set, then each data item in the set is an atom or tuple and is placed. With respect to a

PFAD data item, placed correctly means that the data item is placed and the atom’s value involved agrees

with the database relation’s declustering function for the IR it is on. There are six DD values.

W whole item. The whole data item is present at each IR, and either it is placed correctly or there

is only one IR containing the data item. It does not contain duplicates.

W~, whole item, wrong place. The whole data item is present at each IR, but it is not placed cor

rectly. It does not contain duplicates.

D distributed item. The data item is a set, is placed correctly, and is fragmented over more than

one JR. It does not contain duplicates.

D~ distributed item, wrong place. The data item is a set, is placed but not correctly, and is frag

mented over more than one JR. It does not contain duplicates.

DwDdistributed item, wrong place, with duplicates. The data item is a set, is placed but not correctly

and is fragmented over more than one IR. It may contain duplicates.

0 other. This is anything else and means useless data.

The operations on DD correspond to FAD operations. As an example, consider the “if—then—else” in

the above FAD program. If the DD of “p”, “g”, and “h” were all “W”, then the DD of the “if—then—else”

would be “W”. If the DD of “p”, “g”, and “h” were “W”, “D”, and “Dw”, respectively, then the DD of

the “if—then—else” would be “DW”.

5.3 Object—Sharing Analysis

When a data item is updated, and that data item aliases another data item (possibly at another JR),

the update must be performed on the proper JR. This is done by either placing the update so that it is

executed at the IR where the data is, or by placing the update somewhere else, but also placing a compen

sating update so that it is executed at the IR where the data is.

An abstract evaluation of object sharing is used to determine this. Let P be the set of paths to objects

in FAD. For example, “db.D1” is the path to the database relation “db.Dl”, “db.D1@1” is the path to

the element of “db.Dl” with the key “1”, and “db.D1@1.wage” is the path to the wage of the element of

“db.D1” with the key “1”. The paths form a partial order. For example, “db.D1” includes the object

“db.D1@1” which includes the object “db.D1@i .wage”. Unnamed objects are not a problem because they

cannot be aliased.

The operations on paths correspond to the FAD operations. For example, the OS of the union of two

sets of objects is the union of the objects in the two sets. The OS of the difference of two sets of objects is

the set of objects in the left argument.

Aliases are also kept track of. For example, if the variable “x” aliased the object “db.D1@1”, then

the OS for “x” is “x=db.Di@?1 “. This object—sharing information determines the data needed by the opera

tions and the operations which may be parallelized. Further, when an object is updated, it and all the

objects it aliases are marked as updated with a subscript “u”. For example, if the variable “x” above was

14

updated, then its OS would be “x~—db.DI@1~”. When an object is sent to another IR, it and all the

objects it aliases are marked as copied with a subscript “c” and a unique copy number. For example, if the

variable “x” above was sent to another IR, then its OS would be “Xc16=db.Dl@lcI6” (the “16” is an

example). If the variable “x” above was updated and sent to another IR, then its OS would be

“Xucj6=db.Dl@luc)6. If the variable “x” above was sent to another IR and updated, then its OS would

be “Xc16u=db.D1@lc]6u”, which determines that an aliased or non—local object is updated. We have

updated an object in the “wrong” place. This can be corrected by either placing the update so that it is

executed at the IR where the data is, or by placing the update somewhere else, but also placing a compen

sating update so that it is executed at the IR where the data is.

Another problem is “db.D1@lcl6db.D1@Icl?”, which means that we have the same objects

aliased twice, but by different copies of the same object, because global object identity is not emulated

faithfully. At run—time, these will be represented as different objects.

6. Status

The FAD compiler, including the parallelizer has been operational since November 1988, and work

continues on it. Bubba is being implemented on a 40—node Flexible Computers multiprocessor.

References

Ban87] F. Bancilhon, T. Briggs, S. Khoshafian, P. Valduriez, “FAD, a Simple and Powerful Database

Language”, mt. Conf. on VLDB, Brighton, England, September 1987

Bor88] H. Boral, “Parallelism in Bubba”, mt. Symp. on Databases in Parallel and Distributed Systems,

Austin, Texas, December 1988.

Cop881 G. Copeland, B. Alexander, E. Boughter, T. Keller, “Data Placement in Bubba”, ACM SIGMOD

mt. Conf., Chicago, Illinois, May 1988.

Dan89] S. Danforth, S. Khoshafian, P. Valduriez, “FAD, a Database Programming Language, Rev.3”,

MCC Technical Report DB—151—85, Rev.3, January 1989.

Har88] B. Hart, S. Danforth, P. Valduriez, “Parallelizing a Database Programming Language”, mt. Symp.

on Databases in Parallel and Distributed Systems, Austin, Texas, December 1988.

Kho87] S. Khoshafian, P. Valduriez, “Persistence, Sharing and Object Orientation: a database perspec

tive”, mt. Workshop on Database Programming Languages, Roscoff, France, September 1987.

Kho88] S. Khoshafian, P. Valduriez, “Parallel Execution Strategies for Declustered Databases”, Database

Machines and Knowledge Base Machines, Kitsuregawa and Tanaka Ed., Kiuwer Academic Publishers,

Boston, 1988.

Val88J P. Valduriez, S. Danforth, “Query Optimization in FAD, a Database Programming Language”,

MCC Technical Report ACA—ST—316—88, Austin, Texas, September 1988.

Va189] P. Valduriez, S. Danforth, T. Briggs, B. Hart, M. Cochinwala “Compiling FAD, a Database Pro

gramming Language”, MCC Technical Report ACA—ST—019—89, Austin, Texas, February 1989.

15

JAS: A PARALLEL VLSI ARCHITECTURE

FOR TEXT PROCESSING

0. Frieder, K. C. Lee, and V. Mak

Bell Communications Research

445 South Street

Morristown, New Jersey 07960-1910

Abstract. A novel, high performance subsystem for information retrieval called JAS is introduced. The

complexity of each JAS unit is independent of the complexity of a query. JAS uses a novel, parallel, VLSI string
search algorithm to achieve its high throughput. A set of macro-instructions are used for efficient query processing.
The simulation results demonstrate that a gigabyte per second search speed is achievable with existing technology.

1. Introduction

Many recent research efforts have focussed on the parallel processing of relational (formatted) data via the use of

parallel multiprocessor technology Bar88, Dew86, Goo8 1, Got83, Hi186, Kit84]. In Bar88], the use of dynamic
data redistribution algorithms on a hypercube multicomputer is described. The exploitation of a ring interconnection

is discussed in Dew86, Kit84]; modified tree architectures are proposed in Goo8l, Hil86]; and a multistage
interconnection network as a means of supporting efficient database processing is described in Got83]. However,

except for a few efforts Pog87, Sta86], relatively little attention has focussed on the parallel processing of

unformatted data.

For unformatted data, most of the previous efforts have relied on low-level hardware search support (associative
memory). Even the software approaches on parallel machines Pog87, Sta86] have relied on algorithms best suited

for low level enhancements. In Pog871, parallel signature comparisons were studied on the ICL Distributed Array
Processor (DAP) architecture, and Sta86] discusses the utilization of the Connection Machine for parallel searching.
Critical reviews of Sta861 are found in Sto87] and Sa188].

Associative-memory search architectures are based on VLSI technology. VLSI technology supports the

implementation of highly parallel architectures within a single silicon chip. In the past, hardware costs exceeded

software development costs. Thus, software indexing approaches were used to reduce the search time. Currently,
since the design and maintenance of software systems is more costly1 than repetitively structured hardware

components, using VLSI technology to implement an efficient associative storage system seems advantageous.
Furthermore, besides the cost differential, VLSI searching reduces the storage overhead associated with indexing (300

percent if word level indexing is used Has8l]) and can reduce the time required to complete the search.

Two critical problems associated with supporting efficient searching are the I/O bottleneck and the processor

incompatibility. The I/O bottleneck is the inability of the storage subsystem to supply the CPU with query-

relevant data at an aggregate rate which is comparable to the aggregate processing rate of the CPU. Processor

incompatibility is the inconsistency of the instruction set of a general-purpose CPU, e.g., add, subtract, shift, etc.;

and the needed search primitives, e.g., compare two strings masking the second, sixth, and eleventh character. To

remedy these problems, special-purpose VLSI processing elements called data filters have been proposed Cur83,

Has83, Ho183, Pra86, Tak87]. The search time is further reduced by combining multiple data filters on multiple
data streams to form a virtual associative storage system. Thus, the advantages of an associative memory can be

exploited without incurring the associated costs.

With the continued growth of unformatted, textual databases2, a large virtual associative memory should be

based on unconventional I/O subsystems and very high filtering rates to continue supporting adequate response

times. Currently proposed filtering rates have hovered at roughly 20 MBytes per second. We propose an I/O

subsystem called JAS, with filtering rates comparable to the next-generation optical disks and/or silicon memory

systems. JAS consists of a general-purpose microprocessor which issues the search and control instructions that the

multiple VLSI data filters execute. Only the portion of data that is relevant to the query, e.g., related documents in a

text database environment, are forwarded to the microprocessor. In this paper, we discuss the design and usage of a

parallel VLSI text data filter to construct a subsystem for very large text database systems.
The remainder of this paper is organized as follows. Section 2 briefly describes the JAS architecture. A

description of the Data Parallel Pattern Matching (DPPM) algorithm, which forms the basis for the design of our

1 We measure cost in terms of both fmances and human effort.

2 The legal database Lexis is estimated at over 125 GBytes of information Sta86]. It is reported that information retrieval

databases have been growing at a rate of 250,000 documents per year Ho1791.

16

data filter, is presented in Section 3. A performance study of the JAS system is presented in Section 4. Section 5

concludes this paper with a discussion of the JAS system.

2. JAS System Architecture

Customized VLSI filters are used to ‘perform high-speed subsiring-search operations. The novel string-search
algorithm used in JAS improves the search speed by an order of magnitude as compared to prior CMOS filter

technology (e.g., Tak87]). We decouple the substring-search operation from high level predicate evaluation and

query resolution. Thus, complex queries can be evaluated but do not nullify the simplicity and efficiency of the

search hardware.

A lAS system is comprised of a single “master” Processing Element (PE) controlling a set of gigabyte per

second “slave” Substring Search Processors (SSPs). While previously proposed text filters Cur83, Has83, Tak87]
evaluate complex queries via integrated custom hardware, in lAS the predicate evaluation and query resolution is

decoupled from the primitive substring-search operations. A complex query is decomposed by the PE into basic

search primitives. In Cur83, Has83], complicated circuitry is required to support state transition logic and partial
results communication for cascaded predicate evaluation. In JAS, since the complexity of an individual query is

retained at the PE level, and only a substring-match operation is computed at the SSPs, only simple comparator
circuitry is required.

Figure 1 demonstrates the processing of a query within a JAS system. Each PE forwards a sequence of patterns
to its associated SSPs. Each SSP compares the data against a given pattern: one pattern per SSP; multiple SSPs

per PE. Whenever a match is detected at a given SSP, the document Match ID (MID) consisting of the address of

the match (Addr), the document identifier (Doc_ID), and the query id (Que_ID) is forwarded to the PE. Once the MID

reaches the PE, the actual information-retrieval instruction which was decomposed to generate the match is evaluated,
and if relevant, the results are forwarded to the host

Table I presents the match-based JAS PE macro-instruction set and the match sequence which implements each

of the lAS instructions. The JAS instruction set is based on the text-retrieval instruction set presented in Hol83].
In the table, the leftmost column presents the actual instruction. A semantic description of the instruction is

provided in italics followed by the control structure implementing the instruction. As seen in Table I, the entire

text-retrieval instruction set, including the variable-length separation match instruction, “A .n. B”, which can not

be efficiently implemented directly via FSA, cellular, or CAM&SLC implementations, can be implemented via a

coordinated sequence of substring-search primitives. Several clarifications are required. It is assumed that the

evaluation of each sequence of subinstructions terminates upon encountering an end-of-document indicator

(END_OF_DOC). The match(set of strings) instruction returns true whenever a match is detected. False is

returned once detecting an END_OF_DOC. Type(match(strings)) returns the pattern type of the match.

Address(match(A)) returns the starting address of the match. If no match is encountered before END_OF_DOC, the

function returns default. Note that the match instructions “hang” until a match or END_OF_DOC is encountered.

The pseudocode provided is for explanation purposes. For better performance, many optimization are possible. In

all instructions, pattern overlap is forbidden. For queries comprised of multiple text-retrieval instructions, several

sequences of substring search primitives must be employed.
The internal JAS control structure, PE to SSPs, is similar to that of the Query Resolver to Term Comparator of

the PFSA system Has83]. In the JAS system, however, the PE is responsible for the actual evaluation of

information-retrieval instruction (a sequence of match primitives - see table I); whereas in the PFSA system, the

Query Resolver is involved in the evaluation of the overall query (a sequence of information retrieval instructions).

3. Substring Search Processors

In examining prior work Cur83, Fos8O, Has83, Mea76, Pra86, Tak87], we found that the search speeds of

existing approaches are all constrained by the single-byte comparison speed of the implementation. Further, we
observed that prior approaches typically exhibit great percentages of redundant comparisons. Recognizing the byte-
comparison upper bound for sequential algorithms and realizing the importance of early detection of the mismatch

condition, we have designed a Data Parallel Pattern Matching (DPPM) algorithm to be executed at each SSP. The

DPPM algorithm broadcasts the target pattern one character at a time, comparing each character against an entire

input block in parallel. Each block consists of K bytes- one byte per comparator. The simultaneous processing of

an entire input block from input string W differs from the systolic array, cellular array, and finite-state automata

approaches which operate on W on a byte-by-byte basis. Rather than broadcasting the input data to many

comparators, DPPM broadcasts the characters in pattern Q one by one into all the comparators on a demand-driven

basis. A mismatch-detection mechanism, which inputs a new block immediately upon detecting a mismatch, is used

to improve the throughput achievable for siring searching.
For example, a match of q~ of pattern Q with an element of the current block of W will trigger the loading

into position j + 1 and comparison with q2 of the next target character. Subsequent comparison outputs (in this

case, q~ with W~ + i) are ‘and’ed with the previous results, in parallel, to generate new comparison results. The

previous results are shifted one position before the ‘and’ operation to emulate the shifting of the input string. If q1,

q2, q3, qh match Wj~ Wj + 1, Wj + 2’ Wj + h - 1’ respectively, then a full match has occurred. On

17

the other hand, if, after any comparison cycle (the broadcast of qj, and the ‘and’ of the current results with the past

history), all the comparison results are zero and no partial-match iraces generated from the previous input block are

waiting, an early-out flag will be set to indicate that further comparison of the current block of W is unnecessary.

On detection of the early-out flag, the next block of input data is loaded and the search operation restarted from

the first byte of the pattern. Thus, redundant comparisons are eliminated. In our example, ~f q~ fails to match any

element of the current block of W, then the next block is fetched and loaded immediately. In practice, only the first

one or two characters in Q usually need to be tested against the current block of W; a block size of 16 characters

yields roughly an order of magnitude speedup in search throughput over traditional sequential algorithms, assuming
the same comparator technology.

Figure 2 illustrates the algorithm via a concrete example. Assume that a 4-byte comparator array is used, the

pattern to be detected is “filters” and the incoming input stream is “file,filters”. After “file” is compared with the

first character of the pattern string, “f’, a partial match trace is initiated and the next pattern character is compared

against the same input string block. This process continues until the comparison on the fourth pattern character

generates a mismatch. An early-out flag is set, and a new input block is retrieved to resume the search process. It is

necessary to temporarily store the comparison result of the rightmost comparison in register V(i) since the generated
result represents a partial match. This temporary result is used as a successfuVunsuccessful partial match indicator

for the comparison of the next input block. The next block to be loaded is “, fil”, and the pattern matching process

resumes. This trace crosses over the input block boundary and continues until it reaches the end of the pattern

string. This time, the V(i) register is marked with a partial-match success indicator. Eventually, the last character of

the pattern is compared, and the HIT flag is set. Note that if multiple occurrences of the pattern are overlapped
within the input stream, all occurrences will be detected, as shown in figure 3. In figure 3, the pattern to be matched

is “fifi” and the input stream is “XfififiX”. As shown, both the patterns starting at position 2 and position 4 are

detected.

The DPPM algorithm has several notable characteristics. First, the mismatch-detection capability reduces

redundant comparisons, increasing throughput significantly. The throughput achieved by the parallel algorithm
reduces the need for expensive high speed GaAs or ECL devices. Second, the parallel execution of the algorithm
detects all occurrences of partial matches; therefore no backup is required in either the pattern or the input data.

Three critical implementation aspects of the DPPM engine are the realization of the comparator array, the

required high pattern broadcast rate, and the chip input ports. The propagation delay of the comparator array is

proportional to the log of the number of inputs into the array. Therefore, the comparator array supports high

comparison rates, even when it includes many comparators. The pattern characters are broadcast by Cascade Buffers

Wes85] via the double-layer metal runs to minimize the propagation delay. Using input-buffer design similar to

Cha87] would allow very high-speed communication between the storage devices and the chip.

4. JAS Performance Evaluation

To evaluate the performance of the SSP, a functional simulator was written for measurement on an existing
database at Belicore. The 3.7 MBytes database consists of abstracts of 5,137 Bellcore technical memoranda with

topics from communications, computer science, physics, devices, fiber optics, signal processing, etc.. One hundred

different patterns were evaluated. Each set of 25 patterns were randomly selected by sampling vocabulary from each

of four disciplines: linguistics, computer science, electrical engineering, and device physics. The selected patterns

represent typical keywords commonly encountered in queries to the database. A list of the 100 sample patterns is

presented in Appendix A. The pattern lengths vary from 3 to 14 with an average of 7.34 characters. The starting
character of the patterns were roughly uniformly distributed among the 26 English case-insensitive characters.

The patterns were used as inputs to the simulator which measured and collected the number of comparisons used

for each pattern in searching the database. Figure 5 shows the average number of comparison cycles per block, C, at

different block sizes, from 1 to 1024. For all block sizes tested, C is less than 3.2 despite an average pattern length
of 7.34 characters. At a block size of 1, the DPPM algorithm degenerates to a sequential comparison. As the block

size increases, the chance of matching the pattern also increases, and thus requires more comparison cycles.

Figure 6 shows the histogram of the number of comparison cycles used for the pattern “processor” at a block

size of 16. 71% of all blocks require only one comparison, and 93% require two or fewer comparisons. The early
mismatch detection of the DPPM algorithm is effective in eliminating redundant comparisons. From the simulation

experiment, it is observed that the average number of comparison cycles used is almost independent of the pattern

length, but rather depends on how frequently the first character in the pattern appears in the database. Patterns

starting with “a”, “e”, “s”, and “t” require more comparison cycles, while patterns starting with “x” and “z” always

require fewer, regardless of the pattern length.
The filter rate of the SSP is defined as the number of bytes that can be searched in one second, and can be

computed as

Block Size
Filter Rate =

C x (Cycle Time)

18

Using 50 ns as the cycle time, the filter rates at different block sizes are shown in Figure 7. AL a block size of

16, the filter rate is 222 MBytes per second. This has already exceeded the predicted optical disk transfer rate of 200

MBytes per second and existing memory bandwidth of supercomputers (CRAY, CDC). At a block size of 128, the
filter rate reaches 1.2 GBytes per second. Figure 8 shows the speedup at different block sizes which is defined as

Filter Rate at Block Size K
Speedup = _____________________________

Filter Rate at Block Size 1

The speedup curve shows that the DPPM algorithm exhibits a high degree of parallelism, thus speedup can be
achieved effectively by just increasing the block size. Since the predicate evaluation and query resolution are

performed at the PE, only very simple comparators and control circuitry are required in each SSP.

5. Conclusion

We presented an information retrieval subsystem called JAS. JAS incorporates several novel features. In JAS,
instructions are decomposed into substring-match primitives. The decomposition of the individual instructions into
search primitives provides a high degree of flexibility, several storage and retrieval schemes that can be efficiently
supported, independence of the query complexity, and easy implementation of previously difficult instructions such
as “A.n.B “.

In conjunction with the decomposition of instructions, a novel Data Parallel Pattern Matching (DPPM)
algorithm and its associated Substring Search Processor (SSP) is proposed. In contrast to previous approaches, the
DPPM algorithm operates on an input block (instead of byte) at a time and incorporates an early mismatch-detection
scheme to eliminate unnecessary comparisons. The SSP, a hardware realization of the DPPM algorithm,
demonstrates the feasibility of a gigabyte-per-second search processor. A simulation study of the SSP was described.
The study demonstrated the potential for very high-speed text filtering.

References

Bar88] Baru, C. K. and Frieder, 0., “Database Operations in a Cube-Connected Multicomputer System”, to

appear in the IEEE Transactions on Computers.
Cha87] Chao, H. I., Robe, T. J., and Smoot, L. S., “A CMOS VLSI Framer Chip for a Broadband ISDN Local

Access System”, Proceedings of the 1987 VLSI Circuits Symposium, May, 1987.
Cur83] Curry, T. and Mukhopadhyay, A., “Realization of Efficient Non-Numeric Operations Through VLSI”,

Proceedings of VLSI ‘83, 1983.

Dew86] DeWitt, D. J., et. al., “GAMMA - A High Performance Dataflow Database Machine,” Proceedings of
the Twelvth Int’l Conf on Very Large Data Bases, pp 228-237, 1987.

FosSO] Foster, M. J. and Kung, H. T., “The Design of Special Purpose Chips”, IEEE Computer, 13 (1), pp
26-40, January, 1980.

Goo8l] Goodman, J. R. and Sequin, C. H., “HYPERTREE: A Multiprocessor Interconnection Topology,”
IEEE Transactions on Computers, Vol. c-30, No. 12, pp 923-933, December, 1981.

Got83] Gottlieb, A., et al., “The NYU Ultracomputer - Designing an MIMI) Shared Memory Parallel

Computer, “IEEE Transactions on Computers, Vol. c-32, No. 2, pp 175-189, February, 1983.
Has8 1] Haskin, R. L., “Special-purpose Processors for Text Retrieval”, Database Engineering 4, 1, pp. 16-29,

September, 1981.

Has83] Haskin, R. L. and Hollaar, L. A., “Operational Characteristics of a Hardware-based Pattern Matcher”,
ACM Transactions on Database Systems, Vol. 8, No. 1, pp 15-40, March, 1983.

H ii 86] Hillyer, B. and Shaw, D. E., “NON-VON’s Performance on Certain Database Benchmarks,” IEEE
Transactions on Software Engineering, se- 12,4, pp 577-583, April, 1986.

Hol791 Hollaar, L. A., “Text Retrieval Computer”, IEEE Computer, 12 (3), pp 40-50, March, 1979.

Hol83] Hollaar, L. A., Smith, K. F., Chow, W. H., Emrath, P.A., and Haskin, R. L., “Architecture and

Operation of a Large, Full-text Information-retrieval System”, in Advanced Database Machine

Architecture Englewood Cliffs, NJ.: Prentice/Hall, 1983, pp 256-299.

Kit84] Kitsuregawa, M., Tanaka, H., and Moto-Oka, T.,”Architecture and Performance of Relational Algebra
Machine GRACE”, Int’l Conf. on Parallel Processing Proceedings, pp 241-250, August, 1984.

Mea76] Mead, C. A., Pashley, R. D., Britton, L. D., Yoshiaki, T.,and Sando, Jr., S. F., “128-Bit

Multicomparator”, IEEE Journal of Solid-State Circuits, SC-il, No. 5, October, 1976.

Pog871 Pogue, C. A. and Willett, P., “Use of Text Signatures for Document Retrieval in a Highly Parallel

environment.” Parallel Computing 4 (1987), pp 259-268, Elsevier (North-Holland).
Pra86] Pramanik, Sakti, “Perfomance Analysis of a Database Filter Search Hardware”, IEEE Transactions on

Computers, Vol. c-35, No. 12, December, 1986.

Sa188] Salton, G. and Buckley, C., ‘Parallel Text Search Methods”, Communications of the ACM, 31(2), pp
202-215, 1988.

19

Sta86] Stanfill, C. and Kahle, B., “Parallel Free-text Search on the Connection Machine System”,
Communications of the ACM, 29(12), pp 1229-1239, 1986.

Sto87] Stone, H. S., “Parallel Querying of Large Databases: A Case Study”, iEEE Con~puter, 20 (10), pp 11-

21, October, 1987.

Tak87] Takahashi, K., Yamada, H., and Hirata, M. “Intelligent String Search Processor to Accelerate Text

Information Retrieval”, Proceedings of F~ffh Int’l Workshop on Database Machines, pp 440-453,

October, 1987.

Wes851 Weste, N and Eshraghian, K., Principles of CMOS VLSI Design: A Systems Perspective Reading,
Massachusetts: Addison-Wesley, 1985.

APPENDIX A

acoustic allocation amplitude architecture banyan basic bell

broadband circuit communication computer conculTent design distortion

distributed domain ear efficiency energy environment erlang
fiber field fine-grain frequency gallium glottis greedy

ground hertz high hopfield hypercube image information

intelligent intensity japanese jaw jitter junction k-map
kernel keyboard knowledge language limited locality loudness

markov message momentum multi-computer network neural noise

nuclear object optic oscillator output packet phoneme

processor protocol quadrature quantum query queue recognition
research resource retrieval speech standard superconduct synthesis
system telephone time timestamp transform ultra-violet unix

user utilization verification vlsi voice voltage watt

wide window ~x~d x-ray y-net yield z-transform

zero zone

Table I. JAS PE Instruction Set

A Find any document containing the string A
if match(A) then return true else return false

A B Find any document containing the siring A immediately followed by the string B

C := AB (concatenateAandB)
if match(C) then return true else return false

A ?? B Find any document containing string Afollowed by any two charactersfollowed by string B]
C := A##B (concatenateA,##,andB)
if match(C) then return true else return false

(A, B, C) % n Find any document containing at least n different patterns of the strings A, B, or C

count_A := 0;

count_B := 0;
count_C := 0;
While not (END_OF_DOC) do

Case type (match(string)) of (CASE statement used only for clarity)
A: count_A := 1;
B: count_B := 1;

C: count_C := 1

end;
if count_A + count_B + count_C � n then return true else return false

A OR B Find any docwnent containing either of the strings A or B

if (match(A) or match(B)) then return true else return false

20

A AND B II Find any document containing both the strings A and B

found_A := false

found_B := false

While not (END_OF_DOC) do begin
Case type (match(string)) of (CASE statement used only for clarity)

A: begin
if found_B then

if address(matchO) - adds_B > length (B) then return true

else if not found_A then begin
adds_A := address(matchO);
found_A := true

end

end;
B: begin

if found_A then

if address(matchO) - adds_A> length (A) then return true

else if not found_B then begin
adds_B := address(matchO);
found_B := true

end

end;

end;
return false

A
...

B Find any document containing the string A followed either immediately or after an arbitrary
number ofcharacters by string B

adds_B := default

adds_A := address(match(A)) (adds_A = default if A is not found)
While not (END_OFDOC) and (adds_A <> default) do begin
temp := address(match(B)) (find last B)
if temp ~ default then adds_B := temp
end

if (adds_A = default) or (adds_B = default) then return false

if adds_B - adds_A> Iength(A) then return true else return false

A .n. B Find any document containing the string A followed by string B within n characters

adds_A := address(match(A));
if adds_A = default then return false;

length_A := length(A);
While not (END_OF_DOC) do

Case type (match(string)) of (CASE statement used only for clarity)
A: begin (ignore possible overlap A with A

temp := address(matchO);
if C temp ~ default) and (temp - adds_A> length_A) then

adds_A := temp;
end;

B: begin (ignore possible overlap B with A

temp := address(matchO);
if (temp ~ default) and (temp - adds_A> length_A) then

if temp - adds_A - length_A < n then return true

end;

end;
return false

21

f

E’
C)

r

S

Input String
block i+1 block i+2

te rs

*~1I ~
• ~~tE.l : • !j~1
• •

~~ .1.1

~°~1 ~~1:1
• . ~1~1

vregister~j HIT Li

block I

flU

320Mbytes/sec 1 Mbytes/Sec

Figure 2. Example without Overlap

Figure 4. Substring Search Processor

Figure 1. JAS System Architecture

Input String
block i block i+1 block i+2

XXf I fit i XXXX

HIT HITv~gister

Figure 3. Example with Overlap

4

~

00

(no

0

Ci

1000 10000

Figure 5. Compare Cycle vs. Block Size

U:
.01

1 ~ i6o 1000 10000

Block Size

Figure 7. Filter Rate vs. Block Size

0.8
>-
0

~ 0.6

a,

U-

0.2

0,0
0

1 10 100
Block Size

2 3 4 5 6 7 8 9 10

Number of Comparisons

Figure 6. Number of Comparisons

0.

a,

a)

0.

U)

11 10 100 1000 10000

Block Size

Figure 8. Speedup vs. Block Size

22

Parallel Query Evaluation: A New Approach to Complex Object Processing

T. Harder H. SchOning A. Sikeler

University Kaiserslautern, Department of Computer Science, P.O. Box 3049, D-6750 Kaiserslautem, West Germany

Abstract

Complex objects to support non-standard database applications require the use of substantial computing resources because their

powerful operations must be performed and maintained in an interactive environment. Since the exploitation of parallelism with

in such operations seems to be promising, we investigate the principal approaches for processing a query on complex objects
(molecules) in parallel. A number of arguments favor methods based on inter-molecule parallelism as against intra-molecule paral
lelism. Retrieval of molecules may be optimized by multiple storage structures and access paths. Hence, maintenance of such stor

age redundancy seems to be another good application area to explore the use of parallelism.

1. Introduction

Non-standard database applications such as 3D-modeling for workpieces or VLSI chip design 1] require adequate modeling
facilities for their application objects for various reasons. Enhanced data models provide many of such desired features; above

au they support forms of data abstraction and encapsulation (e.g. ADTs) which relieve the application from the burden of main

taining intricate object representations and checking complex integrity constraints. On the other hand, the more powerful the

data model the longer the DBMS’s execution paths, since all aspects of complex object handling have to be performed inside the

DBMS. Hence, appropriate means to concurrently execute “independent” parts of a user operation are highly desirable 2].

The use of intra-transaction parallelism for higher-level operations was investigated in a number of database machine projects
3]. These approaches focus on the exploitation of parallelism in the framework of the relational model. Complex relational

queries are transformed into an operator tree of relational operations in which subtrees are executed concurrently (evaluation of

subqueries on different relations) 4]. Other approaches utilize special storage allocation schemes by distributing relations

across multiple disks. Parallelism is achieved by evaluating the same subquery on the various partitions of a relation 5, 6].

We investigate possible strategies to exploit parallelism when processing complex objects. In order to be specific, we have to

identify our concepts and solutions in the framework of a particular data model and a system design facilitating the use of paral
lelism. Therefore, we refer to the molecule-atom data model (MAD model 7]) which is implemented by an NDBS kernel system

called PRJIVIA 8]. We use the term NDBS to describe a database system tailored to the support of non-standard applications.

2, A Model of NDBS Operations

The overall architecture consists of a so-called NDBS kernel and a number of different application layers, which map particular

applications to the data model interface of the kernel. Our application-independent kernel is divided into three layers:

• The storage system provides a powerful interface between main memory and disk. It maintains a database buffer and enables

access to sets of pages organized in segments 8].
• The access system manages storage structures for basic objects called atoms and their related access paths. For performance

reasons, multiple access paths and redundant storage structures may be defined for atoms.

• The data system dynamically builds the objects available at the data model interface. In our case, the kernel interface is charac

terized by the MAD model. Hence, the data system performs composition and decomposition of complex (structured)

objects called molecules.

The application layer uses the complex objects and tailors them to (even more complex) objects according to the application
model of a given application. This mapping is specific for each application area (e.g. 3D-CAD). Hence, different application lay
ers exist which provide tailored interfaces (e.g. in form of a set of ADT operations) for the corresponding applications.

The NDBS architecture lends itself to a workstation-server environment in a smooth and natural way. The application and the

corresponding application layer are dedicated to a workstation, whereas the NDBS kernel is assigned either to a single server

processor or to a server complex consisting of multiple processors. This architectural subdivision is strongly facilitated by the

properties of the MAD model: Sets of molecules consisting of sets of heterogeneous atoms may be specified as processing units.

Before we start to evaluate our concepts for achieving parallelism to perform data system and access system functions, we

briefly sketch our process (run-time) environment. In order to provide suitable computing resources, PRIMA is mapped to a mul

ti-processor system, i.e. the kernel code is allocated to each processor of our server complex (multiple DBMSs). The DB opera

tions to be considered are typically executed on shared (or overlapping) data which requires synchronization of concurrent

accesses. Due to the frequency of references (issued from concurrent tasks) accessibility of data and synchronization of access

must be solved efficiently.

For this reason, we have designed a closely coupled multiprocessor system as a server complex. Each instance of PRIMA

(running on a particular processor with private memory) uses an instruction-addressable common memory 9] for buffer manage-

23

ment, synchronization, and logging/recovery. Furthermore, each instance of PRIMA is subdivided into a number of processes

which may initiate an aibitrary number of tasks serving as nm-units for the execution of single requests. Cooperation among pro

cesses is performed by establishing some kind of client-server relationship; the calling task in the client process issues a request

to the server process where a task acts upon the request and returns an answer to the caller. In our model, a client invokes a server

asynchronously, i.e. it can proceed after the invocation, and hence, can run concurrently with this server. To facilitate such com

plex and interleaved execution sequences we have designed a nested transaction concept 10] which serves as a flexible dynam
ic control structure and supports fme grained concurrency control as well as failure confinement within a nested subtransaction

hierarchy. Due to space limitations we can not refine our arguments on these system issues 11].

2.1 The Data System Interface

In order to describe the concepts for achieving parallelism in sufficient detail, we have to refine our view of the kernel architec

ture and the interfaces involved. It is obvious that the data model plays the major role and determines many essential factors

which enable reasonable parallelism: sufficiently large data granules, set orientation of request, dynamic construction of objects

(result sets), flexible selection of processing sequences, etc.

In our system, the data model interface is embodied by the MAD model and its language MQL which is similar to the well-known

SQL language. Here, we cannot introduce this model with all its complex details, but only illustrate the most important concepts

necessary for our discussion. In the MAD model, atoms are used as a kind of basic element (or building block) in order to repre

sent entities of the real world. In a similar way to tuples in the relational model, they consist of an arbitrary number of attributes.

The attributes’ data types can, however, be chosen from a richer selection than in the relational model, i.e. apart from the conven

tional types the type concept includes

• the structured types RECORD and ARRAY,

• the repeating group types SET and UST, both yielding a powerful structuring capability at the attribute level as well as

• the special types IDENTIFIER (serving as surrogates) for identification purposes and REF_TO for the connection of atoms.

Atoms are grouped to atom types. Relationships between atoms are expressed by so-called connections and are defmed as con

nection types between atom types. Connection types are treated in a symmetric way, i.e. connections may be used in either direc

tion in the same manner. Such connection types directly map all types of relationships (1:1, 1 :n, n:m). The flexibility of the data

model is greatly increased by this direct and symmetric mapping. Connection types are represented by a pair of REF_TO

attributes (reference and “back-reference”) one in either involved atom type, e.g.:

FIDs: SET_OF (REF_TO(Face.EIDs)) in an atom type Edge
• EIDs: SET_OF (REF_TO(Edge.FIDs)) in an atom type Face.

In the database, all atoms connected by connections form meshed structures (atom networks) as illustrated in Fig. la.

Figure 1: Dynamic construction of molecules from a sample geometric object

Molecules axe defmed dynamically by using MQL statements and have to be derived at run-time. Each molecule belongs to a

molecule type. The type description establishes a connected, directed and acycic type graph (cycles occur when recursive types

are specified), in that a starting point (i.e. root atom type) and all participating atom and connection types (for short “-“) are

specified. A particular example of a molecule type is Face-Edge-Point. Such a molecule type determines both the molecule struc

ture as well as the molecule set which groups all molecules with the same structure. At the conceptual level, the dynamic construc

tion of molecules proceeds in a straight-forward maimer using the molecule type description as a template: For each atom belong

ing to the root atom type all children, grandchildren and so on are connected to the molecule structure, terminating after all leaves

of the molecule structure are reached. Connecting children to the molecule structure means perfonning the hierarchical join which is

supported by the connection concept. Hence, for each root atom a single molecule is constructed. Fig. lb shows the result of a

molecule construction for Face-Edge-Point molecules, where the set of molecules was restricted. Furthermore, it illustrates the

most important properties of the MAD interface:

• An MQL request handles a set of molecules.

• The molecules as complex objects consist of sets of atoms of different type, i.e. they are embodied by sets of interrelated het

erogeneous record structures.

• Molecule construction is dynamic arid allows symmetric use of the atom networks (e.g. Point-Edge (Fig. ic)).

instances (Aton network)
0

1
2 3

1 1 24 34

123 124 134 23

SELECT ALL

FROM Face-Edge-Point
WHERE Face.No <2

b)

3D-Object

Face

Edge

Point

SELECT ALL

FROM Point - Edge
WHERE Point.No = 134;

c)

134 Point

13 1 34 Edge

24

2.2 The Access System Interface

The access system provides an atom-oriented interface which allows for direct and navigational retrieval as well as for the

manipulation of atoms. To satisfy the retrieval requirements of the data system, it supports direct access to a single atom as well

as atom-by-atom access to either homogeneous or heterogeneous atom sets. Manipulation operations (insert, modify, and

delete) and direct access operate on single atoms Identified by their logical address (or surrogate) which is used to implement
the IDENTIFIER attribute as well as the REF_TO attributes. Perfonning manipulation operations, the access system is responsi
ble for the automatic maintenance of the referential integrity defmed by the REF_TO attributes. Thus, a manipulation operation
on such an attribute requires implicit manipulation operations on other atoms in order to adjust the appropriate back references.

Different kinds of scan operations are introduced as a concept to manage a dynamically defined set of atoms, to hold a current

position in such a set. and to successively deliver single atoms. Some scan operations are added in order to optimize retrieval

access. Therefore, they may depend on the existence of a certain storage structure (defmed by the database administrator):

• The atom-type scan delivers all atoms in a system-defined order utilizing the basic storage structure existing for each atom

type.

• The access-path scan provides fast value-dependent access based on different access path structures such as B-trees, R-trees,
and grid files.

The sort scan processes all atoms following a specified sort criterion also utilizing the basic storage structure of an atom

type. However, sorting an entire atom type is expensive and time consuming. Therefore, a sort scan may be supported by an

additional storage structure, namely the sort order.

• The atom-chister scan speeds up the construction of frequently used molecules by allocating all atoms of a corresponding
molecule in physical contiguity using a tailored storage structure as a so-called atom cluster. For example, in Fig. 1 each Face

atom and all its associated Edge and Point atoms may be organized to form an atom cluster 121. On a logical level, an atom

cluster corresponds to a molecule. It is described by a special so-called characteristic atom which consists of references to all

atoms belonging to the molecule. This characteristic atom together with all the referenced atoms is mapped onto a single phys
ical record which in turn is stored in a set of pages.

The underlying concept is to make storage redundancy available outside the access system by offering appropriate retrieval

operations (i.e. the choice of several different scans for a particular access decision by the optimizer of the data system), where

as in the case of manipulation operations storage redundancy has to be hidden by the access system. As a consequence, maintain

ing storage redundancy in an efficient way is a major task of the access system. However, sequential update of all storage struc

tures existing for a corresponding atom results in a lack of efficiency which is not acceptable. Therefore, exploiting parallelism
seems to be a natural way to speed up a single manipulation operation.

3. Using Parallelism in Ouerv Processing

Query processing operates on sets of molecules which are either extracted from the database (retrieval) or updated, inserted, or

deleted (manipulation). In either case, the complex operation must be evaluated using operations on a single atom at a time. In this

chapter we discuss some techniques to exploit parallelism in executing these atom-oriented operations as well as higher-order
operations on intermediate results.

Three phases of query processing can be isolated 13]. The compilation phase checks for the syntactic and semantic correctness

of a query and perfonus some obviously simplifying query transformations. Finally, it derives an operator tree consisting of

several operator types, most of which accept and produce sets of molecules. The leaves of this operator tree transform heteroge
neous atom sets to molecules (construction of simple molecules for retrieval) and vice versa (molecule modification by atom

manipulation). This operator tree is the input of the optimization phase which is expected to reorganize it somehow into an

“optimal” form. This includes reordering, combination, and splitting of operator tree nodes. Furthermore, methods have to be

chosen for each operator, i.e. evaluation strategies (e.g. nested-loop join), storage structure usage (e.g. B-tree), and amount of

parallelism (as described below). Although there is much to be said about these two phases, we concentrate on the discussion of

the third phase, i.e. query evaluation. The input of this phase is the operator tree introduced above. For each node, we need an

active unit to compute its result. Since there are several operator types, we assume a process for each of them. As a consequence,

more than one node of an operator tree may be assigned to the same process.

We discuss the operator tree interpretation separately for retrieval and manipulation. In either case, we have to handle a set of

molecules, each of which consists of a set of atoms. Thus, we investigate parallel handling of molecules (inter-molecule paral
lelism) as well as parallel handling of a molecule’s components (intra-molecule parallelism).

3.1 Parallelism in Retrieval Evaluation

Evaluation starts at the root operator, which needs results from all of its children in the operator tree to compute its own result.

Depending on the operator type and the method chosen, children can be evaluated in parallel, e.g. the children of a binary merge-

join operator can be accessed concurrently, while those of a nested-loop join cannot. The evaluation of leaf operators requires a

lot of access system calls to build up simple molecules (hierarchical, non-recursive molecules). Of course, we assume that the

access system is able to handle an arbitrary number of asynchronous calls in parallel. Therefore, construction of simple molecules

seems to be a good candidate for using parallelism within the handling of each molecule.

25

Parallelism Within Construction of Simple Molecules

An obvious strategy to construct simple molecules is to call the root atom of each molecule via access system scan. Following
this all child atoms of the root atom (which are identifiable by reference attributes) are called, then their children, and so on.

These accesses to the children of an atom may be done in parallel (example la).

However, in many cases the user is not interested in all molecules of a certain type, but strongly restricts the molecules he wants

to see. In this situation, it would be inefficient to fetch all atoms of all molecules and then throw away most of them by a separat

ed restriction operator. Instead, we want to integrate the restriction facility into the operator “construction of simple
molecules” leading to a more efficient evaluation strategy. Restrictions on the root atom are passed on to the access system
which allows scan restrictions. All other restrictions on dependent atoms are evaluated as early as possible. As soon as it

becomes evident during molecule construction that a molecule will be disqualified, none of its atoms has to be fetched any more,

thus saving many access system calls (example ib).

Of course, this approach is contradictoty to the parallel molecule construction proposed above, because we want to fetch as few

atoms as possible, if a molecule is disqualified. Therefore, we combine both techniques: Atom types that do not contribute to

molecule qualification should be treated last. Their atoms can be called in parallel. Atom types restricted by an ALL-quantifier
should be called sequentially, since each atom of this type can indicate molecule disqualification. While good strategies for these

extreme cases are easy to fmd, much more complicated situations can be thought of (example Ic). They raise the question
whether in some situation a compromise on the amount of parallelism and unnecessaiy atom accesses should be made, e.g. limita

tion of parallel atom calls to a constant n, thereby limiting unnecessary atom calls to n-i (third choice in example ic). We are still

investigating this case for generally applicable rules to decide the optimal amount of parallelism for each atom type as well as the

best sequence of atom accesses.

The top-down approaches suggested above are sometimes not the most efficient strategies. When highly selective restrictions

are defined on some child types, a bottom-up approach may be more promising. In this case, the first step evaluates the qualify
ing child atoms. Since some of these atoms may be orphans, it is necessary to explicitly check the existence of a related root

atom. Finally, the whole molecule is constructed for each of the identified root atoms following the same guidelines as sketched

above (example 2b).

So far, we have discussed parallelism within the construction of one molecule. Since queries deal with sets of molecules, we

should consider inter-molecule parallelism, too.

Inter-Molecule Parallelism

The most simple model for the computation of a set of molecules is to build up the first molecule completely, then the second and

so on, thereby preserving the order of molecules induced by construction of simple molecules. Following this control scheme,
there cannot be any parallelism among an process and its descendants or ancestors. To enable this kind of parallelism, we pro-

SELECll ALL .~.. I~~.1..~
..

FROM Face Edge-Point FROM Face Edge Point FROM Face—Edge Point

WHERE Pace.No 123 WHERE FORALL Edge. WHERE (FOR~A1L Point x-~oordmatc 5)
Length> 10’ OR (EXISTS Edge Length> 10)

Strategy: Strategy: Strategy

Call Face; Call Face; Call Face;
Call all edges and Call all edges sequentially; • call edges sequentially; then call points sequentially;

all points in parallel; If all edges fulfil the restriction: or • call one edge, call its points sequentially;
call all points in parallel; or • call n edges in parallel, call their points sequentially;

Ouerv a Ouery b Ouerv c

Example 1: Three sample queries and parallelism strategy choices

SELECT’ ALL

FROM Face-Edge-Point

SELECT ALL

FROM Face-Ed;

26

pose a pipeline mechanism. In particular, whenever the process for construction of simple molecules finds a root atom for a

molecule, it builds up this molecule in a separate task, while another concurrent task calls the next root atom.

The pipeline structure defmed this way (which at this point of the discussion is introduced as a model of computation and not as

schedule for hardware-assignment), is very dynamic and complex, since the number of pipeline stages to run through is data

dependent for many operator types and may vary for each molecule. Since this results in varying construction times, order-preser
vation camlot be guaranteed. As a consequence, there must not be any operator with a varying number of pipeline stages in the

operator tree between a sort operator and the corresponding operator that relies on the sort order.

3.2 Parallelism in ManiDulation Evaluation

As for retrieval evaluation, we consider intra- and inter-molecule parallelism. Parallelism among several molecules by creation of a

separate task for each of them is possible for manipulation, too. When existing molecules are to be manipulated, tasks emerging
from retrieving them can be continued for manipulation. Within one molecule, either a top-down or a bottom-up strategy can be

applied, both of them allowing parallelism among most of the atoms of a molecule (example 3).

sample manipulation statement affected molecule
top-down deletion

DELETE ALL 1
detete (I)Face
delete (13) delete (12) delete (14)

FROM Face-Edge-Point I delete (123), delete (124), delete (134)
WHERE Face.No=l; 4’
This is just a query to show evalua-

1 13 14 Edge bottom_up deletion

tion strategies; it is semantically delete (123), delete (124), delete (134)
delete (13), delete (12), delete (14)

wrong with respect to figure 1.
delete (I)

123 124 134 Point
all access system calls in the same line

can be done In parallel

Example 3: Manipulation of a molecule with top-down and bouom-up strategy

4. Maintaining Redundancy by Parallel Operatjlln~

To speed up data system operations we have introduced some algorithms for the parallel construction/maintenance of complex

objects represented as sets of heterogeneous atoms. In the following, we discuss the implementation of concurrent maintenance

operations on redundant storage structures used for such atoms. As in the data system, two kinds of parallelism may be distin

guished within the access system.

• The inter-operation parallelism allows for the parallel execution of an arbitrary number of independent access system calls.

This kind of parallelism is a prerequisite for the parallelism introduced in the data system.

• The intra-operation parallelism however, exploits parallelism in executing a single access system call.

In this chapteT, we will concentrate on mtra-operation parallelism, since inter-operation parallelism is easily achieved by the

underlying processing and transaction concept. For this purpose, however, the mapping process performed by the access system

has to be outlined in some more detail in order to reveal purposeful suboperations to be executed in parallel.

In order to conceal the storage redundancy resulting from the different storage structures we have introduced the concept of a log
ical record (i.e. atom) made available at the access system interface and physical records stored in the “containers” offered by
the storage system. i.e. each physical record represents an atom in either storage structure. As a consequence, an arbitrary number

of physical records may be associated with each atom. For example, the creation of an atom cluster for each Face-Edge-Point
molecule in Fig. 1 would imply that all Edge atoms belong to two atom clusters and all Point atoms to three (due to the proper

ties of a teirahedra). Furthermore, they always belong to the basic storage structure.

The relationship between a single atom and all its associated physical records is maintained by a sophisticated address struc

ture related to each atom type. This address structure maps the logical address identifying an atom onto a list of physical
addresses each indicating the location of a corresponding physical record within the “containers” (page address).

In contrast to the data system, however, the exploitation of parallelism within the access system is limited to the manipulation

operations. Althoug~i most of the retrieval operations are also decomposed into further suboperalions (e.g. in the case of an

access-path scan on a tree structure: read the next entry in order to obtain the next logical address, access the address structure

for the associated physical addresses, access either physical record), these suboperations cannot be executed in parallel due to

the underlying precedence structure. Furthermore, each retrieval operation is tailored to a certain storage structure, thus operat

ing not only on a single atom, but also on a single physical record.

On the other hand, each manipulation operation on an atom may be decomposed in quite a natural way into corresponding manipu
lation operations on the associated physical records. These lower-level manipulation operations, however, should be executed in

parallel due to performance reasons. There exist (at least) two alternatives to perform such a parallel update:

27

Deferred Update

Deferred update means that during a manipulation operation on an atom initially only one of the associated physical records (e.g.
in the basic storage structure of the atom type) is altered. All other physical records as well as the access paths are marked as

invalid. Finally, a number of “processes” is initialized which alter the invalid structures in a deferred manner, whereas the manip
ulation operation itself is finished. Thus, low-level manipulation operations on additional storage structures may still run.

although the manipulation operation on the corresponding atom or even each higher-level operation initializing the modification

is already fmished. This, however, strongly depends on the embedding of deferred update into the underlying transaction con

cept.

In order to mark a physical record as invalid the address structure may be used to indicate whether or not the corresponding

physical record is valid. Therefore, all operations which utilize the address structure in order to locate a physical record may

determine the valid records, whereas all operations which do not utilize the address structure will access invalid records unless

the appropriate storage structure was already altered by the corresponding “prucess”. Hence, the corresponding storage struc

tures themselves (access paths, sort orders, and atom clusters) have to be marked as invalid and when performing a scan opera

tion on such an invalid structure each physical record has to be checked as to whether or not it is valid. This, however, requires
an additional access to the address structure in order to locate a valid record. Consequently, the speed of a scan operation

degrades, since each access to the address structure may result in an external disk access. In order to avoid this undesired

behaviour, all invalid atoms (or their logical addresses) may be collected in a number of special pages assigned to each storage

structure. These pages may be kept in the database buffer throughout the whole scan operation thus avoiding extra disk access

es. Nevertheless, each physical record has to be compared with the atoms collected in these pages. However, this is not suffi

cient, since each manipulation operation may require a modification of the whole storage structure, e.g. modifying an attribute

which establishes a sort criterion requires the rearrangement of the corresponding physical record within the sort order. This

fact also has to be considered during a scan operation. As a consequence, some of the scan operations may become rather com

plex and thus inefficient. For all these reasons, deferred update seems to be a bad idea.

Concurrent Update

The problem of maintaining invalid storage structures, however, is avoided by concurrent update. Concurrent update means that

each manipulation operation on an atom invokes a number of “processes” which alter the associated physical records and access

paths in parallel. The manipulation operation is finished when all “processes” are completed. When sufficient computing
resources are available, concurrent update may not be more expensive, in terms of response time, than update of a single physical
record if we neglect the cost of organizing parallelism.

Depending on the software structure of the access system, there are different ways to perform a concurrent update:

Autonomous Components

Each manipulation operation on an atom is directly passed to all components maintaining only a single storage structure type.

Each component checks which storage structures of the appropriate type are affected by the manipulation operation. The corre

sponding storage structures are then modified either sequentially or again in parallel.

As a consequence, all components have to provide a uniform interface including all manipulation operations offered by the access

system (i.e. insert, modify, and delete of a single atom identified by its logical address) as well as all retrieval operations. A

quite simple distribution component directs each request to all components maintaining a storage structure type and collects

their responses. This means, each component initially performs an evaluation phase during which it checks

• whether or not it has to perform the desired operation and if so,

• which storage structures of the appropriate type are really affected.

For this purpose, the addressing component (maintaining the common address structure) and the meta-data system (maintaining
all required description information) are utilized. After the evaluation phase the proper operation is performed on each affected

storage structure either sequentially or in parallel, thereby again utilizing two common components: the addressing component in

order to notify the modification of a physical address and the mapping component in order to transform a logical record (i.e.

atom) into a physical record and vice versa (thus achieving a uniform representation of physical records which is mandatory for

some retrieval operations which use one of the physical records when accessing an atom (e.g. direct access)).

Thus, it is quite easy to add a new storage structure type (e.g. a dynamic hash structure as an additional access path structure) by

simply integrating a corresponding component into the overall access system. However, there may be some drawbacks regard

ing performance aspects. During each operation, all components have to perform the evaluation phase although in many cases only
a few or even only one component are affected. Moreover, the addressing component may become a bottleneck, since access to

the address structure has to be synchronized in order to keep it consistent.

General Evaluation Component

These problems, however, may be avoided by a general evaluation component which replaces the simple distribution component
as well as the evaluation phases in each of the components maintaining a storage structure type. Additionally, it solely maintains

the address structure. As a consequence, this general evaluation component becomes much more complex. It requires dedicated

28

information about each component in order to decide whether or not a component is affected by an operation, and it has to know

the operations offered by either component in order to invoke the corresponding component in the right way. Although these

operations may be tailored to the corresponding storage structure type (e.g. insert (key, logical address) in the case of an access

path structure), it seems to be useful again to provide a uniform interface to all components in order to allow for a certain degree
of extensibility. Such an interface has to consider the different characteristics of each storage structure type and the correspon

ding component (e.g. maintaining logical addresses instead of physical records) in an appropriate way.

In our initial design, we have decided to implement concurrent update based on a general evaluation component. In our opinion.
concurrent update seems to be the better solution due to the invalidation problem. Although both software structures,

autonomous components and general evaluation components, have their pros and cons with respect to performance and extensi

bility aspects 14], we prefer the general evaluation component, since it promises better perfonnance. However, more detailed

investigations are still necessary in order to determine the best way which may be a mixture of all. In particular, the influence of

the underlying hardware architecture has to be investigated in more detail.

5. Conclusion

We have presented a discussion of the essential aspects of parallel query processing on complex objects. The focus of the paper

has primarily been on the investigation of a multi-layered NDBS to achieve reasonable degrees of parallelism for a single user

query. We have derived several design proposals embodying different concepts for the use of parallelism. In the data system,

intra- and inter-molecule parallelism were explored. To exploit the former kind of parallelism seems to be more difficult because

it turns out that it is very sensitive to the optimal degree of parallelism which may vary dynamically depending on the complex

object characteristics. The latter concept is considered more promising because it allows simpler solutions. In the access system

two approaches were investigated. Deferred update seems to provoke more problems than the solutions it might provide where

as concurrent update on redundant storage structures seems to incorporate a large potential for successful application.

Currently, we have fmished the PRIMA implementation (single user version) and are integrating the proposed concepts for

achieving parallelism in order to have a testbed for practical experiments. Performance analysis will reveal their strength and

weaknesses at a more detailed level.

In the future, we wish to investigate further concepts for exploitation of parallelism. Another possibility of parallel execution on

behalf of a single user would be the simultaneous activation of multiple requests within the application; for example, by means of

a window system a user could issue several concurrent calls inherently related to the same task in a construction environment. Oth

er possibilities to specify concurrent actions exist in the application layer where a complex ADT operation could be decom

posed into compatible (non-conflicting) kernel requests. Usually multiple kernel requests are necessary for the data supply of an

ADT operation~ hence, these data requests can be expressed by MQL statements and issued concurrently to kernel servers when

they do not conflict with each other or do not require a certain precedence structure.

References

1] Ditirich, K.R., Dayal, U. (eds.): Proc. mi. Workshop on Object-Oriented Database Systems. Pacific Grove, 1986.

21 Duppel, N., Peinl, P., Reuter, A., Schiele, G., Zeller, H.: Progress Report #2 of PROSPECT, Research Report, University
Stuttgart, 1987.

3] Special Issue on Database Machines, IEEE Transactions On Computers, Vol. C-28, No. 6, 1979.

4] DeWitt, D., Gerber, R., Graefe, 0., Heytens, M., Kwnar, K., Muralikrishna, M.: GAMMA - A High Performance Dataflow

Database Machine, in: Proc. VLDB 86, pp. 228-237.

5] Neches, P.: The Anatomy of a Database Computer System, in: Proc. IEEE Spring Compcon, San Francisco, Feb. 1985.

6] Lone, R., Daudenarde, I., Hallmark, G., Stamos, I., Young, H.: Adding Intra-Transaction Parallelism to an Existing DBMS:
Early Experience, IBM Research Report, Ri 6165, San Jose, CA, 1988.

7] Mitschang, B.: Towards a Unified View of Design Data and Knowledge Representation, in: Proc. Second Tnt. Coni. on

Expert Database Systems, Tysons Corner, Virginia, 1988, pp. 33-49.

8] Harder, T., Meyer-Wegener, K., Mitachang, B., Sikeler, A.: PRIMA - A DBMS Prototype Supporting Engineering Appli
cations, in: Proc. VLDB 87, pp. 433-442.

9] SEQUENT Solutions: Improving Database Performance, Sequent Computer Systems, Inc., 1987.

10] Moss, J.E.B.: Nested Transactions: An Approach to Reliable Computing, MIT. Report M1T-LCS-TR-260, MIT., Labo

ratory of Computer Science, 1981.

11] Harder, T., Schoning, H., Sikeler, A.: Parallelism in Processing Queries on Complex Objects, in: Proc. hit. Symposium on

Databases in Parallel and Distributed Systems, Austin. Texas, 1988, pp. 13 1-143.

12] Schoning, H., Sikeler, A.: Cluster Mechanisms Supporting the Dynamic Construction of Complex Objects, to appear in
Proc. 3rd Tnt. Conf. on Foundations of Data Organization and Algoritluns (FODO’89), June 21-23, 1989.

13] Freytag, J.C.: A Rule-Based View of Query Optimization, in: ACM SIGMOD Annual Conference, 1987, pp. 173-186.

14] Carey, M. (ed.): Special Issue on Extensible Database Systems, Database Engineering, Vol. 10, No. 2, 1987.

29

MULTIPROCESSOR TRANSITIVE CLOSURE ALGORITHMS

Rakesh Agrawal
H. V. Jagadish

AT&T Bell Laboratories

Murray Hill, New Jersey 07974

ABSTRACT

We present parallel algorithms to compute the transitive closure of a database relation. Experimental verification shows an almost

linear speed-up with these algorithms.

1. INTRODUCTION

The transitive closure operation has been widely recognized as a necessary extension to relational query languages 1, 12, 16]. In

spite of the discovery of many efficient algorithms 3,5,10, 13, 17], the computation of transitive closure remains much more

expensive than the standard relational operators. Considerable research has been devoted in the past to implementing standard

relational operators efficiently on multiprocessor database machines and there is need for similar research in parallelizing the

transitive closure operation.

Given a graph with n nodes, the computation of its transitive closure is known to be a problem requiring 0(n3) effort. Transitive

closure is also known to be a problem in the class NC, implying that it can be solved in poly-log time with a polynomial number of

processors. From a practical point of view, however, there are likely to be only a small number of processors — even less than

0(n). Therefore, the parallel algorithms that we seek in this paper are ones that require only m (mcn) processors, and for which the

total execution time is no more than 0 (n3/m). We also present their implementation on a multiprocessor database machine 15] and

report on experimentally observed speed-ups.

The organization of the rest of the paper is as follows. Our endeavor has been to develop the parallel transitive algorithms in an

architecture-independent manner. However, to keep the discussion concrete, we consider two generic multiprocessor architectures:

shared-memory and message-passing. These architectures are briefly described in Section 2. We also present primitives that we use

in algorithm description in this section. Our parallel algorithms are presented in Section 3. Section 4 describes the implementation
of these algorithms on the Silicon Database Machine (SiDBM) 15], and presents perfonnance measurements. We discuss related

work in Section 5, and close with some concluding remarks in Section 6.

2. PRELIMINARIES

We seek parallel algorithms that are independent of the exact nature of the underlying multiprocessor so that they may be

implemented on different types of multiprocessors. Of course, the costs of the individual operations will differ with the machine and

communication model used, affecting the resultant performance of the algorithms. We recognize at the same time that it is

impossible to completely divorce the execution of a parallel algorithm for a multiprocessor from any architectural assumptions 6].

We, therefore, concentrate on two generic multiprocessor architectures and keep our architectural assumptions as general as possible.

2.1 Generic Architectures

We are interested in two multiprocessor architectures: shared-memory and message-passing (also referred to as shared-nothing).
Each processor has some local memory and local mass storage where the database resides. Processors are connected with some

communication fabric. In the case of a message-passing architecture, the system interconnect is the only shared hardware resource,

whereas in the case of a shared-memory architecture, processors have access to a shared memory.

We assume that the database relation whose transitive closure is to be computed consists of a “source” field, a “destination” field,

and other data fields that represent labels (properties) on the arc from a specific source to destination such as distance, capacity,

reliability, quantity, etc. The database relations have been partitioned across processors, so that each processor “owns” a part of the

relation and there is no replication. Partitioning is horizontal; each processor has all the tuples in the relation (both original and

result) with certain specified values for the source or destination field.

t This paper is a caidenscd vcmion of 2], presented at the International Symposium on Databases in Parallel and Distributed Systems, Austin, Texas, December 1988.

30

2.2 BasIc Primitives

To present algorithms in an architecture-independent manner, we first define a few primitives that we use in algorithm description in

Section 3.

Remote-Get: Access data from non-local memory.

A remote-get is executed by a processor to access a piece of data not owned by the processor. If the remote data is unavailable, the

remote-get is blocked. We shall write remote—get (data) where data is the data that needs to be remotely accessed.

Show: Make data available to remote processors

The show operation is complimentary to the remote-get operation. A show is executed by a processor to make available a piece of

data “owned” by the processor to other processors. A processor may not gain access to remote data unless it has been shown by its

owner. Weshallwrite show(data, processor_list) tomeanshow the data toprocessorsin processor_list. The

processor_list could be empty.

Enable-Interrupt: Set up an interrupt event and the interrupt-handling routine

A processor may receive notification of an external event provided that it has enabled an interrupt. We write enable (event,

action) to mean upon the occurrence of the interrupt event, execute the action specified in action.

There are different ways in which a pair of show and remote-get operations may be implemented. A processor doing show may

write the data in a remote location and the other processor(s) may then access it remotely. This form of implementation normally
exists in a shared-memory system, where the remote location in question is in the shared memory. A second alternative is to do a

show by sending (broadcasting or multicasting if multiple receivers are involved) the data to the other processors. The remote-get

then requires a local access. This form of communication is found in most message-passing systems. A third alternative is the

inverse of the second scheme. A processor may do a show by writing locally to its own memory and provide this address to the

intended receivers. The remote-get is then accomplished by a remote access to this location.

Irrespective of the type of architecture used, a show and remote-get pair of operations is considerably more expensive than a local

access. This expense may simply be the longer latency of a remote access, but may also include synchronization costs, the effects of

contention for shared resources such as a bus, etc. The parallel algorithms that we devise minimize the number of show and

remote-get pairs in favor of local accesses.

3. PARALLEL TRANSITIVE CLOSURE ALGORITHMS

We present three parallel transitive closure algorithms: one iterative and two matrix-based direct algorithms.

3.1 Iterative Algorithms

The essential idea of iterative algorithms is to evaluate repeatedly a sequence of relational algebraic expressions in a loop, until no

new answer tuple is generated. Included in this family are algorithms such as semi-naive 5], logarithmic 10, 17] and variations

thereof 10, 13]. We consider parallelization of the semi-naive algorithm; other iterative algorithms can be parallelized similarly.

If R0 is the initial relation and R~ the set of tuples generated in an iteration, then the semi-naive algorithm computes the transitive

closure R1 of R0 as shown below. Drawing upon the results in 4], R0 was partitioned on the source field, as also R~ and R1. The

steps executed by the processor p in the i’1’ iteration are shown below.

Semi-Naive Algorithm (Uniprocessor): Algorithm 1.1 (Parallel Semi-Naive):

R1 ~— R0 1) if (R~)~’ � ~ then

R~ ~- R0 2) (Rfl’ ~- (R~)’1 . remote—get(R0)
while Ra � (~> do 3) (R~y ~— (R~/ — (R~)~’

Ra ~- R~ R0 4) (R~~ ~— (R~)’1 u (Rfl~
Ra 4- R~ — R1
R1 — R1 U Ra

The closure computation is partitioned in such a way that the set of result tuples owned by a particular processor are generated at the

same processor, so that communications and synchronization is minimized. The set-difference and union steps (steps 3 and 4

respectively) can be performed locally without remote access to any tuple in R~. The composition step (step 2), however, requires
Ra to be joined with the complete R0 because Ra has been partitioned on the source field and it may have a tuple for every

destination value. The relation R0 will have to be remotely accessed. However, provided enough storage is available locally, it may

be possible to remotely access R0 only once at the beginning of the iteration, since R0 does not change from iteration to iteration.

All subsequent computation can then be perfonned locally at each processor. There is no need for synchronizing iterations, and

different processors may even compute for different numbers of iterations, since they independently evaluate their termination

conditions. The algorithm terminates when all processors are done.

31

In terms of the graph corresponding to the given relation, this algorithm hands over the complete graph to every processor, but makes

a processor responsible for determining reachability from a specified set of nodes. Since a processor has access to the complete

graph, it can determine this reachability without any communication with any other processor. The disadvantage is that there may be

significant redundant computation in this algorithm. For example, suppose the graph has an arc from i to j and the reachability
determination for i and j has been delegated to different processors, then both the processors will end up determining complete

reachability for node j.

Thus, this algorithm completely avoids communication and synchronization during the transitive closure computation. The price paid
is a relatively more expensive composition step and extra storage requirement with each processor. As such, this algorithm can be

veiy attractive in systems in which communication costs are high, such as loosely-coupled multicomputers.

32 Matrlx.llased Algorithms

Warshall 19] proposed a uniprocessor algorithm for computing the transitive closure of a Boolean matrix that requires only one pass

over the matrix. Given an nxn adjacency matrix of elements a•~ over a n-node graph, with ~ being 1 if there is an arc from node i

to node j and 0 otherwise, the Warshall algorithm requires that every element of this matrix be “processed” column by column from

left to right, and from top to bottom within a column. “Processing” of an element aj involves examining if is 1, and if it is,

then making every successor of j a successor of i.

It was shown in 3] that the matrix elements can be processed in any order, provided the following two constraints are maintained:

1. In any row i, processing of an element aa precedes processing of the element ~ iff k <j, and

2. For any element a1~ in row i, processing of the element aft precedes processing of a~.j iff k <j.

Various processing orders can be derived subject to these two constraints, giving rise to a whole family of Warshall-derived

algorithms. We now develop algorithms in which the matrix elements are processed in parallel, while maintaining the above two

constraints.

3.2.1 AlgorIthm M.1

Partition the original relation on the source field so that each processor owns all the successors of a contiguous number of nodes (in

tenns of adjacency matrix, each processor owns a contiguous set of rows’). Processors are numbered and the processor p owns the

pth partition. Let there be m processors, and hence m partitions, and let b~ and e~ be the beginning and end nodes of the ~th
partition. Each processor executes in parallel the following algorithm, written for the processor p:

1) forqfromltomdo
2) if p equals q then /* p drives the computation *1

3) forifromb~toe~do
1* process elements below the diagonal */

for) from b~ to i—i do process a,j

4) copy successors_of(i) into copy_ofti)
5) show(all, copy_of (i))

6) forifromb~toe~do
1* process elements above the diagonal */

for j from i+1 to e~ do process a•~

7) else 1* q (� p) is driving the computation ~/

8) forjfromb~toe~do
9) remote—get(copy_oflj)) I” from q ~/

10) for i from b~ to e1, do process a,,

As noted before, processing of an element a.j involves examining if aq is 1, and if it is, then making every successor off a successor

of i (that is, ORing row j into row i). Clearly, for processing an element ~ a processor needs access to both rows i and j. It is

guaranteed that the processor will have available to it the row i, since a processor processes only those elements that it owns and the

matrix has been partitioned among processors row-wise, but it may have to access remotely the row j.

Algorithm M.1 is an asymmetric algorithm. For each value of q, only one processor (the processor whose number is q) executes the

~f part of step 2 and all other processors execute the else part. The processor executing the ~f part drives the computation, and every

processor gets to assume this role once.

1. The row i of the adjacency matrix corresponds to the successor list of node i(that is, all triples of the relation that have i in the source field). Sirnilariy, the column j
of the matrix corresponds to the predecessors of the node j. We shall freely alternate between the topic, graph, and adjacency matrix representations of a relation.

32

When the processor p is executing the ~f part, it does not require any remote access at step 3 or step 6, since the rows i and j needed

for processing the element a,, belong to the partition owned by p. The if part is executed in two steps: first the elements below the

diagonal are processed, followed by a processing of elements above the diagonal. Elements are processed in row-order from top to

bottom. During the processing of elements below the diagonal, as soon as the diagonal element is reached in a row, a copy of this

row is made for showing it to other processors (for reasons that will become clear shortly), and processing continues with the next

row. Note that there need not be two physical copies; a simple one-bit pubiic/~,rivate mark associated with each topic will be

sufficient. Furthermore, a copy is required only in those systems in which other processors have direct access to p’s latest successor

lists. For example, in a message-passing system in which a show involves a broadcast, the copy created at step ~ is really the

content of the broadcast message.

When the processor p is executing the if part, all other processors must be executing the else part of the algorithm. (This is not

strictly true. It is possible that while the processor p is still executing the if part, the processor p+l, if it has completed executing
the else part, may move on to start executing its (f part, since the processors need not synchronize for every new value of q). Any of

these processors, say r, will need access to row j that is owned by p before it can execute step 10, which is made available by p at

step 5. However, what p shows is a copy of row i made at step 4. This avoids unnecessary synchronization since p does not have

to wait for every other processor to see row i before making additions to it at step 6. Precedence constraint 2 will be violated if the

processor r gets at step 9 row i that has some nodes added to it by p at step 6. Note that r processes elements in the column order

(from left to right) so that as soon as a row is shown by p. all elements in the partition owned by r are processed that have the same

column number as the number of this row.

Finally, processors do not have to synchronize at step 1 for every value of q. The blocking remote-get at step 9 performs

synchronization, if necessary.

Algorithm M. 1 can be modified so that each successor list is not shown as soon as it was ready, but rather a number of lists are

clubbed together and shown (and accessed) as a unit. See 2] for details.

3.2.2 AlgorIthm Mi

A disadvantage of Algorithm M.1 is that if a processor p is slow in creating and showing the successor list of i at step 5, all other

processors may be blocked at step 9 for the successor list of i. Instead of blocking such a processor q, Algorithm M.2 attempts to

schedule processing of some other element within the partition belonging to q. Instead of assigning contiguous successor lists to the

processors, lists are assigned in a round-robin fashion. Assume, as before, that the graph has n nodes and there are in processors.

The following algorithm, written for processor p. is executed in parallel by every processor:

start: /~ now process elements above the diagonal */

set the row_received flag to false for (i = p ; i � n ; I = i + m) do

if row_received flag is true then go to start

1* first process elements below the diagonal *1 for j from i+1 to n

for(i =p ; I � n ; I I + m) do if aq has not been processed then

if row_received flag is true then go to start if j does not belong to the partition of p then

for j from 1 to i~1 do if copy_ojtj) has not been shown then

if a•~ has not been processed then enable(on show of copy_oflj),
if j does not belong to the partition of p then set the row_received flag to true)

f~ get the row j ~/ continue outer loop with next I

if copy_oflj) has not been shown then else

1* do not block */ remote—get(copy_oftj))
enable(on show of copy_oJ(j), process a.~
set the row_received flag to true)

continue outer loop with next i wait if there is any pending enabled interrupt
else/” get it *1

remote—get(copy_oflj))
process a,,

copy successors_of(I) into copy_ofli)
show(all, copy_of (I))

If a processor p finds that it cannot process an element a1, since p does not own j, and the successor list of j has not yet been shown

by its owner, then p does not block as in Algorithm M.l. Rather, p enables an interrupt to receive notification when the successor

list off is shown, and moves on to process the next row in its partition.

A processor p shows a row i only after p has processed all the elements of row i that belong to the lower-triangular half of the

matrix. To minimize blocking, every processor tries to show the rows it owns as early as possible. A processor shows the rows it

owns from top to bottom. Thus, whenever a processor p is interrupted on a new row being shown by some other processor, p comes

back to processing the top most row in its partition that it has not yet shown to other processors. As in Algorithm M.l, a copy of

the successor list is saved to show to the other processors.

33

A final note with regard to the parallel algorithms presented in this section. Although the algorithms have been presented for

reachability computation for the ease expositi~on, they may be trivially adapted to solve path problems using the techniques presented
in 3]. Path computation is a generalization of the simple reachability computation. While reachability computation can tell whether

a point p can be reached from q, path computation can additionally determine some properties of the path from q top. Indeed, most

of the applications of practical interest require path computation, and the experimental results presented in the next section are for the

performance of these algorithms in computing a bill of materials.

4. EXPERIMENTAL RESULTS

4.1 The Set Up

The algorithms presented in Section 3 have been implemented on the Silicon Database Machine (SiDBM) 15] that presently consists

of eight 14 Mhz AT&T 32100-based single board computers interconnected with the standard VMEbus. Each processor has one

megabyte of local, on-board memory, and they all have access to 16 megabyte global, off-board memory on the bus. Algorithms
were coded in Concurrent C 7].

Two different implementations of communication mechanisms were tried for our algorithms. The first utilized shared memory. The

second was a message passing scheme. In this paper, we present results only for the shared memory configuration; see 2] for the

results for the message passing configuration.

4.2 The Methodology

Synthetic graphs were used in the performance evaluation experiments. Two parameters of a graph were identified as important: the

number of nodes, and the degree of each node. These two parameters were varied to create a set of random graphs.

Since most practical database applications of transitive closure involve path properties 1, 16], we decided to experiment with the

computation of transitive closure with path properties. One common use of transitive closure in databases is to compute a bill of

materials in a manufacturing situation. All our experiments were rim for this problem. Since a bill of materials cannot be computed
from a graph with cycles, only acyclic graphs were used.

A standard metric for the performance of a parallel algorithm is its speed-up defined as the time taken by the best serial algorithm to

perform the same computation divided by the time taken by the given parallel algorithm. Since our parallel algorithms can be

considered the parallelization of the well-known sequential algorithms, we have taken speed-up to be the time required for the

appropriate sequential algorithm divided by the time taken by the parallelized version. Thus, our speed-up numbers for 1.1 compare

it with the semi-naive, and our numbers for M.l and M.2 compare them with the Warshall algorithm, all memory-resident

43 The Experiments

Figure 1 shows the performance of the three algorithms on a directed acycic graph (DAG) with 250 nodes and an average degree of

5. The graph had 1236 arcs, and its closure had 28422 arcs. The time taken by all three algorithms follows an approximate

hyperbola, as one would hope if a linear speed-up were being achieved. The two direct algorithms perform considerably better than

the iterative algorithm, irrespective of the number of processors used. The poor performance of the iterative algorithm can be

attributed to the large number of iterations it performs.

Figure 1 also shows the corresponding speed-up obtained. Notice that all three algorithms parallelize quite well. Comparing the

three algorithms, we find that the speed-up obtained by M.1 was consistently better than that obtained by M.2, which we shall

explain shortly. The speed-up obtained by I.! was consistently better than that obtained by M.1. The reason for the better speed-up
with 1.1 is the longer time that it takes to perform the same computation, making even small problems appear “large” in comparison
to the overheads of parallelization. Thus, by using 8 processors, we were able to obtain a speed-up of 6.9 with 1.1 and a speed-up of

5.9 with with M.2.

FIgure 1. Comparative performance of the three algorithms on a random DAG (nodes = 250, degree = 5)

1.1: 0 M.l: • M.2: A

600. 8—

6—

400

Time

(seconds)
Speed-up 4 —

200

2—

0 0—
I I I

0 2 4 6 80 2 4 6 8

Number of Processors

34
Number of Processors

We should also remark at this stage that we are using the fixed size measure of speed-up2 in which the problem size is kept fixed and

the number of processors is varied. As pointed out in 9], a problem with this measure is that as the number of processors is

increased, the work assigned to each processor reduces. Thus, when 8 processors are used on a 250-node graph, each processor is

assigned only 31 nodes to work on. This causes severe under-utilization of the local memoiy available with each processor and large
amplification in any load imbalance between processors due to nodes having different number of successors. The 250-node graph
was just about the largest graph whose closure could be computed using a single processor. In practice, the fixed quantity often is

not the problem size but rather the amount of time a user is willing to wait for an answer: given more computing power, the user

expands the problem to use the available resources.

We also studied the sensitivity of the speed-up numbers to the graph being used for the computation, by vaxying the number of nodes

and the average degree. We also carefully metered the time spent in performing different activities at each processor, and found that

a large fraction of the CPU time was spent in computing and little time in “control”, which includes synchronization waits for other

processors. In fact, the control time is zero for 1.1 since it runs with no synchronization whatsoever. The communication time was

also small. See 2] for the detailed results.

In view of the computation time dominating the total time taken, for suitably large problems, we expect that an almost linear speed-

up should be possible even as the number of processors grows. Also, a more complex algorithm such as M.2 is of little value since

all it can do is to reduce the amount of time spent in synchronization waits while adding some overhead for a more complicated
control strategy. In fact, the overhead added appears in most cases to exceed the idle wait time eliminated, resulting in performance

slightly worse than M.l in most cases.

5. RELATED WORK

Valduriez and Khoshafian proposed in 18] a hash-join-based parallelization of the semi-naive algorithm. As discussed in 2], the

primary drawback of this technique is that (almost) every tuple computed must be shown to a different processor and remotely
accessed. What is worse, this communication occurs prior to the elimination of duplicates, and thus could actually involve numbers

of tuples far larger than those actually present in the final result. In fact, in the worst case, 0(n3) tuples are remotely accessed at

each iteration, resulting in large communication. Furthermore, the processors need synchronization at every iteration. We, therefore,

expect our paralleization of the semi-naive algorithm to perform better than the hash-join-based paralleization.

Valduziez and Khoshafian also proposed another parallel transitive closure algorithm in 18]. This algorithm partitions the given

graph among processors, and each processor computes the closure of the subgraph assigned to it. The closure of these “transitively
closed” subgraphs is then computed by recursively considering two components, merging them into one component, till one final

graph is obtained. A two-way merge tree, similar to the one used in parallel sorting algorithms, is used for the merging process.

Valduriez and Khoshafian found that this algorithm always has inferior response time characteristics when compared to the hash-

join-based parallel semi-naive algorithm. Furthermore, although this point was not addressed in 18], unless the components have a

certain convexity property so that paths between two nodes do not criss-cross across components, computing the closure of two

“transitively closed” graphs would be as hard as when the graphs were not transitively closed. Dividing a given graph into such

convex components is non-trivial.

Jenq and Sahni 11] have presented a parallel implementation of the all-pairs shortest path algorithm on a NCUBE hypercube. The

Jenq-Sahni algorithm computes the closure in n rounds of processing (n is the number of nodes). A broadcast and a synchronization
of all the processors is required after each round. The largest reported speed up was about 15 using 32 processors on a 96 node

graph. Experience with parallelizing the shortest path problem on Denelcor HEP were reported by Deo, Pang, and Lord in 8], and

by Quinn and Yoo in 14]. The former reported a speed up of about 3.5 with 8 processors on a 100 node graph. The best speed up

reported by the latter was about 9 with 16 processors on a 500 node graph.

6. CONCLUSIONS

There are several, not all independent, issues to be considered when devising a parallel algorithm: how well the load is balanced

among the processors, how much time is spent by each processor waiting for data or a synchronization message from another

processor, how much inter-processor communication is required., and what speed-up is achieved with multiple processors. In this

paper we have presented three parallel transitive closure algorithms that effectively address all of these issues. We have a good load

balance, high processor utilization, low communication and control overhead, and an almost linear speed-up.

7. ACKNOWLEDGEMENTS

We are grateful to Rudd Canaday, Narain Gehani, Eric Petajan, and Bill Roome for their help at different stages of this work.

2. As an alternative. a scaled measure of speed-up was proposed in 9) in which the problan size is increased with an increase in number of processors. We decided not

10 USC this measure~ pattly because the fixed size measure makes it aintpler to pet ~ir work in perspective with other work, and partly because we fdt that there was no

readily acceptable way for scaling up the transitive closure probtan with the number of processora.

35

REFERENCES

11 R. Agrawal, “Alpha: An Extension of Relational Algebra to Express a Class of Recursive Queries”, Proc. IEEE 3rd Int’l

Corf. Data Engineering, Los Angeles, California, Feb. 1987, 580-590. Also in IEEE Trans. Software Eng. 14, 7 (July 1988),

879-885.

2] R. Agrawal and H. V. Jagadish. “Multiprocessor Transitive Closure Algorithms”, Proc. Int’l Symp. Databases in Parallel and

Distributed Systems, Austin, Texas, Dec. 1988, 56-66.

3] R. Agrawal, S. Dar and H. V. Jagadish. “Direct Transitive Closure Algorithms: Design and Perfonnance Evaluation”, ACM

Trans. Database Syst., 1989. To appear. (Preliminaxy version appeared as: R. Agrawal and H.V. Jagadish, “Direct Algorithms

for Computing the Transitive Closure of Database Relations”, Proc. 13th Int’l Conf. Very Large Data Bases, Brighton.

England, Sept. 1987, 255-266)..

4] R. Agrawal, S. Dar and H. V. Jagadish, “Composition of Database Relations”, Proc. IEEE 5th Int’l Conf. Data Engineering,

Los Angeles, California, Feb. 1989.

5] F. Bancilhon. “Naive Evaluation of Recursively Defined Relations”, Tech. Rapt. 1)8-004-85, MCC, Austin, Texas, 1985.

6] D. Bitten, H. Boral, D. J. DeWitt and W. K. Wilkinson, “Parallel Algorithms for the Execution of Relational Database

Operations”, ACM Trans. Database Syst. 8, 3 (Sept. 1983), 324-353.

7] R. F. Cmelik, N. H. Gehani and W. D. Roome, “Experience with Multiple Processor Versions of Concurrent C”, AT&T Bell

Laboratories, Murray Hill, New Jersey, 1987. To appear in the IEEE Trans. Software Eng..

8] N. Deo, C. Y. Pang and R. E. Lord, “Two Parallel Algorithms for Shortest Path Problems”, Proc. IEEE Int’l Conf. Parallel

Processing, 1980, 244-253.

9] J. L. Gustafson, G. R. Montry and R. E. Benner, “Development of Parallel Methods for a 1024-Processor Hypercube”, SIAM

Journal on Scient~.fic and Statistical Computing 9, 4 (July 1988),.

101 Y. E. loannidis, “On the Computation of the Transitive Closure of Relational Operators”, Proc. 12th Int’l Conf. Very Large

Data Bases, Kyoto, Japan, Aug. 1986, 403-411.

11] J. F. Jenq and S. Sahni, “All Pairs Shortest Paths on a Hypercube Multiprocessor”, Proc. IEEE Inf I Conf. Parallel

Processing, Aug. 1987, 713-716.

12] R. Kung, E. Hanson, Y. loannidis, T. Sellis, L. Shapiro and M. Stonebraker, “Heuristic Search in Data Base Systems”, Proc.

1st Int’l Workshop Expert Database Systems, Kiawah Island, South Carolina, Oct. 1984, 96-107.

13] H. Lu, “New Strategies for Computing the Transitive Closure of a Database Relation”, Proc. 13th Int’l Conf Very Large Data

Bases, Brighton, England, Sept. 1987.

14] M. J. Quinn and Y. B. Yoo, “Data Structure for the Efficient Solution of the Graph Theoretic Problems on Tightly Coupled
MIMD Computers”, Proc. IEEE Int’l Conf. Parallel Processing, 1984, 431-438.

15] W. D. Roome and M. 1). P. Leland, “The Silicon Database Machine: Rationale, Design, and Results”, Proc. 5th Int’l

Workshop on Database Machines, Karuizawa, Nagano, Japan, Oct. 1987.

16] A. Rosenthal, S. Heiler, U. Dayal and F. Manola, “Traversal Recursioit A Practical Approach to Supporting Recursive

Applications”, Proc. ACM-SIGMOD 1986 Int’l Conf. on Management of Data, Washington D.C., May 1986, 166-176.

171 P. Valduriez and H. Boral, “Evaluation of Recursive Queries Using Join Indices”, Proc. 1st Int’l Conf Expert Database

Systems, Charleston, South Carolina, April 1986, 197-208.

18] P. Valduriez and S. Khoshafian, “Parallel Evaluation of the Transitive Closure of a Database Relation”, Int’l J. of Parallel

Programming 17, 1 (Feb. 1988), 19-42.

19] 5. Warshall, “A Theorem on Boolean Matrices”, 1. ACM 9, 1 (Jan. 1962), 11-12.

36

Exploiting Concurrency in a DBMS Implementation
for Production Systems!

Louiqa Raschid2 Timos Sellis2, Chih—Chen Lin

Department of Information Systems Department of Computer Science

School of Business and Management. and Systems Research (.~ent.er

University of Maryland, College Park, MD 20742

ABSTRACT

In this paper, we tailor DBMS concurrent execution to a~ production system environment, and investigate
the resulting concurrent execution strategies for productions. This research is carried out in conjunction
with a novel DBMS mechanism for testing if the left—hand side conditions of productions are satisfied.

We demonstrate the equivalence of a~ serial and a concurrent (interleaved) execution strategy and define

requirements for a correct, serializable execution. We also compare the number of possible serial and

parallel execution schedules.

1. Introduction

The integration of artificial intelligence (Al) and database management (DBMS) technology has been

the focus of recent research 3,4]. An important aspect of this integration is identifying functional sinii

la.rities in data.base processing and reasoning with rules. This will allow techniques designed for use iii

either technology to be used in a functionally integrated environment. In this paper, we foctis on tailoring
DBMS concurrent—execution techniques to a production system environnient. Production systems

represent knowledge in the form of productions and are a good example of the rule—based reasoning para

digm. We choose the OPS5 production system I] because of its popularity in the Al domain. Our

research on concurrency in production systems has been carried out in conjunction with a novel DBMS

mechanism for testing if the left—hand side conditions of productions are satisfied 6]. In this paper, we

identify severa.l potentia.l instances for concurrency, and demonstrate the equivalence of a serial and a

concurrent (interleaved) execution strategy. We specify the requirenieiit.s for serializability, assuming a

2—Phase Locking scheme, and compare the number of serial and parallel execution schedules. For more

details, the reader is referred to 5].

2. Production Systems

A production system is a collection of Condition-Action statements, called prodnclion.s. The condi

tion part on the left—hand side (LHS) is satisfied by data stored in a database, composed of working

memory (WM) elements. The action part on the right—hand side (RHS) executes operations that can

modify the WM. A production system repeatedly cycles through the following operations:

Match: For each production r, determine if LHS(r) is satisfied by the current \\TM contents. Jf so. a(JcJ

the qualifying production to the conflict set.

Select: Select one production out of the conflict set; if there is no candidate, halt.

Act: Perform the actions in the RHS of the selected candidate. This will change the content of t.he

WM and, as a result, additional productions may he fired, or some productions may he deleted.

The following OPS5 production removes Mike from the WM class Emp if he works on the first floor,
in the Toy department:

This research was partially sponsored by the National Science Foundation under Grant CDR—85—00108 and by the University of

Maryland Office of Graduate Research and Studies under a Summer Research Award.

2
Also with the University of Maryland Institute for Advanced Computer Studies (UMIACS).

37

(p Rulel

(Enp IName Mike t Salary <s> ~Dno <D>)

(Dept tDno <D> tDname Toy IFloor 1 TMgr <M>)

•+ (remove 1))

The execution efficiency of OPS5 has been attributed to the Rete algorithm 2]. This algorithm

exploits temporal redundancy and compiles the LHS condition elements into a binary discrimination net

work. The network is an inherently redundant storage structure 6]. This redundancy results in a

decrease of processing efficiency of the R.ete network implementation with a large database. The lack of

support for universal quantification is also a drawback of the R.ete implementation.

3. A Novel DBMS Implementation of OPSS

in the DBMS implementation, we treat the LHS condition of each production as a query to be

evaluated against the W~N4 classes. Each WM class is simulated using a WM relation, such as

Emp(Name.Salary.Dno) as used in production Rulel. Attributes, represented by the ~ symbol and a.

name, whose values are hound t.o constants or value ranges are equivalent to selection predicates. \‘ari

ables that are common to two WM cla,sses~ e.g., <D> in classes Emp and Dept, and occur in the same pro

duction, are equivalent to a join.

We introduce a new data structure, a COND relation, which is used to link partially matched ttiples

from the WM relations. A COND relation is required for each WM relation (class) and will store match

ing tuple information for all productions that refer to that WM.class. For example, WM classes Emp and

Dept occur on the LHS of the production Rulel, and are related through the join variable <0>, in this

production. When a. tuple <Mike. 10000,D12> is input into the WM relation Enip, we store this informa

tion in the COND relation for Dept, COND—Dept. Now, when a. tuple is input into the WM relation Dept

with a. value of Dno=D12, the link information stored in the relation COND—Dept reflects the existence of

matching tuples in Emp. The CON1) relation obviates the need for the join operation, which would other

wise be required. A brief description of the COND relations follows; details can he found in 6].

rfhe COND relation has the following attributes: (I) RID to record the unique production identifier.

(2) Condition Element Number (cEN) to differentiate among conditions of the same production. (3) Res

trictions on each attribute of the corresponding Wivi relation. (4) A list, of Related Condition Elements

(RcE), each RCE being represented by a (RID, CEN) pair. (5) A Mark hit register. comprising one bit. per

RCE, with a default. value of zero. We illustrate the use of these attributes in the COND relation(s)

through an example. Assume four relations A, B, C, D, with attributes Al, Bi, Ci, and Di, for

i~1 .2,3, respectively, and the following productions (actions omit.ed):

(pRi (pR2

(A IA1 <x> 1A2 a’ tA3 <z>) (A IA1 <x> ~A2 a’ 1A3 <u>)

(B IB1 <~> tB2 <y> 1B3 ‘b’) (B ~B1 <x> ~B2 <y> 1B3 ‘b’)

(C tCl ‘C’ 1C2 <y> tC3 <z>) (0 ID1 ‘d’ 1D2 <y> 1D3 <x>)

-+ ()) 4’ ())

There will he four COND relations: COND—A, COND—B, COND—C, and COND—D. These relations are related

to each other by variables <x>, <y> a.nd <z> occurring on the LHS of productions Ri and R2. Variables

capture linkages between tuples of the WM relations A, B, C, and D that. must he stored in the COND

relations. The initial contents of these COND relations describe the LHS conditions of the productions.

In the COND relations tha.t are shown below, these initia.l tuples have their Mark bit. values set. t.o 0.

The RCE list indicates which conditions (involving other WM relations) of the same production are

affected by insertions or deletions in the current relation being examined. A IuJ)le in a COND relation

with at least. one Mark bit. set is called a. inaiching—pol.Iern. There is one Mark bit for each RCE, which if

set. indicates that. the matching—pattern is created by a tuple that. satisfies the corresponding condition ele

ment. This implies that. there is already some tuple(s) in a (related) WM relation having the property of

the matching-pattern and therefore it. can be joined with tuples in the current WM relation. Thus, when

a. tuple is inserted later in the current- WM relation which nia,t.ches that. patt.erii. we know in~.mediatelv

38

that there is a match without. having to examine the other WM relation(s).

RID

Ri

CEN

1

Al

<x>

A2 J A3

‘a’1 <z>

RCE

B,2),(C,3:

Mark

bit

00

82 1 <x> ‘a’ <U> B,2),(D,3: 00

Ri

82

Ri

81

82

R2

1

1

1

1

1

1

4

4

<x’

4

4

4

‘a’

‘a’

‘a’

‘a’

‘a’

‘a’

<z>

<u>

8

8

<u>

<U>

B,2),(C,3

B,2),(D,3

B,2),(C.3

B,2),(C,3

B,2),(D.3

B,2),(D,3

10

10

01

11

01

Ii

COND-C

RID CEN Cl C2 C3 RCE

Mark

bit

Ri 3 ‘c <y> <z> A,i),(B,2 00

Ri

Ri

Ri

3

3

3

‘c’

‘c’

‘c’

7

<y>
7

<z>

8

8

A,i),(B.2

A,1).(B,2

A.1),(B.2

01

10

11

RID CEN Si 82 53 RCE

Mark

bit

Ri 2 <x> <y> ‘b’ A,i),(C,3) 00

82 2 <x> y> ‘b’ A,i),(D.3) 00

Ri

RI

Ri

R2

82

R2

2

2

2

2

2

2

<x>

4

4

4

4

4

7

<y>
7

<y>
7

7

‘b’

‘b’

b

‘b’

‘b’

‘b’

A,1),(C.3)

A,1),(C,3)

A,i),(C,3)

A,1),(D,3)

A,i),(D,3)

A,1),(D,3)

01

io

ii

10

01

ii

COND-D

RID CEN Dl D2 D3 RCE

Mark

bit

82 3 ‘d’ <p <x> A,i),(B,2 00

82

82

R2

3

3

3

‘d’

d’

‘d’

7

<y>
7

4

4

4

A,i),(B,2

A,i),(B,2

A,1),(B,2

Oi

10

11

When a tuple is inserted into, say, WM relation A, two tasks are performed. First, we have to

examine the existing tuples in COND—A to deterniine if this new A tuple satisfies any productions; this

would be the case if COND-A already had a matching—pattern tuple with appropriate linkages (for the

common variables) and with a RID value of Ri. A matching—pattern tuple with both Mark bits set indi

cates the existence of tuples in the WM relations B and C that together would satisfy the production Ri.

The second task is to store the information on linkages through t.he common variables, i.e., how tuples in

the WM class A interact with B and C, or B and D, as indicated on the LHS of the productions. This

information is stored in the form of matching—patterns in COND—B and COND—C.

Suppose that we insert the tuples B(4.7.b), C(c.7~8), A(4.a.8) and D(d.7.4) in that order.

Several tuples will be inserted into the COND relations. Tuple B (4.7, b) will insert two tuples in

COND—A (corresponding to Ri and R2), one tuple in COND-C for Ri and one tuple in CQND-D for R2.

Tuple C(c.7,8) will insert two tuples in COND—A for Ri. The second tuple will have both Mark hits set

indicating the presence of WM elements from B and C simultaneously satisfying Ri. One tuple will also

be inserted into COND-B for Ri. Tuple A(4,a.8) will match with a matching—pattern for Ri with both

bits set; this implies there now exist tuples from A, B and C satisfying Ri and this pattern must be

placed in the conflict set. This tuple also introduces three tuples in COND-B, two tuples in COND—C, and

two in COND—D. Finally, tuple D(D,7.4) will match a matching—pattern in COND—D for R2 with both bits

set; this pattern for R2, is placed in the conflict set. This tuple also inserts two tuples in COND—A and in

COND—B. The contents of the relations are shown in the above tables. Details of the algorithm described

above are in 6].

4. Processing Applicable Productions

In our DBMS implementation, all the tasks associated with the execution of a candidate production

(from the conflict set) will be defined as a single (complex) transaction. Within this transaction, the first

task is retrieval from the V/M relations; the matching—pattern tuple for a selected production does not

store pointers to, or identifiers of, the actual tuples of the WM relations satisfying this production. The

attribute values in each matching—pattern will provide the selection criterion that must he applied to the

WM relations. The next task is executing t.he corresponding RHS actions. These actions represent changes

COND-A COND-B

39

to the WM classes and include insertions, deletions and updates of the WM elements. RHS actions that

add or delete tuples from the WM relations trigger the insertion or deletion algorithm, respectively. Both

algorithms will update the conflict set and also execute the maintenance tasks that update the CONID

relations. The deletion algorithm performs searches similar to the insertion algorithm; the difference is

that it deletes matching—patterns from the conflict set, and resets the Mark bits in the COND relations.

An update is equivalent to a delete followed by an insert, and triggers both algorithms. Conceptually,
execution of the production (transaction) completes after updating the WM relations, the conflict set and

the COND relations.

In the Rete network implementation of OPS5, productions placed in the conflict set are executed in a

serial order. in each cycle, a single production is selected and its RHS actions are then executed; this may

result in changes to the WM. In the next match phase, these updates to the WM are propagated through
the discrimination net. Consequently, productions in the conflict set may be deleted, or productions may

be added. When several combinations of the WM elements satisfy a single production, the Rete imple
mentation stores each combination as a separate instantiation of the production in the conflict set, and

each is executed independently. However, in our implementation, a set—oriented selection will retrieve all

possible combinations of the WM tuples satisfying ea.ch LHS condition. Thus, a selected production can be

simultaneously applied to all possible combinations of the WM tuples, tha.t are retrieved. This leads to

potential intra—produc lion concurrency (within a single production) when executing productions.

Similarly, combinations of the WM elements could simultaneously satisfy different productions.
This leads to potential inter—production concurrency for executing the entire conflict set. In the next sec

tion, we explore a concurrent execution strategy that. exploits both forms of concurrency.

4.1. Equivalence of a Serial and Paraliel Execution

Given an initial set ~I1 of transactions, each of which corresponds to an already satisfied production
in the conflict set, we compare the serial execution of these transactions, e.g., in OPS5, with their inter

leaved execution in a concurrent environment. The serializability criterion is used to show the

equivalence of both execution strategies.

In a serial production system, in each step i, a single transaction. 7~ is arbitrarily selected from the

conflict set and applied (Select and Act). We use the term ~‘arhitrarily”, because the OPS5 conflict, resolu

tion strategies are syntactic. Subsequently, the production system will determine (Match), if, as a result

of applying T1, some other transactions in this conflict set are no longer applicable; if so, these transac

tions will be deleted from the set. Let the set of transactions deleted in step i be del1. Also as a. result of

applying 7~, the production system will determine (Match) if some additional transactions are now appli
cable as well. Let the set of transactions added in step i be add1. The new set of candidate transactions

in step i+ I is ‘1’~÷~ = 4’ ~ 7~) —del1 U add1. This process will continue until in step F’, the set. 4’
p

is

empty.

The selection of each T~ is arbitrary; thus, it is entirely possible that. in step 2, 7~ is selected from

the set ‘P — {T1J — del1 which is the set ‘P2 — add1. In other words, T2 could also be selected from the

initial set ‘4’ and not, from the added set of transactions add1. Similarly, in subsequent. steps i, 7~ can he

selected from the set 4’ — U ({ ~) U dc1~) which is the same as the set ‘P — ~ adds. If the selection is

as described, then after some 11 steps the serial production system will have executed a sequence of 11
transactions T1, T2 , T~, where each 7. happens to be an element of the initial set ‘J/~. After step J~.

all transactions in4’1 are either executed or deleted and the set of applicable transactions for step (f~+ I),

‘4’
11+1

is the set u adds, i.e., all the transactions added in the 11 previous steps, which were not. selected

2=1

previously. In step (f~+ 1), ~ is chosen from this set

Given this same initial set ~I1 a. concurrent execution strategy would interleave the execution of this

set of transactions. If an appropriate protocol is used, and the resulting schedule is serializable, then it.

must be equivalent to some serial schedule T~, T2, , etc., where each 7~. must he from the initial set. ‘1’
i.

40

In other words, the concurrent production system will execute an equivalent serial schedule which will be

the same as some serial schedule arbitrarily selected by the serial production system.

4.2. Concurrent Execution with the DBMS Implementation

In a DBMS environment, a transaction commits all its changes after it has terniina.ted its execution

normally. Once the transaction commits, these changes are physically made in the database. iii a con

current environment, appropriate locks must be obtained to satisfy the following: First, the interleaved

execution of a set of productions must maintain consistency of the database. i.e., two transactions that

update the same WM relation must be serializable. Second. transactions tha.t are inter—related and a.ffect

each other’s execution, i.e., transactions that delete each other’s matching—pattern tuples from the conflict

set, must interact correctly. For example, when a transaction 7. executes, the selected commit point, must

be chosen to enforce a delay in the execution (and commit) of the transactions in the set. dcli. i.e., transac

tions that are deleted as a. result of previously applyjng 7~. Transactions in this set must either not be exe

cuted or, if executed, their changes must not he committed to the database.

A transaction (production) is positively dependent on a WM relation if the LHS of (lie production is

satisfied by the existence of some specific tuples of a WM relation. A transaction is nega(ively dependent
on a WM relation if it is satisfied by the absence of some specific tuples A transaction is independent of

a WIM relation if it is unaffected by the existence or absence of specific tuples. In the current definition of

the OPS5 language, the RHS actions of a. production can only delete or update tuples from the WM rela

tions on which it is positively dependent. However, a. transaction ca.n insert tuples into any WM relation.

The production R3 shown below, is positively dependent on the WM relations A and B. It is negatively
dependent on C, and is independent of D.

(pR3
(A IA1 cx> tA2 ‘a’ 1A3 <z>)

(B IB1 <x> tB2 <y> 1B3 ‘b’)

(C ~C1 ‘c 1C2 <y> 1C3 <z>)
~ ((remove 2)

(make (D ID1 ‘d’ tD2 ‘d’ 1D3 ‘d’))

The following requirements must he met to produce a serializable execution schedule:

(1) Each transaction 7~ must obtain an R lock for specific tuples of the WM relations it Positively
depends on and are used to satisfy the LHS of the production. This prevents the deletion or update
of these tuples by other transactions. Note that if any of these retrievals returns an enipty set of

tuples, then the transaction is aborted. This may happen if 7~ is in the delete set. of a previously
committed transaction.

(2) Each transaction 7~ must obtain an R lock for the entire WM relations(s) it. negatively depends on.

It must subsequently verify that there are no tuples satisfying the search criterion for this negative
dependency. Note that if the verification fails, 7~ is aborted since it is in some delete set.

(3) Each transaction ~ must obtain a W lock for specific tuples of the V~vl relation that it deletes or

updates. These would necessarily be tuples for which it would have previously obtained a.n R lock;
consequently, these tuples must exist and could not have been deleted. However, it could wait

indefinitely in case of a. deadlock.

(4) Each transaction 7~. must obtain a W lock for an entire WM relation if there is a.n insertion of

tuples. Again, an indefinite wait implies a deadlock situation.

(5) Once these locks are obtained, transaction 7’ can update the matching—pattern tuples in the conflict.,
modify the WtvI relations and update the COND relations. It then commits all of its changes a.nd

releases all locks.

In 5], we have proved .the correctness of our requirements for serializability by examining all cases

of inter—dependencies”among productions (through the WM relations).

41

Consider the case of transactions 7 and 77,. that are positively dependent on the WM relation R. T~

deletes specific t.uples from R and this may affect the execution of 7.. ii obtains an R lock for the WM

relation R before 7~ attempts to obtain a W lock, then, 77,. will precede 7~ in the equivalent serial execu

tion and the database will be consistent.

If 7~ obtams a W lock on the WM relation R (and thus, completes execution) before T~ requests an

R lock, then T~. may be in the set del1, so its execution must be delayed until after the update or delete

from R. Changes made to R trigger the maintenance process and propagate changes to the COND rela.

tions. The maintenance process can potentially delete the matching-pattern tuple for 7. front the conflict.

set. For this reason, 7 must. not commit and release its locks on the WNI relations until the iiiaint.enance

process completes.

If the matching—pattern tuple corresponding to 77,. is unaffected or is deleted before Tj starts execu

tion, then, no further action is required. If Tj has already started execution, it. will be delayed since it. will

not be able to obtain a R lock until 77~ releases its W lock on the t.uples of R. Now, even if the

matching—pattern tuple for is deleted, T1 will still be executed. However. 7 will not. be able (.0 process

those tuples of R that. have already been deleted by 7 so the database will remain consistent.

It. is also possible t.hat both 7 and T, delete or update tuples front R, and tha.t ‘I is iii the set del5
and vice versa. This could lead to a deadlock of the two transactions.

4.3. Special Case of Intra—Production Concurrency

Maintaining serializability in the case of intra—productiori concurrency requires further attention.

Consider the following sets of tuples satisfying R3:

{A(4. a. 8) ,B(4, 7. b)} and {A(4. a, 38) B(4, 7. b)}

If the t.uple B (4,7. b) was deleted by R3 (with the first set of tuples), then it. would affect. (-lie subsequent.

execution of R3 (with the second set of tuples). However, if the following combinations of t.uples were t.o

satisfy R3 simultaneously:

{A(4,a,8) ,B(4,7.b)} and {A(4,a,8) .B(4.9,b)}

then, execution of R3 with each combination of t,uples in any sequence is always serializable.

One solution is to treat each instantiation of a. production and one combination of the WN4 t.uples as

a. nested transaction within the transaction representing the production and all combinations of tuples.

Nested transactions, however, are expensive to support and this solution may even negate the advantages

of int.ra—production concurrency. A preferable solution would be for each transaction to count. the

number of times it attempts to delete a tuple. If it. attempts to do so more than once, then there is clearly

inconsistency in the execution of the transaction. Similarly, if a transaction is negatively dependent on a.

WM relation and if the transaction also inserts tuples into the same relation, then there is a possibility for

inconsistent, execution within the transaction. These issues require further consideration.

4.4. Estimating the Number of Execution Schedules

The benefits of concurrent execution can be measured in severa.l was. First., the number of opera

tions that. must. execute in a non—interleaved fashion reflects the t.inie of execution. In the best case,

neglecting the locking overhead, this will be proportional to the maximum number of updates to any WM

relation or COND relation. In the worst case, this will reduce to the time taken for a serial execution.

A second measure involves an estimation of the number of possible choices for selecting a transac

tion in any step and the resulting number of different execution schedules in each case. This measure is of

interest since different execution schedules result in different final states of the knowledge base. See 5] for

a. detailed discussion.

A serial system is not constrained to execute in the fashion that we just described, where the initial

sequence of transactions is limited to be in the initial set ‘I’
~.

In fact, in each step i, all transactions in the

set. 4i~, which was previously defined, are candidates for execut.ion. If we use ‘~‘ I to denote the size of

t.he set ‘4’
~,

then in ea.ch step i, ‘~‘ ~ is the number of available choices for selecting a transaction. Let

42

‘IS1 represent the number of choices of possible serial schedules, corresponding to a sequence of f transac

tions, T1,T2 ,T1. Then NSjis as follows:

I

NS1= III ‘I’] where ‘‘i’~4~j = I’P~I —1— del1] + Iadd1I.

We now estimate the number of possible execution schedules for the concurrent PS; we can measure

the number of equivalent serial schedules, NC(eq)j, for a sequence of f transactions. The final state of the

knowledge base is determined by the equivalent serial schedule. Let I ‘P
i

I be the number of transactions

in the initial set and let f~ of these transactions be actually executed, i.e., the LHS of the rest are not

satisfied. At each st.ep i, the number of choices for the concurrent system is (i ‘P I — i — I del1]). Aft.er

the 11 transactions are executed we use the operations executed by them, collectively, to form a new ini

tial set ‘I’
,,.~

of added transactions. THen, NC(eq)j is as follows

/1 ‘2

NC(eq)j= rI(I’P11 —i— Idel1I) x fI(I’I’,1+1I —i— Idel,+1I)X

where, ‘I’
11+1

= U add1 is a new initial set of transactions made applicable after executing the set ‘P

andf=f1+f2+ .

5. Conclusions

In this paper we studied the problem of concurrent execution of a set of applicable productions in a

DBMS implementation of a production system. We showed the equivalence of a serial and an interleaved

execution. The latter may improve execution efficiency and in the worst case it will be no worse than a

serial strategy (neglecting any locking overhead). Assuming 2—Phase Locking, we specified the require

ments for a correct serializable execution. We also estimated the number of possible execution schedules

for a serial production system compared to the concurrent one.

0. References

1] Forgy, C.L., OPS5 User’s Manual, Tech. R.eport CMU—CS—81—135, Carnegie—Mellon University

(1981).

2] Forgy, C.L., Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem,

Artificial Intelligence (19) (1982).

3] Kershberg, L., Ed., Expert Database Systems: Proc. From the First International Workshop,

Benjamin/Cummings Publishing Company, Inc., Menlo Park, CA (1986).

4] Kershberg, L., Ed., Expert Database Systems: Proc. From the First International Conference.

Benjamin/Cummings Publishing Compa.ny, Inc., Menlo Park, CA (1987).

5] R.aschid, L., Sellis, T. and Lin, C—C., Exploiting Conèurrency in a DBMS Implementation for Pro

duction Systems, International Symposium on Databases in Parallel and Distributed Systems, Austin,

TX (1988).

6] Sellis, T., Lin, C—C., and Raschid, L., Implementing Large Production Systems in a DBMS Environ

ment: Concepts and Algorithms, Proc. of ACM—SIGMOD, Chicago, IL (1988).

43

Checkpointing and Recovery in Distributed Database Systems

Sang H. Son

Department of Computer Science

University of Virginia
Charlottesville, Virginia 22903

1. Introduction

The need for a recovery mechanism in a database system is well understood. In spite of powerful database

integrity checking mechanisms which detect errors and undesirable data, it is possible that some erroneous data may

be included in the database. Furthermore, even with a perfect integrity checking mechanism, failures of hardware

and/or software at the processing sites may destroy consistency of the database. In order to cope with those errors

and failures, database systems provide recovery mechanisms, and checkpointing is a technique frequently used in

database recovery mechanisms.

The goal of checkpointing in database systems is to read and return current values of the data objects in the

system. A checkpointing procedure would be very useful, if states it returns are guaranteed to be consistent. In a

bank database, for example, a checkpoint can be used to audit all of the account balances (or the sum of all account

balances). It can also be used for failure detection; if a checkpoint produces an inconsistent system state, one

assumes that an error has occurred and takes appropriate recovery measures. In case of a failure, previous check

points can be used to restore the database. Checkpointing must be performed so as to minimize both the costs of

performing checkpoints and the costs of recovering the database. If the checkpoint intervals are very short, too

much time and resources are spent in checkpointing; if these intervals are long, too much time is spent in recovery.

For a checkpoint process to return a meaningful result (e.g., a consistent state), the individual read steps of the

checkpoint must not be permitted to interleave with the steps of other transactions; otherwise an inconsistent state

can be returned even for a correctly operating system. However, since checkpointing is performed during normal

operation of the system, this requirement of non-interference will result in poor performance. For example, in order

to generate a commit consistent checkpoint for recovery, user transactions may suffer a long delay waiting for active

transactions to complete and the updates to be reflected in the database CHA85]. A transaction is said to be

reflected in the database if the values of data objects represent the updates made by the transaction. It is highly
desirable that transactions are executed in the system concurrently with the checkpointing process. In distributed

systems, the desirable properties of non-interference and global consistency make checkpointing more complicated
because we need to consider coordination among autonomous sites of the system.

Recently, the possibility of having a checkpointing mechanism that does not interfere with transaction pro

cessing, and yet achieves consistency of the checkpoints, has been studied CHA85, F1S82, SON86b]. The motiva

tion for non-interfering checkpointing is to improve system availability, that is, the system must be able to execute

user transactions concurrently with the checkpointing process. The principle behind non-interfering checkpointing
mechanisms is to create a diverged computation of the system such that the checkpointing process can view a con

sistent state that could result by running to completion all of the transactions that are in progress when the check

point begins, instead of viewing a consistent state that actually occurs by suspending further transaction execution.

Figure 1 shows a diverged computation during checkpointing.

Non-interfering checkpointing mechanisms, however, may suffer from the fact that the diverged computation
needs to be maintained by the system until all of the transactions, that are in progress when the checkpoint begins,
come to completion. This may not be a major concern for a database system in which all the transactions are rela

tively short. However, for database systems with many long-lived transactions, checkpointing of this kind might not

This work was supported in part by the Office of Naval Research under contract number N00014-86-K-0245, by the Depariment of Energy
under contract number DEFGO5-88-ER25063, and by the Federal Systems Division of IBM Corporation under University Agreement WF
159679.

44

be practical for the following reasons:

(1) It takes a long time to complete a non-interfering checkpoint, resulting in high storage and processing over

head.

(2) If a crash occurs before the results of a long-lived transaction are included in the checkpoint, the system
must re-execute the transaction from the beginning, wasting all the resources used for the initial execution of

the transaction.

In the rest of this paper, we briefly discuss one approach for checkpointing which efficiently generates a con

sistent database state, and its adaptation for systems with long-lived transactions. Given our space limitations, our

objective is to intuitively explain this approach and not to provide details. The details are given in separate papers

SON86b, S0N88].

2. Non-interfering Approach

In order to make each checkpoint consistent, updates of a transaction must either be included in the check

point completely or not at all. To achieve this, transactions axe divided into two groups according to their relations

to the current checkpoint after-checkpoint transactions (ACPT) and before-checkpoint transactions (BCPT).
Updates belonging to BCPT are included in the current checkpoint while those belonging to ACPT are not included.

In a centralized database system, it is an easy task to separate transactions for this purpose. However, it is not easy
in a distributed environment To separate transactions in a distributed environment, a special timestamp which is

globally agreed upon by the participating sites is used. This special limestamp is called the Global Checkpoint
Nwnber (GCPN), and it is determined as the maximum of the Local Checkpoint Numbers (LCPN) through coordi

•

nation of all participating sites.

An ACFF can be reclassified as a BCFf if its timestamp requires that the transaction must be executed before

the current checkpoint. This is called the conversion of transactions. The updates of a converted transaction are

included in the current checkpoint

Two types of processes are involved in the checkpoint execution: checkpoint coordinator (CC) and check

point subordinate (CS). The checkpoint coordinator starts and terminates the global checkpointing process. Once a

checkpoint has started, the coordinator does not issue the next checkpoint request until the first one has terminated.

At each site, the checkpoint subordinate performs local checkpointing by a request from the coordinator. We assume

that site m has a local clock LCm which is manipulated by the clock rules of amportLAM78J.

Execution of a checkpoint progresses as follows. First., the checkpoint coordinator broadcasts a Checkpoint
Request Message with a timestamp LC~. The local checkpoint number of the coordinator is set to LCc~. The coor

dinator sets the Boolean variable CONVERT to false, and marks all transactions at the coordinator site with times-

Lamps not greater than LCPNcc as BCPT.

45 4

Fig. 1. Diverged computation for checkpointing

On receiving a Checkpoint Request Message, the local clock of site m is updated and LCPN is set to LCm.
The checkpoint subordinate of site m replies to the coordinator with LCPNm, and sets the Boolean variable CON

VERT to false. The coordinator broadcasts the GCPN which is determined as the maximum of the local checkpoint
numbers.

In all sites, after the LCPN is fixed, all transactions with timestamps greater than the LCPN are marked as

temporary ACFl~s. If a temporary ACPT updates any data objects, those data objects are copied from the database

co the buffer space of the transaction. When a temporary ACPT commits, updated data objects are not stored in the

database as usual, but are maintained as committed temporary versions (CTV) of the data objects. The data manager

in each site maintains permanent and temporary versions of data objects. When a read request is made for a data

object which has committed temporary versions, the value of the latest committed temporary version is returned.

When a write request is made for a data object which has committed temporaiy versions, another committed tem

porary version is created for it rather than overwriting the previous committed temporary version.

When the GCPN is known, each checkpointing process compares the timestamps of the temporary ACPTs

with the GCPN. Transactions that satisfy the following condition become BCPTs; their updates are reflected in the

database, and are included in the current checkpoint

LCPN < timestamp(T) � GCPN

The remaining ternporaiy ACPTs are actual ACPTs; their updates are not included in the current checkpoint These

updates are included in the database after the current checkpointing has been completed. After the conversion of all

eligible BCPTs, the checkpointing process sets the Boolean variable CONVERT to true. Local checkpointing is exe

cuted by saving the state of data objects when there is no active BCPT and the variable CONVERT is true. After the

execution of local checkpointing, the values of the latest committed temporary versions are used to replace the

values of data objects in the database. Then, all committed temporary versions are deleted. Execution sequences of

two different types of transactions are shown in Figure 2.

As an example, consider a three-site distributed database system. Assume that LC~~ = 5, LC~51 = 3, and

LCcsz =8. CC sets its LCPN as 5, and broadcasts a checkpoint request message. On receiving the request message,

LCPN of each CS is set to 6 and 9, respectively. After another round of message exchange, the GCPN of the current

checkpoint will be set to 9 by the CC and will be known to each CS. If transaction T, with the timestamp 7 was ini

tiated at the site of CS1, it is treated as an ACPT. All updates by T, are maintained as CFV. However, when GCPN

is known, T1 will be converted to a BCPT and its updates will be included in the current checkpoint.

3. Adaptive Approach for Long-lived Transactions

It can be shown that a non-interfering checkpointing process will terminate in a finite time by selecting an

appropriate concurrency control mechanisms SON87]. However, the amount of time necessary to complete one

Fig. 2. Execution sequences of ACPT and BCVT

46

checkpoint cannot be bound in advance; it depends on the execution time of the longest transaction classified as a

BCPT. Therefore the storage and processing cost of the checkpointing algorithm may become unacceptably high if a

long-lived transaction is included in the set of BCPTs. We briefly discuss the practicality of non-interfering check

points in the next section. In addition, all resources used for the execution of a long-lived transaction would be

wasted if the transaction must be re-executed from the beginning due to a system failure.

These problems can be solved by using an adaptive checkpointing approach. We assume that each transaction

must carry a flag with it, which tells whether it is a normal transaction or a long-lived transaction. The threshold to

separate two types of transactions is application-dependent. In general, transactions that need hours of execution can

be considered as long-lived transactions.

An adaptive checkpointing procedure operates in two different modes: global mode and local mode. The glo
bal mode of operation is basically the procedure sketched in the previous section. In the local mode of operation, a

mechanism is provided to save consistent states of a transaction so that the transaction can resume execution from

its most recent checkpoint.

As in the previous approach, the checkpoint coordinator begins checkpointing by sending out Checkpoint
Request Messages. Upon receiving this request message, each site checks whether any long-lived transaction is

being executed at the site. If so, the site reports it to the coordinator, instead of sending its LCPN. Otherwise (i.e., no
long-lived transaction in the system), non-interfering checkpointing begins. If any site reports the existence of a

long-lived transaction, the coordinator switches to the local mode of operation, and informs each site to operate in

the local mode. The checkpoint coordinator sends Checkpoint Request Messages to each site at an appropriate time

interval to initiate the next checkpoint in the global mode. This attempt will succeed if there is no active long-lived
transaction in the system.

In the local mode of operation, each long-lived transaction is checkpointed separately from other long-lived
transactions. The coordinator of the long-lived transaction initiates the checkpoint by sending Checkpoint Request
Messages to its participants. A checkpoint at each site saves the local state of a long-lived transaction. For satisfying
the correctness requirement, a set of checkpoints, one per each participating site of a global long-lived transaction,
should reflect the consistent state of the transaction. Inconsistent set of checkpoints may result from a non-

synchronized execution ..)f associated checkpoints. For example, consider a long-lived transaction T being executed

at sites P and Q, and a checkpoint taken at site P at time X, and at site Q at time Y. If a message M is sent from P

after X, and received at Q before Y, then the checkpoints would save the reception of M but not the sending of M,

resulting in a checkpoint representing an inconsistent state of T.

We use message numbers to achieve consistency in a set of local checkpoints of a long-lived transaction.

Messages that are exchanged by participating transaction managers of a long-lived transaction contain message
number tags. Transaction managers of a long-lived transaction use monotonically increasing numbers in the tag of

its outgoing messages, and each maintains the tag numbers of the latest message it received from other participants.
On receiving a checkpoint request, a participant compares the message number attached to the request message with

the last tag number it received from the coordinator. The participant replies OK to the coordinator and executes

local checkpointing only if the request tag number is not less than the number it has maintained. Otherwise, it

reports to the coordinator that the checkpoint cannot be executed with that request message.

If all replies from the participants arrive and are all OK, the coordinator decides to make all local checkpoints
permanent. Otherwise, the decision is to discard the current checkpoint, and to initiate a new checkpoint. This deci

sion is delivered to all participants. After a new permanent checkpoint is taken, any previous checkpoints will be

discarded at each site.

4. Performance Considerations

There are two performance measures that can be used in discussing the practicality of non-interfering check-

pointing: extra storage and extra workload required. The extra storage requirement of the algorithm is simply the
C1’V file size, which is a function of the expected number of ACPTs of the site, the number of data objects updated
by a typical transaction, and the size of the basic unit of information:

CTV file size = NAx(number of updates)x(size of the data object)

where NA is the expected number of ACPT of the site.

The CTV file may become unacceptably large if NA or the number of updates becomes very large. Unfor

tunately, they are determined dynamically from the characteristics of transactions submitted to the database system,
and hence cannot be controlled. Since NA is proportional to the execution time of the longest BCPT at the site, it

47

would become unacceptably large if a long-lived transaction is being executed when a checkpoint begins at the site.

The only parameter we can change in order to reduce the CTV file size is the granularity of a data object. The size

of the CTV file can be minimized if we minimize the size of the data object. By doing so, however, the overhead of

normal transaction processing (e.g., locking and unlocking, deadlock detection, etc) will be increased. Also, there is

a trade-off between the degree of concurrency and the lock ranularityR1E79}. Therefore the granularity of a data

object should be determined carefully by considering all such trade-offs, and we cannot minimize the size of the

CTV file by simply minimizing the data object granularity.

There is no extra storage requirement in intrusive checkpointing echanismsDAD8O, KUS82, SCH8O].
However this property is balanced by the cases in which the system must block the execution of an ACPT or abort

transactions because of the checkpointing process.

The extra workload imposed by the algorithm mainly consists of the workload for (I) determining the GCPN,

(2) committing ACPT (move data objects to the C’rv file), (3) reflecting the CTV file (move committed temporary
versions from the CTV file to the database), and (4) clearing the C1V file when the reflect operation is finished.

Among these, the workload for (2) and (3) dominates the total extra workload. As in the estimation of extra storage,
the workload for (2) and (3) is determined by the number of ACVFs and the number of updates. Therefore, as long
as the values of these variables can be maintained below a certain threshold level, non-interfering checkpointing
would not severely degrade the performance of the system. A detailed discussion of the practicality of non-

interfering checkpointing is given in SON86b].

5. Site Failures

So far, we assumed that no failure occurs during checkpointing. This assumption can be justified if the proba
bility of failures during a single checkpoint is extremely small. However, it is not always the case, and we now con

sider the method to make the algorithm resilient to failures.

During the global mode of operation, the checkpointing process is insensitive to failures of subordinates. If a

subordinate fails before the broadcast of a Checkpoint Request Message, it is excluded from the next checkpoint. If

a subordinate does not send its LCPN to the coordinator, it is excluded from the current checkpoint. When the site

recovers, the recovery manager of the site must determine the GCPN of the latest checkpoint. After receiving infor

mation about transactions which must be executed for recovery, the recovery manager brings the database up to date

by executing all transactions whose timestamps are not greater than the latest GCPN. Other transactions are exe

cuted after the state of the data objects at the site is saved by the checkpointing process.

An atomic commit protocol guarantees that a transaction is aborted if any participant fails before it sends a

Precommit message to the coordinator. Therefore, site failures during the execution of the algorithm cannot affect

the consistency of checkpoints because each checkpoint reflects only the updates of committed BCPTs.

In the local mode of operation, the failure of a participant prevents the coordinator from receiving OKs from

all participants, or prevents the participants from receiving the decision message from the coordinator. However,
because a transaction is aborted by an atomic commit protocol, it is not necessary to make checkpointing robust to

failures of participants.

The algorithm is, however, sensitive to failures of the coordinator. In particular, if the coordinator crashes

during the first phase of the global mode of operation (i.e., before the GCPN message is sent to subordinates), every
transaction becomes an ACPT, requiring too much storage for committed temporary versions.

One possible solution to this involves the use of a number of backup processes; these are processes that can

assume responsibility for completing the coordinator’s activity in the event of its failure. These backup processes
are in fact checkpointing subordinates. If the coordinator fails before it broadcasts the GCPN message, one of the

backups takes control. A similar mechanism is used in SDD-l HAM8O) for reliable commitment of transactions.

6. Recovery

A recovery from site crashes is called a site recovery. The complexity of a site recovery varies in distributed
database systems according to the failure ituationSCH8O]. If the crashed site has no replicated data objects and if
all recovery information is available at the crashed site, local recovery is sufficient. Global recovery is necessary
because of failures which require the global database to be restored to some earlier consistent state. For instance, if
the transaction log is partially destroyed at the crashed site, local recovery cannot be executed to completion.

When a global recovery is required, the database system has two alternatives: a fast recovery and a complete
recovery. A fast recovery is a simple restoration of the latest global checkpoint. Since each checkpoint is globall~

48

consistent, the restored state of the database is assured to be consistent. However, all transactions committed during
the time interval from the latest checkpoint to the time of crash would be lost. A complete recovery is performed to

restore as many transactions that can be redone as possible. The trade-offs between the two recovery methods are

the recovery time and the number of transactions saved by the recovery.

Quick recovery from failures is critical for some applications of distributed database systems which require
high availability (e.g., ballistic missile defense or air traffic control). For those applications, the fate of the mission,

or even the lives of human beings, may depend on the correct values of the data and the accessibility to it. Availabil

ity of a consistent state is of primary concern for those applications, not the most up-to-date consistent state. If a

simple restoration of the latest checkpoint could bring the database to a consistent state, it may not be worthwhile to

spend time in recovery by executing a complete recovery to recover some of the transactions.

For the applications in which each committed transaction is so important that the most up-to-date consistent

state of the database is highly desirable, or if the checkpoint intervals are large such that a lot of transactions cannot

be recovered by a fast recovery, a complete recovery is appropriate. The cost of a complete recovery is the

increased recovery time which reduces availability of the database. Searching through the transaction log is neces

sary for a complete recovery. The property that each checkpoint reflects all updates of transactions with earlier

timestamps than its GCPN is useful in reducing the amount of searching, because the set of transactions whose

updates must be redone can be determined by a simple comparison of the timestamps of transactions with the GCPN

of the checkpoint. Complete recovery mechanisms based on the special timestamp of checkpoints (e.g., GCPN)
have been proposed in KUS82, SON86a].

After site recovery is completed using either a fast recovery procedure or a complete recovery procedure, the

recovering site checks whether it has completed local-mode checkpointing for any long-lived transactions. If any

local-mode checkpoint is found, those transactions can be restarted from the saved checkpoints. In this case, the

coordinator of the transaction requests all participants to restart from their checkpoints if and only if they all are able

to restart from that checkpoint. The coordinator decides whether to restart the transaction from the checkpoint or

from the beginning based on responses from the participants, and sends the decision message to all participants.
Such a two-phase recovery protocol is necessary to maintain consistency of the database in case of damaged check

points at the failure site. A transaction will be restarted from the beginning if any participant is not able to restore

the checkpointed state of the transaction for any reason.

7. Concluding Remarks

During normal operation, checkpointing is performed to save information for recovery from failure. For better

recoverability and availability of distributed databases, checkpointing must allow construction of a globally con

sistent database state without interfering with transaction processing. Site autonomy in distributed database systems
makes checkpointing more complicated than in centralized systems.

The role of the checkpointing coordinator is simply that of getting a uniformly agreed GCPN. Apart from this

function the coordinator is not essential to the operation of the proposed algorithm. If a uniformly agreed GCPN can

be made known to individual sites, then the centralized nature of the coordinator can be eliminated. One way to

achieve this is to preassign the clock values at which checkpoints will be taken. For example, we may take check

points at clock values as a multiple of 1000. Whenever the local clock of a site crosses a multiple of this value,
checkpointing can begin.

If the frequency of checkpointing is related to load conditions and not necessarily to clock values, then the

preassigned GCPN will not work as well. In this case a node will have to assume the role of the checkpointing coor
dinator to initiate the checkpoint. A unique node has to be identified as the coordinator. This may be achieved by
using solutions to the mutual exclusion roblemRIC81] and making the selection of the coordinator a critical sec
tion activity.

The properties of global consistency and non-interference of checkpointing results in some overhead and

reduces the processing time of transactions during checkpointing. For applications where continuous processing is

so essential that the blocking of transaction processing for checkpointing is not feasible, we believe that a non-

interfering approach provides a practical solution to the problem of checkpointing and recovery in disthbuted data

base systems.

49

Acknowledgement

The author would like to thank Dr. Won Kim and Professor Robert Cook for their valuable suggestions and com

ments on the previous version of this paper.

REFERENCES

CHA85] Chandy, K. M., Lamport, L., Distributed Snapshots: Determining Global States of Distributed Systems,
ACM Trans. on Computer Systems, February 1985, pp 63-75.

DAD8O] Dadam, P. and Schiageter, G., Recovery in Distributed Databases Based on Non-synchronized Local

Checkpoints, Information Processing 80, North-Holland Publishing Company, Amsterdam, 1980, pp
457-462.

F1S82} Fischer, M. J., Griffeth, N. D. and Lynch, N. A., Global States of a Distributed System, IEEE Trans. on

Software Engineering, May 1982, pp 198-202.

HAM8O] Hammer, M. and Shipman, D., Reliability Mechanisms for SDD-1: A System for Distributed Databases,
ACM Trans. on Database Systems, December 1980, pp 431-466.

KUS82I Kuss, H., On Totally Ordering Checkpoints in Distributed Databases, Proc. ACM SIGMOD, 1982, pp
293-302.

LAM78] Lamport, L., Time, Clocks and Ordering of Events in Distributed Systems, Commun. ACM, July 1978,

pp 558-565.

RIC81J Ricart, G. and Agrawala, A., An Optimal Algorithm for Mutual Exclusion in Computer Networks, Com

mun. of ACM, Jan. 1981, pp 9-17.

{R1E79] Ries, D., The Effect of Concurrency Control on The Performance of A Distributed Data Management
System, 4th Berkeley Conference on Distributed Data Management and Computer Networks, Aug. 1979,

pp 221-234.

SCH8O] Schlageter, 0. and Dadam, P., Reconstruction of Consistent Global States in Distributed Databases,
International Symposium on Distributed Databases, North-Holland Publishing Company, INRIA, 1980,

pp 191-200.

SON86a] Son, S. H. and Agrawala, A., An Algorithm for Database Reconstruction in Distributed Environments,
6th International Conference on Distributed Computing Systems, Cambridge, Massachusetts, May 1986,

pp 532-539.

SON86b] Son, S. H. and Agrawala, A., Practicality of Non-Interfering Checkpoints in Distributed Database Sys
tems, Proceedings of IEEE Real-Time Systems Symposium, New Orleans, Louisiana, December 1986,

pp 234-24 1.

SON87] Son, S. H., ‘Synchronization of Replicated Data in Distributed Systems,” Information Systems 12, 2,
June 1987, pp 191-202.

SON88] Son, S. H., An Adaptive Checkpointing Scheme for Distributed Databases with Mixed Types of Transac

tions, Proceedings of Fourth International Conference on Data Engineering, Los Angeles, February
1988, pp 528-535.

50

Robust Transaction-Routing Strategies in Distributed Database Systems

Yann-Hang Lee Philip S. Yu Avraham LefI

IBM Thomas J. Watson Research Center

P. 0. Box 704

Yorktown Heights, NY 10598

Abstract In this paper, we examine the issue of robust transaction routing in a heterogeneous distrib

uted database environment. A class of dynamic routing strategies which use estimated response tunes

to make routing decisions has previously been proposed. Since response time estimation and decision

making depend on the assumed parameter values, it is important to examine the robustness or sensi

tivity to the accuracy of parameter values. Two refinements are proposed which improve system

performance as well as robustness of routing decisions. One is the threshold strategy and the other

is the discriminatory strategy.

1 introduction

The locally distributed heterogeneous database environment is shown in Figure 1.1. The database

is partitioned among the various processing systems, and the incoming transactions are routed to one

of the processing systems by a common front-end system. If a transaction issues a database request
which references a non-local database partition, the request., referred to as a remote database call,

must be shipped to the system owning the referenced partition for processing. With regard to the

destinations of database requests issued by a transaction, we can often identify one system as the

preferred system to which the transaction sends most of its requests. In studying the performance
of a transaction-processing system, tbe reference-locality distribution, i.e. percentage of database

calls issued by a transaction to each database partition, has to be considered. As there is an additional

overhead associated with remote database calls, routing an incoming transaction to the system with

the lightest load may provide worse performance than routing the transaction to its “preferred” sys

tem. Thus transaction-routing strategies need to strike a balance between sharing the load among

systems and reducing the number of remote calls.

Dynamic routing strategies for this environment have been studied in Yu88]. In previous
studies on dynamic load-balancing approaches, such as in Wang85, EagrS5], it is assumed that in

coming tasks can be completely serviced at any processing system. Under the heterogeneous data

base model, of course, these assumptions are invalid. A class of dynamic strategies based on an

attempt to minimize each incoming transaction’s response time, referred to as the MRT strategy, was

proposed and studied in Yu88]. It uses readily available information at the front-end system such

as previous routing decisions of transactions currently in the complex. It has been demonstrated that

system performance can be greatly improved if this concept of minimizing the response time of in

coming transactions is used. In Ferr86, ZhouS7], a response-time-oriented load index based on

mean-value equation is proposed which is a linear combination of queue lengths. The experiments
done in Zhou87] take samples of queue length and use smoothed queue length to calculate a load

index for determining the placement of UNIX commands.

An issue of great significance from a practical view point is how critically the quality of the

routing decision depends upon the accuracy of the assumed parameter values. The behavior of each

transaction can vary from the assumption and even the average behavior may change from time to

time. Thus a practical scheme has to be robust to the variation in parameter values.

In this paper, we examine two refinements to the MRT strategy to improve its robustness. One

is a strategy that imposes a threshold criterion on the load condition before non-preferred-system
routing, based on MRT, is considered; the other applies a policy which discriminates long transactions

in applying non-preferred-system routing. A common idea underlies these schemes is that we seek

to reduce the risks of making a non-preferred-system routing decision by being more selective about

either the precondition or the candidate for non-preferred-system routing. Because the number of

remote calls is reduced, the communications-bandwidth requirement is also reduced. These strategies
are shown to be more robust than the original MRT with respect to parameter accuracy.

51

In the next section, the MRT strategy is briefly described. in Section 3, we introduce the

threshold strategy. Its performance is evaluated with simulations and compared with the MIRT

strategy. Another refinement, the discriminatory strategy, is introduced and examined in Section 4.

We summarize the results in Section 5.

2. Response-Time-Based Dynamic Routing Strategy

We now examine the MRT strategy proposed in Yu88]. The strategy first estimates the average

queue length or utilization of each processing system F;. Then, the expected response times of an

incoming transaction, if it were routed to the processing system F;, for i = 1,...,N, are estimated. The

processing system which provides the minimum expected response time is chosen to execute the

transaction.

Under the MRT strategy, the routing decisions of active transactions are maintained by the

front-end system in a routing-history table. Each time a transaction tXk is routed to F1, the entry in the

k-th row and the i-th column of the routing-history table is incremented by one to reflect the new

arrival and its routing. Furthermore, when a transaction is completed, the entry in the corresponding
row and column of the table is decremented by one to reflect the departure. Note that there is a

negligible overhead to maintain the table in the front-end system, and that no sampling of instanta

neous state information from the processing systems is required.
The expected response time of an incoming transaction depends upon the transient behavior

of the system and the future arrivals. For efficient implementation at the front-end, a steady-state

analysis is applied to estimate the mean response time using transaction characteristics and mean

queue length at each processing system. There are different approaches to estimate the mean queue

length/response time as studied in Yu881. In this paper, we focus on the MRT strategy based upon

the residence-time calculation. This approach has shown to provide the best performance over other

approaches considered in Yu881. It regards the numbers of active transactions indicated by the

routing-history table as fixed populations in a closed-queueing network. Naturally, it is possible to

calculate the exact queue lengths based on a mean-value algorithm. However, this approach is im

practical when we consider the complexity of the mean-value analysis. The MRT strategy uses an

approximation based on Bard-Schweitzer’s algorithm Schwe79, Bard8O] to calculate the residence

time of each transaction at each processing system. Then, the queue length of each processing system

is computed.

3. Threshold Strategy

Threshold approach has been considered by Eager, et. al., for load sharing in distributed systems with

identical nodes Eage86, Eage85]. Threshold is used in a location policy to determine the destination

of transferring jobs. We demonstrate that a threshold can also be applied to the MRT in the envi

ronment studied. The new approach not only shortens the response time but, most significantly, re

duces the sensitivity to accuracy in the assumed reference-locality distributions.

Under the threshold strategy, a more conservative approach is taken that recognizes the pre

ferred system as the default system for the routing decision. A non-preferred-system routing is con

sidered only when the preferred system is comparatively overloaded. However, when

non-preferred-system routing is considered, the routing decision is again based on the MRT strategy.

That is to say that a transaction is routed to a non-preferred system only when a sizable gain on re

sponse time can be achieved. Marginal response-time gain may not provide sufficient reward to make

a non-preferred-system routing desirable. We in fact avoid individual optimization in pursuing global

optimization. More precisely, our threshold strategy tests whether the ratio of the estimated response

times between that of the preferred system and that of the system with minimum estimated response

time is within a given threshold. If it is, preferred routing is taken. Otherwise, tbe MRT algorithm is

used to make the routing decision.

In order to study performance of the routing strategies, a simulation is developed Lee88J
which is an extension of the one reported in Yu88]. We consider an environment consisting of three

transaction-processing systems with three transaction classes. Based on data from some IBM EMS

systems Corn86, Yu871, the average number of database requests per transaction is set to 15 for all

52

transaction classes. Geometric distribution is assumed for the number of database calls unless oth

erwise specified. The reference-locality distribution is given in Table 3.1.

Database Partition 1 2 3

Transaction class 1

Transaction class 2

Transaction class 3

0.75 0.11 0.14

0.07 0.82 0.11

0.11 0.06 0.83

Table 3.1 The reference locality distiibution used in simulations

In addition, we assume that the processor speed is 7~5 MIPS and the pathlengths of each database call

and the application processing between database calls are 9K and 21K instructions, respectively. The

additional communication overhead of serving a remote database call, c, is chosen to be 3K and 15K

to represent low and high communications overheads. The 10 access time and the probability of

having an 10 during a database call are assumed to be 40 ms and 0.7 for all transaction classes, re

spectively. The arrival rates are adjusted so that the processing load of database calls on each system

is balanced and the total processing load is as indicated.

To study the robustness of system performance, we would consider two additional measures

besides response time. One is the percentage of transactions routed to non-preferred systems. This

is referred to as NPR, the non-preferred-system routing ratio. Although non-preferred-system rout

ing improves the balance of loads among the processors, it has side effects because it incurs remote

calls. This puts more communications overhead on the processors and higher communications-

bandwidth requirement on the links. It can also create a vicious cycle in that after transaction tx1,

with a preferred system F1, is routed to F2, the change in load conditions forces the arrival of a next

transaction lx,, with a preferred system P2. to be routed to P1. This vicious cycle is referred to as a

swapping phenomenon. Thus, we are concerned with a sequence of ‘locally’ optimal decisions (in

terms of estimated response time) that is sub-optimal ‘globally’-- i.e. over the entire period of proc

essing— in that the preferred-system routing would have been the correct decision. The swapping
ratio, SWl~, defined as the percentage of non-preferred routings in which we observe a swapping

phenomenon, is the other measure considered. This measure attempts to provide an indication as to

whether a routing strategy makes too many sub-optimal non-preferred routings.
Let S represent the average processor utilization in the entire system excluding

communications-processing overhead. Simulation results are shown in Table 3.2, for S — 0.71 and

0.81, where the overall response time, NPR, and SWR are presented. The original MRT strategy is

equivalent to the case with threshold equal to 1. For a threshold of 1.15, slightly smaller response

times are obtained in all cases examined than those for the MRT. Also we obtain more improvement
for the case of high communications overhead under high load. However, the improvement in aver

age response time is still less than 10%. To a lesser degree, this trend can be observed when the

threshold is 1.2. The reduction on NPR and SWR are very significant in all cases.

We also consider the case with a threshold of 1.3 in Table 3.2. By ignoring opportunities to

balance the load by routing to non-preferred systems (the strength of the MRT) we can worsen the

response time significantly. In the extreme, the response time can reach 0.801 and 1.175 if we always
route transactions to their preferred systems (i.e. a bigger threshold is used), for S = 0.81 and

c = 3K and 15K, respectively. This demonstrates that the MRT policy of emphasizing load balancing
is important.

in analyzing the results of the threshold strategy, we make the following observation. As

NPR is very low compared to that of the MRT, we expect the system to be less balanced. This is

verified by comparing differences between utilizations of the processing systems through simulation.

However, the response time of the threshold strategy is as good as or better than that of the M~RT.

in a further study we examine the probability distribution of system unbalance, defined as

max{11,12,/31 - min~I1,1,,I31 where I~ is the instantaneous queue length of P1 ,
and is sampled during

simulations. The distributions under the MRT strategy and the threshold strategy with a threshold

of 1.2 are plotted in Figure 3.1. We note that the mean unbalance of the threshold strategy is higher
than that of the MRT. Also, there is a difference in the tail of the distributions. That is, the threshold

53

strategy allows the system to become more unbalanced than the MRT does. Since there is a window

of uncertainty as to how unbalanced the system will remain over the course of a transaction, allowing
a small unbalance-- coupled with the reduction in utilization due to a remote-call overhead-- leads

to better response time under the threshold approach.

s~0.71 S—0.81

threshold 1.(MRT) 115 1.2 1.3 1.(MRT) 1.15 1.2 1.3

c’=3K

RT

NFR

SWR

0.618

46.6%

78.2%

0.616

13.6%

43.3%

0.616

7.0%

8.7%

0.627

3.6%

3.3%

0.700

46.3%

85.0%

0.694

17.7%

49.0%

0.701

10.2%

15.9%

0.711

6.3%

6.6%

c=15K

RT

NPR

SWR

0.707

19.4%

37.6%

0.705

8.2%

17.5%

0.701

4.2%

4.1%

0.716

2.1%

1.0%

0.986

17.9%

43.4%

0.933

11.0%

24.3%

0.916

6.996

8.4%

0.941

4.4%

2.7%

Table 3.2 l’he performance comparisons of the threshold and the MRT strategies

Consider the cases in which the router uses inaccurate locality distributions to estimate the

queue length and response time when making routing decisions. Simulations were conducted for

cases where an inaccurate locality distribution qkl’] is assumed in the router for making routing deci

sions. Transactions issue database calls according to the actual reference distribution q~) dwing ex
ecution. In these simulations, q~1] is set to the distribution defined in Table 3.1. The estimated

distribution, ~ is set according to the following: given a percentage of inaccuracy x, if

(1 + x)q~~ < 1, then q~’ (1 + x)q~~ and for all I,’ k, ‘lk~ — — xq~h/(1 — ~&*)) (i.e. locality of

the preferred system increases with a ratio x, whereas localities of non-preferred systems decrease

proportionally); otherwise q&*’ — I and elk, 0 for all I ,~ k. The response times and the swapping
ratios are plotted in Figure 3.2. It shows that, when weaker localities are assumed in making routing
decisions, swapping ratio can reach 80% under the MRT as x — — 0.3. The performance of the

MRT degrades substantially in this case. However, when a threshold of 1.2 is applied, variations in

response times are quite small when x is in the range of -0.3 to 0.2. It is clear that the threshold ap

proach is much more robust than the MRT when less accurate reference-locality distribution is as

sumed.

4. Discriminatory Sirategy

The MRT strategy implicitly assumes, over the course of a transaction, that the system load will re

main the same as at the time when we make the decision. Actually the system load changes over the

lifetime of a transaction because of departures and arrivals. The longer the transaction, the larger the

load deviation is likely to be. Hence, a decision made at transaction arrival may not be optimal during
its entire execution period. With uncertainty about the future, making a decision that involves only
a few remote calls is less riskier than one involving a large number of remote calls. When the load is

unbalanced, the router should try to improve the situation through many small corrections instead of

one large correction.

Based on the above observation, a refinement of the MRT is to distinguish between short and

long transactions when making routing decisions. We call this the discriminatory strategy. For ex

ample, we can apply a larger threshold to longer transactions in the threshold approach. In the fol

lowing, we consider an ideal situation. Each transaction class consists of two subclasses: one long
and one short which have 48 and 8 database calls, respectively, as in a Bernoulli distribution. Note

that a Bernoulli distribution consisting of 87.5% short transactions with 8 database calls and 12.5%

long transactions with 48 database calls has a mean of 15 database calls just as the geometric dis

tribution considered before. Assume we can distinguish between the long and short transactions from

the input parameters associated with each transaction. We discriminate against a long transaction

54

by automatically route it to its preferred system. We only adopt the MRT strategy when short

transactions arrive -- i.e. we attempt to minimize the response times in situations where, even if we

make a mistake, the exposure is low.

By using preferred-system routing for long transactions, the discriminatory strategy gives up

some opportunities that MRT can use to balance the system. On the other hand, the discriminatory
strategy avoids making non-preferred-system routing decisions for long transactions which can result

in a large number of remote calls. In terms of response time we thus have a trade-off: the

discriminatory strategy increases system unbalance, but decreases total processor utilization. In Ta

ble 4.1, we examine the case for both high and low communications overheads. We find that, over

all transaction-length categories, and over all cases, the discriminatory algorithm has a lower response

time than that of the MRT. The reductions can reach 8% for short transactions and I l% for long
transactions when the processing load and communication overhead are high. The larger the

transaction-processing load and the higher the communication overhead, the larger the exposure is

for non-preferred routing: the improvement in response time is thus more apparent.

S=0.71 S=0.81

MRT I Discriminatory MRT I Discriminai~ory

c=3K

RT(shorl) 0.334 0.328 0.384 0.372

RT(long) 1.963 1.917 2.244 2.152

RT(overall) 0.619 0.606 0.709 0.684

NPR 46.6% 40.9% 46.3% 40.9%

c~15K

RT(short) 0.384 0.373 0.529 0.486

RT(long) 2.249 2.152 3.062 2.741

RT(overall) 0.711 0.684 0.972 0.885

NPR 19.5% 19.5% 18.2% 19.5%

Table 4.1 The performances of the discriminatory and the MRT strategies

In addition to improved performance, the discriminatory approach shows more robustness than

the MRT when inaccurate locality distribution is used. With the same parameters as in Figure 3.2,

we plot the response times and swapping ratios of the discriminatory approach and of the MRT in

Figure 4.1, given that the number of database calls is a Bornoulli distribution as described before.

The discriminatory approach shows little sensitivity to inaccuracy in the assumed locality. The smaller

swapping ratio of the discriminatory approach, compared with that of the MRT, indicates that the risk

of non-preferred routing is reduced by selecting good candidates for non-preferred routing, i.e., short

transactions.

5. Conclusion

Our study shows that although the MRT strategy leads to pretty good performance, it is sensitive to

the accuracy of the assumed reference-locality distribution. We have proposed a threshold approach
which follows the MRTs routing decision only when the estimated load unbalancing is above a given
threshold, and which otherwise uses preferred-system routing. There are two significant results from

the threshold approach. The first is the ability to improve transaction response time even with a dra

matic reduction in non-preferred system routing. The other one is, more importantly, the robustness

that the threshold approach provides when the assumed reference-locality distribution is inaccurate.

Because the risk of doing non-preferred-system routing may be greater for long transactions than for

short transactions, we suggested a discriminatory approach in which the MRT strategy is applied only

55

to short transactions, and the preferred system for long transactions. Interestingly, both the short and

long transactions show improvements in their response tunes. Furthermore, the robustness to inac

curacy in locality distribution is improved.

References

IBard8OI Bard, Y., “A Model of Shared DASD and Multipathing,” Comm. of the ACM, Vol. 23,

No. 10, (Oct. 1980), pp. 564-572.

ICorn86J Cornell, D.W., Dias, D.M., and Yu, P.S., “Analysis of Multi-system Function Request

Shipping”, IEEE Tran. on Software Eng., Vol. SE-12, No. 10, Oct. 1986, pp. 1006-1017.

IEage85I Eager, D L., Lazowska, E.D. and Zahorjan, J., “A Comparison of Receiver-Jnitiated and

Sender-Initiated Adaptive Load Sharing”, Performance Ewzluation Review, Vol. 13, No.

2 (Aug. 1984), pp. 1-3.

lEage86I Eager, D L., Lazowska, E.D. and Zahorjan, J., “Adaptive Load Sharing in Homogenous

DistribuU~d Systems”, IEEE on Soft. Eng., Vol. SE-12, No. 5, May 1986, pp. 662-675.

tFerr86I Ferrari, D., “A study of Load Indices for Load Balancing Schemes,” Proc. of FJCC, Nov.

1986.

LLee88I Lee, Y.H., Yu, P.S., and Leff, A., “Robust Transaction Routing in Distributed Database

Systems”. Proc. Intl. Symposium on Databases in Parallel and Distributed Systems Dec.

1988, pp. 210-219.

ISchwe79] Schweitz.~r, P., “Approximate Analysis of Multiclass Queueing Networks of Queues”, ml.

Conf on Stochastic Control and Optimization North Holland, Amsterdam, 1979.

IWang85J Wang, Y.-T., and Morris, R.J.T., “Load Sharing in Distributed Systems”, IEEE Trans.

on Computers, Vol. C-34, No. 3, (March 1985), pp. 204-217.

tYu87I Yu, P.S., Dias, D.M., Robinson, J. T., Iyer, B. R., and Cornell, D. W., “On Coupling

Multi-systems Through Data Sharing,” IEEE Proceeding, Vol. 75, No. 5, May 1987, pp.

573-587.

IYuS8l Yu, P.S.. Balsamo, S., and Lee, Y.-H., “Dynamic Transaction Routing in Distributed

Database Systems,” IEEE Trans. on Soft. Eng., Vol. SE-14, No. 9, Sept. 1988, pp.

1307-13 18.

IZhou87] Zhou, S.
,
and Ferrari, D., “A Measurement Study of Load Balancing Performance,” Proc.

of the 7th Conference on Distributed Computing Systems Sep. 1987, pp.490-497.

Figure 1.1 The configuration of a distributcd transaction processing system

Figure 31 Occurrence probabilities of sampled system unbalance

0
N

a

.0
0
.0
0

0.

V
‘I

C

V

U
U

0

Partitioned Databases

DB1 DBN

meosure of system unbolonce

56

G1

SI
C

0
•1

SI

E

SI

C
0
0.
I,

SI
I

C
0

U
a
LI
C
a

C
0
SI

I,
SI
C

0
I,

V

E

SI
I,

C
0
a
I,

V
I

C
0

LI
0
LI

C
0
L

C
0
II

LI

0

~0

-I

0

0

a
0

a

‘I
(S

Change of occurocy on localities (~)

Figure 3.2 Perfermances of the MRT and threshold strategies
with inaccurate locality distribution

(I

*
a
•0

•0•

‘a

0

0

a.
0

a.

LI

Figure 4.1 Performances of the MRT and discriminatory strategies with inaccurate

locality distribution (no. of database calls is with liornoutfi distribution).

57

Change of accuracy on localities (x)

SHARING THE LOAD OF LOGIC-PROGRAM EVALUATION

Ouri Wolfson

Computer Science Dept., The Technion, Haifa 32000, Israel

ABSTRACT

We propose a method of parallelizing bottom-up-evaluation of logic programs. The method does not introduce

interprocess communication, or synchronization overhead. We demonstrate that it can be applied when evaluating
several classes of logic programs, e.g., the class of linear single rule programs. This extends the work reported in

WS] by significantly expanding the classes of logic programs that can be evaluated in parallel. We also prove that

there are classes of programs to which the parallelization method cannot be applied.

1. INTRODUCTION

The efficient bottom-up-evaluation of intentional database relations, defmed by means of recursive logic pro
grams, has recently emerged as a very active area of research UI, BR], K]). Two main methods of improving
performance have received most of the attention. One is selection propagation, and the other is parallel evaluation.

Selection propagation reduces the number of relevant input-database tuples, by using constants passed as

parameters to the database query processor. This usually necessitates a rewriting of the logic program which defines
the intentional relation. The best known rewriting algorithm for this purpose is “magic sets” (see BMSUI).

Parallel evaluation uses multiple cooperating processors, to reduce the overall evaluation time form start to

fmish. Most efforts in this area have been devoted to characterization of the logic programs which belong to the NC

complexity class UV], K], API). If a program is in NC, it means that its intentional relations can be evaluated

very fast, given a polynomial (in the number of input-database tuples) number of processors; they have to commum

cate extensively, usually through common memory. Unfortunately, this research means very little as far as utilizing
a constant number of processors, particularly if they do not share common memory (e.g. a hypercube multiprocessor
system’ having 1024 nodes).

In this paper we assume an environment with a constant number of processors, which either communicate by
message passing, or have common memory. The method that we propose is to create rewritten versions of the origi
nal logic program (a la selection propagation), and assign to each processor a different version. Each processor exe
cutes its version on a local copy of the input database, without communicating with the other processors. At the end,
the union of outputs comprises the output of the original program (completeness). Therefore, if these outputs are

sent to the same device or stored in the same file, the result is equivalent to a single-processor evaluation. Based on

the paradigm of less-generated-tuples-implies-less-work, that lies at the heart of all selection propagation methods,
and to which we also subscribe, each processor completes its evaluation before a single processor would have done

so. The next example demonstrates our method.

Example 1: Consider the following DATALOG (see MW]) program called in MI’S] the canonical strongly linear

(Cs!):

S(x,y):— UP(x,w),S(w,z),DOWN(z,y)
S(x,y):— FLAT(x,y)

Assume that the extensional-database relations UP, FLAT, and DOWN represent a directed graph with three types
of arcs. The csl program defines a tuple(a,b) tobe inS, if and only if there is apath from a to b having k UP

ares, one FLAT arc, and k DOWN arcs, for some integer k.

Given processors (0,...,r-1) we propose that they share the load as follows. Processor i executes the csl pro
gram, with the predicate I = x mod r added to the second rule of the program2. In other words, processor i com

putes the tuples (a,b) for which the path goes through a FLAT arc (c,d), with i = c mod r3. It is intuitively clear
that for a large random graph, each one of the processors generates less tuples.

To demonstrate the time saving for a specific input to the csl program, consider the extensional database rela
tions of Figure 1. UP consists of the tuples (i,i+1) for i = 1,...,4, FLAT consists of the tuples (i,6) for i = l,...,5 and

DOWN consists of the tuples (i, i÷1) for i = 6,...,9.

1. see H]

2. i=(x+y)modr worksaswell

3. This works for character-strings as well, since the binaiy representation can be regarded as a natural number

58

Figure 1: Sample input to the csl program.

The set NEW, defined below, consists of the tupics of S which are not in FLAT.

NEW = {(4,7), (3,7), (2,7), (1,7),

(3,8), (2,8), (1,8),,
(2,9), (1,9),

(1,10))

Assume that S is computed by the naive evaluation method (see B]). It assigns FLAT to S and then iteratively adds

to S the tuples in the (projection of) UP join S join DOWN. Then in the first iteration, a single processor evaluat

ing csl performs the join of a4-tuples relation (UP), with a 5-tuples relation (S), with a 4-tuples relation (DOWN).
In the second iteration the relations UP, S. DOWN are of sizes 4,9,4, respectively (first row of the set NEW has

been added to S); third iteration 4,12,4 (second row has been added); fourth iteration 4,14,4; fifth and last iteration

4,15,4.

However, if two processors share the load by having processor i execute the csl program with i = x mod 2

added to the nonrecursive rule, then the arcs (1,6), (3,6), (5,6) will be assigned to processor 1, and the rest to

processor 0. The maximal computation burden is placed on processor 1, performing five iterations with relations of

sizes 4,3,4, 4,5,4, 4,7,4, 4,8,4, 4,9,4. Due to the smaller S-relation at each iteration, a significant
time saving compared to the single processor case occurs: Processor 0 has a lower computation burden then proces
sor 1, and completes even faster. If there are five processors instead of two a greater time saving results. In this case

the maximum burden is placed on processor 0, performing five iterations, with relations of sizes 4,1,4, 4,2,4,
4,3,4, 4,4,4, 4,5,4, respectively.

Similar observations can be made if the evaluation is semi-naive B]) rather than naive. 13

Let us emphasize that our method removes what for many problem domain~ constitutes the main obstacle to

efficient parallelization, namely synchronization. In a multiprocessor system, often there is economic justification
for increasing the number of processors, as long as performance can be increased. However, the problem is that as

the number of processors grows, the required synchronization may slow processing to the single-processor level,
and even below that. Therefore, even though there are other ways and operations performed in the process of

evaluating logic programs that can be parallelized by using multiple processors, our method prevents the synchroni
zation that is usually involved in parallelization. For example, assume that multiple processors are used to parallel
ize the join operation, instead of using them as proposed above. Then at each iteration of the naive or semi-naive

evaluation, each processor would have to exchange its newly generated tuples with the newly generated tuples of

every other processor. This procedure involves a lot of message passing or synchronization in accessing common
memory.

The purpose of this paper is to determine to which programs the load sharing method described above can be

applied. Specifically, we formally define what it means for a program to have a load-sharing scheme, and explore
which programs do have such schemes, and which ones do not, i.e., are not amenable to parallel evaluation by the
method described. We determine that almost all linear programs (each rule has at most one intentional predicate in

the body) have such a scheme. In the class of single rule programs (sirups), defined in CK], the pivoting ones (see
WS]) do have a load sharing scheme; so does a certain subclass of the simple chain programs. We define a class of

sirups for which we prove that a load sharing scheme cannot exist. Several famous sirups belong to this class (e.g.
path systems, introduced in C]).

Presently, the only other method that we are aware of for speeding up bottom-up evaluation of logic-programs
by using a constant number of processors, is the one introduced in WS]. It resembles the one we proposed above,

except for an important difference. The method is applied only when it can be guaranteed that each new tuple gen
erated in the evaluation process is computed by a unique processor. The purpose is to partition (rather than share, as

7

8

~1~

9

10

59

in our method) the evaluation load. But consequently, the WS] method is applicable only to a very restricted class

of logic programs, called decomposable. For example, in the class of simple chain programs UV], API) only to

the regular ones are decomposable. Therefore, the csl program of example 1 is not decomposable. Intuitively, the

reason for this is that since there may be more than one path between a and b, it is not guaranteed that each tuple is

computed by a unique processor. For instance, in the sample input of example 1, if, in addition to the listed tuples,
the tuple (2,9) is also in FLAT, then the tuple S(2,9) is computed by both pmcessors 0 and 1.

One last comment regarding comparison with relevant literature concerns the parallel versions of PROLOG

(e.g. G], Si). There has been a lot of research on the subject, but because of the fundamental difference between

bottom-up (or forward chaining) and top-down (or backward chaining) evaluation of logic programs, this research is

not applicable to our problem. Specifically, parallelization methods for PROLOG, which takes the top-down
approach are not applicable in database query processing, which employs bottom-up. The reason for bottom-up is

mainly because database applications are looking for all answers to a query.

The rest of this paper is organized as follows. In section 2, we provide the preliminaries, and in section 3 we

define the concepts of a load sharing scheme, and its potential speedup, and prove initial results about them. In sec

tion 4 we determine that every program in a large subclass of all linear programs has a load sharing scheme, and in

section 5 we prove that a whole class of sirups cannot have a load sharing scheme. In section 6 we discuss future

work.

2. PRELIMINARIES

An atom is a predicate symbol with a constant or a variable in each argument position. We assume that the

constants are the natural numbers. An R -atom is an atom having R as the predicate symbol. A rule consists of an

atom, Q, designated as the head, and a conjunction of one or more atoms, denoted Q’ ~ k, designated as the

body. Such a rule is denoted Q:— Q’ Qk, which should be read “Q ifQ1 and Q2, and and Qk•~~ Arule or

an atom is an entity. If an entity has a constant in each argument position, then it is a ground entity. For a predicate
R, a finite set of R -ground-atoms is a relation for R.

A DATALOG program, or a program for short, is a finite set of rules whose predicate symbols are divided

into two disjoint subsets: the extensional predicates, and the intentional predicates. The extensional predicates are

distinguished by the fact that they do not appear in any head of a rule. An input to P is a relation for each exten

sional predicate. An output of P is a relation for each intentional predicate of P. A substitution applied to an

entity, or a sequence of entities, is the replacement of each variable in the entity by a variable or a constant. It is

denoted x lIy 1 ,x 2/y 2 xn lyn indicating that xi is replaced by yi. A substitution is ground if the replacement of

each variable is by a constant. A ground substitution applied to a rule is an instantiation of the rule. When we talk

about an instantiation we refer either to the ground rule, or to the substitution; which reference, will be clear from

the context.

A database for p is a relation for each predicate of P. The output of P given an input!, is the set of relations

for the intentional predicates in the database, obtained by the following procedure, called bottom up evaluation.

BUE1. Start with an initial database consisting of the relations off.

BUE2. If there is an instantiation of a rule of P such that all the ground atoms in the body are

in the database generated so far, and the one in the head is not, then:

add to the database the ground atom in the head of the instantiated rule, and reexecute BUE2.

BUE3. Stop.

This procedure is guaranteed to terminate, and produce a finite output for any given P and! VEK]). The output is

unique, in the sense that any order in which bottom up evaluation adds the atoms to the database will produce the

same output.

Let ground atom a be in the output for P, and let s be a minimal sequence of iterations of BUE2 for deriving
a. To s corresponds a derivation tree for a; it is a rooted tree with ground atoms as nodes, and a as the root. Node

b haschildrenb1 bk,ifandonlyifb :—b1 bk isaninstantiationins.

For some rule, a variable which appears in the the head, is called a distinguished variable. For simplicity we
assume that each rule of a program is range restricted. i.e. every distinguished variable also appears in the body of

the rule; additionally, we assume that none of the rules of a program has constants.

An evaluable predicate is an arithmetic predicate (see BR]). Examples of evaluable predicates are sum,

greater than, modulo, etc. A rule re is a restricted version of some rule r, if r and re have exactly the same vari

ables, and r can be obtained by omitting zero or more evaluable predicates from the body of re. In other words, re

is r with some evaluable predicates added to the body, and the arguments of these evaluable predicates are variables

ofr. For example, ifr is: S(x,y,z):—S(w,x,y),A(w,z)
then one possible re rule is: S(x,y,z):— S(w ,x,y), A(w,z), x—y=5
A program P~ is a restricted version of program P if each one of its rules is a restricted version of some rule of P.

60

Note that P~ may have more than one restricted version of a rule r of?. To continue the above example, if P has
theruler, thenP1 mayhavetherulere aswell as therulere’:

S (x ,y ,z):— S (w ,r ,y), A (w ,z), x —y =6

l’hroughout this paper, only resiricted versions of a program may have evaluable predicates. The input of a program
with evaluable predicates, i.e. a restricted version, is defined as before. The output is also defined as before, except
that BIJE2 also verifies that the substitution satisfies4 the evaluable predicates in the ground rule; only then the atom
in the head is added to the database and BUE2 is reexecutcd. In other words, in considering instantiations for a res

tricted version of a rule, bottom up evaluation disregards database atoms which do not satisfy the additional evalu
able predicates. Observe that if P’ is a restricted version of P. then for every input, and for every intentional predi
cateR of P. the relation for R output by P’ is a (possibly improper) subset of the relation for R output by P.

A predicate Q in a program P directly derives a predicate R if it occurs in the body of a rule whose head is a

R -atom. Q is recursive if (Q ,Q) is in the nonreflexive transitive closure of the “directly derives” relation. Predi
cate Q derives predicate R if (Q ,R) is in the reflexive transitive closure of the “directly derives” relation (particu
larly, every predicate derives itsell). A program is recursive if it has a recursive predicate. A rule is recursive if the

predicate in its head transitively derives some predicate in its body.

3. LOAD SHARING SCHEMES

In this section we define and discuss the concept of a load sharing scheme, and establish that it is weaker than

decomposability. Then the notion of the potential speedup of a load sharing scheme is defined, and we establish the
potential speedup of a class of sirups called pivoting.

Assume that P is a program, and P1 P,. are restricted copies of P. for r >1. Given and input, for an inten
tional predicate R of P, we denote by R the relation output by P~ for R; the relation output by P is denoted R.
Observe that this is a somewhat unconventional notation, since for P. the relation name is different than the predi
cate name. The set D = (P1 P,) is a load sharing scheme for evaluating some predicate T in P. if the follow

ing two conditions hold:

1. For each input Ito P ,P1,...,P, UT,~T (completeness).

2. There is an input such that for some intentional predicate Q which derives T, each IQ~ I < IQ I (nontrivial
ity).

In order to intuitively explain the above definition, we assume that each processor has a restricted copy of the pro
gram P. and the whole database, i.e. the set of input base relations, is replicated at each one of r processors. Alter

natively, the database may reside in memory common to all the processors.

The completeness requirement in the defmition is that no T-atoms are lost by evaluating the relation for T in
each P,. rather than the relation for T in P. Although the requirement is for inclusion in one direction only, the fact
that UT, does not contain any atoms which are not in T is implied by the fact that each P~ is a restricted version of

P. Thus, by using multiple processors and taking the union of the T, ‘s, the exact relation for T is obtained.

The nontriviality requirement refers to some predicate Q which derives T, i.e. has to be evaluated to deter
mine the output relation for T. Nontriviality says that for some input, say I, the output of each P for Q is smaller
than the output of? for Q. If, along the lines suggested in BR, Section 4], the load of evaluating an intentional
relation is measured in terms of the number of new tuples generated in the process, then the evaluation by the load

sharing scheme completes sooner for the input I. Any doubt an implementor may have, concerning the load sharing
scheme performing worse for some input than a single processor, can be removed by having one processor (of the
thousand or so) perform the nonrestricted version of P.

In WS] a decomposable predicate is defined. Decomposability with respect to restricted copies P1 P~ is
similar to the set being a load sharing scheme, with two exceptions. First, decomposability imposes an additional
restriction, called lack-of-duplication. It requires that for each input I to P ,P1 ,...,P,, and for each i �j, the relations
Q, and Q1 are disjoint for any intentional predicate Q which derives T in P. Second, for decomposability, nontrivial

ity requires that for some arbitrary input each T, is nonempty.

Proposition 1: Ifapredicate T inaprogramP is decomposable with respect toD = (P1 Pr), thenD isa load

sharing scheme for evaluating T in P.

Proof: Nontriviality and Jack-of-duplication imply that there is an input for which each I T1 I < IT 1. 1

Next we defme the notion of potential speedup. Let P be a program, and T an intentional predicate in P.
Denote by Q’ Q’ the set of intentional predicates which derive T. The output of P for T given I, denoted

4. for example, the substitution xIl4,y/8 satisfies the evaluable predicate x-y=6, whereas the substitution xJl3,y19 does not.

61

o (P ,T,!), is uQ’. In other words, the output contains T-ground-atoms and ground-atoms of other intentional

predicates which derive T. Given a load-sharing scheme D = (P1 Pr) for evaluating T in P. the potential
speedup of D, denoted Ps (D), is the maximal number M for which the following condition is satisfied. For every
integer n and every c, there is an input I for which tO (P ,T/) I > n, and
10 (P ,T,f) I/max 10 (P1 ,TJ) I � M—c. Intuitively, the potential speedup is the number to which the ratio

I0(P ,T,J)t/max 10 (P1 ,T,J)l can come arbitrarily close, when I is an arbitrarily large input. The definition is

somewhat complicated since there are load-sharing schemes (the ones discussed in section 6) for which the potential
speedup cannot be achieved, but to which the ratio can come arbitrarily close. Note that the fact that D is a load-
sharing scheme implies that 1�Ps (D)�r.

The potential speedup means that for each one in an infinite set of inputs, the output of each P is at least
Ps (D) times smaller than the output of P; also, this output reduction occurs for arbitrarily large outputs. When the
load to evaluate T is measured in terms of new ground atoms generated in the evaluation process, Ps (D) is the ratio
between the load of evaluating T by P. and the maximum load of a processor, when the sharing scheme is used.
Although we defined the potential speedup based on some infinite set of inputs, for the load sharing schemes that we
are discussing in this paper, it is intuitive that time saving can be achieved for the “average input”. The reason is
that each load-sharing scheme discussed in this paper is obtained by adding the evaluable predicate
i = (xl+,...,-t-xk)mod r to one of the rules, where xi,...,r* are distinguished variables. For an input which is distri
buted evenly across a range of natural numbers, this reduces the number of newly generated tuples at each proces
sor.

A single rule program (see CK]), or a sirup for short, is a DATALOG program which has a single intentional
predicate, denoted S in this paper. The program consists of two rules. A nonrecursive rule:

S(xl,...,rn):—B(xI,...,xn)
where the xi’s are distinct variables; and one other, possibly recursive, rule in which the predicate symbol B does
not appear.

Assume that R is a set of atoms with each atom having a variable in each argument position. The set R is
pivoting if there is a subset d of argument positions, such that in the positions of d:
1. the same variables appear (possibly in a different order) in all atoms of R, and
2. each variable appears the same number of times in all atoms of R.
A member of d is called a pivot. Note that a variable which appears in a pivot may or may not appear in a nonpivot
position. The recursive rule of a sirup is pivoting if all the occurrences of the recursive predicate in the rule consti
tuteapivotmgset. Forexample,therule: S(w,x,x,y,z) :—S(u,y,r,r,w),S(v,x,y,x,w),A(u,v,z)
is pivoting, with argument positions 2, 3 and 4 of S being the pivots.

Theorem 1: If the recursive rule of a sirup is pivoting, then the sirup has a load-sharing scheme of any size. The
potential-speedup equals the size of the scheme.

Proof: Assume that argument positions i i,...,i~ of S are the pivots. Consider restricted version P1 of P which has
the same recursive rule as P, and a nonrecursive rule

S (x 1,...,xn) :— B (x 1,...,xn), j = (xi 1+xi2+ ~+~Xik)mod r

for j=O r—1. It is easy to see that (P0,. .. ,~,.....1j is a load-sharing scheme. Nontriviality and potential
speedup can be demonstrated using as input a prefix of the sequence (B(1,...,I,q,1,...,1) I q�r, and q appearing in
positioni1). I

4. LINEAR PROGRAMS

In this section we discuss linear programs. A program is linear if the body of each rule contains at most one
intentional predicate. A rule of a program P is an exit rule if its body consists of extensional predicates only. An
exit rule re, with extensional predicate symbols B1 Bk, is distinct, if there is no other rule r of P for which the
following condition is satisfied: in the body of r there are some extensional predicates, and every such extensional
predicate belongs to the set (B1 Bk). In other words, re is not distinct if there is another rule of P in which a
subset of the B1 ‘s appears, but no other extensional predicate does. Note that the exit rule of a sirup is distinct. An
exit rule r1 in P derives a predicate R if the predicate in re ‘s head derives R. An intentional predicate of a linear
program is distinct if it is derived by a distinct rule.

Theorem 2: If T is a distinct predicate of a linear program P, then there is a load-sharing scheme of any size for
evaluating T in P. The potential-speedup equals the size of the scheme.

Proof: Assume without loss of generality that the the first variable of the atom in the head of each exit rule is x. Let
restricted version P1 of P be obtained by adding the predicate j = x mod r to each exit rule, for j_-rO r—l (all

62

the other rules stay the same).
To show completeness, assume that a T-atom, a, is in the output of P. Consider a minimal-length sequence s of
iterations of BUE2, for deriving a. It can be shown by induction on the length of s, that s has exactly one instantia
tion of an exit rule. In that instantiation, x is substituted for some constant, n. Let I = n mod r. Then s is a deriva
tion sequencefora inP,. Thus,a isinatleastoneT1. (ItmaybeinmorethanoneT~ ifa canbeobtainedbya
sequence of iterations with a different instantiation of an exit rule).
Now assume that the distinct exit rule which derives T in P is:

R(x) :—B1(),B2() B~()

Nontriviality and potential-speedup can be demonstrated by using as input the set of atoms
(B1(i,...,i),B2(i,...,i) Bk(i,...,i) I 1�i~W) foralargeenoughN. I

In WSJ we have shown that a linear sirup without repeated variables in the recursive predicate, is not decompos
able if it is not pivoting. In contrast, observe that theorem 2 implies that every linear sirup has a load-sharing
scheme of any size. Another comment is that the above proof does not work if the predicate T of Theorem 2 is not
distinct. The reason for this is given in W].

5. PROGRAMS WITHOUT A LOAD SHARING SCHEME

In this section we demonstrate that not every program has a load sharing scheme. Specifically, we provide a

necessary condition for a sirup to have a load sharing scheme (Theorem 3). It turns out that some famous sirups do
not satisfy the condition. An example is the first P-complete problem, path-systems C]). The sirup for the prob
lem is:

5(x):— S (y),S (z),H (x ,y ,z)
S(x):—B(x)

Another example of a sirup without a load sharing scheme, is a variant of path systems called the blue blooded
frenchman CKJ):

BBF(x):—BBF(m),BBF(f), MOTHER(x,m),FATHER(xf)
BBF (x):- FRENCH(x)

Some other vanations which have not been defined previously, as far as we know, are (nonrecursive rule obvious,
thus specification omitted):

S(x,u):— H1(x,y,u),H2(x ,z ,w),S(,y ,u),S(z ,w)

S (x ,u):— H (x ,y ,z ,u ,w),S (y ,u),S (z ,w)

S(x):— H0(x,w),H1(w ,y),H2(w ,z),S (y),S(z).

S(x,w,y):— UP(x,t,u)~(t,u,v),FL4T(v ,w ,z),S(z ~,s),DOWN(r,s,r)

What do the above sirups have in common? This is what the next theorem establishes. Before stating it we need the
following definition.

Given a sirup P. denote by A (P) the set of atoms in the body of the recursive rule, and by V (P) the set of
variables in A(P). Let R(P) = (x I x is in V(P), and x appears in some S-atom of V(P)}. Let the extensional
graph of P. denoted G(P), be an undirected graph defined as follows. Its set of nodes is V(P)—R (P), in other
words, variables which do not appear in any S-atom in the body of the recursive rule. For two distinct nodes of
G (P), x and y, the edge x—y is in the graph if and only if there is an extensional-predicate atom, A, in the body of
the recursive rule such that x and y are variables of A.

Theorem 3: Given a sirup P, with the recursive rule r, denote by ST the set of atoms in the body of r. Then P
does not have a load sharing scheme if the following conditions are satisfied.

1. Except for the S-atoms, there are no two atoms ofA (P) which have the same predicate symbol.
2. There are at least two S -atoms in A (P), and the S -atoms in A (P) have pairwise disjoint variables, and none of

them has repeated variables.

3. Each extensional predicate atom in A (P) has a variable which is not in R (P), and each variable in R (F)
appears in some extensional predicate atom.

63

4. The graph G (F) has a distinguished variable in each one of its connected components.

Proof: see WI.

It is easy to verify that path systems and the other sirups that have been discussed in this section satisfy the require
ments of Theorem 3.

6. FUTURE WORK

An obvious direction for future research is to extend the class of programs which have load sharing schemes,
and the class for which we can prove nonexistence. However, we conjecture that determining whether a program
does or does not have a load sharing scheme, is undecidable. Another question is the following. If a load sharing
scheme exists, does there always exist one with a potential speedup equal to the size of the scheme? For the pro

grams discussed in this paper we have seen that this S the case. Must it be true? Finally, we would like to determine

how to distribute the load when communication among the processors participating in the evaluation cannot be

avoided, and what architectures are preferable. Some answers are provided in CW].

Acknowledgement: The author thanks Nissim Francez and Oded Shmueli for helpful discussions and comments.

References

API F. Afrati and C. H. Papadimitriou “The Parallel Complexity of Simple Chain Queries”, Proc. 6th ACM

Symp. on PODS, pp. 210.213, 1987.

B] F. Bancilhon, “Naive Evaluation of Recursively Defined Relations” in On Knowledge Base Manage
ment Systems - Integrating Database and A! Systems, Brodie and Mylopoulos, Eds., Springer-Verlag.
pp.165-178, 1986.

BMSUI F. Bancilhon, D. Maier, Y. Sagiv, J. Ullman “Magic Sets and Other Strange Ways to Implement Logic
Programs”, Proc. 5th ACM Symp. on PODS, pp. 1-15, 1986.

BR] F. Bandilhon and R. Ramakrishnan “An Amateur’s Introduction to Recursive Query Processing”, Proc.

SIGMOD Conf. pp. 16-52, 1986.

C] S. A. Cook “An Observation on Time-Storage Trade-off’ JCSS 9(3), pp. 308-316, 1974.

CK] S. S. Cosmodakis and P. C. Kanellakis “Parallel Evaluation of Recursive Rule Queries”, Proc. 5th ACM

Symp. on PODS, pp. 280-293, 1986.

CW] S. Cohen, 0. Wolfson, “Why a Single Parallelization Strategy is Not Enough in Knowledge-Bases”, to

appear, Proceedings of the 8th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Data

base Systems, Philadelphia, PA, March 1989.

G] S. Gregory, Parallel Logic Programming in PARLOG, Addison Wesley Publishing Co.

H] M. T. Heath “Hypercube Multiprocessors 1986”, Society for Industrial and Applied Mathematics, Phi

ladelphia PA, 1986.

K] P. C. Kanellakis “Logic Programming and Parallel Complexity”, Proc. ICDT ‘86, International Confer
ence on Database Theory, Springer-Verlag Lecture Notes in CS Series, no. 243, pp. 1-30, 1986.

MPS] A. Marchetti-Spaccamela, A. Pelaggi, D. Sacca “Worst Case Complexity Analysis of Methods for

Logic Program Implementation” Proc. 6th ACM Symp. on PODS, pp. 294-30 1, 1987.

MW] D. Maier and D. S. Warren “Computing with Logic: Introduction to Logic Programming”, Benjamin-
Cummings Publishing Co., 1987.

SI E. Y. Shapiro “A Subset of Concurrent Prolog and Its Interpreter”, TR-003 ICOT, Tokyo, Japan.

UI J. D. Uliman “Database Theory: Past and Future”, Proc. 6th ACM Symp. on PODS, pp. 1-10, 1987.

LIV] J.D. Ullman and A. Van Gelder, “Parallel Complexity of Logic Programs”, TR STAN-CS-85- 1089,
Stanford University.

VEK] M. H. Van Emden and R. A. Kowalski”The Semantics of Predicate Logic as a Programming
Language”, JACM 23(4) pp. 733-742, 1976.

0. Wollson, “Sharing the Load of Logic Program Evaluation”, Proc. of the Intl. Symp. on Databases in

Parallel and Distributed Systems, pp. 46-55, Austin, TX, Dec. 1988.

WS] 0. Wolfson and A. Silberschatz, “Distributed Processing of Logic Programs” TR466 The-Technion, CS

Dept. Also, Proc. of the ACM-SIGMOD Conf., pp. 329-336, 1988.

64

‘Jon-profit Org I
I U.S Postage

IEEE Computer Society

I Silver Spring. MD I
1730 Massachusetts Avenue. N W I PAID I
Washington. DC 20036.1903

Permit 1398

Dr. David B Lornet
Digital E~uiprnerit Corporation
9 cherry Lane
Westford, M~ (11886
USA

	40979_DataEngineering_Mar1989_Vol12_No1.pdf

