
SEPTEMBER 1988 VOL. 11 NO. 3

a quarterly bulletin of the

IEEE Computer Society
technical committee on

Data
ri

CONTENTS

Letter from the TC Chairman 1
L. Kerschberg

Letter from the Editor 2
Z.M. Ozsoyoglu

Advanced Information Management (AIM): Research in Extended Nested Relations 4
P. Dadam

From Simple to Sophisticated Languages for Complex Objects 15
S. Abiteboul, and M. Scholl

The Data Model and Query Language of LauRel 23
P. Larson

Storage Structures for Nested Relations 31
A. Ha fez, and G. Ozsoyoglu

Algebras for Nested Relations 39

M. Roth, and J. Kirkpatrick

The Expressiveness of Query Languages for Nested Relations 48
M. Gyssens, and 0. Van Gucht

Nested Relations, a Step Forward or Backward~ 56

H. Schek

Call for Papers 64

SPECIAL ISSUE ON NESTED RELATIONS

+ ThE ~~$TITUTE O~ ELECTR~1

NC ELECT~CS (NG~E(RS. ~lC

IEEE

IEEE Computer Society



Editor-in-Chief, Data Engineering
Dr. Won Kim

MCC

3500 West Balcones Center Drive

Austin, TX 78759

(512) 338—3439

Associate Editors

Prof. Dma Bitton

Dept. of Electrical Engineering
and Computer Science

University of Illinois

Chicago, IL 60680

(312) 413—2296

Prof. Michael Carey

Computer Sciences Department

University of Wisconsin

Madison, WI 53706

(608) 262—2252

Prof. Roger King
Department of Computer Science

campus box 430

University of Colorado

Boulder, CO 80309

(303) 492—7398

Prof. Z. Meral Ozsoyoglu

Department of Computer Engineering and Science

Case Western Reserve University
Cleveland, Ohio 44106

(216) 368—2818

Dr. Sunil Sarin

Computer Corporation of America

4 Cambridge Center

Cambridge, MA 02142

(617) 492-8860

Chairperson, TC

Prof. Larry Kerschberg

Dept. of information Systems and Systems Engineering

George Mason University
4400 UnIversity Drive

Fairfax, VA 22030

(703) 323—4354

Past Chairperson, TC

Prof. Sushll Jajodla
Dept. of Information Systems and Systems Engineering

George Mason University
4400 UnIversity Drive

FaIrfax, VA 22030

Distribution

Mr. David Barber

IEEE Computer Society
1730 Massachusetts Ave.

Washington, D.C. 20036—1903

(202) 371—1012

The LOTUS Corporation has made a generous donation to partially offset the cost of

printing and distributing four issues of the Data Engineering bulletin.

Database Engineering Bulletin is a quarterly publication of

the IEEE Computer Society Technical Committee on Database

Engineering .

Its scope of interest includes: data structures

and models, access strategies, access control techniques,
database architecture, database machines, Intelligent front

ends, mass storage for very large databases, distributed

database systems and techniques, database software design
and implementation, database utilities, database security
and related areas.

Contribution to the Bulletin is hereby solicited. News items,

letters, technical papers, book reviews, meeting previews,
summaries, case studies, etc., should be sent to the Editor.

All letters to the Editor will be considered for publication
unless accompanied by a request to the contrary. Technical

papers are unrefereed.

Opinions expressed in contributions are those of the Indi

vidual author rather than the official position of the IC on

Database Engineering, the IEEE Computer Society, or orga

nizations with which the author may be affiliated.

Membership in the Database Engineering Technical Com

mittee Is open to Individuals who demonstrate willingness to

actively participate in the various activities of the TC. A

member of the IEEE Computer Society may join the TC as a

full member. A non—member of the Computer Society may

join as a participating member, with approval from at least

one officer of the TC. Both full members and participating
members of the TC are entitled to receive the quarterly
bulletin of the TC free of charge, until further notice.



Letter from the TC Chair

On behalf of the entire TO on Data Engineering membership, I would like to extend our

warmest thanks and appreciation to Sushi! Jajodia for his leadership during the last two years.

As the new TC Chair I feel very fortunate in that Sushil will be nearby to offer his advice

and counsel. This Fall, Dr. Jajodia will be joining the faculty of George Mason University as

Associate Professor of Information Systems and Systems Engineering. Welcome aboard Sushil!

In the June issue of the Data Engineering Bulletin, Sushil provided a status report of the

major accomplishments of the TO. In brief they are:

• Sponsorship and co-sponsorship of conference, symposia and workshops of interest to our

members,

• The timely and regular publication of the Data Engineering Bulletin, under the stewardship
of Won Kim of MOO, and his Associate Editors, with the generous support of our corporate

sponsor, the Lotus Development Corporation, and

• The active role of our TC in the development of the proposal that helped to establish the

new IEEE Transactions on Knowledge and Data Engineering.

Our TO is best known for the Data Engineering Bulletin and our association with the Interna

tional Conference on Data Engineering. Both provide forums for the publication, presentation,
and discussion of research and development results. It is important for our members to be active

participants in these forums and future ones.

My goals are to continue the good works for which our TO is known, and to explore new

avenues of professional development, cooperation and growth. In organizing the International

Conferences on Expert Database Systems, I have been fortunate in being able to draw upon the

volunteer efforts of dozens of profesionals and several societies in the cooperative effort of forming
the organization and program of a large and successful conference.

In working with the membership of our TO, I hope to be able to count on your volunteer

efforts to help build the TO, and to make it a relevant resource within the IEEE Computer

Society. We are asked to provide consultation and opinions on many topics, and I hope to get the

membership involved in supporting these activities. In addition, if you have specific suggestions,
please feel free to contact me at the address given below.

As Sushil mentioned in the June Issue of the Bulletin, the issue of TO membership dues is

being addressed by the Society. Dr. Mario Barbacci, Vice Ohair of the Technical Activities Board

(TAB), told me that of the 90,000 IEEE Oomputer Society Members only about 3000 are

members of a TO. The TO on Data Engineering has 1295 full members and correspondents.

Olearly, we have a pool of potential members, and Dr. Barbacci is planning a TO membership
drive to be initiated in November with ads and TO descriptions in key IEEE publications.

Membership dues will allow our TO to establish a better financial basis to support our activities,
such as the publication of the Data Engineering Bulletin.

Another method of obtaining funds is through the sponsorship of successful, i.e., money

making conferences. Our TO is currently co- sponsoring the Very Large Database Conference and

will co-sponsor future Expert Database Systems Conferences. We will also try to complement
these funds with contributions from our corporate benefactors.

Lastly. Won Kim and I have been concerned about the timely distribution of the Data

Engineering Bullc tin. In cider to coordinate this process, I have appointed Mr. David Barber as

the liaison for reques~s for back issues, and related matters.

Larry Kerschberg
August 16, 1988
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Letter from the Editor

This issue of IEEE Data Engineering is devoted to Nested Relations. In a nested relation,

attribute values are not necessarily atomic, but they can be relations themselves. A relation

valued attribute may, in turn, have relations as attributes and so on. Although the original

definition of a relation by Codd in 1970 does not restrict attribute values to be atomic (i.e. First

Normal Form, 1 NF, relations), most work on the relational model and most succesful relational

database systems in the last decade have the assumption that all the relations are in 1 NF.

The research in nested relations is motivated by the need to extend the utilization of

relational database systems beyond the traditional data processing applications. For the so called

nontraditional database applications such as engineering designs, office forms, image processing,

information processing of textual data, the semantics of data objects, such as CAD objects, are

too complex to model by flat 1 NF relations. When relational database systems with flat relations

are used for such applications, the database becomes unecessarily fragmented both conceptually

and physically, which in turn has undesirable implications on query processing, data

redundancy, and storage structures.

Makinouchi was first to recognize, in 1977, the need for relaxing the 1NF assumption, and

extending relational model with nested relations to improve the utilization of relational

databases for applications requiring complex objects. Since early 1980’s there has been a

growing number of database research groups working on nested relations. Several important

research results on various aspects of nested relations, including design theory, algebra and

calculus, query languages, and storage structures for nested relations, have been published in

the literature. In parallel with the theoretical research, several research prototypes such as

VERSO project of l.N.R.l.A., AIM-I, AIM-P of IBM Heidelberg, and Darmstadt Database Kernel

System of University of Darmstadt have been implemented since then.

In April 1987, the first International Workshop on Nested Relations and Complex Objects

was held in Darmstadt, West Germany. The Workshop Material edited by Scholl and Schek

provides a list of position papers and a rich collection of research abstracts on nested relationa

and complex objects. A book on Nested Relations and Complex Objects containing some selected

papers from the workshop and some invited papers will be published by Springer Verlag, in

early 1989. There was also a well attended, lively panel on Nested Relations, organized by
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Patrick Fischer in the SIGMOD 88 Conference in Chicago. The title of the panel is “Nested

Relations: A Step Forward or Backward?”. My opinion is that panel’s conclusion was nested

relations is a step forward, or at least it is not a step backward.

First two papers in this issue are on research prototypes that have been implemented. In

the first paper, Dadam describes the AIM-P, Advanced Information Management Prototype,

project, and the work on the nested relations at the IBM Heidelberg Scientific Center. The second

paper is by Abiteboul and Scholl, and describes the VERSO project and the research on the

system design and theory for nested relations and complex objects at I.N.R.I.A. In the following

paper, Larson gives a brief overview of the data model and the query language of Laurel, which is

a prototype database system, being developed at the University of Waterloo, supporting nested

relations and reference attributes. The fourth paper is by G. Ozsoyoglu and Hafez and describes

the research at the Case Western Reserve University on storage structures for nested relations.

Roth and Kilpatrick in the next paper gives an overview of the algebras for nested relations, and

discuss methods for joining nested relations in various forms. Gyssens and Van Gucht’s paper is

on the expressive power, of nested algebra, and they propose a powerset algebra as an alternative

to the nested algebra. The final paper of the issue is titled “Nested Relations: A Step Forward or

Backward?”, and is based on Schek’s presentation for the panel discussion at the SIGMOD 88

Conference panel with the same title.

As in the case of any special issue on a timely subject, only a few of the many current

projects and research results on nested relations could be described here. I would like to thank

the authors for their contributions and their cooperation on meeting the deadlines during the

preparation of this issue. I hope that this issue of Data Engineering will help sitimulate interest

in Nested Relations Research and Development.

Sincerely,

Z. Meral Ozsoyo~lu

August, 1988
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Advanced Information Management (AIM):
Research in Extended Nested Relations

Peter Dadam

IBM Heidelberg Scientific Center

Tiergartenstr. 15, D-6900 Heidelberg
West Germany

EARN/BITNET: DAD at DHDIBMI

1. Introduction and Background
One of the main missions of the IBM Heidelberg Scientific Center (HDSC) is to explore new applica
tion areas for computer assisted methods, especially by investigating the application requirements and

product needs, developing and evaluating new concepts, thus contributing to the state of the art in the

affected scientific areas. The theoretical or analytical studies arc usually complemented by prototyping
and by evaluating the main concepts in representative applications in order to gain further insight into

the feasibility and applicability of the proposed solutions.

In 1979/80, based on previous research work in information retrieval /Sch78, KSW79, KW81/, the AIM

department started to have a closer look on “integrated” applications in the office area and the ade

quate database support for it. As a first step, a prototype was developed combining information re

trieval with relational /As76/ database technology. Though the general feasibility and applicability of

this approach could be successfully demonstrated, the data model (“flat” relations) was felt to be too

poor for an adequate treatment of structured text documents. Looking for appropriate solutions of this

problem led - independently from other groups like VERSO /13RS82/ - to the idea of nested relations

which were called NF2 Relations (Non First Normal Form Relations). The most critical point was

whether the extended relational model could be put on an equally sound theoretical basis as the original
(“flat” relational) one. Consequently, at first we concentrated primarily on the theoretical issues of this

data model, especially on its relationship to the relational design theory (functional and multi-valued

dependencies). This led to scientific contributions by the 11I)SC to the theory of nested relations

/Jae82, JS82, .Jae85, Jae8Sa/. In parallel to this basic research work, conceptual work was started

aiming to develop an extended SQL-like database language able to deal with the extended relational

data model at the user’s level /SP82, I-1l-1P82, P111183, GP83/.

In 1982/83 the issue of”integration” of applications across formerly isolated application areas like of

fice, manufacturing, engineering design, etc. and the understanding of related database requirements
and problems became more and more important. We, therefore, decided to redirect our research and

development activities and to look at database related issues on a broader scope. To be able to evaluate

advanced database concepts in real (existing) advanced applications, we decided to develop an exper
imental type of a “next generation” I)BMS - the Advanced Information Management Prototype (AIM-P)
- as a vehicle for our research and development. The decision to use the NP relations as base tech

nology of the system was significantly influenced by qur expectation of how the database supported
integration of applications will take place. It did not only affect the selection of the data model for

AIM-P (which goes beyond NF2, see Sect. 3) but also the system’s functionality and architecture.

Ilence, in the next section we describe at first our view of a “general purpose” DBMS for “large scale

integration” of application areas and the resulting decisions for its design, and thus also for our main

research areas.

2. Target and Scope of Research and Development
Up to now the situation in the area of data management is still characterized by having special purpose
data management or file systems for every major application area. These systems differ in functionality,
data representation (“data model”, interfaces), real-time behavior (immediate update versus batch up-

-4-



date), transaction management, recovery, and security aspects, thus making the required integration
of applications a difficult task. Powerful database management systems handling the data across the

different application areas in a uniform and consistent way could improve this situation drastically.
Very likely, no single type of system will be able to adequately support all application types one can

think of. However, to reach at least a coverage of say 80 to 90 percent of the main application types
would already be a big gain. The target of the AIM research and development is to understand how

closely this goal can be approached.

For that end, one prerequisite is that the DBMS supports both a data oriented (e.g. relational) as well

as an object oriented view on the data. Probably one and the same kind of data (e.g. representing a

computer board) may be accessed in an object oriented fashion by one application (e.g. board design)
and in a data oriented fashion (e.g. bill of material) by another. The support of this integrated view on

data significantly influenced our design decisions and research targets for the development of AIM-P.

The most important ones can be summarized as follows:

Architecture: The DBMS should logically consist of two parts: The (logically) central database server

and user/application front-ends, called workstations in our terminology. Special emphasis should be

given to provide adequate data exchange mechanisms between server and workstation in order to keep
the communication overhead low, especially in cases where large complex objects are involved. In

other words, the overall architecture should support efficient cooperative processing - in particular of

complex objects - in a workstation - server environment.

Database Language/Data Model: The database server should provide a homogeneous view on all the

data (from flat relations to complex objects) to serve as “integration tool”. That is complex objects
should not be treated as “special animals” but be an integral part of the data model. All (or nearly all)
operations defined for “normal” (‘flat’) data should be applicable to complex object data as well. The

server should have a relational-like data model with set oriented, dcscriptivô query capabilities to reduce

the communication overhead between server and workstation. The workstation has to use this interface

when requesting data (“check-out”). Which interface (data model) at the workstation is offered to the

user or application program (the server’s data model or e.g. flat. relations, hierarchies, network struc

tures) should be application dependent.

3. Heidelberg Data Base Language (HDBL)
The following description concentrates on the AIM-P data model and the relationship between HDBL

and the operations of the NF2 relational algebra. Due to lack of space, only a “flavor” of I-IDBL can

be given here. A more comprehensive treatment of this issue can be found in /PT85, PT86/ and /PA86/.
The currently supported language features are described in /ALPS88/.

3.1 Data Model

It is very easy to create a “monster” DBMS by trying to take the union of all nice data models and to

put it into one DBMS. For AIM-P we decided to use a rather rigid (but powerful) data model based

on NF2 relations. The reason for this decision was the capability of the NF2 data model to support
both an object oriented and a data oriented view on the data, and, because of its potential to treat

complex objects and flat relations in a uniform way. Nowëver, the pure NP model, only offering re

lations with relation valued attributes, is semantically too poor to provide a reasonable “general pur

pose” data model for the intended integration of a broad range of application areas. For engineering
applications (but not restricted to them), an adequate representation of vectors and matrices (i.e. simple
or nested lists) was missing. In addition, it is not possible to store simple objects (e.g. the highest in

voice number used so far) in a simple fashion (i.e. not as a relation with one row and one column).
We, therefore, decided to use an extended NF2 data model for AIM-P.

This data model has the following basic types: set valued, list valued, tuple valued (composite), and

atomic. Objects can be assembled from basic types in a fairly free fashion. Figure 1 illustrates the

AIM-P data model and its relationship to the pure NF2 and flat relational data model. Using this data

model, a matrix of real numbers can be modelled, for example, as list of list of real, and this construct

can either occur as attribute value within some list, set, or tuple valued object or subobject, or it can
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be used as singleton object identified by its own name. Atomic values and tuples can be used

analogously.

LISTS SETS RELATION RELATION

I I (SET) (SET)

(3
TLIPLES / tuples tuples

K!) I
ATOMIC ~/ atomic atomic

VALUES values vol’jes

a) AIM—P Data Model b) NF2 Dala Model c) 1NE Data Model

(Extended NF2 Data Model)

Figure I. Comparison: AIM-P data model, pure NF2, relational data model.

Though Figure 1 may create the impression that the pure NF2 data model has become a very special
case of the AIM-P data model, this is only true from a conceptual point of view. In the usage of the

AIM-P data model, the concept of nested relations (unordered and ordered) turned out to be domi

nating in object definitions. Therefore, most emphasis in query processing has been put on supporting
unordered and ordered nested relations efficiently.

In the sequel we concentrate on describing how NP algebra operations are supported in AIM-P re

spectively in its database language (HDBL). Additional features also supported in 1-IDBL respectively
AIM-P like time versions (history data), text, and user defined data types andfunctions cannot described

here because of space reasons (see Sect. 6 for references to the related literature).

3.2 Support of NF2 AJgebra Operations

HDBL is an SQL-like language developed at the IIDSC to support the AIM-P data model. Like clas

sical SQL it uses a SELECT...FROM...WIIERE (SFW) construct to provide the facilities for expressing
projections, restrictions, and joins. I-IDBL’s SFW construct, however, is by far more powerful than the

original one. It allows to dynamically construct nested tables out of flat tables (nest), to “flatten” a

non-flat table into a flat one (unnest), or to restructure a nested table; and these operations are not only
applicable to a relation (table) as a whole but also at the level of relation valued Fields (“subrelations”
/DK86/).

The latter effect is achieved by applying a SFW-exprcssion to a relation valued field as illustrated in the

following example (cf. Figure 2 the square brackets ...]) in the query are tuple constructors /PT86/):

SELECT x.DNO,
Manuf_Cells: (SELECT y.CIO,

y.NC_MACH]
FROM y IN x.MANIJF CELLS

WHERE EXISTS (z IN y.NC MACH): z.TYPE Flex 200)]
FROM x IN MANUFDEPTS

For every manufacturing department, this query associates DNO with some information about those

manufacturing cells (MANUF_CELLS) which have an NC machine (NC MACH) of type ‘Flex 200’.
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If none of the department’s manufacturing cells has such type of machine, the subrelation will be

empty.

( NANUFDEPTS )

ONO ONAHE { HANUF CELLS ) ( STAFF I

CID (NONNCI4ACH} (NC_HACH ) END FUNCTION

QU TYPE QU TYPE

15 Shafts C13

—~

1

1

1

MLDX 300

MLDX 230

Autex 77

1

1

NRP 5000
Flex 200

1217

1494

1548

1799

1852
1877

1938

1941

NC Prograniser
NC Programer
Supervisor
Supervisor
Laborer

ChIef
Laborer
Laborer

C28 1

2

I

Varix 92

Varlx 99

Autex 77

1

2
Speedy 5
Precl 22

22 Slabs Cli 2

I

1

HLDX 300

JRP 508
Autex 35

1

1

DSX 700
DIX 800

1199

1292
1385
1741
1855

Supervisor
Chief
NC Progrananer
Laborer

Laborer

Figure 2. MANUF Information in NF2 Representation

With the same subquery technique nesting can be formulated, too. Assume two flat tables

MOEPT (ONO, DNAME)

and

STAFF (DNO, ENO, FUNCTION).

Based on this input, the MANUF_DEPTS table could be partly (only DNO, DNAME, and.STAFF)
constructed using the following HDBL expression:

SELECT ~x.DN0,
x.DNAME,

STAFF : (SELECT y.ENO,
y.FUNCTION]

FROM y IN STAFF

WHERE x.DNO = y.DNO)]
FROM x IN MDEPT

Unnesting is formulated similar to a join. Assume we want to unnest the path from top to STAFF,
while retaining the DNO, DNAME, ENO, and FUNCTION attributes (see Figure 2). This can be

formulated in HDBL as follows:

SELECT ~x.DNO,
x.DNANE,

y . ENO,

y.FUNCTION]
FROM x IN MANUFDEPTS, y IN x.STAFF

Opposed to the strict NF2 data model, I-IDBL is also capable to deal with lists (ordered relations).
Therefore some additional rules are necessary in order to make predictable the result of a selection,

projection, or join operation involving set-valued and list-valued tables. For HDBL, the following set

of rules is applied during query processing (cf. /PT85/):

I. One unordered collection as input: Result is unordered.

2. One ordered collection as input: Result is ordered (processing observes order).
3. Join between lists: The result is ordered. Two nested loops may serve as a mental model for de

scribing the iteration over the elements of the two operands. (This explains why a join of two lists

is no longer commutative.)
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4. Join between list and set: The result is ordered, but the sequence of the result elements is deter

mined only to the extent that the relative order of the list elements is preserved. (Without pre

serving this order it would be impossible to recover input list elements from the join result in the

right sequence.)
5. Join down an hierarchical path: Processing goes in parent-child sequence as described in the un

nest example above. - Together with the previous rules on joins, unnesting semantics are well de

fined when lists are involved.

A more complex table - the ROBOTS table - which demonstrates some of the I-IDBL concepts which

go beyond the pure NF2 data model, and the corresponding CREATE statement are shown in Figure
3 and Figure 4 Besides relation valued attributes, the ROBOTS table shows also list valued attributes

(AXES, DI-I_MATRIX) and tuple valued attributes (KINEMATICS, JOINT_ANGLE, DYNAMICS).
List valued means that the values occurring e.g. in the AXES attribute are ordered. That is, there is a

first axis, a second axis, etc. The tuple valued attribute DYNAMICS contains a composite attribute

value, namely a value for MASS, and a value for ACCEL. Thus tuple valued attributes provide some

structuring capabilities like the RECORD concept in many programming languages.

< 1, 0, 0, 70 ‘

<o, 1, 0, a>

<0, 0, 1, 20>

<0, 0, 0, 1>

—250 68 37.25 2.0

< 0, 0, 1, 0 >

<1, 0, 0, 40>

<0, 1, 0, —10>

<0, 0, 0, 1>

—80 250 10.4 6.0

ro IN ROBOTS

COUNT(ro.ARMS) >= 2

AND (FORALL (ar IN ro.ARMS): COUNT(ar.AXES) >= 4 )
AND (EXISTS (ee IN ro.ENDEFFECTORS): ee.FUNCTION = ‘Screw Driver’)

( ROBOTS )

ROB ID { ARMS } ( ENOEFFECTORS )

APHID < AXES > EFF_ID
~

—

FUNCTION

( KINEMATICS 3 DYNAMICS ]

< DH_HATRIX > JOINT_ANGLE] MASS ACCEL

HIM MAX

Robi left <1, 0, 0, 1>

<0, 0, 1, 0>

< 0, —1, 0,100 >

<0, 0, 0, 1>

—180 180 50.0 1.0 E200

E150

E180

Gripper

Welder

Screw Driver

<0,—i, 0, 0>

<0, 1, 0, 0>

<0, 0, 1, 0>

<0, 0, 0, 1>

—180 180

right

2.0 6.0

Rob2 left
. . . . .

Figure 3. ROBOTS Table: The attribute AXES contains a list (indicated by “<
...

> “) of tuples. That is, it

is an ordered relation. DI-I_MATRIX is also list valued, but the elements of this list are lists again.
That is, it forms a list of lists (in this case a 4 x 4 matrix). KINEMATICS and DYNAMICS are

tuple valued attributes (indicated by ...fl of the (ordered) AXES relation. JOINT_ANGLE, in

turn, is a tuple valued attribute of KINEMATICS.

SELECT ro

FROM

WHERE

To retrieve e.g. all robots which are able to use a ‘Screw Driver’ as endelTector and which have at least

2 arms, each of which having at least 4 axes, the following query could be issued:
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CREATE robots

robid : STRING (6 FIX),
arms

{{ arm_id : STRING (12 FIX),
axes

kinematics

dh_matrix : 4 FIX < 4 FIX INTEGER >>,

joint_angle
mm : REAL,

max REAL)],
dynamics

mass REAL,

accel REAL ] ] >,

endeffectors

eff_id STRING (16 FIX),
function TEXT (1000) ]} ]}

Figure 4. CREATE Statement for ROBOTS Table ( Figure 3): (...}, <...>, ~...J are set, list and tuple
constructors (alternatively, set(...), list(...), and tuple(...) could be used).

4. Ad Hoc (On-line) and Application. Program Interface
AIM-P supports an on-line interface for ad hoc queries as well as an application program interface. The

on-line interface accepts input of HDBL statements (query, data manipulation, type and function deli

nition), offers facilities for querying the catalogs (object, type, function), for editing and retrieving
stored queries, and for browsing in query results’.

The AIM-P application program interface (API) follows the same philosophy as the one supported by
System R /Ch8l/ respectively SQL/DS /IBM83/. An API pre-compiler takes API language statements

embedded in the source code of the application program and translates them into respective subroutine

calls to the API run-time system and appropriate type and variable declarations (mainly for parameter
passing) of the target host programming language2. The API language constructs can be roughly di

vided into two groups: declarative statements and operational statements. Because of lack of space, we

will only outline these language constructs with help of some selected examples. More detailed de

scriptions of this language can be found in /EW87, ESW87/.

The declarative statements are used to describe the database objects one wants to deal with (DECLARE
RESULT), the application program variables which shall take values of the database objects (DE
CLARE DATA), and cursors for navigating on objects (DECLARE CURSOR), see Figure 5 In ad

dition, there are also statements for exception handling (see Figure 6)

Cursors are declared using DECLARE CURSOR statements. In contrast to System R or SQL/DS,
which support only ‘flat’ relations, AIM-P cursors are ordered in a hierarchy. In Figure 5 (based on

the table shown in Figure 2) C_CURSOR and S_CURSOR are dependent on D_CURSOR, i.e.

C_CURSOR can only operate on those manufacturing cells which belong to the manufacturing de

partment on which D CURSOR is currently positioned. Besides defining the scope for dependent cur

sors, a cursor also gives access to the data elements at ~ts lçvel. That is, D_CURSOR provides access

to attributes DNO (atomic), DNAME (atomic), MANU F_CELLS (set valued), and STAFF (set val

ued); C_CURSOR provides access to attributes CID (atomic), NON_NC_MACI-I (set valued), and

NC_MACH (set valued); etc.

The I-IDBL facilities for type definition and function definition as well as the respective catalogs are related to the

support of user defIned data types and functions which are not described in this paper because lack of space. See

/DKS88, LKDP88/ for more information on this subject.

2 Currently only PASCAL is supported.
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%INCLUDE ceiltup /~ embedding of PASCAL representation for CELLTUP ~/

BEGIN DECLARE DATA;
type

staff_type = record

eno : integer;
funct : string(30)

end;

staff_arr_type = array 1. .50] of staff_type;

var

dno integer;
dname string(1O);
complex_cell_data : CELLTUP; /* variable of user defined data type CELLTUP */
staff : staff arr type;
staff info : AIM RESULT DESCR;

END DECLARE DATA;

BEGIN DECLARE CURSOR;
DECLARE RESULT manudept FOR UPDATE FROM QUERY_STATEMENT

SELECT x.dno, x.dname, x.manuf cells, x.staff ]
FROM x IN MANUFDEPTS;

DECLARE CURSOR d_cursor WITHIN manudept;
DECLARE CURSOR c_cursor FOR manuf cells WITHIN d_cursor;
DECLARE CURSOR s cursor FOR staff WITHIN d_cursor;

END DECLARE CURSOR;

Figure 5. Examples of DECLARE statements

WHENEVER END LEAVE;

repeat
MOVE d_cursor; /~ on (next) manufacturing department */
GET d_cursor ATTR_WISE dno, dname INTO dno, dnarne;

/* here processing of DNO and DNAME in the application program ~/

repeat
MOVE c_cursor; /~ on (next) manufacturing cell ~/

GET c_cursor OBJECT_WISE INTO complex_cell_data;

/~ one manufacturing cell with all its non-nc machines *1
/~ and nc machines has now been transferred into

/~ program variable complex_cell_data

/* here processing of non-nc machines and nc machines data */

until false;

repeat
MOVE s_cursor /~ on (next) staff member ~/
GET s_cursor BY 50 TUPLE_WISE INTO staff : staff_info;

/~ the actual number of retrieved staff tuples is returned in ~/
/* staff info.n units ret *1

/* here processing of STAFF array in the application program ~/

until false;

/* here additional manuf. department related processing ~/

until false;

Figure 6. Examples of MOVE and GET statements with object oriented data transfer

The operational statements are used to “drive” the API via the application program. In essence, there

are query execution and update propagation related statements, cursor related statements, and session

and transaction oriented statements. To open a session (to “connect to the database”) a BEGIN

SESSION statement providing a user identification and a password has to be issued. Transactions can

subsequently be started with BEGIN TRANSACTION and closed using a COMMIT TRANS
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ACTION or ABORT TRANSACTION statement. Finally, a session can he closed via END SES

SION.

The statement ‘EVALUATE manudept’ triggers both the execution of the query shown in Figure 5 and

the materialization of the result3
.
On this result, cursors can be opened to transfer the data into ap

plication program variables (and vice versa). After having issued the statement ‘OPEN CURSOR

d_cursor’ this cursor and all dependent cursors are open and can be positioned by MOVE statements.

For transferring data into application program variables, the GET statement is provided. An example
for using these functions is given in Figure 6. The GET statements in this figure deserve some further

comments; they demonstrate that data iransfer can be performed in several ways:

• The option ‘ATTR_WISE’ specifies that the atomic attribute values accessible via the respective
cursor shall be transferred into individual application program variables (in our example attributes

DNO and DNAME are transferred into program variables DNO and DNAME).
• The option ‘TUPLE_WISE’ tells the system that all atomic attribute values at the current cursor

position shall be taken as a unit (tuple) and be assigned to a corresponding (type compatible) re

cord variable. The specification BY n (n > 1) triggers that more than one instance (tuple) at a time

is transferred. - An optional variable of type AIM_RESULT_DESCR (see Figure 5 and Figure 6

(“staff_info”)) can be used to tell the user how many data instances (tuples) have actually been

transferred into the application program.
• The option ‘OBJECT WISE’ means - in contrast to the keywords TUPLE WISE and

ATTR_WISE - that all the atomic and non-atomic data at the current cursor position shall be

transferred into the application program: A complete complex object is transferred at a time (by a

single call to the API run-time system). Of course, an appropriate program variable must be pro
vided to deliver all these data, especially the non-atomic (set-valued, list-valued) data4.

The WHENEVER clause in Figure 6 is used to specify exception handling. In this particular case, the

handling of an END condition is specified (LEAVE is a PASCAL/VS statement to leave the current

REPEAT
...
UNTIL loop; cf. /IBM85/).

If a result has been declared FOR UPDATE as in Figure 5 then it can both be read and modified. To

that end, the cursors have to be positioned in the same way as it is done for reading (GET, F’ETCH).
UPDATE, INSERT, or DELETE statements (which are syntactically very close to the GET statement)
can be issued to modify the data /EW87, ESW87/. After modification, the PROPAGATE statement

is used to transfer the modified or new data from the workstation (back) to the database server. This,
however, does not mean that the changes are already committed. At the server site, the modifications

are only performed in the transaction’s private workspace. It is still at the user’s disposal to subse

quently perform either a COMMIT or an ABORT.

5. Summary, Status, and Outlook

AIM-P is a research and development effort of the IIDSC to provide a better understanding of data

base technology adequate for integrated applications. AIM-P, the research prototype under develop
ment at the HDSC, bases in its core on the concept of nested relations. The experiences from

applications or analytical studies with extended NF2 relations are very promising /GP83, PT85, KW87,
DH88, Mi87/. Some areas are still not adequately coveted i~ the current implementation, however, and

therefore further developments of HDBL to support e.g. refi~rences for data sharing and recursive

queries /Li87, Li87a/ are envisaged for the near future.

In this brief project description only few aspects of the overall AIM-P effort could be highlighted. Be

cause of lack of space, the issue of time version support (which has been deeply integrated into AIM-P;

~ The EVALUATE and OPEN CURSOR statements are not shown in Figure 6.

Appropriate type declarations for these program variables (e.g. CELLTUP in Figure 5) can be obtained from

AIM-P’s type compiler in conjunction with the support of user defined data types (see /DKS88, LKDP88/ for

details).
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ci. /Lu84, DLW84/ and especially /Pi87/ for a detailed discussion of this aspect), the integration of text

search capabilities, and the important aspect of cooperative processing in a workstation - server envi

ronment /DGKOW86, KDG87, Pi87/ had to be omitted completely. The same holds also for the

support of user defined data types and functions which was the most significant effort during the last

year in order to contribute to the R2D2 project5 /DDKL87, DDKL88, D1-188, DKS88, KLW87,
KWD88, LKDP88/.

The first rather complete version of AIM-P became operational end of 1986. Since then the system has

been installed in a couple of places inside and outside of IBM for research and evaluation purposes.
The current implementation status (Release 2.0) can be summarized as follows:

• Support of flat and nested relations, both unordered and ordôred. Legal attribute types are atomic,
flat and nested relations, and lists or sets of atomic values. Sets of sets or lists of lists are not sup

ported yet.
• Large subset of HDBL operational but only rudimentary query optimization performed so far; also

view support is still missing.
• Access to historical data in ASOF fashion /DLW84/.
• Access to HDBL facilities both in on-line mode and via application program interface.
• Support of user defined data types and functions
• Support of textual data (text search capabilities)
• Workstation - server support
• Basic transaction support (abort/commit) in a single-user environment.

Work has been started to improve AIM-P’s query processing by integrating indexes for extended NF2

tables, and to develop rules for query transformation and optimization. In addition, work has been

started on sorting and duplicate elimination (which shall also provide the basis for the envisaged sup

port of recursive queries). Our main target, however, remains to understand the database requirements
in advanced, integrated application areas (ci. Sect. 2). We therefore will increase the number of case

studies performed in such areas using our prototype. Direction and emphasis of our future research

work will - as in the past - be heavily influenced by the requirements and open problems discovered

there.

Many research groups are dealing with the theory of nested relations at present in the one way or an

other (cf. e.g. /SS87, 00M87/), and a lot of interesting results have been achieved already. However,
as already pointed out in Sect. 3, the pure NF2 data model seems to be too limited for being directly
useful as data model for an advanced DBMS. Therefore, the development of commercial systems using
pure NF2 relations as data model is not very likely. Opposed to that, systems based on a semantically
richer (extended) NF2 model like that of AIM-P, for example, look very promising. Systems based on

such a data model seem to have a realistic chance. Hence, in order to make theoretical work in NP

relations more beneficial for the development of “real” systems, it should broaden its scope to support
a more general data model like the one outlined above, for example.
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From simple to sophisticate languages
for complex objects
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1 Introduction

The popularity of relational systems has raised a major demand from fields like computer aided design or

office automation for such database technology. Unfortunately, current relational systems are not suited for

these applications. One of the main limitations is the simplistic data structure of the relational model: the

table. A major trend in the database field has been to incorporate more powerful data structures like “nested

relations” or “complex objects” NRCOJ.
We have been involved for several years in system design and theory for nested relations and complex

objects. The purpose of the present paper is to briefly describe the evolution of our research and draw some

general conclusions. We will more particularly discuss the follo%ving three points:

1. The Verso system: the Verso system V] has been developed from 80 to 86. The first objective was

to validate the notion of filtering on the fly based on automata techniques. The physical organization
(in hierachical files) suggested the use of a logical organisation (V-relational model) based on nested

relations. The manipulation language is an algebra ABi].

2. Power of languages: in ABe], various languages for complex objects are considered. The main

result of that research is that an algebra, a calculus, and ruled-based language for complex objects are

shown to be equivalent.

3. Rule-based language: we are currently working on a complex object language (called Col) AGI,AH3].
The proposal shares with B+,K2] the goal of extending Datalog to complex objects. The particularity
is that it tries to integrate aspects from logic programming and functional programming.

It should be noted that database systems based on complex objects are still at the level of prototypes,

and that the field has had no major impact yet on industry. However, the need for such systems is obvious.

We believe that the main reason for this discrepancy is that languages for complex objects were to primitive.
Tables were appropriate for business applications, so were first-order query languages. It was correct to

distinguish the need of set/tuple-oriented data structures for the new database applications. However, there

was also a need of more user-friendly extensible manipulation languages for these applications. This may be

the reason for the time it takes to move the complex objects technology to industry. This does not mean

that the concepts that were developed were wrong. It only indicates that more work is needed to improve

interfaces to such systems.

In the development of the Verso system, two issues were greatly underestimated:

• hardware development: First, a hardware filter was considered. By the time it was designed and

realized, the project was almost over, and the systems specifications were so different that the hardware

filter was never connected to the system. Although much faster than the software filter (one order of

magnitude), the hardware filter was certainly not cost effective.

• software development: In designing the Verso system, many tasks like concurrency control or

recovery were not directly connected to the ideas that were to be validated. Also, the screen interface

which was an essential component required a lot of effort.
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The advent of packages like intelligent file servers certainly alleviate the pain of designing a full DBMS. Also,

the availability of interface generators will greatly simplify the global task.

After gaining some experience with the development of a database system based on nested relations

(1), we have investigated the interface to complex objects data bases. In particular, we have developed a

graphical interface to the Verso system. We have studied various approaches such as algebraic, calculus and

rule-based (2). The powers of these various approaches are compared in ABel (3). One conclusion of this

work was that the rule-based paradigm was very convenient in a complex object context. “Convenience” is

something that is hard to evaluate. The main advantage is in the use of constructed terms and the rewriting
of terms. Recursion which is usually emphasized in languages like Datalog is of secondary importance.
Indeed, recursion does not seem to be central to most applications.

The paper is organized as follows. The next three sections treat respectively points (1), (2) and (3).
Some general conclusions together with directions of future research are given in the last section. Due to

space limitations, our presentation will be informal and very general.

2 The Verso system

The major motivation behind the development of the Verso system was to increase the performance of

relational DI3MSs by using on-the-fly filtering.
To take full advantage of this filtering capability, it was decided to store data in hierarchical structures.

This physical organization strongly suggested a logical data organization into nested relations called V

relations.

Nested relations have been widely accepted and studied independently by several researchers (see this

issue) However, the Verso system was, to our knowledge, the first implemented system based on nested

relations.

The query language is algebraic. The filter can be viewed as a finite state automaton (FSA) which scans

sequentially one or two input buffers, and writes the result of the operation on an output buffer. It was

shown in BS,S] that this automaton-like device is sufficient to perform on the fly all algebraic operations

except for restructuring which involves some sorting, and cannot be realized uniquely by the filter. The

performance of the system thereby depends heavily on the performance of the filter.

2.1 Architecture

A version of the system, runs under the Unix operating system. Prototypes have already been experimented

on a 68000 based multiprocessor machine, the SM9O. Most of the code is written in Pascal.

The machine includes two processors (CPU and filter) which share RAM and a disk hosting the Unix

system and the programs (Figure 1).

Cpu

68000 RAM V24

I I
SM~

Figure 1 Verso architecture
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The CPU (Motorola, 68000 series) is in charge of the user interface, the high level DBMS layers (including
transaction management and concurrency control) and the filter’s control: it sends to the filter data transfer
and filtering commands.

A specialized hardware processor was first designed to realize the FSA filter VJ and developed by the
Inria SCD team. This hardware processor, connected to the mass storage as well as to the central bus was

in charge of data transfer and data filtering. Later on, the hardware filter was abandoned and replaced by

a standard disk exchange module including an Intel 8086 processor on which filtering is implemented by
software.

The filter performs the algebraic operations on files which physically represent V-relations.

In the following section, we describe the Verso data model
.
A thorough presentation of the system

may be found in V]. Except for the use of a filter and for the model of V-relations, the Verso system is a

quite standard system: the data is stored in relations contained in databases; concurrency is offered via the

concept of transaction, and managed using two phase locking; mechanisms for handling crash recovery are

provided, as well as simultaneous access from separate sites.

2.2 The Model

In this section, we briefly describe the Verso data model. We first describe the data structure c~lled V
relation. We then present the Verso algebra. A presentation of the model, together with some basic results

on V-relations can be found in (AB ii.

In the Verso data model, the data is organized in V-relations. An example of V-relation is given in Figure
2. The first line of the figure represents the structure or format of the V-relation.

A simple algebra can be defined for V-relations. As mentioned above, all algebraic operations but

restructuring can be computed by the filter. This operation involves some sorting. Thus, the complexity of

main memory computation is restricted to a unique module, namely the sorter.

MOVIE (THEATER (TIME)~ ) (ACTOR)

straw dogs rex 18 hoffman

20 georges

22 vaughan

chinese 19

20:30

23

metropolis studio 16 helm

18 abel

frolich

pierrot le fou studio 20 belmondo

22 carina

karate III studio 18

Figure 2: example of V-relation

The algebra consists of unary and binary operations. The unary operations are projection, selection,

renaming, and restructuring. The binary ones are join, union, and difference. Examples of unary operations
are now given. The queries are expressed here in natural language.

Example 2.1 The following projection- selection can be performed on the MOVIE database: “who are the

actors playing in a movie shown at the Rex between 7:30 and 8:30 featuring J.P. Belmondo and A. Karma,
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The language Cot is based on a clausal logic. The database consists of facts concerning both the predicates,
and the data functions. New facts can be deduced using rules. The use of monovalued data functions in

Col yields consistency problems which are studied in A}13] where a compile-time sufficient criterium for

consistency is exhibited.

A Cot program consists of facts and rules. Its semantics is given in terms of minimal models as it is

standard for instance in Datalog, or in Datalog with negation. Unfortunately, because of sets and data

functions, some programs may have more than one minimal model. A stratification in the spirit of the

stratification introduced by ABW,vG,N] is used. It is shown in AG1] that for stratified programs, a

canonical model of a given program can be computed using a sequence of fixpoints of operators.

We are currently implementing the Cot language in CAML ECHI a functional language of the ML family.
The goal is to validate the various features of Cot. Furthermore, the goal is to obtain an “extensible”

language. More precisely, we want to be able in the same session to define an aggregate function in C.4ML

and use it in Col. We are planning to consider a data intensive application such as geometrical databases

which requires both complex data and computational aspects.

Other issues will also be addressed such as:

1. query optimization,

2. updates and their semantics, and

3. the introduction of some inheritence mechanisms.

5 Conclusion

We presented our past and present work on complex objects. With respect to more classical relational DBMS

designs, Verso’s major novel features are the following:

• Data is organized in nested relations. This is a first step toward the use of more complex structures,

while keeping the advantages of the relational model (e.g. an algebraic language).

• It includes a filter in charge of all algebraic operations except for restructuring. This automaton-

like filtering mechanism is well adapted to processing of both unary, and binary algebraic operations.
Furthermore, the filter is also used for providing fast updates.

• Although by using dedicated hardware for filtering, one should gain one order of magnitude on re

sponse time, standard microcomputers have a performance that increases rapidly with time. For that

reason, we believe that the use of “off-the-shelf” components for filtering should be preferred to a

time-consuming and costly design of dedicated hardware.

The evolution clearly indicates two tendencies that can also be noticed in the field at large:

• the data structures are more general: restriction on the use of set and tuple constructors of the nested

model are removed, heterogeneous sets are introduced, and

• the languages become more elaborate: rule-based, recursion, language extensibility.

The problem of performance clearly remains a key issue. The influence of the logic programming field,
and the object-oriented paradigm should also become more and more important in the world of complex
objects. The challenge is clearly to incorporate the nice features from these two disciplines.

Complex objects is a field where it is quite hard to evaluate improvements. There is a real lack of

benchmarks:

• First, for performance evaluation. The Verso system was tested against benchmarks for pure relations,
and

• Next, for “user friendliness”. There is no way to compare language proposals.
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ABSTRACT

LauRel is a prototype database system being developed at the University of

Waterloo. LauRel, and its query language SQL/W, are based on an extended relational

model. This paper gives an overview of the language facilities supporting set valued

attributes (nested relations) and reference attributes (pointers).

1. Introduction

The data model and query language supported by a database system determine the functionality of

the system and thereby its application domain. In the area of administrative data processing, the rela

tional model and SQL have rapidly gained widespread acceptance. The relational model and SQL are

simple, yet powerful, at least compared with older approaches. However, it has become apparent that the

relational model has serious shortcomings, even for traditional database applications. The basic problem
is its limited modelling capability; being forced to model everything as (flat) relations containing only
atomic attributes often leads to awkward database designs and unnecessarily complicated queries. Need

less to say, this is not a new observation and several proposals for extending the relational model have

been reported in the literature.

LauRel is a prototype database system being developed at the University of Waterloo. The system
will support an extended relational model and an SQL-based language called SQL/W. It will also serve as

a testbed for research on parallelism in database systems and is being designed to run on a shared-

memory multiprocessor system. This paper gives a brief overview of the data model and the query

language of LauRel, focusing on the support for set valued attributes (nested relations) and reference

attributes (pointers, foreign keys). The design has not yet been completely finalized and may still be

modified. Several other additions to the data model are being considered.

The design of LauRel and SQL/W has been influenced by, and borrows freely from other proposed
data models and query languages. Readers familiar with the literature will recognize the result as a syn

thesis and extension of ideas from many sources, including GEM TZ, Zal, NF2 data models RKB, Dad,

SS], EXODUS ICDVJ, Iris Fil, POSTGRES RSJ, and DAPLEX Sh]. Although the concepts used are not

new by themselves, the overall design is unique and, in our opinion, represents an improvement over pre

vious proposals.

This work is supported by ITRC: Information Technology Research CenLre, Ontario and the National Science and En

gineering Research Council ot Canada.

Electronic mail: patarson@waterloo.edu
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2. Data Definition

In addition to atomic (single valued) attributes, SQL/W supports set valued attributes (nested rela

tions). The atomic attribute types are string, numeric, float, date, time, money, and ref.

Strings can be of fixed or variable length. Attributes of type date contain three subfields: year.
month, day. Attributes of type time also contain three subfields: hour, miii, sac. Each relation

must have a primary key consisting of one or more atomic attributes. ref is short for “reference to” and

denotes a pointer to a tuple in the referenced relation. Logically, a reference attribute is treated as con

sisting of the primary key of the referenced tuple. However, it may be implemented differently and

stored, for example, as an internal tuple identifier (TID).

The following simplified college database will be used as a running example. It contains information

about professors, courses, course offerings, students and course enrollment.

create database COLLEGE

owner palarson

create relation PROFS of COLLEGE

C profid numeric(5), key
name string
datejoined date

rank string(2), values( AP, ‘AS’. ‘P)

phone numeric (7)

salary money(6), range(30000. .100000)

create relation COURSES of COLLEGE

C courseid strlng(6) , key
name string

prereq setof ref COURSES

offerings setof

C term strlng(3), key
instructor ref PROFS

takenby setof ref ENROLLMENT

)

);

create relation STUDENTS of COLLEGE

( studentid numeric(8), key
name string
credits setof ref ENROLLMENT

);

create relation ENROLLMENT of COLLEGE

C course ref COURSES.offerlngs
student ref STUDENTS

status strlng(3), values( Crd’, ‘mc’);

grade numerlc(3)

dategranted date

) enrkey = key( course, student)

Relations are grouped together into databases. Each database has an owner who has all privileges
required to create and destroy relations, access and update any relation, and grant various privileges to

other users.

Most of the attribute declarations are self-explanatory but a few comments are in order. PROFS is

a traditional flat relation. A range or a set of permissible values may be specified for an atomic attribute,
as done for rank and salary. The relation COURSES contains two nested relations: prereq and
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offerings. However, they are of different types: prereq is a set of pointers, while each tuple in

offerings consists of several attributes, one of which is a set of pointers. The declaration ref

COURSES
.
of ferings in ENROLLMENT means a pointer to a tuple of type off erings within a tuple of

type COURSES. In other words, references to tuples of a relation within another relation (to any depth)
are allowed. This is one of the reasons why subrelations must have a key. (A subrelation is a relation

nested within another relation.) Unless otherwise specified, keys for subrelations are taken to be locally,
but not globally, unique. For example, there cannot be two offerings of the same course having the same

value for term. However, two different courses may well have two offerings with the same value for

term.

Disclaimer: The above organization of the database may not be the best. It was chosen purely to

illustrate the main features of the data model and the query language.

3. Query Facilities

This section illustrates the main features of SQL/W by means of a series of examples. The

language is not a strict extension of SQL. Support for set valued attributes and reference attributes are

the main additions, but, at the same time, the language has been generalized and simplified by removing

many unnecessary restrictions. Orthogonality was an important design goal.

3.1. Basic Queries

This section illustrates the basic form of a query and also introduces an alternative, more succinct,
form.

Q 1: For every CS course with at least one prerequisite course, find the course id, name and all offerings
of the course.

select courseld, name, off erlngs( term )

from COURSES

where courseld like ‘CS%’ and exists( prereq )

The projection list in the select clause shows the attributes and the nesting structure of the result. In

addition to attributes at the top level (courseid, name, offerings), we can also specify what attri

butes of a subrelation to keep.

From a query point of view, a set of references behaves as a subrelation consisting of the tuples
referred to, i.e. pointers are automatically dereferenced. This is illustrated by the following query.

Q2: For each CS course, find the course id and name of the course, the course id and name of all its

prerequisite courses, and the term of all offerings of the course.

select courseid, name, prereq( courseid, name), offeriugs( term )

from COURSES

where courseid like ‘CS%’

Even though prereq is set of pointers, it can be used in the same way as offerings which contains

actual tuples.

Q3: Same as Q2, except that we want to retain all attributes of COURSES (including all attributes of

the subrelation offerings).

select *

from COURSES

where courseid like ‘CS%’

An asterisk in the projection list is a shorthand for “all attributes of the operand relation(s)”. For a

reference attribute, the key of the referenced tuple will be returned. The phrase select * from can be

omitted. Hence, the above query can be written simply as

COURSES where courseid like ‘CS%’
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There is an alternative form of a query which omits the key words select and from. In this

case, the projection list is placed after the name of the operand relation. If there is more than one

operand relation, the list must be enclosed in parentheses. Hence, the following expression is equivalent to

the query above under Q2.

COURSES( courseid, name, prereq( courseid, name). of ferings( term ) )

where courseid like CS%’

As we shall see, this alternative form is most useful for nested queries, that is, queries within query

expressions. Note that the expression prereq(courseid. name ~ is, in fact, a query and could have

been written as select courseid, name from prereq. However, the alternative form of the query

is much more succinct.

3.2. Implicit Joins

In the same way as in GEM and EXODUS, joins through reference attributes are specified impli-.

citly by path expressions using the dot notation. This is consistent with the view that reference attributes

are automatically dereferenced and that a dot followed by an attribute name represents attribute (field)
selection. The dot notation is commonly used for field selection in programming languages. A sequence

of (relation or attribute) names separated by dots is called a path expression.

Q4: Find the student name, course id and term for all incomplete course credits in courses taught by
John Doe during the fall term of 1987.

select student.name, course

from ENROLLMENT

where status = ‘mc’ and course.term = ‘F87’

and course.instructor.name = John Doe’

We can now state the rule for dereferencing of pointers: a pointer is dereferenced whenever further field

selection is done. Further field selection can be occur in two circumstances: in a path expression or in the

select clause or where-clause of a query having a set of reference attributes as an operand. The path

expression student
.
name represents the attribute name of the STUDENTS tuple pointed to by stu

dent. student is of type ref STUDENTS.
.
name dereferences the pointer, resulting in a tuple of type

STUDENTS, from which the attribute name is selected. The attribute course is of type ref

COURSES
. offerings and no further field selection is done. Hence, it represents the (global) key of a

COURSES.offerings tuple, i.e. the attributes courseid and offerings .term.

Q5: Find the name and salary of all profs who joined in the same year as John Doe and who earn more

than him.

select P2.name, P2.salary
from P1. = PROFS. P2 = PROFS

where P1.name = ‘John Doe’

and P1 .datejoined.year = P2.datejolned.year
and P1.salary < P2.salary

SQL/W supports explicit joins in the normal way, as illustrated by the example above. In this query, it is

necessary to introduce explicitly declared range variables. P1 and P2 range independently over tuples in

PROFS. If range variables are not declared, each relation in the from-clause is given an implicit range

variable with the same name as the name of the relation.

Implicit joins are always outer joins, that is, if the value of a reference attribute in a path expres

sion is null, the value of the whole path expression is null. For queries containing explicit joins, an outer

join can be specified through a preserve clause, as proposed in Dati. The preserve clause is placed

immediately after the where-clause. It simply consists of the keyword preserve followed by a list of

(implicit or explicit) range variables.
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3.3. Nested Queries and the With-Clause

A query expression embedded within another query is called a nested query. SQL/W allows a query

expression wherever a relation name or an attribute name is allowed. This feature makes it possible to

manipulate relations nested within other relations and also to let the output of a query be the input to

another query.

Q6: For each student, find all courses in which the student has received a grade of 90 or more. Report
only those students who have at least one such course.

select name, credits( course.courseid. grade) where grade > 90

from STUDENTS

where exists( credits where grade > 90 )

For each tuple in STUDENTS, the where-clause where exists (. ..~... is first evaluated. Each such

tuple contains an instance of the nested relation credits, which (logically) represents a set of ENROLL

MENT tuples. To determine whether a STUDENTS tuple qualifies, the nested query credits where

grade > 90 is first evaluated, after which the function exists is applied to the result. If the STU

DENTS tuple qualifies, an output tuple is constructed by evaluating the expressions in the select clause

(using the complete STUDENTS tuple as input). The value of the attribute name is first copied to the

output. Then the query credits (...) where grade > 90 is evaluated, returning a set of tuples

(consisting of two attributes: course
. courseid. grade), which are copied to the output.

Embedding query expressions within queries may result in complex expressions which are difficult to

grasp. A query expression defines a function which returns a set of tuples. What is needed is the ability
to separate the invocation of a function from its definition. This is standard practice in programming

languages. To this end, a new clause, the with-clause, has been added to SQL/W. A with-clause defines

a nested query (or scalar expression) and assigns it a name. An occurrence of this name elsewhere in the

query invokes the function. Function calls have copy semantics: the result of a function call is the same

as would be obtained by replacing the function call by the definition of the function. Using this feature,
the query above can be written as

select name, topcredits
from STUDENTS

where exists( topcredits )

with topcredlts = ( credits( course.courseld. grade )

where grade > 90 )

A nested query does not necessarily operate on a relation nested within one of the operand relations

of the outer query. It may also operate on top-level relations.

Q 7: For each assistant prof, find his/her name and all courses he/she taught during the winter term of

1987.

select name, taught
from PROFS

where rank = AP

with taught = select courseid, name

from COURSES

where exists( of ferings where term=’W87

and PROFS.profid = instructor.profid )

This is an appropriate point to discuss scoping rules. Let Q, be a query occurring in the select

clause or where-clause of a query Q~...1, which, in turn, occurs within a query Q~_2, and so on until we

reach the outermost query Q1. Q~ may then operate on any collection of top-level relations and set-

valued attributes of the operand relations of Q,,1, Q~....2, . .

, Q~. The select clause and where-clause of

Q~ may refer to any attribute of the operand relations of Q,, Q~1, . .

, Q1. Attribute names are

resolved bottom up, i.e., given a name, we first attempt to find it as an attribute of the operand relations

of Q,,, then Q,~, and so on. These rules are applicable to functions defined in a with-clause because of

the copy semantics of function calls. They apply to the left-most attribute of a path expression, i.e., the

path defined by a path expression must begin from an attribute within the scope of the query.
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Applying this rule to the example query above, we find that the where-clause of the query offer

ings where
... may refer to the following attributes:

offerings: term, instructor, takenby
COURSES: courseid, name, prereq

PROFS: profid, name, datejoined, rank, phone, salary

Any other attribute reachable from PROFS, COURSES, or offerings must be specified through a path
expression beginning with one of the attributes within the scope of the query.

3.4. Set Operators and Functions

SQL/W supports the following comparisons between sets:
, <>, contains, subset of. A set

(of tuples) can be defined by a set constant, a set-valued attribute, or a query. To test whether an ele

ment is a member of a set, we can use either element of or in. As already seen in several queries,
exists tests whether a set is empty. The normal set operators are also supported: union, inter

sect, minus. As the language does not have any facilities for handling sets of sets, all sets of sets are

converted to sets (without duplicate elimination). The following queries illustrate some of these features.

Q8: Find every course that has both CS240 and CS340 as prerequisites.

select courseid, name

from COURSES

where prereq( courseid ) contains ( ‘CS240’. CS340’ )

The query prereq( courseid ) represents a set of course id’s which is then compared with the set

constant C ‘CS240’, ‘CS340’ ).

Q9: For each course, find the total number of students who have taken the course.

select courseid, count( of ferlngs.takenby( student ) )

from COURSES

The expression off erings.takenby( student ) represents a set of sets of student id’s, which is

automatically converted to a set of student id’s. For example, the following set of sets C C 100. 120,

099). C 234 ), (200, 120, 333) ) would be converted to the set C 100, 120, 099. 234,

200, 120, 333 ).

The normal aggregate functions count, sin, max, sum, and avg are all supported. count

can be applied to any set. The other functions can only be applied to a set containing a single attribute,
which, in the case of sum and avg, must be numeric.

Q 10: For every student, find the student id, name, the number of completed courses and their average.

select studentid, name, count( completed ), avg( completed(grade) )

from STUDENTS

with completed = credits where status = ‘Crd’

3.5. Nesting and Unnesting

Any language that operates on nested structures needs facilities for altering the nesting of a struc

ture. In SQL/NF RICEI, this is achieved by providing two functions: nest and unnest. Nest creates a

new nested relation. Unnest expands or unrolls a relation nested within another relation. In SQL/W,
nesting is provided through a slight extension of the group-by clause and unnesting is done implicitly
according to the way attributes are specified in the select clause. As in standard SQL, group-by can also

be combined with aggregate functions. The basic idea is best explained by a few examples.

Qil: For each year, count and list all professors hired that year.

select datejolued.year. count( set ), hired = set( profid, name )

from PROFS

group by datejolned.year
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The group-by clause is applied after the where-clause. It partitions the tuples of the operand relation(s)
into groups according to the attributes specified in the group-by clause. For each group, one tuple is

formed. The tuple contains all the attributes mentioned in the qroup-by clause and a nested relation

called set, consisting of all attributes not specified in the group-by clause. (The default name set may

be changed.) All the normal operations can then be applied to the relation set in the select clause.

Above, the function count is applied to set to count the number of tuples. A new nested relation is also

formed by projecting set onto profid and name and the new relation is assigned the name hired.

Q 12: List the course id, name and instructor of all course offerings in 1987.

select courseid, name, offerings .term, offerings .lnstructor.name

from COURSES( courseld, name, of ferings where term like ‘_87’)

The query in the from-clause is first computed resulting in a relation consisting of two atomic attributes

and a nested relation containing course offerings for 1987. Then the outer query is evaluated. M writ

ten, the select clause of the outer query specifies that the result be a relation consisting of four atomic

attributes, two of which are from the nested relation off erings. The unnesting required to bring these

attributes to the top level is performed, after which the select clause can be evaluated. In other words,
the unnesting required is inferred from the nesting structure of the desired result as specified in the select.

clause. If we had specified ...
of ferings( term, instructor.name )

. ..
no unnesting would

have been required. The following query combines unnesting, group-by, and aggregate functions.

Q13: For each instructor, find the total number of course offerings taught by him/her.

select teacher, count( set )

from COURSES( teacher = off erings.instructor.name, courseid )

group by teacher

4. Update Facilities

The standard commands, insert, update, delete must be extended to handle set valued attri

butes. The following examples illustrate the main features.

Ui: Add a new course PM350, Group Theory to the COURSES relation. The course has two prere

quisites: MA131 and PM250. There are no offerings of the course.

insert into COURSES

values < ‘PM350’, ‘Group Theory’, C <‘MA131’>, <‘PM250’> ), none >

This example shows how tuple constants and set constants are constructed. An empty set is indicated by
the keyword none.

U2: Add PM330 as a prerequisite for PM350.

Insert into COURSES.prereq
values < ‘PM330’ >

where courseid = PM350’

The target of an update may be a subrelation. This requires the addition of a where-clause to the insert

command so that the correct instance(s) of the subrelation can be selected.

U3: Change the name of the course C0230 to Graph Theory and add MA13O as a prerequisite.

update COURSES

set name = ‘Graph Theory’
insert into prereq values < ‘MA13O’ >

where courseld = ‘C0230’

An update command may contain nested insert, update, and delete commands to modify set valued attri

butes of the target relation. This ability is not needed, however, for insert or delete commands.

U4: Make CS340 have the same prerequisites as CS345 and delete all 1987 offerings of CS340.

update COURSES

set prereq = ( COURSES( prereq ) where courseid = ‘CS345’ )

(delete from offerings where term like ‘_87)
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where courseld = ‘CS340’

This example shows that queries can be also be embedded in update commands. Queries can be used to

provide values in an update expression, as shown above, or values for an expression in a where-clause.

5. Further Extensions

Several other attribute types are being considered for inclusion in the data model: conditional attri

butes, embedded attributes, and arrays. Conditional attributes are attributes (or attribute groups) which

occur in a tuple depending on the value of other attributes. They can be viewed as a generalization of the

idea of variant records. The problem is how to incorporate facilities in the query and update language for

processing sets of mixed type. Embedded attributes are attributes embedded in an attribute of type

string, i.e., they provide the ability to name and treat as a normal attribute parts of a string. The issue

is how much flexibility to provide in specifying the location of an embedded attribute.
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ABSTRACT

This paper summarizes the work done on the storage models for nested relations. In doing so,

we also discuss the storage models for complex objects.

1. Introduction

Storage structures for nested relations AbiB84, DKAB86, StoR86, DesV88] and complex objects

VaKC86, KiCB87, KCJB87, CopK85J have been investigated by many researchers. In this paper, we

first briefly summarize the recent research on nested relation storage models, as well as the research on

complex object storage models (as they apply to nested relation storage models). We do not discuss

those complex object storage models that are implemented over existing relational storage subsystems,

namely the models of Kim et at K1CB87I. and Lone et al LKMPM85]. We then summarize the par

tial normalized storage model of nested relations Hat088] which uses the workload information of the

database system under consideration to obtain a “better” storage model (i.e., one with a lower query

cost) for a given nested relation. Based on the nonnalized storage model, the nested relation scheme is

graphically represented as a tree called the scheme tree OzsY87]. By using the workload infonnation,

and by performing a series of merges on the nodes of the scheme tree, a near-optimum scheme tree is

produced to represent the partial normalized storage model.

It is shown Haf088] that the approach which uses the greedy method, locates the optimum
scheme tree in most of the cases. In a few cases, when the approach locates a “near” optimum scheme

tree, the relative difference between the costs of the produced scheme tree and the optimum scheme

tree is shown to be very small.

2. A Brief Survey of Storage Models for Nested Relations

As a running example in this paper, we use the nested relation scheme R where R=(a, A, B),

A=(b, C), B=(c, d), C=(e, f). R, the outermost relation, is called the external relation. A, B, and C

are internal relations (i.e., relations inside the external relation). Atomic attributes (i.e.. attributes

whose values are single values) are denoted by lower-case letters. Fig 1. illustrates the scheme tree of

R.

System 2000 and ADABAS OUch] are two hierarchical database systems used to implement

nested relations. The segments of hierarchical records are inserted into one file. All hierarchical rela

tionships are expressed by a second file. In OASIS Wied83], an instance of a tuple, together with its

descendants, is placed into a single compact variable-length record.

The research in this papa is supported by the National Science Foundation grant DCR-8605554.
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In IMS McGe77l, a relation and all its internal relations appear in a single file. Each top-level

entry in a file contains the atomic attributes of a tuple in the external relation. The four file options for

IMS are HSAM, HISAM, HDAM and HIDAM.

Recently, some new database management systems supporting nested relations have been

designed and are being implemented for non-traditional applications areas. EXODUS CDRS86] and

POSTGRES StoR86] are two examples. In EXODUS, the basic unit of stored data is the storage

object ( an entire tuple). Storage objects can grow and shrink in size without putting any restrictions on

where we should delete or insert. Accordingly, the system supports insertion and deletion of new por

tions of a storage object anywhere within the object. In POSTGRES, a new datatype, called POST

QIJEL, has been defined to support nested relations. A field of type POSTQUEL contains a sequence

of commands to retrieve data from other relations tha1. represent the subobjects. All relations are stored

as heaps within an optional collection of secondary indices.

e, f

Fig. 1. Stheine tree Fig.4. FSM

for R Repie~ernaticii
of R

In the literature, storage models for nested relations are in general classified into four storage

models, namely, the decomposed storage model, the nonnalized storage model, the flattened storage

model, and the partial decomposed storage model. There are very few perfonnance evaluation studies

of these models VaKC86, ASGS86, K1CB87]. In addition, typically, the research involving these

models have been done under the context of complex object storage models, and have not specifically

considered the performance of a rich set of relational algebra expressions. Therefore, our discussion of

the performances of the storage models is quite preliminary.

The Decomposed Storage Model (DSM) CopK85, KCJB87] utilizes a transposed storage. Each

atomic attribute of a relation with a surrogate for record identity forms a binary relation. Each binary

relation is stored into a separate file.

Example 1. (DSM)

There axe 6 binary relations and thus 6 files in the DSM representation of R. The binary relations are:

R~ =(SR ,a), Ab =(SA ,b), B~ =(S3 ,c), Ba(SB ,d), C, (Sc ,e) and C1 (Sc ,O,

where S, is used as an identifier for relation CD. A surrogate is a unique value, possibly invisible to the

user. Surrogates in the context of nested relations provide uniformity and provision for capturing joins

Va1d87], and eliminate the need for user-defined, multi-atiribute keys for externalllnternal relations.

b

Fig.2. DSM Fig. 3. NSM

Representation Representation
ofR o(R
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Fig. 2 illustrates the DSM, where each circle represents a distinct file.

The DSM performs well for selections and projections on a few attributes, and, in general has an

advantage over other storage models when a few attributes are involved in the query. The performance

of the DSM is poor when a large number of auribute’~ fire involved CopKS5, VaKC86]. The DSM is

proposed to be accompanied by join indices VaIB86, Vald8l] for faster joins.

The Normalized Storage Model (NSM) StoR86, VaKC86] decomposes a nested relation in such

a way that the atomic attributes of each external/internal relation tuple form a record of a file, and

inner relations at a given level are related to each other by using surrogates. Join indices may be used

in order to retrieve an internal relation.

Example 2. (NSM)

There are 4 files in the NSM representation of R. Each file contains the atomic attributes of an

internal/external relation along with its surrogate attribute. The records of each file have the format

R=(SR ,a), A=(SA ,b), B=(S9 ,c,d) and C=(S~ ,e,f)

Fig. 3 illustrates the NSM, where each circle represents a distinct file.

Projection on a large number of attributes at the same level is very well supported by the NSM.

On the other hand, projection on a small number of attributes at different levels degrades the perfor

mance of the system. Also, the existence of a long attribute in the file hurts the performance of all

operations involving the other attributes VaKC86].

The Flattened Storage Model (FSM) (DKAB86, VaKC86J is originally called the direct storage

model. A nested relation is stored directly into a single file. Each record of a file represents an entire

external relation topic. The records of a file are clustered on atomic atthbutes of the external relation

tuples. Access to nested relation topics based on attributes other than those of the external relation

topics are done either by sequential scans or by using additional data structures such as secondary

indices or elaborate hashing schemes DesV 88] or array-pointers DKAB86]. The basic disadvantage
of additional data structures is their maintenance and access costs.

Example 3. (FSM)

The whole nested relation instance for R is stored into one file whose record format is

(SR,a,(SA ,b,(Sc,e,f) ),(S8 ,c,d})

which is ifiustrated in fig. 4.

The main advantages of the FSM are: (a) retrieval of entire external relation topics is efficient,

(b) compared to storing the nested relation into several files and joining them when there are queries

involving several files, there are no such joins, and (c) there is a one-to-one correspondance between a

conceptual nested relation topic and the internal file record. The basic disadvantage of tbe FSM is its

performance degradation for large tuples that do not Ct into a page. In this case, retrieving topics of

inner relations is not efficient VaKC86].
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Yet another approach is to disregard the structure of tuples and store clusters of all atomic values

in a single file DesV88l. However, in such a case, in addition to the need for additional data struc

tures, simple operations such as sorting or tuple deletions may become inefficient.

The DSM and the NSM may be viewed as special cases of another storage model. The Partial

Decomposed Storage Model (P-DSM) HofS75, NCWJ84, VaCK86] is a mix between the DSM and

the NSM. The atomic attributes of an internal/external relation are partitioned (also called “vertical par

titioning” HamN78, RoTK82]) such that those atomic attributes that are frequently accessed together

are stored in the same file. Each file contains a set of atomic attributes and an identifier of their con

ceptual relation.

Example 4. (P.DSM)

The P-DSM model for R can take several possible forms. One of those forms produces 5 files with the

record formats

R=(SR ,a), A=(SA ,b), B~ =(SB ,c), Bd=(SB ,d) and C(Sc ,e,f).

The P-DSM is a compromise between the DSM and the NSM, and supports the selection opera

tion and the projection operation on those attribute se~ accessed frequently. The efficiency of the P

DSM depends on the effectiveness of the vertical partitioning. Thus, when the workload characteriza

tion (and ,
hence, the joint utilization of attributes) changes, P-DSM performs poorly.

3. New Storage Models for Nested Relations

In Haf088], we have introduced a new type of storage model, the Partial Normalized Storage

Model (P-NSM). The NSM and the FSM may be viewed as two special cases of the P-NSM. In the

P-NSM, the nested relation is vertically partitioned such that those internal relations which are fre

quently accessed together axe stored in the same file. Each file contains the atomic attributes of an

internal/external relation and some of its descendants.

Example 5. (P-NSM)

One possible P-NSM model for R may have 3 files with formats

R=(SR ,a,(SA ,b)),B=(SB ,c,d) and C=(Sc,e,f).

which is illustrated in fig. 5.

The spectrum of different storage models is illustrated in Fig. 6.

By storing into the same file the internal relations which are accessed together frequently, the

number of I/O operations required to respond to queries can be reduced. In general, the storage model

of a nested relation can be classified as supporting three different query types: queries manipulating

(a) entire external relation tuples,

(b) tuples of an internal relation at a given level, or

(c) specific individual components of extemalintemal) relation tuples and their atomic attributes

at different nesting levels.

If the query type (a) is the dominant query type then clearly the FSM is the best choice to implement
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P-FSM

FSM • •DSM

P-NSM\ /PDSM
NSM

Flg.6. The Spectnim of Different

Storage Models for

Nested Relatoxis

the nested relation. For the query type (b), the NSM is the obvious choice to implement the nested

relation. Queiy type (C) constitutes the general case for nested relation queries. The P-NSM provides

good support for those nested database systems which have the query type (c) as the dominant query

type. By using the appropriate methodology and the workload information of the system, the NSM

may be turned into a P-NSM with a better query processing performance. Below we describe such a

methodology.

The NSM is graphically represented as the scheme tree. Each node in the scheme tree represents

a file containing the atomic attributes of an internal/external relation. Figure 1 describes the scheme

tree of R. We are specifically concerned with two parameters of the workload information of a data

base system. Query count is the first parameter. Each node and each edge in the scheme tree has its

own query count (frequency) denoting the number of queries that manipulate the information in that

node and in the nodes adjacent to that edge, respectively. In Haf0881, we give the ASSIGN-F algo

rithm which, given a set of queries, assigns frequencies to the nodes and edges in the scheme tree in a

consistent manner. The second parameter is the query cost. The query cost of each node is a function

of the size of the file represented by the node, and the type of the query used. Each node may have a

different query cost such as constant, linear, logarithmic, etc., depending on its file organization and the

specific query type. Queries axe classified according to their disk processing costs. Each group of

queries contains those queries that have the same disk processing cost.

We compute the scheme tree cost by using the query costs and the frequencies of the nodes and

the edges of the scheme tree. Depending on the query types, the cost of the scheme tree in the NSM

can be changed by reducing the depth of the scheme tree through the merge operation of two or more

nodes (which produces a P-NSM representation). Clearly, the file (node) obtained after merging two

files (nodes) with different file organization types will need to choose between the two file organiza
tions. Then, the scheme tree with the lowest cost can be found by enumerating all the possible trees

derivable from the scheme tree by the merge operation.

Haf088] gives the GREEDY-MERGE algorithm which takes the original NSM scheme tree, the

query types, the associated query costs for each node, and frequencies for each node and for each edge
in the scheme tree, and uses the greedy method to convert the NSM scheme tree into a P-NSM scheme

tree with a lower scheme tree cost. The GREEDY-MERGE algorithm utilizes a level order traversal

Fig3. P-NSM

Representation
of R

Flg.7. P-FSM

Representation
of R
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starting at the lowest level. At each step, a subset of nodes (at the present level) are checked for merg

ing them into their father node. After examining the nodes at a certain level, the algorithm moves up to

the next higher level and repeats the merge checks at the new level. For all queiy cost types, except

the logarithmic query cost, the GREEDY-MERGE algorithm finds the scheme tree with the lowest

cost, without having to enumerate all the possible trees derivable from the scheme tree. For the loga

rithmic query cost type, the GREEDY-MERGE algorithm locates the optimum scheme tree in most of

the cases. In a few cases, when the approach locates a non-optimum scheme tree, the percentage of

error is very small.

In Haf088], our concern is to find the best P-NSM (i.e., the one with the lowest cost) among all

the P-NSM models derived from the NSM. That means the GREEDY-MERGE algorithm covers only

one variation in the spectrum of storage models in figure 6 (i.e., from NSM to FSM). To cover the

whole spectrum of storage models (i.e., from DSM to FSM), we now describe yet another storage

model, the partial flattened storage model (P-FSM). The P-FSM is a hybrid between the DSM, the

NSM and the FSM, where the nested relation is vertically partitioned based on the atomic attributes

and the internal relations affinities. In other words, each file contains a possible subset of atomic attri

butes of an internal/external relation and/or pails of its descendants. This is in contrast with incorporat

ing all atomic attributes of a relation into a P-NSM file. The P-FSM is illustrated in Fig. 7. All the

storage models of nested relations can be considered as special cases of the P-FSM.

So far we have discussed the effect of using abstract types of queries (having constant, linear,

logarithmic, etc., file processing costs) in obtaining near-optimum P-NSM or P-FSM storage models.

In Ha1088a] we discuss the implementations of specific nested relational algebra operators with expli

cit costs and specific file organization techniques. Clearly, any such discussion must precede with

specific ways of establishing connections between a nested tuple and its subtupies, which is briefly dis

cussed below.

4. Establishing Connection Between Different Subrelations

Clearly, storing surrogate attribute values in inner relation topics is sufficient to maintain unambi

guously the structures of nested relation topics. Vaiduriez et al VaKC86] discusses two additional

techniques, namely Binary Join Indices and Hierarchical Join Indices, to establish the connection

between two files representing the two exterriallmternal relations R, and R1, where R, is the father and

R. is the son. In binary join indices, for each pair of father-son files, there is a binary index, which is

itself a relation with two surrogate attributes. The number of entries in the binary index equals the

number of topics in the son relation. Binary join indices have been shown to be very useful in optim

izing joins Vald 87]. However, the perfonnance may slow down in some relational algebra operators

such as nest, unnest, projection or (range) selection.

In the hierarchical join indices, the structure of the whole relation is captured by using the surro

gates of the external/internal relations in the nested relation. For example, the hierarchical join index of

a topic of R in our running example is (SR (SA {S~) J (S8 } ). The hierarchical join indices is similar

to the FSM, and can be clustered on the root surrogate (SR, in our example). The tradeoffs between

binary join indices and hierarchical join indices are sh~ilar to the tradeoffs between the DSM and the

FSM. Also, even when hierarchical join indices are used, the retrieval of subtopics may necessitate the

maintenance of additional binary join indices.
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Yet another approach is to separate structural imormation from data completely. In DKAB86J,

each external relation tuple is stored into one record, and, for each topic, there is an entry in a direc

tory, called the mini-directory (MD). The mini-directory is used to handle the allocation of each tuple.

DesV88] generalizes the join indices of Va1d871 and defines a single tree structure in which,

given a single atomic value, one can locate all external and internal tuples having that value. To

achieve this goal, a hierarchical tuple identification scheme is devised. The details of this approach are

not yet available.
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Abstract

This paper summarizes work that has been done to date in the area of relational algebras for nested relations.

We emphasize the form and nature of the algebra operators and provide pointers to more formal papers. We pay

particular attention to the join operator and methods for joining nested relations in various forms.

1 Introduction

In this paper, we summarize the development of relational algebras for nested relations, paying particular attention

to the join operator since this is where the most interesting results occur. We trace the development of algebra
operators for nested relations created using single attribute, single level nest and unnest through the multi-attribute,
multi-level algebra operators. A normal form for nested relations is introduced which permits discussion of a set of

“reasonable” algebra operators for nested relations. We then concentrate on the natural join operator and discuss

the unique characteristics of joining relations in nested normal form OY87a]. Finally, we discuss ideas for recursive

forms of the algebra DL87,SS86] which more closely follow the structure of nested relations. We do not, however,

specifically discuss algebras extended with the powerset operator GVG88].

2 The Development of Operators for Nested Relations

2.1 Nest, Unnest, and Associated Relational Algebra Operators

In 1977, Makinouchi Mak77] first pointed out the need to look further at nested relations. In particular, further

research was required in determining how one might create nested relations from traditional (fiat) relations and what

operations should be defined for nested relations. In 1982, Jaeschke and Schek JS82] introduced the “nest” operator,

ii, which formed single-level, single-attribute nested relations from fiat relations and the “unnest” operator, p, which

is the inverse of nest. The nest operator requires the projection of the attributes other than the one attribute which

is being nested. This projection forms the partitions (or distinct combinations) over which the nested attribute is

then grouped. For each of these partitions, the “value” of the nested attribute is the set of all instances of that

attribute which were associated with that partition in the original fiat relation. Unnesting allows one to “flatten”

a nested relation formed via the nest operator. This unnesting is performed by combining each element of a nested

attribute with repeated occurrences of the associated partition of unnested attributes.

In addition to the one-attribute nest and unnest operators, JS82] briefly presents the possibility of applying the

normal relational algebra operators to nested relations. In particular, the point is made that union (U), difference (—),
projection (ir), and the cartesian product (x) can be defined for all relations; so they also apply on nested relations.

In addition, by allowing the comparison of set-valued attributes via the set comparison symbols C, C, j, J, and =,

JS82] extends selection (o) to nested relations.

In Tho83] and FT83] Fischer and Thomas expand the work of JS82] by generalizing the nest and unnest operators
to allow for multiple attributes and multiple levels; extending the definitions of the relational algebra operators in

view of the enlarged “scope” of nested relations; and providing results concerning properties associated with the

interaction of nest, unnest, and the relational algebra operators.

-39-



employee

employee = (name, children, skills)
name children skills

children (cname, dob)

skills = (type, examdate)
cname dob type examdate

(a) (b)

Figure 1: Structure Tree

2.2 A Nested Relational Model

We will now introduce and adopt the notation of Tho83] and Rot86] which is based on the concepts of “database

logic” as introduced by Jacobs Jac82].
A relation scheme, S, is a collection of rules (defining relations) of the form R, = (R11, R12, , R,,~). The elements

are attributes (of the relation defined by the rule R5). R1 is a higher-order attribute if it appears on the left hand

side of some rule, otherwise it is a zero-order attribute. The elements on the right hand side of a rule R1 form a set

denoted ER,. As is true of any set, these attribute names are unique. In addition, no two distinct rules can have the

same attribute on the left hand side.

For every database or relation scheme 5, we can define a unique directed graph, the structure tree of S (T5) (as
opposed to the scheme tree of OY87a]) which contains exactly those nodes corresponding to every attribute R1 (zero
or higher-order) in S. In addition, 2’s contains a directed edge (R1, R,) from Rj to R, if R5 E ER. (i.e., there is an

edge from the higher-order attribute defining the relation to each of the internal attributes within that relation).
For example, consider the database scheme shown in Figure la, and its associated structure tree given in Figure lb.

Here, an employee is defined to have a name, a set of children, and a set of skills. Each child is defined by a name

and a date of birth, while each of the employees skills are represented by the type of skill and the date that particular
skill was verified via an examination. Note that if the attribute “name” had appeared in both the employee and

children rules, we would not be able to consider “employee” a relation scheme.

Given this starting point, we can define fiat database schemes as a collection of rules of the form

R5 = (R~j, R32,.. . , R~) in which each R,~ is of zero-order. Similarly, we define nested schemes as those rules

in which the individual R~~’s may be of either zero or higher order. Thus we see that the term “nested relation”

describes the situation which occurs when a higher-order attribute appears on the right hand side. of some rule and

thereby “nests” a relation within another relation. In this paper, we also require that the rules remain non-recursive.

2.3 Multi-level, Multi-attribute Nest and Unnest

The nest (ii) operator, as defined by JS82], partitions the tuples on the basis of the attributes not being nested and

collects sets of nested attributes associated with each of these partitions. The first difference between this operator
and the “extended” version presented in Tho83] is that the extended definition allows each element of a set associated

with a given partition to in turn be a set of attributes instead of merely a single attribute. This allows for multiple
levels of nesting. In addition, the extended definition allows for nesting along more than one attribute at a time.

In a similar manner, the multi-attribute version of the sanest (p) operator is a straightforward extension of that

defined earlier in JS82]. In particular, each element of a nested attribute is repeatedly combined with its associated

partition of remaining attributes so as to “flatten” the overall structure. Again, the key to the “extension” is that

each element of the nested attribute may be composed of several attributes rather than one, as was the case earlier.

See Figure 2 for an example.

It should be stressed that the purpose of extending nest and unnest as shown above is to allow for the creation

of more general nested relations from a given fiat (or normalized) relation, and the manipulation of these nested

structures in a more general way.
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IA I X 1
a1 {x1,x2,x3}
a2 {x4}

l {x2,x3,x~} b2

r {x5,x6}

r2

Figure 3: Intersection Join

Al x IBI
a1 {x2,z3} b2

a2 {x4} b2

r1 XT2

When performing such manipulations, one should be aware of the following basic properties concerning the inter

action of nest and unnest operators Tho83]:

1. As illustrated in Figure 2, the results of a particular nest operation can be reversed by a subsequent unnest

operation. In fact, this is a property which holds in general.

2. An interesting counter-intuitive property is that unnest operations can noi always be undone by a subsequent
nest operation.

3. The order of unnesting is not important.

4. Unlike unnest, the order in which nest operations are applied is important.

As a result of the third of these properties, it is apparent that a nested relation can be “completely unnested”

(transformed into a flat relation via a 8eries of unnest operations) in different ways. The results of each of these series

of unnests will always be the same. Since this might be a desirable process, Tho83] also introduces the aggregate

operation p~. The application of ~i results in the compleie snnes~ing of the relation on which it operates. This, of

course, will always yield a fiat relation.

Having defined the more powerful versions of p and v, Fischer and Thomas FT83,Tho83] also define ways in which

the traditional relational algebra operators might be extended to apply to the more general nested relations now

achievable. This extension of the relational algebra operators is similar to that presented in J S82]. The primary
difference is that a comparison of tuples no longer involves a relatively simple set comparison of a single nested

attribute from each relation, each nested to only a single level. Now, we must compare complex structures in which

several attributes can be nested to various levels.

JS82] define two methods of performing a natural join (D4) of nested relations. The first of these methods can

be considered an “extension” of the “normal” natural join where set equality is used when set-valued attributes are

compared. The second method of joining two nested relations is the “intersection join” (i). With this operator we

take the intersection of the common nested sets when combining tuples in the join. If the intersections of all common

nested sets are not empty and the tuples join on their atomic attributes, then the tuples contribute to the result.

Figure 3 shows the results of applying the intersection join operator to two sample nested relations. In particular,
note that r1 N r2 ~ r1~r2 since r1 N = 0. Extensions of these operators to multi-attribute, multi-level nested

structures is straightforward FT83,Tho83].
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2.4 Partitioned Normal Form and Reasonable Extensions of the Algebra Operators

In the previous sections, the purpose of each operator extension was to obtain an operator which worked “similarly”
to the standard operator of the same name, but which operated on increasingly complex structures. The resulting
operators were then shown to possess or, in the case of the join operator, not possess various properties.
An alternative method for defining relational algebra operators might be to first define a desirable property (or

set of properties) and then define operators in such a manner as to ensure that these properties hold with respect

to the new operators. In Rot86J, Roth defines “reasonableness” as such a desirable property and then presents

“reasonable” extensions of the relational algebra operators as presented in Tho83]. Similar definitions of several of

these operators are also presented in terms of the Verso model in AB84,Bid87].

2.4.1 Partitioned Normal Form

As shown in section 2.3, there exist nested relations for which there is not a nest operation (or sequence of nest

operations) which will “undo” (reverse the effects of) a valid sequence of unnest operations. The PNF class of

relations is a class for which there is always a sequence of nest operations which will be an inverse for any sequence of

valid unnest operations. A relation is in PNF if the zero-order attributes form a key for the relation, and considering
each set-valued attribute, the (nested) relation within that attribute is in PNF. The class of PNF relations is a

natural one, corresponding to “real world” nested relations (see also OY87b,VF86}).
Two critical properties are:

1. The class of PNF relations is closed under unnesting, and

2. The nesting of a PNF relation is in PNF 1ff the relation when projected onto the attributes not being nested is

in PNF.

These properties ensure that unnesting a relation which is in PNF will always result in a relation which is in PNF,
and they give necessary and sufficient conditions under which nesting operations applied to PNF relations will return

PNF relations.

2.4.2 Reasonableness

The reasonableness property requires that two sub-properties hold. The first of these sub-properties, faithfulness,
requires an operator to act on fiat relations in the same manner as the “standard” operator from which it is extended.

The second sub-property, preciseness, requires the normalized (completely unnested) result of applying an operator
to a nested relation be the same as if the standard operator had been applied to the normalized versions of the nested

relations.

Formally, faithfulness and precision are defined, for binary operators, as follows:

Let Rd be the set of all flat relations and let Rel* be the set of all nested relations that have at least one higher-order
attribute in the scheme.

• Let ~y be an operator on Ret and let ~“ be an operator on Re1 U Rd. Then ‘y’ is faithful to y if r ~y q = r ‘y’ q for

every r,q € Ret for which r~q is defined.

• Let ~y be an operator on Ret and let ~y’ be an operator on Rel*. Then ~y’ is a precise generalization of ~y relative

to unnesting if p*(r_ylq) = p(r)7~f(q) for every r,q € Re1 for which r-y’q is defined.

Having defined what is meant by a reasonable operator, we now examine definitions of extended intersection (fl’)
and extended natural join (D4e). Formal proofs of the reasonableness of these operators for PNF relations are given
in Rot86].

2.4.3 Extended Intersection

As is true of the standard intersection of flat relations and each of its extensions which we have examined, the

extended intersection of two relations is defined only if their schemes are equal. Also, as one would expect, the

scheme of the result is the same as the scheme of the relations being operated upon. At the instance level, tuples
contribute to the extended intersection if they are the same with respect to their zero-order attributes, and if the

eztended intersections of their higher-order attributes are non-empty. The resulting tuple contains the extended

intersections for each higher-order attribute.

-42-



Si 82 SiNes2

A B X

C D

a1 b1 c1

c2

ci

d1

d2

d3

a2 b1 C3

C2

ci

d1

d2

d1

a2 b2 c1

C3

d2

d2

E B X

C D

e1 b1 c1

Ci

C3

d1

d3

d4

C3 b2 C3 d2

e4 b1 C3

C4

d1

d2

Figure 4: Extended natural join.

2.4.4 Extended Natural Join

In defining the extended natural join, Roth remarks that “join operations are difficult to define in the nested] world

due to the possibility of different nesting depths for the ttributes.”Rot86, pg 89] As an example, consider the

situation in which r1 is a relation on R1 = (A, X), X = (B, C); while r2 is a relation on R2 = (B, D). In this case,

a natural join of the relations would degenerate into a cartesian product of r1 and r2 since there are no common

attributes on which to join (i.e., ER1 fl Ej~ = 0). However, if r1 and r2 were completely unnested, then B wotild be

a common attribute and a join on B would take place.
As we can see from the discussion of reasonableness above, unless a join operator prevents the above situation

from occurring, it would nol meet the requirements for being reasonable. This problem can be solved by limiting the

relations which can be operated on by the extended natural join to those whose only common attributes are elements

of the top level scheme, or are descendants of higher-order attributes which are common at the top-level scheme.

Two tuples participate in an extended natural join if the values of their common zero-order attributes are equal
and the common higher-order attributes have a non-empty extended intersection. Figure 4 shows an example. The

first tuple from relation sj and ~2 join to create the first tuple jil 81 ~ 82 since the common zero-order attribute,

B, is equal in both tuples, and the higher order attribute, X, has a non-empty intersection between the two nested

relations. The resulting tuple contains the zero-order attributes and their associated values from sj and ~2, and X

which contains the intersection of the nested X relations from sj and ~

3 Reasonable Natural Joins of Arbitrary Nested Relations

The results which we have discussed thus far provide us with two methods of performing a natural join over arbitrary
nested relations — the equality and intersection joins as defined in FT83,Tho83]. Unfortunately, as proven in these

papers, some desirable properties do not hold in general for these operators. In particular, Tho83J proves that the

precision property does not hold for either form of the join. Therefore, we see that neither are reasonable.

We were able to improve this situation by defining extended natural join (NC) which is reasonable. However, in

doing so we restrict the types of relations to which the extended natural join can be applied. We will now look at

how the extended join can be used to allow for the reasonable natural join of arbitrary nested relations.

The method which is presented below is, in fact, a further extension of N~ in which the relations being joined are

“reshaped” (if necessary) in such a manner that the resulting relations are “~joinable.”
A first attempt at such a reshaping might well be the brute force method of completely unnesting the given

relations and then applying NC. In this manner, the operation reduces to a standard natural join of flat relations.

This certainly meets the “reasonableness” criteria, and in addition, the procedure can be applied to arbitrary nested

relations. However, this simplistic approach is really just “sidestepping” the problem. The results are unsatisfying
in that all information embedded in (and thereby the advantages of) the original nested relations is lost.

We might attempt to regain the original nested structure, but we must be careful in the subsequent applications
of ii. Recall that reasonableness is applied to relations in PNF and that the closure of PNF with respect to nesting
limits the nest operations which can be applied to a relation in PNF while ensuring that the result will be in PNF.
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Figure 5: Complex Nested Relations

Given the fact that the relations to be joined can have vastly different structures, the form which the resulting
structure should take on is far from clear.

One method of using N~ to achieve a reasonable natural join of arbitrary nested relations involves unnesting each

relation being joined just to the point at which N~ is applicable. The extended natural join, and its accompanying
proven properties are then available for use. The first benefit of this approach is that the manipulation of each relation

involves only unnest operations, under which PNF relations are closed. In addition, the actual join is performed

using N~, which which we know to be reasonable in and of itself. Finally, the resulting structure will already be

nested to the proper level (i.e., those sub-trees, and only those sub-trees, which are present in the structure trees of

both original relations will be present in the structure tree of the result).
Unfortunately, arbitrary nested relations can be much more complicated than those we have seen so far. Consider

the examples shown in Figures 5a and b. These relations have common attributes (both zero and higher order)
which are neither elements of the top level scheme nor descendants of higher-order attributes which are common at

the top level scheme. Thus, they are not joinable using the basic Me. Note that the common attributes are D, H,
and Q, none of which occur at the same level in R1 and R2. The (joinable) schemes which result from the proper

unnesting of R1 and R2 are shown in Figures 5c and d. An algorithm which is proposed as a method of reshaping
arbitrary nested relations R1 and 112 as described above is given in K1r88]. The basic idea is to search for common

higher-order attributes which are not at the top-level of the nested relation. The path to these common attributes

represent the schemes which must be unnested so that the common attribute becomes a top-level attribute. Thus

in Figure 5, the common higher-order attributes are D and H, and so in tree (a), we must unnest B, K, and X (the
path to D), and also E in the path to H. Tree (b) requires unnesting of L, N, and P.

So far, we have been concerned with how we might join two relations which have some previously defined nested

structure. We have not, as yet, examined the concept of “useful” or “meaningful” nesting strategies. The next

section will present such a viewpoint and, in addition, will allow us to examine the “joinability” of relations whose

structures we have determined a priori.

4 Nested Normal Form and Joinability

When we consider the process of designing “good” database schemes in the non-nested world, we quickly encounter

the idea of normalization. The basic idea behind this thoroughly researched process, is to eliminate “problems”
which can easily occur if ad hoc decisions are made in decomposing the relation schemes.

The results obtained to date OY87a,RK87] depend heavily on an interesting relationship between the meaning of

multivalued dependencies (or MVDs) which hold on fiat relations and the effect of performing a nest operation on

the same relation. In U1188], Ullman gives a useful description of the meaning of an MVD:

Suppose we are given a relation scheme B., and X and Y are subsets of B.. Intuitively, we say that X—~--~.Y

if given values for the attributes of X there is a set of zero or more associated values for the attributes

of Y, and this set of Y-values is not connected in any way to values of the attributes in R—X—Y.



The idea of associating a set of values from one or more attributes with a single value of another attribute is, in fact,

the basic function of the nest operator. JS821 that when the MVD X—--+Y J Z holds on a flat relation, then nesting
the attributes in any order will generate the same result. This is no~ true in general. The underlying principle here

is that it is vital to consider the effect of MVDs on the structure of nested relations when we “normalize” them.

In OY87a], scheme frees are used to represent nested relations. A scheme tree is a tree whose vertices are pair-wise

disjoint sets of attributes. The edges of these trees represent the MVDs which hold between the attributes of the

relation. Note that a scheme tree is similar to a structure tree except the intermediate names for the nested relations

are not represented.
As it turns out, some scheme trees are “better” than others in that they represent structures which further reduce

redundancy while representing the MVDs implied by the given MVDs. A relation is in nesied normal form (NNF) if

the scheme tree associated with the relation is normal. A scheme tree is normal if (1) the MVDs represented by the

tree are implied by the given MVDs, (2) their are no undesirable dependencies (partial and transitive dependencies),
and (3) each node of the scheme tree is a fundamental key for that tree. The last condition ensures that an arbitrary

structuring is not used for the nested relation.

An NNF decomposition procedure is given by OY87a] which begins with a flat relation containing all attributes

of interest and nests this relation to best meet criteria (1) and (3) of NNF. Then, if partial or transitive dependencies
exist, new scheme trees are created and attributes are eliminated from the original scheme tree to eliminate the

undesirable dependency.
We can now summarize the algebra operators which are used to join nested relations.

1. Arbitrary joins between any two nested relations can be performed via the equality and intersection join operators
defined in FT83]. Unfortunately, as Fischer and Thomas have shown, none of the properties which might be

considered “desirable” hold, in general, under these operators.

2. Arbitrary joins between any two nested relations can be performed in a reasonable manner Rot86,Kir88].
However, this may require restructuring of the relations involved. With respect to the desired goal of mainlaining
a specific structure (i.e., NNF), this approach appears to have limited significance.

3. The NNF relations can be rejoined in ezacily the reverse order from which they were formed. This simply
takes us back to a state comparable to that which existed after initially forming a non-decomposable tree. This

proposal will generate some (useful) side effects as we will see below. However, in light of the next item, this

becomes a trivial case.

4. Given a set of relations in NNF, arbitrary joins can be performed between any two of these relations wiihoui

restructuring either relation.

5. In “rejoining” NNF relations which were split during the normalization process, we will re-introduce partial
dependencies into the result; however, we will also eliminale all transitive dependencies which might have held

earlier.

5 Recursive Algebras

All of the operators we have seen so far operate on entire tuples of a relation. The only way to manipulate in

terior nested relations is to unnest the outer relation to the point where the operators can be applied and then

renesting to the desired structure. Proposals for using nested expressions in a recursively defined algebra appear in

DL87,Jae84,SS86j. We sununarize here the algebra of SSS6} and an extension of it in DL8T].
Schek and Scholl SS86] allow algebra expressions to replace attributes in selection predicates and projection lists.

Since attribute values may be relations whose attribute values again may be relations, etc., a nesied application of

the basic algebra operations leads to a high level of expressiveness. We may eliminate unwanted tuples from nested

relations by the recursive use of a selection or we may eliminate unwanted attributes from nested relations by the

recursive use of a projection. Interior rearrangement via nest or unnest can be easily specified as well as the use

of binary operators such as join and Cartesian product. To illustrate, we show the following queries against the

example relation used in SS86]. The scheme is DEPT = (D, DN, AE, TE), AE = (AN, AiD), TE = (TN, TJD,

C), C = (CN, Y). AE and TE contain information about administrative and technical employees, respectively. AiD

and TJD are job descriptions and C contains information about courses taken by employees.
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In this paper, we review the expressiveness of query languages for nested relations. We discuss

the naturalness of the nested algebra, which is emphasized by its BP-completeness. At the same

time, however, the nested algebra is only a poor extension of the flat algebra with respect to

expressive power. Indeed, the restriction of the nested algebra to flat relations is equivalent to the

flat algebra. Finally, we propose the powerset algebra, or one of the many equivalent formalisms,

as a valid alternative to the nested algebra, overcoming most of its limitations.

1. Introduction

In the last years, much attention has been paid to structured relations. In order to model

some database applications more naturally, Makinouchi 211 proposed to generalize the relational

model by removing Codd’s first normal form assumption 9], thus allowing relations with set-

valued attributes. Subsequently, a generalization of the relational algebra to relations with set-

valued attributes was introduced by Jaeschke and Schek 16). More specifically, they presented
the nest and the unnest operator as tools to restructure such relations, though only over single
attributes. Thomas and Fisher 32] generalized this model by allowing multi-level relational

structures of arbitrary (but fixed) depth. Consequently, several query languages were introduced

for this model or slight generalizations of it. We mention SQL-like query languages 19,25,26,28],
graphical-oriented query languages 141 and datalog-like languages 4,5,6,17]. Calculus-like query

languages were considered and discussed in 1,15,22,24,29,30]. Our primary concern in this article

is with the expressiveness of these languages: how can we measure their expressive power and

what criterions should a query language for nested relations at least have to meet to be considered

sufficiently rich?

For the classical flat case, Codd “solved” these questions in 10], by simply proposing the expres

sive power of the flat relational calculus (or, equivalently, the flat relational algebra) as a standard.

Unfortunately, this approach had two major drawbacks: first, it is not very convincing to use a

measure of expressiveness based on particular query language, and, second, it has been shown E21
that very natural queries, such as the transitive closure of a binary relation, cannot be expressed

*
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in the flat relational algebra. Therefore, Bancilhon 3] and Paredaens 23] independently searched

for a language-independent measure, which has come to be known as BP-completeness, after 7].
In essence, a language is BP-complete if whenever two relation instances satisfy certain struc

tural properties, there exist a query transforming one into the other. Bancilhon and Paredaens

showed that the flat relational algebra and calculus were BP-complete, thus formally confirming
their naturalness as query languages. Nevertheless, BP-completeness also has its shortcomings,
since it is a criterion defined on instance-level. E.g. for each binary flat relation instance, there

exists a flat relational algebra expression transforming this instance into its transitive closure;

however there does not exist a single expression that will do the transformation for all instances,

as noticed earlier. Chandra and Harel 7] therefore extended the fundamental ideas behind the

notion of BP-completeness to the query-level. The condition they proposed became known as CH

completeness. Unfortunately, CH-completeness is generally believed to be too strong a criterion;

indeed, Cil-complete languages have the computable power of Turing Machines. So, in general,

BP-completeness may be too weak as a measure for completeness, whereas CH-completeness is

obviously too strong.

Here, we focus mainly on the nested algebra as proposed in 32], and some of its extensions.

We describe recent results concerning their expressive power. In Section 3, we review a result

of 34], establishing the BP-completeness of the nested algebra. This result yields confidence in

the naturalness of the nested algebra as a query language for nested relations. There is however

another major corollary to this result. In the criterion for BP-completeness, the “structure” of a

instance is always described by a flat relation, even if that instance is deeply nested. Therefore,
it seems that, in the context of the nested algebra, the “information” contained in a nested

relation can be encoded in a flat relation, a feeling which is confirmed by results in 11,34]. This

observation also led to another question, discussed in Section 4: is the restriction of the nested

algebra to flat relations more powerful than the ordinary flat algebra? Or, in other words, is it

possible to write queries in the nested algebra with flat operands as input and with a flat output

which do not have an equivalent in the flat algebra? This question was answered in the negative
in 24], implying that the nested algebra is hardly an extension of the flat algebra, as far as only

expressiveness is concerned.

There is however one major difference between the flat and the nested algebra, which makes the

latter a less desirable query language for nested relations than the former for flat relations. In

contrast with the flat relational algebra, all “natural” calculi introduced for nested relations are

strictly more powerful than the nested algebra. In order to restore the equivalence, an operator

should be added to the nested algebra. As is shown by Abiteboul and Been 1], the powerset

operator, introduced by Kuper and Vardi in 18], is a possible choice for such an operator; the

algebra obtained by adding the powerset operator to the nested algebra is called the powerset

algebra. In Section 5, we discuss the powerset algebra and emphasize its equivalence to several

other natural extensions of the nested algebra, as established in 1,12,13]. Among these exten

sions are closures under least fixpoint operations as well as programming constructs. (Similar
extensions for the flat algebra were considered by Chandra and Harel in 7,8].) The equivalence
of all these algebras and calculi underlines the naturalness of the powerset algebra as a measure

for expressive power for nested relational query languages, although it may be still too powerful
from a computational point of view.
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2. Nested relations and nested algebra

In this section, we briefly review our formalism for nested relations as well as for the operators

of the nested algebra, defined in 32]. Basically, we assume that we start with an infinitely
enumerable set U of atomic attributes and an infinitely enumerable set V of atomic values. From

these sets, we build arbitrary attributes, nested relation schemes, nested relation instances and

nested relations in a recursive manner. An arbitrary attribute is either an atomic attribute

or a set of attributes in which no atomic attribute is repeated. E.g. if A, B, C, D e U, then

{A, {B, {C, D}}} is an attribute, but {A, {A, B}} is not. This condition is obviously included

to avoid ambiguity. Non-atomic attributes are also called composed attributes. Since composed
attributes are sets of attributes they can alternatively be interpreted as nested relation schemes.

Given a nested relation scheme ci (i.e. a composed attribute), a nested relation instance over ci is

a set of tuples over ci. A tuple t over ci is a mapping defined on ci; if A E ci is an atomic attribute,
i.e. an element of U, then t(A) is an atomic value, i.e. an element of V; if X E ci is a composed

attribute, then i(X) is a relation instance over X, interpreted as a relation scheme. Finally, a

nested relation is a pair (ci, w) in which ci is a nested relation scheme and w a nested relation

instance over ci. Interested readers can find formal details of these definitions in 11,12,13].
Here, we limit ourselves to illustrating them with an example. Therefore, consider a relation

representing persons, their jobs and the cities in which these jobs are executed.

{PERSON {{JOB } CITY }}

Jeff Willows professor Austin

president

Mary Higgins

consultant Dallas

teacher Houston

In this relation, there are two levels of nesting: jobs are grouped by the city in which they are

executed and sets of jobs and city are grouped by the person having these jobs. In the table

above, each box must be interpreted as a nested relation instance the tuples of which are the rows

in that box and the scheme of which is the set of attributes embraced by the brackets respectively
corresponding to the left and right edge of the box.

To conclude this section, we recall that the nested algebra of 32] consists of the following op
erators: union (U), difference (—), cartesian product (x), projection (7rç~i.), renaming (PY~X),
selection (ox=y), nest (liz) and unnest (~Lç~,). In the above notations, ci’ is a subset of the

scheme of the nested relation under consideration, whereas X, Y and Z are attributes belonging
to it; X and Y can be either atomic or composed, but must be “compatible” in order to have

the operations make sense; Z on the other hand must always be a composed attribute. All these

operations, except for nest and unnest, are straightforwardly borrowed from the flat algebra and

hence need little explanation. In particular, note that union and difference are only defined on

relations having the same scheme, whereas the cartesian product requires relations with schemes

that do not share any atomic attribute in order to be consistent with our definitions. This,
however, is not a real restriction, since we have a renaming operator. Finally, nest and unnest
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are two restructuring operators. For details about their precise definition, we refer to 27], in

this issue. By executing nested algebra operators consecutively, we can construct nested algebra

expressions. In the sequel, E(xi,. . . ,x,~) will denote an expression which takes n relations as

operands.

3. A completeness result for the nested algebra

As explained in the introduction, Bancilhon 3] and Paredaens 23] proposed BP-completeness

as a language-independent notion of completeness for a query language. In essence, a query

language for flat relations, be it specified as an algebra or as a logic, is BP-complete if one can

show that:

• For every relation r and every query E(x) of the language, E(r) remains invariant under the

permutations that leave r invariant. In other words, if ~b is a permutation on the set of values

occurring in r, then ~&(r) = r implies ~&(E(r)) = E(r);
• For every relation r and every relation r1, if r’ remains invariant for each permutation which

leaves r invariant, then there exists a query E(x) in the language such that E(r) = r’.

The basic idea behind BP-completeness is that a query language should deal with values as

essentially uninterpreted objects, only the equality or inequality of which is relevant. In this

philosophy, constants or a partial ordering among values can only be considered by explicitly

introducing them through special relations.

In 34], it was observed that the definition of BP-completeness can also be applied to nested

relations; subsequently, it was shown that the nested algebra is BP-complete. Afterwards, a

generalization of this result to a somewhat richer formalism for nested relations was shown in

11]. These results emphasize to some extent the naturalness of the nested algebra as a query

language for nested relations.

It is interesting to observe that the notion of BP-completeness can be rephrased using the notion

of the cogroup. The cogroup CG(r) of a flat relation r is simply the set of all permutations on the

values occuring in that relation, which leave the relation invariant. In particular, the cogroup of

the relation in Section 2 consists of two permutations: the identity and the mapping which only

interchanges the values profes3or and president. Obviously, a query language is BP-complete if

and only if for every relation r and every relation r’ such that the values of r’ also occur in r,

the existence of a query E(x) in the language is equivalent to the containment CG(r) ~ CG(r’)
of their cogroups. Although at first, this may seem a rather trivial rephrasing of the original
definition, it is important to notice that the cogroup of a relation can be interpreted as a flat

relation the attributes of which correspond to the values of the original relation; each tuple of

the cogroup relation then corresponds to a particular permutation. So, even for deeply nested

relations, the cogroup can be seen as a flat relation. BP-completeness of the nested algebra does

hence imply that the “basic information” of any nested relation, with respect to the operators of

the nested algebra, can be “encoded” into a flat relation.

There is also a more intuitive, but at the same time, more complicated way to see that a nested

relation can be encoded into a flat relation. In general, an unnest performed on a nested relation

cannot be undone by the corresponding nest. E.g. if Mary Higgins in the relation in Section

2 would be replaced by Jeff Willows, then unnesting over {{.TOB}, CITY}, followed by the

corresponding nest, would yield a one-tuple relation, different from the original way. We can

however “store” the way in which the data are grouped by first “copying” the column we we
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want to unnest. This technique is called tagging. E.g. by tagging the relation of Section 2 over

{{JOB}, CITY}, we obtain:

{PERSON {JOB } CITY {{J2 } C2

professor Austin

president

consultant J Dallas

teacher Houston

We invite the reader to check that there exists a nested algebra expression involving projection,

renaming, cartesian product, selection and unnest, that transforms the relation of Section 2 into

the relation represented above. If we would repeat this tagging procedure once more over the

attribute {JOB}, we would end up with a flat relation, provided we were allowed to disregard
the internal representation of the copied values. This technique of tagging was used in 34] where

the BP-completeness of the nested algebra was reduced to B P-completeness of the flat algebra.
In 11], the technique of tagging was formally incorporated in the nested relational model.

4. Comparing flat and nested algebra

From the observations made in the previous section, we may deduce that, as long as only ex

pressiveness is under consideration, there is a strong relationship between the flat and the nested

algebra. Hence it is legitimate to wonder whether there exists a difference between the flat al

gebra and the restriction of the nested algebra to flat relations. In 24], it was shown that there

is no difference at all! Hence, if E(x) is an expression in the nested algebra, whose operands
and corresponding results are flat relations (the intermediate computations, however, may yield
nested relations), then there exists an expression E’(x) in the flat relational algebra such that

E(r) = E’(r) for all flat relations r for which E(r) makes sense.

This result confirms our feeling that the nested algebra is hardly an extension of the flat algebra,
as far as only expressiveness is concerned. Nevertheless, we need to relax our position a little.

Indeed, in order to show the result in 24] mentioned above, it was necessary to first translate the

given nested algebra expression into a calculus-like expression and then translate this calculus-like

expression into a flat calculus expression. The well-known equivalence between the flat algebra
and calculus then yielded the result. At this time, it seems very hard to find an algorithm that

gives a direct translation of a nested algebra expression with flat operands and results into a flat

algebra expression. Also, Vardi conjectured there might exist a fundamental difference between

the length of the nested algebra expression and the corresponding flat algebra expression. As an

example we invite the reader to find an equivalent flat algebra expression for the simple nested

Austin

Dallas

Jeff Willows

Jeff Willows

Mary Higgins

~ofessor Austin

president

consultant Dallas

teacher Houston

professor
president

consultant
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algebra expression l~{B} P{A} °{A}={B} V{B} ~{A}~ the operands and results of which are both flat

relations over the scheme {A, B}. Even for such a simple expression, a corresponding flat algebra

expression is long and complicated!

5. Extending nested algebra by the powerset operator

There is another major difference between the nested and the flat algebra which was not yet

discussed in the previous sections. It is a well-known fact that the flat relational algebra and

(domain or tuple) calculus are equivalent. However, if one tries to define a reasonable calculus

for nested relations, one obtains a query language being strictly more powerful than the nested

algebra. Let us try to explain why this must be the case. If one examines the proof of the

equivalence between the flat algebra and calculus, and more in particular, the part in which the

calculus is reduced to the algebra (e.g. 20,33]), one sees that one needs a one tuple relation

DOM(A), which consists of all values occuring in the operand relation. In the flat algebra, this

relation can be easily obtained as the union of appropriate renainings of all the one-attribute

projections of that relation. Let us now consider the nested case. There, for e.g. the composed
attribute {A, B}, DOM({A, B}) should consist of all possible relations over the scheme {A, B},
i.e. of all subrelations of DOM(A) x DOM(B). By a combinatorial argument 121, it can be

shown there is no expression in the nested algebra that computes DOM({A, B}). Indeed, for

any nested algebra expression, the size of the resulting relation is polynomial in the size of the

operand relation; it goes without saying that the size of DOM({A, B}) is exponential in the size

of the original relation. Notice also that it is possible to express the transitive closure of a binary
flat relation in most nested calculi.

One way to solve this dilemma could be trying to restrict the nested calculus. However, such a

restriction 24,29,30] requires very pathological conditions, that one really does not want to deal

with. On the other hand, it is conceptually very easy to extend the nested algebra by introducing
the powerset operator. If (Il,w) is a nested relation with n tuples, then its powerset ll(~,w) is a

relation with a one-attribute scheme {~l} the instance of which consists of all 2~ subrelations of

w. E.g. the powerset operator applied to the relation in Section 2 yields a four tuple relation over

the one-attribute scheme {{PERSON, {{JOB}, CITY}}}. The powerset algebra thus obtained

is equivalent to most nested calculi, as shown in 1].

Unfortunately, using the powerset operator to express queries is not very attractive from a com

putational point of view. One really does not want to first generate all possible solutions to the

query in order to be able to select from these the right one. There are however other conceiv

able extensions to the nested algebra. One such way is introducing the least fixpoint operator.

Actually, the least fixpoint operator does work on queries rather than relations; it transforms

queries satisfying certain monotonicity conditions 31] into other ones. E.g. the transitive closure

of a binary flat relation can be obtained by applying the least fl.xpoint operator to some flat

algebra expression. One could now consider the closure of the nested algebra under the least

fixpoint operator. In 1,12] it is shown that the query language thus obtained is equivalent to

the powerset algebra with respect to expressive power. Still another possibility to enrich the

nested algebra is considering programming constructs. In 13], while-loops and for-loops were

considered, thereby borrowing an idea of Chandra and Harel 7,8] for the flat algebra. The test in

the while-loops involved checking whether a given nested algebra expression returned an empty

relation; in the for-loops, the number of times the expression under consideration had to be it

erated was determined by the size of an input relation. Provided one allows a minor extension
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of the powerset algebra in order to be able to deal with undefinedness, which can occur in case

of neverending while-loops, we were able to show in 13] that both the closure of the nested

algebra under while-loops and for-loops were equivalent to the powerset algebra. In particular,
the second result emphasizes the strength Of the powerset algebra: although it is not possible
to do general counting in the powerset algebra (the powerset algebra is not complete and hence

does not possess the computing power of general Turing Machines), some more restricted form

of counting is possible. Maybe the powerset algebra is even too strong for several applications.

A good argument in support of measuring the completeness of a flat relational query language

by comparing it to the flat tuple calculus, as proposed by Codd 10], is its equivalence to several

other reasonable simple formalisms, such as the flat algebra and the flat domain calculus. In the

same spirit, we might see the powerset algebra as a standard of expressiveness for query languages
for nested relations. In contrast to the flat calculus or algebra, however, we do not know of a

language-independent criterion supporting our views for the powerset algebra. Finding such a

condition is a problem which is wide op en.

References

1] S. Abiteboul, C. Been, “On the Power of Languages for the Manipulation of Complex Ob

jects”, Techn. Report, March 1988.

2] A.V. Aho, J.D. Ullman, “Universality of Data Retrieval Languages”, Proc. 6th POPL, San-

Antonio, Texas, Jan. 1979, pp. 110—117.

3] F. Bancilhon, “On the Completeness of Query Languages for Relational Data Bases”, Proceed-.

ings 7th Symposium on Mathematical Foundations of Computer Science, Zakopane, Poland,
in Lecture Notes of Computer Science 6~j, Springer Verlag, 1978, pp. 112-123.

4] F. Bancilhon, “A Logic Programming/Object Oriented Cocktail”, SIGMOD Record 15:3,

September 1986, pp. 11—20.

5] F. Bancilhon, S. Khoshaflan, “A Calculus for Complex Objects”, Proceedings 5th PODS,

Cambridge, Mass., 1986, pp. 53—59.

6] C. Been, S. Naqvi, R. Ramaknishnan, 0. Shmueli, S. Tsur, “Sets and Negation in a Logic
Database Language (LDL1)”, Proceedings 6th PODS, San Diego, 1987, pp. 21—37.

7] A.K. Chandra, D. Hard, “Computable Queries for Relational Data Bases”, Journal of Com

puter and System Sciences 21, 1980, pp. 156—178.

8] A.K. Chandra, D. Harel, “Structure and Complexity of Relational Queries”, Journal of Com

puter and System Sciences 25, 1985, pp. 99—128.

9] E.F. Codd, “A Relational Model of Data for Large Shared Data Banks”, Communications of
ACM 13:6, June 1970, pp. 377—387.

10] E.F. Codd, “Relational Completeness of Database Sublanguages”, Database Systems, R.

Rustin, eds., Prentice-Hall, Englewood Cliffs, 1972, pp. 65—98.

11] M. Gyssens, “The extended nested relational algebra”, Techn. Report 87-11, University of

Antwerp, 1987.

12] M. Gyssens, D. Van Gucht, “The Powerset Operator as an Algebraic Tool for Understanding
Least Fixpoint Semantics in the Context of Nested Relations”, Techn. Report no. 283, Indiana

University, Bloomington, October 1987.

13] M. Gyssens, D. Van Gucht, “The Powerset Algebra as a Result of Adding Programming Con
structs to the Nested Relational Algebra”, Proceedings SIGMOD Conference on Management
of Data, Chicago, 1988, pp. 225—232.

-54-



14] G. Houben, J. Paredaens, “The R2-Algebra: An Extension of an Algebra for Nested Rela

tions”, Techn. Report CSN 87/20, Techn. University, Eindhoven, 1987.

15] R. Hull, J. Su, “On the Expressive Power of Database Queries with Intermediate Types”,

Proceeding3 7th PODS, Austin, 1988, pp. 39—51.

16] G. Jaeschke, H.J. Schek, “Remarks on the Algebra on Non First Normal Form Relations”,

Proceedings 1st PODS, Los Angeles, 1982, pp. 124—138.

17] G.M. Kuper, “Logic Programming With Sets”, Proceedings 6th PODS, San Diego, 1987, pp.

11—20.

18] G.M. Kuper, M.Y. Vardi, “A New Approach to Database Logic”, Proceedings 3rd PODS,

Waterloo, 1984, pp. 86—96.

19] V. Linnemann, “Non First Normal Form Relations and Recursive Queries: An SQL-Based

Approach”, Proceedings 3rd IEEE Conference on Database Engineering, Los Angeles, 1987,

pp. 591—598.

20] D. Maier, “The Theory of Relational Databases”, Computer Science Press, 1983.

21] A. Makinouchi, “A Consideration of Normal Form of Not-Necessarily-Normalized Relations

in the Relational Data Model”, Proceedings 3rd VLDB, Tokyo, 1977, pp. 447—453.

22] G. Ozsoyo~lu, Z.M. Ozsoyo~lu, V. Matos, “Extending Relational Algebra and Relational Cal

culus with Set-Valued Attributes and Aggregate Functions”, ACM Transactions on Database

Systems 12:4, December 1987, pp. 566—592.

23] Paredaens J., “On the Expressive Power of the Relational Algebra”, Information Processing
Letters 7:2, February 1978, pp. 107—111.

24] J. Paredaens, D. Van Gucht, “Possibilities and Limitations of Using Flat Operators in Nested

Algebra Expressions”, Proceedings 7th PODS, Austin, 1988, pp. 29—38.

25] P. Pistor, F. Andersen, “Designing a Generalized NF2 Model with an SQL-Type Language
Interface”, Proceedings 12th VLDB, Kyoto, 1986, pp. 278—288.

26] P. Pistor, R. Traunmueller, “A Database Language for Sets, Lists and Tables”, Information

Systems 11:4, 1986, pp. 323—336.

27] M.A. Roth, J.E. Kirkpatrick, “Algebras for Nested Relations”, Special Issue of Database

Engineering on Nested Relations (11:3), September 1988, this issue.

28] M.A. Roth, H.F. Korth, D.S. Batory, “SQL/NF: A Query Language for -‘lNF Relational

Databases”, Information Systems 12:1, 1987, pp. 99—114.

(29] M.A. Roth, H.F. Korth, A. Silberschatz, “Theory of Non-First-Normal-Form Relational

Databases”, Techn. Report TR-84-36 (Revised January 1986), University of Texas, Austin,
1984.

30] M.A. Roth, H.F. Korth, A. Silberschatz, “Extended Algebra and Calculus for Not1NF Rela

tional Databases”, Techn. Report TR-85-19, University of Texas, Austin, 1985.

31] A. Tarski, “A Lattice-Theoretical Fixpoint Theorem and its Applications”, Pacific Journal

of Mathematics 5,1955, pp. 285—309.

32] S.J. Thomas, P.C. Fischer, “Nested Relational Structures”, in Advances in Computing Re
search III, The Theory of Databases, P.C. Kanellakis, ed., JAI Press, 1986, pp. 269—307.

33] D. Ullman, “Principles of Database Systems”, 2nd edition, Computer Science Press, 1982.

34] D. Van Gucht, “On the Expressive Power of the Extended Relational Algebra for the Unnor

malized Relational Model”, Proceedings 6th PODS, San Diego, CA, March 1987, pp. 302—312.

-55-



Nested Relations, a Step Forward or Backward?*

H.-J. Schek

Technical University of Darrnstadt

Computer Science Department
Alexanderstrasse 24

D-6100 Darmstadt, West-Germany
e-mail: schek at ddadvsl.bitnet

Abstract

When the first investigation on nested relations appeared, opponents of this direction

pointed out that nested relations do not support n : m relationships properly, nor do they
consider shared subobjects, nor do they allow recursive data structures, and so they are

a step backward. In this paper, however, we will demonstrate by an example that the

operations on nested relations, e.g. the nested relational algebra, can be applied without

change on recursively defined nested relational schemes. Such schemes are essential within

semantic data models, as e.g. KL-ONE, and contain all the missing features mentioned

above. Therefore we consider nested relations a step forward rather than backward.

1 Introduction

Since the first investigations on nested relations have been published in the years 1982 and

9832,6,15,5], almost immediately controversial discussion started. Opponents of this direction

- somewhat simpifiled - said that there is no support for shared subobjects, nor for n : m rela

tionships, nor for recursive data structures. Others insisted in the statement that the simplicity
of Codd’s model is lost, and some even lamented that this is a step back to the old world of

hierarchical data bases.

In fact, considering the latter aspect first, it is true that types of hierarchically organized
data are obtained if a tuple constructor and a set constructor repeatedly are allowed for the

construction of complex object types. This is presented nicely and in a compact way in 1].
In semantic data modeling these constructors realize aggregation and association and so, they
are desired by a broad database community. People arguing with “back to IMS” forget that

the real question in this context is, what kind of operations is allowed on these types. The

nested relational algebra extends the high-level set-oriented operations on fiat relations to any

set-of-tuple type which is encountered in a hierarchical data structure. This is the important
difference to the old world of hierarchical data models.

With regard to the second concern let us consider the question of n : m relationships and

recursive data in more detail. In fact, if we take over a static schema deuinition for nested

relations as we are used to in the fiat model, we were unable to model symmetrically n : m

relationships, apart from introducing references symmetrically. Therefore this objection against
the nested relational model is more serious. It is even substantiated by the HDBL language of

the AIM-P project 12]. The user of this model has to distinguish whether an object explicitly

appears as an attribute in a relation or whether only references (“surrogates”) appear there.

This is a written version of the author’s presentation for the panel discussion at the SIGMOD Conference,
Chicago, 1988.

-56-



For the latter case the “materialize” operation has to be applied. There seems to be no way out

if the static schema definition for nested relations is kept and it looks like we were unable to

invalidate the previous objections.

Fortunately there is no reason why we should keep a static nested relational schema definition

for this layer. In fact, in the DASDBS 11] object layer the starting point is not a static

nested relational schema but rather a recursive relational schema definition. This is in the

spirit of definition of a KL-ONE oriented semantic data model 4] which allows us to deal with

n : m relationships and shared objects in a symmetric way. Nested relations then appear quite
naturally as results of operations on this net. As the schema of the nested relation is derived

from the KL-ONE net and from the operation we call these “dynamically nested relations”.

In the following we will introduce and explain our example in section 2. We then show in

section 3 how nested algebra or nested SQL can be applied on recursive nested relations, i.e. on

a KL-ONE oriented net. In section 4 we introduce a user-friendly version of nested SQL and

show how we are able to extend this language for recursive queries.

2 Recursive Relational Schema Definitions, KL-ONE and

Nested Relational Views

As a running example throughout this paper we take the following type definitions in a hypo
thetical - say PASCAL++ - language:

type project = record

pno: integer;

pn: name;

members: set of employee;
produces: set of part;

end;

type employee = record

eno: integer;
ename: name;

assignmts: set of projects inverse members;
education: set of course;

manages: set of employee;
end;

type part = record

pname: name;

produced..by: set of project inverse produces;
end;

type course = record

cname: name;

end;

type projects = set of project;
type employees = set of employee;
type parts = set of part;

Apparently this is not Standard Pascal because - as mentioned - set of “structured” type is

not allowed (the first +). More importantly, recursively defined types occur (the second +).
Recursion not only occurs because of the manages component in employee which is defined by
the employee type again in the manages component, but, more generally, due to the description of

one object by means of others and vice versa. For example project is described by its members

which are employees and employees are described by their project assignments which is the
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Figure 1: KL-ONE

“inverse” relationship to members in project. We may also regard the definitions above as the

definition of the schemes of recursive nested relations. This is because the component of a tuple

(i.e. record type) is either atomic or is a set of tnples. Note, however, that we no longer exclude

recursive schema definitions as in 16].

2.1 Relationship to KL-ONE

Those who are familiar with Brachman’s KL-ONE semantic network for knowledge representa

tion 4] will have recognized that the view we have taken is the same as KL-ONE. In fact the

previous type definitions in PASCAL++ are not hypothetical. They directly correspond to the

definition of KL-ONE “generic concepts”. Project in this terminology is a generic concept with

“roles” pno, pn, members, and produces. The roles piw and pn have to be filled with at most one

value from some primitives while members is filled with a set of values from a generic concept

employee and produces is filled with a set of parts. So everything in our previous example can be

expressed in KL-ONE’s terminology definition (called T-Box there). A corresponding graphical
representation is shown in Figure 1.

2.2 Examples of Non-Recursive Nested Relational Views Taken From the

KL-ONE Net

The symmetric view taken in KL-ONE, i.e the recursive type definitions, are the reason why we

are not able to assign a static nested relational schema being equivalent to the type definitions.

Nevertheless we see that, basically, there are tuples (projects, employees, parts) with relation

valued attributes (components). The interesting fact is that many different nested relational

schemata are contained in the previous definitions. We could get

(1) projects (pno, pn, members (eno, ename))

or, symmetrically we may see

(2) employees (eno, ename, assignmts (pno, pname))

-58-



In these examples we see either projects as the root and the member with name of their employees
as children, or, vice versa, we see employees at the root and their projects as children. More

interestingly, we could also see

(3) parts (pnarne,
produced-by (pno,

members (eno),
produces (pname))),

This gives us a nested relation where for each part we find in which projects the part is produced

(in the relation-valued attribute produced-by) and for each such project we see the employees

(by their number eno, in members) in this project and all parts which are produced there (by
their name pname in produces).
In order to see who manages whom we could look at

(4) employees(eno, manages (eno))

The principle we applied in all these examples is straightforward: We decided which object

type should be the root and selected a subset of its components. For each selected component
which is a set type we selected again which components of the children we wanted to see and

so on. More generally we could think of a (data definition) language which would allow to

define non-recursive nested relational views after having specified objects in our PASCAL++

type definition.

3 Nested Algebra or Nested SQL for KL-ONE

The exciting fact now is that such a language already exists 8] : We can apply the nested

relational algebra 16] or nested SQL 12,13,7] without any change. We are able to express all

previous examples by regular nested algebra expressions or by nested SQL in a very simple way

as shown by the following examples

(Si) select pno, pn, (Al) rpno,pn,
(select eno, ename from members) reno, ename](members))(projecis)

from projects

We omitted renaming here, i.e. we called the resulting objects “projects” with their attributes

piw, pn, and members. The symmetric case, also without renaming, is

(S2) select eno, enome, (A2) rcno, ename,

(select pno, pn from assignmts) ~pno,pn](assignvnts))(employees)
from employees

Notice the wellknown role of the select clause as type constructor (or the ~r in the algebra). As

in the usual SQL the result of the select clause is a set of tuples with components as designated

by the select list. The following examples are expressed as easily as the previous ones

(S3) select pname, (A3) ir(pname,
(select pno, ~pno,

(select eno from members), reno](members),
(select pname from produces), ~r1pname](pToduces)]

from produced~by) (produced..by))
from parts (parts)

Also a recursive type is simply handled

(S4) select eno, (select eno from manages) (A4) ~eno, reno](managcs))(employees)
from employees
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The previous examples have shown how the schema of a nested relation can be defined dynatni
caUy. At the same time the instances are defined. Up to now we have applied projection which

selects a subset of attribute values in each tuple as usually. But we may apply selection too. We

may restrict the instances by some predicates as usually. If1 for example, we were interested in

all projects but wished only to see the member with name Smith we would write

(Si’) select pno, pn,

(select eno from members

where enome= ‘Smith’)
from projects

Note that an empty set would be returned if a project has no Smith among its members. In

order to see people reporting directly to John we would write

(S4’) select eno,

(select eno from manages)
from employees
where enome= ‘John’

While this looks elegant there are still two concerns which we must look at. The first concern is

user friendliness related also to simplicity, the second is the subject of recursive queries.

4 A User-Friendly Version of Nested SQL

Fortunately there is a proposal which may be an answer to both concerns at the same time.

The idea is to apply simple, flat SQL-like statements and to connect them via names 9]. Let us

first look into the aspect of user-friendliness taking some of our previous examples and rewriting
them

(Fl) begin select

select pno, pn, M from projects
M: select eno, ename from members

end select

(P3) begin select

select pname, P from parts

F: select pno, X, Y from produced_by
X: select eno from members

Y: select pname from produces
end select

As it can be seen, we introduce names in the select dauses as placeholders and define them

later step by step. In the previous example we know that we want to see pname together with

something we abbreviate P for every part. P is defined later as a set of tuples calculated from

produced-by which is a set-valued component of part, the element type of parts. Within F, in

turn, we select pno and two things called X and Y defined later for every element in produced-by
which as we know is of type project. The value pno is a component of a basic type in project
whereas X or Y are computed from the set-valued components members or produces of project
respectively. The simple rule is that we specify by select what we want to see if a set-valued

component (object or subobject) is encountered. In other words, a select * as a default for

selecting everything must be applied more carefully.
This “trick” with names allows us to handle the recursively defined types in a way as simple

as the nonrecursive ones. The manages example is one:

(F4’) begin select

select eno, Down from employees
where ename= ‘John’

Down: select eno from manages

end select

-60-



In a similar way we could get people reporting directly to John and those at the next lower level

under John

(F4~) begin select

select eno, Downi from employees where ename= ‘John’

Down!: select eno, Down2 from manages

Down2: select eno from manages

end select

Also aggregate functions can be used easily as in

begin select

select pname, P from parts
P: select pno, C from produced..by
C: select count(*) from members

end select

which gives us for every part the pnarne and the set of tuples consisting of the project number

pno and the number of employees C working in this project for all projects producing this part.

5 Recursive Queries

While the previous examples still can be handled with standard operations of the nested rela

tional model we have to extend the model for real recursive queries, e.g. if we want to see the

complete hierarchy under John. The difference is that in all previous examples we can determine

the type of the result, i.e. the schema of the resulting nested relation by parsing the select state

ments without execution. In other words, given the recursive type definition in PASCAL++

(i.e. the KL-ONE net definition) and given the query specification, the type of the result can

be determined at compile time. For example in F4” the type is

Q(eno, Downi (eno, Down2(eno)))

just by inspecting the select lists. This is no longer possible for John’s complete hierarchy as we

don’t know before how many levels we will obtain in a computation. However, it is simple to

express these kinds of queries. The utilization of names within SQL expressions becomes crucial

now and is not only “syntactical sugar” 9]. Look at the hierarchy below John:

(F4t)begin select

R: select eno, Down from employees where enarne= ‘John’
Down: select eno, Down from manages

end select

As in the previous examples the result R is the set of “John” tuples consisting of eno and Down,
defined in the next statement. This defines Down recursively: The type of the result is recursive

type R = set of record

eno: integer;
Down: R

end

or equivalent to a recursive nested relation

R(eno, Down(R)).

Its instances may have an arbitrary depth. As soon as the manages component is empty, the

result is empty, the recursion terminates and the empty set is returned to the next higher layer
indicating that we arrived at an employee who is not manager.
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6 Conclusion

We have shown that the operations of the nested relational model can be applied without change
to a semantic data model such as KL-ONE. The key observation was that we can give up a static

(nested) relational schema definition and replace it by recursive nested relational schemes, i.e.

by KL-ONE oriented “concepts”. The result of a nested algebra expression is a non-recursive

nested relation which is defined dynamically by the nested algebra expression. We have sketched

a. user-friendly version of nested SQL which allows to specify a nested relation query stepwise.
The extension of this language allowed to formulate recursive queries whose result is no longer a

static nested relation but again a recursive nested relation. The latter aspect of recursive queries
as well as the aspect of updates deserves further investigations.

We did not mention the advantages of nested relations over flat relations with respect to more

natural normal forms 10] and its ability for a theoretical foundation on complex object languages

3,19,141. We see also advantages of this model in describing storage structures formally and

so in broadening the scope of algebraic optimization 18,17]. 11 we take all these nice results

together we should condude that nested relations are a step forward.
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