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Letter from the Editor—in—Chief

This issue, guest—edited by Rick Snodgrass, closes out 1988 for us. Larry Kerschberg has

come aboard as the new chair of our TC, and has appointed Stefano Ceri as vice chair.

Larry is also pushing the idea of membership dues for our TO, as a means of funding our

activities and of solving the problem of erratic distribution of our bulletin. He will report on

the progress of this effort after the IEEE TAB meeting.

Our 1989 publication plans are as follows. Sushil Jajodia and I will edit an issue on Data

bases for Parallel and Distributed Systems for March. The issue will consist largely of

selected papers from the International Symposium on Databases for Parallel and Distrib

uted Systems to be held in Austin on December 5—7, this year. The June issue will be

guest edited by Ami Motro of USC; it will be on fuzzy queries and incomplete databases.

Michael Carey will put together the September issue, in cooperation with the organizers of

the post—SIGMOD—89 Workshop on Persistent Programming Languages to be held in Ore

gon. The issue will consist of selected papers from the workshop. Roger King will close

out 1989 with an issue on graphical interfaces to database systems for December.

During the past several years, we have experienced problems with the distribution of our

bulletin to members of our TO: Some received nothing; while some received only some of

the issues. David Barber of the Computer Society has agreed to handle all enquires

concerning distribution of the bulletin: please direct any complaints about distribution or

requests for back issues to him. In my interactions with him, I have found him very reli

able.

Won Kim

Austin. Texas

November, 1988
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Letter from the Editor

This special issue concerns databases that capture the evolution over time of the

enterprise being modelled. In a very real sense, the first databases, those hieroglyphics

describing the pharoali’s inventory of grain scrawled with great effort on pyramid wails,

already integrated time. In current terminology, these were tuple-timestamped, rollback

databases (a common phrase describing the transaction time of rollback databases, “the

past information is unalterable, as if written in stone,” certainly applies here). The first

historical database, Homer’s Odyssey, was infinitely more malleable, changing in subtle

ways with each retelling. While the three-dimensional view of an historical relation was

introduced somewhat more recently (by Fred Brooks in his Harvard doctoral dissertation,

1956), temporal databases were not studied until the early 1970’s, when Wiederhold and

others included time support in their medical information systems. By the end of that

decade, both the research and business communities were becoming comfortable with

database theory and practice, respectively (!), and a plethora of extensions soon emerged:

engineering DB’s (CAD/CAM/CASE/CAE), geographic DB’s, image DB’s, knowledge

DB’s, object-oriented DB’s, radiology and hospital DB’s, spatial DB’s, statistical DB’s,

and, as popularized in the scientific press by the significant Clifford and Warren 1983

TODS paper, historical DB’s (to be fair, other, earlier articles set the stage for the

ensuing surge of interest in time in databases). Mindful of the precedent set by the

definition, formalization, then implementation of the relational model in the early 70’s,
and cognizant of the daunting philosophical, linguistic, and even physical difficulties with

defining time, researchers focussed on formalizing, as carefully as possible, extensions or

replacements for the relational model, algebra, and calculus.

Healthy controversy developed almost immediately. Should the model incorporate

objects? The standard relational model does not, but an argument can be made that

object identity is crucial when time is modelled. Should the algebra be entirely “syn

tactic”, or should it require various integrity and normal form constraints, and hence be

considered “semantic”? What aspect(s) of time should be modelled? llsoo Ahn and I

have argued that both valid and transaction time should be supported by any database

calling itself temporal. Should first normal form be considered a prerequisite, as in the

standard model, or are non-first-normal-form proposes superior? Both approaches are

evident in the papers in this special issue. Should tuples or attributes be time-stamped?
These difficult, fundamental questions are debated in the literature, in the hallways at

conferences, and even in referee reports. Attempts to address these questions have re

sulted in, at last count, 11 algebras, 8 calculus-based query languages, and many data

models.

Over the last several years, the focus has started shifting towards implementation,
with several prototype DBMS’s in place, and movement, but not yet products, by several

computer companies. This shift signals a maturing of the discipline; the bibliography in

this issue provides another data point.
The seven articles gathered in this special issue represent the current thinking of

some of the most active participants in the area. Many of these papers reflect ideas in

evolution. Consult the conference proceedings in 1989 and the journals in 1990 (and
1991 and ...) to see the approaches and concepts these papers engender. I expect that

the debate will remain lively for quite some time,-with controversy yielding to consensus,

and then replaced by nascent controversy concerning different issues. All that we know

about conventional databases, which is substantial, must be reexamined when time is

introduced. The learning curve is steeper this second go-around, but there is still much

to do before we catch up.

I would like to thank each of the authors for their contribution, and for meeting tight
time and space constraints.

Richard Snodgrass
October, 1988
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HISTORIES and VERSIONS for MULTIMEDIA COMPLEX OBJECTS

Michel E. ADIBA

IMAG- LGJ -Grenoble University
BP 53X - 38041 Grenoble Cedex- France

Tel. (33) 76 51 4627

E-mail (UUCP) adiba@imag.imagfr

Abstract: After reviewing previous work on time and histories in multimedia DBMS’s,
we defme a relevant set of concepts in order to capture and to model semantics associated with

the evolution of multimedia complex objects. By interpreting the term “object” in its very
broadest sense (i.e. identifier, type, schema, value, methods, etc.) and according to different

modelling approaches (e.g. Object Oriented), we characterize histories and versions.

INTRODUCI1ON:

A lot of work has been devoted for integrating time notions into a DBMS and with

facilities to describe and manipulate histories and versions of objects Anderson 81, Anderson

82, Boulour 82, Clifford 83, Dadam 84, Klopproge 81, McKenzie 86, Snodgrass 85,
Snodgrass 86]. The notion of Multimedia Complex Object (or MCO, in short) is now

emerging in several new applications (Office Automation, CAD, Computer-Aided Software

Engineering (CASE), Geographic, Medical, etc.). In this framework, it is also important to

capture and to keep track of object evolution over time. Up to now this problem has not

received a complete and satisfactory solution mainly because several distinct models have

been proposed for MCO’s but also because it is not clear what are the main concepts which

concern object evolution Adiba 85, Katz 83, Katz 86, Kemper 87, Shoshani 86]

So far several approaches have been proposed to model MCO’s. First, complex object
models have been derived from Non First Normal Form Relations (NF2), which are

extensions of the relational model. Second the semantic models have been proposed that

associate the description of objects together with their semantic aspects (e.g. extensions to the

Entity-Relationship model). Third, Object Oriented models have been proposed.

Our work in this area began around 1983 when we developed models and prototypes in

order to deal with MCO’s in Office automation and CAD applications. We made several

propositions in order to incorporate in a generalized DBMS facilities for managing time and

histories. These propositions are summarized in Sections I and II. Our current research is now

considering an object oriented approach to the problem of MCO’s evolution. By “object”, we
have to consider not only value but also identifier, type (or schema) and methods (procedures).
Also, histories have in general been considered linear, and for several applications (e.g. CAD,
CASE), we need to consider branching histories to support versions and alternatives as well.

In section III we characterize basic notions in order to integrate in the future, object-oriented
DBMS’s, specific mechanisms to handle versions of objects.

I - TIME AND HISTORIES IN DATABASES:

In the framework of the TIGER project on Multimedia databases we made several

propositions in order to introduce time and historical data in new DBMS’s Adiba 85, Adiba

86, Adiba 87a]. The starting point was to define a type time which consists of a six-tuple
sequence: (year, month, day, hour, minute, second). This corresponds to (discrete) instants of

time according to the Gregorian calendar. A special key-word “now” refers to the time now,

for instance (1988, 08, 27, 13, 20, 32). Several other types related to time concern:

(1)duration (i.e. a given number for each of the six elements mentioned before). For instance
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four days and twelve hours can be represented by (0, 0, 4, 12, 0, 0). (2) time interval, for

instance ti ,t2] where ti and t2 are respectively the beginning and the end of the interval. (3)
periodic elements to modelize periodical activities. All these extensions are available through
specific commands of the data defmition and manipulation language called LAMBDA Velez
85]. The time types considered here allows the user to model and to handle valid time

Snodgrass 85].

In order to introduce different kinds of histories in the TIGER data model we consider a

database object V which takes, over time, successive values. Up to now, we are not defining
more precisely what we mean by object. Let us denote by (vi,ti) the pair (value,time) for

V: at time ti V has value vi. Hence, a sequence (vl,tl), ...(vi,ti)] for ti <now is the history
of V and (vc, now) denotes the current value. We proposed three notions in order to

characterize different kinds of histories:

1) Periodicity of the ti, i.e. the sequence of times we want to consider for the vi

values. Note that this periodicity may not be related to a change of value.

2) Modification: when value v is changed to value v’, this modification may or may not

give, in a given history, a new version for V. It is the database user’s responsibility to define

precisely when a change must be incorporated into the history.
3) Persistency of values in the database. Theoretically we can consider that successive

versions are stored in an “infinite” space. However, the user may want sometimes to keep only
the last n values. In this case n is the persistency.

A first approach for building histories is to let the user decide when he/she wants to keep
a new version after one or several modifications took place on a given object. In this case, we

speak about Manual Version History (MVH). A special DML statement: “GENERATE

VERSION” can be applied to such an object in order to keep several versions.

Second, if we want an automatic treatment for histories, we use an “each” clause in the

object schema to define the periodicity and in this case, we speak about a Periodical

Version History (PVH). In a PVH, if an object is modified within the period, this

modification affects the current version. New versions are only generated at the end of each

period by putting in the history a copy of the current version. Third, when there is no manual

nor each clauses, this means that we want to store successive versions and then we speak
about Successive Version History (SVH).

The database administrator is provided with special DDL commands in. order to declare,
in the schema, the appropriate kind of history for a particular object type. This can be done at

the attribute level or at the entity or relationship level Adiba 86]. In this case, we said that a

dynamic object type is defined by opposition to static objects where only the latest value is kept
in the database. The DBMS handles histories according to their specific semantics but the ti’s

which are recorded corresponds to physical time, i.e. the time where the modification took

place on the object.

The DML provides also special statements for history management i.e. queries. Bui 86]
We consider two different classes of queries on histories corresponding to absolute or relative

times. The key-word version is used in order to refer to specific versions:

*Abso/ute time (i) Version of V at time <t>?; (ii) Version of V in the interval tl ,t2]?;
(iii) Version of V after (before) time <t>?.

* Relative time (i) Last (current) version of V?; (ii) N last (first) versions of V?; (iii)
All versions of V?.

These functionalities lead to specific statements in the query language Adiba 86] or to

temporal query languages Gadia 85, Snodgrass 87, Navathe 87]. In general, histories are not

updatable but sometimes it is necessary to make corrections in order to record consistent data.
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For that we provided a special operation.

II- SNAPSHOTS, ALBUMS and MOVIES

The concept of snapshot allows to capture some database states by storing the result of a

query on some source objects, as a new database object Adiba 80, Adiba 81]. This object is

read-only and the refresh operation permits to reflect on the snapshot changes made on the

source objects. In the framework of generalized databases, we consider snapshots as a new

object type, at the same level as entities and relationships. We define the snapshot operator
which allows to derive information from existing database objects. More generally, let us

denote by QUERY(T1,T2,...,Tn) a query where the Ti, 1�i � n denotes database objects. The
snapshot definition may be formally defined as:

type <snapshot-name>: snapshot (<attribute-list>) AS QUERY(T1 ,T2,...,Tn)

We can create, delete, query a snapshot, but also refresh it: this is the only operation
which can modify a snapshot. We consider two possibilities:

1/ REFRESH <snapshot-name>
2/ REFRESH <snapshot-name> AT <time-value>

The first one is an immediate refresh i.e. the DBMS replaces the snapshot content by the

evaluation of the snapshot definition query. The second command depends on the value of

<time-value>, say t:
* t is in the past, and we want to see the snapshot “as of’ t. For doing this, the DBMS

must insure that all the Ti involved in the query are historical and correspond to information

known at time t. If it is the case, then the snapshot can effectively be built and stored.

Otherwise, the DBMS rejects the operation.
* t is in the future and we have a deferred refresh. At time t the DBMS will evaluate the

definition query and replace the snapshot content.

Let us now consider dynamic aspect of snapshots: as for any database object, it might be

interesting to consider successive versions of a given snapshot, i.e. to make snapshot
histories. The refresh operation is the only one which can affect the snapshot content. Refresh

allows to reflect the database state at a given time. Between two refresh operations, the

snapshot content does not change despite of changes made on the other database objects from

which the snapshot was built. Many applications require periodic refresh of snapshots: each

day or each month (e.g. take the values of banking accounts each month).

As a consequence, we apply our history concept to snapshots, defining different kinds of

dynamic snapshots (or DS). These different kinds will differ by the periodicity of refresh

time, the type of version (Manual, Periodical or Successive), by the persistency of values and

finally by the associated time format. More generally, the syntax for dynamic snapshot
definition is the following : type <snapshot-name> : dynamic snapshot (<attribute-list>)
<historical-structure> AS QUERY(T1,T2,..,Tn)

Here, types T1,T2,..,Tn may be static or historical. In other words a DS may be defined

on the base of other histories. The historical structure was explained in section I and in Adiba
86]. Because we defined three different kinds of histones we have here to consider:

- Manual Version Dynamic Snapshot (MVDS)
- Periodical Version Dynamic Snapshot (PVDS)
- Successive Version Dynamic Snapshot (SVDS)

For a MVDS, a new version is generated by the GENERATE-VERSION command

which makes a copy of the snapshot value and stores it into the history area. The REFRESH

command can modify the snapshot contents but does not generate a new version.

For a PVDS, the periodicity of refresh is indicated by the ‘each’ clause (a year, a
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month,...). If there is no ‘manual’ nor ‘each’ clause, we have a SVDS. For this kind of

history, refresh has to be made after each modification on TI ,T2,. .,Tn.

The ‘last’ clause indicates persistency of the DS. For histories which are not snapshots a

persistency of zero corresponds to a static type and all modifications are made on the current

version without keeping versions in the history area. However, the snapshot semantic may
take into account the persistency of zero for SVDS or PVDS. For instance, we may want the

system to refresh a snapshot each month (the refresh operation is made on the current version),
in this case the snapshot is dynamic but has a persistency of zero. We use the key-word ‘last

only’ for defining a dynamic snapshot with persistency of zero.

Roughly speaking, a PVDS is a collection of snapshots taken at different moments. It

gives an automatic album of database portions. In the same way, a MVDS is a manual album.

A SVDS reflects all the database changes on the source types Ti ,T2,..,Tn and so it

corresponds to one movie on the database. The following figure illustrates the evolution of

concepts: view, snapshot, album and movies.

An information Materialization

piece at a given time Dynamicity
manual

album (MYDS)

Database >VIEW >SNAPSHOT >DYNAMIC >automatic

SNAPSHOT album (PVDS)
(DS)

movies (SVDS)

The evolution of concepts : view, snapshot, album and movies

The history management mechanism suggested in Adiba 86] remains the same for

dynamic snapshot. More precisely, storage spaces for current and old versions are separated.
For each dynamic snapshot refresh, instead of destroying the old version, we make a copy
and store it into the history area. Queries on dynamic snapshots allow to see some database

portions as they were in the past.

Refreshing movies (i.e. SVDS) can be a costly operation. A straightforward, but brute

force method consists in replacing the old content by the re-evaluation of the definition query.
However, if few objects have been changed in the source elements, this method is not

adequate. In other words, an efficient refresh mechanism for a snapshot S should detect

modifications on source types which do not affect S. Several methods have been proposed
for this problem Adiba 87a, Koenig 81, Lindsay 86].

HI- HISTORIES and VERSIONS OF OBJECTS

The notion of object is related to the data model we consider. In the n-ary relational

model, the history notion can only be applied to the relation level. This means that one must

be able to (re)build all instances ri that a given relation R had accross time Lum 84, Dadam

84]. In the E-R approach, we have shown that the history notion can be seen differently.
Each entity instance has an internal surrogate and eventually several attributes. By defming
some attributes as dynamic types it is possible to maintain a history of all the successive

values taken by these attributes, for a given entity instance. However, we did not allow

histories of histories Adiba 86].

For multimedia, tree-structured documents it is not always necessary to store all

successive versions of a complete document but only of some of its subparts. Our approach
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allows us to define dynamic portions of multimedia complex objects with their specific
historicity.

For the database administrator the choice of whether to put the dynamicity at the attribute

or entity levels of whether at the level of sub-objects or at the level of snapshots is a design
problem which is application-dependent. Future DBMS’s, however, must provide their users

with definition and manipulation facilities for object versions Bancilhon 88, Banerjee 87a,
Dittrich 85].

Another important problem is related to dynamic changes of the database schema. Of

course we can consider that schema information corresponds to special kinds of objects and

provide history for them but this leads to non trivial problems of object compatibility
Banerjee 87b]. We return to this issue below.

Let us now consider complex objects as they are defined by Bancilhon 85] or others

Abiteboul 86, Abiteboul 87, Adiba 88, Schek 86, Stonebtaker 86, Valduriez 85]. Objects
are recursively defined as follows: (1) Elementary domains, integer, real, string are atomic

objects; (2) If 01, 02,. . .
On are objects, and Al, A2,. ...

An are distinct attribute names, then

Al:01, A2:02,...An:On] is a tuple object; and (3) If 01, 02, ...On are objects, then (01,
02, . . .On) is a set object.

In these objects we have a distinction between values and types. For instance if we

consider database= scientist: name, age, picture, education: degree, year, university]),
member: (organization)]), this defines the type of MCO scientist which constitutes the

database. MCO scientist gives for each occurrence name, age, picture, education as a set of

degrees and membership as a set of professional organizations.

Applying historical concepts to this approach is not straitghforward. For instance an

atomic object cannot be historical because it is effectively a constant. An attribute value in a

tuple object can be updated and also it is possible to change the content of a set object, hence

giving different versions of complex objects. Here, we have considered that type (or schema)
is invariant., so we can apply historical notions to the component objects hut also to the root

object. However the semantics of linking objects and histories is not clear and requires more
developments.

In an object-oriented approach, we have first to consider that an object has a unique
identifier but also to consider types and methods Lecluse 87, Banerjee 87a]. Here again, we
have to characterize how to apply historical notions to all these elements. A rather natural

starting point is to consider that once created, an object has an invariant identifier. Value is

going to change and here again we have to differentiate between invariant types and non

invariant types.

In order to solve the problem, we are currently defining a model for versions and

histories in an object oriented approach. We consider the following basic notions:
* Each object is a 4-tuple (id, type, value, method) where id denotes the (invariant)

identifier of the object, type corresponds to the schema (similar to the complex object model),
value is the value of the object and method is the set of procedures associated to the object.
We did not use the class concept yet in order not to introduce confusion. However, we

consider that a given object is an instance of a class which gathers all the objects of a given
type. Classes are of course organized in a hierarchy or a lattice.

* Historical objects are characterized by (id, H(type), H(value), H(method) ) where H

means that we consider different states of the corresponding element. We are going to

discuss only H(value) and consider that H(type) = type which means that type is invariant

and the same for method (see Kim 88] for discussion about schema evolution). Discussion
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of the problem in all its generality is delayed to another paper. So, we consider (id, H(value))
for an object. We have H(value) = HV, CV] where HV is the historical value and CV the

current value.

* We make the distinction between linear histories and tree structured histories. In linear

histories, we have a sequence of (ti, vi) where the tis refer to a specific “calendar” (or clock)
where values of the objects are characterized.: at ti, the object identified by id has value vi. In

this case CV is simply the current value of the object.

In tree structured histories we consider that from a given object version vi we can derive

several alternative versions vii, v12, ...
yin. In this case, HV is a tree. The root is the

first version of the object, and leaves represent the current versions of the object. For each of

them, the path from the root is a linear history. CV is the set of all the current versions i.e.

the set of leaves.

One important problem is to consider that an object together with its history remains an

object as a whole or can be viewed as a current version and, separately, as a history.
References to objects or to parts of them increase the complexity. Hence the identifier is an

insufficient reference to the object if we want to refer to a specific version.

This model is very general and should be improved. We use it as a strarting point for

defining histories and versions in applications such as CAD or CASE and we are currently
trying to develop it in collaboration with people of the 02 model Lecluse 87, Bandilhon 88].

CONCLUSIONS

Several research issues are open; more work is needed for histories and versions in the

framework of object-oriented databases which seems to be a very promising field. Histories

for objects should refer to the evolution of types (or classes), and methods. Also complex
object semantics related to histories and versions should be studied more carefully and

experiments performed in order to built version servers or specific mechanisms to help the

user defining and manipulating his/her histories.

An important problem is that it is not sufficient to record successive or alternative

versions of objects but also: (1) to be able to decide if such an evolution is valid according to

specific rules which define object behaviour and (2) to record the actions which trigger such

an evolution, creating specific link between different versions.
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Abstract

Two recent lines of database research, proceeding independently, have been

concerned with providing a richer, more intuitive view of information at the user

level. Historical database research has focused on ways to provide users with a

view of information anchored and evolving in the temporal dimension. Object-
oriented database research focuses on encapsulating both the structure and the

behavior of the objects that users intend to model. In this paper we explore how

these two lines of research might be brought together, providing to the user the

representation and management of objects in time.

1. Introduction

Various proposals have been made for incorporating a temporal component into a database

system BADW82,McK86,TA187]. Usually these proposals have been defined as extensions

to the relational data model. In this paper we discuss the modeling of historical data in the

context of an object-oriented data model.

Most object-oriented systems (see, for example, Dit86J and MSOP86J) owe their origins
to the programming language Smalitalk {GR83]. Objects, the basic data constructs used in

these systems, have proven to be both a powerful and flexible modeling construct. The power

of objects arise in part from their ability to encapsulate both structure and behavior. The

flexibility with which objects can be used as modeling constructs is due to the sets of data

types that can be combined to define objects, the ability to nest the structure of objects, and

the ability to encapsulate operations or methods on these objects in the manner of abstract

data types. Objects are defined as consisting of values that are themselves objects; this

nesting terminates with a set of primitive objects, such as integers, reals, and characters,
that are built into the system. Thus an object that is used to represent an employee entity
can include a component, say salary, whose value is an object representing the salary of that

employee.

Object-oriented databases, like other types of databases, are used to model some aspect
of the world. Each relevant entity and relationship in the modeled world is represented
as an object in the database. Over time the various entities and relationships modeled by
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the system may change. For example, when modelling employ~ entities, it is likely that

employees may change departments, and that their salaries can be expected to change from

time to time.

The traditional view of a database is that its state reflects that of the world at some

specific, real or imaginary, instance of time; this instance being determined by the last

update to the database. With each update the previous state of the database is lost. In

contrast to this view, the state of a historical database models the world as it exists and has

existed over some specified period of time CW83J. If the equating of database objects with

entities and relationships is to be retained in the context of an object-oriented database,
then it is necessary for these objects to model the evolution of these real world objects over

time.

In this paper we show how database objects can be defined in such a way that they can

be viewed meaningfully in the context of a historical database. We call objects that are

defined in this way historical objects. In addition to defining historical objects we also

address various issues relating to their use in representing historical data. We do not present

a formal model for integrating a treatment of time with a treatment of data as objects; to do

so would be premature. Rather we discuss, from an intuitive point of view, those temporal

aspects and properties which we believe ought to be captured by any system intended to

represent our intuitive notions of “objects” and how they exist in time.

In the remainder of this paper we define what we mean by a historical object, and discuss

several issues related both to the structure and to the manipulation of such historical objects.

2. Historical Objects

2.1. Introduction

Like the entities and relationships that they model, an object is characterized by some set

of properties. We shall refer to these properties as attributes.1 For example, if an object
o corresponds to some employee, say Karen, then the attributes of 0: NAME, SALARY,

DEPT, and MGR correspond to similarly named properties of the entity that is Karen.

The notion of a key is not inherent to objects. It is possible for two objects of the same

type to denote the same values for their corresponding attributes. In lieu of the standard

notion of a key, objects are distinguished by an essence. (We discuss object essences in the

next section.)

Under the traditional view of a database an attribute of an object denotes a single value,
that is for consistency also viewed as an object. The attribute SALARY in the object

representing the employee Karen denotes what we will assume to be Karen’s current salary.

1The equivalent term used in Smallialk is instance variable.
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The other attributes in this object are interpreted similarly.

However, in the context of a historical database, if, for example, Karen has been employed
and therefore relevant to the world being modeled by the database since “January 1, 198(7’,
then it becomes reasonable to query the database about her salary on any day during her

employment. Thus, unless some specific instance in time is understood or otherwise inferred,
the denotation of “Karen’s Salary” can be viewed as being not a single value, but all of her

salaries during the time she was employed, that is, her salary history.

In order to accommodate this view we define a historical object as an object whose

attributes denote functional values. These functions, which, again for consistency, are them

selves objects, define a correspondence between objects of type time to objects of the appro

priate type, for example objects of type salary, department, or name.

Often an entity or relationship is relevant to a database for only some restricted period
of time. The period of time for which a historical object models an entity or relationship is

called the lifespan of that object. The domain of the function denoted by an attribute of

an object is restricted to exactly those times in the lifespan of that object. (If modifications

to a database scheme are to be allowed then it may be desirable to change — for instance, to

extend — the definition of an object lifespan. However, this topic is beyond the scope of this

paper. CC87] presents an extended relational model with tuple and schema lifespans.)

2.2. Object Identity

A major issue when dealing with objects is the issue of object identity — how are we to

distinguish different objects. indeed this issue is not a new one. In earlier data models the

notion of a key was used to so distinguish different records or tuples. In logic the issue of the

“essence” of something addresses the same idea — what property of an object is essential to its

being itself, so that anything with that property must be that thing, and anything without

that property cannot be that thing. (The issues of object identity, existence, cross-world

identification, and object counterparts have a long history in the philosophical literature,

e.g. Lew68,Mon74b,Kri8O].)

Chen and Warren CW881 are specifically concerned with this issue; our approach differs

considerably from theirs by the introduction of the notion of an essence. We believe that each

object must have an essence, which is a time-invariant identifier shared by no other object.
One refers to an object by means of its essence. If two essences are equal then by definition

they refer to the same object. Component properties of objects — such as an attribute

SALARY— have as their value functions from time objects (referred to by their essence)
to some other type of object (referred to by its essence). They are, in the terminology of

logic, intensions. Mon74a,Ga175]). The essence of these functions, for example a SALARY

function, are in general not directly known to the user — instead they would be referred to

indirectly as the value of some property of a more essential object, say Karen, whose essence

the user would know.
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Now the issue addressed by Chen and Warren is how to tell whether two partially-specified
intensions are the same. We would contend that two intensions are the same if and only if

they are the value of some nonessential property of the same essential object; otherwise, even

though extensionally they may be equal (i.e., have the same value for every time) they are

not equal. However if these two intensions are created as different by the user, they would

have two different essences and thus, though as functions they might be extensionally equal,
as objects they are not the same. Thus John’s SALARY is never Mary’s SALARY, though
they might always be earning the same money.

These issues motivate the following definitions:

1. It is essential that a system be able to maintain the integrity of object identity. Since

user-defined keys are notoriously not time-invariant, for example, even people’s social

security numbers have had to be changed, our system will need to create and manage

time-invariant object identifiers. We call such an identifier an essence.

2. Equally relevant to the management of objects over time is the maintenance of when

that object existed. We call this information the lifespan of the object. Since an

object may have temporally disjoint periods of existence, a lifespan consists of a set of

disjoint intervals of time; such an interval is called an incarnation.

3. If E is an essence, we denote the lifespan of E as E.l.

4. The essence of each primitive object is simply its name, and the lifespan of each

primitive object is —oo, +oo]}.

2.3. Object Structure

Various proposals for representing data as objects have incorporated different constructors

for defining complex object types (or classes) from the primitive types. Common examples
of these constructors are record construction and set (or collection) construction. Without

examining any particular such constructor, let us assume that some complex object type 0

is defined in terms of n simpler object types. I.e.,

01+ 02 + ...+ On

where the symbol “+“ is to be interpreted generically as any such constructor. When

instantiated, a complex object has its own distinct essence. Any of the operations on objects
can of course be applied to complex objects.

Note, however, that when a new object E of type 0 is created, consisting of the n

component objects B1, B2,.. . ,
E~ of types 01,02,... ,O,~, respectively, the constraint

iE.l ç E1.~

must always be satisfied; an object can exist only while its components exist.
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Relationships, too, are complex objects. However objects can certainly exist in time in

dependently of the relationships they form. Thus the following restriction should be imposed
upon relationships:

E.lç E1.lnE2.ln...nE~.l

Relationships pose another interesting situation where it is perhaps best to leave the

choice of representation up to the user. Consider, for example, the two marriages of Elizabeth

Taylor and Richard Burton. Are these two distinct objects (with, therefore, two essences) or

are they two incarnations of the same marriage? Either representation should be possible.

Note that as a consequence of this, the following holds:

Ea_Ei+E2...+EnJAEp=Ei+E2+...+En1~Ea=E~J

i.e., not only can there be different relationships defined in terms of the same underlying
objects, but there can even be different instances of the same relationship between the same

objects.

3. Manipulating Historical Objects

The entity or relationship modeled by an object is assumed to be relevant to the database

during certain periods of time. These time periods are reflected in the incarnations of the

object’s lifespan. Each incarnation begins with a time when the object becomes newly

“existing” from the perspective of the application, and terminates with the execution of an

operation that “kills” that existence.

An object is brought into being with the operation2 CREATE. The method used to

define the CREATE operation, if so written, could also define the initial values of the

attributes of the instantiated object. CREATE(X, B) returns a new essence E which

uniquely identifies a new object of type X; the lifespan E.l is B, now)). Moreover, if X is

a compound object type, say X = X1 + X2 + ... + X,~ then n essences E1 + E2 +... + E~

are also generated with the same lifespan as E.l.

The execution of a KILL operation, implemented with the appropriate object method,
terminates the most recently opened incarnation in the referenced object’s lifespan.
KILL(E,D) finds the object with essence E and, assuming it has lifespan B1, D1J, B2, D2},

Ba, now)}, updates its lifespan to B1, D1], B2, D2], ..., Be, D]}. If E is a com

pound object of type X and X = X1 + X2 + ... + X~ then the lifespans of the n essences

E1 + E2 + ...
+ E~ are also updated.

After an object has been KILLed (but not removed) from a database it may neces

sary to REINCARNATE it. For example, an employee may subsequently be rehired.

The affect of a reincarnation of an object is to extend its lifespan by beginning a new

2The term used in Smailtalk for an operation is message.
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incarnation. (This incarnation will be terminated by the next subsequent KILL oper

ation that is executed on the object.) Only objects that have been previously CRE
ATEd can be REINCARNATEd. REINCARNATE(E, B) finds the object with essence

E and, assuming it has lifespan B1, D1], B2, D2],... , B,~, D]}, updates its lifespan to

B1,D1,B2,D2,...,B~,D~,B,now)}. If Eisa compound object of type X and X =

X1 + X2 + . . . + X,~ then the lifespans of the n essences E1 + E2 + . . . + E,~ are also updated.

It may sometimes be necessary to merge or IDENTIFY two descriptions into one

because two supposedly distinct objects are now realized to be in fact the same object.

IDENTIFY(E1, E2) finds the objects with essences E1 and E2 and, assuming that the ob

ject descriptions are “compatible”3, creates a new object with the merged descriptions of E1
and E2 and gives it the essence E1 the essence E2 is no longer useable except as an alias for

E1

It may be necessary, though perhaps forbidden in certain highly sensitive applications, to

delete or DESTROY permanently any trace of an object from the system. DESTROY(E)
finds the object with essence E and, removes it from the system. The essence E is thereafter

and forever unusable. Once DESTROYed an object cannot be REINCARNATEd.

Access to the attributes of historical objects is achieved in the conventional way, through
the specification and invocation of the appropriate method. However, because of the struc

ture of historical objects the value of an accessed attribute may have to be manipulated
further.

Assume that the expression 0 A is used to invoke the method that retrieves the value

denoted by attribute A of object 0. When the method invoked is that of an historical object
then the object that is accessed is a function. For example, if KAREN is the name of the

historical object modeling the employee Karen, then KAREN salary returns the function

that represents Karen’s salary history, and thus associates a salary with each time in the

lifespan of Karen.

Since the functions denoted by the attributes of historical objects are themselves objects

they can, and do, have methods associated with them. In particular, we assume that each

such function object F includes a method that when invoked by the expression I at: time

returns the value that I associates with the time denoted by time. The expression KAREN

salary at: “March 1, 1981” returns the value of Karen’s salary on the specified date.

Similarly attribute updates are accomplished using an expression of the form 0 A at:

time put: value. This expression updates object 0 by extending the function denoted by
attribute A so that it associates with time the value specified by value.

3What this means is an issue in its own right; see CC871 for further details on this issue.
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4. Conclusion

We believe that it is inconceivable to successfully develop an object-oriented model of data

without providing for the modelling of the temporal dimension of objects. This paper repre

sents a modest beginning toward amalgamating these two lines of research, object-orientation
and historical data modelling, thereby providing users with the ability to model objects in

time.
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Abstract. The objective of a temporal database is to model cha.ngin~ aspects of

objects. The main technique in a temporal database is to use timestamps to indicate the

periods of validity for the values taken by an attribute of an object. We argue that

instants or intervals of time are not suitable timestamps; instead, one should use finite

unions of intervals, called temporal elements. Although a temporal element seems to be a

complex data type, it leads to simpler user interfaces. The concept of a temporal element

is easily generalized to more than one dimension.

1. INTRODUCTION.

Timestamping the changing values of an object is the main tool used for modeling of

temporal information. One is naturally lead to the possibility oi more than one type of

time; and they have been catalogued in SA]. An object has a history in the real world,

and we say that such a history exists with respect to the real world time (valid time in the

terminology of SA]). Our changing knowledge of such a. history is incorporated in the

database through updates. A computer system has its own clock, which is used to model

transaction time.

It is clear that the real world and transaction times play some role in the way

databases are used in practice. A database assists an organization in making decisions. It

is reasonable to assume that the model of reality is not perfect; it can contain only an

approximate understanding of the real world, and that this understanding gets refined with

time. As a database is not fully correct, an organization is likely to take some incorrect

actions; therefore, it may like to keep all records, correct and incorrect, concerning some

aspect of its business practice. The usual practice is to maintain a log of all updates. Such

a log does not enjoy the same status as the on—line database system, which typically

reflects only the current knowledge of currently active objects. Querying a current

snapshot of reality is understood rather well; one may use a query language such as SQL

for this purpose. Querying the rich content of an update log has not been fully exploited.
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~Sn] views a database as a sequence {.~t: t is a transaction time instant}, where

is our knowledge of the real world history at transaction time t. This model allows one to

rollback to a previous knowledge of reality. In Sn], the real world timestamps are viewed

as intervals or as instants, and the transaction timestamps are viewed as instants.

After the introduction of temporal elements in Ga,GV], a consensus seems to have

emerged that their use is appropriate as the real world timestamps CC,MS]. The

problems arising from the use of intervals as real world timestamps have been enumerated

in GY1]. We briefly discuss some 01 these problems in Section 2. However, such a

consensus does not exist for transaction time. We propose the following: (i) Temporal

elements should be used as the transaction timestamps. (ii) Although, when the real world

and the transaction time dimensions are put together, the former seems to be nested inside

the latter, we should disregard this fact and use two—dimensional timestamps that are

finite unions of rectangles. (A rectangle is the cross product of two intervals of time.) The

advantage of this approach is that we obtain powerful and natural navigational paths to

query the database. This is illustrated in Section 4.

This paper is organized as follows. In Section 2, we present a model for the real

world time. In Section 3, we introduce transaction time, considering instants as

transaction timestamps. In Section 4, we consider two dimensional temporal elements as

the timestamps, revisit an example from Section 3 and show that it becomes much simpler.

The paper is written in an informal style to exhibit what lies at the heart of the

problem of timestamping. The formal details are rather involved and covered in

GB,GY2], where the concept of a weak relation, introduced in Ga], plays a central role.

2. THE REAL WORLD TIME DIMENSION.

We assume that a universe of time instants O,NOW], where NOW denotes the current

time, together with a linear order ~, is given. The set theoretic operations of union,

intersection, and complementation on timestainps correspond to the natural language

constructs “or”, “and”, and “not”. Intervals of time are not closed under intersection and

complementation, hence they are not adequate as timestamps. A temporal element is a

finite union of intervals in O,NOW]. An interval in O,NOwJ is obviously a temporal element.

An instant t may be regarded as a temporal element by identifying it with the interval

t,t]. We use the variables js, ii, ~s1, v1, ...
to denote temporal elements. The union and

intersection of j~ and ii are denoted as /s+zi and p*v, respectively, and the complement of j.~

(with respect to the universe O,NOw]) is denoted as —p. The set of all temporal elements is

a Boolean algebra under +, s, and —, with 0 and O,NOWJ as its minimum and maximum

elements. We assume that O,NOW] consists of instants 0, 1, 2, ...,
NOW.
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To capture time variant properties of objects, we introduce the notion of a temporal

assignment Gal. A temporal assignment (or simply an assignment) ~ to an attribute A,

with a temporal element p as its temporal domain, is a function from js, such that for each

tEp, ~(t) is an element of dom(A). If ~ is an assignment, then II~]j denotes its temporal

domain, ki denotes its range {~(t): tEll~]~}, and ~Ip denotes the temporal assignment

which is the restriction of ~ to p~k]~, where ~s is a temporal element. If and are

assignments to A and B, respectively, and 0 is an operator in dom(A)xdom(B), then we

define ~10~211 = {tEt~1Bs~2I: ~1(t)0~2(t) holds}.

Example 1 Suppose A and B are attributes such that dom(A) = dom(B) = {a,b,c}.

Assume that < is a transitive relation on dom(A)xdom(B) satisfying a<b<c. Suppose ~i
= ,5]+9,9] ~. c, 6,71 ‘~ a) and ~2 = 3,9] ~. a) are assignments to A and B, respectively.

Then ~i i7,10] = 7,7] ~. a, 9,9] ‘. c), 1<~2~ = 0, and 2<~1~ = 3,51 + 9,9].

Tuples. relations, and databases A tuple r over a scheme R is a function from FL, such that

for each AER, i(A) is an assignment to A. If r is a tuple over R, and ~s is a temporal

element, then rip is the function from R, such that (rtp)(A) = i(A) Ip, for every AEFL. If

r is a tuple over Ft., such that i(A) is empty for some AER, then we say that r is nulL A

relation over a scheme FL is a finite set of non—null tuples over ft. The temporal domain of

a relation r over FL is defined as (r]J = ~ ERI~(A)I. A database is a finite set of

relations.

Key Suppose r is a relation over FL We say that KçR is the key of FL, if (i) (i~A)( is a

singleton for every AEK, and (ii) If rand r’ are tuples of FL, then VAEK(I1(A)( = Ir’(A)I) if

andonlyifr= r’.

ExamDle 2 A database consisting of an emp relation over NAME SALARY DEPT with

NAME as its key, and a management relation over DEPT MANAGER with DEPT as its key is

shown in Figure 2.1. Note that empll = O,wOw] and ffmanagementlj = 11,49] + 71,NOw].

The relational algebra The algebra consists of three kinds of expressions: temporal

expressions, Boolean expressions, and relational expressions.

Temporal expressions are formed using ~1O~21I~ (r]J, and the set theoretic operators

* and —. The following example illustrates a temporal expression.

Example 3 Consider the database of Figure 2.1. Then SALARY # 25KJj + DEPT =

Toys]J is a temporal expression, and we denote it as p. Suppose r is John’s tuple in the

emp relation. Then SALARY( r), the result of substituting r in SALARY, evaluates to

11,49]...15K, 50,54]H2OK, 55,60J’.’25K). Now, SALARY # 25K]J(r) evaluates to 11,49] +

50,54] 11,54]. Similarly, DEPT = Toys]J(r) = 11,44]. Thus p(r) = 11,54] + 11,44] =

11,54]. If r is Tom’s tuple, then p(r) = 0,20] + 41,51]. If r is the tuple of Mary or Inga,

~r) = 0. If ris Len’s tuple, then p(r) = 31,NtJW].
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NAME SAI~ALtY DEPT

11,60] John 11,49] 15K

50,54] 20K

55,60] 25K

11,44] Toys
45,60] Shoes

,20]+41,51]
Tom

0,20] 20K

41,51) 30K
0,20] Hardware

41,51] Clothing

71 ,NOW] Inga 71 ,NOW] 25K 71 ,NOW] Clothing

31 ,NOW] Leu 31 ,NOW] 23K 31 ,NOW) Toys

,44]+50,NOW]
Mary

0,44]+ 25K

50,NDW]
0,44]+ Credit

50,NOW]

The emp relation

DEPT MANACER,

11,49] Toys 11,44] John

45,49] Leu

41 47)+71 ,NOW)
Clothing

41,47] Tom

71,NOW] Inga

The management relation.

Figure 2.1. The personnel database.

Boolean expressions are formed using the constants TRUE and FALSE, j~v, ~=v,

where j~ and ii are temporal expressions, r=O, where r is a relational expressions, and the

Boolean operators V, A and -‘.

The relational expressions are rUg, r—s, rfls, fl~(r), rxs, renaming operator pAl..B(r),
which renames A to B, and o(r; f; ji), where f is a Boolean expression and ~s a temporal

expression. The selection operator o(r; f; p) is interesting: it stands for {rFp(r): rEr and

f(r) holds}. We also define f; pjs = {r1or2 Ft4r1or2): r1Er, r2Es and f(r1or2)} holds},
where T10T2 denotes the concatenation of and r2. Each occurrence of NOW should be

replaced by its current value at the query execution time. The semantics of each relational

expression should determine the key of the resulting relation GY2,GB].
Examnle 4 List the starting salaries and departments of the employees who are currently

employed by the organization. The query is expressed as o(emp; NOW ç ffDEPT]J;

fi(~SALAB,Y1J)}, where the operator fi(ii) computes the first instant in ji. We remark that

this query would become more complex if intervals are used as timestamps instead of
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temporal elements. This is because for a given employee, the first instant of his/her

employment may be contained in a tuple which is different from the tuple in which the

current information about that employee resides. If intervals are used as timestamps,. we

will have to, either, use some aggregate operation to collect all the information about an

employee, or use a join.

Exam~1e 5 Give the information about all employees in Toys department during the time

when John was a manager in some department. We may first compute p =

IIo(management; TRUE; MANAGER=John]J)fl and then express the query as o(emp; TRUE;

p * ffDEPT=Toys]J). Here, the use of the temporal expression js, which evaluates to a

temporal element, and not necessarily an interval, helps give a simple query and also

reduces the need for optimization.

3. INSTANTS AS TRANSACTION TIMESTAMPS.

In this section we attempt to model our changing knowledge of the history of the

real world along the lines of Sn]. We use instants as transaction timestamps. We call the

resulting model the evolution model We assume that O,NOWJ denotes the universe of the

transaction time, and refer to an instant in O,NOW) as a state.

If ~ is a assignment and t a transaction time instant, then ~‘ = (~,t) is a evolution

assignment, and state(~’) is defined to be t. Evolution tuples, evolution relations, and

evolution databases are defined in a natural manner. Note that the evolution model does

not put the entire evolution of an object in a single tuple.

In querying a database, a user is expected to refer to an object by its state; to make

this possible we introduce evolution terms. If A is an attribute, and p a tem~ioral element,

then A~ is an evolution term. At run time, A~((~~t)) evaluates to A(~) if tEp, and to C~ if

t$p ((~ means undefined). When we substitute (~,t)O(,7,t’) in IIA~OB)~ the result is ~) if

tEp A t’Ei’ does not hold, otherwise it is ~O7,J1. The definition of temporal expressions,

Boolean expressions and relational expressions given in the previous section are easily

generalized to the evolution model. The semantics of operators should deal with ~ in a

careful manner. For example, for a relation to be computed, we should exclude tuples with

the state ~ in any of its attributes.

Our venture is not very interesting if we do not allow p in A~ to be captured in a

variable and be used in other queries. To allow this, we introduce the construct (r( A)),

which stands for +~1state(r(A)).
Example 6 When did John’s department information exist in the database. We assume

that emp’ denotes the evolution of emp. We express the query as follows.

(o(emp’; AME0~] = John;)(DEPT)).
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Example 7 Is ~ information existing at t = 30 correct? We assume that the

information in the database state NOW is correct. Note that some information about Tom

may have been added after t = 30; the query implicitly assumes that we should disregard

such information. This is achieved by restricting Tom’s current information to 0,30]

before any comparison with the information in state t=30 is made. As the query is long,

we express it by the following program.

r1 = rINA~ DEpT(o(emp; NAME30= Tom; 0,Now]))

r2 =~DEPT((o(emp , NAME~~= Tom; 0,N0W]))~0,30J)

r3 = pNAME~NAME,(pDEpT..DEpT,(r2)) (renaming of attributes)

r4 = 11DEPT DEPT,(rIENA~=NA1~]r3)
r5 = o(r4 TRUE; DEPT=DEPT’lJ)

f=((r511_—O).

4. TREATING TIME DIMENSIONS UNIFORMLY.

In this section we show how the model of the previous section can be improved by

treating the two time dimensions uniformly. If I and J are intervals in the real world time

and transaction time dimensions, respectively, then IxJ is called a rectangle. A 2—temporal

element is a finite union of rectangles. A 2—temporal assignment to A with a 2—temporal

element js as its temporal domain, is a function from ~u into dom(A). 2—tuples, 2—relations

and 2—databases are defined in a natural manner. This model allows us to put the whole

evolution of an object into a single tuple. The algebraic operators are also defined in such a

way that the history of one object is not fragmented across tuples GY2,GB]. Now we

revisit Example 7.

Example 8 The query of Example 7 is expressed as follows. Clearly the new expression is

much simpler.

o(emp; NAME = Tom; DEPT ~30}x0,30] = DEPT {NOW}x0,30]1I) = 0.

5. SOME FINAL REMARKS.

GB] gives a formal definition of an update log, and shows that it is resident in the

model presented in Section 4. Therefore, an explicit update—log is redundant. This means

that no update activity is discarded by our model, and therefore, it is self contained. Such

a. model is very rich in content; for example, it would allow querying of errors and updates,

eliminating a need to deal with such problems manually. This is a promising application of

temporal databases to mainstream databases. We feel that the database systems of the

future will put some of the ideas generated by researchers in temporal databases to work.
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ABSTRACT

A set of properties is identified, which should be satisfied by a temporal
extension to the relational model. During the process of identifying these proper

ties it is initially shown that certain semantic problems arise if time is treated as a

means of stamping data in temporal databases. To overcome the problems

encountered, it is next shown that a more general extension to the relational

model needs to be made to define a model in which a generic interval is sup

ported as a primitive data type. This extension has many practical applications.
Furthermore, since a time-interval is the only type of interval which is used in

temporal databases, the management of temporal data is shown to be one of the

applications of this general model.

1. INTRODUCTION

The concept of a Temporal Database has been frequently used to denote databases from which

pieces of data representing states of the real world, other than the current state, are not deleted.

Conventionally in such a database, data is ‘stamped’ with the time during which it is valid or in

effect. An interesting piece of work to incorporate time in a database is presented in CL183].

However, the first serious attempts to define a temporal extension to the relational model for the

management of temporal data appeared at the end of 1985, when three different models were pro

posed, one by Gadia in GAD85] and two more by Clifford and Tansel in CL185]. Since then

three more have been defined, by Ariav AR186], Navathe and Ahmed NAV86] and McKenzie

and Snodgrass MCK87aJ.

Certain properties, which a temporal data model should satisfy, are presented in CL1851 and

MCK87b]. A different approach is undertaken in this paper and certain properties, which a tem

poral extension to the relational model should satisfy, art identified. During the process of identi

fying these properties two major conclusions are drawn, which the authors believe to be novel.

The first is that, in an extension to the relational model, data should not be time-stamped. The

second is the need for an alternative extension, more general than a temporal extension. As a

consequence, the management of temporal data is only one of the application areas of this general
extension.

On leave. Pennanent address: Pergamou 14. 18450 Nikaia~ Greece.
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The above topics are discussed in sections 2, 3 and 4 of this paper. Section 5 is a reference to the

Interval-Extended Relational Model, whose definition has been based on the conclusions of this

paper. Some research topics are summarised in the last section.

For reasons of notational convenience in this paper, “CRM” is used to denote the Conventional

Relational Model in which first normal form is maintained. Any extension to manage temporal
data, is termed “TCRM”.

2. PROPERTIES OF A TEMPORAL EXTENSION TO THE RELATIONAL MODEL

All data models, including TCRMs, have limited representational capabilities. One example is

Clifford’s model CL185], in which time is represented as a point. Another example is Gadia’s

model GAD85], in which time is represented as an interval. In the majority of the TCRMs

currently defined, time is almost exclusively represented either as a time-point or as a time-

interval. However, people have a dual perception of time. Sometimes, they refer, for example, to

a year which they interpret as a time-point, as in the phrase “John was born in 1952”. In other

instances they refer to a period of years which they interpret as a time-interval. A typical example
is the phrase “John was the president of company A during the period 1980-1 986”. Taking the

above remarks into consideration, in conjunction with the fact that time is a factor of primary
importance in a TCRM, it can be argued that if both time-points and time-intervals are not sup

ported in a TCRM then the model’s representational capabilities will be unduly limited. There

fore, the first property is the following.

(P1) Both time-points and time-intervals need to be supported by a TCRM.

It should be noted that a time-point, for example the year 1980, can be represented in a database

as the time-interval 1980, 1981). However, the meaning of property (P1) is that, in a TCRM,
time-intervals and time-points should be represented as intervals and points, respectively.

The second property relates to the operational capabilities of a TCRM. Generally, every data

model has limited operational capabilities and a TCRM cannot be an exception to this rule. How

ever, if both time-points and time-intervals are supported by a TCRM, then operations must also

be defined to transform between these two representations of time, otherwise the TCRM’s opera
tional capabilities will be severely restricted. This observation leads to the second property:

(P2) In a TCRM, at least two operations need to be defined, one operation F, to transform from
time-points to time-intervals and another one U to perform the inverse task.

A third property is the following.

(P3) All the operations defined in a TCRM need to be closed.

It is beyond the scope of this paper to justify this property. An explanation is provided in

LOR88c].

Since a TCRM is an extension of the CRM, it implies that the following property needs also to be

satisfied.

(P4) Every relation R of the CRM, can be mapped to a corresponding one, TR, in the TCRM.

This means that every piece of data, which can be represented in the CRM, can also be

represented, in an equivalent way, in the TCRM. Indeed, if (P4) is not satisfied then the TCRM

cannot be an extension of the CRM.

However, generally in a TCRM, temporal data is stamped with the time during which it is valid.

This fact, in conjunction with the necessity to satisfy (P4) may give rise to certain semantic

difficulties, as it is shown by some examples in the next section.
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3. PROBLEMS OF TIME-STAMPING

Example 1: Consider the CRM relation CONSTANTS(Symbol, Value), which is used to record

all the universal constants. One tuple of it, could be (it, 3.14), which states that it is equal to 3.14.

Suppose TCRM is a temporal extension to the CRM. If (P4) is satisfied then one of the following
two cases has to be true for the TCRM.

(i) CONSTANTS is a valid relation in the TCRM.

It is observed that if this is true then a semantic difficulty arises. As stated is section 2, data in the

TCRM is time-stamped, so CONSTANTS cannot be a valid TCRM relation.

(ii) CONSTANTS is not a valid TCRM relation but its contents can be recorded, in an

equivalent way, in a relation TCONSTANTS in the TCRM.

If it is assumed that (ii) is true then the data recorded in TCONSTANTS must be stamped with

time. However, in this case another semantic problem arises, that although the value of it is

independent of time, it has to be time-stamped. This contradicts the semantic property of relation

CONSTANTS, of being independent of time.

With this example, it has been shown that if time is treated as a stamp in a TCRM, then certain

important semantic problems arise with the TCRM’s representational capabilities. The next

example shows that certain problems also arise with the TCRM’s operational capabilities.

EMPLOYEE

Name Salary Manager

john d2, d6) 10k

d8,d12) 12k

d2, d8) mark

d8,d14) mick

george dl,d12) 8k

d12,d16) 9k

dl,dlO) mick

dlo,d16) mike

Figure 1: A temporal relation incorporating attribute time-stamping.

Example 2: Consider the relation in Figure 1. It is a relation of a TCRM proposed by Tansel in

CL185]. Time-intervals are used to stamp the salary and managers of every employee for vari

ous periods. Consider also the query “Retrieve the names of all the persons who have ever been

managers.”

This is not a hypothetical, theoretical query, but a natural one, which could be issued in a real

environment. A number of strategies could be adopted to obtain an answer. One solution is to

project relation EMPLOYEE on attribute Manager. In this case, the resulting relation will consist

of the names of the managers and the associated time-stamps. Clearly, this is not exactly the

result intended by the query. In particular, the query specifies explicitly that the names of the

managers need to be retrieved but the time-intervals, with which these names are stamped, are not

required. Therefore, if a TCRM has not been supplied with operations to ‘project out’ the time

stamps then its operational capabilities are restricted.

Assume alternatively, that certain operations have been defined in a TCRM, which can ‘project
out’ the time-stamps. Then R, the resulting relation, will contain data which is not stamped with

time. In this case a semantic problem arises concerning the validity of R as a TCRM relation,

since its data is not time-stamped.
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Various approaches are now discussed to overcome the problems which have been presented in

examples I and 2.

With respect to the first example, one possible solution could be for 3.14 to be stamped, in a

TCRM relation, with the time-interval (~oo, +oo). This would be an indication that ~t—3.14 for all

times. This solution is not very satisfactory because if (~oo, +oo) is projected out by the operation
described in example 2, then the question will again arise whether the remaining data is still tem

poral or not.

As a second solution, let a convention be made that if data is not time-stamped then it is valid for
all times. This option works perfectly for the first example, where CONSTANTS becomes a

valid TCRM relation. Unfortunately, it is not completely satisfactory if it is applied to the second

example. In particular, if the query in this example is answered, the result will be a relation con

sisting of the tuples (mark), (mick) and (mike) but the interpretation that these persons have been

managersfor all times contradicts reality.

Another option could be for non-time-stamped data to be interpreted as being valid at some time.

This seems to be a better solution, although an argument could be made that temporal data is not

treated uniformly, in the sense that time is explicitly recorded in some relations whereas in others

it is implied. Finally, the next example shows that, generally, stamping data may create confu

sion.

CLIMBERS

Team Top Date

A everest hO,hlOO) dl

hlOO,h180) d2

B kilimanjiro hO, hl5O) dl

h150,h200) d2

h200, h250) d3

Figure 2: A relation in which time seems to be stamped with height.

Example 3: Consider the relation in Figure 2. It is used to record how high teams of moun

taineers climb a particular mountain, on a specific day. For example, in the first tuple it can be

seen that team A climbed Everest and on day dl they climbed from hO to hlOO. In one interpreta
tion it could be argued that dl lime-stamps hO, hlOO). However, if CLIMBERS is compared
with relation EMPLOYEE in Figure 1, then, in an analogous way, it could rather be argued that

hO, hlOO) stamps day dl.

A similar example could be given to show that time-points might also be interpreted as being
stamped.

It should be noted that Clifford, in CL187], associates a lifespan with every relation, in order to

overcome the problems caused by time-stamping. However, in the authors’ opinion, the previous

examples demonstrate that a more radical approach is required. For this purpose the following
additional property can be adopted.

(PS) In a TCRM, data should not be time-sta~nped.

This means that time should not be treated as a means of stamping data but it should be recorded

and manipulated like any other piece of conventional data. Hence, if (P5) is applied to the por

lion of the relation in Figure 1, which concerns the managers of the employees, this data can
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EMPLOYEE

Name Manager Period

john mark d2, d8)

john mick d8,d14)

george mick dl,dlO)

george mike dlO,d16)

Figure 3: A relation in which time is represented as data.

equivalently be represented as shown in Figure 3, where time is recorded in a distinct attribute.

Although this representation is identical to that proposed by Snodgrass in SN087], there is a

difference in the semantics. That is, in SN087] it is explicitly assumed that a value for Period

time-stamps a value for Manager whereas, in the approach proposed here, time is interpreted as

pure data. Because of this, no distinction is made between temporal data (which is time-stamped)
and non-temporal data. Consequently, an operation, to project out Period, does not give rise to a

semantic question of the form ‘What is the time during which the data in the resulting relation is

in effect? “.

4. GENERIC INTERVALS

The contents of the relation in Figure 2 imply that intervals other than time-intervals do make

sense in a database. The next example shows that whether an interval is a time-interval or not is,
in many cases, a matter of interpretation.

R
____________

Name A
__________

john 1

john 2

john 3
_______________

john 7

john 8

george 5

george 6

george 7

(a)

Figure 4: Two valid relations in an extension of the CRM to support intervals.

Example 4: Consider relation R in Figure 4. Its scheme is

R(Name=STRING_l2, A=INTEGER). For a given day, R could be used to record the hours at

which various persons worked in a high radiation laboratory. The integers recorded in A represent
hours, that is, they can be interpreted as time-points. Therefore, R is a valid TCRM relation.

Then, from (P2), F can be defined so that =F A ](R) to result in the relation in Figure 4(b),
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Name A

john 1,4)

john 7, 9)

george 5, 8)

(b)



which is also a valid TCRM relation.

In another interpretation, the same relation, R, could be used to record the projects in which the

employees of an enterprise are involved. Now the integers, recorded in attribute A, cannot be

interpreted as time-points. However, since from (P3) F needs to be closed, =F A ](R) should

give again the relation in Figure 4(b).

In addition to the above remark, consider another relation, CAR(City, Number). One tuple of

CAR could be (athens, AA5360), which states that the authorities of Athens can issue the car

number AA5360. The underlying domain of attributes City and Athens are not time-points. They
are not even numeric. Again, since F needs to be closed, it has to be so defined that, for example,

Number ](CAR) to result in a valid relation. At the same time, it is observed that intervals over

arbitrary alphabetic and alphanumeric strings do make sense. For example, abrial, freedman)

could represent the range of names of all the telephone holders who have been recorded in the

first volume of the telephone index. Similarly, AB5000, AC9000) could represent the range of

valid car numbers which the authorities of a specific city can issue.

The above discussion makes it explicit that time-intervals are only one of many plausible types of

generic interval which could be used in a database. Furthermore, by extension from the concept

of a generic interval, some values like 1, abrial, AB5000, could be called generic points Inciden

tally, it is worth noting that only generic points can be supported by the CRM. Therefore, the

CRM could be called the Point Relational Model.

The above discussion implies that properties (P1), (P2) and (P4) can be replaced by the following
one.

(P6) The CRM needs to be extended to a model, XRM, which supports a generic interval data

type, in addition to the support of a generic point data type. At least two operations, F and

U, need to be defined in the XRM, F to transform from generic points to generic intervals

and U to perform the inverse task.

Furtl~ermore, since a time-interval is only a special type of interval then, with respect to temporal

databases, if (P5) is replaced by

(P7) In the XRM, data should not be time-stamped,

and (P3) replaced by

(P8) All the operations defined in the XRM need to be closed

the conclusion is that the XRM can also be applied to temporal databases.

In summary, (P6), (P7) and (P8) are the properties which need to be satisfied by the XRM.

5. THE INTERVAL-EXTENDED RELATIONAL MODEL

The previous discussion was the analysis of the problem for the management of temporal data in

an extension of the CRM. In LOR88c], the synthetic approach has been used, to formalise the

XRM. A generic interval is supported as a primitive data type and an algebra, consisting of seven

operations, has been defined. The first five of them are the known operations of relational alge

bra. The other two have been called FOLD and UNFOLD and play the role of F and U in (P7).

All the operations are closed. The model has been called the Interval-Extended Relational

Model It has been proved that the XRM is, in all respects, a proper superset of the CRM. Func

tional dependencies have been investigated and two normal forms have been defined. Finally, a

portion of the XRM has been implemented.

With reference to the management of temporal data, two predecessors of the model are reported
in L0R87] and LOR88d]. In the former it is shown how temporal data can be updated and how

periodic temporal data can be manipulated. In the latter various examples are given, to show that

the XRM has a rich expressive power. It is a general model, since temporal databases are only
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one of its many application areas. In LOR88b] it has been shown how one of these predecessors 4

can be applied to Soil Information Systems. The management of spatial data is another of its

applications. A fonnal description of the XRM has appeared in LOR88a].

6. CONCLUSIONS

A set of properties have been identified which an extension of the relational model, for the

management of temporal data, should satisfy. During the process of identifying them, it has been

shown that the time-stamping of temporal data causes certain problems. It has also been shown

that one effective solution, for overcoming them, is for the extension of the relational model to be

general enough to include temporal databases as one of its application areas. Further research

includes the definition of an Interval-Extended Calculus and the definition of an extension of

SQL.
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Abstract

This paper discusses the basic notions of versioning in design databases. It explores the temporal

aspects of version control and the semantics of temporal relationships among version objects.
Some representation schemes are outlined and a few open problems are identified.

Introduction

Version control is a significant issue in design databa s,~liich are of general applicability
to the design process in engin~~ering and software systems design an~id~other related fields.

The size and complexit7 of many design projects has rendered existing database tools and

support inadequate. Databas( systems designed for commercial applications suffer from the fact

that they normally hold only one valid view of the world. In design environments, however, a

developer might be interested in pursuing a particular design along several possible paths simul

taneously, and may later select one of the alternatives, or merger of alternatives, as the final

design. Therefore, several valid representations of an object will simultaneously exist in the

database. Furthermore, a traditional database system, as it handles only regular and structured

data, will not be able to deal with design data efficiently, since there are large variations in the

size and structure of such data. We shall be using object-oriented terminology in the following
discussion. However, the issues raised here are also relevant to other data models.

Generally, design of an object starts with a high level description of some aspects of that

object. A named collection of information describing an object at the type level is called a tem

plate. A refinement of an object is another object that contains a qualitatively or quantitively
different information than the previous ones in the direction of the ultimate design goal. A ver

sion of an object is its refinement which contains all the information necessary to instantiate the

object. The versioning concept in a design database is manifested in families of distinct objects,
each containing one common generic object and one or more version objects.

The refinement of design objects may proceed along several axes Co88]. The design may

be refined in a top-down fashion structurally; it may also be refined along an “improvement axis”

-- where the same objects are technically improved using new technologies.

A system must provide the facility for creating and maintaining a version graph to record

the evolution history of versions from the initial design through successor and predecessor rela

tionships. It should be possible for versions of an object to be referenced either explicitly (as a
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specific reference using a qualified name or an internal identifier), or implicitly by dereferencing
(also called generic reference) according to some prespecified or default criteria.

An important issue in the version management is the formulation of a generalized definition

of version. Ideally, a system should provide control facility at both the template and instance

levels. Versioning at instance level implies that a new version need to be created if there is a

change in the value of object’s attribute or function. Such attributes can be classified as

version-signzficant attributes, which can be updated in only a non-destructive manner by
automatically forcing a new version bearing the modified value of that attribute.

Versioning at the template level, on the other hand, means that new versions are created

because of some modification in the set of attributes or functions of a particular object, which

retains its generic identity in spite of such modifications. Versioning at the template level

appears to be a relatively complex task. However, different design databases may require ver

sioning at different levels. The problem is to reconcile these different requirements and to inves

tigate the possibility whether a system can simultaneously support both.

Most computer-aided design applications require the capability to define and store a single
object as a collection of other constituent objects; such objects are generally known as composite
objects. These relationships are hierarchical in nature, where primitive objects form the leaves of

the tree.

Time and Versions

In the published literature, versioning and its concomitant version graphs have been dis

cussed without any temporal reference. In this paper, we attempt to explore the issue of tem

poral significance of version graph, its semantics and ramifications.

Versioned objects can undergo temporal changes in three dimensions: 1. temporal evolu

tion of schemas, where the schema or template of an object changes with respect to time. A

related idea is addressed in Ma87); 2. changes in some version-significant property that causes

new versions; 3. some time-varying attribute Na88] changes over time. It can be argued that

the third dimension of temporal evolution is subsumed by the second if version-significant pro

perty or properties were the only time-varying attributes of the object. In this paper, we shall

address the temporal evolution in the first two dimensions.

As a general representation, we associate with each version a time-stamp with a begin and

end time. The time-interval signifies the period for which the version was a current version.

This idea of currency interval bears a close analogy with transaction time proposed in literature

5n85j. A version graph with temporal attributes will be associated with the following: 1. An

object, which is the subject of the versions; it will be referred to as a generic object. 2. A begin
and end time, which gives the currency interval of the version. 3. A set of timed propositions
such that each proposition involves the generic object in some term. The effective period of each

timed proposition contains the currency interval of the version. 4. A rooted directed acyclic
graph where vertices are versions of a common generic object and edges represents

successor/predecessor relationships between two vertices with the constraint that the begin time

of a successor is never less than that of its predecessor.

The current version can be defined as the version whose currency interval includes Now.

The latest and default versions are selected from the set of current versions. A reference made to

a generic object is dereferenced to its default version. This scheme, evidently, allows several ver

sions to be simultaneously current versions; that is, they have overlapping currency periods. A

version can be frozen. The operation of freezing will involve the following: 1. Assigning the end
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time a constant value, which will be current time in most of the cases. 2. All timed propositions
defined on this version get that constant time as their end-time. 3. The frozen version will admit

no update. 4. The frozen version will not be allowed to have any new successor. 5. In some appli

cations, it may be necessary at the time of freezing to create a new successor version beginning
at the end-time of its frozen predecessor by copying its attributes and time propositions.

The scheme just described appears to have several advantages in the context of design,
which is an exploratory and iterative process. It allows several versions to be the current ver

sions; i.e., the versions that are still in the exploratory phase. Versions in this phase can be

modified with and without spawning successor versions. Successor and predecessor versions can

have overlapping currency periods. A successor, after having been explored, may be found to be

unpromising, and thus can be frozen; however, a new version can be created from its predecessor
that may still be one of the current versions. Current and frozen versions are defined to be

derivable from the currency interval. The successor/predecessor relationship imposes a partial
order on the versions of a generic object, whereas association of currency intervals with versions

imposes a total order (with respect to its begin time) on them. This fact can be exploited to

answer a large number of meaningful queries which can either make reference to explicit time

and/or some temporal relationships Na88] of the versions.

As mentioned earlier, complexity is added in the design database when we consider complex

objects and their current version. For a complex object to be instantiated for the purposes of

simulation or testing, etc., its current version has to be determined. The current version of a

complex object is a collection of its primitive constituent objects such that the intersection of the

currency periods of their default (or any current) versions includes Now. It is quite probable that

at some point in the design phase the current version of a complex object is null. These currency

intervals can also be used to compute a set of intervals for which the complex object has been

current or valid.

Representation Schemes

A simple representation scheme has already been mentioned where versions are represented

as a directed rooted acyclic graph. Versions are associated with absolute time intervals

represented by vertices of the graph whose edges represent a weak temporal relationship of

predecessor/successor.

It has been proposed that sometime it may be worthwhile to represent the temporal rela

tionships between versions in relative terms Ke87]. In this scheme, vertices of the graph are not

associated with absolute time values, but the edges represent different relative temporal relation

ships -- before, after, overlap, meet, etc -- between the vertices. In the presence of such informa

tion, processing of queries may involve finding of transitive closure in addition to arithmetic com

putations. (Ch88] discusses the computational aspects of such a scheme.

Another interesting idea is of Reification ~Ge871. Reification makes it possible to represent

relations and functions as objects in the universe of discourse. As a consequence, we can concep

tualize attributes of attributes. One can also implicitly represent relationships among temporal

relationships, such as subsumption, etc. Extensibility and a simpler representation of

quantification are other advantages of this scheme.

We believe that a modified variant of TRM Nav88] can also be used to represent the tem

poral and non temporal information in a design database.
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Some Open Questions

As long as a versioned object is allowed to have propositions involving only its versions and

literals, the semantics of this scheme remains well-defined Ke87J. A propsition is a boolean

valued function which can represent both the temporal and non-temporal attributes of and rela

tionships among objects. Representation and semantics tend to become unmanageable when we

allow more than one object to participate in a proposition. Consider two versioned objects A
and B which participate in a proposition P. For A, P is version significant, whereas for B it is

not; that is, for A update has to be done in a non-destructive manner, while only a simple
modification of value is needed for B. This may lead to inconsistent representations for B. If B

was a non-versioned object, the problem would still remain. The only solution to such a problem
is that P has to be a time proposition for B, though B may not require it.

Consider another problem. A versioned product C has a designer D. This fact is

represented by a proposition P, which is not version significant. The designer D leaves the com

pany. D cannot be deleted without violating the referential constraint for P. A similar problem
arises in object-oriented databases when an object changes its type, where a proposition is

defined on the previous type involving some other object. Again, the only feasible solution is to

make each proposition a time proposition and process queries with a default time value Now, if

no explicit time is specified.

Conclusion

In this paper, we explored the temporal aspects of version management. In the literature,
versions are generally assumed to have time-stamps; however, their semantics and consequent
problems have not been addressed. Several open problems remain in semantic interpretation and

representational scheme. It would appear that the temporal dimension is an indispensable part
of any database system that deals with complex information that -- directly or indirectly --

involves time. A comprehensive treatment of the issues raised here is the topic of our future

work.
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Abstract. In previous work, we introduced a data model and a query language for temporal data.

The model was designed independently of any existing data model rather than an extension of one.

This approach provided an insight into the special requirements for handling temporal data. In this

paper, we discuss the main functionality of the model and the implications on physical design. We

feel that the functionality and implementation issues discussed in this paper are applicable to all

temporal models.

1. INTRODUCTION

In previous papers Shoshani & Kawagoe 86, Segev & Shoshani 87] we have developed a

temporal data model that is independent of existing data models, such as the relational or network

models. Our approach differs from many other works May 86, Clifford & Croker 87, Gadia &

Yeung 88, Klopproge 81, Navathe & Ahmed 86, Snodgrass 87, Tansel 86] that extend existing

models to support temporal data. Our goal was to design a model (called a TSC model for reason

that will become clear below) which reflects the semantics and operators of temporal data without

being influenced by existing models. Once this model was developed, then it is possible to investi

gate the incorporation of its structures and operations into existing models. We have perfonned a

requirements analysis for representing the TSC model in the context of the relational model Segev

& Shoshani 88]. We showed that the relational model is not sufficient to represent all temporal

data and has to be extended with the construct of a temporal relation having new semantic proper

ties. We have also discussed the options for the representation of a temporal relation and the rea

sons for our preferred representation. In this paper we highlight the functionality of the TSC

model, and discuss its physiàal design implications. Note that our reference list is by no means

complete; for a complete list, see the bibliography by Stam & Snodgrass in this issue.

2. THE TEMPORAL DATA MODEL

This research was supported by the U.S. Department of Energy Applied Mathematics Sciences

Research Program of the Office of Energy Research under contract DE-ACO3-76SF00098.
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The TSC model is based on the simple observation that temporal values are associated with a

specific object, and are totally ordered in time; i.e. they form an ordered sequence. For example,

the salary history of some individual forms an ordered sequence in the time domain. Accordingly,

we introduce the concept of a time sequence (TS) for a single object (or entity). Further, the set of

TSs for an object set forms the basic construct of our model which we call a time sequence collec

tion (TSC). For example, the set of all salary time sequences for a set of employees forms the

salary TSC. Simple TSCs are constructs that have a surrogate, time, and attribute associated with

them, denoted as a triplet (S, T, A). For the salary history of employees, this triplet may be

(employeeJd, month_year, salary). Complex TSCs allows multiple attributes to be associated with

the same surrogate and time pairs, and are denoted as (S, T, A). Complex TSCs are usually useful

for representing synchronous temporal attributes, such as multiple measurements taken at the same

time (e.g., air quality measurements: nitrogen, carbon dioxide, etc.)

Naturally, a TSC can be accessed on any combination of its surrogate, time, and attribute

values. For example, “find the employees that had a salary more than 30k in July 1988” is a

query that accesses both the time and attribute components of the salary TSC. As will be discussed

below, there are some specific asswnptions that can be made regarding the access patterns of tem

poral data which greatly influence the choice of physical structures.

One of the essential conclusions that was reached in our previous work is that TSCs should

have certain meta-data properties. These properties characterize the semantics and the interpretation
of the Thc values, and have a profound effect on physical data structures chosen to implement a

TSC. Below is a brief description of these properties.

2.1. TSC properties

There are four properties of interest Segev & Shoshani 87]:

(1) Time granularity: this property specifies the points in time that can potentially have data

values. For example, if salaries are assigned at increments of months, then the salary TSC

granularity is months. Note that time points do not necessarily have values (e.g., salaries do

not usually change every month for an individual.)

(2) Life span: the life span specifies the range of valid time points of a TSC. The life span

implies that some physical mechanism is necessary in order to distinguish between existence

and non-existence of time points in the mc. The life span definition can be fixed or vary

over time. In the latter case, the life span is either extended continuously to “current-time”

or it forms a “moving-window”.

(3) Type: the type of a TSC can be thought of as specifying the behavior of time sequences in

the TSC. For example, a type “step-wise constant” (SWC) can be associated with the

salary TSC, to mean that the values for time points that do not have explicit data values are

determined from the last data value. Other useful types are “discrete” and “continuous”,

which carry the obvious meaning. A user defined type is also allowed.

(4) Interpolation rule: this property is associated with the type. For the SWC type, the nile is

as was described above. For the discrete type, the rule is simply that missing values cannot

be interpolated. For the continuous type, there is a default continuous function to interpo
late values. For the user defined type, an interpolation rule must be supplied by the user.
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(5) Regularity: A TSC is regular if for each lime point of the given granularity, a data value

has been provided, that is, there is no need to interpolate. This property also provide seman

tic infonnation to the user, for example, one may want to apply certain statistical analysis

only to collected data rather than to interpolated data.

The physical implication of the above properties is that we need to support the interpolation

rule according to the TSc ‘s type and granularity. In non-temporal systems the lack of an entiy

(e.g., there is no entry for some project and some part) implies that the information does not exist.

In contrast, in order to support a mc structure, the lack of an entry requires the interpolation of the

value. For example, if there is no entry for the salary of John in June 1988, it has to be inferred.

As will be discussed later, this requirement affects directly the indexing structures.

2.2. Time points, event points, and change points

Recall that we described time points as points that can potentially have a data value. Time

points are defined by the granularity of a mc. As mentioned previously, a lime point may have an

explicit value associated with it, may have an implicit value determined by the interpolation rule, or

may have no value (null). We refer to time points that have explicit data values as event points.

For example, the time points where a new salary is assigned are considered event points. Clearly,

the event points form a subset of the time points. Usually, one would want to store only the event

points, and interpolate the values of the other time points when necessary. However, we may wish

to interpolate values ahead of time depending on the density of event points, where event density is

defined as the ratio of event points to time points. In the case of the regular TSCs (mentioned

above) the event density is 1. As the event density approaches 1, we may prefer to fully populate
the TSC in order to use simpler data structures and indexing methods. These issues are discussed

further in Section 3.

Now, suppose that consecutive event points have the same values. As can often occur with

measurement data or statistical data (e.g., consecutive temperature values may be the same). In

principle, we could apply a compression operator, so that all repeating “duplicate” values are

removed, thus achieving better storage utilization. We call the subset of event points that is left

change points. One should be careful with compressing out “duplicate values” because it can

result in loss of information. For example, two consecutive salary event points may signify “no

raise”, and the removal of the second event point (which is a duplicate value) would result in the

loss of this infonnation. Thus, a compression of duplicates should be a user selected parameter, as

it depends on the semantics of the application.

Change points are also important as part of a predicate over time sequences. For example,
one may be interested only in the times that employees change departments. In general, all three

predicate conditions for finding time, event, and change points should be supported by physical
structures.

2.3. Temporal normal forms

In Segev & Shoshani 88] we discuss the issue of temporal normal forms in the context of a

relational representation of the TSC model. We argue there that it is appropriate to impose the res

triction on TSCs that any time slice (at some time point t) would result in a standard First Normal

Form relation. We call this condition a First Temporal Normal Form (or 1TNP). The practical

implication is that for each instance of a surrogate and time point, each attribute has a single value
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(possibly null). While this requirement seems obvious, its enforcement may not be trivial depending

on the physical structure chosen for the implementation of a TSC. We elaborate on this point in

Section 3. A definition of another temporal normal form was proposed by Navathe & Ahmed 861.

The logical implications of that definition are discussed in Segev & Shoshani 88].

2.4. Operators

In Segev & Shoshani 87] we discussed at some length the operators that should be applied to

TSCs. They include various temporal predicates, aggregate functions in several dimensions, accu

mulation operators (such as a running average), and operators between multiple TSCs. The physi

cal support of such operators is quite complex and is still under study. However, to illustrate the

additional complexity that a temporal model introduces we discuss briefly below the implication of

the aggregate functions.

Operations over TSCs produce a new ThC. In particular, operators involving aggregate func

tions require the determination of a new granularity for the resulting TSC, and often a new type as

well. For example, we may wish to aggregate over a TSC which represents deposits and with

drawals in some bank account, in order to generate a TSC for the running balance. The resulting
TSC will have a type SWC while the original TSC is of type discrete. Alternately, getting a

monthly sales figure from a daily sales TSC, changes from one granularity to another. A more

difficult problem arises when we need to decrease the level of time granularity (e.g., estimate daily

figures from monthly figures, assuming we know daily patterns). This problem is referred to as the

“disaggregation problem” by statisticians. Our work on these problems is in progress, and its

description is beyond the scope of this paper.

3. PHYSICAL DESIGN IMPLICATIONS

The problem of physical design of temporal databases still deserves a significant attention. In

this section we discuss physical design issues, some of which has been addressed by works such as

Aim & Snodgrass 86, Gunadhi & Segev 88a, Lum et al 84, Rotem & Segev 87]. At an abstract

level, physical design of temporal databases is similar to conventional database design in the sense

that the desirable structure is a function of application requirements. There are, however, several

important differences. For example, in temporal databases, one expects that many queries will need

the data ordered by the time attribute; also, the data itself is likely to be either static or append-only.
We will first classify elements of the environment that affect the design, and list the major physical

design choices. We will then discuss some of the combinations of environmental parameters and

physical design choices.

3.1. Environmental parameters

The following is a list of the parameters that affect the physical design.

(1) Static vs. dynamic data. Static data represents non-updatable historical data with a fixed life

span, while dynamic data arise in cases where temporal data have a variable life span or a

fixed life span with updatable data (i.e., missing or incorrect data). In the case of dynamic
historical data, an important aspect is its append-only nature.

(2) Sparse vs. dense data. We define two measures of density that have physical design implica
tions. The first measure, event density (introduced in Section 2), is the ratio of the number

of event points to the number of time points. The second measure is existence density,
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defined as the ratio of the number of existence points to the number of time points, where

an existence point is a thne point that has a non-null attribute value (either explicit or impli

cit). For a discrete sequence, all existence points are event points, and thus the two density
measures are the same. However, for a SWC or a general continuous sequence, the two

measures will differ if the two sequences contain null values.

(3) Integration of temporal and non-temporal data. In the case where such an integration is

required, a priority may be given to the processing of non-temporal data and the current

portion of the temporal data

(4) Query types. This is the most influential parameter as far as the physical design is con

cerned. Queries can be classified as follows: 1) Single-TSC queries; either point or range

queries. The qualification part can refer to S. T, or A, or any combination. Note the T

qualification can be either a value (e.g, June 3, 1988) or a relative position (e.g., third from

the beginning). ii) Multi-TSC queries. These queries involve some kind of a join plus any

of the qualifications of single-TSC queries.

3.2. Physical design options

The physical design options can be classified as follows.

(1) Record structure. We consider here the possible options for extending existing relational

systems. In order to minimize changes to current systems, we have chosen to have a nor

malized tuple as the physical data unit.

(2) Sorting. A major issue is whether to have the data sorted by time (either physically or logi
cally), and if so, whether the time will be the major sort key or a minor (where the primary
order is by surrogate).

(3) Indexing structures.

i) Single attribute indexing. The two main choices here are hashing (which also determines

the placement of data records) or trees (e.g., B-trees).

ii) Multi-attribute indexing. There are several options for providing indexing structures:

a) Separate structures. In this case each attribute is indexed separately. A multi-attribute

access can be done by intersecting pointers from multiple indices.

b) Joint structures. The indexing is done directly on the combination of several attri

butes.

C) Multi-level structures. Separate structures axe combined in a hierarchical fashion. For

example, the leaves of a B+ tree index of one attribute point to a B+ tree index of

another attribute.

The above structures have one or more component. In general, each component can be

one of two indexing types: either a tree (e.g., R-trees) or a non-tree (e.g., grid files).

The foregoing taxonomy of environmental parameters and physical structures, though general,
serves as a helpful framework for investigating the physical design problem. In this paper, we dis

cuss only some the issues; the complete discussion is given in Gunadhi & Segev 88a and 88b]. It

should be noted that we are interested in databases containing a large number of history records.

Below is a summary of our conclusions.
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3.3. Query types

We anticipate that most of the temporal queries will qualify on S and T (i.e., data records for

surrogates at specific time points); if T is absent from the qualification, it means that the query

needs the whole history. Moreover, we don’t anticipate frequent range qualifications on S. A

qualification on A is likely to be combined with either a T or ST qualification (e.g., the data of

employees who earned more than 30K at a certain time point). Consequently, range queries are

more likely to qualify on T and/or A. In databases which are event-oriented, queries that qualify

only on T (i.e., what happened at certain time points?) are more likely; in our analysis, however,

we assume that these queries are secondary in importance.

The above discussion implies that we are interested in supporting primarily queries that qual

ify on ST (note that this is the primary key of the data tuples), or TA, or STA.

3.4. Ordering of the data records

Given the above query types we exclude a primary order of data records by time, but rather

have the data sequenced primarily by surrogate and secondarily by time. If the data is static, physi
cal clustering is the best choice; if it is dynamic, an indexing structure may be required to enable

access to data in the desirable order.

Note that if the query type do not qualify on the surrogate (i.e., T or TA qualifications), then

a primary order by time is desirable. Furthennore, in this case, since the data is append-only we

can keep it in contiguous blocks (a clustered index) with a fill factor of (or approximately of)
100%.

35. A static environment

If the data is static, dense, and without many contiguous duplicate values, then the optimal
solution is to have it organized as a two dimensional array linearized row-wise (rows and columns

represent S and T respectively). An index on A may still be required. If the data is sparse, a direct

access by ST cannot be calculated, and an index is required (we exclude hashing on ST because of

the high likelihood of range qualifications on T). In the case where there are many contiguous

duplicate values, compression is useful. It should be noted, however, that the compression scheme

should preserve the distinction between event points and interpolated points. The only exception to

this is a regular TSC where we know that all points are event points.

3.6. A dynamic environment

Given that we are not interested in T as the primary ordering attribute, physical clustering in

order of ST may cause a problem. If the database is append-only and the rate of growth is low, an

indexed-sequential organization is appropriate. If the rate of growth is high, long overflow chains

my result, and an unclustered index should be used.

3.7. Indexing

The most important environmental parameter that affects indexing is the query types. Our

current conclusions (the details are given in Gunadhi & Segev 88a and 88b]) are the following:

(1) For a large number of surrogates and a significant number of queries that qualify on a single
5, we excluded a grid type file for ST or STA dimensions. The reason is that there will be

a partitioning line for each surrogate value, and if the partitioning information fits in main
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memory, it implies that we can also store the multi-level SIT index trees in main memory.

A grid type file can be constructed on the ST or STA dimensions if there are range queries

on S and queries that qualify on a single S can be compromised. Grid file types axe a viable

option on the TA dimensions (e.g., the brick file in Rotem & Segev 87]).

(2) For ST qualifications we prefer to have a multi-level B+ tree index, where the leaves of the

S tree point to T trees. This choice enables integration of historical data with current and

non-temporal data such that updates to the latter are separable from the temporal structures.

In addition, the total storage cost is frequently lower for the multi-level structure.

(3) It is inefficient to have time index on points other than event points (in the case of a SWC

sequence, indexing event points is equivalent to indexing time intervals, where the terminal

points of an interval are event points). The reason is that we can interpolate in order to find

values at points other than event points.

(4) For a TSC with a high existence density, there is no point in having a separate T index (in

the case of a multi-level index a T index under an A or S index can still be useful). The

reason for the above observation is that in a T index with high existence density, a T value

of the index will point to data records in a non-selective way. The extreme case is when the

the density is 1, and thus for each time point in the lifespan all the surrogates have a value.

3.8. 1TNF Enforcement

As was discussed in Section 2, enforcing 1TNF of a TSC implies that only one attribute value

is allowed for a given combination of S and T values.t The mechanism for enforcing 1TNF is

dependent on the record structure. For example, there are proposals that claim that it is more desir

able for access efficiency to store time sequences as tuples containing intervals. If such a structure

is chosen, then a mechanism has to be added to ensure that intervals of the same surrogate do not

overlap, so that the 1TNF condition is not violated. On the other hand, if one choses to store tuples
with time points rather than intervals, then this condition can be simply enforced by existing
mechanisms of the relational model, i.e. by defining the surrogate and the time as a composite key.
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1. Introduction

In most databases, when an object’s attributes assume new values, their previous values are discarded

from the database. Such databases carry only current data. However, in many real life applications, there is a

need for both current and historical data. For instance, in a corporate database environment, the database

should possess a temporal dimension for supporting managerial information needs.

It is possible to consider time as a special attribute in different data models and to use its values as the

time reference of other attributes. However, this is a rather ad hoc and limited solution. It either creates

undue data redundancy and/or provides limited time processing capacity. It seems to us that the solution to

this problem lies with either developing a new model to support the time dimension or augmenting existing
data models to support the time dimension in a coherent way. In this paper we adopt the second approach
and propose an extension to nested (Non First Normal Form - N1NF) relations for handling time variation of

complex objects.

Recently, considerable research effort has been directed to temporal aspects of information systems and

research in this area has proliferated. A comprehensive summary Snodgrass 86] and bibliography McKenzie
861 appeared in a recent issue of SIGMOD Record. Many proposals to extend relational model (Codd 70] for

time support have been made. One group of researchers adds special time attributes to flat (1NF) relations

Ariav 86, Ben-Zvi 82, Clifford & Warren 83, Jones 84, Lum et al 84, Navathe & Ahmed 87, Snodgrass 87].
Another group proposes using N1NF relations and time-stamping attributes in contrast to the time-stamping
of tuples found in the former approach Gadia 87, Tansel & Clifford 85, Tansel 86]. Gadia extracts snapshots
from historical relations whereas Tansel either applies algebra operations directly or normalizes (flattens) the

relations before extracting data. In both approaches, there is only one level of nesting in the model. Later,
Gadia relaxed the homogeneity restriction and generalized his approach Gadia 88]. In a recent proposal,
McKenzie and Snodgrass added time stamps to the attributes of flat relations McKenzie & Snodgrass 1987].
The time stamps are sets of time points. Lorentzos and Johnson proposed an extension which adds two time

points for any set of attribute Lorentzos & Johnson 87]. Other research in temporal databases includes

Ginsberg 84, Klopprogge & Locdkemann 83, Anderson 81, Shoshani & Kawagoe 86].

Nested (N1NF) relations organize data hierarchically. Each tuple component can be an atomic (simple)
value or another relation. Two new operations unnest and nest have been introduced to relational algebra
for restructuring nested relations Jaeschke & Schek 82]. Pack and unpack are similar to one attribute nest

and unnest operations used on set valued relations Ozsoyoglu, Ozsoyoglu, and Matos 87].

In this paper, we combine the research in temporal databases and nested (N1NF) relations for

nontraditional database applications like CAD/CAM, office automation, etc. We model a simple attribute

value as a temporal atom which consists of two components, a temporal set and a value. The temporal set

denotes a time period and the temporal atom asserts the value was valid over this period. We also discuss

redundancy in nested temporal relations and develop criteria for well-structured nested temporal relations.

Our previous work modelled entity histories. This extension to relational model allows to model histories of

relationships as well.

Section 2 describes the model and the scheme trees associated with nested temporal relations. Section 3

covers redundancy in nested temporal relations and establishes criteria for structuring such relations. Section

4 is the conclusion.

2. N1NF Temporal Relations

2.1. Preliminaries

Let T be set of time points mapped to natural numbers, i.e. (0,1,2,...,n} which is well ordered <

relationship. 0 is the relative beginning point. The symbol n denotes the present time instant and its value

increments as the clock ticks. We do not consider a time unit. It is user defined and can be any of seconds,
minutes, hours, days, etc. A time interval is a set of consecutive time points. For instance, l,u) is a time
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interval including the time points between 1 and u, and 1 but not u. A temporal set (called a temporal
element in Gadia & Vaishnav 85]) is a set of time points which can be grouped into disjoint time intervals.

Two example of temporal sets are 5,10)) and 5,10), 20,30)}.

2.2. The Model

The fundamental construct of our model is a temporal atom, <t,v> where t is a temporal set ~nd v is a

value. The temporal atom asserts that the value v is valid over the time points represented by the temporal
set t. The temporal set can be considered as a union of disjoint time intervals Gadia 85, Gadia 87, McKenzie

and Snodgrass 871 or as a single interval Tansel 85, Tansel 86]. In the latter case several temporal atoms are

used in place of the one temporal atom of the former case. For instance, the temporal atom {5,10),
20,30)}, Tom> is represented as two separate temporal atoms: {5,10), Tom> and {20,30), Tom>.

These two representations are equivalent in terms of their information content, however, the first

representation is more concise. Algebraic operations are defined accordingly depending on the representation
method chosen Garnett & Tansel 88, Tansel & Garnett 88].

A temporal atom represents one value in the history of an attribute. Thus, the history of an attribute is

represented as a set of temporal atoms. Furthermore, attribute values may also be relations whose tuple
components are made up of temporal atoms or previously defined relations. Hence, we relax the requirement
of first normal form (flat) relations. The resulting temporal relation is N1NF and we call it a nested temporal
relation (NTR). In such a relation there may be time invariant attributes, e.g. the social security number.

These attributes can be represented either as a single value or as a temporal atom where the temporal set is

the existence period of the concerned object. For the Attribute A, AT and A~ represent its temporal set and

value components, respectively.

Figure 1 gives an example nested temporal relation, COURSES. The attributes of COURSES are

course number (Cno), course names (CnameX), sections of the course (SectionX) and the text books used

(TextX). Attributes whose values are relations have a name ending with the letter “X”. Cno is a simple
attribute whose values are temporal atoms. The remaining attributes are relations. CnameX and TextX are

unary relations. SectionX, on the other hand, is another temporal relations whose attributes are section

identifier (Section), students enrolled in that section (StudentX) and teachers of a section (TeacherX). The

remaining attributes are self explanatory. COURSES relation has two tuples, the first one for the course Cl

and the second one for course C2. The unary relation CnameX has two 1-tuples (temporal atoms). SectionX

consists of two 3-tuples the first of which has two sections, and so on.

23 Scheme Trees

The attributes of a nested temporal relation are organized as a scheme tree’. The name of the nested

temporal relation is the root of the scheme tree. Each descendent of the root is either a simple attribute

name or another tree which is also a nested temporal relation. The leaves of the scheme tree are simple
attributes and non-terminal nodes are called high-order names. High-order names represent temporal
relations. A high order name may consist of simple attributes and/or other high order names. The high
order names are recursively defined but do not contain cycles (loops), i.e., they are strictly hierarchical.

Figure 2 gives the scheme tree of the nested temporal relation depicted in Figure 1.

The leaves of the scheme tree carry the time-stamps for the time-varying attributes. The non-terminal

nodes do not carry any time reference. The time reference of a non-terminal node (a higher order name) can

be induced recursively from the time reference of its descendants. Let X be a non-terminal node and Yl,

Y2,..., Yn be its descendants. Then, the time reference of X is XT = Y11 U Y21 U...U Yn
.

The time

reference of each Yi is similarly defined until leaf nodes are reached. For instance studentk1 = SflOT U

SnameT U GradeXT where GradeX1 = Grade1.. Similarly, time reference of SectionX is Section U

StudentXT U TeacherX1.. Thus, time reference of each high order attribute name is determined ~y the time

reference of its descendants. This is an integrity constraint for the nested temporal relations.

Each simple attribute A of a nested temporal relation has an associated domain of values denoted as

DOM (A). DOM (A) contains either temporal atoms or atomic values. For the sake of uniformity in the

remainder of the paper, we will assume that attributes are defined on domains consisting of temporal atoms

only.
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COURSES

Cno CnameX Sect ionx TextX

Cname Section StudentX TeacherX Text

Sf0 Sname GradeX Tno Thaine SalaryX

Grade Salary

<0,l,Sl> <0,l,Tom> <0,l,A> <0,5,Tl> <0,5,Tom> <0,2,20K>

<2,5,25K>

<0,n,Data

<0,l,S2> <0,1,Anfl> <0,1,B> Structures>

<O~2,S3> <O,2,Bob> <0,1,F>

<1, 2 ,A>

0,n,Cl> <O,5,DS> <1,2,S4> <l,2,Tim> <l,2,C> <5,n,T2> <5,n,Liz> <5,6,20K> <0,n,Algori
<5,n,Int to OS> <0,2,Sel> <6,8,25K> thaa~

<8,n, 30K>

<0,l,S5> <0,l,Ann> <0,l,A> <0,n,T3> <0,n,Hall: <0,6,20K>

<6,n,30X>

<0,1,S6> <0,1,Gary> <0,1,8>

<5,6,S7> <5,6,Dan> <5,6,8>

<0,n,Se2> <8,9,S8> <8,9,Bill> <8,9,A>

:0,6,C2> <0,6,Int to DS> <0,6,~e1> <5,6,S1> <5,6,Tom> <5,6,A> <0,6,T2> <0,6,Liz> <0,5,15K>
<5, 6, 25K>

Figure 1. An Example Nested Temporal Relation.

COURSES

Cno CnameX SectionX TextX

Cname Section StudentX TeacherX T xt

Sno Sn me GradeX Tno Tname SalaryX

/
Grade Salary

FIGURE 2. Scheme Tree for COURSES Relation

3. Structuring Nested Historical Relations

Nested temporal relations can be structured in various ways. Each different structure has a different

level of data redundancy. Of course, controlled and reduced redundancy is desirable to avoid anomalies in

the insertion, deletion and update operations. This is the motivation behind normalization in relational

database design theory based on functional and multivalued dependencies. A similar normalization theory has

been developed for nested relations in Ozsoyoglu & Yuan 87, Roth & Korth 87). In what follows, we adopt
this approach for structuring nested temporal relations.

From a temporal perspective, attributes of a relation can be classified into different categories with

respect to the type and number of values they assume Shoshani & Kawagoe 86, Segev & Shoshani 87]. An

attribute which takes a single value at any time is called stepwise constant. For instance, the salary of an

employee is an example for this type of attributes. There is only one salary value at any time. When a new

salary value is assumed as the current value, the previous value becomes no longer valid. Such an attribute in

traditional relational theory represents a functional dependency on the relation’s key. However, when

temporal dimension of the database is considered it becomes a multivalued dependency on the relation key.
There is a set of attribute values (one is valid for a period of time) for each key value (multivalued
dependency). Discrete attributes assume a single value at a time point which is valid only at that point but

not any other time. In this case, the temporal set consists of a single time point. Values of such attributes

also represent functional dependencies at one time point but multivalued dependencies over a time period.
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Another group of attributes, (also termed stepwise constant or discrete), can take a set of values at any time

instant. Skills of an employee, is an example for this attribute type. An employee has zero one or more skills

at any time. This represents a multivalued dependency. It is still a multivalued dependency when viewed in a

time perspective.

Let’s consider the functional and multivalued dependencies for the COURSES relation. These

dependencies are given below in Figure 4. Note that Figure 4.a lists the dependencies in the static case

without any time dimension. Figure 4.b gives the same dependencies in a temporal perspective. That is, the

attribute values are temporal atoms. Cno is time invariant; there is only one Cno value throughout the

database history for a course. Although we represent it as a temporal atom, it can be considered as a simple
(single) value for all purposes. On the other hand, there is a well-defined set of temporal atoms for Cname

attribute, So, the functional dependency, Cno --> Cname of the static case turn into a multivalued

dependency, Cno -->> Cname in the temporal database. Other dependencies are similarly explained.

Cno ——> Cname Cno ——>> Cname

Cno ——>> Text Cno ——>> TExt

Cno ——>> Section,Sno,Snaine,Grade, Cno ——>> Section,Sno,Sname,
Tno, Tname, Salary , Tno, Tna~e,Salary

Cno,Section ——>> Sno,Snaiue,Grade Cno,Section——>>Sno,Snaiue,Grade
Cno,Section ——>> Tno,Tnarne,Salary Cno,Section—>>Tno,Tnaxne,Salary
Cno,Section,Sno ——> Grade Cno,Section,Sno——>> Grade

Sf0 ——> Sname Sf0—-> Sname

Tno ——> Tname Tno——> Tnaine

Tno ——> Salary Tno——>> Salary

a. without time b. with time

Figure 4. Functional and Multivalued dependencies in the COURSES Relation.

A different defmition for the scheme trees is given in Ozsoyoglu & Yuan 871. This defmition constructs

the scheme tree for a nested relation with respect to functional and multivalued dependencies among the

attributes. Attributes are nodes of the scheme tree, dependencies among the attributes are its edges. The

ancestors of a node multidetermine (functionally determine) its descendants. The scheme tree for the

COURSES relation is given in Figure 5. Note that it does not contain high order names, but is equivalent to

the scheme tree given in Figure 2 in terms of its information content. They represent the same nested

temporal relation structure.

Cno

~
So o

Sname Gr de Tn me Salary

Figure 5. Scheme Tree for Courses Relation

The COURSES relation contains redundancies. For instance, salary data of a teacher is repeated if a

teacher taught several different sections. Two tuples are created for the teacher T2 and relevant parts of

salary are split in these tuples. T2 taught both section Sel and Se3 during 5,6) and his salary for this period
is repeated. Furthermore, salary history of T2 has been split into two tuples. Including the entire salary
history of 12 in each tuple would still create problems.

Another source of data redundancy is the repetition of Tname or Sname. If a teacher taught several

sections, possibly at different times teacher’s name would be repeated in different tuples. This redundancy is

due to the structure of the scheme tree which does not represent the dependencies among the attributes

properly. The first type of redundancy is caused by the partial dependency of Salary on Tno. The scheme

tree implies that (Cno, Section, Tno) multidetermines Salary which can be obtained from Tno -->> Salary by
augmentation. The other data redundancy is also caused by a partial functional dependency. That is, (Cno,
Section, Tno) --> Tname can be obtained from Tno --> Tname by augmentation.
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A scheme tree is called a normal scheme tree if it does not contain any partial and transitive

dependencies Ozsoyoglu & Yuan 87]. These anomalies are eliminated by decomposing COURSES relation

to remove undesirable dependencies and creating a scheme forest. Figure 6 depicts the resulting scheme

forest for COURSES relation. The nested historical relation schemes in the scheme forest are given in Figure
7.

Co

Cnaii~ionTh~e~ct
Sn(”~o
Gilde

Figure 6. Scheme Forest for COURSES Relation

A root to leaf path in a normal scheme tree represents a 4NF decomposition. The scheme forest of

Figure 6 implies 6 relations which are all in 4NF. These are (Cno, Cname), (Cno, Section, Sno, Grade),
(Cno, Section, Tno), (Cno, Text), (Eno, Ename), and (Tno, Tname, Salary). Note that (Tno, Tnaine) is not

represented as a separate relation since Tname is functionally determined by Tno. Attributes of these 4NF

relations are temporal atoms. The time reference can be factored out from the attributes and can be added

to the tuples. This is the approach followed by various researchers as indicated in Introduction.

Cl

Cno CnameX SectionX TextX

Cnaine StudentX TeacherX Text

Sf0 GradeX Tno

Grade

C2 C3

Tno Tnaine SalaryX

Salary

Figure 7. Nested Relation Schemes in the Scheme Forest

5. Conclusion

There are a few points we wish to touch on briefly. Nested temporal relations may appear to be

complicated at first glance. However, when they are properly structured in the form of normal scheme trees

to avoid data redundancy, the relations exhibit a natural and intuitive conceptualization of the data. The

nested temporal relation represents the associations among entities, perhaps at several levels, depending on

the type of associations. Attributes of an entity will be represented at only one level of nesting. This

representation is also equivalent to a 4NF decomposition, as is shown in Ozsoyoglu & Yuan 86]. The same is

also true for the nested temporal relations. Instead of creating many small 4NF relations, the data is

represented in a concise manner as a scheme forest.

One criticism is that a series of unnest operations is needed to extract information from nested temporal

Eno Tno

EnLne Tn~~~tary
(b) (c)

(a)
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relations. This is not always the case, because local versions of the operations can be defmed. They allow

extraction of data without any unnest operations for some queries. Furthermore, it is possible to optimize the

query processing methodology and to process nest/unnest operations together with other algebra operations,
e.g., selection or join operations.

The user interacts with the database by a user-friendly query language. For instance, versions of SQL

for nested relations have already been proposed Dadam et al., 85]. Similar enhancements can be added to

SQL for nested historical relations as well. Moreover, a graphical query language can also be modified for

this purpose i.e., Time-by-Example Tansel, Arkun & Ozsoyoglu 87]. All these points are currently under

investigation and we expect to report the results in future papers.

Please note that the nested historical relations can be structured in different ways if the associations

among the entities are many to many. Different structures would be more convenient for different groups of

users. When flat relations are used to represent association, the entities are equally represented. On the

other hand, a nested historical relation arranges the entities in a hierarchy and groups the data according to

this hierarchical structure. One form of nested historical relation can be obtained from another by a sequence

of unnest/nest operations.
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A Bibliography on Temporal Databases

Robert B. Stam and Richard Snodgrass

Department of Computer Sdence

University of North Carolina

Chapel Hill, NC 27514

1 Introduction

This bibliography is an update of a 1986 bibliography (McKenzie, E. Bibliography: Temporal Daiabases, ACM
SIGMOD Record, 15, No. 4, Dec. 1986, pp. 40-52), which was in turn an update of a 1982 survey (Bolour, A.,
T.L. Anderson, and H.K.T. Wong, The Role of Time in Information Processing: A Survey, SIGAri Newsletter,
80, April 1982, pp. 28-48) This bibliography consists of papers published or accepted for publication since the

previous bibliography, as well as older papers that have not appeared in these previous surveys.
The pre-1982 survey, covering 1960-1982, contained 16 papers specifically relating time to database manage

ment, with 5 appearing in journals. The McKenzie bibliography, covering the next five years (1982-1986), listed

over 80 papers on this subject, with 10 appearing in journals. This bibliography, covering the next 21 months

(Jan. 1987 through September, 1988), lists over 100 papers, with 18 appearing in journals. During this period,
the first conference on the topic was held (TAIS: Conference on Temporal Aspects in Information Systems, May,
1987). Our conclusion is that the field is growing rapidly and seems to be maturing, as more papers appear in

journals (Figure 1 illustrates that the growth remains exponential).
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Figure 1: Average Number of Journal Papers Appearing Annually
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The entries in this bibliography are classified according to a taxonomy of time in databases developed by

Snodgrass and Ahn (Temporal Databases, IEEE Computer, 19, No. 9, September, 1986, pp. 35-42.) Papers
that propose augmenting conventional database management systems to represent transaction time (that is, the

time when information is entered into a database) are listed in Section 2. Papers that propose augmenting
conventional database management systems to represent valid time (that is, the time that information models

in the real world) are listed in Section 3. Finally, papers that propose augmenting conventional databases with

both aspects of time are listed in Section 4.

We apologize for omission or misclassification of papers. We thank Ed McKenzie for help in locating the papers

listed here. This research is supported in part by the Office of Naval Research, Contract N00014-86.-K-0680, and

by the National Science Foundation under Grant DCR-8402339.
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As defined above, transaction time concerns the time when data is entered into the database. Relations that
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3 Valid Time

Valid time concerns the time when the information was valid in the real world. Relations that include valid time

are termed historical relations.
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