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Message from the TC Chair.

I would like to take this opportunity to give you a status report on our TC and to let you know of

some plans that will affect our TC in the near future. In 1988, the IEEE Computer Society’s
Technical Activities Board (TAB) initiated an advertising campaign in IEEE Computer with a

Special Section describing the TAB activities, especially those of the Technical Committees

including our own, Data Engineering. From November 1988 through April, 1989 our membership
grew by 55%, from 939 to 1455.

OurTC has been active in sponsoring a number of Conference and Symposia, and our cooperation
has been sought by several conferences and workshops. The TCDE is sponsoring or co—sponsoring
the following conferences during 1988—1989:

International Conference of Data Engineering
International Conference on Veiy Large Data Bases

International Symposium on Databases in Parallel and Distributed

Systems
International Conference on Data and Knowledge Systems for

Manufacturing and Engineering
International Conference on Expert Database Systems.

We are cooperating with the Symposium on the Design and Interpretation of Large Spatial
Databases.

As our numbers grow, and our activities increase, so too do our costs, primarily those associated

with the publication of the Data Engineering Bulletin. Last year we were fortunate to have the

sponsorship of the Lotus Development Corp. which underwrote three issues. This year the costs

are being absorbed by our TAB budget allotment and Conference earnings. However, our income

does not presently cover all of our expenses. Therefore, we will propose to the IEEE Computer
Society Board of Governors the enactment of a Dues Policy for TC Members. These dues will

provide a guaranteed minimum amount that will sustain the publication of our Bulletin. We hope
that you will support the new policy once it takes effect.

IEEE Computer Society läsk Force on Neural Networks

The IEEE Computer Society läsk Force on Neural Networks seeks active researchers, scientists,

application developers, and project managers to participate in the task force effort. The task force

needs technical contributions and welcomes active participation from government, academy, and

industry. lb volunteer, or for further information, please contact

Dr. Kamal N. Karna

Chairman and Coordinator

IEEE/CS Thsk Force on Neural Networks

Computer Communications and Graphics
823 Flagler Drive

Gaithersburg, MD 20878-1938.

Larry Kerschberg
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Letter from the Editor

Most research in database systems is based on assumptions of precision and specificity of

both the data stored in the database, and the requests to retrieve data. In reality, however,
both may be imprecise or vague. Considerable amount of research has focused on the issues

of imprecision and vagueness in databases, and this issue of Data Engineering is devoted to

this topic.

The wide variety of approaches to issues of imprecision is evidenced in part by the prolif
eration of the terms used to describe data and retrieval specifications which are not entirely

“crisp”, including vague, uncertain, imprecise, incomplete, fuzzy, approximate, and ambigu
ous. Still, much of the work in this broad area falls into one or more of these three categories.

The first category includes formal models with constructs for representing imprecise data

and for expressing imprecise retrieval requests. Suggested representations for imprecise data

include intervals of values, “fuzzy” values (with appropriate definitions), values accompanied

by certainty factors, and null values (of one kind or another). Retrieval requests for matching

imprecise data often include a threshold value, that provides the degree of specificity of the

request. Fuzzy values, similar to those allowed in the representation, are also allowed in

queries. Note, that this category includes the considerable body of work on null values.

The second category includes systems that enable specification of imprecise queries in

databases that contain only crisp data. To satisfy such queries these systems employ some

kind of mechanism for determining proximity among data items of the same domain. The

query language then provides constructs for specifying the desirable values that should be

retrieved, and a process of “weak matching” is used to satisfy queries. This approach has

been demonstrated with several experimental database systems. Note, that this category
also includes various information retrieval systems (such as those intended for bibliographic
searches).

The models and systems in the first two categories assume that the user has a precise
notion of what he or she is looking for. The last category includes systems for dealing
with retrieval requests whose imprecision is a result of vagueness of the retrieval goal itself

(vagueness is in the user’s mind, so to speak). Systems in this category include various

kinds of browsers, that allow users to explore the contents of the database even without

specific retrieval goals, and interactive query construction aids, that assist in crystalizing

vague retrieval goals into specific queries.

Four of the seven papers in this issue fall into the first category. Prade and Testemale

review a general approach for handling imprecision, based on possibility theory. Zemankova

describes FIIS, a knowledge-based system extended to deal with various aspects of impre

cision. Tzvielli discusses various problems associated with the representation and access of

uncertain data. And Imielinski discusses incompleteness in logical databases. In the second

category, Eastman compares approximate retrieval in information retrieval systems and in

database management systems. In the third category, D’Atri and Tarantino discuss three
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styles of interaction that are suitable for users who lack sufficient knowledge to express formal

queries. Finally, I review three user interfaces in the second and third categories.

As these papers demonstrate, this important area is currently very active, with many of

the research projects now addressing recent technologies and the opportunities and problems
they suggest. Examples include issues of fuzziness and incompleteness in knowledge-rich
databases, and browsing interfaces for object-oriented databases.

Ami Motro

University of Southern California

May 1989
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The possibilistic approach to the handling of

imprecision in database systems

Henri PRADE - Claudette TESTEMALE

Laboratoire Langages et Systèmes Informatiques
Institut de Recherche en Informatique de Toulouse

Université Paul Sabatier, 118 route de Narbonne

31062 TOULOUSE Cedex (FRANCE)

Abstract

In this paper we are interested in both the handling of flexible requests and the management
of data pervaded by imprecision, uncertainty or vagueness. The matching of an item of data

against a request is no longer an all-or-nothing process. A degree of matching reflects our lack of

certainty that the item of data satisfies the request, and may be due either to the fact that the

available information in the data is insufficient or to the fact that the item of data corresponds only
approximately to what is requested. All these facets of the treatment of imprecision in databases are

dealt with in the framework of possibility theory. This paper discusses previous and recent works

with retrospection and points out the main references where the ideas are developed in detail.

1 - Introduction

There have been many attempts to introduce various kinds of flexibility in the handling of

database queries (Kunii, 1976 ; Tahani, 1977 ; Chang, 1982 ; Ichikawa and Hirakawa, 1986;
Motro, 1988).

These research works are motivated by different reasons. We may want to avoid null

answers to a query by broadening the scope of the search, thus finding items which are

compatible with a relaxed interpretation of the query. In addition, vague predicates are often used

in natural languages and it may be desirable to keep their meaning flexible in the treatment of the

query. Moreover, the vagueness of the predicates suggests that their satisfying is a matter of

degree, which induces an ordering among the items which more or less correspond to the query.

Lastly, in the case of a multi-criteria request, it is possible that the different criteria have not the

same importance.

At the same time, other research works have focused on the problem of accommodating null

values (values that are unknown or do not apply), e.g. (Codd, 1979), partial information on the

values of attributes (Lipski, 1979) and uncertain information (Wong, 1982). Indeed, the available

information about items may be neither precise nor certain and it is still desirable to take mto

account all the existing information when answering a query.

In the following we introduce the main ideas and survey the main results of an approach,
based on possibility theory and developed by the authors (Prade and Testemale, 1984, 1987a),
which enables us to deal with flexible queries as well as imprecise and uncertain data. This
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approach which has been also considered by other authors, particularly (Zemankova and Kandel,
1988) and (Bosc et al., 1988), proposes a unique framework for managing the points discussed
above.

The next section considers the problem of flexible requests. Section 3 is devoted to the

modeling and the management of imprecise and uncertain data. After the presentation of the main

principles in sections 2 and 3, section 4 points Out various extensions of the model, to handle more

complex queries or knowledge.

2 - Handling flexible queries

In this section, it is assumed that each attribute is single-valued and the precise value of each

attribute is available for each item in the database.

In case of a request with a non-vague specification, which is not satisfied by any item, we

may look for existing items which are close, in some sense, to some ideal item that satisfies this

request. For instance, if we are looking for people who are at least 30 years old, and if there are no

such people in the database, we may according to the context enlarge the query and accept a 29

years old person as satisfying the query. In such an example, it is clear that the distance between
30 and the age of the considered person is an indication of the relevance of the item. More

precisely, from a distance defined on the attribute domain and a threshold, we define a tolerance
relation which enables us to express if an attribute value is sufficiently close to a value which is

fully compatible with the query.

However, there does not always exist a “natural” distance which can be defined on a domain

and the choice of the threshold may be regarded as somewhat arbitrary. The introduction of fuzzy
tolerance relations (Cayrol et al., 1982 ; Buckles and Petty, 1982) attached to attribute domains

may be a means to overcome these two problems. Indeed, given an attribute domain 2), a fuzzy
tolerance relation T may be defined through its membership function P’r from 2) x 2) to 0,1],
such that the closer (or the more interchangeable) the values d and d’, the closer to 1 the degree of

membership PT(d,d’). The value of P1’ may be given explicitely by an expert for each pair (d,d)
for discrete domains, when no distance is available, or PT may be built from a distance, especially
on continuums (e.g. closed sub-intervals of the real line). For instance, given a distance ö, we
may define PT as

5(d,d’
PT(d,d ) = max(0, 1 - ______

where ?~. is a positive real number. Then, given a request asking for a selection of items having
their attribute value in an ordinary subset R of .0, the composition T o R defined by

PTo R(d) = sup (min(PT(d,d’), PR(d)), d E .0)

(where PR is the characteristic function of R), enlarges the scope of the request in a fuzzy way.
Note that wro R(d’) = 1 if and only if d is considered as perfectly interchangeable with a value

which belongs to R (or such that the distance ö(d,d) equals zero if we are using the expression of

PT suggested above). More generally, PTo R(d) will indicate to what extent an item whose

attribute value is d may be considered as admissible as an answer to the request; this gives a

natural way for ranking the items with respect to a request. The fuzzy tolerance relation T acts as a

fuzzy threshold since we have now a gradual transition between values that lead us to accept the

corresponding items and values that lead us to reject them. Moreover, in case of a parametrized
fuzzy relation, it is still possible to relax (or diminish) the tolerance by modifying the value of the

parameter ?~ upon request.
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By using a fuzzy tolerance relation T, an ordinary subset R specified in the request is

replaced by a fuzzy subset T o R. We may also allow more direct fuzzy specifications of subsets
in the request. The advantage is that the flexibility which is introduced applies only to the request
without being attached to the attribute domain in general. This applies to any kind of domain

(whether discrete or not, whether ordered or not). For more discussions along this line, see (Prade
and Testemale, 1987c).

Generally speaking, a fuzzy set P defined on 2) through its membership function p.p can be
viewed as a nested collection of ordinary subsets Pa such that

Pa={dE £),JLp(d)�a)foraeJO,l]

(Indeed if a> cC, we have ~a C ~cx)’ More particularly, the core of P defined by P1 = (d e 2),
~.Lp(d) = 1 } and the support of P defined by Supp(P) (d E 0, p.p(d) � O~ are worth

considering. All values which are at least somewhat admissible are in the support and the core

includes only the most preferred values. (This can be viewed as an extension of the idea of

preference developed in (Lacroix and Lavency, 1987)). Here, the idea of preference is graded by
pp for the values which are in the support without being in the core.

So far, we have considered elementary conditions pertaining to one attribute. The case of

compound conditions expressed via logical expressions is dealt with using fuzzy set operations.
Let Ai(x) be the value of the attribute A~ for the item x and P1 the subset expressing the restriction
for A~(x), in the request. Conjunctive (resp. disjunctive) aggregations of the elementary degrees of

matching ~.Lp~(Aj(x)) are performed applying mm (resp. max) operation to the degrees ; 1 -

~Lp~(A~(x)) represents the extent to which A(x) belongs to the complement of P1. In some

applications, we may like to express that some elementary conditions are less important than

others. In this case, conjunctive and disjunctive aggregations are, respectively, generalized by

mini max(~.Lp1(A~(x)), 1 - coj)

maxi min(J.Lp~(Aj(x)). o~)

where ü~ is a weight of importance of the condition bearing on the attribute A1 in the request; see

(Dubois et al., 1988b) for justifications and related discussions. The weights are supposed to

satisfy the normalization condition max1 0j = 1. Clearly, when all the elementary conditions are

equally important, (i.e. Vi, coj = 1), the two operations above reduce, respectively, to mm and

max. When oj = 0, there is no condition on the attribute A~. We observe, in the case of the

conjunctive combination, that even if A~(x) fails to satisfy the restriction P1 of importance coj, the

global result of the combination would not be penalized below 1 - coj.

However, conjunction and disjunction operations, other than mm and max, can be used.

There exist more drastic conjunction operations (e.g. the product) and less drastic disjunction
operations (e.g. the “probabilistic sum” a + b - a b). There also exist many intermediary
operations between mm and max (e.g. the arithmetic mean) which can model compensatory ‘and’

for instance (a low degree of satisfaction for one elementary condition can be somewhat balanced

by a high degree of satisfaction for another condition). The reader is referred to Chapter 3 of

(Dubois and Prade, 1988b) for a complete presentation of the existing operations and of a

procedure which enables us to elicitate the right operation in practical cases (e.g. which kind of

‘and’ the author of the request has in mind drastic, logical, compensatory, etc.).

3 - Treatment of incomplete and uncertain information

In our approach, the available information about the value of a single-valued attribute A for

an item x will be represented by a possibility distribution ~A(x) on 2) u (e } where e is an
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extra element which stands for the case when the attribute does not apply to x. The possibility
distribution ltA(x) may be viewed as a fuzzy restriction of the possible value of A(x) ; itA(~) is a

mapping from 2) u {e) to 0,1].

For instance, the information ‘Paul is young’ will be represented by:

{
~Age(Paul)(e) =0

7tAge(Paul)(d) = IJ.young(d) V d E 2)

where ~young is a membership function which represents the vague predicate ‘young’ in a given
context.

It is important to notice that the values restricted by a possibility distribution are considered

as mutually exclusive. The degree ~A(x)(d) rates the possibility that d E 2) is the right value of

the attribute A for x. ~A(x)(d) = 1 only means that d is a completely possible value for A(x), but

does not mean that it is certain that d is the value of A for x, except if V d � d, icA(x)(d’) = 0.

Moreover the possibility distribution ~A(x) is supposed to be normalized on Du{e), i.e. ~ d E 0
such that lrA(x)(d) = 1 or ltA(x)(e) = 1, since either at least one value of the attribute domain is

completely possible, or the attribute does not apply.

This approach proposes a unified framework for representing precise values of attributes,
partial (but non-fuzzy) values as well as fuzzy information concerning the value of attributes, and

the following null value situations:

i) the value of A for x is completely unknown : Vd € 2), ~A(x)(d) = L ~A(x)(e) =0

ii) the attribute A does not apply to x : Vd € 2), ltA(x)(d) 0, ~A(x)(~) = 1

iii) we don’t know whether the situation is i or ii: V d E .0, 7tA(x)(d) = 1, 1t~(~)(~) = 1.

From the possibility distributions ICA(x) and a subset P (non fuzzy or fuzzy), we can

compute the fuzzy set HP (resp. NP) of the items whose A-value possibly (resp. necessarily)
satisfies the condition P.

The membership degree of an item x to HP and NP are respectively given by (Dubois and

Prade, 1988b):

I.LfIp(x) = H(P; A(x)) = sUPd€ 2) min(i.ip(d), ~A(x)(d))

.L~p(x) = N(P ; A(x)) = infdE .Ou{e)max(PP(d), 1 - 7rA(x)(d))

Note that HP and NP always satisfy the inclusion relation NP .ç~ HP, provided that ~A(x) is

normalized, i.e.

Vx, p.~p(x) � P.HP(X).

Thus, in case of incomplete information, we are able to compute the fuzzy set of items which

(more or less) possibly satisfy an elementary condition and to distinguish among them the items

for which we are more or less certain that they satisfy this condition. Note that here possibility and

necessity are matters of degree. In case of non-fuzzy requests (i.e. P is a non fuzzy subset of 2)),
a stronger inclusion holds since then NP is included in the core of HP. When the information is

precise, i.e. ~A(x) is equal to 1 for one element d and is 0 elsewhere in 2) u (e}, it can be

checked that J.Lflp(x) ~.tp(A(x)) = J.LNp(x).

Selections involving disjunction, conjunction or negation of elementary conditions can be
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handled using the following basic relations of possibility theory:
N(P ; A(x)) = 1 - fl(P ; A(x))
N(P1 x P2 ; A1(x) x A2(x)) = min(N(P1 ; A~(x)), N(P2 A2(x)))
I1(Pi + P2 A1(x) x A2(x)) = max(H(P1 ; A~(x)), H(P2 ; A2(x)))
N(P1 + P2 A1(x) x A2(x)) = max(N(P1 ; A~(x)), N(P2 ; A2(x)))
H(P1 x P2 A1(x) x A2(x)) = min(fl(P1 ; A~(x)), fl(P2 ; A2(x)))

where

- the attribute A~ and the subset P1 (i = 1,2) refer to the same domain,

- the overbar denotes set complementation (defmed by j.t~(d) = 1 -

- A1(x) x A2(x) denotes extended Cartesian product defined by

~A1(x) x A2(x)(dl,d2) = min(7cA1(x)(dl), ~A2(x)(d2))

P1 x ‘~2 is similarly defined

- P1 + = x ~ expresses a disjunctive condition, namely

h.p1 +p~(d~ ,d2) = max(Rp1 (d1), p.p2(d2)).

Note that the above expressions of N(P1 + P2 A1(x) x A2(x)) and H(Pj x P2 A1(x) x

A2(x)) require the logical independence of the attribute values respectively restricted by 7cA1(x)
and ICA2(x), to be valid.

These combination formulas are consistent with the fuzzy set operations (based on mm and

max) considered in section 2, when the available information becomes precise, since then the

measures of possibility and necessity become equal to a membership degree, as pointed out above.

The case of other combination operations in compound requests (e.g. product, arithmetic

mean), for which no decomposition formula exists for the possibility and necessity measures in

presence of incomplete information, can be dealt with by using a fuzzy-real-valued compatibility
degree for estimating the agreement between the information and what is required. Then an

extended version of the considered combination operation is performed on these fuzzy real values

and fmally a possibility and a necessity degree can be extracted in a standard way from the global
compatibility measure which has been thus computed. The reader is referred to Chapter 3, pp.
98-99 and Chapter 4, pp. 125-126 of (Dubois and Prade, 1988b), for detailed definitions and

justifications.

For simplicity, in sections 2 and 3, we have focused on the selection operation. Queries
demanding an extended join operation on relational tables containing fuzzy information are

discussed in (Prade and Testemale, 1984, 1988; Dubois and Prade, 1988b, Chapter 6).

4 - Various extensions of the approach

In our approach, multiple-valued attributes can be treated formally in the same manner as

single-valued ones, using possibility distributions defined on the power set of the attribute

domains rather than on the attribute domains themselves. Indeed, in the case of multiple-valued
attributes, the mutuallyexclusive possibilities are represented by subsets of values. However, it is

possible to approximate a possibility distribution on the power set of a domain in terms of two

fuzzy subsets of the domain which represent the values which are more or less certainly (resp.

possibly) part of the multiple-value of the attribute (Dubois and Prade, 1988a). An approach based
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on these ideas has been proposed in information retrieval, where a document is described in terms
of key words which are more or less certainly relevant for it, and in terms of key words which are

only more or less only possibly relevant for it (Prade and Testemale, 1987b).

The notion of cardinality has been extended to fuzzy sets and ill-known sets (sets for which
are only known more or less possible elements and more or less certain elements), see e.g.
(Dubois and Prade, 1985). This enables us to handle queries involving cardinalities of sets of
items (Prade, 1984). Besides, queries asking for the satisfaction of most of the important
elementary conditions of a compound pattern are discussed by (Kacprzyk and Ziollcowski, 1986)
and (Dubois et al., 1988b).

The framework of possibility theory allows the representation of more complex knowledge,
like dependency relations pervaded with imprecision and uncertainty (Raju and Majumdar, 1988;
Prade and Testemale, 1987a). if-then rules expressing dependencies can be used to produce
plausible estimate for missing values, in an analogical reasoning procedure (Arrazola et aL, 1988).

5 - Concluding remarks

Possibility theory offers a powerful tool for the representation and the treatment of flexible

queries as well as partial information.

In spite of the apparent complexity of the expressions of the possibility and necessity
degrees, the approach is computationally tractable at least when we restrict ourselves to possibility
distributions which are defined on small-sized discrete domains or whose shape is trapezoidal
when the domain is a continuum. The approach is robust due to the use of the operations max and

mm, which are not very sensitive to small variations. In practice, it is sufficient to elicitate

possibility distributions in a rough way ; i.e. identify what values are completely impossible, what

are the values which are the most possible ones, and then remember that it is mainly the ordering
of possibility degrees with is meaningful in possibility theory. Moreover, extensions of indexation

techniques have been proposed (Bosc and Galibourg, 1987).

Lastly, let us mention the close relationship between possibility theory-based approaches to

incomplete information systems and Lipski’s approach (Lipski, 1979); see (Dubois et al., 1988a)
for a preliminary investigation of this relationship, bridging the gap between possibility theory and

modal logic.
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Abstract

FIIS (Fuzzy Intelligent Information System) is designed with the goal of modeling human

information processing. The system is composed of a relational database and a knowledge base

that contains descriptions of fuzzy sets, domain similarity relations and rules. These concepts

are employed in intelligent query processing, based on flexible inference that supports

approximate matches between the data in the database and the query. The design issues also

include customization of the system to suit the needs of individual users and explanatory

capabilities.

1. INTRODUCTION

One of the distinguishing features of human intelligence is the ability to reason

with uncertain data or knowledge. Hence, any intelligent information system has

to incorporate management of uncertainty in its design. Systems such as ARES 10]
and VAGUE 18] concentrate on the application of domain similarity in flexible

interpretation of queries in order to avoid loss of close matches that would not

satisfy crisp queries. Query generalization 8, 17], reformulation 5, 8, 25], or value

extrapolation 1] are other approaches to intelligent query processing that are

capable of providing meaningful answers where classical approaches would not

yield any answers or a very restricted subset of the possible answers.

It has been demonstrated that fuzzy sets theory is a suitable framework for

representation and manipulation of uncertainty in data bases 2, 4, 11, 12, 19, 21, 29,

30], information retrieval systems 3, 4, 12], expert systems 7, 9, 20, 28], and other

applications, mainly developed in Japan 23, 24]. Some of the criticisms of fuzzy set

theory concentrate on the subjectivity of assigning membership functions to

concepts. This concern, although justified, is not unique to the fuzzy sets approach
to modeling of uncertainty: knowledge acquisition in general is a recognized bottle

neck in building knowledge-based systems. The goal of machine learning is to

overcome this difficulty 13]. In particular, learning of imprecise concepts is

receiving more attention. In this connection, it is interesting to note that the

“flexible” interpretations of logical connectives 14] are very similar to those

proposed by Zadeh in 1965 261. Responding to the criticisms and to the current

trends in Al, a simple form of “learning from examples” is used in FIIS to acquire
descriptions of fuzzy sets 31].

The model of an intelligent information system described here is based on a

deductive relational database model 15], concepts of similarity 4, 21, 29], fuzzy sets

26, 27], and approximate reasoning 7, 28]. Missikoff and Wiederhold 16] propose a

* Currently: National Science Foundation, Database and Exp. Systems,Washington, D.C. 20550
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unified approach for expert and database systems and specify criteria that a system
needs to satisfy in order to meet this goal. The criteria satisfied by FIIS are:

application independence, internal knowledge management, knowledge
expandability, deductive power, manipulation of degrees of confidence, transparent

reasoning, and multi-user environment. A very important issue of alternative

search strategies is not addressed in the current system. However, a planned merge

with the APPLAUSE system 6] that is specifically designed to conduct alternative

reasoning strategies would produce a comprehensive intelligent information

system.

2. INTELLIGENT INFORMATION SYSTEM

2.1 FlIS Structure and Functions

The system is divided into the Data Base (DB), the Knowledge Base (KB), and the

Inference Engine (IE). The DB is a relational database. The KB and IE are based on

the fuzzy set theory in order to model human knowledge and reasoning that are in

most cases approximate (or fuzzy) in nature. It is possible to customize the

knowledge representations stored in the KB to reflect a particular user’s perception
of data in the DB, as well as to adjust the flexibility of query evaluation. FI1S’s

explanatory capabilities show the reasoning involved in query evaluations in a

step-by-step fashion. A prototype model has been implemented in Prolog 22].

Currently, the KB is built either by the user providing explicit definitions of

concepts, or examples of concepts, which the system completes to concept
definitions (learning). Concepts previously defined (i.e., learned by the system)
can be used in specifying (i.e., teaching) new, more complex concepts, hence the

system possesses the ability of incremental learning.

Since the new concepts defined in the KB enhance the expressive power of the

query language, it can be said that FIIS is a system with a growing language. The

query language is a logic-based language 15] where high-level aggregate

constructs allow natural language-like query specification built from names of

attributes, attribute values, fuzzy comparison operators (e.g., MUCH GREATER),
relations, fuzzy sets, rules, logical connectives, and fuzzy modifiers (e.g., VERY,

MORE-OR-LESS) 30]. Query evaluation is performed by the IE by application of

approximate reasoning. A match measure between facts and the query is computed,
and facts that satisfy (match) the query with a degree greater than or equal to a

pre-specified threshold of acceptance are retrieved.

2.2 Data Base

The Data Base (DB) stores the actual data values, or facts as relations. The user is

prompted for a name of the new relation and names of the attributes which form

the relation. If an attribute has not been used in a previously defined relation, the

user is asked to define its domain. There are three domain types:

scalar - attribute values are usually character strings

numeric - attribute values are integer or real numbers
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unit - attribute values are the unit interval 0,1],

indicating a fuzzy set membership value.

Domains may contain atomic values only. A scalar domain may be either

unrestricted, or an enumerated set of scalar values. Numeric domains can be open

(i.e. all legal numeric values are allowed), or a range can be specified.

As an example, consider relations PERSON and P_SKILL. The relation PERSON has

attributes ( AGE, INTELLIGENT). The attribute NAME has an unrestricted

textual (scalar) domain. The domain of the attribute AGE is a numeric range (0 <~ x ~.

100), and the domain of the attribute INTELLIGENT is the unit interval 0,1] where a

value represents the degree of membership in a fuzzy set INTELLIGENT. The

relation P_SKILL has attributes ( EXPERTISE) where the attribute NAME is the

same as in the relation PERSON, and the attribute EXPERTISE has an enumerated

scalar domain (DBMS, EXPSYS, Al, UNCERT(ainty)}. An attribute used in more than

one relation (e.g., NAME) is assumed to have the same domain and the same

semantics in all relations. This permits a natural join to be performed automatically
when a query requests data from more than one relation.

2.3 Knowledge Base

The KB is a collection of similarity and proximity relations, fuzzy set definitions,
and rules. Concepts defined in the Knowledge Base provide the interpretation of

terms used in queries, hence they serve as a link between the facts in the Data Base,

the concepts from the Knowledge Base, and the Inference Engine that drives the

intelligent query processing.

2.3.1 Similarity and Proximity Relations

Similarity and proximity relations are used in the implementation of approximate
matching, which forms the basis for approximate reasoning.

Similarity Relation

Since similarity is a symmetric and reflexive relation (however, in general it is not

transitive for unordered domains), users are only prompted for pair-wise
similarities corresponding to the upper triangular elements in a similarity matrix.

For example, for the above attribute EXPERTISE, the similarity definition process is

as follows:

Valuel Value2 Similarity
DBMS EXPSYS 0.6

DBMS Al 0.4

DBMS UNCERT 0.2

EXPSYS Al 0.9

EXPSYS UNCERT 0.5

Al UNCERT 0.7

Similarity is used in answering queries using fuzzy comparison operators. For

example, if a query specifies to retrieve a PERSON whose EXPERTISE IS Al (rather
than EXPERTISE = Al) with the threshold of acceptance set to 0.7, a PERSON whose

EXPERTISE is Al or EXPSYS or UNCERT would be retrieved, based on the similarity
relation shown above.
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The tabular form of the similarity relation definition can be also used for ordered

domains (e.g. numeric domains, or a domain of letter grades A, B, C, D, F). In this

case, similarities of direct successors are requested, and similarities of the

remaining pairs are computed by the application of mm-max similarity
transitivity relation 4, 21].

Absolute and relative proximity relations

Absolute proximity relation, absprox, assigns the same proximity value to equally
distant points in a domain. On the other hand, relative proximity relations, Ireiprox
and Dreiprox, assign increasing/decreasing values of proximity to equally distant

points further from the lower (L)/upper (U) boundary of the domain. To illustrate a

case where an increasing relative proximity is desirable, consider the age of

human beings. In many contexts, persons who are 31 and 32 years old are more

similar to each other than persons who are 1 and 2 years old.

Absolute proximity and increasing relative proximity relations are specified by the

parametric functions (1) and (2)
, respectively 29, 30]:

absprox Cx, y~ = exp C- p
* Ix - yl) (1)

x-L y-L
Irelprox(x, y) = exp C- p

* ~ I) (2)

y-L x-L

where p > 0, x, y are elements of a domain L, U], and x, y > L or x, y < U.

As the behavior of these functions is not straightforward they should not be

manipulated by casual users of the system. It ~s difficult to specify the value of the

parameter p, in order to obtain the desired degree of proximity values in the

numeric domain for which proximity is being defined. Instead, the user is asked to

provide an example of a proximity value between two domain values, and the value

of the parameter p is computed. For example, to define an increasing relative

proximity for the attribute AGE with the domain (0 �. x �. 100), the user may respond
to the prompts as follows:

Increasing II or Decreasing D] relative proximity: I

Sample AGE value x: 60

Sample AGE value y: 65

Value of Irelprox Cx, y): 0.8

The resulting values may be examined at specified domain values, and accepted, if

satisfactory.

Irelprox ( 0, 5) = 0.00

Irelprox (20, 25) = 0.53

Irelprox (95,100) 0.87

2.3.2 Concepts Represented as Fuzzy Sets

Fuzzy set definitions enable the user to build a vocabulary of terms that describe

sets with vague boundaries. These concepts can be used in queries, or in

specification of other fuzzy sets or rules.
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Fuzzy sets can be defined in terms of an S-curve, a Bell-curve, a Table, or a

combination of other previously defined fuzzy sets 22, 30]. In this case, the user

provides a “copy” of his knowledge representation to the KB. However, a low-level
form of learning occurs when new, more complex fuzzy sets are defined in terms of

previously defined fuzzy sets. The system is capable of finding the corresponding
representation of the new fuzzy set in terms of attribute values, thus allowing the

user to use high-level concepts in the query language rather than attribute-name,
attribute-value specification employed in the majority of databases.

For example, assume that attributes HEIGHT and WEIGHT with domains (HEIGHT �~

5’O”) and (WEIGHT ~. 80 lb.), respectively, are defined in the DB. Fuzzy sets TALL and

SHORT can be defined as increasing and decreasing S-curves, respectively,
NORMAL_WEIGHT can be expressed as a Bell-curve, and HEALTHY can be defined as

a fuzzy set combination:

HEALTHY = (NOT VERY TALL OR NOT VERY SHORT} AND NORMAL WEIGHT.

The effect of logical connectives and modifiers is implemented using the standard

fuzzy logic interpretations, e.g. membership value of an intersection of two fuzzy
set is a minimum of the constituent membership values 24].

A fuzzy set ATTRACTIVE can be defined as a table with attributes EYES and HAIR

with domains (BLUE, BROWN, GREEN) and (BLOND, RED, BROWN, BLACK),
respectively, as follows:

EYES HAIR ATTRACTIVE

BLUE BLOND 1.0

BLUE BLACK 0.8

BROWN BROWN 0.4

BROWN BLACK 0.6

BROWN RED 0.0

GREEN RED 0.7

GREEN BLACK 0.5

The absence of a possible pair EYES-HAIR values (e.g. BLUE, RED) is interpreted as

having an unknown membership value in the fuzzy ATTRACTIVE. The membership
value can be interpolated (learned) based on the similarities of attribute values and
the corresponding known membership values 31].

2.3.3 Concepts Represented as Rules

Rules are used to express relationships between facts in the Data Base and other
rules or fuzzy sets in the Knowledge Base. The general form of a rule is:

IF <antecedent> M]
THEN <consequent> C]

Here, the <antecedent> is a condition involving attribute names and values,
comparison operators, attribute variables, fuzzy sets or other previously defined

rules, including fuzzy modifiers and connectives. MI specifies an optional match

qualifier. It is the required degree of the computed match, m, between the
antecedent and the data in the database that has to be reached during the
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