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Dear TC DE Members and Correspondents:

Since it has been a year when I last wrote you, it is time for me to provide an

update of our activities over the past year.

The Technical Committee on Database Engineering has become the TECHNI

CAL COMMITTEE ON DATA ENGINEERING. The new name accurately
reflects the evolving nature of the database technology. It encompasses not only the

more traditional aspects of databases and knowledge bases but also many topics that

allow a broader scope. It is appropriate that the accompanying editorial is written

by Dick Shuey who has been active in the IEEE Communications Society for many

years and is new to our TC.

As a result of the financial uncertainty, the publication of Data Engineering

fell behind schedule in 1986. Thanks to the editor-in-chief, Won Kim, and the associ

ate editors, it is being published once again in a timely manner. There have been

some problems in putting together the December 1986 issue on the European

ESPIRIT project. Guy Lohrnan has responded to our call and is organizing an alter

native issue on query optimization that should be published in November. I might

also add that we are eliminating the two charges that were initiated last September:

the voluntary page charge for the papers and charge for the conference announce

ments.

Although we have been successful in getting financial support this year from the

IEEE Computer Society for publishing DE, we still need a long term solution to our

financial problem. Several alternatives were proposed and considered. The only

satisfactory alternative appears to be establishing a subscription fee for DE. This

will provide us with a continuing source of income and eliminate financial uncer

tainty.

I urge you to express your opinion on this issue. If you support this alternative,

it is important that you write and tell me. Your past support has been greatly

appreciated, but an overwhelming positive response from the membership is needed

in order to influence the officers of the IEEE Computer Society.

Finally I would like to remind you that the Fourth Data Engineering Confer

ence will be held February 2-1, 1088 in Los Angeles, California. John Carlis, the

Program Chair, tells me that lie has received over 210 submissions. It appears that

we will have once again an excellent conference. I encourage all of you to attend and

participate in this major conference.

SushI Jajodia

August 14, 1987
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DATA ENGINEERING IN TRANSITION

Richard L. Shuey

This is the first issue of the quarterly bulletin on DATABASE ENGINEERING that has the

new name DATA ENGINEERING. The change in name, in conjunction with the earlier adoption of

the name for the International Conference on Data Engineering and the subsequent change in name of

the parent technical committee of the Computer Society, completes a transition. That transition

highlights the evolutionary path that the field is taking. The primary roots of data engineering lie in

the field of database technology. That fact accounts for the earlier titles emphasizing databases. Data

base technology remains one of the more mature disciplines of what we now perceive as the broader

field of data engineering. Database technology and theory continue to provide a base from which this

new field is evolving.

The overall objective of data engineering is to insure that in large computer and information

systems, the data required by the individual components and their internal processes will be available

when needed, in the proper form to be used, and appropriately controlled with respect to access and

security. As it becomes more common for databases to be shared by multiple applications and multiple
users, the technology important to attaining that objective will extend further beyond that of data

bases per Se. Relevant technologies include those of: communication systems; security and crypto

graph; artificial intelligence; the nianagement and control of data both within and external to a data

base system; distributed system architecture; interfacing between unlike and independent information

systems; integration of database technology with programming languages; the software for transaction

and data systems; the coupling to existing information found in books, publications, technical hand

books, graphs, etc.; and, the coupling to data currently being created that is not in a convenient form

for input to a computer. To illustrate this dependency, consider:

Communication technology is an old, mature but rapidly evolving field. That technology is

applicable not only to communications within a computer but also to communications between com

puters in a laboratory environment, a local area such as an institution, a city, within nations, and

internationally. The management, control, integrity, security, and interfacing of data must be

addressed at many levels in the information system hierarchy, including the communications systems
and databases involved. We do not have an adequately mature engineering discipline nor complete sets

of techniques and mechanized tools to permit us to build and maintain with confidence the very large
complex data systems that exist in today’s society. Advances in software engineering methodology and

the development of associated mechanized software development facilities (factories) can help. Much of

the data that we need in an engineering design system exists in published articles, handbooks, graphs,
etc. The format in which these data are presented is not consistent or standard. The scales of graphs
may be different, the results of materials tests depend on how the material was produced and the test

ing environment, etc. Engineering data of this nature are needed as an input to computerized design
systems and a satisfactory solution is not evident. A significant effort is needed to address this chal

lenge. The definitions of the terms data, metadata, heuristic, information, intelligence, and transfor

mations between these categories are not entirely clear, nor universally agreed to. Yet, the importance
of the underlying concepts is agreed to by all. The concepts keep arising in data engineering and many

other fields. Progress will require interdisciplinary efforts.

As most engineering fields, data engineering is objective oriented. We wish to design systems

that make data available. We must be willing, in fact expect, to utilize any technology that will lead

to better data systems. We must seek, solicit, involve, and welcome interdisciplinary participation in

our work. Not only will we directly benefit, but our perspective on areas of mutual interest will in the

long run benefit our collaborators. The challenge to the membership and officers of the Technical

Committee on Data Engineering is clear. We must be aware of relevant work in other fields. We must

make the participants in those other fields aware of our work in overlapping areas of potential mutual

interest. Where sound mutual interest exists or develops, we must seek better coordination and even

integration of effort. In a practical sense we should actively seek involvement by interdisciplinary pro

fessionals in our publications, meetings, and membership. This must be a two-way street. We will

push for adequate coverage of viewpoints from theory to applications. The theories must be tested by

application, and the applications must be evaluated to permit validation and extension of the theories.

Those involved directly with the operation of the Technical Committee and the International

Data Engineering Conference have actively encouraged and promoted evolution along these lines. We

have made progress, but not as rapidly as we would like. To the degree that name changes can be

important, particularly in interacting with others, we believe that this name change is an important

evolutionary step. In going further down the indicated path we shall need the support and participa

tion of the membership as a whole. We seek your active and personal participation.
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Letter from the Editor

This issue of IEEE Data Engineering (formerly Database Engineering) addresses the subject of

Federated Database Systems. A federated database system consists of a collection of individual

autonomous databases, which may be heterogeneous, that agree to share information and cooperate
in some controlled way. Because of the proliferation of databases that need to share information

and yet retain local control, methods for designing and implemented federated systems are becom

ing increasingly important. This need was anticipated in an early paper by Hammer and McLeod.1

Further evidence of its importance is the recent growth of research in this field and the announce

ments by some DBMS vendors of distributed database products that include “gateways” to hetero

genous systems. Because retrieval from heterogeneous or federated databases, and the related issue

of schema integration,2 has been an active research topic for several years, I have devoted this issue

to topics that have received less coverage.

The first four papers in this issue are about concurrency control in federated systems. In the same

way that federated data access must deal with heterogeneous data models, languages, and schemas,

concurrency control in federated systems must deal with heterogeneity in the concurrency control

algorithms used by the individual databases. Except for a recent paper by Gligor and Popescu

Zeletin,3 the problem of heterogeneous concurrency control has not been addressed significantly in

the literature. The inclusion in this issue of four papers on this subject is an attempt to remedy
this.

The concurrency control solutions presented are based on different assumptions about how much

information about the individual local concurrency controls is available to the global concurrency

controller. Alonso, Garcia-Molina, and Salem assume no knowledge of local concurrency controls.

Relying on global locking at the granularity of individual databases, they describe “altruistic lock

ing” which allows early release of locks subject to some constraints that preserve serializability.
Alonso et al. also address the problem of recovering from failures of global transactions, including
compensating for local actions that have already committed, and present a mechanism, called a

“saga,” for further increasing concurrency when global serializability and consistency constraints

that span multiple databases do not need to be preserved. The algorithm presented by Breitbart,
Silberschatz, and Thompson also assumes no knowledge of local concurrency controls or of the data

objects accessed, and ensures global serializability by controlling the order in which transactions are

submitted to individual databases. This scheme avoids deadlock and also ensures that the interac

tion between local transactions (not seen by the global concurrency controller) and global transac

tions does not violate serializability.

‘M. Ha.iiiiiier a.i~l D. MrL ,~I. “On Data. asP M;iiia~oiioirt Systeni Architecture.” in Infotech State of the Art Report

vol. 8: Data De~zgn. Pvr~a,inoii Iiifoteslt Liinit’d. 198fl. (Also available as MIT Laboratory for Couiputor Sei~zire

TechiiicaJ Meiiio TM-141.) This pap’r appears to have iiitraluced the terui “federated database.”

20 Batiiii. M. Lenzei-ini. and S.D. Navatlie. “A ( ~)Iiiparative Analysis of Methodologies for Database Schema

hitegration.” A GM (]o7nputzng Surveys 18. 4. Deceuilsr 1086.

3v. Gligor aiI(l R. Popescli-Zel(’tili. Coiiiurieitcy Control Issues in Distiibuted Heterogeneous Database Management

Systeiiis.” in Distributed Data Sharing Sqsterns. eds. F. Schreiber and W. Litwiii. North—Holland. 1985. See also

“Transaction Maiiagc’iiiei&t lit Distill itted Heterogeneous Database Management Systems.” Information Systems 11.

4. 198G.
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The concurrency control papers by Pu and by Elmagarmid and Leu, in contrast, assume that the

serialization order of transactions on a local database can be observed, and present “optimistic”
algorithms that check the global transaction ordering after the fact and abort transactions that

cannot be serialized. Elmagarmid and Leu make the additional assumption that the local read and

write sets of global transactions are known, thereby reducing the abort rate. Pu’s “superdata

bases,” on the other hand, support hierarchical composition of global transactions.

The remaining papers in this issue address other practical problems in federated database systems.

Templeton, Lund, and Ward describe how access control is supported in the MERMAID front-end

to existing heterogeneous databases. Heimbigner describes an experimental federated system, Key
stone II, that connects workstations each of which is running an existing software development
environment. While Keystone II is not a DBMS in the traditional sense, it addresses important

object sharing issues that will arise when emerging “object-oriented” database technology is

extended to distributed environments, such as deciding which objects referenced by a given com

plex object should be transmitted when the latter is imported by one node from another. Mark

and Roussopoulos describe a set of data management tools and a data dictionary for information

interchange (including interchange of meta-data), based on work done for NASA.

The last paper in this issue is an “unsolicited” one that is perhaps loosely related to the federated

systems theme. Steinberg describes a proposed architecture for handling both conventional and

real-time data requests in a telemetry data system for the Jet Propulsion Laboratory. While we

rely for the most part on invited papers for the Bulletin, we encourage unsolicited submissions as

well. An unsolicited paper will be forwarded to an appropriate editor based on the editor’s

interests and possible matches with themes of upcoming issues. We also encourage submissions on

the themes of past issues, from researchers or practitioners whose work may have been overlooked

the first time around.

I would like to thank the authors for contributing to what I hope the readers find an interesting
issue.

Sunil Sarin

August 1987
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CONCURRENCY CONTROL AND RECOVERY

FOR GLOBAL PROCEDURES

IN FEDERATED DATABASE SYSTEMS

Rafael Alonso

Hector Garcia -Molina

Kenneth Salem

Department of Computer Science

Princeton University
Princeton N.J. 08544

1. Introduction

As the name suggests, a federated database is actually a collection of databases cooperating
for mutual benefit. The particular quality that distinguishes federated databases from other distri

buted databases is the degree of autonomy of the members of the federation. For example, it is

assumed that federation members may not be forced to perform activities for other members, that

each determines which parts of its local database will be shared, and how they will be shared, that

each maintains its own database schema, and that they may withdraw from the federation if they

so choose Heim85aJ.

The purpose of the federation is to increase the capabilities of its members, i.e., to permit

transactions that deal with non-local data. The federation permits members controlled access to

foreign databases. We will use a simple model of inter-database interaction: all interaction will be

accomplished through the use of global procedures. A global procedure is initiated at some federa

tion member (its home, or local, node), and can request other members to execute procedures (usu

ally transactions) on its behalf. Other methods of cooperation are possible, e.g., a federation

member may agree to “export” a particular portion of its local data to another member Heim85a].

However, for this discussion we will consider only global procedures.

In general, a number of global procedures will be in progress simultaneously within the

federation. The question we will address in this paper is how concurrent global procedures should

be managed. Specifically, we are interested in concurrency control and recovery for global pro

cedures. However, before we address these issues we first present simple models of the federation

and its members which we can then use in our discussions.

Each member, or node, of the federation consists of a transaction and database manager. (We

will refer to the local transaction/database manager of the ith member as LTM1.) An LTM

presents a transactional interface to the local database to users at its local node. It also presents a

transactional interface (which may or may not be the same as the local interface) to a global pro

cedure manager (GPM) residing at the local node.

The GPM is the interface between the local node and the rest of the federation. The GPMs of

federation members are connected by some type of communications mechanism. A GPM receives

requests for service from the GPMs of other members of the federation, translates those requests

into a form that is palatable to its LTM, and forwards the requests to it.

In addition to handling requests from other nodes, each GPM provides a federation interface

to applications at its local node. The local interface provided by GPM~ is a set of global procedures

P1,..,P~, i.e., these procedures are available to local users at node i. This interface is the mechan

ism under which global procedures are initiated.
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Each global procedure consists of a (possibly ordered) set of requests for service at other

nodes. As described above, each request is translated by the target GPM into a transaction for its

LTM, and the results are returned to the GPM making the request. The block diagram in Figure 1

describes an n-member federated system of the type we have just described.

communications network

interface interface

local : local

interface : interface

interface interface

local local

interface : interface

Figure 1 - Federated System Block Diagram

To reflect the autonomy of federation members, we make several assumptions in the context

of the federation model:

• A GPM has no knowledge of the structure and organization of the local database, nor of the

implementation of its LTM. The GPM knows only of the transactions available to it through
the LTM’s global interface.

• Support for global procedures is implemented entirely within the GPMs at each node; no

modifications to the LTMs are required.

• The only interaction between a GPM and its LTM is through that LTM’s global, transactional

interface.

These assumptions have a number of important ramifications, some of which we discuss next:

• If a GPM submits a request for an update transaction to its LTM on behalf of a global pro

cedure, it is not possible to lock or shield the updates once the local transaction has com

pleted. The GPM may shield the updates from other global procedures by refusing to submit

further requests to the LTM on behalf of those procedures until the first global procedure is

finished. However, there is no way for the GPM to keep transactions subniitted through the

LTM’s local interface from seeing the updates. Note that if a GPM submits more than one

transaction to its LTM on behalf of a single global procedure then there is no way to guaran

tee that that global procedure can be serialized with transactions submitted locally to the

LTM.

If concurrency controls are to be implemented by the GPMs for global procedures, then depen
dencies among global procedures must be maintained with a data granularity no smaller than

an entire local database or federation node. In other words, if two global procedures have

transactions submitted on their behalf to the same LTM, those transactions (and thus the glo
bal procedures they are a part of) must be assumed, from the point of view of the GPMs, to

local

database

local

database
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conflict. Thus the lockable entities in a global concurrency control mechanism will be the

nodes of the federation themselves.

Once a transaction has been run by an LTM on behalf of some global procedure, updates
made by that transaction cannot be rolled-back, or undone, by the GPM. The only recourse of

the GPM in this case is to request the execution of a compensating transaction by its LTM.

Thus a global procedure cannot be truly atomic in the transactional sense. We will discuss

this issue further in Section 4.

Local transactions submitted through the LTM’s local interface are not affected by global con

currency controls. Although locally and globally submitted transactions may conflict within

the LTM, the LTM can deal with this conflict as it sees fit, e.g., it may abort either type of

transaction at any time.

In the rest of this paper we will briefly survey two approaches to global concurrency control

that operate within this framework, and then discuss recovery of global procedures. Given our

space limitations, our objective will be to intuitively explain these approaches and not to provide
details. The details of each of the concurrency controls, together with discussions of the recovery

issues, are given in separate papers.

Altruistic locking Sale87aI is an extension of two-phase locking. Like two-phase locking,
altruistic locking results in serializable schedules. A global locking protocol, such as two-phase or

altruistic locking, plus local concurrency controls that guarantee serializable schedules, can ensure

the serializable execution of global procedures. Altruistic locking can make this guarantee while

allowing potentially greater concurrency than two-phase locking.

For many applications it is not necessary to serialize global procedures. A saga {Garc87a] is

a procedure that can be broken up into a collection of smaller transactions which can be inter

leaved in any way with other transactions. The transactions in a saga are related to each other

and should be executed as a (non-atomic) unit. Since global procedures in a federated database are

collections of service requests (i.e., local transactions), they are natural as sagas if the application
semantics do not require serial consistency for the entire procedure.

To make the discussion of sagas and altruistic locking clearer, we will consider the database

facilities of a hypothetical car rental company which has a number of independently owned outlets

in several cities across two states. Each outlet has its own local database which records reserva

tions and the state of the local fleet. The outlets’ local databases are joined into a single federated

system, shown in Figure 2. In the figure, each node is identified by a single capital letter.

2. Sagas

Imagine a car rental customer making a business trip which takes him to cities A, B, C, and

then D. At each city, he wishes to reserve a car from the local outlet for one week. PA is a global

procedure (available at node A) which implements this by requesting reservations from each of the

nodes. For the sake of this discussion, we will assume that ~A 1
makes requests of A, B, C and D

in that order.

It is probably not necessary for P,~ to hold on to all of its resources until it completes. For

instance, once ~A successfully gets the reservation at node A, it could immediately allow other

global procedures to make requests at A. However, we do not wish PAt to be simply a collection of

independent requests (local transactions). PA I is a unit which should be successfully completed or

not done at all. For example, if the reservation at C cannot be obtained then it is likely that the

previously obtained reservations at A and B will have to be changed. Thus it seems natural to

t Global procedures can be serialized with local transactions only if they submit at most one transaction request to

each node.
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treat PA1 as a saga.

state X

Figure 2 . Example Federated Database System

To amend partial executions of a saga, each transaction in the saga should be provided with a

compensating transaction. A compensating transaction undoes, from a semantic point of view, its

associated transaction. In our example, if a transaction in PA reserves a car at B, then its com

pensating transaction cancels the reservation at B. The system makes a semantic atomicity

guarantee for the saga: if the saga is aborted, any transactions in the saga that have already com

pleted will be compensated for. We discuss compensation further in Section 4.

By running PAl as a saga rather than ensuring its total serializability with other global pro

cedures, the system can obtain some potentially substantial performance benefits. In particular, it

is not necessary to maintain any global locks to synchronize a (global~ saga. The home node of the

saga simply submits its transaction requests to the proper federation nodes.

3. Altruistic Locking

Sagas are not always the appropriate abstraction to use for global procedures. In some cases,

it really is necessary to synchronize a procedure with other global procedures. For example, con

sider a procedure ~A2 used to determine the total number of cars available at the outlets in state

X. PA2 requests that nodes A, C, D, and E (i.e., all of the nodes in state JO run local transactions

to determine the number of cars available at the local outlet. To guarantee an accurate count, PA 2

should be synchronized with other global transactions that modify inventories of available cars.

PA3, a procedure that records the loan of cars from node A to node C, is an example of the type of

global transaction that, if not serialized, could destroy the accuracy of ~A 2’s count.

This problem can be avoided by using global two-phase locking. Before requesting service

from a node, that node must be locked and the lock must be held until the end of the global pro

cedure. A locked node cannot service requests for any other global procedures. (Recall that the

locking granularity at the global level is the node. Locking a smaller granule (e.g., a relation)

would require that the GPM have some knowledge of the structure of its local database.) However,

the performance problems of global two-phase locking may be substantial. If ~A 2 manages to lock

node A first, ~A3 would have to wait for ~A2 to query all four nodes in state X before the lock on A

is released and it can attempt to continue. The situation gets worse as global procedures get larger

and access more nodes.

—— -‘

communication

network

r state Y

I’
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Altruistic locking is a locking protocol that may ease this type of performance problem. Like

two-phase locking, altruistic locking ensures that execution schedules are serializable. However, it

provides a mechanism for global procedures to release locks before they finish, possibly freeing

waiting global procedures to acquire the lock and continue processing.

Applied to global locking, the altruistic locking protocol works as follows. As with two-phase

locking, a global procedure must lock a node before it can request work from that node. Once the

global procedure’s request has been processed, and if the global procedure will request no further

work from that node, it can release its lock on the node. Releasing a lock is a special operation,

peculiar to altruistic locking. Releasing a lock is like conditionally unlocking it. Other global pro

cedures waiting to lock the released node may be able to do so, but only if they are able to abide by

certain restrictions. Note that a global procedure is free to continue locking new nodes after it has

released locks, i.e., locks and releases need not be two-phase.

The set of nodes that have been released by a global procedure constitute the wake of that

procedure. If PA3 locks a node in P42’s wake, we say that PA3 is in the wake of ~A2. Under the

simplest altruistic locking protocol each global procedure concurrent with PA 2 must remain com

pletely inside the wake of PA2, or completely outside, until PA2 has finished. For example, PA3

must lock only nodes released by P42, or it must not lock any nodes released by PA2.

While this may seem somewhat restrictive, consider our previous example in which PA3 was

forced to wait (in the worst case) for PA 2 to make requests of all four nodes in X. If altruistic lock

ing were used, P42 could release each node as soon as its local query at that node was successfully

completed. Thus ~A3 could lock A as soon as P42 moved on to C, and could lock C as soon as PA2
moved on to D. One nice feature of altruistic locking is that it is certain to provide at least as

much concurrency as two-phase locking, and possibly more. In other words, there is no situation in

which a global procedure that would have been permitted to run under two-phase locking would be

prohibited from running under the altruistic protocol. Of course, the actual performance advan

tages of altruistic locking would depend on the resource requirements of global procedures and the

cost of global operations (such as requesting services or locks) in a particular application.

A more complicated version of the altruistic protocol permits a global procedure to “straddle”

another’s wake, i.e., to be partially in and partially out of the wake, in some circumstances. For

example, consider a global procedure P44 that records the loan of cars from A in state X to B in

state Y. Imagine that P42 (which counts the cars available in X) and P44 run concurrently and

that P42 manages to lock A before PA4. Under the simple protocol just described, once PA2 releases

A, PA4 can access that node. However, B is outside the wake of P42. Since P~4 is already in the

wake of PA2 (because it locked A), it will have to wait until P42 finishes before it can lock B.

This is unfortunate because we know that PA4 could have been serialized after P42 even if it

locks B without waiting for P4 2
to finish. We know this because P4 2 never accesses B. The more

complicated altruistic locking protocol can take advantage of information about which nodes a glo
bal procedure will visit during its lifetime. It lets global procedures make use of another special

concurrency control operation called the mark. A global procedure marks a node to indicate that it

will access that node sometime in the future.

Marking is an option, not a requirement. By marking nodes a global procedure is assisting
other global procedures by informing them of its intended behavior. A global procedure that does

mark must abide by several restrictions in order for the marks to be useful. A global procedure
that chooses to mark may not lock a node without marking it first, and must stop marking nodes

once it has issued a release operation.

As we have already hinted, a global procedure running in the wake of a marking global pro

cedure need not always remain within the wake. It may lock a node outside of the wake provided
that node has not been marked by the procedure in whose wake it is running. In our example, this
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means that PA4 would be permitted to lock B after locking A. Since PA ~ never needs access to B,
it will not have marked B.

Of course, we cannot permit P44 to simply lock and request a local transaction at B even if

P42 hasn’t marked it. Imagine a global procedure P45 that records the transfer of cars from B to

E. ConceIvably, ~A5 could lock B after PA4 was finished and then lock E before PA2 got that far.

This results in an unserializable schedule among the three global procedures PA2, PA4 and PA5.

To avoid this kind of situation, P44 should indicate that any global procedure locking B after

P44 must be serialized after P42. The altruistic protocol prescribes a simple mechanism for accom

plishing this. PA4 is required to release B on behalf of PA2 before it can lock B. In other words,

never really leaves the wake of P42. Instead, it expands the wake to include the node that it

wishes to access. The protocol also permits a global procedure outside another’s wake to enter the

wake under similar conditions. Details can be found in Sale87a}.

4. Recovery

Whether global procedures are scheduled serializably or are treated as sagas, some recovery

mechanism will be needed. For this reason, the GPM at each node must have access to some stable

storage mechanism on which it can maintain a record of its activity. Such a log would record the

progress of global procedures initiated at the local node, plus the status of requests being executed

by the local GPM on behalf of other nodes. Of course, requests being executed for a global pro

cedure can fail for reasons other than power losses, e.g., the local transaction spawned by the

request might deadlock in the LTM.

As we have already observed, true atomicity is not possible for global procedures. However, -

some useful guarantees can be made in case global procedures run into problems when executing.

In general, a global procedure can be recovered forwards or backwards from the failure of a

request. Forward recovery involves retrying the failed request. This is useful for transient

failures like deadlocks of local transactions. The decision to retry might be made by the GPM at

the site of the failure, or by the GPM at the node from which the request initiated.

Backward recovery is the abortion of the global procedure, undoing its effects. Backward

recovery in a federated system poses special problems because of the autonomy of the federation

members. As has already been mentioned, it is not possible, in general, to completely erase the

effects of a global procedure. The means of aborting a global procedure is the execution of compen

sating transactions at the nodes visited by the global procedure. A compensating transaction

undoes, from the view of the semantics of the local database, the effect of a previous transaction.

Global procedures cannot be said to have a commit point in the same sense as transactions do.

Updates made on behalf of global procedures are committed, i.e., made available to others, as soon

as the local transaction that implements the update on behalf of the global procedure has commit

ted. However, at some point the initiating GPM must decide whether to externalize the results of

the global procedure. Thus it is perhaps better to say that there are “externalization dependencies”

among global procedures, rather than commit dependencies. Such dependencies might arise if a

global procedure releases (or unlocks) a node that has been updated on its behalf.

Depending on the application, it may or may not be desirable to delay the externalization of a

global procedure until those procedures on which it depends have been externalized. When a glo

bal procedure is aborted, other procedures dependent on it can be aborted as well (using compensat

ing transactions). Note, however, that there is no way to keep locally-submitted local transactions

from seeing updates made on behalf of a global procedures and externalizing them. In some appli

cations, maintenance of externalization dependencies may be deemed unnecessary. For example, if

a global procedure increments a flight’s reservation count by one in an airline reservation system,

it may be acceptable to allow other procedures to see the modified count without making them
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dependent on the reservation procedure.

Whether or not dependencies are maintained, the use of compensating transactions allows the

GPM’s to make a semantic atomicity guarantee Garc83a] for global procedures: either the pro

cedure will be completely executed or compensation will be requested for the completed parts of a

partially executed procedure. Global procedures which use altruistic (or two-phase) locking can

have a stronger guarantee if they do not release nodes at which local update transactions have

been executed on their behalf, i.e., if they do not allow other global procedures to become depen
dent on them. (Note that global procedures which use altruistic locking but do not release their

updates can still achieve more concurrency than global procedures using two-phase locking.) If P

is such a procedure, it can be ensured that other global procedures will not see P’s updates unless it

has finished or compensation has been requested for the updates.

5. Conclusions

We have looked at two general ways of synchronizing global procedures in a federated data

base system, using a number of examples. Altruistic locking at the global level guarantees the

serializability of global procedures, while allowing more concurrency than global two-phase lock

ing.

If serializable execution of global procedures is not important to the application and the pro

cedures can be broken up into a collection of transactions, then sagas can be used. Sagas provide
semantic atomicity but do not serialize the execution of global procedures. Sagas require no global

locking and permit more concurrency than mechanisms that treat global procedures as a single
unit.

Because global procedures can affect local resources only through a transactional interface, it

is not possible to make them completely atomic. However, compensating transactions can be used

to provide a semantic atomicity guarantee for global procedures.
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1. Introduction

A multidatabase system (MDBS) consists of one or more databases, possibly
distributed, which are controlled by one or more database management sys

tems (DBMSs). An MDBS creates the illusion of logical database integration
without requiring physical integration of the databases.

Recently, a large amount of research has been conducted in the area of

multidatabase systems (e.g. LAND82], LITW82J, and BREI8SJ). However,
the problem of updating semantically related data located in preexisting
databases has not been sufficiently addressed. In Pu86J, the update

problem is addressed under the assumption that the MDBS is aware of local

transactions. Making the MDBS aware of local transactions requires
changes to the local concurrency control mechanisms to enable the local

DBMSs to report local transaction execution information to the MDBS, which

uses this information for local and global transaction synchronization.
Introducing such changes allows any two DBMSs to communicate with each

other and, therefore, reduces the multidatabase concurrency control

problem to the concurrency control problem in homogeneous distributed

database management systems (DDBMS).

Another assumption that is frequently made is that retrieve—only multida—

tabase systems do not require a concurrency control mechanism, since the

probability of inconsistent retrievals in the presence of local transac—

tions is quite low ELAND82). In BREI87a], we show that while the prob

ability of inconsistent retrieval may be low, it may still occur.

In this paper, we propose an update mechanism that allows the MDBS to

update semantically related data items while retaining global database

consistency in the presence of local transactions. This approach is being
implemented in the Amoco Distributed Database System (ADDS) CBREI85],
BREI86].

The ADDS update model is based on the principles of retaining local data

base autonomy and disallowing changes in the local DBMS software to accom

modate ADDS. Modifying the DBMSs to interact with the MDBS requires sig
nificant development effort when support for a new DBMS is added. These

changes may also create difficult problems, both in maintaining current

applications and in maintaining the DBMS software.

— 12 —



Since changes to the local database software are not permitted, the DBMSs

treat the global subtransactions and the local transactions equally.

Also, the local DBMSS should perform their operations without the knowl

edge of other DBMSs and the MDBS. Therefore, local autonomy requirements
make the update problem in a multidatabase system significantly different

from the update problem in a homogeneous DDBMS.

If a global database contains replicated data, the copies of the data

should not be updated by local transactions. Consider, for example, a

global database that contains global data item x which has a copy at

site A and site B. If a local transaction is submitted at site A that

changes the value of x, the global database becomes inconsistent, since

the value of x is no longer the same at both sites.

In the ADDS system we allow local transactions to read local data items

and write non—replicated data items. In BREI87b), we prove that allowing
these local transactions does not compromise global database consistency.

2. Multidatabase Concurrency Control Problems

There are several inherent difficulties in solving the multidatabase

update problem in the presence of local transactions GL1G85].

1. Generating and executing subtransactions based on the global
transactions submitted to the MDBS.

2. Maintaining global transaction and subtransaction atomicity.
3. Preserving the relative execution order, determined by the MDBS, of

the subtransactions at the local sites.

4. Detecting and recovering from or preventing global deadlocks.

To maintain global database consistency in the presence of local transac

tions, it is sufficient to ensure the same global transaction execution

order at each site. In GL1G85], this condition was stated only in regard
to global transactions that have conflicting operations. However, even in

the absence of conflicts among global transactions, the execution order of

the subtransactions must be the same at each site. In EBREI87b], we

define a model of the multidatabase update problem and prove that main

tainIng the execution order of the global transactions at each site

ensures global database consistency.

Another problem in the design of an MDBS system is the avoidance of unde

tectable global deadlocks GLIG85]. The next example illustrates a seria

lizable execution of global and local transactions that generates an unde

tectable global deadlock.

Example 1

Consider a global database consisting of data items a and b at site 1 and

c and d at site 2. Let T1 and T2 be global transactions and L3 and L4 be

local transactions at sites 1 and 2, respectively.
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T1: rj(a) wi(a) ri(c) wi(c)
L3: r3(a) r3(b)

T2: r2(b) w2(b) r2(d) w2(d)
L4: r4(c) r4(d)

Consider the following local schedules at sites 1 and 2, respectively.

S1: r3(a) rl(a) wi(a) r2(b) w2(b) r3(b)
S2: r4(c) rj(c) wi(c) r2(d) w2(d) r4(d)

Both schedules are serializable and

global database consistency. However,
during execution as follows.

their combined execution retains

an undetectable deadlock may occur

At site 1, T1 waits for item a that is locked by L3. L3 waits for item b

that is locked by T2. T2, in turn, is waiting for a message from the MDBS
that it may proceed. However, the MDBS is waiting to receive a message
from T1 at site 2 that it has completed, since the MDBS is trying to syn
chronize the execution of Ti and T2 at the global level. Also, at site 2,
T1 waits for item c that is locked by L4. L4 waits for item d that is
locked by T2 and T2 is waiting for a message from the MDBS that it may
proceed at site 2. Figure 1 illustrates the deadlock situation described
above. 0

GLOBAL

TRANSACTIONS

ADDS

The reason for the undetectable deadlock is that the MDBS is attempting to

synchronize the execution of T1 arid T2, in that order. However, the local
DBMSs reverse the order unbeknownst to the MDBS. The reversal does not

destroy global database consistency. However, it creates a deadlock that

must be resolved by some method other than simply maintaining the execu

tion order of the global transactions at the local sites.

T1

SITE 1

ONARY

J

Figure 1. Undetectable Deadlock Figure 2. ADDS Architecture
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3. General Architecture of ADDS

The ADDS system provides uniform access to preexisting heterogeneous dis

tributed databases. ADDS uses a relational data model and an extended

relational algebra query language to provide access to distributed data.

The local database schemas are mapped into a relational global database

schema as described in BREI86I and the mappings are stored in the ADDS

data dictionary. The data dictionary also contains the physical character

istics and location of the local data. The only communication between ADDS

and the local DBMSs is in the form of query submission and data retrieval.

ADDS requires that each of the local DBMSs utilize some sort of a concur

rency control that maintains local database consistency.

Figure 2 illustrates the layered architecture of the ADDS system. Global

transactions are considered to be processing programs. The global tran

saction interface (CTI) receives user transactions, ensures their syntac
tical correctness and generates a global execution plan.

The global data manager (GDM) uses the data dictionary to determine the

location or locations of the data referenced by global transactions. The

GDM is also responsible for managing all intermediate data that is

received from the global transaction manager during transaction execution.

The global transaction manager (aTM) manages the execution of the global
transactions. The GTM allocates a server to a global transaction to pro

cess read and write operations for data controlled by a single DBMS.

The servers translate global read and write operations into the languages
of the local DBMSs. The servers also transfer retrieved data to the GTM.

The GTM allocates one server to a global transaction for each of the sites

referenced by the transaction. A server allocated to a transaction is not

released until the transaction has completed execution at each site and

the results of the transaction have been committed by the MDBS.

As global operations are received, the GTM sends the global operations to

the appropriate servers. If a server is not allocated to the current

global transaction for a particular site, the GTM allocates a server to

the transaction and passes the global operation to the appropriate servers

for execution.

When a global transaction completes execution, the GTM instructs the ser

vers allocated to the transaction, to commit the updates to the local

databases. ADDS uses a two—phase commit protocol in communication with

the servers to commit the results of a transaction. ADDS does not require
any specific commit protocol to be supported by the local DBMSs and

assumes that any local DBMS is capable of committing the results of local

transactions. If a global transaction wishes to abort, the GTM instructs

the servers to rollback the updates to the local databases.

The current version of the ADDS system is implemented under the IBM VM/SP

operating system. The local databases supported include IMS, SQLIDS,
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