
JUNE 1989 VOL. 12 NO. 2

a quarterly bulletin of the

Computer Society of the IEEE

technical committee on

Data
ri

CONTENTS

Letters to the TO Members 1

L. Kerschberg (TC Chair)

Letter from the Issue Editor 2
A. Motro

The Possible Approach to Handling of Imprecision in Database Systems 4

H. Prade, and C. Testemale

FIIS: A Fuzzy Intelligent Information System 11

M. Zemankova

Representation and Access of Uncertain Relational Data 21

A. Trvieli

Incomplete Information in Logical Databases 29

T. !mielinski

Approximate Retrieval: A Comparison of Information Retrieval and

Database Management Systems 41

C. Eastman

From Browsing to Querying 46

A. D’Atri and L. Tarantino

A Trio of Database User Interfaces for Handling Vague Retrieval Requests 54

A.JvTotro
- -

Call for Papers 64

SPECIAL ISSUE ON IMPRECISION IN DATABASES

+ THE INSTITUTE ~ ELECTRICAl.
ANS ELECT~IICS ENGINEERS. INC

IEEE

IEEE COMPUTER SOCIETY

Editor-In-Chief, Data Engineering
Dr. Won Kim

MCC

3500 West Balcones Center Drive

Austin, TX 78759

(512) 338—3439

Associate Editors

Prof. Dma Bitton

Dept. of Electrical Engineering
and Computer Science

UnIversity of Illinois

Chicago, IL 60680

(312) 413—2296

Prof. Michael Carey
Computer Sciences Department
University of WIsconsIn

Madison, WI 53706

(608) 262—2252

Prof. Roger King
Department of Computer Science

campus box 430

University of Colorado

Boulder, CO 80309

(303) 492—7398

Prof. Z. Merai Ozsoyoglu
Department of Computer Engineering and Science

Case Western Reserve University
Cleveland, Ohio 44106

(216) 368—2818

Dr. SunIl Satin

Xerox Advanced Information Technology
4 Cambridge Center

Cambridge, MA 02142

(617) 492—8860

Chairperson, TC

Prof. Larry Kerschberg
Dept. of Information Systems and Systems Engineering
George Mason University
4400 University Drive

Fairfax, VA 22030

(703) 323—4354

Vice Chairperson, TC

Prof. Stefano Cerl

Dipartimento dl Matematlca

Universita’ di Modena

Via Campi 213

41100 Modena, Italy

Secretary, TC

Prof. Don Potter

Dept. of Computer Science

University of Georgia
Athens, GA 30602

(404) 542—0361

Past Chairperson, TC

Prof. Sushil Jajodla
Dept. of Information Systems and Systems Engineering
George Mason University
4400 UnIversity Drive

Fairfax, VA 22030

(703) 764—6192

Distribution

Ms. Lorl Rottenberg
IEEE Computer Society
1730 Massachusetts Ave.

Washington, D.C. 20036-1903

(202) 371—1012

The LOTUS Corporation has made a generous donation to partially offset the cost of

printing and distributing four issues of the Data Engineering bulletin.

Data Engineering Bulletin is a quarterly publication of

the IEEE Computer Society Technical Committee on Data

Engineering .
its scope of interest Includes: data structures

and models, access strategies, access control techniques,
database architecture, database machines, Intelligent front

ends
•
mass storage for very large databases, distributed

database systems and techniques, database software design
and implementation, database utilities, database security
and related areas.

Contribution to the Bulletin is hereby soiiclted. News Items,

letters, technical papers, book reviews, meeting previews,

summaries, case studies, etc., should be sent to the Editor.

All letters to the Editor wIll be considered for publication
unless accompanied by a request to the contrary. Technical

papers are unrefereed.

Opinions expressed In contributions are those of the mdi

vidual author rather than the official position of the TC on

Data Engineering, the IEEE Computer Society, or orga

nizations with which the author may be affiliated.

Membership in the Data Engineering Technical Committee

is open to individuals who demonstrate willingness to

actively participate in the various activities of the TC. A

member of the IEEE Computer Society may join the TC as a

full member. A non-member of the Computer Society may

Join as a participating member, with approval from at least

one officer of the TC. Both full members and participating
members of the TC are entitled to receive the quarterly
bulletin of the TC free of charge, until further notice.

Message from the TC Chair.

I would like to take this opportunity to give you a status report on our TC and to let you know of

some plans that will affect our TC in the near future. In 1988, the IEEE Computer Society’s
Technical Activities Board (TAB) initiated an advertising campaign in IEEE Computer with a

Special Section describing the TAB activities, especially those of the Technical Committees

including our own, Data Engineering. From November 1988 through April, 1989 our membership
grew by 55%, from 939 to 1455.

OurTC has been active in sponsoring a number of Conference and Symposia, and our cooperation
has been sought by several conferences and workshops. The TCDE is sponsoring or co—sponsoring
the following conferences during 1988—1989:

International Conference of Data Engineering
International Conference on Veiy Large Data Bases

International Symposium on Databases in Parallel and Distributed

Systems
International Conference on Data and Knowledge Systems for

Manufacturing and Engineering
International Conference on Expert Database Systems.

We are cooperating with the Symposium on the Design and Interpretation of Large Spatial
Databases.

As our numbers grow, and our activities increase, so too do our costs, primarily those associated

with the publication of the Data Engineering Bulletin. Last year we were fortunate to have the

sponsorship of the Lotus Development Corp. which underwrote three issues. This year the costs

are being absorbed by our TAB budget allotment and Conference earnings. However, our income

does not presently cover all of our expenses. Therefore, we will propose to the IEEE Computer
Society Board of Governors the enactment of a Dues Policy for TC Members. These dues will

provide a guaranteed minimum amount that will sustain the publication of our Bulletin. We hope
that you will support the new policy once it takes effect.

IEEE Computer Society läsk Force on Neural Networks

The IEEE Computer Society läsk Force on Neural Networks seeks active researchers, scientists,

application developers, and project managers to participate in the task force effort. The task force

needs technical contributions and welcomes active participation from government, academy, and

industry. lb volunteer, or for further information, please contact

Dr. Kamal N. Karna

Chairman and Coordinator

IEEE/CS Thsk Force on Neural Networks

Computer Communications and Graphics
823 Flagler Drive

Gaithersburg, MD 20878-1938.

Larry Kerschberg

1

Letter from the Editor

Most research in database systems is based on assumptions of precision and specificity of

both the data stored in the database, and the requests to retrieve data. In reality, however,
both may be imprecise or vague. Considerable amount of research has focused on the issues

of imprecision and vagueness in databases, and this issue of Data Engineering is devoted to

this topic.

The wide variety of approaches to issues of imprecision is evidenced in part by the prolif
eration of the terms used to describe data and retrieval specifications which are not entirely

“crisp”, including vague, uncertain, imprecise, incomplete, fuzzy, approximate, and ambigu
ous. Still, much of the work in this broad area falls into one or more of these three categories.

The first category includes formal models with constructs for representing imprecise data

and for expressing imprecise retrieval requests. Suggested representations for imprecise data

include intervals of values, “fuzzy” values (with appropriate definitions), values accompanied

by certainty factors, and null values (of one kind or another). Retrieval requests for matching

imprecise data often include a threshold value, that provides the degree of specificity of the

request. Fuzzy values, similar to those allowed in the representation, are also allowed in

queries. Note, that this category includes the considerable body of work on null values.

The second category includes systems that enable specification of imprecise queries in

databases that contain only crisp data. To satisfy such queries these systems employ some

kind of mechanism for determining proximity among data items of the same domain. The

query language then provides constructs for specifying the desirable values that should be

retrieved, and a process of “weak matching” is used to satisfy queries. This approach has

been demonstrated with several experimental database systems. Note, that this category
also includes various information retrieval systems (such as those intended for bibliographic
searches).

The models and systems in the first two categories assume that the user has a precise
notion of what he or she is looking for. The last category includes systems for dealing
with retrieval requests whose imprecision is a result of vagueness of the retrieval goal itself

(vagueness is in the user’s mind, so to speak). Systems in this category include various

kinds of browsers, that allow users to explore the contents of the database even without

specific retrieval goals, and interactive query construction aids, that assist in crystalizing

vague retrieval goals into specific queries.

Four of the seven papers in this issue fall into the first category. Prade and Testemale

review a general approach for handling imprecision, based on possibility theory. Zemankova

describes FIIS, a knowledge-based system extended to deal with various aspects of impre

cision. Tzvielli discusses various problems associated with the representation and access of

uncertain data. And Imielinski discusses incompleteness in logical databases. In the second

category, Eastman compares approximate retrieval in information retrieval systems and in

database management systems. In the third category, D’Atri and Tarantino discuss three

2

styles of interaction that are suitable for users who lack sufficient knowledge to express formal

queries. Finally, I review three user interfaces in the second and third categories.

As these papers demonstrate, this important area is currently very active, with many of

the research projects now addressing recent technologies and the opportunities and problems
they suggest. Examples include issues of fuzziness and incompleteness in knowledge-rich
databases, and browsing interfaces for object-oriented databases.

Ami Motro

University of Southern California

May 1989

3

The possibilistic approach to the handling of

imprecision in database systems

Henri PRADE - Claudette TESTEMALE

Laboratoire Langages et Systèmes Informatiques
Institut de Recherche en Informatique de Toulouse

Université Paul Sabatier, 118 route de Narbonne

31062 TOULOUSE Cedex (FRANCE)

Abstract

In this paper we are interested in both the handling of flexible requests and the management
of data pervaded by imprecision, uncertainty or vagueness. The matching of an item of data

against a request is no longer an all-or-nothing process. A degree of matching reflects our lack of

certainty that the item of data satisfies the request, and may be due either to the fact that the

available information in the data is insufficient or to the fact that the item of data corresponds only
approximately to what is requested. All these facets of the treatment of imprecision in databases are

dealt with in the framework of possibility theory. This paper discusses previous and recent works

with retrospection and points out the main references where the ideas are developed in detail.

1 - Introduction

There have been many attempts to introduce various kinds of flexibility in the handling of

database queries (Kunii, 1976 ; Tahani, 1977 ; Chang, 1982 ; Ichikawa and Hirakawa, 1986;
Motro, 1988).

These research works are motivated by different reasons. We may want to avoid null

answers to a query by broadening the scope of the search, thus finding items which are

compatible with a relaxed interpretation of the query. In addition, vague predicates are often used

in natural languages and it may be desirable to keep their meaning flexible in the treatment of the

query. Moreover, the vagueness of the predicates suggests that their satisfying is a matter of

degree, which induces an ordering among the items which more or less correspond to the query.

Lastly, in the case of a multi-criteria request, it is possible that the different criteria have not the

same importance.

At the same time, other research works have focused on the problem of accommodating null

values (values that are unknown or do not apply), e.g. (Codd, 1979), partial information on the

values of attributes (Lipski, 1979) and uncertain information (Wong, 1982). Indeed, the available

information about items may be neither precise nor certain and it is still desirable to take mto

account all the existing information when answering a query.

In the following we introduce the main ideas and survey the main results of an approach,
based on possibility theory and developed by the authors (Prade and Testemale, 1984, 1987a),
which enables us to deal with flexible queries as well as imprecise and uncertain data. This

4

approach which has been also considered by other authors, particularly (Zemankova and Kandel,
1988) and (Bosc et al., 1988), proposes a unique framework for managing the points discussed
above.

The next section considers the problem of flexible requests. Section 3 is devoted to the

modeling and the management of imprecise and uncertain data. After the presentation of the main

principles in sections 2 and 3, section 4 points Out various extensions of the model, to handle more

complex queries or knowledge.

2 - Handling flexible queries

In this section, it is assumed that each attribute is single-valued and the precise value of each

attribute is available for each item in the database.

In case of a request with a non-vague specification, which is not satisfied by any item, we

may look for existing items which are close, in some sense, to some ideal item that satisfies this

request. For instance, if we are looking for people who are at least 30 years old, and if there are no

such people in the database, we may according to the context enlarge the query and accept a 29

years old person as satisfying the query. In such an example, it is clear that the distance between
30 and the age of the considered person is an indication of the relevance of the item. More

precisely, from a distance defined on the attribute domain and a threshold, we define a tolerance
relation which enables us to express if an attribute value is sufficiently close to a value which is

fully compatible with the query.

However, there does not always exist a “natural” distance which can be defined on a domain

and the choice of the threshold may be regarded as somewhat arbitrary. The introduction of fuzzy
tolerance relations (Cayrol et al., 1982 ; Buckles and Petty, 1982) attached to attribute domains

may be a means to overcome these two problems. Indeed, given an attribute domain 2), a fuzzy
tolerance relation T may be defined through its membership function P’r from 2) x 2) to 0,1],
such that the closer (or the more interchangeable) the values d and d’, the closer to 1 the degree of

membership PT(d,d’). The value of P1’ may be given explicitely by an expert for each pair (d,d)
for discrete domains, when no distance is available, or PT may be built from a distance, especially
on continuums (e.g. closed sub-intervals of the real line). For instance, given a distance ö, we
may define PT as

5(d,d’
PT(d,d) = max(0, 1 - ______

where ?~. is a positive real number. Then, given a request asking for a selection of items having
their attribute value in an ordinary subset R of .0, the composition T o R defined by

PTo R(d) = sup (min(PT(d,d’), PR(d)), d E .0)

(where PR is the characteristic function of R), enlarges the scope of the request in a fuzzy way.
Note that wro R(d’) = 1 if and only if d is considered as perfectly interchangeable with a value

which belongs to R (or such that the distance ö(d,d) equals zero if we are using the expression of

PT suggested above). More generally, PTo R(d) will indicate to what extent an item whose

attribute value is d may be considered as admissible as an answer to the request; this gives a

natural way for ranking the items with respect to a request. The fuzzy tolerance relation T acts as a

fuzzy threshold since we have now a gradual transition between values that lead us to accept the

corresponding items and values that lead us to reject them. Moreover, in case of a parametrized
fuzzy relation, it is still possible to relax (or diminish) the tolerance by modifying the value of the

parameter ?~ upon request.

5

By using a fuzzy tolerance relation T, an ordinary subset R specified in the request is

replaced by a fuzzy subset T o R. We may also allow more direct fuzzy specifications of subsets
in the request. The advantage is that the flexibility which is introduced applies only to the request
without being attached to the attribute domain in general. This applies to any kind of domain

(whether discrete or not, whether ordered or not). For more discussions along this line, see (Prade
and Testemale, 1987c).

Generally speaking, a fuzzy set P defined on 2) through its membership function p.p can be
viewed as a nested collection of ordinary subsets Pa such that

Pa={dE £),JLp(d)�a)foraeJO,l]

(Indeed if a> cC, we have ~a C ~cx)’ More particularly, the core of P defined by P1 = (d e 2),
~.Lp(d) = 1 } and the support of P defined by Supp(P) (d E 0, p.p(d) � O~ are worth

considering. All values which are at least somewhat admissible are in the support and the core

includes only the most preferred values. (This can be viewed as an extension of the idea of

preference developed in (Lacroix and Lavency, 1987)). Here, the idea of preference is graded by
pp for the values which are in the support without being in the core.

So far, we have considered elementary conditions pertaining to one attribute. The case of

compound conditions expressed via logical expressions is dealt with using fuzzy set operations.
Let Ai(x) be the value of the attribute A~ for the item x and P1 the subset expressing the restriction
for A~(x), in the request. Conjunctive (resp. disjunctive) aggregations of the elementary degrees of

matching ~.Lp~(Aj(x)) are performed applying mm (resp. max) operation to the degrees ; 1 -

~Lp~(A~(x)) represents the extent to which A(x) belongs to the complement of P1. In some

applications, we may like to express that some elementary conditions are less important than

others. In this case, conjunctive and disjunctive aggregations are, respectively, generalized by

mini max(~.Lp1(A~(x)), 1 - coj)

maxi min(J.Lp~(Aj(x)). o~)

where ü~ is a weight of importance of the condition bearing on the attribute A1 in the request; see

(Dubois et al., 1988b) for justifications and related discussions. The weights are supposed to

satisfy the normalization condition max1 0j = 1. Clearly, when all the elementary conditions are

equally important, (i.e. Vi, coj = 1), the two operations above reduce, respectively, to mm and

max. When oj = 0, there is no condition on the attribute A~. We observe, in the case of the

conjunctive combination, that even if A~(x) fails to satisfy the restriction P1 of importance coj, the

global result of the combination would not be penalized below 1 - coj.

However, conjunction and disjunction operations, other than mm and max, can be used.

There exist more drastic conjunction operations (e.g. the product) and less drastic disjunction
operations (e.g. the “probabilistic sum” a + b - a b). There also exist many intermediary
operations between mm and max (e.g. the arithmetic mean) which can model compensatory ‘and’

for instance (a low degree of satisfaction for one elementary condition can be somewhat balanced

by a high degree of satisfaction for another condition). The reader is referred to Chapter 3 of

(Dubois and Prade, 1988b) for a complete presentation of the existing operations and of a

procedure which enables us to elicitate the right operation in practical cases (e.g. which kind of

‘and’ the author of the request has in mind drastic, logical, compensatory, etc.).

3 - Treatment of incomplete and uncertain information

In our approach, the available information about the value of a single-valued attribute A for

an item x will be represented by a possibility distribution ~A(x) on 2) u (e } where e is an

6

extra element which stands for the case when the attribute does not apply to x. The possibility
distribution ltA(x) may be viewed as a fuzzy restriction of the possible value of A(x) ; itA(~) is a

mapping from 2) u {e) to 0,1].

For instance, the information ‘Paul is young’ will be represented by:

{
~Age(Paul)(e) =0

7tAge(Paul)(d) = IJ.young(d) V d E 2)

where ~young is a membership function which represents the vague predicate ‘young’ in a given
context.

It is important to notice that the values restricted by a possibility distribution are considered

as mutually exclusive. The degree ~A(x)(d) rates the possibility that d E 2) is the right value of

the attribute A for x. ~A(x)(d) = 1 only means that d is a completely possible value for A(x), but

does not mean that it is certain that d is the value of A for x, except if V d � d, icA(x)(d’) = 0.

Moreover the possibility distribution ~A(x) is supposed to be normalized on Du{e), i.e. ~ d E 0
such that lrA(x)(d) = 1 or ltA(x)(e) = 1, since either at least one value of the attribute domain is

completely possible, or the attribute does not apply.

This approach proposes a unified framework for representing precise values of attributes,
partial (but non-fuzzy) values as well as fuzzy information concerning the value of attributes, and

the following null value situations:

i) the value of A for x is completely unknown : Vd € 2), ~A(x)(d) = L ~A(x)(e) =0

ii) the attribute A does not apply to x : Vd € 2), ltA(x)(d) 0, ~A(x)(~) = 1

iii) we don’t know whether the situation is i or ii: V d E .0, 7tA(x)(d) = 1, 1t~(~)(~) = 1.

From the possibility distributions ICA(x) and a subset P (non fuzzy or fuzzy), we can

compute the fuzzy set HP (resp. NP) of the items whose A-value possibly (resp. necessarily)
satisfies the condition P.

The membership degree of an item x to HP and NP are respectively given by (Dubois and

Prade, 1988b):

I.LfIp(x) = H(P; A(x)) = sUPd€ 2) min(i.ip(d), ~A(x)(d))

.L~p(x) = N(P ; A(x)) = infdE .Ou{e)max(PP(d), 1 - 7rA(x)(d))

Note that HP and NP always satisfy the inclusion relation NP .ç~ HP, provided that ~A(x) is

normalized, i.e.

Vx, p.~p(x) � P.HP(X).

Thus, in case of incomplete information, we are able to compute the fuzzy set of items which

(more or less) possibly satisfy an elementary condition and to distinguish among them the items

for which we are more or less certain that they satisfy this condition. Note that here possibility and

necessity are matters of degree. In case of non-fuzzy requests (i.e. P is a non fuzzy subset of 2)),
a stronger inclusion holds since then NP is included in the core of HP. When the information is

precise, i.e. ~A(x) is equal to 1 for one element d and is 0 elsewhere in 2) u (e}, it can be

checked that J.Lflp(x) ~.tp(A(x)) = J.LNp(x).

Selections involving disjunction, conjunction or negation of elementary conditions can be

7

handled using the following basic relations of possibility theory:
N(P ; A(x)) = 1 - fl(P ; A(x))
N(P1 x P2 ; A1(x) x A2(x)) = min(N(P1 ; A~(x)), N(P2 A2(x)))
I1(Pi + P2 A1(x) x A2(x)) = max(H(P1 ; A~(x)), H(P2 ; A2(x)))
N(P1 + P2 A1(x) x A2(x)) = max(N(P1 ; A~(x)), N(P2 ; A2(x)))
H(P1 x P2 A1(x) x A2(x)) = min(fl(P1 ; A~(x)), fl(P2 ; A2(x)))

where

- the attribute A~ and the subset P1 (i = 1,2) refer to the same domain,

- the overbar denotes set complementation (defmed by j.t~(d) = 1 -

- A1(x) x A2(x) denotes extended Cartesian product defined by

~A1(x) x A2(x)(dl,d2) = min(7cA1(x)(dl), ~A2(x)(d2))

P1 x ‘~2 is similarly defined

- P1 + = x ~ expresses a disjunctive condition, namely

h.p1 +p~(d~ ,d2) = max(Rp1 (d1), p.p2(d2)).

Note that the above expressions of N(P1 + P2 A1(x) x A2(x)) and H(Pj x P2 A1(x) x

A2(x)) require the logical independence of the attribute values respectively restricted by 7cA1(x)
and ICA2(x), to be valid.

These combination formulas are consistent with the fuzzy set operations (based on mm and

max) considered in section 2, when the available information becomes precise, since then the

measures of possibility and necessity become equal to a membership degree, as pointed out above.

The case of other combination operations in compound requests (e.g. product, arithmetic

mean), for which no decomposition formula exists for the possibility and necessity measures in

presence of incomplete information, can be dealt with by using a fuzzy-real-valued compatibility
degree for estimating the agreement between the information and what is required. Then an

extended version of the considered combination operation is performed on these fuzzy real values

and fmally a possibility and a necessity degree can be extracted in a standard way from the global
compatibility measure which has been thus computed. The reader is referred to Chapter 3, pp.
98-99 and Chapter 4, pp. 125-126 of (Dubois and Prade, 1988b), for detailed definitions and

justifications.

For simplicity, in sections 2 and 3, we have focused on the selection operation. Queries
demanding an extended join operation on relational tables containing fuzzy information are

discussed in (Prade and Testemale, 1984, 1988; Dubois and Prade, 1988b, Chapter 6).

4 - Various extensions of the approach

In our approach, multiple-valued attributes can be treated formally in the same manner as

single-valued ones, using possibility distributions defined on the power set of the attribute

domains rather than on the attribute domains themselves. Indeed, in the case of multiple-valued
attributes, the mutuallyexclusive possibilities are represented by subsets of values. However, it is

possible to approximate a possibility distribution on the power set of a domain in terms of two

fuzzy subsets of the domain which represent the values which are more or less certainly (resp.

possibly) part of the multiple-value of the attribute (Dubois and Prade, 1988a). An approach based

8

on these ideas has been proposed in information retrieval, where a document is described in terms
of key words which are more or less certainly relevant for it, and in terms of key words which are

only more or less only possibly relevant for it (Prade and Testemale, 1987b).

The notion of cardinality has been extended to fuzzy sets and ill-known sets (sets for which
are only known more or less possible elements and more or less certain elements), see e.g.
(Dubois and Prade, 1985). This enables us to handle queries involving cardinalities of sets of
items (Prade, 1984). Besides, queries asking for the satisfaction of most of the important
elementary conditions of a compound pattern are discussed by (Kacprzyk and Ziollcowski, 1986)
and (Dubois et al., 1988b).

The framework of possibility theory allows the representation of more complex knowledge,
like dependency relations pervaded with imprecision and uncertainty (Raju and Majumdar, 1988;
Prade and Testemale, 1987a). if-then rules expressing dependencies can be used to produce
plausible estimate for missing values, in an analogical reasoning procedure (Arrazola et aL, 1988).

5 - Concluding remarks

Possibility theory offers a powerful tool for the representation and the treatment of flexible

queries as well as partial information.

In spite of the apparent complexity of the expressions of the possibility and necessity
degrees, the approach is computationally tractable at least when we restrict ourselves to possibility
distributions which are defined on small-sized discrete domains or whose shape is trapezoidal
when the domain is a continuum. The approach is robust due to the use of the operations max and

mm, which are not very sensitive to small variations. In practice, it is sufficient to elicitate

possibility distributions in a rough way ; i.e. identify what values are completely impossible, what

are the values which are the most possible ones, and then remember that it is mainly the ordering
of possibility degrees with is meaningful in possibility theory. Moreover, extensions of indexation

techniques have been proposed (Bosc and Galibourg, 1987).

Lastly, let us mention the close relationship between possibility theory-based approaches to

incomplete information systems and Lipski’s approach (Lipski, 1979); see (Dubois et al., 1988a)
for a preliminary investigation of this relationship, bridging the gap between possibility theory and

modal logic.

References

Arrazola I., Plainfossé A., Prade H., Testemale C. (1988) Extrapolation of fuzzy values from

incomplete data bases. In : Tech. Rep. n° 298, Laboratoire L.S.I., Univ. P. Sabatier,
Toulouse. To appear in Information Systems.

Bosc P., Galibourg M. (1987) Indexing principles for a fuzzy data base. Proc. 2nd Inter. Fuzzy
Systems Assoc. Congress (IFSA), Tokyo, Japan, 653-656.

Bosc P., Galibourg M., Hamon 0. (1988) Fuzzy querying with SQL : extensions and

implementation aspects. Fuzzy Sets and Systems, 28(3), 333-349.

Buckles B.P., Petry F.E. (1982) A fuzzy representation of data for relational databases. Fuzzy
Sets and Systems, 5, 2 13-226.

Cayrol M., Farreny H., Prade H. (1982) Fuzzy pattern matching. Kybernetes, 11, 103-116.

Chang C.L. (1982) Decision support in an imperfect world. In Tech. Rep. RJ3421 (40687),
IBM Research Lab., Computer Science, San Jose.

Codd E.F. (1979) Extending the database relational model to capture more meaning. ACM Trans.

Database Systems, 4(4), 397-434.

Dubois D., Prade H. (1985) Fuzzy cardinality and the modelling of imprecise quantifications.

9

Fuzzy Sets and Systems, 16, 199-230.

Dubois D., Prade H. (1988a) On incomplete conjunctive information. Computers and Mathematics
with Applications, 15(10), 797-8 10.

Dubois D., Prade H. (1988b) Possibility Theory : an Approach to Computeri~ed Processing of

Uncertainty. Plenum Pubi. Comp., 1988, (French version: 1st ed. 1985, 2nd ed. 1987).
Dubois D., Prade H., Testemale C. (1988a) In search of a modal system for possibility theory.

Proc. 8th Europ. Conf. on Artificial Intelligence, Munich, 50 1-506.
Dubois D., Prade H., Testemale C. (1988b) Weighted fuzzy pattern matching. Fuzzy Sets and

Systems, 28(3), 313-331.

Ichikawa T., Hirakawa M. (1986) ARES : a relational database with the capability of performing
flexible interpretation of queries. IEEE Trans. on Sofware Engineering, 12(5), 624-634.

Kacprzyk J., Ziolkowski A. (1986) Database queries with fuzzy linguistic quantifiers. IEEE

Trans. on Systems, Man and Cybernetics, 16, 474-479.

Kunii T.L. (1976) Dataplan : an interface generator for database semantics. Information Sciences,
10, 279-298.

Lacroix M., Lavency P. (1987) Preferences : putting more knowledge into queries. Proc. 13th

Very Large Data Bases Conf., Brighton, 2 17-225.

Lipski W., Jr. (1979) On semantic issues connected with incomplete information databases. ACM

Trans. on Database Systems, 4(3), 262-296.

Motro A. (1988) VAGUE: a user interface to relational databases that permits vague queries.
ACM Trans. on Office Information Systems, 6(3), 187-2 14.

Prade H. (1984) Lipski’s approach to incomplete information databases restated and generalized in

the setting of Zadeh’s possibility theory. Information Systems, 9(1), 27-42.

Prade H., Testemale C. (1984) Generalizing database relational algebra for the treatment of

incomplete/uncertain information and vague queries. Information Sciences, 34, 115-143.
Prade H., Testemale C. (1987a) Representation of soft constraints and fuzzy attribute values by

means of possibility distributions in databases. In : Analysis of Fuzzy Information - Vol. 2:

Artificial Intelligence and Decision Systems (J.C. Bezdek, ed.), CRC Press, Boca Raton,
Fl., 213-229.

Prade H., Testemale C. (1987b) Application of possibility and necessity measures to documentary
information retrieval. In : Uncertainty in Knowledge-Based Systems (B. Bouchon, R.R.

Yager, eds.), Springer Verlag, 265-274.

Prade H., Testemale C. (1987c) Fuzzy relational databases : representational issues and reduction

using similarity measures. J. of Amer. Soc. for Information Systems, 38(2), 118-126.

Prade H., Testemale C. (1988) Approche possibiliste des informations incomplètes et des requetes
flexibles. Modèles et Bases de Données (AFCET, Paris), no 8, 3-17.

Raju K.V.S., Majumdar A.K. (1988) Fuzzy functional dependencies and lossless join
decomposition of fuzzy relational database systems. ACM Trans. on Database Systems,
13(2), 129-166.

Tahani V. (1977) A conceptual framework for fuzzy query processing - A step toward very

intelligent database systems. Information Processing and Management, 13, 289-303.

Wong E.A. (1982) Statistical approach to incomplete information in database systems. ACM

Trans. on Database Systems, 7(3), 470-488.

Zadeh L.A. (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems,
1(1), 3-28.

Zemankova M:, Kandel A. (1984) Fuzzy Relational Data Bases - A Key to Expert Systems.
Verlag TUV Rheinland, Köln.

10

FIIS: A FUZZY INTELLIGENT INFORMATION SYSTEM

Maria Zemankova

Department of Computer Science

University of Tennessee

Knoxville, TN 37996-1301, U.S.A.*

Abstract

FIIS (Fuzzy Intelligent Information System) is designed with the goal of modeling human

information processing. The system is composed of a relational database and a knowledge base

that contains descriptions of fuzzy sets, domain similarity relations and rules. These concepts

are employed in intelligent query processing, based on flexible inference that supports

approximate matches between the data in the database and the query. The design issues also

include customization of the system to suit the needs of individual users and explanatory

capabilities.

1. INTRODUCTION

One of the distinguishing features of human intelligence is the ability to reason

with uncertain data or knowledge. Hence, any intelligent information system has

to incorporate management of uncertainty in its design. Systems such as ARES 10]
and VAGUE 18] concentrate on the application of domain similarity in flexible

interpretation of queries in order to avoid loss of close matches that would not

satisfy crisp queries. Query generalization 8, 17], reformulation 5, 8, 25], or value

extrapolation 1] are other approaches to intelligent query processing that are

capable of providing meaningful answers where classical approaches would not

yield any answers or a very restricted subset of the possible answers.

It has been demonstrated that fuzzy sets theory is a suitable framework for

representation and manipulation of uncertainty in data bases 2, 4, 11, 12, 19, 21, 29,

30], information retrieval systems 3, 4, 12], expert systems 7, 9, 20, 28], and other

applications, mainly developed in Japan 23, 24]. Some of the criticisms of fuzzy set

theory concentrate on the subjectivity of assigning membership functions to

concepts. This concern, although justified, is not unique to the fuzzy sets approach
to modeling of uncertainty: knowledge acquisition in general is a recognized bottle

neck in building knowledge-based systems. The goal of machine learning is to

overcome this difficulty 13]. In particular, learning of imprecise concepts is

receiving more attention. In this connection, it is interesting to note that the

“flexible” interpretations of logical connectives 14] are very similar to those

proposed by Zadeh in 1965 261. Responding to the criticisms and to the current

trends in Al, a simple form of “learning from examples” is used in FIIS to acquire
descriptions of fuzzy sets 31].

The model of an intelligent information system described here is based on a

deductive relational database model 15], concepts of similarity 4, 21, 29], fuzzy sets

26, 27], and approximate reasoning 7, 28]. Missikoff and Wiederhold 16] propose a

* Currently: National Science Foundation, Database and Exp. Systems,Washington, D.C. 20550

11

unified approach for expert and database systems and specify criteria that a system
needs to satisfy in order to meet this goal. The criteria satisfied by FIIS are:

application independence, internal knowledge management, knowledge
expandability, deductive power, manipulation of degrees of confidence, transparent

reasoning, and multi-user environment. A very important issue of alternative

search strategies is not addressed in the current system. However, a planned merge

with the APPLAUSE system 6] that is specifically designed to conduct alternative

reasoning strategies would produce a comprehensive intelligent information

system.

2. INTELLIGENT INFORMATION SYSTEM

2.1 FlIS Structure and Functions

The system is divided into the Data Base (DB), the Knowledge Base (KB), and the

Inference Engine (IE). The DB is a relational database. The KB and IE are based on

the fuzzy set theory in order to model human knowledge and reasoning that are in

most cases approximate (or fuzzy) in nature. It is possible to customize the

knowledge representations stored in the KB to reflect a particular user’s perception
of data in the DB, as well as to adjust the flexibility of query evaluation. FI1S’s

explanatory capabilities show the reasoning involved in query evaluations in a

step-by-step fashion. A prototype model has been implemented in Prolog 22].

Currently, the KB is built either by the user providing explicit definitions of

concepts, or examples of concepts, which the system completes to concept
definitions (learning). Concepts previously defined (i.e., learned by the system)
can be used in specifying (i.e., teaching) new, more complex concepts, hence the

system possesses the ability of incremental learning.

Since the new concepts defined in the KB enhance the expressive power of the

query language, it can be said that FIIS is a system with a growing language. The

query language is a logic-based language 15] where high-level aggregate

constructs allow natural language-like query specification built from names of

attributes, attribute values, fuzzy comparison operators (e.g., MUCH GREATER),
relations, fuzzy sets, rules, logical connectives, and fuzzy modifiers (e.g., VERY,

MORE-OR-LESS) 30]. Query evaluation is performed by the IE by application of

approximate reasoning. A match measure between facts and the query is computed,
and facts that satisfy (match) the query with a degree greater than or equal to a

pre-specified threshold of acceptance are retrieved.

2.2 Data Base

The Data Base (DB) stores the actual data values, or facts as relations. The user is

prompted for a name of the new relation and names of the attributes which form

the relation. If an attribute has not been used in a previously defined relation, the

user is asked to define its domain. There are three domain types:

scalar - attribute values are usually character strings

numeric - attribute values are integer or real numbers

12

unit - attribute values are the unit interval 0,1],

indicating a fuzzy set membership value.

Domains may contain atomic values only. A scalar domain may be either

unrestricted, or an enumerated set of scalar values. Numeric domains can be open

(i.e. all legal numeric values are allowed), or a range can be specified.

As an example, consider relations PERSON and P_SKILL. The relation PERSON has

attributes (AGE, INTELLIGENT). The attribute NAME has an unrestricted

textual (scalar) domain. The domain of the attribute AGE is a numeric range (0 <~ x ~.

100), and the domain of the attribute INTELLIGENT is the unit interval 0,1] where a

value represents the degree of membership in a fuzzy set INTELLIGENT. The

relation P_SKILL has attributes (EXPERTISE) where the attribute NAME is the

same as in the relation PERSON, and the attribute EXPERTISE has an enumerated

scalar domain (DBMS, EXPSYS, Al, UNCERT(ainty)}. An attribute used in more than

one relation (e.g., NAME) is assumed to have the same domain and the same

semantics in all relations. This permits a natural join to be performed automatically
when a query requests data from more than one relation.

2.3 Knowledge Base

The KB is a collection of similarity and proximity relations, fuzzy set definitions,
and rules. Concepts defined in the Knowledge Base provide the interpretation of

terms used in queries, hence they serve as a link between the facts in the Data Base,

the concepts from the Knowledge Base, and the Inference Engine that drives the

intelligent query processing.

2.3.1 Similarity and Proximity Relations

Similarity and proximity relations are used in the implementation of approximate
matching, which forms the basis for approximate reasoning.

Similarity Relation

Since similarity is a symmetric and reflexive relation (however, in general it is not

transitive for unordered domains), users are only prompted for pair-wise
similarities corresponding to the upper triangular elements in a similarity matrix.

For example, for the above attribute EXPERTISE, the similarity definition process is

as follows:

Valuel Value2 Similarity
DBMS EXPSYS 0.6

DBMS Al 0.4

DBMS UNCERT 0.2

EXPSYS Al 0.9

EXPSYS UNCERT 0.5

Al UNCERT 0.7

Similarity is used in answering queries using fuzzy comparison operators. For

example, if a query specifies to retrieve a PERSON whose EXPERTISE IS Al (rather
than EXPERTISE = Al) with the threshold of acceptance set to 0.7, a PERSON whose

EXPERTISE is Al or EXPSYS or UNCERT would be retrieved, based on the similarity
relation shown above.

13

The tabular form of the similarity relation definition can be also used for ordered

domains (e.g. numeric domains, or a domain of letter grades A, B, C, D, F). In this

case, similarities of direct successors are requested, and similarities of the

remaining pairs are computed by the application of mm-max similarity
transitivity relation 4, 21].

Absolute and relative proximity relations

Absolute proximity relation, absprox, assigns the same proximity value to equally
distant points in a domain. On the other hand, relative proximity relations, Ireiprox
and Dreiprox, assign increasing/decreasing values of proximity to equally distant

points further from the lower (L)/upper (U) boundary of the domain. To illustrate a

case where an increasing relative proximity is desirable, consider the age of

human beings. In many contexts, persons who are 31 and 32 years old are more

similar to each other than persons who are 1 and 2 years old.

Absolute proximity and increasing relative proximity relations are specified by the

parametric functions (1) and (2)
, respectively 29, 30]:

absprox Cx, y~ = exp C- p
* Ix - yl) (1)

x-L y-L
Irelprox(x, y) = exp C- p

* ~ I) (2)

y-L x-L

where p > 0, x, y are elements of a domain L, U], and x, y > L or x, y < U.

As the behavior of these functions is not straightforward they should not be

manipulated by casual users of the system. It ~s difficult to specify the value of the

parameter p, in order to obtain the desired degree of proximity values in the

numeric domain for which proximity is being defined. Instead, the user is asked to

provide an example of a proximity value between two domain values, and the value

of the parameter p is computed. For example, to define an increasing relative

proximity for the attribute AGE with the domain (0 �. x �. 100), the user may respond
to the prompts as follows:

Increasing II or Decreasing D] relative proximity: I

Sample AGE value x: 60

Sample AGE value y: 65

Value of Irelprox Cx, y): 0.8

The resulting values may be examined at specified domain values, and accepted, if

satisfactory.

Irelprox (0, 5) = 0.00

Irelprox (20, 25) = 0.53

Irelprox (95,100) 0.87

2.3.2 Concepts Represented as Fuzzy Sets

Fuzzy set definitions enable the user to build a vocabulary of terms that describe

sets with vague boundaries. These concepts can be used in queries, or in

specification of other fuzzy sets or rules.

14

Fuzzy sets can be defined in terms of an S-curve, a Bell-curve, a Table, or a

combination of other previously defined fuzzy sets 22, 30]. In this case, the user

provides a “copy” of his knowledge representation to the KB. However, a low-level
form of learning occurs when new, more complex fuzzy sets are defined in terms of

previously defined fuzzy sets. The system is capable of finding the corresponding
representation of the new fuzzy set in terms of attribute values, thus allowing the

user to use high-level concepts in the query language rather than attribute-name,
attribute-value specification employed in the majority of databases.

For example, assume that attributes HEIGHT and WEIGHT with domains (HEIGHT �~

5’O”) and (WEIGHT ~. 80 lb.), respectively, are defined in the DB. Fuzzy sets TALL and

SHORT can be defined as increasing and decreasing S-curves, respectively,
NORMAL_WEIGHT can be expressed as a Bell-curve, and HEALTHY can be defined as

a fuzzy set combination:

HEALTHY = (NOT VERY TALL OR NOT VERY SHORT} AND NORMAL WEIGHT.

The effect of logical connectives and modifiers is implemented using the standard

fuzzy logic interpretations, e.g. membership value of an intersection of two fuzzy
set is a minimum of the constituent membership values 24].

A fuzzy set ATTRACTIVE can be defined as a table with attributes EYES and HAIR

with domains (BLUE, BROWN, GREEN) and (BLOND, RED, BROWN, BLACK),
respectively, as follows:

EYES HAIR ATTRACTIVE

BLUE BLOND 1.0

BLUE BLACK 0.8

BROWN BROWN 0.4

BROWN BLACK 0.6

BROWN RED 0.0

GREEN RED 0.7

GREEN BLACK 0.5

The absence of a possible pair EYES-HAIR values (e.g. BLUE, RED) is interpreted as

having an unknown membership value in the fuzzy ATTRACTIVE. The membership
value can be interpolated (learned) based on the similarities of attribute values and
the corresponding known membership values 31].

2.3.3 Concepts Represented as Rules

Rules are used to express relationships between facts in the Data Base and other
rules or fuzzy sets in the Knowledge Base. The general form of a rule is:

IF <antecedent> M]
THEN <consequent> C]

Here, the <antecedent> is a condition involving attribute names and values,
comparison operators, attribute variables, fuzzy sets or other previously defined

rules, including fuzzy modifiers and connectives. MI specifies an optional match

qualifier. It is the required degree of the computed match, m, between the
antecedent and the data in the database that has to be reached during the

15

antecedent evaluation. In FIIS, the value of the match qualifier defaults to the

current acceptance threshold, T, if not specified during the rule definition process.

The <consequent> defines the new concept, i.e. it defines the outcome of the rule.

C] specifies an optional level of confidence in the rule consequent when the

antecedent is evaluated to be true (i.e., m = 1). In FIIS, confidence defaults to 1,

indicating absolute confidence. Lower levels can be specified, reflecting weaker

confidence in the rule outcome.

A rule satisfaction, S. is derived by first computing the degree of the condition

satisfaction, m. This measure must exceed the required degree of match, M, and the

current acceptance threshold, T, in order to consider the rule’s consequent as

plausible. The value of S is further influenced by the confidence level, C. Hence,

m*C if m�Mandm�T

S=

Unacceptable otherwise.

Suppose a rule called PEERS is to be defined, which says that two people are peers if

they are approximately of the same age. In FIIS this rule has the form:

Consequent: PEERS (NAME(X); PNANE(Y) } C = 1.0]
Antecedent: approx { AGE(X) is AGE(Y) } M 0.6]

Here, X and Y are variables which are declared to refer to the attribute NAME in the

relation PERSON stored in the DB.

As another example, let us consider a rule defining friends as peers who have at

least one common hobby. Assuming that the attribute HOBBY exists in the DB, and

using the previously defined rule PEERS, the rule FRIENDS may be defined as:

Consequent: FRIENDS { NAME(X); PNANE(Y) } C = 0.9]
Antecedent: PEERS and { HOBBY(X) is HOBBY(Y) } M = T]

Here, the confidence level of 0.9 indicates that even if the antecedent is fully
satisfied, we are not fully confident that X and Y are friends. Note that the match

qualifier has the default value of the threshold of acceptance, T. This allows the

user to modify how strictly the hobbies of X and Y have to match during the

querying process, by changing the value of T.

3. QUERYING

3.1 Query Specification

A query specification is composed of two parts: (i) attributes to be listed, and (ii) a

condition to be satisfied 221. The attributes to be listed do not have to belong to the

same relation, as natural join is performed automatically, based on common

attribute names. Only ambiguous joins require user intervention by specifying
which, if any, of the system-proposed joins are to be used. The condition part of a

query specifies criteria which have to be satisfied by the tuples in order to be

displayed.

Queries in FIIS approach the expressiveness of a natural language. To demonstrate

16

this, let us consider a request “Find name, age, salary and area of expertise of

persons who are fairly young, or who are middle-aged and rich”. Assume that all

relations, attributes and fuzzy sets used in the query are defined. The

corresponding query would be specified as follows:

Specify attributes to be displayed

:- NAME AGE SALARY EXPERTISE

Specify the query condition

FAIRLY YOUNG OR { MIDDLEAGED AND RICH

When a query involves a rule, the rule name with any instantiations is specified as

the query condition. Suppose we would like to list all peers of a specific person Eric,

using the above defined rule PEERS. The query condition is as follows:

:— PEERS (NAME(ERIC) }.

3.2 Query Evaluation

The query condition is broken down into the simplest forms directly involving
attribute values. Tuples composed of attributes involved in the query condition are

evaluated to yield a degree of query satisfaction, 5, with a value in the unit interval

0,1].

The degree of satisfaction for a simple condition is combined with the degrees of

satisfaction for other simple conditions by the application of the standard

interpretations of the fuzzy binary connectives and modifiers 27]. Finally, all those

tuples for which S �~ T, (i.e. the degree of query satisfaction is equal to or exceeds the

acceptance threshold value) have their respective attribute values displayed, along
with the degree of satisfaction for each tuple. The tuples are presented in the

descending order of the degrees of query satisfaction.

For example, the result for the above query asking for NAME, AGE, SALARY and

area of EXPERTISE of PERSONs who are FAIRLY YOUNG OR (MIDDLE-AGED AND RICH)
satisfying the default acceptance threshold value of 0.50 is presented in the

following way:

NAME AGE SALARY EXPERTISE S

AL 22 45000 EXPSYS 1.00

AL 22 45000 Al 1.00

JIM 24 43000 DBMS 0.99

ERIC 38 50000 UNCERT 0.94

TOM 42 48000 Al 0.87

TOM 42 48000 UNCERT 0.87

JOHN 30 25000 DBMS 0.50

The user is given an opportunity to see an explanation of the reasoning process
involved in the query evaluation. An explanation for Eric has the following form:

17

In relations PERSON and P_SKILL:

NAME AGE SALARY EXPERTISE S

ERIC 38 50000 TJNCERT 0.94

The fuzzy set “MIDDLEAGED” is defined as a Bell—curve

and membership evaluates to 0.96 for AGE 38

The fuzzy set “RICH” is defined as an S-curve

and membership evaluates to 1.00 for SALARY 50000

The expression “middle-aged AND rich” evaluates to 0.96

because AND =~> mm : min(0.96, 1.00) = 0.96

The fuzzy set “YOiJNG” is defined as an S-curve

and membership evaluates to 0.60 for AGE 38

The expression “FAIRLY young” evaluates to 0.77

because FAIRLY ==> sqrt sqrt(0.60) = 0.77

The expression “fairly young OR {middle-aged and rich}” evaluates to 0.96

because OR ==> max : max(0.77, 0.96) = 0.96

The query satisfaction degree S = 0.96

exceeds the default acceptance threshold T = 0.50,

hence the tuple is retrieved.

The default acceptance threshold of 0.50 can be changed to any value in the unit

interval. By changing the threshold of acceptance level, the user can control the

flexibility of the approximate reasoning. Setting the threshold to I would result in

crisp, or Boolean query evaluation.

4. CONCLUSION

The prototype model of FIIS has shown that a system based on relational database

techniques and logic programming (adapted to support approximate reasoning)
provides a suitable framework for information systems. In future versions, it is

desirable to incorporate representations of other forms of knowledge, such as

propositions involving fuzzy quantifiers, functions, trends, and temporal
information. The system would also benefit from learning methods capable of

finding rules involving relationships among variables, detecting dependencies or

patterns between attributes or concepts, and expressing the learned concepts in an

easy to understand form. With these enhancements, the variety of questions that

can be answered by the system would increase dramatically, as the reasoning

patterns could derive not only facts or rules that partially match, but those that are

more general or more specific. However, even in its present form FIIS exhibits

features of intelligent information processing.

ACKNOWLEDGMENT

The implementation of FIIS was carried out by Suresh Rajgopal and Richard Roland.

18

REFERENCES

1] Arrazola, I., Plainfossd, A., Prade, H., Testamale, C. (1988) “Extrapolation of fuzzy values from

incomplete data bases”, Tech. Rep. LSI, Univ. Paul Sabatier, Toulouse, No. 298

2] Baldwin, J.B., Zhou, S.Q. (1984) “A fuzzy relational interface language,” Fuzzy Sets and Systems,
14(2), 155-174.

3] Bookstein, A. (1980) “Fuzzy requests: an approach to weighted Boolean searches,” Journal of the

American Society for Information Science, 31(3), 240-247.

4] Buckles, B.P., Petry, RE. (1987) “Generalized database and information systems,” in: Analysis of Fuzzy
Infonnation, J.C. Bezdek, ed., Vol II, Artificial Intelligence and Decision Systems, CRC Press, Inc., Boca Raton,

FL, 177-201.

5] Cuppens, F., Demolombe, R. (1988) “Cooperative answering: a methodology to provide intelligent
access to databases”, in L. Kerschberg (ed.), Expert Database Systems, Proc. from the Second International

Workshop, Tysons Corner, VA, Apr. 25-27, 1988, 333-353.

6] Dontas. K, Zemankova, M. (1988) “APPLAUSE: an experimental plausible reasoning system”, in Z.W.

Ras, L. Saitta (eds.), Methodologies for Intelligent Systems, 3, North Holland, 29-39. (Extended version will

appear in Information Sciences)

7] Dubois, D. (1984) “The management of uncertainty in expert systems: the possibilistic approach,” Proc.

10th Triennial IFORS Conf., Washington, D.C., North Holland PubI., Amsterdam, 949-964.

8] Fertig, S., Gelernter, D. (1988) “Musing in an Expert Database”, in L. Kerschberg (ed.), Expert Database

Systems, Proc. from the Second International Workshop, Tysons Corner, VA, Apr. 25-27, 1988, 383-399.

9] Hall, L.O., Kandel, A. (1986) Designing Fuzzy Expert Systems, Verlag TIJV Rheinland, Koin.

10] Ichikawa, T. Hirakawa, M. (1986) “ARES: a relational database with the capability of performing flexible

interpretation of queries”, IEEE Trans. on Software Engineering, SE-12(5), 624-634.

11] Kacpryzyk, J., Ziolkowski, A. (1986) “Database queries with fuzzy linguistic qualifiers,” IEEE Trans. on

Systems, Man, and Cybernetics, 16(3), 474-479.

12] Kerre, E.E., Zenner, R.B.R.C., Dc Caluwe, R.M.M. (1986) “The use of fuzzy set theory in information

retrieval and databases,” Journal of the American Societyfor Information Science, 37(5), 34 1-345.

13] Michaiski, R.S., J.G. Carbonell, T.M. Mitchell (eds.) (1983, 1986) Machine Learning - An Artificial
Intelligence Approach I, II, Morgan Kaufmann Publ. Inc.

14] Michaiski, R.S. (1987) “How to Learn Imprecise Concepts: a method for employing a two-tiered

knowledge representation in learning”, in Proc. of the 4th mt. Workshop on Machine Learning, P. Langley
(ed.), Morgan Kaufmann Publ. Inc., 50-58

15] Minker, J. (1987) “Deductive databases: an Overview of Some Alternative Theories,” in Ras, Z.W.,

Zemankova, M. (eds.), Methodologiesfor Intelligent Systems, Elsevier Science Publ. Co., 148-158.

16] Missikoff, M., Wiederhold, G. (1986) “Towards a unified approach for expert and database systems” in L.

Kerschberg (ed.), Expert Database Systems, Proc. from the First International Workshop, Benjamin-Cummings
Publ. Co., Menlo Park, CA, 383-399.

19

17] Motto, A. (1986) “SEAVE: A mechanism for verifying user presuppositions in query systems,~ ACM

Trans. on Office Information Systems, 4(4), 312-330.

181 Motto, A. (1988) “VAGUE: a user interface to relational databases that permits vague queries”, ACM

Trans. on Office Information Systems, 6(3), 187-214.

19] Prade, H., Testamale, C. (1984) “Generalizing database relational algebra for the treatment of

incomplete/uncertain information and vague queries,” Information Sciences, 34(2), 115-143.

20] Prade, H. (1985) “A computational approach to approximate and plausible reasoning with applications to

expert systems”, IEEE Trans. on Pattern Analysis and Machine Intelligence, PAMI-7(3), 260-283.

21] Prade H., Testemale, C. (1987) “Fuzzy relational databases: representational issues and reduction using

similarity measures,” Journal of the American Societyfor Information Science, 38(2), 118-126.

22] Rajgopal, S., Roland, R., Zemankova, M. (1987) “A user’s guide for the fuzzy intelligent information

system”, Tech. Rep. Computer Science Dept., University of Tennessee, CS-88-72, August 1987.

23] Smith, E.T. (ed.) (1989) “Developments to Watch: Why the Japanese are going in ‘fuzzy logic”,
Business Week, Feb. 20, 1989, 148.

24] Stix, G. (1988) “Fuzzy Wuzzy (in Japan) is a subway motorman”, The Institute, News Supplement to

IEEE Spectrum, 12(5), May 1988, 1 & 4.

25] Williams, M.D. (1984) “What makes RABBIT run?”, mt. J. Man-Machine Studies, 21, 333-352

26] Zadeh, L.A. (1965) “Fuzzy sets”, Information and Control, 3, 177-200.

27] Zadeh, L.A. (1975-76) “The concept of a linguistic variable and its application to approximate

reasoning,” Information Sci., Part I., 1975, 8, 199-249, Part II., 1975, 8, 301-357, Part III., 1976, 9, 43-80.

28] Zadeh. L.A. (1983) “The role of fuzzy logic in the management of uncertainty in expert systems,” Fuzzy
Sets and Systems, 11(2), 199-227.

29] Zemankova, M., Kandel, A. (1984) Fuzzy Relational Databases - A Key to Expert Systems, Verlag TIJV

Rheinland, GmbH, Cologne.

301 Zemankova, M., Kandel, A. (1985) “Implementing imprecision in information systems”, information
Sciences, 37(1,2,3), 458-463.

311 Zemankova, M. (1988) “FILIP: a fuzzy intelligent information system with learning capabilities”, Tech.

Rep. Computer Science Dept., Univ. of Tennessee, May 1988.

20

REPRESENTATION AND ACCESS OF UNCERTAIN RELATIONAL DATA

Arie Tzvieli

Bell Communication Research

RRC 4E707

444 Hoes Lane

Piscataway, NJ 08854

Abstract: In this paper we discuss several problems associated with the representation and access of

uncertain data within the relational database model. Among the problems considered are the semantics of

uncertainty representation, levels of data which may be uncertain, and the quantitative and qualitative

representation of certainty values related to data.

The traditional database access using query languages is quite limited when uncertain data is

involved, and special treatment is required in this case. We discuss the representation and access of

uncertain data. We propose a method for computing the certainty of combined expressions when queries

are underspecified. We advocate the use of special certainty-related operations on relations, the relational

transformers, operators which may be considered a generalization of aggregate functions, to perform

sophisticated Customized database access.

1. INTRODUCTION

In many real life situations, it is impossible or impractical to achieve complete knowledge of the relevanL facts

(or they may have not occurred yet), while nevertheless some action must be taken. As an example, selLing a

meeting date mighL be dependent on the weather, and yet, when many people are to participate, this decision has to

be made well in advance. Uncertainty management is concerned with behavior guidelines for these types of

situations, so that the actions chosen could be justified on a rational basis. In other words, models are developed and

employed to choose the best action, based on the available data, and to assess the certainty that the chosen action is

the right one.

Indeed, the term uncertainly itself is vague; quite often, the uncertainty is specified by giving a certainly value,

and it could also mean possibility, fuzziness, probability, etc. The following discussion could be useful, regardless
of our choice of interpretation of uncertainty.

The most important observation regarding uncertainty is, that usually additional information exists, which could

be employed to achieve higher reliability in the use of the uncertain data. However, to accommodate the inclusion

of this information in the relational model, we have to generalize it and to introduce several new concepts.

Main issues in the area of uncertainty management which are relevant to relational database systems:

• Representation of uncertainty: how should uncertain data be represented in a relational database. This is a

composite issue that could be further broken down into semantics and representation.

21

First let us consider the issue of semantics. What is the meaning of a statement such as: ‘the certainty that

supplier Si is located at city Cl and has a status Sri] is 70%”. Does 70% refer to the supplier, to the city, to the

status, or to the relationship between them all?

The second issue is the representation domain and form of certainty knowledge: should we use percents, real

numbers, the interval 0, 1], natural language terms, intervals, expectancy and standard deviation, etc. While in

some cases conversion between alternative representations is possible, in other cases it is not. The choice of

representation seems to be tied strongly to the chooser’s interpretation of the term uncertainly.

• Simple retrieval of uncertain data.

At issue is the reference to the certainty value in query expressions. Is the certainty data part of the model (such

as: every relation must have a certainty attribute named “Certainty”) and therefore part of the query language, or

is the representation dependent on the application, and therefore certainty management can not be built into the

query language.

• Combination of uncertain data qualifications in queries.
Given the certainty values of some simpler expressions, what is the certainty which should be assigned to a

combination of those expressions.

• Complex and special operations on uncertain data.

As an example, we may consider using thresholds to filter out data whose certainty is below a given value.

Special operations can be developed that will increase the query language expressiveness and which will enable

the sophisticated use of certainty values.

• Analysis of the certainty of simple components. given the certainly of compositefacts.

This use of uncertainty data is somewhat more complex than the previous ones. Consider the following

example: suppose we know that the certainty of a move up in the stock and bond market is a. What is the

chance of a move up in the stock market? This problem is the complementary problem of combining

uncertainties. Intuitively, it seems that we can expect only crude estimates to result from this kind of analysis.

• The development of a suitable logical system for reasoning under uncertainly.

Assume that we are given a set of facts and their associated certainties, and we need to find the certainty of a

logical conclusion of those facts. Since in uncertain situations both a fact and its complement are possible to

some degree, first order consistency (where either a formula or its complement are satisfied in a model) is not a

reasonable assumption (the interested reader is referred to Tz88], which discusses some challenging problems).

• Vague queries, applied to certain and / or uncertain data.

In this case, the query itself is ambiguous (e.g., find a beautiful woman in a matchmaker’s database). The

query’s ambiguity creates uncertainty, which may be combined in a complex way with the uncertainty of the

data.

Our goal in this paper is to explore some of these problems. The author’s personal opinion is that research in the

management of uncertainty is at an early stage, that a complete solution is very difficult, and that much additional

research is needed.

A Brief Description of the Work.

A simplistic approach to uncertainty representation, which leaves us within the classical relational model, is to

add to each tuple a certainty attribute. We consider in Section 2 the possible semantics of this approach. Since

more than one possible interpretation of the uncertainty in certainty augmented tuples exists, this issue must be

resolved. Next, we consider some methods for representing uncertainty within the relational model, and we propose

a generalization of the relational model to accommodate practical needs, by including non-relational data in the data

dictionary.

To enable complex queries on uncertain data, we suggest the use of relational transformers, which transform a

relation into a modified relation. We prefer the use of the term relational transformers to relational modifiers since

we envision operations that are more complex than modification of tuples. As an example of a complex operation

we may consider the computation of the transitive closure of a relation, in which the edge information is uncertain.

The specific transformers implemented for an application could help customize a system to the user’s need, and give

a system extra expressive power. The idea is further elaborated in Section 3.

22

The combination of uncertain expressions into composite ones can follow different intuitions (see for example

Dubois and Prade DP84] for a discussion of implication). We observe that the prevailing approach toward

combinations is or-biased, in the sense that the certainty of a conjunction is not higher than the certainty of any of

its components, and the certainty of a disjunction is not smaller than that of any of its components. Consequently, in

most cases there is a difference between the certainty of a conjunction and that of a disjunction. However, when the

nature of the combination itself is vague, an approach which is not biased toward any of the specific possible

connectives is preferable, since the potential error is smaller. We propose to use in this case a fair approach, which

is based on the averaging of the certainty values over the potential types of combination. Specifically, we consider

two cases of potential combinations: implication and conjunction, and disjunction and conjunction.

The subject of the management of uncertainty has been a very popular academic research topic, and we

apologize for the omission of reference to many important works. Many valued logics were the pioneers of

uncertainty representation and management. Ackermann Ac67] may serve as an introduction to the subject.

Representatives of current research are Halpem & Rabin HR83], Nilsson Ni86], Keisler Ke77] and Haack

Ha741. The problem of “unknown values” in databases has received considerable attention; as a representative

consider Lipski Li791. The theory of fuzzy sets attracted much interest. The ieader is referred to Zadeh Za65,

Za83]. Shafer’s theory of evidence Sh761 is very elegant and interesting. Dubois and Prade contributed books and

many good papers to the management of uncertainty. Their book DP8O] is a comprehensive survey on fuzzy logic

up to 1980, and their second book DP88] contains a description of their interval approach to uncertainty

representation. They have also considered, with Testmale, uncertainty in the context of relational databases PT841.

Zemankova and Kandel considered fuzzy databases ZK84]. Buckles and Petry BP82] have also considered issues

in fuzzy databases. Relevant work can also be found in artificial intelligence books and articles, such as Kanal and

Lemmer KL86].

The paper is organized as follows: Section 2 discusses semantics and representations of uncertain data. Section

3 discusses vague queries and advocates the use of the relational transformers. Section 4 summarizes the paper.

2. The Representation of Uncertainty.

2.1 Uncertainty of What?

The simplest approach to the representation of uncertain data is to use the standard relational model. Given a

relation

SUPPLIER(Sname, S#, City, Status),

we can add an attribute Certainty which will express the certainty associated with each tuple in the relation. This

approach works for some cases, and it does not require any modification of the relational model. Therefore, it is

easy to implement both for data storage and data access. It has, however, limited expressive power and ambiguous

semantics. Let us consider the issue of semantics first. Suppose that the tuple

<AT&T, Si, Piscataway, 75, .66>

is a member of the SUPPLIER relation (augmented with a Certainty attribute). What is the meaning of the Certainty

value .66?

Evidently, it could be interpreted in a number of ways:

a. The certainty that (AT&T’s supplier number is Si) is .66.

b. The certainty Lhat (the status of Si is 75) is .66.

c. The certainty that (AT&T’s S# is Si and Si’s city is Piscataway and the status of SI is 75) is .66.

Other interpretations are also possible.

How can this ambiguity be resolved? Consider the following approaches:

23

1. Agree to a single interpretation convention, such as: ‘the certainty value relates to the complete Luple’ (the

third option above);

2. Break every relation into binary components (using an artificial tuple-id TID attribute, if required), so that the

certainty is uniquely associated with a single attribute;

3. Add additional attribute(s) to specify the association between the certainty attribute and other attributes.

Note that the first option requires the leasL amount of space, while the second is often the most space consuming,
since some information is certain and need not be specified in cases one and three. On the other hand, the first

option requires knowledge of metadata which is usually not recorded in the database itself, and is therefore less

accessible. We can also adopt a combined approach; binary relations be used to express the certainty of single

attributes, and n-ary relations be used to express the certainty of a relationship between multiple attributes.

In the past, certainty management was associated with facts and boolean combinations of facts. We would like

to point IC) other contexts in which certainty management could play important role: certainty of sets of facts (such

as sets of tuples, or sets of formulas), and aggregate functions. As an example, consider the following situation:

“For employee number in the range I to 1000, the years-of-service attribute is correct in 80% of the cases, since

until 5 years ago starting-date-of-work was kept only as a year (no month or thy)”.
The description of the above situation is achieved using a formula:

if employee number is in the range 1-1000, then certainty of years-in-service is .8.

This description is more concise than a specification of certainty .8 for each of the employee records, where the

employee number is in the range 1-1000. Furthermore, in many cases a formula description carries semantic

information which is not captured by a certainty-per-tuple description. However, using formulas in a relational

database requires the solution of two problems:

1. Storage of formulas in a database.

2. The use of formulas in update / query operations.

For the storage of formulas, we could use relations in which the formulas will be stored, either as text or structured

according to their parse tree. The use of formulas in query operations requires the integration of reasoning

capabilities within the database systems, as in deductive databases. Even if the issues of representation of formulas

and reasoning within a database system are solved satisfactorily, it still could prove more efficient to associate the

certainty (in the above example) with each relevant tuple (similar to materialized views).

Another useful context for uncertainty management is aggregate functions. Given a relation, we may have

information regarding the certainty of the value of some aggregate functions applied to it. For example, consider

the case where the salaries of employees are confidential, while their average salary is public knowledge. In this

context, a statement like: “The certainty that (the sum of salaries in the TOY department> 50k) is 85%” can make

perfect sense.

2.2 Representation of Uncertainty Values.

In our previous discussion, we implicitly assumed that a suitable representation of the uncertainty values exists.

In this subsection, we consider the problem of suitable representation of the uncertainty information.

Between 1925 and 1940, several logicians (e.g., Lukasiewitz, Tarski) investigated logics which had three truth

values: true, false, and a third value, which could mean unknown, neither true nor false, inapplicable, paradoxical.
This ambiguity is somewhat parallel to the use of the terms null, unknown, non-applicable in relational database

theory. In the 1940s, the many-valued logics were generalized to include an infinity of truth values, both

enumerable and non-enumerable. This approach amounts to representing uncertainty by a single (rational or real)

number. The use of percents to represent certainty is a special case of this method.

This approach has the potential benefits of accuracy, easy incorporation into the relational model, and the

conciseness of added certainty information. Its main drawback lies in its inability to describe more complex

certainty data such as: certainty associated with predicates and aggregate functions, probabilistic distribution of

values, uncertainty of certainty values (i.e., second order uncertainty), etc.

24

Other approaches use more than a single number to express uncertainty. For example, Cheeseman Ch84]

proposed the use of expectancy together with standard deviations to capture uncertainty. Some probability
distributions require two or more numbers to characterize the possible values (such as a uniform distribution over a

given interval). A two-value approach could also be used to represent the certainty of facts and the certainty of the

certainty value itself. Another interesting use of the two-valued approach is in representing uncertainty using an

interval; Dubois and Prade DP88} elaborate on this method. In a natural extension, the two-value approach could

be generalized to an n-value approach. Usually, the complexity and overhead of uncertainty representations using
n-value approaches become prohibitively expensive for large values of n.

An approach which is qualitative rather than quantitative is one which uses a hierarchy of natural language
terms to represent certainty. An example of such a hierarchy is: absolutely certain, very certain, certain, somewhat

certain, uncertain. Some research seems to suggest (see Bonissone and Decker BD85]) that the differences

between natural language hierarchies having more than nine terms and nine-term hierarchies are mostly negligible.

A benefit of the use of natural language hierarchies is that it is easy for human beings to understand, but their

use introduces another problem. Natural language hierarchies have different meaning to different persons; their use

may amplify the uncertainty of the data, degrading the system’s reliability.

There arc several representations of uncertainty that do not fit within the relational model, and require its

generalization. One such example is the use of predicates, potentially including aggregate functions. Another

example is the use of mathematical formulas to specify probability distribution of uncertainty values. The

incorporation of such unusual objects in a database system may enhance the expressive power, but prototypes

having this capability are still several years away.

3. The Access of Uncertain Data.

In this section, the vague combination of uncertain data is considered, and the relational transformers arc

discussed.

3.1 The Vague Combination of Uncertain Data.

In the following discussion, assume that the certainty is represented by a number in the interval 0, 1]. Many
formulas were suggested to compute the certainty value of a combined expression, based on the certainty values of

the components and the logical connective involved (and / or / not / implication). These formulas can be used

whenever boolean queries address a database which contains uncertain data. The reader is referred to Weber

Wc83J and to Dubois and Prade DP84] for very interesting discussions concerning the appropriate choice of

computational formulas.

The choice of a computational formula for the certainty of conjunctions can be the starting point for a coherent

computation of the certainty of combinations involving other connectives. For a logical formula 4) with certainty
value a, the certainty of —4, the complement of 4), is usually taken as 1-a. The certainty expressions for the other

connectives are usually based on their definitions in first order logic using conjunction and negation. For example:

4)V~i:=-,(--,4)A--,w), and 4)—,w:=(--14))Vw.

The following are examples of proposed formulas to compute the certainty of a conjunction:

1. min(a,b)

2. ab

3. max(0,a+b-1).

All of these formulas are examples of an or-biased approach: the certainty of a conjunction is not greater than the

certainty of each of its components. As a result the certainty of a disjunction is not lower than those of its

components. Thus, for most of the possible certainty values of the components, the certainty of a disjunction is

25

significantly different from the certainty of a conjunction. This kind of difference also occurs between other pairs of

conncctivcs.

Consider the query What is the certainty that a person who smokes is ill?. This could be interpreted either as:

“What is the certainty that a person smokes and is ill”, or as: “What is the certainty that smoking implies illness’.

The connective is not specified in the query. Ambiguity involving other connectives is possible as well.

To minimize the potential error, we propose to assign to ambiguous combinations a certainty value which is the

average of the values that would have resulted from the choice of each potential connective, using existing

computing formulas. Since the proposed approach is impartial to the type of combination, we shall refer to it as the

fair approach. Let us compute the conjunction-implication fair approach corresponding to the use of min(a, b) for

conjunction, max(a, b) for disjunction, and max(1-a, b) for implication. In the following table, A denotes

conjunction and —p implication.

a, b values A —* fair

a=b; a<.5 a 1-a .5

a=b;a>.5 a a a

a’zb; 1-a<b a b (a+b)12
acb; b<l-a a 1-a .5

b<a; 1-a<b b b b

b<a; b<l-a b 1-a (1+b-a)f2

In the case of ambiguity between conjunction and disjunction, the fair approach yields the arithmetical average of

the two certainty values involved in the combination, for all three examples of conjunction computational formulas

given above.

3.2 The Relational Transformers.

We shall present the concept of relational transformers through illustrative examples. Although query

languages allow the expression of ad-hoc queries, they are still limited in their expressive power (see Zv861 for a

theoretical discussion). The addition of special operations, which we call relational transformers, could enhance the

expressive power of the language. Usually, a descriptive style of queries is preferable, and the relational

transformers could embed in their implementation complex procedurality, from which the user is shielded. Another

benefit of adding relational transformers to query languages is the added flexibility to customize a system to the

special needs of its applications.

Several examples of relational transformers follow.

A threshold relational transformer.

In many cases, we are interested only in data whose certainty is above some given threshold, while the other data is

simply ignored. The threshold transformer

threshold(cx, R)

creates a copy of R in which all the tuples whose certainty is below a have been erased.

Normalization of data.

Suppose we constrain certainty values to be in the interval (1-val, r-val). To be able to use data with certainty values

in the interval (a, b), we may want to transform the given certainty values using some mapping, such as:

new_val := 1-val + (old_val - a) * (r-val - l-val) / (b - a)

An exception to a certainty distribution.

Management by exceptions is a popular management technique, that could be applied to the management of

26

certainty values as well. Given an expected certainty distribution over a relation, and a criterion which defines

exceptions, this relational transformer computes the sub-relation containing only the exceptions.

Categorization.

The categorization transformer accepts a list of categories (such as: 0 to .2 - very uncertain, .2 to .5 - uncertain, and

substitutes the relevant category for the certainty value of each tuple. Notice that the inverse transformation does

not exist.

Transitive connectivity.

The previous transformers are likely to be useful in every system where certainty values are expressible. The

transitive connectivity transformer is of a more specialized nature. This transformer may be used to compute the

transitive closure of relations, whenever some uncertainty is associated with the existence of edges, in a tabular

clescript ion of a graph.

While these examples of relational transformer are all in the context of uncertainty management, the same (or

similar) transformers may also be useful in conventional database systems. A tool chest of relational transformers

may be a positive step toward customization of database system for individual application.

In order to implement relational transformers, it is required that the query language be able to recognize the

relational transformers. The specification of the relational transformers can be done either locally by the DBA or by
the vendor.

4. Summary.

We have discussed several issues in the management of uncertainty within database systems, and problems
related to the representation of uncertainty. We outlined two promising ideas: the fair approach to vague

combinations of uncertain facts, and the relational transformers as a tool for customization and enrichment of query

languages.

Acknowledgement: Thanks to Ami Motro for many suggestions which improved this presentation.

REFERENCES

I Ac67 I Ackermann R.: “An Introduction to Many-Valued Logics”. Dover Publications Inc., New York, 1967.

BD85] Bonissone P.P. and Decker S.K.: “Selecting Uncertainty Calculi and Granularity: An Experiment in

Trading-off Precision and Complexity”. In: Proceedings of the Workshop on Uncertainty and Probability
in Artificial Intelligence. UCLA, L.A., CA, Aug. 14-16, 1985.

BP821 Buckles B.P. and Petry FE.: “A Fuzzy Representation of Data for Relational Databases”. Fuzzy Sets and

Systems 7, 1982, pp. 213-226.

Ch85] Cheeseman P.: “In Defense of Probability”. Proceedings of the 9th IJCAI, 1985, pp. 1002- 1009.

~DP80] Dubois D. and Prade H.: “Fuzzy Sets and Systems: Theory and Applications”. Academic Press, New

York, 1980.

DP841 Dubois D. and Prade H.: “Fuzzy Logics and the Generalized Modus Ponens Revisited”. Cybernetics and

Systems 15, 1984, pp. 293-33 1.

27

DP88] Dubois D. and Prade H.: “Possibility Theory”. Plenum Press, New York, 1988.

tHa74] Haack S.: “Deviant Logic”. Cambridge University Press, 1974.

~HR83] Halpern J.Y. and Rabin M.O:: “A Logic to Reason about Likelihood”. Proceedings of 15th STOC, 1983,

pp. 310-319.

KL86~ Kanal L.N. and Lemmer J.F.: “Uncertainty in Artificial Intelligence”. Elsevier Science Publishers, 1986.

Ka751 Kaufmann A.: “Introduction to the Theory of Fuzzy Subsets”, Vol. I, Academic Press, 1975.

Ke771 Keisler H.: -lyperfinite Model Theory”. In: Logic Colloqium 76, Gandy R.O. and Hyland J.M.E.

editors, North-Holland, 1977, pp. 5-110.

ILi79l Lipski W.: “On Semantic Issues Connected With Incomplete Information Databases”. ACM TODS 4,

1979, pp. 262-296.

INi861 Nilsson N.J.: ‘Probabilistic Logic’. Artificial Intelligence 28, 1986, pp. 7 1-87.

~PTS4I Prade H. and Testmale C.: “Generalizing Database Relational Algebra for the Treatment of Incomplete
or Uncertain Information and Vague Queries”. Information Sciences 34, 1984, pp.11 5-143.

RM86] Raju K.V.S.V.N. and Majumdar A.K.: “Fuzzy Functional Dependencies in Fuzzy Relations”. In the

Proceedings of the 2nd Data Engineering Conference, IEEE Computer Society, 1986, pp. 312-319.

Sh76] Shafer C.: “A Mathematical Theory of Evidence”. Princeton University Press, Princeton, N.J., 1976.

Tz881 Tzvieli A.: “PL - A Probabilistic Logic”. Proceedings of the 4th Data Engineering Conference, 1988,

IEEE Computer Society, pp. 462-469.

Tz88a] Tzvieli A.: “On Implementations of Production Systems Using DBMS”. Proceedings of the 3rd

International Conference on Data and Knowledge Based Systems, Israel, Been C. and Schmidt J.W.

eds., Morgan Kaufmann, 1988.

We831 Weher S.: “A General Concept of Fuzzy Connecuves, Negations and Implications Based on t-Norms and

t-Conorms”. Fuzzy Seis and Systems 11, 1983, pp. 115-134.

IZa651 Zadch L.A.: “Fuzzy Sets”. Information and Control 8, 1965, pp. 338-353.

(Za83J Zadeh L.A.: “The Role of Fuzzy Logic in the Management of Uncertainty in Expert Systems”. Fuzzy
Sets and Systems 11, 1983, pp. 199-227.

ZK84~ Zemankova-Leech M. and Kandel A.: “Fuzzy Relational Databases - a Key to Expert Systems”. Verlag
TUV Rheinland, KoIn, 1984.

1ZC861 Tzvieli A. and Chen P.P.: “Entity-Relationship Modeling and Fuzzy Databases”. In the Proceedings of

the 2nd Data Engineering Conference, IEEE Computer Society, 1986, pp. 320-327.

IZv86i Tzvieli A.: “On Complete Fuzzy Relational Query Languages”. Proceedings of NAFIPS 86, pp. 704-

726.

28

Incomplete Information in Logical Databases

Tomasz lmielinski1

Department of Computer Science

Rutgers University

1. Introduction
Quite often information represented in the database is only an approximation of the real, partially

unknown, external world. The simplest example is missing information about some fields of records in the
database, e.g. the age of John or the salary of Mary. A standard solution, as old as the very concept of
the database, is the so called null value Codd 75J. Null values have been used extensively and freely in
databases as placeholders to denote missing information Vassiliou 79], Grant 86]. While it was easy to
place a null value in the database as a placeholder it was much more difficult to process queries in the
presence of nulls without clear and well defined semantics.

Example
C.onsider the following relation R=

II Person Wife

fi Robin ©

A null value “@“in the attribute wWifeN of the relation A above could mean that (i) Robin has a wife, but
we do not know who she is (ii) Robin does not have a wife (iii) Robin is a woman and the attribute wife is
not applicable to him. Depending on which interpretation is taken, we will answer queries about R
differently. In any case these answers should be consistent with the underlying interpretation of the null
value. ~

In this paper we deal exclusively with type (i) interpretations; i.e. only logical incompleteness. The other
possible interpretations of nulls are known as “nonexistent” and “nonapplicable” Vassiliou 791 and are not
treated here.

But null value is only the simplest manifestation of incompleteness of information. Frequently we have
some partial knowledge about “missing values”. For instance, we may know that John’s age is between
30 and 35 or that Steve is either an associate or a full professor. This leads to a concept of partial nulls or
OR-objects lmielinski 89]. Here we know that the missing value exists and we even know the set of
values to which it belongs. Finally, we may deal with general disjunctive information of the form “either
John is a manager or Steve is a supervisor. Grant 861.

Admitting and representing such information in the database is easy; it is considerably more difficult to
specify what constitutes the answer to a query and how to compute it.

We address this and the following questions in the paper:

1) What is the meaning of incomplete information in the database and how to describe it

2) How to correctly process queries in the databases with incomplete information.

3) How complex is query answering in the presence of incompleteness.

‘This research was supported by NSF under contract DCR 85-04140.

29

We concentrate on the case when data is known to exist but we do not know the exact values. In other

words, we do not discuss here the case when data does not exists or is not applicable. On the other

hand we talk about much wider class of incomplete information databases than simply databases with

nulls. In particular we discuss:

1) Databases with marked nulls.

2) Databases with OR-objects.

3) Deductive databases (i.e. databases with rules) with incomplete information.

Note that incompleteness of information considered here has a logical nature, i.e. there is more than

one possible world modeled by the database, but within this set of possible worlds we have no

~preferencesw.

Generally we distinguish between two approaches - model theoretic (or algebraic) and proof theoretic.

We will start from the null values and then apply the same principles to the more sophisticated forms of

incompleteness.

2. Null Values - two approaches
A database can be viewed either from a model theoretic perspective, as a model of the real world, or

from proof theoretic perspective, as a collection of logical formulas.

2.1. Model Theoretic Approach
In the model theoretic approach we extend the concept of relation to represent incomplete information.

Let us first see how complete data is represented in the relational model. For instance, the following
relation STUDENT with three attributes: Name, Age, Address is viewed as a table

Name Age Address

John 27 NY

Steve 26 LA

Formally, in the relational model only domain a~nstanls can appear as entries in tuples of relations.
The relational algebra or relational calculus Codd 70] are tools to operate on these tables. We assume

that the reader is familiar with basic relational operations, such as join, projection, selection, union and
difference.

Representing incomplete data in the relational model requires extension of the concept of relation to
admit nulls, as special types of constants. In this way we obtain tables with null values or V-tables as they
have been called in the literature Imielinski 84]. Formally a table with (marked) null values or a V-table is
a relation with variables as well as constants allowed as entries. These variables are called marked null
values. For example, in the table STUDENT we could allow two marked nulls x and y.

Name Age Address ~
John x NY

Steve 26 y

30

The new table STUDENT specifies that there is a number of possible states of reality represented by
this table. Each of them is a relation, resulting from STUDENT by substituting all possible domain

constants for variables x and y (actually we can be more specific and say that we substitute all possible
values of Age for x and all possible values of Address for y). In consequence we obtain a set of possible
relations representing the state of the real world; we know that the real state of the world belongs to this

set, but we do not know which one it is.

More formally, with each table T we associate a value of a representation function rep(T), which is a set

of “possible worlds” represented by T. Let v be a substitution of domain constants for variables. Such a

substitution is called a valuation. By v(T) we denote the relation resulting from T by substitution of v(x) for

every variable x occurring in T. For a V-table T the representation function rep(T) is defined as follows:

(S: there exists v such that v(T)cS)

Now, having represented our data in such a tabular form, we want to process queries expressed in

relational algebra (or relational calculus). To this end we have to extend relational algebra operations on

these tables. Obviously we cannot do this extension in the arbitrary way - we have to “be faithful” to the

underlying semantics. Let f be an arbitrary relational expression, and T an arbitrary table. The best way to

define the extension f(T) of f over T would be to satisfy

rep(f(T)) = f(rep(T)) — (f(S): SE rep(T)}

Indeed, in such case f(T) would preserve all information about possible values of f(S)2. Unfortunately,
as explained in lmielinski 641 and in lmielinski 83) this will be too difficult to achieve. Fortunately, it is

also unnecessary; we can require less as explained in lmielinsk~ 84] and later reformulated more

elegantly in Lipski Ma) . By a True set of the set of worlds X we mean r~X, i.e the set of all tuples which

belong to all worlds in X. Here are our modified requirements for a faithful extension of relational algebra
operations on tables T:

(1) Preservation of True Sets: For any relational algebra expression f built from operations from fl:

nrep(f(T)) = nf(rep(T)): Ic. the table f(T) should preserve information about all tuples which for sure

belong to f(S”) according to the table rep(T).

(2) Recursiveness f(g(T)) = (fg)(T)

This states that we should preserve the important feature of relational algebra - the intermediate results

of subexpressions of a given expressions can be stored as “views” which~ can be later used to the

computation of the full expressions without having to start from scratch.

The postulates (1) and (2) are truly minimal acceptable requirements for any reasonable “extension” of

relational algebra. They are still pretty restrictive - i.e. extensions of some operations over some types of

tables will be impossible. Intuitively: the expressive power of a given type of a table must be sufficient to

represent the results of all relational algebra expressions from the set of expressions under consideration.

In many cases, in order to correctly extend a given set of operations on a given set of tables it is

necessary to “enrich” the table itself; i.e. add to its expressive power.

For example it is demonstrated in Imielinski 84] that it we admit only one null value (unmarked null)
into the table then it may become impossible to extend even a simple class of operations consisting of

projection and join over the tables. This is illustrated by the following example:

2accocding to the original table the real state of the world -~ us one of possible worlds in rep(T), therefore the “real state of the

answer f(S) is one of the possible worlds in f(rep(T))

31

Example

Let I =

ABC

a © C

and let ~= ~ABcfl X ~BC(T)

Evaluating this expression in the standard algebraic way, by first evaluating projections and then joining
the resulting tables, initially yields:

U = ~ABcfl =

BC

W = ICBC(T) =

AB

a ©

There is no way now, however, to recognize that the two occurrences of a null value “~r (in U and W

respectively) represent the same value (in general two occurrences of nulls will not match since it is

certainly possible that they represent different values). Therefore the join of these two tables will be the

empty set, not the original table T, as expected.

This problem can be remedied by introducing marked nulls, as in V-tables. However, V-tables cannot

support relational operations built from projection, join and selection admitting negative selection

conditions. An example similar to the one showed above is given in lmielinski 84). If the selection

conditions do not use negation, then the following straightforward extension of relational operations
satisfies (1) and (2):

All operations treat nulls as pairwise different constants.

For example, assume f(T) =~X a(BC)V(CC)(~tBC(T))

is evaluated over the table T

ABC

x y C

abc

a’ b’ c’

a y z

x d d

We get

~AB(T) = {xy, ab, a’b’, ay, xd}

32

~~BC(T) = (yc, bc, b’c’, yz, dd}

a(B=C)V(c,C)(ICBC(T)) = (yc, bc, dd)

nAB(T) X a(B.C)V(C...C)(JtBC(T))=(xYC abc, xdd}

f(T) = (xc, ac, xd}

This naive extension will not support correctly (in the sense of (1) and (2)) the relational operations with

arbitrary selection conditions (inequalities are not handled properly, since all null values are always
assumed different from any domain constants).

It has been shown in (lmielinski 84] that to fully support all major relational algebra operations (i.e

project, join, select, union) one has to extend the syntax of the tables further; one such extension, in the

form of so called conditional tables has been defined there. Conditional tables can represent arbitrary

disjunctive information. They are V-tables with an additional column called “COND” which specifies

conditions built as logical combinations of equality descriptors of the form (x=a) and (x=y). For any tuple t

its condition is denoted by t(COND]. Intuitively ,
a tuple v(t) belongs to v(T) if the condition of this tuple is

true after substituting v(x) for x in COND]. Conditional tables can represent arbitrary disjunctions. The

correct extension of relational algebra to conditional tables is provided in lmielinski 84]. All relational

operations are correctly supported. They are defined on a tuple by tuple basis: Selection, for any tuple t

and any selection condition E generates a condition E(t) by substituting attribute names by variables in t.

Then the new tuple s is formed such that OND]=tCOND]AE(t) and A]=t(A] for all other attributes.

Cartesian product of two tuples t and s is defined as a new tuple w such that

COND]=t(CONDAsCOND] and other fields of w are simply a concatenation of fields of t and S. Join is

defined through cartesian product, finally selection and projection and union are defined as on relations

without null values.

Defining new types of tables to represent Incomplete informatIon and extending relational algebra to

them has been a pretty active research area in lat couple of years. Unfortunately, many authors extend

relational operations in an arbitrary way totally ignoring the above semantical considerations (i.e
postulates like (1) and (2)). The following example illustrates both the common mistake and the

application of the criterion:

Example
Let us consider the set of tables admitting, in addition to domain constants, also finite sets as entries.

The occurrence of a set A=(a1,...a~} is interpreted disjunctively - at least one of the values in A is the

“real” value3. Such sets are can be called OR-sets and naturally correspond to restricted nulls; for

instance a tuple <John, (Manager, Supervisor, Director]> in a table Employee, Position] means that

John is a manager or a supervisor or a director. Given a table T with OR-sets the representation function

rep(T) is defined in a straightforward way following described above semantics of OR-sets. Each possible
world in rep(T) is defined by replacing each OR-set with its member values.

To process queries we must extend relational algebra operations to these tables. Let us concentrate on

just two operations - projection and join.

First, we are going to show that the straightforward way of extending join operation fails: Let us define

join by extending “equality” over OR-sets:

An OR-set is not “equal” to any other OR-set nor to any domain constant

The rationale for this definition is that given an OR-set X={a1,...a~} and an individual constant, say b

(possibly an element of X), it is always possible that “the real” unknown value for which X stands will be

3This is contrary to the sets interpreted conjunctively, as in nested relations

33

different from “b”. Similar rationale justifies the case of inequality two OR-sets. The following example

illustrates that such an extension will not preserve “True Sets” (the first part of (1) and (2) and therefore

will loose information.

Let

flAB
a {b1,b2,b3}

and let

s=

BC

b1 c

c

b3 c

Let f = ~Ac(~ x S), where x stands for natural join. If we extend join according to the above rule then

f(R.S) will result in an empty table. However <ac> E r-~f(rep(R), rep(S)). Therefore, this extension of join
will not be complete with respect to the underlying semantics and requirement (1) fails. We can also show

that the proposed extension does not satisfy the above reQuirements. Indeed, let R

A~ B

a {b11b3} II c~1

and let f= IVAC(7rA5(R) x ~Bc(R)). If projection is extended naturally over tables with OR-sets

(essentially the same as projection on relations) and join is extended the way we described before then

the f(R) = 0, while we have to have f(R) = (<a,c>) (this is a true set of f(rep(R)). Indeed, after computing
two projections join will not unify two OR-sets4. Notice that the proposed operation of join would be

correct if our set of operations contained only join and no other operations. It is the interaction of join with

projection which causes problems. The common mistake in extending relational algebra is to consider

correctness of each operation separately ignoring their interaction with other operations. These

interactions are captured by the recursiveness requirement.

Clearly join cannot be defined “locally” (at the level of individual tuples); in this example four tuples
contributed to <ac> in the result, this number could be arbitrary large. What is therefore a correct and

complete extension of projection and join which would preserve true sets and be recursive, i.e. satisfy
both our requirements? Suprisingly, the answer is negative - there is no such extension; the expressive

power of tables with OR-sets is not sufficient to support both projection and join. In order to demonstrate

this informally we construct two tables A and S with OR-sets and a relational algebra expression f such

that f(T) would have to represent “arbitrary” disjunctions. Let R, S and U be the following relations:

41n order to fix this we would have to ~ntroduoe marked nulls. This was done in lmielinski 84J in the con~pt ot V-tables

34

QAB II S= Bd~
H a {b1,b2}1j b1 c1 II

b2~

U= B C D

b1 c~ d

b, c2 d

In order to represent rep(t~) x rep(S) by some table T we would have to represent a disjunction of the

form “<a,b1,c1> or <a.b2,c2> in T. Indeed, otherwise we could not correctly perform a project-join

expression of hypothetical table T with U (i.e ,tAD(T x U)) = (ca,d>}. Unfortunately the disjunction <a,

b1,c1> or <a, b2, C2> cannot be represented by any table with OR-sets. In order to represent such

disjunction we would have to extend the notion of a table with OR-sets into a table with “OR-tuplesTM of the

form <a, (<b1c1>, <b2, c2>}>

The above example illustrates the usefulness of our criterion in checking whether it Is possible at all to

extend certain operations to certain types of tables. One has to be very careful in dealing with any

complex objects in tables (a null value can be treated as the special case of a complex objects) since

even such simple extension as the one shown here leads to problems with such simple operations as

projection and join. Additionally, our criterion gives an indication how a given type of a table has to be

extended in order to support a given set of operations.

As we have seen, the model theoretic approach has its limitations. We now present the proof theoretic

approach.

2.2. Proof TheoretIc Approach
In the proof theoretic approach, the database is treated as a set of first order formulas. For example

relational database corresponds to a conjunction atomic formulas built from predicates corresponding to

relations in the database. For example a table

Student Course

Joe 313

Steve 211

Will be represented as a conjunction of two formulas

R(Joe, 313) and R(Steve, 211).

However, this simple transformation is not sufficient to correctly represent negative information. Indeed,

35

from the table R we could conclude that Joe is not taking 211, while the conjunction of two formulas

above does not imply it. For the correct representation of negation one needs additional formulas

expressing the so called Closed World Assumption Reiter 78]. It essentially says that if some ~tomic

formula cannot be derived from the database then it is false. In the case of relational databases CWA

means that if a tuple is not present in the database then its relationship does not hold in a “real” state of

the world. In order to express it formally in logic, Reiter introduced a notion of extended relational theory,
where new axioms logically “reconstruct” closed world assumption for relational databases. The

interested reader is referred to Reiter 78]. In Reiter 85] Reiter extends CWA to incorporate null values.

He also presents the algorithm to process queries in the presence of nulls. Interestingly, his algorithm
and naive evaluation from lmielinski 84] are equivalent; the former is top-down though, while the latter is

bottom-up. Both methods cannot handle arbitrary selection conditions - this can be incorporated but at

additional computational cost. The advantage of proof theoretic approach is that it is more general than a

model theoretic approach. In particular, it handles deductive rules in a natural way, as we show in the

next section.

3. Incomplete Deductive Databases
A deductive database is a database which in addition to the tuples (or records) in relations also

contains rules. The rules are typically referred to as the “database intention”. One of the main advantages
of the proof theoretic approach Is that it treats uniformly both rules and tuples of relations, while the model

theoretic approach needs to treat them separately. Typical rules considered in DATALOG have only one
consequent are called Horn clauses. Rules occurring in deductive databases with incomplete information

are more complex - they have either disjunctive consequences or have existentially quantified variables in

consequents:

Example
Let us consider a university database and the following rule: “Every student before taking a course has

to take all its prerequisities “ This rule can be expressed in the following way:

Take(x,y,t)APrerequisite(u,y)—3.~Take(x,u.v)ABefore(v,t)

where Take(x,y,t) stands for “x” taking a course “y” at a semester “t”.

Note, that any temporal statement of the form “next week”, “last month” etc results in a rule which

introduces indefinite data (since it is not known exactly about which point of time in the “next week” or

“last month” we are talking).

Example
Many diagnostic rules can be viewed as deductive rules either with disjunctive conclusions or with

existential quantification. For instance.

Have(x,Headache) —+ Have(x, influenza) v Have(x, brain tumor) v...

Recursive rules with disjunctions in the consequent occur in a natural way too. A rule stating that a

child inherits a blood group from either his father or his mother is a good example.

U

Formally rules in deductive databases have a form of function-free clauses:

(1)PlA...Pk~RlV...Rq5

5lnthidual variables and quantifiers are not marked here.

36

where k�O and q>O. A body of a rule is the set of all literals occurring on the left hand side of the

implication in (1). Any literal occurring on the right hand side of (1) is called a consequent literal.

Depending on the quantification, we classify these rules as follows:

Definite rules The rule (1) is called definite if q=i and all quantifiers in (1) are universal. These are

DATALOG (PROLOG without function symbols) Bancihlon 86] rules.

Indefinite rules The rule (I) is called indefinite if q>1 and all quantifiers in (1) are universal.

Skolem rules These rules have not been considered in Gallaire 84]. They are Horn rules (q=l) and

allow existential quantification with the additional restriction that all body variables in (1) (i.e. variables

which appear in the body of (1)) must be universally quantified. Such rules are called skolem rules

because after skolemization skolem functions Loveland 79] appear in the consequent literals.

The indefinite and Skolem rules appear in deductive databases with incomplete information.

4. Complexity
There is a severe price to be paid for allowing incomplete information in the database. This price is the

complexity of query processing. It is well known that all relational queries have polynomial data

complexity (i.e. each query can be evaluated in time which is polynomial in terms of the database size). it

is no longer the case, when the incomplete data is allowed:

Example
The graph 3-colorability problem is, given a graph, to determine whether its vertices can be colored in 3

different colors in such a way that no two vertices connected by an edge are colored by the same color.

This problem is computationally very hard - it belongs to the class of NP-complete problems Garey 79],
which are most likely exponential. We show here that 3-colorability problem can be encoded as the

following query answering problem in the disjunctive database:

Let V represent a set of nodes of a graph G and let R be a binary relation (a subset of V X V)
representing edges of G. Let H be a table with OR-objects constructed as follows:

H =flcN, (ci ,c2,c3}>: N in V} where ci, c2, c3 stand for colors.

Here (ci ,c2,c3} stand for an OR-object, that is the tuple <N,(cl, c2, c3}> is interpreted as a disjunction
of tuples <Nd >v<N,c2>v<N,c3>.

Let r and h be predicates corresponding to relations A and H respectively. Let 0 be the following query:

0 =~ r(x,y)Ah(x,z)Ah(y,z)

It is easy to see that this query is true in the database D=<R,H> (i.e is true in each model M in rep(D))
if G is NOT 3 Colorable. Therefore evaluating 0 in D is CoNP-complete6.

As a consequence, every correct algebraic evaluation of some simple “project-join queries will be

prohibitively expensive (unless CoNP=P). In particular, there is no way to evaluate 0 on the database in

the “tuple by tuple” basis (i.e the way the standard relational operations are defined on relations, and the

way selection is defined in this paper). Indeed, performing an “independent” test for each tuple would lead
to a PTIME query processing procedure.

This has very negative consequences for any “bottom-up” proof procedure for deductive rules in

indefinite databases. Each bottom-up application (which is essentially a project-join mapping) could

6Hence, most likely, exponential

37

potentially require solving a C0NP-complete problem! Effectively, the only solution is to generate, in each

step of a bottom-up procedure all possible disjunctions implied by OR-tables. This solution however is

totally impractical. Generally, bottom-up techniques for deductive databases with disjunctive information

seem not to present a reasonable alternative to top-down approaches (as it is the case for DATALOG

rules where two approaches are quite comparable).

The situations gets much worse when we allow existential quantification into the set of rules as well as

recursive rules. As demonstrated in lmielinski 87] there is no effective algorithm with guaranteed
termination to process queries in such databases (i.e. the problem is undecidable). In other words the

problem is as difficult as evaluation of arbitrary PROLOG programs. However, if existential quantification
is “out or recursion (i.e. there are no recursive or mutually recursive rules with existential quantifiers) then

query processing can still be done in PTIME. Indefinite deductive rules, even without recursion, cause

complexity of query processing to increase to CoNP-complete. The paper lmielinski 87] contains a

complete set of results about complexity of query processing in the presence of incomplete data. It turns

out lmielinski 89] that for simple databases with disjunctive information called databases with OR-objects
(when disjunctions occur only on one column of a relation) we can characterize “difficult” queries
completely (i.e those which lead to C0NP-complete query evaluation). A simple algorithm for doing this is

provided there - it allows to detect expensive queries at compile time.

5. Conclusions
We gave a short overview of problems related to the representation and processing of incomplete

information in relational and deductive databases. It was demonstrated that allowing more

incompleteness in the database very quickly leads to a sharp increase in terms of complexity of query
processing. We also showed the inherent limits of the bottom-up algebraic approach to query processing.
These limits are induced by a correctness criterion, which requires extensions of relational operations to

preserve the semantics of tables.

More work has to be done along the lines of lmielinski 89] where the concept of complexity tailored

design is proposed. In this approach we only allow incomplete data into the database if it does not

increase complexity of a selected set of important queries (views). It is clear, that considering the

complexities involved when incomplete data is present, we need more control over the type of Incomplete
information which is allowed in the database. Indeed, the value of information has to be strictly related to

the cost of its processing. lmielinski 89] is a first step in this direction. Another interesting direction is the

connection of logical incompleteness of data discussed here with fuzzy and probabilistic databases.

Finally, the work in artificial intelligence such as Levesque 85] where epistemic notions of knowledge and

belief are discussed has still to find its way into the database community (Lipski’s early paper (Upski 84bJ,
in fact preceding Levesque 85] is a step in this direction).

38

References

Bancihlon 86) Bancihlon,F, Ramakrishnan.

An Amatour Introduction to Recursive Queries.

In Proceedings of ACM SIGMOD. 1986.

Codd 701 Codd, E.F.

A Relational Model of Data for Large Shared Data Banks.

CACM 13(6):377-387, June, 1970.

Codd 75] Codd. E. F.

Understanding Relations (installment #7).
FDT Bulletin of ACM SIGMOD 7(3-4):23-28, 1975.

Gallaire 84] Gallaire H., Minker,J.,Nicolas,J.

Logic and Databases - A Deductive Approach.
ACM Computing Surveys :153-185, 1984.

Garey 79] Garey M.R. and Johnson, D.S.

Computers and Intractability: A Guide to the theory of NP-completness.
W.H.Freeman and Go, 1979.

Grant 861 Grant,J.,Minker.J.

Answenng Queries in Indefinite Databases and the Null Value Problem.

Advances in Computing Research, 1986.

lmielinski 83) lmielinski, T.

On Algebraic Query Processing in Logical Databases.
In Gallaire H., Minker, J., Nicolas, J. M. (editor), Advances in Database Theory II.

Academic Press, 1983.

lmielinski 84] Imielinski, T.
, Lipski, W.

Incomplete Information in Relational Databases.

JACM31(4):761-791, October, 1984.

lmielinski 87] T.Imielinski.

Incomplete Deductive Databases.

November, 1987.

Imielinski 89] Imielinski,T. and K. Vadaparty.
Complexity of Query Processing in Databases with OR-objects.
In Proceedings of the ACM Symposium on Principles of Database Systems. 1989.

Levesque 85] Levesque,H.
Computer and Thought lecture at IJCAI 85.

1985.

Lipski 84a] Lipski, W.
On Relational Algebra with Marked Nulls.

In ACM PODS. Waterloo, Canada, 1984.

Lipski 84b] Lipski,W.
Algebra on Tables with Null Values.

In ACM PODS Symposium. 1984.

Loveland 79] Loveland,D.
Automated Theorem Proving.
Springer Verlag, 1979.

39

Reiter 78) Reiter, R.

On dosed world databases.

Logic and databases.

Plenum Press, 1978.

Reiter 85) Reiter,R.
A sound and sometimes complete query evaluation algorithm for relational databases

with null values.

JACM, 1985.

Vassiliou 79] Vassiliou, Y.

Null values in database management - a denotational semantics approach.
In ACM SIGMOD. 1979.

40

Approximate Retrieval: A Comparison of
Information Retrieval and Database Management Systems

C. M. Eastman

Department of Computer Science

University of South Carolina

Columbia, South Carolina 29208

Abstract

An information retrieval system supports the storage and retrieval of documents and
other textual data. Retrieving documents by content usually involves some form of

approximate retrieval. It is reasonable to expect that some of the work in information
retrieval might be useful in designing database systems to support approximate retrieval.
Some of the similarities and differences in approximate retrieval in these two kinds of

system are discussed; we consider issues of evaluation, matching, interaction, and clus

tering.

Information Retrieval Systems

The primary goal of an information retrieval system is to manage information which
is in the form of textual data, often documents. Indexing is a problem of central concern

in information retrieval; it involves the description of the content of the document

through choice of a set of index terms. Indexing can be done manually or automatically.
It does not appear to be possible to devise a perfect indexing scheme. Requests which
are based on content involve the specification of a possibly complex topic in either
natural language or a formal query language. The system then selects documents which
match the request.

Documents may have formatted data associated with them as well, but the major
problems arise from the use of textual data. An information retrieval system is generally
used to handle one set of documents. The document descriptions may be complex, but all
documents are described in the same way. Thus there is only one record type being
managed by the system. This homogeneity is an important difference from database

management systems, which must manage a variety of record types and support combi
nations of these record types.

There is growing interest these days in systems which can manage both formatted
and textual data (and possibly other kinds of data as well). The capabilities of both infor
mation retrieval systems and database management systems are being extended. And the

line between formatted and unformatted data is fuzzy at best (Eastman, 1988).

There are many books which provide an introduction to information retrieval sys
tems. Three which are appropriate for computer scientists are Salton and McGill (1983),
Salton (1989), and van Rijsbergen (1979). Two journals in which more recent work can

be found are Journal of the American Society for Information Science and Information
Processing and Management. In addition, the Annual Review ofInformation Science and

Technology contains review articles.

41

Evaluation in Information Retrieval Systems

It is generally accepted that retrieval based on content is imperfect. Systems are

unable to retrieve all appropriate items, and some of the items they do retrieve turn Out

not to be of interest. It is thus necessary to evaluate the effectiveness of systems as well as

their efficiency. The basic concept underlying the evaluation of information retrieval sys
tems is that of relevance. A document is relevant to a request if it is on the appropriate
topic. Even though relevance is hard to define formally, it has been a useful concept in
evaluation. Saracevic (1975) provides a broad discussion of relevance.

Two measures are commonly used in evaluating the effectiveness of information
retrieval systems. Recall is the fraction of relevant documents which are retrieved. Pre

cision is the fraction of retrieved documents which are relevant. A number of other

measures have been developed, but recall and precision continue to be most widely used.
An excellent book dealing with experimentation and evaluation in information retrieval
is Sparck Jones (1981).

Evaluation in Approximate Database Retrieval

Evaluation efforts in the database field have focussed on questions of efficiency
rather than questions of effectiveness. Since the items to be retrieved can be clearly
identified, effectiveness is not a problem. However, the use of approximate retrieval in

databases may present such problems. Identifying attribute values on a numeric scale
which are close to a specified value is straightforward. However, identifying tuples
which are close to other tuples involves multiple attributes. The selections and the rank

ing depend of the distance metric and weights used. Some of the tuples selected may
meet the user’s requirements better than others. It might thus be appropriate to evaluate

the effectiveness of the system using measures similar to those used for information

retrieval systems.

Matching in Information Retrieval

The approach used to match documents to queries depends on the underlying model
of information retrieval used. In the boolean model, queries are expressed as boolean

expressions; documents which match the boolean expression are retrieved. In the vector

model, both queries and documents are described by vectors of terms, which may be

binary or weighted. If weights are used, they are usually determined automatically rather

than being supplied by the users. A distance or similarity measure is used to select docu

ments which closely match a given query. Documents can be easily ranked in the vector

model, and some techniques have been developed for ranking documents in boolean sys
tems.

A large number of dissimilarity and similarity measures have been examined for

possible use in information retrieval systems. These are often, but not always, distance

metrics. The ones most commonly used in experimental work have been the Jaccard and

the cosine measures. Several fuzzy measures have been proposed, but they have not

been implemented in experimental systems. The overall conclusion from studies compar

ing different similarity measures in information retrieval is that, while there are some

differences in performance, any reasonable measure will work. (A reasonable measure

may be regarded as one in which the similarity increases monotonically as the number of

matching concepts increases.)

42

Matching in Approximate Database Retrieval

Approaches comparable to both the boolean and the vector models have been used

in approximate database retrieval. However, the attributes used in a database schema are

generally chosen from several different domains. In addition, it is necessary to consider

not only the similarity between two attribute values but also the similarity between two

tuples The situation is thus more complex than in information retrieval systems.

A number of similarity measures have been proposed for use in approximate data

base retrieval. These include fuzzy measures, conventional distance metrics, and tabular

measures. A system may support more than one measure. The effectiveness of such

measures can be evaluated using approaches similar to those used in information

retrieval. However, I would expect that the specific choice of measure would make little

difference. It might be more productive to compare the efficiency of possible measures.

Interactions in Information Retrieval Systems

It is very difficult to construct a satisfactory query to an information retrieval system
the first time. Therefore, most information retrieval systems provide support for iterative

specification of queries. The query modifications may be done by the user, by the sys

tem, or by both.

Boolean systems generally provide support for query modification by automatically
numbering sets of retrieved documents. In addition, the sizes of the sets are given. These

set numbers can then be combined in later statements in order to find unions or intersec

tions of the sets. This ability means that users do not need to construct complex queries
in one step. They can revise the query in order to get a better description of the topic and

to adjust the number of retrieved items.

Relevance feedback can be used for automatic query modification. The system
presents the current responses to the user, who then indicates which of them are relevant.

The system uses these responses to modify the query, usually by increasing the weight
for terms found in relevant documents. Additional documents can then be retrieved. It

has been found that approximately three cycles of feedback are sufficient. Evaluating the

effectiveness of relevance feedback presents serious difficulties. One impact of

relevance feedback is to improve the similarities of relevant documents which have

already been retrieved. It is generally accepted that evaluation should be based on the

retrieval of newly retrieved relevant documents rather than improved ranking of already
retrieved items; several approaches have been developed for this purpose.

Interactions in Approximate Database Retrieval

The forms of interaction described for information retrieval systems can be readily
supported because it is assumed that all documents stored in the system are represented
in the same way. It is thus easy to modify sets of retrieved documents, because all sets

are compatible. In a database management system, the database will usually contain

multiple incompatible relation types. A set of tuples selected from one relation can not

be merged with another set of tuples selected from an incompatible relation.

43

In many cases approximate database retrieval may involve only one relation, which

might be a base relation or a view. In this situation, the support of automatic set
definition and the ability to perform set operations might be useful. However, it would
be hard to extend the kinds of approaches used for set manipulation in information
retrieval systems to a more general database context. The markings defined by van de
Riet et al. (1981) allow the management of sets of tuples; however, their use would be
much more complex than set management in information retrieval.

In relevance feedback the modifications to the query are made by the system rather
than by the user. If it can be successfully implemented in a database context, relevance
feedback would be a desirable feature in a database supporting approximate retrieval on

multiple attributes. The retrieval by reformulation supported in RABBIT is an example
of a form of feedback in a database (Williams, 1984). However, in RABBIT the user,
rather than the system, makes the changes in the query. It appears that further work in
this area would be desirable. The effectiveness of such retrieval would need to be
evaluated.

Clustering in Information Retrieval Systems

Techniques for clustering documents and index terms have been extensively investi

gated. The goals include improvements in both efficiency and effectiveness. It is

hypothesized that documents which are similar to relevant documents are likely also to

be relevant. Many different clustering algorithms have been investigated. Experiments
have shown improvements in efficiency and effectiveness using clustering; however, the

improvements are not dramatic.

Clustering in Database Management Systems

In both information retrieval and database management systems, clustering is used
to group together similar items. However, the usage in the database area is narrower, the
term clustering is generally used to refer to the physical grouping of records. It is
assumed that records which are likely to be retrieved together should be stored together if

possible. The clustering techniques investigated in information retrieval (and other areas)
usually involve measures of similarity and dissimilarity similar to those used in matching
documents and queries in the vector model. Such clustering techniques might well be

useful in approximate database retrieval. There has been little work in the database area

using such clustering; one approach is described by Hartzband, Holly and Maryanski
(1987) and Hartzband and Holly (1988).

Summary

Research results in information retrieval suggest some potentially productive
research areas in approximate database retrieval. The evaluation of effectiveness of

approximate retrieval could make it easier to compare alternative approaches. Investiga
tion of interactions could lead to improved interfaces. Another area of investigation
involves systems combining both textual and formatted data, in which the techniques of

approximate retrieval for information retrieval and database management systems could

be compared.

44

Another potential area of investigation is the study of different similarity measures

and different clustering algorithms. These questions have been extensively investigated
in the area of information retrieval. Although some approaches are better than others, the
results are not generally conclusive. This is true in a number of other fields in which
multidimensional data analysis is used. Results in the approximate database area would

probably be similarly nonconclusive.

Of course, there are problems in approximate database retrieval for which work in

information retrieval systems provides no guidance. For example, it is necessary to han
dle multiple domains and multiple relation types in a database system. This problem
does not arise in an information retrieval system.

References

C. M. Eastman, “Formatted and unformatted character data types,” Technical Report TR
89002, Department of Computer Science, University of South Carolina, June 1988.

D. Hartzband, L. Holly, and F. Maryanski, “The provision of induction in data model

systems. I. Analogy,” International Journal of Approximate Reasoning, Vol. 1, No.
1, January 1987, pp 5-22.

D. Hartzband and L. Holly, “The provision of induction in data model systems. II. Sym
metric Comparison,” International Journal of Approximate Reasoning, Vol. 2, No.

1, January 1988, pp 1-14.

G. Salton, Automatic Text Processing: The Transformation and Analysis, and Retrieval

ofInformation by Computer, Addison- Wesley, Reading, Massachusetts, 1989.

G. Salton and M. McGill, Introduction to Modern Information Retrieval, McGraw-Hill,
New York, 1983.

T. Saracevic, “Relevance: A review of a framework for the thinking on the notion in

information science,” Journal of the American Society for Information Science, Vol.

26, 1975, pp 32 1-343.

Karen Sparck Jones, ed., Information Retrieval Experiment, Butterworths, London, 1981.

Reind P. van de Riet, Anthony I. Wasserman, Martin L. Kersten, and Wiebren de Jonge,
“High-level programming features for improving the efficiency of a relational data

base system,” ACM Transactions on Database Systems, Vol. 6, No. 3, September
1981, pp 464-485.

C. J. van Rijsbergen, Information Retrieval, Second Edition, Butterworths, London,
1979.

M. D. Williams, “What makes RABBIT run?,” International Journal of Man-Machine
Studies, Vol. 21. No. 4, October 1984, pp 333-352.

45

From Browsing To Querying *

Alessandro D’Atri ~

Dip. Ingegneria Elettrica, Università dell’Aquila

Laura Tarantino

Dip. Informatica e Sistemistica, Università di Roma “La Sapienza”

Abstract

Three styles of interaction with databases: browsing, connection under logical independence,
and generalization are discussed by giving their requirements, characteristics and limitations.

These styles are suitable for users that have vague knowledge about their goals, the data model,
the database, and the database system. A combination of these techniques can be used in an

integrated environment wherein a naive user, starting from browsing, can gradually specify his

goals more and more precisely, possibly arriving at complex formal query.

1 Introduction

Two distinct models of the real world exist in a database environment: the one in the mind of the

user and the one stored in the system. Thus, when talking about imprecision in databases, we must

distinguish between user’s imprecise information (i.e., the user has only vague knowledge on the

way the system operates and/or the information it handles) and 8ystem ‘s imprecise information

(i.e., the system contains only vague description of the world). Even if in the most general case these

models may be disjoint and may correspond to distinct (and possibly conificting) representations
of reality, for the sake of simplicity we assume here that the user’s model is a subset of the system’s

model, which is an approximation of reality. Hence, in both cases of imprecision there is a problem
of information exchange necessary to make these model as closer as possible; the first discrepancy is

covered by database querying, the second one by database evolution. Even if some formalisms and

techniques may be used in both situations, the user-system interaction problem,which is considered

in this paper, is more complex, due to the human-computer interaction requirements.

Imprecision in the user’s model may be classified as follows 12]:

• incomplete knowledge of the data model,

• imprecise information on the database schema and/or its instance,

Work partially supported by the Commission of the European Communities under the ESPRiT project P2424

“KIWIS”

tpartially supported by the MPI under the project on “Formal Methodologies and Tools for Advanced Databases”.

46

• vagueness of user goals,

• incomplete knowledge about the interaction tools (query language and/or interaction primi

tives).

Traditional relational database systems deal mainly with the second kind of imprecision. In

fact, schema information is stored in a separate set of system relations (data dictionary) that can

be manipulated like other relations. This leads to distinct interaction environments for schemes and

instances and to an interaction process that consists of two sequential phases: schema understanding
and database querying. On the other hand, little effort has been given to improve the schema

understanding phase in traditional systems, since the size of the schema is very small relative to

the size of the instances (strongly typed data models) and instances are supposed to be the major

unknown portion of the database. This approach is adequate as long as the user is regular and

the schema is small enough to assume the user can easily learn the database structure (possibly by

simply browsing in the data dictionary). The approach is weak and inflexible when moving from

traditional databases to semantically richer systems (e.g., knowledge bases) without strong data

typing and where the scl~emes are much larger.

The following general classification can be adopted for interaction techniques that take care of

the above kinds of imprecision:

• browsing, when an observation point is moved in the database;

• connection under logical independence, that maintains distinct user’s and system’s models,

taking care of the goal interpretation in terms of queries by a connective approach;

• generalization, based on abstractions, adjustments and weakening of previous answers or

examples.

This paper discusses requirements, objectives and limitations of these techniques, all of which

address distinct aspects of the imprecision in the mind of the user.

2 Browsing

Browsing is essentially a viewing technique, aimed at gaining knowledge about the database, rather

than a querying technique, and it can handle in a homogeneous way both schemes and instances,

without making any. distinction between them. The main hypothesis is that the user has no prede

fined goal and little knowledge about the database and the interaction techniques. The user begins

by examining a concept and its neighborhood (adjacent concepts can be considered as a first level of

explanation of the examined concept); then a new element is selected from this neighborhood by the

user, to be the current one, and its neighborhood is shown; this process continues iteratively. Thus

an incremental (step-by-step) enhancement of user knowledge is obtained, by exploring concepts

that are logically adjacent.

A browsing environment requires the definition and the management of:

• An adjacency structure: if the data model is network-like, adjacency is derived from the

network itself; if it is table-like, tuple and attribute adjacency may be considered (notice that

47

in this case it may be necessary to define an ordering on tuples and/or attributes).

• One or more visible portions of the database (points of view), which are presented to the user

at any point in the browsing session by a (usually graphical) presentation formalism.

• Navigation primitives, that allow the user to establish a starting point in his interaction and

to change the point of view in the adjacency structure.

Major limits which are an immediate consequence of the browsing paradigm are:

• The exploration process is a “short-sighted” navigation, since only concepts adjacent to the

current one can be reached; hence with large and complex structures, relevant portions of the

structure may remain unexplored.

• The user may get confused because of the extremely detailed information shown: no summary

is possible (due to the lack of distinction between schema and instances), and no shortcuts are

possible to arrive at a more distantly related concept without navigating along all intermediate

concepts~

• Most relational database browsers (e.g., 6, 17]) have only limited exploration capabilities, as

users are confined to a single relation at a time, and crossing relation boundaries is very hard.

• After a while the step-by-step process becomes tedious, unless the system provides some tools

for “automating” the process.

• The browsing environment and the querying environment are distinct, thus separating the

learning and the querying activities.

Some browsers described in the literature try to overcome these limitations by various enhance

ments. For example:

• Graphical interaction primitives (e.g., direct manipulation techniques) and graphical presen

tation techniques may be used to speed up and to facilitate the formulation of navigation
commands 5, 7, 181.

• Neighborhoods could be organized in suitable homogeneous subsets and distinct ordering
criteria within each subset could be provided to ease their exploration 16].

• Simple ad-hoc data models have been developed, suitable for navigational browsing 11]; other

proposals use network views of relational databases, which are more immediate to users and

facilitate inter-relation browsing 12].

• The system may allow the user to select the starting point (e.g., by providing access by value

12]); if browsing history is maintained, then users are able to retract their steps.

• Tools should be provided to store browsing results 16].

-3 Connection Under Logical Independence

This approach is oriented to users with predefined goals, but with only partial knowledge about the

database structure and its content; in particular they can express a goal as a set of independent

48

references to elementary information, without knowing how these references are related in the

database. Hence, goals are translated by the system into querze8, first by providing an interpretation
of the goal (e.g., in the case of a declarative query language, an assertion expressing the query) and

then by presenting the answer (i.e., the database portion that agrees with this assertion). if the

logical independence approach is followed by the system, both the interpretation and the answering
strategies are encapsulated in the system which shows the user only the information strictly related

to the disambiguation and answer presentation processes.

For example, a universal relation interface (e.g., 8, 9, 10]) allows the user to formulate a goal by

giving a set of attribute names and data values, without being aware of the logical aggregation of

attributes into relation schemes. The interpretation process translates this partial query in terms

of the underlying database structure by deciding which relations are to be joined to obtain the

answer.

In semantically richer data models (e.g., semantic networks) logical independence may be pro

vided by allowing the user to formulate goals in terms of a set of (complex or elementary) object

names, without knowing how such objects are composed, to what conceptual level they belong
and how they are related 2]. The interpretation process is devoted to identifying a set of object

interrelationships that provides the query intention, and the database portion matching it.

Hence, by formulating goals in terms of abstract concepts, logical independence frees the user

from the “logical navigation” through the database, in the same way the relational model free users

from the “physical navigation”; the system takes care of the navigation through the schema in order

to solve the goal interpretation problem (i.e., the translation of the partially specified query into

a complete one by identifying the user intention) in a first phase, and of the navigation through
instances during the subsequent answering phase.

Main assumptions and implications in this approach are:

• A simplified user model of the world is needed, that is used for specifying goals and for

providing logical independence from the system’s model of the world. We may in general

suppose that such a simplified model is a destructurization or a summary of the system model

(e.g., users of universal relation interfaces see the entire database as a single fictitious relation).
Notice that in this model more importance may be given to the fact that a connection exists

between two objects, rather than to the exact description of this connection.

• The system handles the goal on the basis of its (richer) data model, according to a connectivity

approach. In fact, a possible query interpretation (and its corresponding answer) is obtained

by connecting together the concepts involved in the goal within the database schema (and the

correspondent database instance). More than one connection in the schema may correspond
to the set of concepts specifying the goal, and hence more than one answer may be obtained.

This problem of ambiguity must be addressed.

Major limits of this approach are:

• Goals can only be specified in a “context-free” way. This follows from the hypothesis that

the model of the world the user has in mind is completely distinct from the system model, in

terms of the abstraction primitives that are reflected in the connection structure. Hence, the

system is not able to handle a partially structured goal, which may contain some structural

49

information which could ease the disambiguation process.

• A too rigid and static separation between the user and the system models, which does not

take care of the user’s learning process that reconciles the two models during the interaction.

• The approach is strictly decomposed in two sequential phases, not allowing the user to influ

ence the disambiguation process.

• The further apart the user and the system models, the more difficult it is to interpret the

goal. This may give the user the feeling that the answer is not the requested one, and the

need arises for techniques that explain the interpretation and ask for confirmation.

Most proposals in the literature deal with ambiguity only in the relational model, and can be

classified as follows:

• A static approach, (system-selected interpretation); some methods present the user the union

and/or the intersection of all answers corresponding to all possible query interpretation (thus
defining a maximal-minimal range among interpretations) 9]. Conversely, other proposals are

based on minimization criteria: the system tries to find an interpretation (i.e., a connection in

the schema) involving the minimum number of auxiliary objects (e.g., to minimize the number

of relation schemes needed, or the number of edges in the semantic network) 1, 2, 191.

• A dynamic approach, (user-selected interpretation); it is based on the assumption that several

meaningful interpretations of the user query are possible and some of them are distinguishable
within the user’s model. Hence a man-machine dialogue is triggered, devoted to meet the user

intentions, assuming that the user can recognize new concepts as “related” or “not related”

to his goal 4, 14].

4 Generalization

The main peculiarity of this approach is its bottom-up nature, “from answers to goals”, in contrast

with the conventional top-down querying procedure, where the user formulates the goal and the sys

tem retrieves the answer. A first kind of generalization occurs when the user provides an “example
of the answer” and the system identifies the goal by generalizing such an example. Alternatively,

starting from an answer that is not considered satisfactory, the user may ask to modify the original

query slightly (i.e., for a generalization of it) in order to obtain a new answer “near” the previous

one.

The most known application of the first kind of generalization, in the relational model, is Query

By Example 21]. In this querying environment the user specifies a set of tables with several tuples.
Since these tuples can contain both constants and domain variables, an example of the requested

answer is stated. The system, starting from this example, identifies the query, and answer it by

filling the tables with tuples that match the example. Form-based interfaces (e.g., 17]) are another

example of this generalization approach in relational environments.

This approach may also be applied to semantic networks and other graph-based data models by

considering the example generalization as a pattern-matching problem. In particular, starting from

the graph given as example, the system identifies the set of subgraphs of the database “similar”

50

to it. A first step in this direction has been done with the synchronized browsing 16], where the

user can fix (in a tree-like structure obtained by means of browsing primitives) an example of the

information he is interested in, which identifies a family of trees in the network; under the user

control, the system moves the tree over the network, and shows other trees matching the example,

by replacing displayed objects.

The second kind of generalization concerns (iterative) reformulation8 of a starting query, neces

sary when the obtained answer is recognized not to be the expected one. The reformulation process

can be carried on either with the user cooperation (as in 20]) or automatically by the system which

relaxes some conditions to find information in the neighborhood of the previous answer 3, 13, 15].

The main requirements of this interaction style are:

• A definition environment (i.e., a simple data model and suitable tools to assist the user) for

building examples and rehandling previously generated answers.

• A generalization mechanism for capturing the abstractions needed for constructing queries
from examples.

• A failure detection mechanism, activated either by the user or automatically by the system,
for identifying those situations in which the answer is unsatisfactory.

• A concept of distance between answers to determine the adequate approximation degree.

Limits of this approach are:

• It is oriented towards users that have mostly precise goals, and are familiar with the data

model, and with at least those portions of the database necessary for building the example.

• The above requirements become difficult to be fully addressed in a real system, particularly for

large and complex databases; the generalization mechanism and the introduction of distance

information may be difficult to manage.

• Since the system must behave as an expert assistant, this implies to gather and maintain

knowledge about the user, in order to tailor the cooperation (proposals in this direction can

be found in 3]).

5 Conclusions

The approaches discussed so far have been proposed for naive users without the expertise necessary

to formulate standard formal queries. They provide adequate solutions to different problems in

human-computer interaction with database systems, and the choice of a particular interaction

paradigm and its inclusion in a user interface are to be motivated by its friendliness, effectiveness

and feasibility..

On the other side, we notice that these interaction styles are oriented to different classes of users,

characterized by increasing skills and levels of experience with the system and/or the application
domain. Thus, due to complementary characteristics and limits they have, we believe that an

integration could lead to a powerful environment aimed at assisting the user in all the phases of

51

the ‘interaction with the system covering in a continuum the gap between browsing (for very naive

users) to querying (for sophisticated users). Suitable combinations of these approaches allow to

define new interaction styles that overcome the limits of their separated use. For instance, merging
a browsing technique with a generalization technique eases the examples formulation (see 16]) and

merging the browsing with connection aspects helps the user during the exploration leading to a

“goal-driven” browsing, and so on.

Since these techniques have been defined and introduced in distinct environments, based on

distinct data models, a major problem to be solved for their integration is redefining them in a

single and homogeneous way, possibly reasoning in abstract terms, independently from the data

model. In particular, we consider a graph formalism general and effective enough to capture the

most relevant aspects of these techniques in terms of graph problems.

We are working in this direction within the framework of the KIWIS project (ESPRIT project

2424) to build up an integrated knowledge-based and highly interactive environment for large
knowledge and data bases, which combines these three approaches in order to assist the user in

goal definition, query construction and interpretation, and answer presentation.

References

1] G. Ausiello, A. D’Atri, M. Moscarini. Minimal Coverings of Acydic Database Schemata.

Advances in Data Base Theory, vol.2, (H.Gallaire, J.Minker and J.M.Nicolas, eds.), Plenum

Press, New York and London: 27—52, 1984.

2] G. Ausiello, A. D’Atri, M. Moscarini. Chordality Properties on Graphs and Minimal Con

ceptual Connections in Semantic Data Models. Journal of Computer and System Science,

33(2):179—202, October 1986.

3] F. Cuppens, R. Demolombe. Cooperative answering: a methodology to provide intelligent
access to databases. Proceedings of End International Conference on Expert Database Systems,

pages 333—352, Vienna, VA., 1988.

4] A. D’Atri, P. Di Felice, M. Moscarini. Dynamic query interpretation in relational databases.

Information Systems, 14(3), 1989.

5] A. D’Atri, E. Laenens, A. Paoluzzi, J. J. Snijders, L. Tarantino. A graphical browser to

object-oriented knowledge bases. Journal on Database Technology, to appear, 1989.

6] DBASE-Ill Reference Manual. Ashton-Tate, Culver City, California, 1984.

7] C. Herot. Spatial management of data. ACM Transactions on Database Systems, 5(4):493—
513, December1980.

8] H. F. Korth, G. M. Kuper, J. Feigenbaum, A. van Gelder, J. D. Ullman. System/U: A

database system based on the universal relation assumption. ACM Transactions on Database

Systems, 9:331—347, 1984.

91 D. Maier, D. Rozenshtein, D. S. Warren. Window functions. Advances in Computing Research,
Vol. 3, (P. Kanellakis, F. P. Preparata, eds.), pages 213—246, 1986.

52

10] D. Maier, J. D. Ullman, M. Y. Vardi. On the foundations of the universal relation model.

ACM Transactions on Database Systems, 9(2):283—308, 1984.

11] A. Motro. Browsing in a loosely structured database. In Proceedings of ACM-SIGMOD

International Conference on Management of Data, pages 197—207, ACM, New York, New

York, 1984.

12] A. Motro. BAROQUE: an exploratory interface to relational databases. ACM Transactions

on Office Information Systems, 4(2):164—181, April 1986.

13] A. Motro. SEAVE: a mechanism for verifying user presuppositions in query systems. ACM

Transactions on Office Information Systems, 4(4):312—130, October 1986.

14] A. Motro. Constructing queries from tokens. In Proceedings of ACM-SIGMOD International

Conference on Management of Data, pages 120—131, ACM, Washington D.C., 1986.

15] A. Motro. VAGUE: A user interface to relational databases that permits vague queries. ACM

Transactions on Office Information Systems, 6(3):187—214, July 1988.

16] A. Motro, A. D’Atri, L. Tarantino. KIVIEW: The design of an object-oriented browser.

Proceedings of 2nd International Conference on Expert Database Systems, pages 17—31, Vienna,

VA., 1988.

17] M. Stonebraker et al. The design and implementation of INGRES. ACM Transactions on

Database Systems, 1(3):189—222, 1976.

18] M. Stonebraker and J. Kalash. Timber: a sophisticated database browser. In Proceedings of
the Eighth International Conference on Very Large Data Bases, pages 1—10, VLDB Endowment

(available from Morgan-Kaufmann, Los Altos, California), 1982.

19] 3. A. Wald, P. G. Sorenson. Resolving the query inference problem using Steiner trees. ACM

Transactions on Database Systems, 9(3):348—368, 1984.

20] M. D. Williams. What makes RUBBIT run? International Journal on Man-Machine Studie8,

21(4):333—352, October 1984.

21] M. M. Zloof. Query by example. IBM Systems Journal, 16(4): 324—343, 1977.

53

A Trio of Database User Interfaces

for Handling Vague Retrieval Requests

Amihai Motro

Computer Science Department
University of Southern California

University Park, Los Angeles, CA 90089-0782

Abstract

We discuss three user interfaces for situations that involve vague retrieval requests: (1) BAROQUE,
a browser for relational databases; (2) VAGUE, a query interpreter for relational databases that

can handle neighborhood queries (formal queries with similar-jo comparators); and (3) FLEX, an

adaptive interface to relational databases that can service satisfactorily users with different levels

of expertise (users who submit queries of different levels of correctness and well-formedness).

1 Introduction

Most database systems and their associated retrieval tools are designed under the assumption that

requests for retrieval would be precise and specific. In this paper we discuss three user interfaces,
called BAROQUE, VAGUE and FLEX, that were developed for situations that involve vague

retrieval requests. The term “vague” refers here to two different situations:

• The user is naive and cannot express a formal query. This may be either because he is not

familiar with the data model used by the system, or with its formal query language, or with

the particular database he wishes to access. It may also be because he does not have a specific
retrieval goal, or cannot express his goal in the terms required by the system.

• The user is sophisticated and possesses all the knowledge required to use the system expertly.

However, his request requires a condition which is vague or imprecise.

BAROQUE is a browser for relational databases; VAGUE is a query interpreter for relational

databases that can handle neighborhood queries (formal queries with similar-to comparators); and

FLEX is an adaptive interface to relational databases that can service satisfactorily users with

different levels of expertise (users who submit queries of different levels of correctness and well

formedness). Thus, BAROQUE and FLEX are capable of handling vague requests of the first kind,
while VAGUE handles vague requests of the second kind.

All three interfaces access standard relational databases that are managed by the INGRES

database system 10].

This work was supported in part by NSF Grant No. IRI-8609912 and by an Amoco Foundation Engineering
Faculty Grant.

54

2 BARQOUE

To improve their usability and responsiveness most database systems offer their users a wide variety
of interfaces, suitable for different levels of expertise and different types of applications. A partic
ular kind of interface which is now commonly avaIlable are browsers. Browsers are intended for

performing exploratory searches, often by naive users. Thus, they usually employ simple conceptual
models and offer simple, intuitive commands. Ideally, browsing should not require familiarity with

the particular database being accessed, or even preconceived retrieval targets. While browsing,
users gain insight into the contents and organization of the searched environment. Eventually, the

search either terminates successfully or is abandoned.

Often, the conceptual model is a network of some kind, and browsing is done by navigation: the

user begins at an arbitrary point on the network (perhaps a standard initial position), examines the

data in that “neighborhood”, and then issues a new command to proceed in a new direction. An

example of this approach is the interface designed and implemented by Cattell 1]. The interface

is to an entity-relationship database, and it features a set of directives for scanning a network of

entities and relationships, and presenting each entity, together with its context in a display called

frame.

Browsers have also been developed for relational systems, for example, SDMS 8], TIMBER 18]
and DBASE-Ill 4]. These are actually tools for scanning relations (including relations that are

results of formal queries), and therefore have only limited exploration capabilities. Browsing is

confined to a single relation at a time, and it is not possible to browse across relation boundaries.

If a user encounters a value while browsing, and wants to know more about it, he must determine

first in what other relations this value may appear (quite difficult), then formulate a formal query,

and resume browsing in the new relation. Satisfying questions such as “Is x related in any way to

y?” is impossible without an extensive scan of the database.

BAROQUE 13] is a relational user interface, designed to address these deficiencies. With the

help of an additional relation, but without affecting the existing relational database otherwise,

BAROQUE effectively replaces the record-oriented view which is inherent in the relational model,
with a network view, making its actual tabular representation transparent. Such networks can

support browsing functions of greater utility. More specifically, BAROQUE employs an “entity di-

rectory” relation, which associates every database value with the attributes under which it appears.

By thus “inverting” the database, BAROQUE can effect “entity behavior”: all occurrences of a

particular data value are considered collectively as one entity; this entity is related to other entities

through the functional dependencies in which the individual occurrences participate. When the

user specifies a data value, BAROQUE can construct the appropriate entity and its relationships.
The effect resembles a semantic network

,
in which users can browse with functions like “Describe

or “List others like x” or “Explain the connection between x and y”. Such access by value is

especially important for users with no knowledge of the organization of the database. For example,
the request “Describe CHAPLIN” would construct a frame named CHAPLIN which tabulates all

its relationships to other entities; e.g., NAME of PERSON having: FIR.ST....NAME CHARLES, COUNTRY

BRITAIN, YEAR_OF...BIRTH 1889,... DIRECTOR of FILM having TITLE: MODERN TIMES, THE GOLD

RUSH, THE CIRCUS,...

Among its other features, the system incorporates the database schema into the same represen

tation; it allows users to switch rapidiy back and forth between formal querying (in QUEL 19])

55

and browsing; and it relies on menus to facilitate communication with users. Upon entry to browse

mode, the name of the database is established as the default topic. Thus, this most general entity
is provided to the user as the end of a thread. Following it the user may survey the database, and

ultimately reach every other entity.

The cost entailed by the browser, in terms of the additional space to store the entity directory
and the additional computation for its initialization and its continuous update, is comparable to

the cost of a secondary index on every database attribute. If sufficient storage is unavailable, it

is possible to implement only part of the entity network, by inverting on selected attributes only.
All other values will be listed while browsing in their neighborhoods, but they may not become

topics of browsing requests. This has the interesting effect of distinguishing between actual entities

that participate in relationships, and simple properties that describe entities. In fact, the resulting
model resembles the Entity-Relationship approach to data modeling. One possible strategy for

selective inversion is to invert only on attributes that are keys or foreign keys. Under this strategy,

every entity that is assembled occurs at least once as the value of the key in some relation.

Our method for assembling entities is based only on identities of data values. Con8equently,
values that possess different meaning altogether, but are expressed with the same string of char

acters, are assembled into one entity. This weakness can be attributed to the limited semantic

capabilities of the basic relational model, where the only information available on the meanings
of the different attributes are their names and their primitive types (e.g., integer, character). A

well-known enhancement to the relational model uses a stronger concept of dornain8 to classify the

attributes. This enhancement can be readily incorporated into BAROQUE to assemble separate
entities for values that belong to multiple domains. For example, assume a database with attribute

SALARY defined over the domain DOLLARS, and attribute YEAR_OF..~BIRTH defined over the domain

YEARS. if the value 1889 appears under both PRICE and YEAR_OF_BIRTH, BAROQUE will cre

ate two separate entities: 1889 DOLLARS and 1889 YEARS. Notice, however, that even with the

current approach, the names of relationships in which 1889 participates provide different interpre
tations for this entity. For example, BAROQUE will describe the topic 1889 with both PRICE of

ITEM having ITEM_NO 6710 and YEAR_OF_BIRTH of PERSON having NAME CHAPLIN. Thus, while

the information included in these answers combines different semantics of the entity 1889, it is

interpreted clearly, and the user can disregard the portion of the answer that is irrelevant.

3 VAGUE

Requests for data can be classified roughly into two kinds: specific queries and vague queries.
A specific query establishes a rigid qualification, and is concerned only with data that match it

precisely. Some examples of specific queries are “How much does Jones earn?” or “When does flight
909 depart?” If the database does not contain salary information on Jones or departure time for

flight 909, null answers should be returned; the user is not interested in the earnings of somebody
else or in the departure time of a different ffight. A vague query, on the other hand, establishes

a target qualification and is concerned with data that are clo8e to this target. As an example,
consider “List the inexpensive French restaurants in Westwood”. If there are none, a moderately

priced Continental restaurant in Santa Monica may have to do. Similarly, when a project calls for

experienced C programmers with background in applied mathematics, we may want the personnel
database to mention also that there is an engineer with some knowledge of Pascal.

56

While many retrieval requests are intrinsically vague, most conventional database systems can

not handle vague queries directly. Consequently, they must be emulated with specific queries.
Usually, this means that the user is forced to retry a particular query repeatedly with alternative

values, until it matches data that are satisfactory. If the user is not aware of any close alternative8,
then even this solution is infeasible. A system that allows users to express vague queries directly is

more cooperative, and possibly more efficient. While issues of vague retrieval have been addressed

in related disciplines, particularly information retrieval (see 17] or 20]) and fuzzy systems (e.g.,
16, 22]), little has been done to extend current relational database technology to provide adequate
tools for performing vague retrieval (one exception is 9]). VAGUE 15] is a system that extends

the relational data model to provide it with vague retrieval capabilities.

To determine similarity between data values we introduce the notion of distance. Each database

domain is provided with a definition of distance between its values, called data metric. For example,
in a database on restaurants there may be metrics to measure distances between cuisines, between

locations, between price ranges, as well as a metric to measure distances between restaurants.

To express vague queries we introduce a vague selection comparator, called 8i1nilar-tO. A 8irnilar-

to comparison is satisfied with data values that are within a predefined distance of the specified
value. For example, the vague comparison “location similar-to Westwood” may be satisfied by

Westwood, Santa Monica and Beverley Hills.

Thus, the previous specific query “List the restaurants whose cuisine is French, whose price

range is inexpensive, and whose location is Downtown” may be relaxed into a vague query such as:

“List the restaurants whose cuisine is similar-to French, whose price range is similar-to inexpensive,
and whose location is similar-to Downtown”.

This model is quite straightforward, and its satisfactory operation relies almost entirely on the

quality of the metrics that are provided for the individual domains. Here, VAGUE allows the

database designer four choices. He could use one of several built-in metrics; he could provide a

procedure that computes the distance between every two elements of the domain; he could provide
a relation that stores the distance between every two elements of the domain; or he could use a

reference relation (an existing database relation that is keyed on this domain). In the latter case,

distances between elements of the domain would be defined as distances between their tuples in

the reference relation, where tuple distance is defined as a combination of the individual distances

between their corresponding components.

Each tuple in the answer to a query that includes several vague qualifications involves several

deviations from the specific values mentioned in these qualifications. By combining these individual

deviations into a single value, VAGUE can present the answer to the user in order of optimality.

Thus, there are two occasions where VAGUE combines several component distances into a single
distance: in one of its metric types, and in the presentation of vague answers.

The design of VAGUE reflects two fundamental requirements: conceptual simplicity within a

relational framework and adaptability.

The purpose of VAGUE is to enhance a relational database system with vague retrieval capa

bilities. An important design guideline is to realize this goal with only minimal deviation from this

popular model. The relational data model is extended with a single concept: data metrics, and

the query language is extended with a single feature: a similar-to comparator. (Indeed, the rela

tional data model is generalized, since a non-metricized database is a particular type of a metricized

57

database.) To present queries, users need only to know about the new comparator.

To be useful, a system that implements vague queries, must be able to adapt itself to the views

and priorities of its individual users. VAGUE incorporates three adaptability features. (1) Often,
distances between values of a given domain may be measured according to various metrics. For

example, distances between values of domain CITY may be defined in miles “as the crow flies”,
or as shortest driving distances, or even as differences between the names of the cities. VAGUE

permits multiple metrics for the same domain. When a query makes use of a similar-to comparator,
the user is presented with the various possible semanfics of this comparator in its present context,

and is asked to select. (2) With referential metrics, one of the metric types available in VAGUE,
individual users are allowed to influence the definition of the metric according to their own views.

For example, the distance between two cities may be defined as a combination of the distances

between some of their available attributes, such as size of population, climate, and employment
rate. If such a metric is selected, the user is allowed to judge the relative importance of the various

attributes in the overall distance. (3) When a query involves several vague qualifications, users are

allowed to express their relative importance in the overall query. For example, consider the previous

vague query about restaurants whose cuisine is similar to French, whose price range is similar to

inexpensive, and whose location is similar to Downtown. Each tuple in its answer involves three

deviations from the specified values, which are then combined so that the answer may be presented
in order of optimailty. However, it may be that the user has different willingness to compromise on

the various qualifications; for example, the user may be willing to compromise more on the type

of the restaurant than on its price range or location. VAGUE allows users to express their relative

willingness to compromise, and uses this input in the definition of the corresponding metric.

The design of VAGUE represents a compromise between the sometimes conificting requirements

for simplicity, flexibility and efficiency. Some examples of design compromises are described below.

Users of VAGUE cannot provide their own similarity thresholds for each vague qualification. It was

observed that this will require that users become familiar with particular data metrics. Instead,
VAGUE allows its users to double the threshold and repeat the query. Similarly, except for the

ability to enter weights for referential metrics, users of VAGUE are limited to interpretations of

similarity (i.e., metrics and thresholds) that have been provided by others. While it is possible to

design an interface that will permit users to introduce their own interpretations of similarity, it

was determined that the complexity of this task usually would exceed the expertise of many users,

especially casual users. Instead, this task is reserved for database designers or administrators,

and users are invited to select from menus of metrics that are currently supported. To prevent

the querying process from becoming too tedious to the user, VAGUE tries to be economical in

its dialogue with the user. At several places it may be possible to gain flexibility by additional

interaction; for example, when a vague query does not match any data, it is possible to ask the

user which similar-to comparator should be weakened (currently, all are weakened simultaneously).
Finally, since each tuple in an answer to a vague query must satisfy all the vague qualifications, it

is possible that a tuple would not be retrieved, even if its total compromise is smaller than that

of tuples that were retrieved. This approach was adopted primarily for reasons of efficiency. In

addition, because the combination of individual distances into a single distance is sometimes risky,
VAGUE prefers not to rely on it for determining its answers, only for ranking them.

The issue of appropriate similarity measures for retrieval has been researched and debated exten

sively. Our purpose in designing and implementing VAGUE is not to resolve this issue by adopting

any one particular approach, but to provide relational databases with a flexible mechanism, with

which different kinds of data metrics may be implemented and tested.

58

A legitimate concern is that vague queries will be satisfied by meaningless values. Careful

selection of the metrics and the parameters during the design of the database is extremely important.

Also, by extending the answers to include the values with which the vague qualifications were

satisfied (a feature available in VAGUE), users can monitor the judgements made by the system.

Finally, it can be assumed that users who consciously present vague queries (to systems or to

humans) are well aware of the fact that subjective judgement is involved, and would probably
examine answers to vague queries more carefully than answers to specific queries.

4 FLEX

A common method for accessing databases is via query language interfaces (e.g., QUEL 19],
QL2]). A query language interface defines a formal language, in which all retrieval requests

must be expressed. The main advantages of query language interfaces are their generality (the
ability to express arbitrary requests) and their tznambiguity (each statement has clear semantics).
However, using query language interfaces requires considerable proficiency: Users must understand

the principles of the underlying data model, they must have good knowledge of the query language,
and they must be familiar with the contents and organization of the particular database being
accessed. In the absence of even some of this prerequisite knowledge, using such interfaces can be

come very inefficient and frustrating. Hence, most query language interfaces do not accommodate

naive users very well.

For such users, several alternative types of interfaces have been developed, including form and

menu-based interfaces (e.g., QBF 10]), graphical interfaces (e.g., CUPID 12], GUIDE 21], LID 5],
SKI 11]), natural and pseudo natural language interfaces (e.g., RENDEZVOUS 3], LADDER 7],
INTELLECT 6]), and browsers (e.g., TIMBER 18], SDMS 8], BAROQUE 13]). These interfaces

are oriented towards non-programmers, and therefore require only limited computer sophistication.

Expressing requests may be as simple as selecting from a menu or filling a form, and familiarity
with the contents or organization of the database is usually not required. However, naive user

interfaces usually achieve simplicity and convenience at the price of expressivity. Also, as users

acquire more expertise, these interfaces tend to become more tedious to use.

Thus, it appears that no single user-database interface exists that can service satisfactorily both

experts and naive users. Perhaps the only exception are natural language interfaces. Ideally, such

interfaces should be able to service satisfactorily all types of users. Unfortunately, existing natural

language interfaces have two major problems: they require enormous investment to capture the

knowledge that is necessary to understand user requests, and even the best systems are prone to

errors.

FLEX 14] is an experimental user interface designed to be used satisfactorily by users with

different levels of expertise. It is based on a formal query language, but is tolerant of incorrect input.
It never rejects queries; instead, it adapts flexibly and transparently to their level of correctness,

providing an interpretation at that level. FLEX is also cooperative. It never delivers null answers

without explanation or assistance. This tolerant and cooperative behavior is modeled after human

behavior, and is thus reminiscent of natural language interfaces.

The most prominent design feature of FLEX is the smooth concatenation of several independent
mechanisms, each capable of handling input of decreasing level of correctness and well-formedness.

59

Each user input is cascaded through this series of mechanisms, until an interpretation is found.

Initially, the input is processed by a query parser to determine whether it constitutes a proper

formal query. If parsing is successful, the query is executed. Otherwise, the input is processed by
a query corrector, that attempts to salvage the query by applying various transformations. The

transformations involve both syntactic and semantic corrections, as well as synonym substitution.

The corrector is usually successful whenever the input exhibits recognizable structures, and its

interpretations are mostly safe. If the corrector fails to produce an interpretation, the input is

processed by a query synthesizer, that attempts to conclude proper queries from tokens that are

recognized in the input. The basic approach of the synthesizer is to model the entire database as

a graph, mark the nodes that correspond to tokens that are recognized in the input, span these

nodes with a minimal tree, and then translate the tree into a formal query. As these interpretations
are not entirely safe, they are offered as suggestions, and are subject to refinements by the user.

Finally, if the synthesizer fails to produce an interpretation, a browser is engaged to display frames

of information extracted from the database on the recognized input tokens. The basic approach of

this mechanism is essentially similar to that of BAROQUE.

Hence, FLEX never rejects queries, and the accuracy and specificity of its interpretations cor

respond to the correctness and well-formedness of the input.

Because it is engaged only when needed and only as much as needed, FLEX can be used satis

factorily by users with different levels of expertise, and thus appeal to a more universal community
of users. For example, a perfect formal query submitted by an expert will be executed immediately
without any modification; while a single word submitted by a novice will flow through the entire

sequence of mechanisms until finally it will result in a frame of information about this word. FLEX

may be viewed as an interface that adapts to the level of correctness and well-formedness of its

input (providing interpretations of corresponding accuracy and specificity).

This ability to adapt is complemented with features of cooperative behavior, whereby null an

swers are never delivered without explanation or assistance. If the final answer is null, the original

query is passed to a query generalizer, which issues a set of more general queries to determine

whether the null answer is genuine (it then suggests related queries that have non-null answers),
or whether it reflects erroneous presuppositions on behalf of the user (it then explains them). The

basic heuristic applied here is that a null answer is genuine, if and only if all the queries that are

more general have non-null answers.

Tolerance and cooperation are achieved with only minimal interaction, avoiding excessively

long dialogues, which tend to be tedious and discouraging. FLEX approaches its users mainly to

determine the domain of an ambiguous token, or to select from a list of possible browsing topics.
Both tasks are relatively short and simple.

By providing interpretations of ill-formed queries, FLEX also instructs its users in the proper

application of the formal language. By providing alternative interpretations, and allowing them to

be refined, FLEX reduces the risk of misinterpretations.

FLEX can also be perceived as an interface that supports multiple languages, each with its own

level of expressivity: a formal language, a language whose queries are sets of database tokens, and a

language whose queries are individual topics. The mechanisms of FLEX would then be viewed, not

as procedures for coping with incorrect formal queries, but as interpreters of these languages. Users

may then deliberately submit queries in an “inferior” language; their input will flow through the

60

interpreters of the “superior” languages, until it arrives at the intended interpreter, and generates
the expected database request.

The “knowledge base” used by FLEX consists of three auxiliary relations, that are stored along
with the database itself: a DICTIONARY that stores the definition of the database, a LEXICON that

maps database values to the attributes under which they appear, aiid a TEESAURUS, which stores

synonyms of recognized database tokens. The dictionary is used by every FLEX mechanism, the

lexicon is used by the synthesizer and the browser, and the thesaurus is used by the corrector. The

DICTIONARY relation is relatively small, the information it contains is fairly standard, and it needs

to be updated only when the definition of the database is changed. The LEXICON relation is more

demanding in terms of size and maintenance (a similar relation was used in BAROQUE). This

relation should not be modified by users; the system should update it automatically, to reflect user

updates to other relations (this is similar to the way that secondary indexes are handled in some

relational systems). The cost of this relation, in terms of the additional space to store this relation

and the additional computation for its initialization and its continuous update, is comparable to

the cost of a secondary index on every database attribute. If the required storage is prohibitive, it

is possible to implement the lexicon only in part, by inverting on selected domains only; tokens of

other domains will not be recognized. The THESAURUS relation is different, in that its information

cannot be extracted automatically from the database. It may be constructed gradually by the

database owner, using a log of unrecognized words maintained by the system. While the thesaurus

enhances the operation of FLEX, it is not as essential as the other two relations.

Work on FLEX is continuing. Current goals include extension of the retrieval language to include

a fuller set of operators, improved performance of the generalizer, and improved presentation.

5 Conclusion

FLEX represents our current approach regarding user interfaces to databases, that prefers a single
interface with universal appeal over a cluster of specific tools. Thus, we would prefer to incorpo
rate tools like BAROQUE and VAGUE into FLEX. Indeed, some of BAROQUE’s capabifities are

already available in the last mechanism of FLEX. As VAGUE is a formal extension of the rela

tional database model, it is, indeed, “orthogonal” to FLEX, and both could be combined without

conceptual difficulties. In other words, FLEX should become an interface to VAGUE.

References

1] R. G. G. Cattell. An entity-based database interface. In Proceedings of A CM-SIGMOD
International Conference on Management of Data (Santa Monica, California, May 14—16),
pages 144—150, ACM, New York, New York, 1980.

2] D. D. Chamberlin, M. M. Astrahan, K. P. Eswaran, P. P. Griffiths, R. A. Lone, J. W. Mehl,
P. Reisner, and B. W. Wade. Sequel 2: a unified approach to data definition, manipulation,
and control. IBM Journal of Research and Development, 20(6):560—575, November 1976.

3] E. F. Codd, R. S. Arnold, J-M. Cadiou, C. L. Chang, and N. Roussopoulos. Rendezvous

version 1: an Experimental English Language Query Language System for Casual Users of

61

Relational Databases. Technical Report RJ2144, IBM, San Jose, California, February 1978.

4] DBASE-Ill Reference Manual. Ashton-Tate, Culver City, California, 1984.

5] D. Fogg. Lessons from a ‘living in a database’ graphical query interface. In Proceedings of
ACM-SIGMOD International Conference on Management of Data (Boston, Massachusetts,
June 18—21), pages 100—106, ACM, New York, New York, 1984.

6] L. R. Harris. Natural language front ends. In The A! Business, pages 149—161, The MIT

Press, Cambridge, Massachusetts, 1984.

7] G. G. Hendrix, E.D. Sacerdoti, D. Segalowicz, and J. Slocum. Developing a natural language
interface to complex data. ACM Transactions on Database Systems, 3(2):105—147, June 1978.

8] C. Herot. Spatial management of data. ACM Transactions on Database Systems, 5(4):493—
513, December 1980.

9] T. Ichikawa and M. Hirakawa. ARES: a relational database with the capability of performing
flexible interpretation of queries. IEEE Transactions on Software Engineering, SE-12(5):624—
634, May 1986.

10] SunINGRES Manual Set. Sun Microsystems, Mountain View, California, Release 5.0 (Part
Number 800-1644-01), 1987.

11] R. King. Sembase: a semantic dbms. In Proceedings of the First International Workshop
on Expert Database Systems (Kiawah Island, South Carolina, October 24—27), pages 151—171,
Institute of Information Management, Technology and Policy, University of South Carolina,

Columbia, South Carolina, 1984.

12] N. McDonald and M. Stonebraker. Cupid: a user friendly graphics query language. In Pro

ceedings of the ACM-Pacific Conference (San Francisco, California), pages 127—131, ACM,
New York, New York, 1975.

13] A. Motro. BAROQUE: a browser for relational databases. ACM Transactions on Office

Information Systems, 4(2):164—181, April 1986.

14] A. Motro. FLEX: a tolerant and cooperative user interface to databases. IEEE Transactions

on Knowledge and Data Engineering, to appear.

15] A. Motro. VAGUE: a user interface to relational databases that permits vague queries. ACM

Transactions on Office Information Systems, 6(3):187—214, July 1988.

16] H. Prade and C. Testemale. Generalizing database relational algebra for the treatment of

incomplete or uncertain information and vague queries. Information Sciences, 34(2):115—143,
November 1984.

17] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. McGraw-Hffl,
New York, New York, 1983.

18] M. Stonebraker and J. Kalash. TIMBER: a sophisticated database browser. In Proceed

ings of the Eighth International Conference on Very Large Data Ba8e8 (Mexico City, Mexico,

September 8—10), pages 1—10, VLDB Endowment (available from Morgan-Kaufmanu, Los Al

tos, California), 1982.

62

19] M. Stonebraker, E. Wong, P. Kreps, and G. Held. The design and implementation of INGRES.

ACM Transactions on Database Systems, 1(3):189—222, September 1976.

20] C. J. van Rijsbergen. Information Retrieval (Second Edition). Butterworths, London, 1979.

21] H. K. T. Wong and I. Kuo. GUIDE: a graphical user interface for database exploration. In

Proceedings of the Eighth International Conference on Very Large Data Bases (Mexico City,

Mexico, September 8—10), pages 22—32, VLDB Endowment (available from Morgan-Kaufmann,
Los Altos, Caiifornia, 1982.

22] M. Zemankova and A. Kandel. Implementing imprecision in information systems. Information

Sciences, 37(1,2,3): 107—141, December 1985.

63

Complete this form and return to:

Computer Society of the IEEE

~ Technical Committee Membership Application Washington, DC 20036-1903

Instructions:
Please print in ink or type, one character per box. INFORMATION OUTSIDE BOXES WILL NOT BE RECORDED. Street addresses are preferabie to
P.O. Boxes for mail delivery. International members are requested to make best use of available space for long addresses.

rrri-i i i i i i ii LIT1TIIIJIIIIIIII11JJII LIII W I I
LAST I~M~ F~T Na~ PPTIM ~FTC

L~Uh1IIIJJ~1 I LIJI I fLLI1TFTTJIJJI LIJ liii I I 11111111
OEP~RrSLNT ~AL ST~sSUID.G~ 0 ~L APa~T1~NT L TC

____________ _________________

-

°~ LIII LIII LII] CHECK ONE

______ _________________

0 NEW APPLICATION

LIII 11111 I 1111111 ITt LU II LIII!! III DINFORMAT~NUPDATE

CITY 5T~TT 7W 0)01

LII LIII! FiltH!! LU !HHHH I IIHHH I I Ifi
t)0LP4TP~

LU !!!LI!II!I1III!1!HIII 11I!!IIII I I I III
ELECT~I~ MAil. WE T~T (I1CT~ MAiL AOO~S$ (MAiO~I

-

wnaccn~5cc*ee~upL1LI
LEE UC~E8AFEEIATE M) YES ~1)

The Computer Society shares its mailing lists with other organizations which have information of inter
est to computer professionals. If you do not wish to be included on those lists, please check here:

TC MEMBERS actively participate in TC activities, i.e. review papers, help organize conferences and workshops, participate in standards development,
and help with TC operations.

TC CORRESPONDENTS do not participate in TC activities, but they do receive newsletters and other TC communications.

Place an “F” in each box correspondinq to a TC of which
iou woujd hke to be a FULL member. To be a

LORRESPO~JDENT, places “C” in the corresponding
box. To the right of each T~ in which you express
interest, please rate your interest in each category
indicated from ito 5, with 5 being high interest and 1
being no interest.

ComputatIonal MedIcIne (Oil

Computer Arch,tecture 02)

Computer CommunIcatIons (03)

Computer Elements (04)

Computer GraphIcs (05)

Computer Languages (06)

Computer Paclrag~ng t07)

Computers In Educahon (08)

ComputIng ann the HandIcapped (09)

Data Base EngIneerIng (10)

DesIgn AutomatIon (11)

DIstrIbuted ProcessIng (12)

Fault~Tolerant ComputIng (13)

Mass Storage Systems & Technology (14)

MathematIcal FoundatIons of ComputIng (15)

MIcroprOcessors 8 MIcrocomputers (16)

Mlcroprogrammlny (17)

MultIple-Valued LogIc (18)

OceanIc EngIneerIng & Technology (19)

Otflce AutomatIon (20)

Ooeratlng Systems (21)

OptIcal Processrng (22)

Pattern AnalysIs & MachIne IntellIgence (23)

Personal Comput,ng (24)

Peat TIme Systems (25)

Robotics (26)

Secur,ty and PrIvacy (27)

SImulatIon (28)

Software EngIneerIng (29)

Test Technology (30)

VLSI (31)

Computer and DIsplay ErgonomIcs (32)

Supercomputlng ApplIcatIons (33)

~aMV L.nVFasIrr ACE WC~ WAME

LW LU TI III! lii I ITTJifiTFHhII
STREE I A1)~%ESS lC~ POST ~ECE ~)Z

LIJ 11111111! I LU
TELEX WU~ER l~O’r~l

Other (Specify):

-J

01

02

03

04

Os

06

07

08

09

I0

II

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

:ii~iii

Thank you for your Interest in Computer Society Technical ActivitIes. We look forward to having you with us!

IEEE Computer Society

~ ~ Postage
Non-profit Org

1730 Massachusetts Avenue, NW

Silver Spring. MD
PAIDWashington. DC 20036 1903

Permit 1398

~Henry F.. Korth

Universit~’ of Texas

Taylor 21~4 Dept of CS

Austin~ TX 7871~

USA

	40979_DataEngineering_June1989_Vol12_No2.pdf

