
SEPTEMBER 1987 VOL. 10 NO. 3

a quarterly bulletin of the

Computer Society of the IEEE

technical committee on

Data
ri

CONTENTS

Letter from the TO chairman 1
S. Jajodia

Data Engineering in Transition 2
R. Shuey

Letter from the Editor 3
S. Sarin

Concurrency Control and Recovery for Global Procedures
in Federated Database Systems 5
R. A/onso, H. Garcia—Mo//na, K. Salem

An Update Mechanism for Multidatabase Systems 12
Y. Breibart, A. Si/berschatz, G. Thompson

Superdatabases: Transactions Across Database Boundaries 19
C. Pu

An Optimistic Concurrency Control Algorithm
for Heterogeneous Distributed Database Systems 26
A. E/magarm/d, Y. Leu

Pragmatics of Access Control in Mermaid 33
M. Templeton, E. Lund, P. Ward

A Federated System for Software Management 39
D. Heimbigner

Information Interchange between Self—Describing Databases 46

L. Mark, N. Roussopoulos

Data Retrieval in a Distributed Telemetry Ground Data System 53

C. Steinberg

Calls for Papers 60

TC Membership Application Form 64

SPECIAL ISSUE ON FEDERATED DATABASE SYSTEMS



Editor—In-Chief, Database Engineering Chairperson, TC

Dr. Won Kim

MCC

3500 West Baicones Center Drive

Austin, TX 78759

(512) 338—3439

Associate Editors, Database Engineering

Dr. Haran Borai

MCC

3500 West Balcones Center Drive

Austin, TX 78759

(512) 338—3469

Prof. Michael Carey

Computer Sciences Department
University of Wisconsin

Madison, Wi 53706

(608) 262—2252

Dr. C. Mohan

IBM Aimaden Research Center

650 Harry Road

San Jose, CA 95120—6099

(408) 927—1733

Prof. Z. Merai Ozsoyoglu
Department of Computer Engineering and Science

Case Western Reserve University
Cieveiand, Ohio 44106

(216) 368—2818

Dr. Sunil Sarin

Computer Corporation of America

4 Cambridge Center

Cambridge, MA 02142

(617) 492—8860

Database Engineering Buiietin is a quarterly pubiication of

the IEEE Computer Society Technical Committee on Database

Engineering -
its scope of interest Includes: data structures

and models, access strategies, access control techniques,
database architecture, database machines, inteliigent front

ends, mass storage for very large databases, distributed

database systems and techniques, database software design
and implementation, database utilities, database security
and related areas.

Contribution to the Bulletin is hereby solicited. News items,

letters, technIcal papers, book reviews, meeting previews,
summaries, case studies, etc., should be sent to the Editor.

Au letters to the Editor will be considered for publIcation
unless accompanied by a request to the contrary. Technical

papers are unrefereed.

Opinions expressed In contributions are those of the Indi

vidual author rather than the official position of the TC on

Database Engineering, the IEEE Computer Society, or orga

nizations with which the author may be affiliated.

Dr. Sushli Jajodia
Naval Research Lab.

Washington, D.C. 20375—5000

(202) 767—3596

Vice-Chairperson, IC

Prof. Krithlvasan Ramamrlthan

Dept. of Computer
and Information Science

University of Massachusetts

Amherst, Mass. 01003

(413) 545—0196

Treasurer, IC

Prof. Leszek Lilien

Dept. of Electrical Engineering
and Computer Science

University of IllInois

Chicago, IL 60680

(312) 996—0827

Secretary, TC

Dr. Richard L. Shuey
2338 Rosendale Rd.

Schenectady, NY 12309

(518) 374—5684

Membership in the Database Engineering Technical Com

mittee Is open to individuals who demonstrate willingness to

actively participate in the various activities of the TC. A

member of the IEEE Computer SocIety may Join the TC as a

full member. A non—member of the Computer Society may

join as a participating member, with approval from at least

one officer of the TC. Both full members and participating
members of the TC are entitled to receIve the quarterly
bulletin of the TC free of charge, until further notice.



Dear TC DE Members and Correspondents:

Since it has been a year when I last wrote you, it is time for me to provide an

update of our activities over the past year.

The Technical Committee on Database Engineering has become the TECHNI

CAL COMMITTEE ON DATA ENGINEERING. The new name accurately
reflects the evolving nature of the database technology. It encompasses not only the

more traditional aspects of databases and knowledge bases but also many topics that

allow a broader scope. It is appropriate that the accompanying editorial is written

by Dick Shuey who has been active in the IEEE Communications Society for many

years and is new to our TC.

As a result of the financial uncertainty, the publication of Data Engineering

fell behind schedule in 1986. Thanks to the editor-in-chief, Won Kim, and the associ

ate editors, it is being published once again in a timely manner. There have been

some problems in putting together the December 1986 issue on the European

ESPIRIT project. Guy Lohrnan has responded to our call and is organizing an alter

native issue on query optimization that should be published in November. I might

also add that we are eliminating the two charges that were initiated last September:

the voluntary page charge for the papers and charge for the conference announce

ments.

Although we have been successful in getting financial support this year from the

IEEE Computer Society for publishing DE, we still need a long term solution to our

financial problem. Several alternatives were proposed and considered. The only

satisfactory alternative appears to be establishing a subscription fee for DE. This

will provide us with a continuing source of income and eliminate financial uncer

tainty.

I urge you to express your opinion on this issue. If you support this alternative,

it is important that you write and tell me. Your past support has been greatly

appreciated, but an overwhelming positive response from the membership is needed

in order to influence the officers of the IEEE Computer Society.

Finally I would like to remind you that the Fourth Data Engineering Confer

ence will be held February 2-1, 1088 in Los Angeles, California. John Carlis, the

Program Chair, tells me that lie has received over 210 submissions. It appears that

we will have once again an excellent conference. I encourage all of you to attend and

participate in this major conference.

SushI Jajodia

August 14, 1987

—1—



DATA ENGINEERING IN TRANSITION

Richard L. Shuey

This is the first issue of the quarterly bulletin on DATABASE ENGINEERING that has the

new name DATA ENGINEERING. The change in name, in conjunction with the earlier adoption of

the name for the International Conference on Data Engineering and the subsequent change in name of

the parent technical committee of the Computer Society, completes a transition. That transition

highlights the evolutionary path that the field is taking. The primary roots of data engineering lie in

the field of database technology. That fact accounts for the earlier titles emphasizing databases. Data

base technology remains one of the more mature disciplines of what we now perceive as the broader

field of data engineering. Database technology and theory continue to provide a base from which this

new field is evolving.

The overall objective of data engineering is to insure that in large computer and information

systems, the data required by the individual components and their internal processes will be available

when needed, in the proper form to be used, and appropriately controlled with respect to access and

security. As it becomes more common for databases to be shared by multiple applications and multiple
users, the technology important to attaining that objective will extend further beyond that of data

bases per Se. Relevant technologies include those of: communication systems; security and crypto

graph; artificial intelligence; the nianagement and control of data both within and external to a data

base system; distributed system architecture; interfacing between unlike and independent information

systems; integration of database technology with programming languages; the software for transaction

and data systems; the coupling to existing information found in books, publications, technical hand

books, graphs, etc.; and, the coupling to data currently being created that is not in a convenient form

for input to a computer. To illustrate this dependency, consider:

Communication technology is an old, mature but rapidly evolving field. That technology is

applicable not only to communications within a computer but also to communications between com

puters in a laboratory environment, a local area such as an institution, a city, within nations, and

internationally. The management, control, integrity, security, and interfacing of data must be

addressed at many levels in the information system hierarchy, including the communications systems
and databases involved. We do not have an adequately mature engineering discipline nor complete sets

of techniques and mechanized tools to permit us to build and maintain with confidence the very large
complex data systems that exist in today’s society. Advances in software engineering methodology and

the development of associated mechanized software development facilities (factories) can help. Much of

the data that we need in an engineering design system exists in published articles, handbooks, graphs,
etc. The format in which these data are presented is not consistent or standard. The scales of graphs
may be different, the results of materials tests depend on how the material was produced and the test

ing environment, etc. Engineering data of this nature are needed as an input to computerized design
systems and a satisfactory solution is not evident. A significant effort is needed to address this chal

lenge. The definitions of the terms data, metadata, heuristic, information, intelligence, and transfor

mations between these categories are not entirely clear, nor universally agreed to. Yet, the importance
of the underlying concepts is agreed to by all. The concepts keep arising in data engineering and many

other fields. Progress will require interdisciplinary efforts.

As most engineering fields, data engineering is objective oriented. We wish to design systems

that make data available. We must be willing, in fact expect, to utilize any technology that will lead

to better data systems. We must seek, solicit, involve, and welcome interdisciplinary participation in

our work. Not only will we directly benefit, but our perspective on areas of mutual interest will in the

long run benefit our collaborators. The challenge to the membership and officers of the Technical

Committee on Data Engineering is clear. We must be aware of relevant work in other fields. We must

make the participants in those other fields aware of our work in overlapping areas of potential mutual

interest. Where sound mutual interest exists or develops, we must seek better coordination and even

integration of effort. In a practical sense we should actively seek involvement by interdisciplinary pro

fessionals in our publications, meetings, and membership. This must be a two-way street. We will

push for adequate coverage of viewpoints from theory to applications. The theories must be tested by

application, and the applications must be evaluated to permit validation and extension of the theories.

Those involved directly with the operation of the Technical Committee and the International

Data Engineering Conference have actively encouraged and promoted evolution along these lines. We

have made progress, but not as rapidly as we would like. To the degree that name changes can be

important, particularly in interacting with others, we believe that this name change is an important

evolutionary step. In going further down the indicated path we shall need the support and participa

tion of the membership as a whole. We seek your active and personal participation.

-2-



Letter from the Editor

This issue of IEEE Data Engineering (formerly Database Engineering) addresses the subject of

Federated Database Systems. A federated database system consists of a collection of individual

autonomous databases, which may be heterogeneous, that agree to share information and cooperate
in some controlled way. Because of the proliferation of databases that need to share information

and yet retain local control, methods for designing and implemented federated systems are becom

ing increasingly important. This need was anticipated in an early paper by Hammer and McLeod.1

Further evidence of its importance is the recent growth of research in this field and the announce

ments by some DBMS vendors of distributed database products that include “gateways” to hetero

genous systems. Because retrieval from heterogeneous or federated databases, and the related issue

of schema integration,2 has been an active research topic for several years, I have devoted this issue

to topics that have received less coverage.

The first four papers in this issue are about concurrency control in federated systems. In the same

way that federated data access must deal with heterogeneous data models, languages, and schemas,

concurrency control in federated systems must deal with heterogeneity in the concurrency control

algorithms used by the individual databases. Except for a recent paper by Gligor and Popescu

Zeletin,3 the problem of heterogeneous concurrency control has not been addressed significantly in

the literature. The inclusion in this issue of four papers on this subject is an attempt to remedy
this.

The concurrency control solutions presented are based on different assumptions about how much

information about the individual local concurrency controls is available to the global concurrency

controller. Alonso, Garcia-Molina, and Salem assume no knowledge of local concurrency controls.

Relying on global locking at the granularity of individual databases, they describe “altruistic lock

ing” which allows early release of locks subject to some constraints that preserve serializability.
Alonso et al. also address the problem of recovering from failures of global transactions, including
compensating for local actions that have already committed, and present a mechanism, called a

“saga,” for further increasing concurrency when global serializability and consistency constraints

that span multiple databases do not need to be preserved. The algorithm presented by Breitbart,
Silberschatz, and Thompson also assumes no knowledge of local concurrency controls or of the data

objects accessed, and ensures global serializability by controlling the order in which transactions are

submitted to individual databases. This scheme avoids deadlock and also ensures that the interac

tion between local transactions (not seen by the global concurrency controller) and global transac

tions does not violate serializability.

‘M. Ha.iiiiiier a.i~l D. MrL ,~I. “On Data. asP M;iiia~oiioirt Systeni Architecture.” in Infotech State of the Art Report

vol. 8: Data De~zgn. Pvr~a,inoii Iiifoteslt Liinit’d. 198fl. (Also available as MIT Laboratory for Couiputor Sei~zire

TechiiicaJ Meiiio TM-141.) This pap’r appears to have iiitraluced the terui “federated database.”

20 Batiiii. M. Lenzei-ini. and S.D. Navatlie. “A ( ~)Iiiparative Analysis of Methodologies for Database Schema

hitegration.” A GM (]o7nputzng Surveys 18. 4. Deceuilsr 1086.

3v. Gligor aiI(l R. Popescli-Zel(’tili. Coiiiurieitcy Control Issues in Distiibuted Heterogeneous Database Management

Systeiiis.” in Distributed Data Sharing Sqsterns. eds. F. Schreiber and W. Litwiii. North—Holland. 1985. See also

“Transaction Maiiagc’iiiei&t lit Distill itted Heterogeneous Database Management Systems.” Information Systems 11.

4. 198G.

—3—



The concurrency control papers by Pu and by Elmagarmid and Leu, in contrast, assume that the

serialization order of transactions on a local database can be observed, and present “optimistic”
algorithms that check the global transaction ordering after the fact and abort transactions that

cannot be serialized. Elmagarmid and Leu make the additional assumption that the local read and

write sets of global transactions are known, thereby reducing the abort rate. Pu’s “superdata

bases,” on the other hand, support hierarchical composition of global transactions.

The remaining papers in this issue address other practical problems in federated database systems.

Templeton, Lund, and Ward describe how access control is supported in the MERMAID front-end

to existing heterogeneous databases. Heimbigner describes an experimental federated system, Key
stone II, that connects workstations each of which is running an existing software development
environment. While Keystone II is not a DBMS in the traditional sense, it addresses important

object sharing issues that will arise when emerging “object-oriented” database technology is

extended to distributed environments, such as deciding which objects referenced by a given com

plex object should be transmitted when the latter is imported by one node from another. Mark

and Roussopoulos describe a set of data management tools and a data dictionary for information

interchange (including interchange of meta-data), based on work done for NASA.

The last paper in this issue is an “unsolicited” one that is perhaps loosely related to the federated

systems theme. Steinberg describes a proposed architecture for handling both conventional and

real-time data requests in a telemetry data system for the Jet Propulsion Laboratory. While we

rely for the most part on invited papers for the Bulletin, we encourage unsolicited submissions as

well. An unsolicited paper will be forwarded to an appropriate editor based on the editor’s

interests and possible matches with themes of upcoming issues. We also encourage submissions on

the themes of past issues, from researchers or practitioners whose work may have been overlooked

the first time around.

I would like to thank the authors for contributing to what I hope the readers find an interesting
issue.

Sunil Sarin

August 1987

—4—



CONCURRENCY CONTROL AND RECOVERY

FOR GLOBAL PROCEDURES

IN FEDERATED DATABASE SYSTEMS

Rafael Alonso

Hector Garcia -Molina

Kenneth Salem

Department of Computer Science

Princeton University
Princeton N.J. 08544

1. Introduction

As the name suggests, a federated database is actually a collection of databases cooperating
for mutual benefit. The particular quality that distinguishes federated databases from other distri

buted databases is the degree of autonomy of the members of the federation. For example, it is

assumed that federation members may not be forced to perform activities for other members, that

each determines which parts of its local database will be shared, and how they will be shared, that

each maintains its own database schema, and that they may withdraw from the federation if they

so choose Heim85aJ.

The purpose of the federation is to increase the capabilities of its members, i.e., to permit

transactions that deal with non-local data. The federation permits members controlled access to

foreign databases. We will use a simple model of inter-database interaction: all interaction will be

accomplished through the use of global procedures. A global procedure is initiated at some federa

tion member (its home, or local, node), and can request other members to execute procedures (usu

ally transactions) on its behalf. Other methods of cooperation are possible, e.g., a federation

member may agree to “export” a particular portion of its local data to another member Heim85a].

However, for this discussion we will consider only global procedures.

In general, a number of global procedures will be in progress simultaneously within the

federation. The question we will address in this paper is how concurrent global procedures should

be managed. Specifically, we are interested in concurrency control and recovery for global pro

cedures. However, before we address these issues we first present simple models of the federation

and its members which we can then use in our discussions.

Each member, or node, of the federation consists of a transaction and database manager. (We

will refer to the local transaction/database manager of the ith member as LTM1.) An LTM

presents a transactional interface to the local database to users at its local node. It also presents a

transactional interface (which may or may not be the same as the local interface) to a global pro

cedure manager (GPM) residing at the local node.

The GPM is the interface between the local node and the rest of the federation. The GPMs of

federation members are connected by some type of communications mechanism. A GPM receives

requests for service from the GPMs of other members of the federation, translates those requests

into a form that is palatable to its LTM, and forwards the requests to it.

In addition to handling requests from other nodes, each GPM provides a federation interface

to applications at its local node. The local interface provided by GPM~ is a set of global procedures

P1,..,P~, i.e., these procedures are available to local users at node i. This interface is the mechan

ism under which global procedures are initiated.

—5



Each global procedure consists of a (possibly ordered) set of requests for service at other

nodes. As described above, each request is translated by the target GPM into a transaction for its

LTM, and the results are returned to the GPM making the request. The block diagram in Figure 1

describes an n-member federated system of the type we have just described.

communications network

interface interface

local : local

interface : interface

interface interface

local local

interface : interface

Figure 1 - Federated System Block Diagram

To reflect the autonomy of federation members, we make several assumptions in the context

of the federation model:

• A GPM has no knowledge of the structure and organization of the local database, nor of the

implementation of its LTM. The GPM knows only of the transactions available to it through
the LTM’s global interface.

• Support for global procedures is implemented entirely within the GPMs at each node; no

modifications to the LTMs are required.

• The only interaction between a GPM and its LTM is through that LTM’s global, transactional

interface.

These assumptions have a number of important ramifications, some of which we discuss next:

• If a GPM submits a request for an update transaction to its LTM on behalf of a global pro

cedure, it is not possible to lock or shield the updates once the local transaction has com

pleted. The GPM may shield the updates from other global procedures by refusing to submit

further requests to the LTM on behalf of those procedures until the first global procedure is

finished. However, there is no way for the GPM to keep transactions subniitted through the

LTM’s local interface from seeing the updates. Note that if a GPM submits more than one

transaction to its LTM on behalf of a single global procedure then there is no way to guaran

tee that that global procedure can be serialized with transactions submitted locally to the

LTM.

If concurrency controls are to be implemented by the GPMs for global procedures, then depen
dencies among global procedures must be maintained with a data granularity no smaller than

an entire local database or federation node. In other words, if two global procedures have

transactions submitted on their behalf to the same LTM, those transactions (and thus the glo
bal procedures they are a part of) must be assumed, from the point of view of the GPMs, to

local

database

local

database

—6—



conflict. Thus the lockable entities in a global concurrency control mechanism will be the

nodes of the federation themselves.

Once a transaction has been run by an LTM on behalf of some global procedure, updates
made by that transaction cannot be rolled-back, or undone, by the GPM. The only recourse of

the GPM in this case is to request the execution of a compensating transaction by its LTM.

Thus a global procedure cannot be truly atomic in the transactional sense. We will discuss

this issue further in Section 4.

Local transactions submitted through the LTM’s local interface are not affected by global con

currency controls. Although locally and globally submitted transactions may conflict within

the LTM, the LTM can deal with this conflict as it sees fit, e.g., it may abort either type of

transaction at any time.

In the rest of this paper we will briefly survey two approaches to global concurrency control

that operate within this framework, and then discuss recovery of global procedures. Given our

space limitations, our objective will be to intuitively explain these approaches and not to provide
details. The details of each of the concurrency controls, together with discussions of the recovery

issues, are given in separate papers.

Altruistic locking Sale87aI is an extension of two-phase locking. Like two-phase locking,
altruistic locking results in serializable schedules. A global locking protocol, such as two-phase or

altruistic locking, plus local concurrency controls that guarantee serializable schedules, can ensure

the serializable execution of global procedures. Altruistic locking can make this guarantee while

allowing potentially greater concurrency than two-phase locking.

For many applications it is not necessary to serialize global procedures. A saga {Garc87a] is

a procedure that can be broken up into a collection of smaller transactions which can be inter

leaved in any way with other transactions. The transactions in a saga are related to each other

and should be executed as a (non-atomic) unit. Since global procedures in a federated database are

collections of service requests (i.e., local transactions), they are natural as sagas if the application
semantics do not require serial consistency for the entire procedure.

To make the discussion of sagas and altruistic locking clearer, we will consider the database

facilities of a hypothetical car rental company which has a number of independently owned outlets

in several cities across two states. Each outlet has its own local database which records reserva

tions and the state of the local fleet. The outlets’ local databases are joined into a single federated

system, shown in Figure 2. In the figure, each node is identified by a single capital letter.

2. Sagas

Imagine a car rental customer making a business trip which takes him to cities A, B, C, and

then D. At each city, he wishes to reserve a car from the local outlet for one week. PA is a global

procedure (available at node A) which implements this by requesting reservations from each of the

nodes. For the sake of this discussion, we will assume that ~A 1
makes requests of A, B, C and D

in that order.

It is probably not necessary for P,~ to hold on to all of its resources until it completes. For

instance, once ~A successfully gets the reservation at node A, it could immediately allow other

global procedures to make requests at A. However, we do not wish PAt to be simply a collection of

independent requests (local transactions). PA I is a unit which should be successfully completed or

not done at all. For example, if the reservation at C cannot be obtained then it is likely that the

previously obtained reservations at A and B will have to be changed. Thus it seems natural to

t Global procedures can be serialized with local transactions only if they submit at most one transaction request to

each node.

—7—



treat PA1 as a saga.

state X

Figure 2 . Example Federated Database System

To amend partial executions of a saga, each transaction in the saga should be provided with a

compensating transaction. A compensating transaction undoes, from a semantic point of view, its

associated transaction. In our example, if a transaction in PA reserves a car at B, then its com

pensating transaction cancels the reservation at B. The system makes a semantic atomicity

guarantee for the saga: if the saga is aborted, any transactions in the saga that have already com

pleted will be compensated for. We discuss compensation further in Section 4.

By running PAl as a saga rather than ensuring its total serializability with other global pro

cedures, the system can obtain some potentially substantial performance benefits. In particular, it

is not necessary to maintain any global locks to synchronize a (global~ saga. The home node of the

saga simply submits its transaction requests to the proper federation nodes.

3. Altruistic Locking

Sagas are not always the appropriate abstraction to use for global procedures. In some cases,

it really is necessary to synchronize a procedure with other global procedures. For example, con

sider a procedure ~A2 used to determine the total number of cars available at the outlets in state

X. PA2 requests that nodes A, C, D, and E (i.e., all of the nodes in state JO run local transactions

to determine the number of cars available at the local outlet. To guarantee an accurate count, PA 2

should be synchronized with other global transactions that modify inventories of available cars.

PA3, a procedure that records the loan of cars from node A to node C, is an example of the type of

global transaction that, if not serialized, could destroy the accuracy of ~A 2’s count.

This problem can be avoided by using global two-phase locking. Before requesting service

from a node, that node must be locked and the lock must be held until the end of the global pro

cedure. A locked node cannot service requests for any other global procedures. (Recall that the

locking granularity at the global level is the node. Locking a smaller granule (e.g., a relation)

would require that the GPM have some knowledge of the structure of its local database.) However,

the performance problems of global two-phase locking may be substantial. If ~A 2 manages to lock

node A first, ~A3 would have to wait for ~A2 to query all four nodes in state X before the lock on A

is released and it can attempt to continue. The situation gets worse as global procedures get larger

and access more nodes.

—— -‘

communication

network

r state Y

I’

S.

—8—



Altruistic locking is a locking protocol that may ease this type of performance problem. Like

two-phase locking, altruistic locking ensures that execution schedules are serializable. However, it

provides a mechanism for global procedures to release locks before they finish, possibly freeing

waiting global procedures to acquire the lock and continue processing.

Applied to global locking, the altruistic locking protocol works as follows. As with two-phase

locking, a global procedure must lock a node before it can request work from that node. Once the

global procedure’s request has been processed, and if the global procedure will request no further

work from that node, it can release its lock on the node. Releasing a lock is a special operation,

peculiar to altruistic locking. Releasing a lock is like conditionally unlocking it. Other global pro

cedures waiting to lock the released node may be able to do so, but only if they are able to abide by

certain restrictions. Note that a global procedure is free to continue locking new nodes after it has

released locks, i.e., locks and releases need not be two-phase.

The set of nodes that have been released by a global procedure constitute the wake of that

procedure. If PA3 locks a node in P42’s wake, we say that PA3 is in the wake of ~A2. Under the

simplest altruistic locking protocol each global procedure concurrent with PA 2 must remain com

pletely inside the wake of PA2, or completely outside, until PA2 has finished. For example, PA3

must lock only nodes released by P42, or it must not lock any nodes released by PA2.

While this may seem somewhat restrictive, consider our previous example in which PA3 was

forced to wait (in the worst case) for PA 2 to make requests of all four nodes in X. If altruistic lock

ing were used, P42 could release each node as soon as its local query at that node was successfully

completed. Thus ~A3 could lock A as soon as P42 moved on to C, and could lock C as soon as PA2
moved on to D. One nice feature of altruistic locking is that it is certain to provide at least as

much concurrency as two-phase locking, and possibly more. In other words, there is no situation in

which a global procedure that would have been permitted to run under two-phase locking would be

prohibited from running under the altruistic protocol. Of course, the actual performance advan

tages of altruistic locking would depend on the resource requirements of global procedures and the

cost of global operations (such as requesting services or locks) in a particular application.

A more complicated version of the altruistic protocol permits a global procedure to “straddle”

another’s wake, i.e., to be partially in and partially out of the wake, in some circumstances. For

example, consider a global procedure P44 that records the loan of cars from A in state X to B in

state Y. Imagine that P42 (which counts the cars available in X) and P44 run concurrently and

that P42 manages to lock A before PA4. Under the simple protocol just described, once PA2 releases

A, PA4 can access that node. However, B is outside the wake of P42. Since P~4 is already in the

wake of PA2 (because it locked A), it will have to wait until P42 finishes before it can lock B.

This is unfortunate because we know that PA4 could have been serialized after P42 even if it

locks B without waiting for P4 2
to finish. We know this because P4 2 never accesses B. The more

complicated altruistic locking protocol can take advantage of information about which nodes a glo
bal procedure will visit during its lifetime. It lets global procedures make use of another special

concurrency control operation called the mark. A global procedure marks a node to indicate that it

will access that node sometime in the future.

Marking is an option, not a requirement. By marking nodes a global procedure is assisting
other global procedures by informing them of its intended behavior. A global procedure that does

mark must abide by several restrictions in order for the marks to be useful. A global procedure
that chooses to mark may not lock a node without marking it first, and must stop marking nodes

once it has issued a release operation.

As we have already hinted, a global procedure running in the wake of a marking global pro

cedure need not always remain within the wake. It may lock a node outside of the wake provided
that node has not been marked by the procedure in whose wake it is running. In our example, this

—9—



means that PA4 would be permitted to lock B after locking A. Since PA ~ never needs access to B,
it will not have marked B.

Of course, we cannot permit P44 to simply lock and request a local transaction at B even if

P42 hasn’t marked it. Imagine a global procedure P45 that records the transfer of cars from B to

E. ConceIvably, ~A5 could lock B after PA4 was finished and then lock E before PA2 got that far.

This results in an unserializable schedule among the three global procedures PA2, PA4 and PA5.

To avoid this kind of situation, P44 should indicate that any global procedure locking B after

P44 must be serialized after P42. The altruistic protocol prescribes a simple mechanism for accom

plishing this. PA4 is required to release B on behalf of PA2 before it can lock B. In other words,

never really leaves the wake of P42. Instead, it expands the wake to include the node that it

wishes to access. The protocol also permits a global procedure outside another’s wake to enter the

wake under similar conditions. Details can be found in Sale87a}.

4. Recovery

Whether global procedures are scheduled serializably or are treated as sagas, some recovery

mechanism will be needed. For this reason, the GPM at each node must have access to some stable

storage mechanism on which it can maintain a record of its activity. Such a log would record the

progress of global procedures initiated at the local node, plus the status of requests being executed

by the local GPM on behalf of other nodes. Of course, requests being executed for a global pro

cedure can fail for reasons other than power losses, e.g., the local transaction spawned by the

request might deadlock in the LTM.

As we have already observed, true atomicity is not possible for global procedures. However, -

some useful guarantees can be made in case global procedures run into problems when executing.

In general, a global procedure can be recovered forwards or backwards from the failure of a

request. Forward recovery involves retrying the failed request. This is useful for transient

failures like deadlocks of local transactions. The decision to retry might be made by the GPM at

the site of the failure, or by the GPM at the node from which the request initiated.

Backward recovery is the abortion of the global procedure, undoing its effects. Backward

recovery in a federated system poses special problems because of the autonomy of the federation

members. As has already been mentioned, it is not possible, in general, to completely erase the

effects of a global procedure. The means of aborting a global procedure is the execution of compen

sating transactions at the nodes visited by the global procedure. A compensating transaction

undoes, from the view of the semantics of the local database, the effect of a previous transaction.

Global procedures cannot be said to have a commit point in the same sense as transactions do.

Updates made on behalf of global procedures are committed, i.e., made available to others, as soon

as the local transaction that implements the update on behalf of the global procedure has commit

ted. However, at some point the initiating GPM must decide whether to externalize the results of

the global procedure. Thus it is perhaps better to say that there are “externalization dependencies”

among global procedures, rather than commit dependencies. Such dependencies might arise if a

global procedure releases (or unlocks) a node that has been updated on its behalf.

Depending on the application, it may or may not be desirable to delay the externalization of a

global procedure until those procedures on which it depends have been externalized. When a glo

bal procedure is aborted, other procedures dependent on it can be aborted as well (using compensat

ing transactions). Note, however, that there is no way to keep locally-submitted local transactions

from seeing updates made on behalf of a global procedures and externalizing them. In some appli

cations, maintenance of externalization dependencies may be deemed unnecessary. For example, if

a global procedure increments a flight’s reservation count by one in an airline reservation system,

it may be acceptable to allow other procedures to see the modified count without making them

— 10



dependent on the reservation procedure.

Whether or not dependencies are maintained, the use of compensating transactions allows the

GPM’s to make a semantic atomicity guarantee Garc83a] for global procedures: either the pro

cedure will be completely executed or compensation will be requested for the completed parts of a

partially executed procedure. Global procedures which use altruistic (or two-phase) locking can

have a stronger guarantee if they do not release nodes at which local update transactions have

been executed on their behalf, i.e., if they do not allow other global procedures to become depen
dent on them. (Note that global procedures which use altruistic locking but do not release their

updates can still achieve more concurrency than global procedures using two-phase locking.) If P

is such a procedure, it can be ensured that other global procedures will not see P’s updates unless it

has finished or compensation has been requested for the updates.

5. Conclusions

We have looked at two general ways of synchronizing global procedures in a federated data

base system, using a number of examples. Altruistic locking at the global level guarantees the

serializability of global procedures, while allowing more concurrency than global two-phase lock

ing.

If serializable execution of global procedures is not important to the application and the pro

cedures can be broken up into a collection of transactions, then sagas can be used. Sagas provide
semantic atomicity but do not serialize the execution of global procedures. Sagas require no global

locking and permit more concurrency than mechanisms that treat global procedures as a single
unit.

Because global procedures can affect local resources only through a transactional interface, it

is not possible to make them completely atomic. However, compensating transactions can be used

to provide a semantic atomicity guarantee for global procedures.

References

Garc83a.

Garcia-Molina, Hector, “Using Semantic Knowledge for Transaction Processing in a Distri

buted Database,” ACM Transactions on Database Systems, vol. 8, no. 2, pp. 186-213, June

1983.

Garc87a.

Garcia-Molina, Hector and Kenneth Salem, “Sagas,” Proc. ACM SIGMOD Annual Conference,

pp. 249-259, San Francisco, CA, May, 1987.

Heim85a.

Heimbigner, Dennis and Dennis McLeod, “A Federated Architecture for Information Manage

ment,” ACM Transactions on Ofl~ce In formation Systems, vol. 3, no. 3, pp. 253-278, July, 1985.

Sale87a.

Salem, Kenneth, Hector Garcia-Molina, and Rafael Alonso, “Altruistic Locking: A Stratagy
for Coping with Long-Lived Transactions,” CS-TR-087-87, Dept. of Computer Science, Prince

ton University, April, 1987.

— 11 —



AN UPDATE MECHANISM FOR MULTIDATABASE SYSTEMS

Yuri Breitbart Avi Silberschatz Glenn Thompson

Computer Science Dept. Computer Science Dept. Amoco Production Co.

University of Kentucky University of Texas Research Center

Lexington, KY 40506 Austin, TX 78712 P.O. Box 3385

Tulsa, OK 74102

1. Introduction

A multidatabase system (MDBS) consists of one or more databases, possibly
distributed, which are controlled by one or more database management sys

tems (DBMSs). An MDBS creates the illusion of logical database integration
without requiring physical integration of the databases.

Recently, a large amount of research has been conducted in the area of

multidatabase systems (e.g. LAND82], LITW82J, and BREI8SJ). However,
the problem of updating semantically related data located in preexisting
databases has not been sufficiently addressed. In Pu86J, the update

problem is addressed under the assumption that the MDBS is aware of local

transactions. Making the MDBS aware of local transactions requires
changes to the local concurrency control mechanisms to enable the local

DBMSs to report local transaction execution information to the MDBS, which

uses this information for local and global transaction synchronization.
Introducing such changes allows any two DBMSs to communicate with each

other and, therefore, reduces the multidatabase concurrency control

problem to the concurrency control problem in homogeneous distributed

database management systems (DDBMS).

Another assumption that is frequently made is that retrieve—only multida—

tabase systems do not require a concurrency control mechanism, since the

probability of inconsistent retrievals in the presence of local transac—

tions is quite low ELAND82). In BREI87a], we show that while the prob

ability of inconsistent retrieval may be low, it may still occur.

In this paper, we propose an update mechanism that allows the MDBS to

update semantically related data items while retaining global database

consistency in the presence of local transactions. This approach is being
implemented in the Amoco Distributed Database System (ADDS) CBREI85],
BREI86].

The ADDS update model is based on the principles of retaining local data

base autonomy and disallowing changes in the local DBMS software to accom

modate ADDS. Modifying the DBMSs to interact with the MDBS requires sig
nificant development effort when support for a new DBMS is added. These

changes may also create difficult problems, both in maintaining current

applications and in maintaining the DBMS software.

— 12 —



Since changes to the local database software are not permitted, the DBMSs

treat the global subtransactions and the local transactions equally.

Also, the local DBMSS should perform their operations without the knowl

edge of other DBMSs and the MDBS. Therefore, local autonomy requirements
make the update problem in a multidatabase system significantly different

from the update problem in a homogeneous DDBMS.

If a global database contains replicated data, the copies of the data

should not be updated by local transactions. Consider, for example, a

global database that contains global data item x which has a copy at

site A and site B. If a local transaction is submitted at site A that

changes the value of x, the global database becomes inconsistent, since

the value of x is no longer the same at both sites.

In the ADDS system we allow local transactions to read local data items

and write non—replicated data items. In BREI87b), we prove that allowing
these local transactions does not compromise global database consistency.

2. Multidatabase Concurrency Control Problems

There are several inherent difficulties in solving the multidatabase

update problem in the presence of local transactions GL1G85].

1. Generating and executing subtransactions based on the global
transactions submitted to the MDBS.

2. Maintaining global transaction and subtransaction atomicity.
3. Preserving the relative execution order, determined by the MDBS, of

the subtransactions at the local sites.

4. Detecting and recovering from or preventing global deadlocks.

To maintain global database consistency in the presence of local transac

tions, it is sufficient to ensure the same global transaction execution

order at each site. In GL1G85], this condition was stated only in regard
to global transactions that have conflicting operations. However, even in

the absence of conflicts among global transactions, the execution order of

the subtransactions must be the same at each site. In EBREI87b], we

define a model of the multidatabase update problem and prove that main

tainIng the execution order of the global transactions at each site

ensures global database consistency.

Another problem in the design of an MDBS system is the avoidance of unde

tectable global deadlocks GLIG85]. The next example illustrates a seria

lizable execution of global and local transactions that generates an unde

tectable global deadlock.

Example 1

Consider a global database consisting of data items a and b at site 1 and

c and d at site 2. Let T1 and T2 be global transactions and L3 and L4 be

local transactions at sites 1 and 2, respectively.

— 13 —



T1: rj(a) wi(a) ri(c) wi(c)
L3: r3(a) r3(b)

T2: r2(b) w2(b) r2(d) w2(d)
L4: r4(c) r4(d)

Consider the following local schedules at sites 1 and 2, respectively.

S1: r3(a) rl(a) wi(a) r2(b) w2(b) r3(b)
S2: r4(c) rj(c) wi(c) r2(d) w2(d) r4(d)

Both schedules are serializable and

global database consistency. However,
during execution as follows.

their combined execution retains

an undetectable deadlock may occur

At site 1, T1 waits for item a that is locked by L3. L3 waits for item b

that is locked by T2. T2, in turn, is waiting for a message from the MDBS
that it may proceed. However, the MDBS is waiting to receive a message
from T1 at site 2 that it has completed, since the MDBS is trying to syn
chronize the execution of Ti and T2 at the global level. Also, at site 2,
T1 waits for item c that is locked by L4. L4 waits for item d that is
locked by T2 and T2 is waiting for a message from the MDBS that it may
proceed at site 2. Figure 1 illustrates the deadlock situation described
above. 0

GLOBAL

TRANSACTIONS

ADDS

The reason for the undetectable deadlock is that the MDBS is attempting to

synchronize the execution of T1 arid T2, in that order. However, the local
DBMSs reverse the order unbeknownst to the MDBS. The reversal does not

destroy global database consistency. However, it creates a deadlock that

must be resolved by some method other than simply maintaining the execu

tion order of the global transactions at the local sites.

T1

SITE 1

ONARY

J

Figure 1. Undetectable Deadlock Figure 2. ADDS Architecture

— 14 —



3. General Architecture of ADDS

The ADDS system provides uniform access to preexisting heterogeneous dis

tributed databases. ADDS uses a relational data model and an extended

relational algebra query language to provide access to distributed data.

The local database schemas are mapped into a relational global database

schema as described in BREI86I and the mappings are stored in the ADDS

data dictionary. The data dictionary also contains the physical character

istics and location of the local data. The only communication between ADDS

and the local DBMSs is in the form of query submission and data retrieval.

ADDS requires that each of the local DBMSs utilize some sort of a concur

rency control that maintains local database consistency.

Figure 2 illustrates the layered architecture of the ADDS system. Global

transactions are considered to be processing programs. The global tran

saction interface (CTI) receives user transactions, ensures their syntac
tical correctness and generates a global execution plan.

The global data manager (GDM) uses the data dictionary to determine the

location or locations of the data referenced by global transactions. The

GDM is also responsible for managing all intermediate data that is

received from the global transaction manager during transaction execution.

The global transaction manager (aTM) manages the execution of the global
transactions. The GTM allocates a server to a global transaction to pro

cess read and write operations for data controlled by a single DBMS.

The servers translate global read and write operations into the languages
of the local DBMSs. The servers also transfer retrieved data to the GTM.

The GTM allocates one server to a global transaction for each of the sites

referenced by the transaction. A server allocated to a transaction is not

released until the transaction has completed execution at each site and

the results of the transaction have been committed by the MDBS.

As global operations are received, the GTM sends the global operations to

the appropriate servers. If a server is not allocated to the current

global transaction for a particular site, the GTM allocates a server to

the transaction and passes the global operation to the appropriate servers

for execution.

When a global transaction completes execution, the GTM instructs the ser

vers allocated to the transaction, to commit the updates to the local

databases. ADDS uses a two—phase commit protocol in communication with

the servers to commit the results of a transaction. ADDS does not require
any specific commit protocol to be supported by the local DBMSs and

assumes that any local DBMS is capable of committing the results of local

transactions. If a global transaction wishes to abort, the GTM instructs

the servers to rollback the updates to the local databases.

The current version of the ADDS system is implemented under the IBM VM/SP

operating system. The local databases supported include IMS, SQLIDS,

— 15 —



INQUIRE, RIM, and FOCUS. Communication with the local DBMSs is

accomplished using the SNA and ETHERNET networks. The current ADDS net

work nodes include geographically distributed mainframes containing com

plete ADDS systems, as well as, workstations (e.g., Sun and Apollo) con

taining only ADDS user interface software and connected by local area

networks.

4. ADDS Update Algorithm

The notion of a site graph BREI87b}, THOM87} is central to our discus—

siori of the ADDS update algorithm. We create a site graph of a global
transaction T by first determining the sites that contain copies of the

global data items referenced by T and connecting them as nodes in a graph
that has exactly one path between any two nodes. The nodes of the graph
are connected by undirected edges labeled with the transaction name T. The

edges of the graph do not carry any special meaning and are arbitrarily
chosen by the MDBS.

Given a set of global transactions, if we combine a site graph for each of

the transactions into a single graph, we obtain a site graph for the

system of global transactions. The next example Illustrates the notion of

a site graph.

Example 2

Consider a global database that contains data item x at sites 1 and 2, y

at sites 1 and 3, and z at sites 2 and 3. Global transactions T1 and T2

are defined in the following way.

Ti: rl(x) w~(y) T2: r2(y) w2(z)

The GTM may generate one of the following sequences of local operations
for each transaction.

T1: ri(xi) wi(yi) wi(y3) T2: r2(y3) w2(z2) W2(Z3)
or

T1: ri(xi) c~1(y1) wi(y3) T2: r2(yl) W2(Z2) W2(Z3)

The site graphs of Ti and T2 for each site selection are shown in Figures
3a and 3b, respectively. 0

The existence of a cycle in the site graph of a system of global transac

tions may cause global database inconsistency during the execution of read

and write operations of global and permitted local transactions. On the

other hand, in the absence of cycles in the site graph, ADDS guarantees

the correct execution of any mix of global transactions and permitted
local transactions and also guarantees the absence of global deadlocks.

The technique used by ADDS to process read and write operations for a

system of global transactions is described below. For all operations, the

GDM uses the data dictionary to determine the sites that contain a copy of

— 16 —



the referenced data item. Upon receiving a read operation, the GTM

selects a site that does not create a cycle in the site graph. The GTh

site selection algorithm is described below.

T1 T2

Figure 3a. Site Graph Figure 3b. Site Graph
With No Cycles With a Cycle

If the transaction has already processed data at a site that contains a

copy of the data item, the site is selected to perform the read operation.
However, if the transaction has not processed any data at a site that con

tains a copy of the data item, all sites that contain a copy of the data

item must be examined individually. If there exists a site that contains a

copy of the data item and the addition of the site to the site graph does

not create a cycle, the site is selected for the execution of the read

operation. A new server for this site is allocated to the transaction.

This server will then process all data items that are located at the spe

cified site for the transaction. If no site containing the data item may

be added to the site graph without creating a cycle, the transaction is

rolled back and later restarted.

Upon receiving a write operation, the GTM adds all the sites that contain

a copy of the data item to the site graph. If the addition of these sites

to the site graph does not create a cycle, the write operation proceeds.
If any of the sites that contain the data item do not have servers allo

cated to the transaction, the GTM allocates the required servers and sends

the write operation to the servers for execution. If the addition of the

sites that contain the data item creates a cycle in the site graph, the

transaction is rolled back and later restarted.

After a transaction has committed or aborted, all edges labeled with the

transaction are removed from the site graph. A correctness proof for the

above algorithm appears in BREI87b]. Careful analysis of the algorithm
shows that it solves all of the multidatabase concurrency controL problems
mentioned in Section 2. The MDBS, by careful distribution of global oper
ations to the local sites, ensures global database consistency without any

additional information from the local DBMS concurrency control mechanisms.

The algorithm permits concurrent execution of global and local transac

tions. However, the level of concurrency for global transactions in this

environment may be less than the level of concurrency for global transac—

T2

1

— 17 —



tions in the absence of local transactions. In our view, the reduction in

the level of concurrency is a small price to be paid for retaining local

autonomy in a multidatabase system. The nature of the cost will be deter

mined by a performance evaluation of the algorithm, which is currently

being conducted.

References

BREI85I Breitbart, Y. and L. Tieman. “ADDS — Heterogeneous Distributed

Database System.” Distributed Data Sharing Systems Eds.

F. Schreiber and W. Litwin. North Holland, 1985, 7—24.

BREI86] Breitbart, Y., P. Olson, and C. Thompson. “Database Integration
in a Distributed Heterogeneous Database System.” Proceedings of

the International Conference on Data Engineering 1986, 301—310.

BREI87a] Breitbart, Y., A. Silberschatz, and C. Thompson. “An Approach
to the Update Problem in Multidatabase Systems.” Amoco Produc

tion Company Research Technical Report, F87—C—11, Tulsa, OK,
1987.

EBREI87b] Breitbart, Y., A. Silberschatz, and C. Thompson. “Concurrency
Control in a Heterogeneous Distributed Database System,” 1987

(in preparation).

GL1G85] Cligor, V. and R. Popescu—Zeletin. “Concurrency Control Issues

in Distributed Heterogeneous Database Management Systems.” Dis

tributed Data Sharing Systems Eds. F. Schreiber and W. Litwin.

North—Holland, 1985, 43—56.

LAND82] Landers, T. and R. Rosenberg. “An Overview of Multibase.” Dis

tributed Data Systems Ed. H. Schneider. North—Holland, 1982,
153—184.

L1Tw821 Litwin W., J. Boudenant, C. Esculier, A. Ferrier, A. Clorieux,
J. La Chimia, K. Kabba,j, C. Moulinoux, P. Rolin, and

C. Stangret. “SIRIUS Systems for Distributed Data Management.”
Distributed Data Bases Ed. H. J. Schneider. North—Holland,

1982, 311—366.

Pu86) Pu, C. “Superdatabases for Composition of Heterogeneous Data

bases.” Columbia University Technical Report No. CUCS—243—86,
1986.

THOM87I Thompson, C. “Multidatabase Concurrency Control.” (Ph.D. dis

sertation in preparation, Oklahoma State University, 1987.)

— 18 —



Superdatabases:
Transactions Across Database Boundaries

Calion Pu

Department of Computer Science

Columbia University
New York, NY 10027

1 Introduction

For both efficiency and extensibility, integrated and consistent access to a set of heterogeneous databases
is desirable. However, current commercial databases running on mainframes are, by and large, centralized
systems. Physical distribution of data in distributed homogeneous databases has been demonstrated in
several systems, such as Distributed INGRES Ston79] and R* LHM*84]. Nevertheless, the research on

integrated heterogeneous databases has been limited to query-only systems such as MULTIBASE LR82]
and MERMAID TBH*83].

In contrast to the relative success of research on query processing and optimization over heterogeneous
databases, few results have been reported on consistent updale across heterogeneous databases. Our answer

to this challenge is the building of superdaiabases. Unlike earlier works on uniform query access through a

single language, our emphasis centers on consistent update across heterogeneous databases. A superdata
base is conceptually a hierarchical composition of element databases, which may be centralized, distributed,
or other superdatabases. A supertransaction running in a superdatabase is composed of component trans
actions from the element databases in the same way standard nested transactions Moss8l] form a top-level
transaction. Therefore, results from the component transactions remain invisible (uncommitted) until the
supertransaction commit.

Update support in homogeneous databases relies on two sets of fundamental techniques: concurrency
control and crash recovery. We propose the construction of a superdatabase through hierarchical compo
sition of concurrency control and crash recovery. Starting from Reed Reed78J, many years of research on

nested transactions have produced several par.ticular implementations of nested transactions. Generalizing
an earlier work Pu86], which used hierarchical composition to implement a nested transaction mechanism
within a single database, we apply hierarchical composition across database boundaries.

In Section 2 we summarize the general architecture of superdatabases. In Section 3 we describe some

sufficient conditions to make element databases composable. In Section 4, we explain the design of a

superdatabase capable of gluing the element databases together. Section 5 sketches an implementation
plan. Finally, Section 6 concludes the paper.

2 Hierarchical Composition

The superdatabase composes element databases hierarchically. In figure 1, DB, represent different element
databases glued together by superdatabases. An atomic transaction spanning several element databases is
called a sizperfransac~jon. When participating in a supertransaction, the local transaction on each element
database is called a subtransactiort. For simplicity of presentation, we make the standard assumption
GP85] that there is only one subtransaction per element database for each supertransaction.

We divide this hierarchical composition into two parts, the element databases at the leaves and the
superdatabase as the internal nodes. In this section, we summarize the ideas. The conditions an element
database must satisfy so the superdatabase can handle it are described in detail in section 3. The design
of the the superdatabase to connect composable element databases is detailed in section 4.

An element database is said to, be cornposable if it satisfies two requirements. The first is on crash
recovery: the element database must understand some kind of agreement protocol, for example, two-phase

— 19 —



I TDB3
DB~

Figure 1: The Structure of Superdatabases

commit. Otherwise, one element database may decide to commit its component transaction, while another

decides to abort. This necessary requirement is a consequence of distributed control, not heterogeneity.
The second requirement is on concurrency control: the element database should present an explicit serial

ordering of its local transactions. All major concurrency control methods (two-phase locking, timestamps,
and optimistic concurrency control) provide an easy way to capture the serial order they impose on the

transactions. Furthermore, since any agreement protocol implies communication between participants,

passing the explicit serial order of subtransactions (local to each element database) may piggyback on

these messages, reducing the performance impact of the second requirement.
For consistent updates, these two are the only requirements we make on the element databases. An

element database may be centralized, distributed, or as we shall see, another superdatabase. Unfortunately,
in practice most centralized databases do not support any kind of agreement protocol. Similarly, most

distributed databases do not supply the transaction serial order. Consequently, our results cannot be

applied directly to existing databases without modification. Nevertheless, we believe that these relatively
mild requirements, once identified, can be feasibly incorporated into current and future database ~ystems.
The pay-off is significant: extensibility and accommodation of heterogeneity.

We have three design goals for the superdatabase that glue the composable element databases together.

1. Composition of element databases with many kinds of crash recovery methods.

2. Composition of element databases with many kinds of concurrency control techniques.

3. Recursive composibiity; i.e. the superdatabase must satisfy the requirements of an element database.

The realization that we need only an agreement protocol for crash recovery made the first goal easy. The

key idea that achieved the second goal is to use the explicit serial ordering of transactions, the common

denominator of best known concurrency control methods. The third goal was accomplished through careful

design of the agreement protocol and explicit passing of the serial order.

3 Element Databases

The usual model of a distributed transaction contains a coordinator and a set of subtransactions. Each

subtransaction maintains its local undo/redo information. At transaction commit time, the coordinator

organizes some kind of agreement with subtransactions to reach a uniform decision. The two-phase commit

protocol is the most commonly used because of its low message overhe&l.

— 20 —



The distributed database system R* LHM*84] provides a tree-structured computation, which refines

the above flat coordinator/subtransactions model. Subtransactions in R* are organized in a hierarchy, and

the two-phase commit protocol is propagated down the tree structure. The transaction commits only if all

subtransactions in the tree vote for commitment. Since heterogeneous databases are distributed by nature,

it is necessary that each element database maintains the undo/redo information locally. In addition, it is

necessary that each element database understands some kind of agreement protocol, such as the two-phase
commit outlined above, three-phase commit, and the various flavors of Byzantine agreements.

On concurrency control, we assume the element databases maintain serializability of local transactions.

The question is whether the superdatabase can maintain global serializability given local serializability.
The answer is yes, if the superdatabase certifies that all local serial orders are compatible in a global serial

order. One way to implement the superdatabase certification is to require that each element database

provide the ordering of its local transactions to the superdatabase. Please note that this assumption

provides a sufficient condition for composition of heterogeneous databases, but it is not necessary, since

implicit serialization is possible under some circumstances (section 5). The serial order of each local

transaction is represented by an order-e1emen~, or 0-element for short. In Section 4, we shall describe the

composition of 0-elements for certification. Here, we only discuss how the concurrency control methods

produce the 0-elements.

First, we consider element databases with two-phase locking concurrency control. Eswaran et a!.

EGLT76] showed that two-phase locking guarantees serializability of transactions because SHRINK(TI),
the timestamp of transaction Ti’s lock point, indicates Ti’s place in the serialization. We take advantage
of this fact and designate SHRINK(T,) as the 0-element for element databases with two-phase locking.

The second most popular concurrency control method uses timestamps for serialization. Since trans

actions serialized by timestamps have their serialization order explicitly represented in their timestamps,
these serve well as 0-elements. Timestamp intervals BEHR82J or multidimensional timestamps LB86]
can be passed as 0-elements as well.

As another alternative, optimistic concurrency control methods also provide an explicit serialization

order. Kung and Robinson {KR81] assign a serial transaction number after the write phase, which can be

used directly as 0-element. Ceri and Owicki C082] proposed a distributed algorithm in which a two-phase
commit follows a successful validation. Taking a timestamp from a Lamport-style global clock Lamp78]
at that moment will capture the serial order of transactions.

There is no constraint on the format of the 0-element. Each element database may have its own

representation. We only require that two 0-elements from the same element database be comparable,
and that this comparison recover the serialization guaranteed by local concurrency control methods. More

formally, let the serialization produced by the concurrency control method be represented by the binary
relation precede (denoted by <). We require that 0-element(Ti) < 0-element(T2) if T1 < T2 in the local

serialization.

In summary, for crash recovery any distributed database satisfies our requirements, namely, local

redo/undo capability and some kind of agreement protocol. For concurrency control, we ask that the

serialization order is made explicit through 0-elements for the superdatabase described in section 4. Since

explicit serialization is sufficient but not necessary, weaker requirements are possible.

4 Superdatabase Design

The superdatabase has two main components: crash recovery and concurrency control. Since it contains

no user data, all stored in element databases, both components are only concerned with control infor

mation on subtransactions. Three main components form the superdatabase: the commit protocol for a

supertransaction; the recovery from superdatabase crash; and the serialization of supertransactions. Due

to space constraints, we summarize the main results in this paper, and interested readers should consult

another paper Pu87} for more details.

Given that some form of agreement is necessary (section 3), the question is whether it is sufficient

for hierarchical commit. In R*, two-phase commit implements hierarchical commit. Two-phase commit

— 21 —



protocol obtains agreement on the outcome of the transaction independently of recovery information to

undo/redo updates. So does all the other agreement protocols, such as three-phase commit and Byzantine

agreements. The important thing is that for each element database, the superdatabase must understand

and use the appropriate protocol.
Since the superdatabase is the coordinator for the element databases during commit, it must record the

transaction on stable storage. Otherwise, a crash during the window of vulnerability would hold resources

in the element databases indefinitely. Of the known recovery methods, logging is the best for superdatabase

recovery. Since no before-images or after-images need to be saved, versions are of little utility. Conceptually,
the superdatabase log is separate from the element database logs, just as the superdatabase itself. In actual

implementation, the superdatabase log may be physically interleaved with an element database log, as long
as the recovery algorithms can separate them later.

For each transaction, the superdatabase saves the following information on the log: participant sub-

transactions; parent superdatabase, if any; and the transaction state (prepared, committed, or aborted).
The transaction state is written to the log during the agreement protocol. If a transaction was in the active

state when the superdatabase crashed, the superdatabase simply waits for (re)transmission of two-phase
commit from the parent. In case it is the root, it (re)starts the two-phase commit. If a transaction was

in the prepared state when the superdatabase crashed, the superdatabase inquires the parent about the

outcome of the transaction. If the transaction has been committed, the results are retransmitted to the

subtransactions.

Compared to crash recovery, superdatabase concurrency control is more elaborate. The main problem
that the superdatabase has to detect is when subtransactions from different element databases were seri

alized in different ways. In the following example, this happens when a second transaction 7’2 with the

same subtransactions produces the ordering: 0-element(Tj.i) � O-element(T2.i) and 0-element(T2.2) ~

0-element(T1 .2).

BeginTransaction(Top-level, T1)
cobegin

DB1 .BeginTransaction(Ti, T1.1) ...

actions
... CommitTransaction(T1 .i)

DB2.BeginTransaction(T1, T12) ...
actions

... CommitTransaction(Ti.2)
coend

CommitTransaction

To prevent this kind of disagreement from happening, we define an order-vector (0-vector) as the con

catenation of all 0-elements of the supertransaction. In the example, 0-vector(Tj) is (0-element(Tj.i),
0-element(Ti.2)). The order induced on 0-vectors by the 0-elements is defined strictly: 0-vector(Ti) �

0-vector(T2) if and only if for all element database j, 0-element(Ti~ � 0-element(T2.~). If a supertrans

action is not running on all element databases, we use a wild-card 0-element, denoted by * (star), to fill

in for the missing element databases. Since its order does not matter, by definition, 0-element(any) � *,

and, * � 0-element(any).
From this definition, if 0-vector(Ti) � 0-vector(T2) then all subtransactions are serialized in the same

order, ordering the supertransactions. Therefore, we can serialize the sup ertransactions by checking the

0-elements of a committing supertransaction against the history of all committed supertransactions. If

the new 0-vector can find a place in the total order, it may commit.

The comparison with all committed supertransactions may be expensive, both in terms of storage and

processing. Fortunately, it is not necessary to compare the 0-vector with all committed supertransactions.

Since a transaction trying to commit cannot be serialized in the ancient history, it is sufficient to certify

the transaction with a reasonably “recent history” of committed supertransactions. To determine the

beginning of active history, the superdatabase asks the element databases to send in the most ancient

active transaction id and subtracts the duration of the longest possible supertransaction. In practice, an

estimated time-out period based on the applications probably suffices.

From the composition point of view, the key observation is that the certification based on 0-vectors

is independent of particular concurrency control methods used by the element databases. Therefore, a

— 22 —



superdatabase can compose two-phase locking, timestamps, and optimistic concurrency control methods.

As long as we can make the serialization in element databases explicit, the superdatabase can certify the

serializability of supertransactions. More importantly, the certification gives the superdatabase itself an

explicit serial order (the 0-vector) allowing it to be recursively composed as an element database. Thus

we have found a way to hierarchically compose database concurrency control, maintaining serializability
at each level.

The certification method is optimistic, in the sense that it allows the element databases to run to

completion and then certifies the serial ordering. In particular, the 0-vector is constructed only after the

subtransactions have attempted to commit. Since some concurrency control techniques (such as time-

interval based and optimistic) decide the transaction ordering only at the transaction commit time, it is

difficult for the superdatabase to impose an ordering during the execution of the optimistic subtransactions.

In other words, the superdatabase has to be as optimistic as its element databases.

5 Run-time Overhead and Performance

The main piece of information the element databases give to the superdatabase is the 0-element. With

some concurrency control methods, such as timestamps, the production of the 0-element is trivial. If the

element database is centralized, then the cost of taking a timestamp is also low. However, if the element

database is a distributed database with internal concurrency control, then a global clock will be necessary

to capture the serial order. Fortunately, the maintenance of a global clock is independent of the number

of transactions, and therefore can be amortized.

Another run-time overhead is the message containing the 0-element. Since we have demonstrated the

necessity of an agreement protocol for recovery purposes, at least one message must be exchanged between

the superdatabase and each element database at commit time. The certification occurs only at commit

time, so the subtransaction serial order information can piggyback on the commit vote message. Therefore,
the superdatabase does not introduce any extra message overhead during transaction. processing.

Although in principle a superdatabase must check the serializability of all subtransactions, there are

important cases that permit optimization. For example, if all element databases use strict two-phase

locking, the lock points of the subtransactions are synchronized by the commit protocol, and no certification

will be necessary among them. However, the certification algorithm must be used between the group of

strict two-phase locking databases and others such as general two-phase locking, timestamps, and optimistic
methods.

The superdatabase design using 0-vectors in section 4 receives the explicit serialization order from the

element databases. Unlike other approaches GP85] which pass information about local objects, we use

the local concurrency control to condense synchronization information and reduce message flow. We have

shown that the local total ordering is sufficient for global serialization. However, less information results in

less concurrency. Unrelated supertransactions may cause unnecessary aborts due to the their appearance

of conflicting serialization from different element databases. Fortunately we can use our knowledge of the

concurrency control methods themselves to increase transaction concurrency in the superdatabase. Two

examples are two-phase locking and timestamps.
To avoid unnecessary aborts among element databases using general two-phase locking, we only need

to synchronize the lock points of participating component transactions explicitly. For example, a super-

transaction can use two-phase agreement to synchronize the lock points. This synchronization makes the

supertransaction two-phase globally, so all element databases now agree on the serialization of the compo

nent transactions. However, we still have to certify the group of two-phase locking component transactions

with others synchronized through different concurrency control methods.

Timestamp-based element databases also can provide the superdatabase with additional information.

For example, time-interval based concurrency control methods allow the superdatabase to serialize some

transactions that would have been aborted in the minimal design.

— 23 —



6 Conclusion

We have described the design of superdatabases and the algorithms used to compose consistent data

bases out of both homogeneous and heterogeneous elements. There are four good characteristics in the

superdatabase approach to building heterogeneous databases.

First, superdatabases guarantee the atomicity of global updates across the element databases. This

atomicity includes both reliability atomicity through an agreement protocol, such as two-phase commit,
and concurrency atomicity through the certification of serialization provided by the element databases.

Second, the design of superdatabase is adaptable to a variety of crash recovery methods and concurrency

control techniques used in the element databases. We have established the necessity for an agreement

protocol for supertransaction commit. However, the protocol is independent of particular crash recovery

methods used to undo and redo local transactions in the element databases. We have also shown that as

long as the element databases use concurrency control methods which easily supply an explicit serial order

of their transactions, they can be included under the superdatabase.

Third, databases built with superdatabases are extensible by construction. Element databases may be

added or deleted without changing the superdatabase. In additon, many interesting applications can take

advantage of the extensibility. For example, a replicated database can be constructed by connecting two

identical element databases with a superdatabase. Another example is that given a database X, satisfying
the requirements of section 3 for crash recovery and concurrency control, a superdatabase delivers, the

distributed version of X.

Fourth, transactions local to element databases run independently of the superdatabase, which in

tervenes only when needed for synchronization or recovery of supertransactions across different element

databases. In other words, the additional overhead introduced by the indirection through superdatabase is

paid only by the direct users of its services. The only interference happens when a component transaction

of a supertransaction conflicts with a local transaction.

Even though we described the serialization of supertransactions using 0-vectors, the hierarchical ap

proach admits other methods that explore the properties of particular concurrency control methods. For

example, using an agreement to synchronize lock points of two-phase locking elements databases and dis

tributing global timestamps to timestamp-based element databases are techniques that may improve the

concurrency in the superdatabase.
Global deadlock detection and resolution remains a research challenge, since it is immune to hierarchical

approaches. Observing that the time-out mechanism is inherent in distributed systems, we expect it to be

useful in avoiding deadlocks.

Many years of research on heterogeneous databases have achieved impressive and substantial progress,

especially in query language translation and view integration. We hope the combination of our results with

previous work on heterogeneous databases will produce superdatabases which are consistent, adaptable,
and extensible.

References

BEHR82] ft. Bayer, K. Elhardt, J. Heigert, and A. Reiser.

Dynamic timestamp allocation for transactions in database systems.

In H. J. Schneider, editor, Distributed Data Bases, North-Holland, 1982.

C082] S. Ceri and S. Owicki.

On the use of optimistic methods for concurrency control in distributed databases.

In Proceedings of the Sixth Berkeley Workshop on Distributed Data Management and Computer

Networks, pages 117—129, Lawrence Berkeley Laboratory, University of California, Berkeley,

February 1982.

EGLT76] K.P. Eswaran, J.N. Gray, R.A. Lone, and I.L. Traiger.
The notions of consistency and predicate locks in a database system.

— 24 —



Communications of A CM, 19(11):624—633, November 1976.

GP85] V. Gligor and R. Popescu-Zeletin.

Concurrency control issues in distributed heterogeneous database management systems.

In F.A. Schreiber and W. Litwin, editors, Distributed Data Sharing Systems, pages 43—56,
North Holland Publishing Company, 1985.

Proceedings of the International Symposium on Distributed Data Sharing Systems.

KR81} H. T. Kung and John T. Robinson.

On optimistic methods for concurrency control.

Transactions on Database Systems, 6(2):213—226, June 1981.

Lamp78] L. Lamport.

Time, clocks and ordering of events in a distributed system.

Communications of ACM, 21(7):558—565, July 1978.

LB86] P.J. Leu and B. Bhargava.
Multidimensional timestamp protocols for concurrency control.

In Proceedings of the Second International Conference on Data Engineering, pages 482—489,
Los Angeles, February 1986.

LHM*84] B. Lindsay, L.M. Haas, C. Mohan, P.F. Wilms, and R.A. Yost.

Computation and communication in R*: a distributed database manager.

ACM Transactions on Computer Systems, 2(1):24—38, February 1984.

LR82] T. Landers and R.L. Rosenberg.
An overview of MULTIBASE.

In H.J. Schneider, editor, Distributed Data Bases, North Holland Publishing Company, Septem
ber 1982.

Proceedings of the Second International Symposium on Distributed Data Bases.

Moss8l] J.E.B. Moss.

Nested Transactions: An Approach to Reliable Distributed Computing.
PhD thesis, Massachusetts Institute of Technology, April 1981.

Pu86] Calton Pu.

Replication and Nested Transactions in the Eden Distributed System.
PhD thesis, Department of Computer Science, University of Washington, 1986.

Pu87] C. Pu.

Superdatabases for Composition of Heterogeneous Databases.

Technical Report CUCS-243-86, Department of Computer Science, Columbia University, June

1987.

Reed78J D.P. Reed.

Naming and Synchronization in a Decentralized Computer System.
PhD thesis, Massachusetts Institute of Technology, September 1978.

Ston79} M. Stonebraker.

Concurrency control and consistency of multiple copies of data in Distributed INGRES.

IEEE Transactions on Software Engineering, SE-5(3):188—194, May 1979.

TBH*83] M. Templeton, D. Brill, A. Hwang, I. Kameny, and E. Lund.

An overview of the MERMAID system — a frontend to heterogeneous databases.

In Proceedings of EASCON 1983, pages 387—402, IEEE/Computer Society, 1983.

— 25 —



An optimistic Concurrency Control Algorithm for

Heterogeneous Distributed Database Systems

Ahmed K. Elrnagarmid and Yungho Leu

Computer Engineering Program

121 Electrical Engineering East Bldg.

Pennsylvania States University

University Park, PA 16802

(814) 863—1047

1. Introduction

A heterogeneous distributed database management system

(HDDBS) is a software layer which interconnects existing DBMSs to

facilitate the access of data across DBMS5. The DBMSs may differ

in data models, data definition and manipulation languages,

transaction management (including concurrency control and commit

protocols), and internal data structures GLIG86I.

This paper presents a global concurrency control algorithm

and a global commit protocol to support consistent updates in

heterogeneous database systems. This paper is organized as

follows. A transaction processing model of HDDBS is given in

section 2. In section 3, basic assumptions and global

serializability are discussed. The concurrency control algorithm

and the commit protocol are given in section 4.

2. Transaction Processing Model for Heterogeneous Distributed

Database management systems

In this section, a model for the proposed concurrency

control algorithm is presented. As shown in figure 1, the

transaction management model for heterogeneous distributed DBMSs

consists of global and local transaction management

evelsGLIG86]. A global transaction is performed in two modules,

a Global Data Manager (GDM) and a Global Transaction Manager

(GTM). Global transactions reference data at more than one site

in the system. A global transaction when submitted by the user is

decomposed by the GDM into a set of subtransactionS which access

data in the local site on behalf of the global transaction. The

set of subtransactiofls in turn are transmitted to the appropriate

local sites to be executed. When the results of subtransactiofls

come back to the GDM, the GDM then integrates the results and

presents the final result to the user. The functions of GDM

include (1) global data model analysis, (2) query

decomposition, (3) query translation, (4) execution plan

generation and (5) result integration. The purpose of the GTM is

to control the execution of subtransactioflS to help ensure the

consistency of the database. To be more specific, the GTM must

extend the functions of the local transaction managers (LTM5) to

maintain the global consistency of the database. The GTM ensures

the global consistency of the database by maintaining the

serializability of the execution of global transactions even when

— 26 —



global transactions are executed concurrently. The other function
of the GTM is to provide failure atomicity. Failure atomicity
means that a global transaction behaves as though it executes to
completion or not at all. That is, if the system crashes in the
middle of executing a transaction, intermediate results will not
be left in the database.

In figure l~ T~ represents a local transaction executed in a
local site. T~, represents the subtransaction of a global
transaction Teat site k. For simplicity, we assume that a global
transaction may have at most one subtransaction per site.

3. Basic Assumptions and Global Serializability

te. The

ons for

.le the

xample,
B that

(or Bi)

p LTM at

Bi is

in some

2. It

ctively
~e. Let

that the

llowing

sites,

.e, then

fficult

;.In the

~.sts. In

exist,
Ltes of

fferent

GL1G86]

;actions

iomy. We

~ss is a

~. is to

~tion at

with a

:ition of

tasks:

~ to the

Transactions consist of a sequence of primitive operationswhich can be either read or write. Two primitive operations aresaid to be conflicting if (1) they belong to different
transactjons;(2) both access the same database item; and (3) atleast one of them is a write operation. Three types of
transactions are present in HDDBS. They are global transactions,subtransactions, and local transactions. A global transaction
consists of one or more subtransactjons. Subtransactions access

TM.

~alue of

Kecuted,
~not be

ne local

process

3actions

~d as an

Tlgure 1. The Transection Model of HDDBS

— 27 —



identifier of a subtransaction.

For two-phase locking protocols, the time at which a

subtransaction releases its first lock can be used as the

subtransaction serial order. The subtransaction timestamp and the

time when a subtransaction is validated can both be used as

serial orders for algorithms based on timestamp ordering and

optimistic approach respectively. A detailed discussion of how

serial orders of transactions can be derived from existing
concurrency control algorithms is given in PU86].

4.2 Optimistic Approach to Global Concurrency Control

When all of the subtransactions of a global transaction have

been executed, the GTM starts validating this global transaction

against a set of recently committed global transactions. If the

transaction that is attempting to commit is serializable with all

of the recently committed global transactions, then this global
transaction is committed, otherwise it is aborted.

For the purpose of validation, the GTM must keep two data

structures for the recently committed global transactions, the

Serial Order Array (SOA) and the Read-Write Set Array(RWSA). The

SOA contains serial orders of subtransactions of the recently
committed global transactions. For example, if there are three

local sites and three committed global transactions, then a

possible SOA is shown in figure 2. Where ~is the serial order of

T~ (subtransaction of T~ at site 3), and so on. The ~*‘ means

unspecified, this happens when the glcbal transaction has no

subtransaction at the corresponding site. The RWSA stores all the

read set and write set of the subtransactions of all committed

transactions at all sites. For the previous example, the RWSA is

shown in figure 3.

site I slte2 site3

site3 Tj reed-se*11
vri(e—set ~

read—set12
vrite—set12

read-set1,
Vrite—set 13

I

.

I

.

I

.

I

I

I

S

I

I

figure 3. The Read-Yrite Set Array

When a global transaction has ~no subtransaction at a site,
the corresponding read set and write set are said to be empty.
When the GTN receives a global transaction, it derives the set

of sites, which is called the site set, involved in the execution

of the global transaction. The read sets and write sets for the

subtransactions are provided by GDM. The algorithm consists of

two modules (figures 4 and 5), the validation module and the

commit module. In the following pseudo code for the validation

module, T is the global transaction that is attempting to commit,
t is a recently committed global transaction, s represents a

site 1 site2

Ti

12

12

figure 2. Serial Order Array

— 30 —



Validation module::

BEGIN

serializable := TRUE;
<< For all t~ (recently committed global transaction ) DO

BEGIN

conflict_set :=

FOR all s ~ site_set DO

IF((RWSA(t,s) conflicts with read_set(T )) OR

(RWSA(t,s) conflicts with write set(T5)))
THEN conflict_set := conflict settJ(s);

IF NOT ( all the serial orders of the conflict set

of t precede the serial orders of the

subtransactions of T or vice versa)
THEN

BEGIN

serializable := FALSE;
GOTO L

END

L : END; >>

END.

Figure 4. The Validation Module

Commit module::

BEGIN

FOR all s~site-set DO

send the corresponding subtransaction to S;
Invoke a time-out mechanism;
wait until (STUB processes of all site-set send the

responses)
IF ( some node response with ‘reject’ flag)

THEN

broadcast ‘restart’ message to all site-set nodes
ELSE (* it is ‘accept’ *)

BEGIN

call validation module;
IF serializable TRUE

THEN

BEGIN

broadcast ‘commit’ to all site-set nodes
<< update the SOA and RWSA array for the

committed global transaction >>

END

ELSE

broadcast ‘restart’ to all site-set nodes;
END;

END.

Time—out exception handler::

BEGIN

broadcast ‘abort’ to all site-set nodes;
END;

Figure 5. The Commit Module

— 31 —



local site, and T~ represents the subtransaction of T on site s.

The conflict-set is obtained from the site-set. The site set

contains all the site ids where the subtransactions of the

committed transaction (t) and the subtransactions of the

attempting to commit transaction (T) conflict. In the above

algorithm, ‘<<‘, and ‘>>‘ denote a critical section.

On receiving a global transaction, the GTM submits the

subtransactions to the corresponding sites, and invokes a time

out mechanism. When the GTM can not receive all the response

messages of the involved nodes in time, it will assume that some

node has failed, so the corresponding global transaction is

aborted. The global transaction is restarted when any
subtransaction of it can not be serializably executed or when the

global transaction has not been executed in a globally
serializable way.

To make the above-mentioned approach applicable, the

recently committed set of global transactions must be kept as

small as possible. One way to achieve this is to record the time

when the global transaction committed. And for every active

global transaction, record the time when it is submitted.

Periodically compare the commit time of global transactions with

the submit time of active global transactions. The global
transaction whose commit time is smaller than the submit time of

all active global transactions can be purged from the recently
committed set.

References

BERN81] Bernstein, P.A. and Goodman, N.

“Concurrency control in distributed database systems”
ACM Computing Surveys, Vol. 13, No. 2, pp. 185-221 June

1981

GLIG84] Gligor, V. and Luckenbaugh, G.

“Interconnecting Heterogeneous Database Management
Systems”, IEEE Computer, Vol. 17, No. 1, pp.33-43, Jan,
1984

GLIG86) Gligor, V. and Popescu-Zeletin, R.

“Transaction management in distributed heterogeneous
database management systems”
Information systems Vol. 11, No. 4 pp. 287-297, 1986,
Pergamon Press

HELA86) Helal, A. and Elmagarmid, A.

“Heterogeneous Database Systems”
Technical Report TR-86-004, Department of Electrical

Engineering , Pennsylvania State University, 1986

(PU86 I Pu, C.

“Superdatabases for composition of heterogeneous
databases”

Technical report No. CUCS-243-86, Dept. Of Computer
Science, Columbia University, 1987

— 32 —



Pragmatics of Access Control in Mermaid

Marjorie Templeton, Eric Lund, Pat Ward

UNISYS, System Development Group
2400 Colorado Aye, Santa Monica, CA, 90406

213—829—7511

1. INTRODUCTION

Access control is an important component of any DBMS (Database

Management System). Users must be auth9rized to access the data

base and specific permissions may be defined for each user such

as whether they may update data, modify the schema, access the

entire database or only some subset, access only at specific
times or from specific terminals. Definition of an access policy
and maintenance of the policy becomes complex in distributed sys

tems and even more complex in heterogeneous distributed systems
because multiple system administrators and operating systems are

involved.

In this paper we will discuss some general considerations for

access control and then how it has been implemented in Mermaid, a

distributed database front—end system.

2. OVERVIEW OF MERMAID

We will first give a brief introduction to Mermaid. For more

details, see TEMP87]

Mermaid provides the end user with the capability to access data

in multiple databases through a common query language (SQL),

using a single terminal, and through a common view of the data

bases. The user does not need to know where the data is located

or when his query requires combining data from multiple data

bases. There is a central DD/D (Data Dictionary /Directory) that

contains information about the data and its location.

The major processes in the system are:

~ User Interface: The user interface appears to the user to be

a DBMS because it provides a set of commands similar to

those provided by most DBMSs. This includes support for

query libraries, query editors, debugging, help, synonym

replacement, spelling correction, report manipulation, and

options for customizing the system. The user interface is

used to prepare an SQL query (either a retrieve or an

update) and submit it for processing.

e Distributor: The distributor process contains the optimizer
and the controller. The query optimizer first accesses the

— 33 —



DD/D to determine which site or sites contain the data. If

the query can be processed by a single site, it is sent to

the controller. If multiple sites are required, the optim
izer plans the lowest cost method to process the query.

Query fragments and data transfer commands will be sent to

the DBMS interface processes and finally a report will be

assembled in one database and then sent to the report gen

erator. The controller within the distributor initiates

processes, transmits and receives messages from remote

processes, and performs error checking and recovery.

~ DD/D Interface: All information about schemata, databases,

users, access rights, host computers, and the network is

contained in a DD/D that is stored in a database and

accessed through a special DBMS interface.

~ DBMS Interface: There is one DBMS interface process for each

“target’t database to be accessed. It contains code that is

specific to the DBMS, the operating system, and the network

protocols on the host.

~ Report Generator: The report generator formats the report.

3. ACCESS CONTROL IN MERMAID

Our goal in the Mermaid system is to develop a basic system that

provides at least the level of access control offered by commer

cial centralized DBMSs while developing a secure version. The

secure version will have less functionality and poorer perfor
mance, so we plan to maintain two versions. Providing basic

access control in a distributed, heterogeneous system is much

more complex than providing the same level of access control in a

centralized system. There are more processors involved, more

system admininstrators involved, and more levels of checking.

Administrative complexity arises due to the necessity of provid
ing local control over local databases. In a tightly coupled
distributed system, it is possible to have central system
administration. However, in a federated system such as Mermaid,
there are data and system administrators for Mermaid and for each

underlying database. Access through the Mermaid system is a

right that is granted to individual users of Mermaid. Access to

the Mermaid system does not give the user automatic access to the

databases accessed by Mermaid, and access to the underlying data

bases does not give a user access to Mermaid.

3.1 USER VIEWS

A Mermaid database is a “virtual” database that is a view into

one or more underlying target databases. The full federated

database includes all relations and fields in the federated view

— 34 —



which may actually be less than all of the data that is available
in the underlying database. When developing the Mermaid

federated database, the schemas of the underlying databases are essed

supplied to the builder and are stored as ‘1local schemas” in the Since

DD/D. These local schemas may actually be views. It is easiest a, we

to develop the federated database if all Mermaid users use the tion.

same view into the underlying database and then further protec
tion can be built using a Mermaid view. That way, Mermaid does

not have to deal with different local schemas in the same under- time

lying database. If this can’t be done, then each view of the y are

underlying database needs to be defined as a different target ystern
database even though the views are actually in the same underly- nd in

ing database. upon

User views may be defined for specific users or groups of users

above the federated schema. Instead of opening the federated

database, the user opens a view. For example, the federated

database name may be “navyall” while views are named

“pacific ships”, “submarines”, and “battle_bgroups”. The navyall
database contains information on all types of ships in all oce- the

ans. It includes information on the ship’s location, plans,
weapons carried, membership in battle groups, maintenance his

tory, and ports visited. The “pacific_ships” would include all

information but only about ships in one location. The “subma—

rifles” would include all information about a specific type of ~erent

ship. The “battle_groups” would include a subset of the rela- same

tions.

Several federated databases may be defined over different groups
of databases and subsets of the databases. Any single database

may belong to many federated databases. This capability is with

another way to control access. For example, some group of users ~me as

may need access to several databases containing information about t has

commercial shipping while another group of users is interested in ~, the

military activities. Some databases may contain information lumber

about both and therefore different subsets of the databases may :ment,

participate in both federated databases. It is a matter of the

judgement whether the “commercial” and “military” views should be ire.

implemented as two separate federated databases with their own

views or as two views of the same federated database. If the two ~ntral

sets of users are quite distinct, the relations accessed are ~rs of

largely disjoint, and the target databases that participate are ASCII

partially disjoint, then it may simplify administration to con— rint—

sider them separate federated databases. If the access controls by a

on the two databases are quite different, then it will make the that

system more secure to treat them as different federated data— rime.

bases. table

~ ovide

3.2 INSTALLING A NEW USER

The first step in installing a new user is to determine which Since

federated databases or views the user will be allowed to access. we do

He then needs to obtain a login id on each computer that contains which

— 35 —



means that end user organizations will not see the code. If

source code is ever provided, the encryption routines must be

stripped out or provided with special protection to protect the

seed values to the random number generator and the manifest con

stants for the enigma machine.

In some environments, even the storage of encrypted passwords is

not acceptable. We have a flag in the DD/D that indicates that

no password is stored and that we must request one from the user

when logging into a target database computer. This makes the

system less transparent, but it is one of the necessary tradeoffs

between ease of use and security.

3.5 SECURITY OFFICER MONITORING

Mermaid keeps two types of trails: the audit trail and the jour
nal trail.

The audit trail is intended for the security administrator. It

covers all logins to Mermaid as well as rejected attempts. A

record is also written with significant events such as the logins
to remote computers and the queries asked. The audit trail is

protected by Unix as writable by everyone and readable only by
the security administrator. It is stored in a directory in the

Mermaid system space. This provides some protection, but it

could be erased by a malicious user.

The journal file is written for each run of Mermaid. It could be

used for detailed security checking, but its primary purpose is

for system debugging and performance monitoring.

4. REFERENCES

KAHN67] David Kahn, “The Codebreakers”, The Macmillan Company,
1967.

KNUT81] Donald Knuth, “The Art of Computer Programming, Seminu

merical Algorithms”, Volume 2, 1981.

TEMP87] M.Templeton, D.Brill, A.Chen, S.Dao, E.Lund,

R.MacGregor, P.Ward, “Mermaid - A Front-end to Distributed

Heterogeneous Databases”, Proceedings of the IEEE, May 1987.

— 38 —



A FEDERATED SYSTEM FOR SOFTWARE MANAGEMENT

Dennis Heimbigner

Computer Science Dept.
University of Colorado

Boulder, CO 80309-0430

1. Introduction

The federated approach to data sharing HAMM8O, HEIM85J was originally set in the context of traditional databases.

A federated database was conceived as one which had no global schema. The centralization inherent in traditional dis

tributed databases was replaced by autonomy plus cooperation. Autonomy referred to the ability of component systems
to decide which information to share (export), which external information to use (import) and to dynamically change
those decisions. The architecture described in HEIM85] envisioned multiple autonomous workstations, each with its

own database and local schema. These databases also had export schemas and import schemas to control the inter-

database sharing.

The federation architecture appears to be useful in contexts other than databases. In particular, it appears to be a useful

organizing principle for distributed software management systems1. Such systems are rapidly moving off of single
mainframes and onto networks of personal workstations. In a mainframe, it is easy to provide implicit sharing of various

software objects (programs, libraries, tools, and so on) though a common file system. In a network of workstations

without any distributed file manager, implicit sharing is difficult and a larger burden is placed on programmers to estab

lish explicit patterns of sharing by using, for example, file copying and mail messages.

Keystone 112 is a prototype system developed at the University of Colorado to explore some of the issues involved in

federated software management. It was constructed by grafting new features onto an existing centralized software

manager called Odin CLEM86J. Keystone II is not intended to be provide solutions to all the issues of federation, but

rather it is designed to emphasize three issues:

Transparency:
Access to shared objects is as transparent to user programs as possible. In particular, the location of objects is

transparent to Odin.

Consistency:
Keystone II maintains a loose form of consistency between the exporter’s copy of an object and the importer’s
copy. Importers keep local copies that are updated automatically when the exporter’s copy is changed.

Closure:

Importing a shared object may require importing additional supporting objects (e.g., libraries or included files).
The set of supporting objects is called a closure. A major research issue for Keystone II is the exploration of the

problems posed by closure.

Two other issues that are important for federations are autonomy and avoidance of global schemas. These elements are

present in Keystone II, but they are not primary issues in the research.

Keystone II is implemented in C under Sun Unix 3.3. It currently will import objects and keep them up to date. It can

support closures for certain objects, it maintains an import database, and allows “de-import”. Keystone II must be con
sidered a prototype, but even at that level, it shows the relative merits and demerits of a federated approach to software

management.

2. Odin

To understand Keystone II, it is necessary to understand the software management portion of Keystone II, which is

represented by the Odin system CLEM86]. Odin is built on top of Unix and manages a collection of objects, which are

Unix files. In Odin, objects are either atomic or derived. An atomic object is one which is provided to Odin by a pro
grammer. In effect, it is any object that is not derived. Typically atomic objects are source files constructed by a pro

grammer using an editor.

A derived object is one that is automatically produced from other objects by the application of a tool. A tool in Odin is a

program that takes objects as input and produces an object3 as output. The output object is said to be derived from the

input objects. The mput objects may be atomic or derived.

‘The tern, “distributed” is intended to modify the tenn “system” as opposed to the term “software”.

2

Keystone (1) CLEM85] was an earlier, simpler, attempt to do this, but it lacked transparency and inter-machine consistency.

3In practice, a tool can produce multiple outputs as pieces of a single composite object.

— 39 —



In Odin, there is a system of types and supertypes forming a type hierarchy (a DAG). All objects (both atomic and

derived) known to Odin are typed. The type of derived objects is determined by the tool that produces them. Odin

requires that each tool produce a unique type, so tools and types are interchangeable concepts in Odin. Since Unix files

technically are untyped, Odin uses file name extensions as a means of determining the type of atomic objects.

The main activity of Odin is to maintain and extend two relations: derives and source4. The derives relation shows how

objects of one type can be derived from objects of other types. A tuple of the form

erives(T1 ,T2,...T~J,To,Too10)

exists for every derived type T0. It indicates that objects of type To can be derived by applying Tool0 to a set of objects
of types T1 through T~.

The source relation corresponds to the derives relation but describes which existing objects have actually been derived

from other objects according to the rules defined in the derives relation. There is an M to 1 mapping from tuples in the

source relation to tuples in the derives relation. Suppose that object O~ is of type T~, Then the source relation might con
tain the tuple

ource(0 i,...OnJ.Oo)

if object Oo had in fact been produced by applying the appropriate tool to 01 through 0,. This tuple in source

corresponds to the previous tuple shown for derives. Notice that the tool need not be respecified in the source relation

since it is deducible from the type of object 0~.

As described above, Odin has essentially the same functionality as the Unix Make program FELD79], where the depen
dency lines in a Makefile correspond to tuples in the source relation and the rules in a Makefile (such as “.c.o” rules)
correspond to tuples in the derives relation. In Make, the programmer must explicitly specify the whole source relation

in the form of a complete Makefile. Odin differs in being able to automatically extend the source relation by a process
called “type inference”. Thus if I ask for the object of type “exe” (standing for a Unix executable program file) that is

derivable from, say, “tesLc”, Odin can search its derives relation to find a sequence of types leading from “c” to “exe”

and then apply the corresponding tools to extend the source relation to construct that derived object of type “exe”5.
Notice that this will infer an intermediate object of type “o” (Unix relocatable file) and place it in the source relation

automatically. In Odin, this kind of command is written as “test.c : exe”. This command may also be said to be the

name of an object since it specifies how it is constructed from existing objects (“test.c” in this case).

3. Keystone II Architecture

Figure 1 shows the functional architecture of the Keystone 11 system. It is assumed that programmers on each worksta

tion interact with Odin. They use Odin to manipulate objects located at their workstation (local objects) as well as

remote objects that have been imported. These imported objects appear to be just additional local atomic objects as far

as Odin is concerned. It is important to notice that the imported object may actually be derived on the exporting system.
It will appear as an atomic object locally, however.

As the figure shows, each exporter has an export server process running at all times. Depending on what it is doing, the

export server may need to invoke a server Odin on its node to complete some of its activities.

Operations on the federation are invoked as tools under Odin. These tools run as Unix processes under Odin. The figure
shows Odin on node 1 executing the import tool. The import tool typically talks over a network to the export server on

some other node. In the process of importing an object, the export server is in turn calling a server Odin to perform
some function (see next section).

Keystone II uses a number of private databases. “ODIN/IMP” is a directory containing the local copies of imported
objects. The import database records information about the imported objects. The sentinel database is used by the

server Odin to maintain consistency. These databases are described in more detail in the next section.

4. Detailed Operation of Keystone II

The programmer using Keystone can do all of the normal Odin operations, plus the operation of importing some remote

object. The import activity is actually embedded into Odin as just another set of tools.

Rather than describe the general format of the import command, we will use the following example command as the

basis for presentation:

db: import +host=ehost +object=program.c:exe +dest=locaLexe

Odin requires an initial object from which to derive other objects, and so we introduce an empty object, “db”, to fill that

role. In Odin, parameters are specified using a “+“ notation. Thus, this command specified three parameters to the

two relations are actually stored as directed graphs. The type derivation graph (TDG) stores the derives relations and the object deriva

tion graph (ODG) stores the source relation.

5Make actually can do a limited form of type inference, namely one step inference. Odin, however is substantially more powerful since it can

infer arbitrarily long derivation sequences.

— 40 —



command: (1) a host name (“ehost”), (2) an object name (“program.c:exe”), and (3) a local destination name

(“locaLexe”). The host specifies the remote machine from which the object is to be imported. The object name is in the

context of that remote host’s file system and Odin source relation. The destination name specifies the location of that

imported object in the local file system and its local name in that file system. The type of the final object is “import”, but

it is an empty object. The whole purpose of this command is to force the execution of the import tool solely for its side

effects (i.e., setting up the import) and not for any output it might produce (except error messages).

When Odin receives this command, it invokes the import tool with the specified parameters. Notice that the file name
extension of the destination name should match the type of the remote object (“exe” in this example). This allows Odin

to treat the object correctly if it is used in further local derivations.

When the import tool is invoked, it picks a unique name in a special directory on the local host. The special directory is
called “ODIN/IMP”, and so the import tool might generate the file name “ODJN/ItvlP/ta03835”. This file is where the

local copy of the remote file will physically reside in this file. Normally, the programmer does not need to be aware of

this file. The local file name (the “+dest” parameter) is created as a symbolic link6 to the local copy. Thus from the

user’s point of view, the local copy appears to reside at a specified place in his file system even though it physically
resides in the “ODIN/IMP” directory.

Once the local files are taken care of, the import tool establishes a network connection to the export server on the remote

host machine (“ehost”, in this case). The import tool sends three pieces of information to the export server (1) the

importer’s identity (“ihost” in this case). (2) the remote object name, and (3) the name of the local copy file (e. g.,
“ODIN/IMP/ta03835”). Eventually, the export server returns a message indicating success or failure, and the import tool

terminates its operation, which in turn completes the original import command. Assuming everything succeeds, the pro

grammer can then begin to use the imported file in subsequent Odin commands.

The export server on each machine has a number of duties. It must arrange for the physical instantiation of the object to

be exported, it must copy the object to the importer, and it must set up a mechanism for ensuring that the imported copy
is kept consistent with the exporter’s copy.

The first and second of these steps (instantiation and initial copy) are handled by using a server Odin plus special tools

on the exporter to do all the work. As a result of the above example import command, the export server on “ehost”

would start up a server Odin and give it the following command:

program.c : exe: export +host=ihost +dest=ODINILMPItaO3835

6A symbolic link is a file whith contains the name of another file. References to the symbolic link file are transformed by Unix

into a reference to the file named in the symbolic link.

Figure 1. Keystone Architecture.

- 41 -



This command requests Odin to create the derived object “program.c : exe,” which is the object that is being exported.
This object is then derived to an object of type “export”, which is again a ruse for invoking the export tool for its side

effects. The export tool copies its input object (J)rogram.c:exe) over the network to the importing host (“ihost”) and

stores the copy into the local file “ODIN/LMP/ta03835” on the importer. The copy is actually performed using the Unix

“rcp” (remote copy) command. At the completion of this Odin command, the exported object will have been instantiated

and a copy placed with the importer.

The third step of the export server’s operation is to ensure a limited form of consistency between copies on the exporter
and the importer. To ensure consistency, changes to the exported object (which must occur at the exporter) must

automatically cause all imported copies to be changed to match the export copy. Consistency enforcement is not atomic.

Rather, it is a looser form in which the exported objects are re-copied to the importers one at a time. Thus there may be

a short delay before all imported copies are consistent with the export copy.

Keystone II implements this function by using a feature of Odin called sentinels. An Odin sentinel is a command that

has the property that its corresponding derived object is always kept current. It is specified by giving an Odin command

to access a specific Odin object.

Whenever an object is imported, the export server establishes (on the exporter) a sentinel such as the following:

program.c : exe: rcp +host=ihost +dest=ODIN/IMP/ta03835

Whenever the object “program.e:exe” changes, this whole sentinel command is immediately re-evaluated by Odin. The

effect is to copy the new value of the object to the importer of that object using “rcp”. This ensures consistency between

the local exporter’s copy and the importer’s copy of the object.

Eventually, an importer may decide that it no longer needs access to a shared object. So Keystone II provides a facility
to support the “de-import” of an object. Simply deleting the symbolic link is inadequate since the local copy will still

exist, the import database will not be consistent, and the exporter will not know of the deletion. Keystone II deals with

this by providing a command:

db: import +remove=local.exe

This command removes the symbolic link, reclaims the space in “ODIN/IMP”, notes the change in the import database,
and sends a message to the export server to update its information.

5. Import Closure

For transparent import of single files, the above mechanism is quite adequate. Unfortunately, it is rare for a file to be so

isolated that it alone needs to be imported. For example, importing the C source file “test.c” for the purposes of compila
tion will probably require importing any #include files referenced by that C source file. In other words, “test.c” depends
on its included files. Equivalently, these included files support “test.c”.

It is time consuming and error prone to have the programmer import a file and all the files upon which it depends, so

Keystone II attempts to determine the set of supporting files and automatically import them along with the original file.

This collection of supporting files is termed a closure. Unfortunately, the concept of a closure is tricky to define. The

notion of “depends” hinges on the operations to be performed on the imported object. For example, if “tesic” is

imported for the purpose of printing it, then its included files may be irrelevant. if it is to be compiled, then they are

quite relevant. If it is to be compiled and loaded, then the closure may also need to specify appropriate libraries.

Keystone II defines closures by requiring the importer to state what types will be derived (by the importer) from the local

copy of the imported object. This is equivalent to specifying the tools that will be applied to the object by the importer
(because the type implies the tool). To handle closure, the import tool is redefined to take an additional parameter that

specifies the list of types that the importer expects to derive from the imported object. For example, when importing
“test.c”, the programmer might specify +deriv=o,exe]”. It is important to realize that these derivations will be per
formed at the importer, not at the exporter. But the exporter needs to know this list so it can figure out what other

exported objects would be needed by the importer to actually do those derivations. In other words, the exporter con

structs a closure based on information provided by the importer about what derivations the importer will use.

In order to avoid building the closure construction into Odin, there is assumed to exist a collection of closure construc

tion tools (one per Odin type) that actually calculate (at the exporter) the list of files that must be included in the closure.
These tools must know about the possible derivations from their type and be prepared to calculate the closure appropri
ate to any given set of derivations. These tools must also be recursive since forming the closure is a transitive operation.
That is, included files, for example, may in turn reference other included files.

It is interesting to note that closure was not explicitly treated in the original formulation of federated databases

HEIM85]. It turns out that the issue was implicitly recognized but it was avoided by requiring a user to import all sup
porting types before importing any type. Thus, the user was forced to import the closure manually.

— 42 —



6. Closure Issues

In practice, calculating and importing a closure is a difficult operation. In particular, it may not be possible (at least in

Unix) to even calculate the closure. Suppose for example that a host wants to import a Unix relocatable object file (i.e.,
“.o”) and apply the “exe” derivation to it. In Unix, the construction of an executable file requires the programmer to

specify a set of libraries needed to complete external references in the relocatable file. These libraries are specified on

the loader command line and are not defined in the relocatable file itself. Thus, it is impossible to calculate the closure
of a relocatable file given only the contents of that file. Somehow, an external specification of the required libraries must
be provided. Since there is no easy way in Keystone II to specify such external specifications, importing of non

closeable files is disallowed.

Even when a closure can be calculated, it is still difficult to properly import all of the files in the closure. The importer
will have specified the local name for the basic imported file, but there will be no names specified for the other files in

the closure and the references to the supporting files (i.e., the path names) may not be correct within the file system of
the importer.

Keystone II attempts to solve this problem by changing the references to the supporting files so that they are correct

within the importer. This is accomplished by the following sequence of actions:

(1) The export server calculates the closure and returns it to the import tool.

(2) The import tool assigns unique local names in “ODIN/IMP” to each of the files in the closure and sends this list of
local names to the export server. It also records the closure and local names in an import database (see figure 1).
If a file has already been imported for some other closure, then it is not re-imported.

(3) the export server applies a per-type renaming tool to each file in the closure to produce a new version that properly
references the new local name for all supporting files. Notice that this means that the exporter’s copy of a file is

no longer identical to the importer’s local copy.

(4) The export server establishes appropriate sentinels to make sure that the renaming is performed every time a new

copy of a file is sent to the importer.

The renaming tools are almost identical with the closure constructor tools except that instead of extracting names of sup
porting files, they modify references in those files. In fact, our current extraction and rename tools use the same text

with small compilation flags to determine which tool is to be created.

7. Related Work

Within research on software environments, the range of problems to be solved is sufficiently broad that few environ
ments manage to address the issue of distribution. None of the environments which do consider the issue take an expli
citly federated approach. Rather, they are either based on a (logically) centralized data repository (i.e., a classical distri
buted database), or they rely on some existing distributed file system.

DSEE LEBL84, LEBL85a, LEBL85a] is a system developed by Apollo Computers that relies on a distributed database
to achieve multi-machine operation. Cedar DONA85, SCHM82, TEIT85] at Xerox Pare uses an existing distributed
file system in its operation. The differences between classical distributed databases and federated databases have been
discussed in HEIM85] and need not be repeated here. However, a comparison of federated systems and typical distri
buted file systems is relevant to Keystone II. In particular, Sun Microsystems Network File System (NFS) SUN86] is

representative of typical distributed file systems and is a reasonable alternative to a federated approach in an network of
workstations. A comparison of the features of a federated approach to the features of NFS may be of interest.

NFS (network file system) was developed at Sun Microsystems, but is rapidly becoming a standard for network file sys
tems. NFS allows a workstation node in a network to act as a server by exporting a subtree of its file system. There is,
in effect, an export database on each server describing the subtrees that are exported. A client node can graft an

exported subtree onto its local file system using the Unix “mount” facility. The server is actually unaware of which
clients have imported one of its subtree because NFS uses a so-called stateless protocol. Access to such a subtree is

(almost7) transparent to programs executing on the client. Client access (reads and writes) to files in the imported sub-
tree are all performed on the server so that clients can update remote files. The export database, which is a text file on
the server, is persistent over server crashes, but the mounts performed by a client disappear whenever a client crashes.
This means that client must re-import all of its subtrees at every reboot. Because the Unix mount facility has security
implications, only highly privileged users (i.e. the super-user) can import and mount remote file systems. The practical
effect of this restriction is that the pattern of file sharing between servers and clients is relatively static.

Keystone II also provides an (almost8) transparent interface to programs. Unlike NFS, the imports established by Key
stone II are persistent over crashes since they are recorded in the file system rather than, as in the Unix mount facility, in
the computer’s memory. Also, unlike NFS, anyone (subject to normal security constraints) can import a file from
another node in the network. Special privileges are not required, which means that the patterns of sharing may be more

7The stateless protocol breaks the transparency.

81t is transparent to the extent that Unix symbolic links are transparent to programs.

— 43 —



dynamic than with NFS. Keystone II uses local copies for imported files so client updates are not as transparent as with

NFS. Read access, however, can be faster because the copy is local. Finally, because exported files are supported by
Odin, they may be computed rather than static. That is, an NFS remote file is just an ordinary data file, whereas a Key
stone II remote file can be the result of a complex series of derivations. Further, Keystone II will keep the exporter’s
copy of the derived file current and automatically transfer that copy to importers to maintain consistency. Finally, it is

interesting to see how both systems handle the closure problem. Keystone II has specific mechanisms for closures. NFS

sidesteps the issue by assuming that the imported subtree includes the closure or that the required files are available in

fixed places in all file systems (such as <stdio.h>).

8. Unresolved Issues

Keystone II currently does not support an export database such as was proposed for federated databases. Introducing
this database into Keystone II obviously would require extending Keystone II with some new tools to maintain this data

base. Providing such a database would make it possible for Keystone II to provide better access control to exported
objects and to allow the exporter to revoke access to already exported objects.

As originally conceived, one of the motivations for the federated approach was to allow dynamic changes in the struc

ture of the federation. Such changes might include failures of various kinds as well as changes in the export interfaces.

Robustness in the face of such changes is a difficult to achieve and Keystone II has as yet no facilities for dealing with it.

It is possible, however, to outline some of the problems and potential solutions.

Transferring ownership of an exported object from one node to another is the basic operation underlying changes in the

federation. The simplest approach is to transfer the object and the relevant sentinels to the new exporter and then notify
each importer of the change. One example of the use of such a transfer mechanism is in configuration control. It is

likely that shared software objects are periodically placed under configuration control. To do this, such an object must

be moved from a developer node to a configuration control node.

Another way that federation changes may occur is through network failures. A network of workstations can fail in a

variety of ways: nodes may fail or the network may become partitioned. Further, such failures may last for varying
periods of time. The principal effect of most failures in a federation is to prevent access to some subset of the available

exported data for some period of time.

In Keystone II, inability to access already imported objects for short periods is not a serious problem since the importers
have local copies. In fact, under the current implementation, exporters can fail and recover any number of times without

the importers being aware of it. Attempts to import new objects from a failed exporter will, of course, be delayed until

the exporter recovers.

Long term failures are more serious because the current architecture prevents updates to exported objects except at the

exporter. Thus objects exported by failed nodes are unmodiflable. One approach to dealing with this is to extend the

basic transfer mechanism. This involves choosing (by some form of election) some other node to serve as exporter for
the objects previously exported by the failed node. Once such a node is chosen, the appropriate objects (and their clo

sures) need to be transferred to that elected node. The basic transfer mechanism can be used with the modification that

the source of the object to be transferred is one of the local copies on an importer rather than the original exported
object.

Update of shared objects is always a problem and Keystone II does not yet address this issue. At the moment, only the

exporter can effectively modify a shared object and have it copied to the importers. Eventually, Keystone II must allow

importers to make such modifications and have them properly distributed.

Heterogeneity is another issue that is not addressed in Keystone II. Keystone is capable of operating on various

machines (Suns, Vaxes, Pyramids, etc.) as long as they all use Berkeley Unix 4.3, they all use Odin. and only text files

are exported. More diverse forms of heterogeneity are beyond Keystone’s current capability.

9. Conclusions

Keystone II demonstrates that the federated approach is a viable approach to distributed software management. It pro
vides transparency and inter-machine consistency. Closure presents special problems in the software context and Key
stone II provides a partial solution. It is clear that many other issues still need to be addressed: update, robustness and

heterogeneity to name three. Further research is needed to clarify these issues and to provide more general solutions to

all of the problems faced by Keystone II.

Acknowledgements I would like to acknowledge the help of Henry Vellandi in constructing a working version of Key
stone II. I would like to also acknowledge the support of Lee Osterweil for suggesting that a federated Odin might be

interesting. The help of Geoff Clemm, the author of Odin, was also indispensable.

— 44 —



References

CLEM85] G. M. Clemm, D. M. Heimbigner, L. J. Osterweil, and L. G. Williams, “KEYSTONE: A Federat
ed Software Environment,” Proceedings of the Workshop on Software Engineering Environments

for Programming-in-the-Large, Harwichport, Massachusetts, June 1985, PP. 80-88.

CLEM86I G. M. Clemm, “The Odin System: An Object Manager for Extensible Software Environments,”
University of Colorado Ph. D. thesis.

Also available as Technical Report CU-CS-3 14-86, University of Colorado, Department of Com

puter Science, February 1986.

DONA85] J. Donahue, “Cedar: An environment for ‘experimental’ programming,” in Integrated project sup
port environments, J. McDermid (Ed), 1985, pages 1-9.

{FELD79I S. I. Feldman “Make - A Program for Maintaining Computer Programs,” Software Practice and

Experience volume 9, PP. 255-265, 1979.

HAMM8O] M. Hammer and D. McLeod, “On Database Management System Architecture” in Infotech State

of the Art Report: Data Design, published by Pergamon Infotech Limited, Volume 8, pages 177-

202, 1980.

HEIM85] D. Heinibigner and D. McLeod, “A Federated Architecture for Information Mangement,” ACM
Transactions on Office Information Systems, volume 3, no. 3, pp. 253-278, 1985.

LEBL84] D. B. Leblang and R. P. Chase, Jr., “Computer-Aided Software Engineering in a Distributed
Workstation Environment,” Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments, published as Software Engineering
Notes volume 9, no. 3, pp. 104-112, 1984.

LEBL85a] D. B. Leblang and G. D. McLean, Jr., “DSEE: Overview and configuration management,” in In

tegrated project support environments, J. McDermid (Ed), 1985, pages 10-31.

LEBL85bJ D. B. Leblang and 0. D. McLean, Jr., “Configuration Management for Large-Scale Software

Development Efforts,” Proceedings of the Workshop on Software Engineering Environments for
Programming-in-the-Large, Harwichport, Massachusetts, June 1985, pp. 122-127.

MCDE85] J. McDermid (Ed.), Integrated project support environments, published by Peter Peregrinus Ltd,
1985.

SCRM82] E. E. Schmidt, Controlling Large Software Development in a Distributed Environment, Ph.D.
Thesis, EECS Department, University of California, Berkeley, 1982 and Technical Report CSL
82-7, Xerox PARC, 1982.

SUN86J Networking on the Sun Workstation, Part no. 800-1324-03, Revision B of 17 February 1986, Sun

Microsystems Inc.

TEITh5] W. Teitleman, “A Tour Through Cedar,” IEEE Transactions on Software Engineering volume
SE-11,no. 3,pp. 285-302, 1985.

— 45 —



Jnfonmtion Interchange between Self-Describing Databases

Leo Mark & Nick Roussopoulos

Department of Computer Science

University of Maryland

College Park, Maryland 20742

Within the framework of a Self-Describing Database System we describe a set of Data

Management Tools and a Data Dictionary supporting Information Interchange.
The concepts are based on our experience from a project on standardized information in

terchange in NASA’.

1. Introduction

Although electronic data transfer is technologically feasible today, information interchange is not. Informa

tion interchange cannot be achieved by transferring bit-strings using standard commercial protocols that

support only the data interchange. High level information interchange protocols must be developed and

used to allow the utilization of the technological miracles called communication networks. Information

interchange can only be achieved if the sender and receiver have the same high level semantically rich

description of the data being interchanged. We therefore believe, that protocols for information interchange
must support the interchange of metadata as well as the data itself.

The approach to information interchange described in this paper is much less ambitious than those followed

in distributed, heterogeneous, and multi- databases where a complete global schema is available on-line to

all users. In our approach, the global schema consists of a table of data format identifiers. All electroni

cally transmitted data, including metadata, is prefixed by a data format identifier and can be interpreted

automatically by first requesting and interpreting the corresponding data format. A standardized protocol
for this kind of information interchange has been defined by NASA’s Consultative Committee for Space
Data Systems over the past 2 years, and an organizational entity, the Control Authority, is being esta

blished to control and maintain the registration and use of data formats. The focus of this paper is on the

software tools and the data dictionary needed to support the standardized protocol. Prototypes of the

software tools and the data dictionary are currently being built as a proof of concept.

The concepts of data models that can describe themselves and document their own evolution are central to

information interchange. The definition of these concepts are summarized below:

Self-describing models are those which allow users with some basic knowledge about the model to browse

and find’out all the information needed to use the database. The basic required knowledge is minimal,

dependent on the model itself, and independent of the database content. For example, in a self- describing
relational model, the basic knowledge required by the user includes the table structure, the way the column

(attribute) names are used, the relational algebra or another query language, etc.

Self-documenting models are those which can document the evolution of the database during operation. In

a self-documenting data model a user needs no additional knowledge to understand data derivations. The

semantics of data derivations can be obtained from the semantics of the operand data objects and the used

operators. This means, for example, that in a self-documenting relational model the user has no problem

understanding the meaning of any derived relation once he understands the meaning of the base relations

and the used operators.

Integrating data, schema and meta-schema (i.e. the schema description) into a uniform structure is funda

mental in a self-describing model because this allows the users to browse through the schema first to find

out about the database and then proceed to access the data. Understanding both the operations permitted

by the data language and the interpretation of the obtained results is instrumental in a self-documenting

1: This work was supported by NASA under contract no. NAS5-29265.

Positions herein are those of the authors and do not necessarily reflect the official NASA position.

— 46 —



model, because without this understanding the system cannot document the database evolution.

The idea of integrating data, schema, and meta-schema has been pursued in several papers. The Extended

Relational Model, RM/T fCodd 79], expands the relational algebra with operations on the catalog to sup

port database reorganization. More recently, the ISO-Report on conceptual schema concepts Icriethuysen
82], points out the need for explicit representation and capabilities to change metadata. An excellent paper,

entitled “Scientific Information = Data + Metadata,” (McCarthy 84], supports our position that we can

only interchange information by interchanging both data and metadata - without the metadata we cannot

interpret the data. Finally, Information Resource Dictionary Systems, IRDS, have been the subject of a

considerable amount of research (Doilt 87], ANSI X3H4 part 1-4]. Our own work in this area include

Burns 86], Mark 85a, 85b, 86], Roussopoulos 83].

The rest of the paper is organized as follows. In section 2 we briefly present the Architecture of a Self-

Describing Database System. In section 3 we present the concept of Standard Format Data Units - SFDUs,
developed at NASA as part of a project on standardized information interchange. In sections 4 and 5 we

present, within the framework of a Self-Describing Database System, the software tools and the data dic

tionary contents required to support information interchange.

2. Architecture of a Self.Describing Database System

The architecture of a Self-Describing Database System is illustrated in figure 1, Mark 85]. This architec

ture has recently been adopted by the ANSI/SPARC as the basis for a new Reference Model for database

management systems, and it is the basis for current work in the ISO. For a detailed description of the

Reference Model, see Burns 86].

A Self-Describing Database System is unique in that it provides an active and integrated data dictionary as

part of the database management system; and, as we shall see, this data dictionary plays an important role

in information interchange.

DL

Interface
-

meta schema I

Data core DBMS

Management I

Tool Box

data dictionary
schema

data lictionary

data

Figure 1. Architecture of a Self-Describing Database System

The core DBMS supports the well-known point-of-view dinieiision of data description, consisting of inter

nal, conceptual, and external schemata. In addition, it supports and enforces the inteiision-e,ctension

dixiiension of data description. The intension-extension dimension has four levels of data description. Appli
cation data are stored as data. The application schemata, describing and controlling the use of the applica
tion data, are stored in the data dictionary. The rules for defining, managing, and controlllng the use of the

application schemata are stored in the data dictionary schema. A fundamental set of rules for defining
schemata, i.e. a description of the data models supported by the Sell-Describing Database System, is

defined in the nieta-schema. The set of rules in the meta-schema will allow the management strategies

- 47 -



represented in the data dictionary schema to evolve in accordance with changing data management poli
cies. Each level of data description in the intension-extension dimension is the extension of the level above

it, and the intension for the level below it. The meta-schema is self-describing, i.e. it is one of the schemata

it describes.

The core DBMS can be thought of as a DBMS stripped to the bones. It supports the Data Language, DL,
which is the only language used to retrieve and change data and data descriptions at any level in the

intension-extension dimension. The DL provides a set of primitive operations on any data element or data

description element at any level in the intension-extension dimension of data description. Any compound

operations needed must be implemented as a tool in the Data Management Tool Box using the primitive

operations of the DL. Data Management Tools are plug-compatible with the core DBMS through the DL.

As we shall see, all the tools needed to support information interchange between Self-Describing Database

Systems will be presented as Data Management Tools.

3. Standard Ponmt Data Units - SFDUs

An SFDU is self-describing, i.e. it contains both data and information about the data format needed to

automatically interpret the data. An SFDU has a recursive type-length-value, TLV, encoding with the fol

lowing syntax:

SFDU

The Type Field, T, has a fixed length and is represented in restricted ASCII. It identifies the data format

definition needed to interpret the data contained in the Value Field, V.

The Length Field, L, is a fixed length restricted ASCII integer or a binary, depending on the Type Field, V.

It represents the length of the Value Field, V, in octets.

The Value Field, V, can be in any desired code or representation that can be expressed using a data format

definition language, DDL, supported by the Self-Describing Database System.

If a network is not exclusively used for transporting data structured as SFDUs, then a special Type Field is

needed to indicate that something is an SFDU. For a detailed discussion, see CCSDS 86].

4. Data Managerumt Tools for Inforntition Interchange

The following Data Management Tools are needed for information interchange:

• data format browser

• data format editor

• SFDU editor

• SFDU sender

• SFDTJ receiver

• SFDU interpreter
• data format interpreter

Each tool has a simple function, but several tools may of course be combined to perform more complex
functions once each of them is fully understood.

Data Format Browser:

A user must be able to irowse a set of data formats for information of interest. Traditional data retrieval

languages allow users, that know what they are looking for and have sufficient knowledge about the struc

ture of the database to ask for it, to retrieve data in a structured manner. In contrast, a database browser

allow users, that do not know exactly what they are looking for and how to ask for it, to build up a

sufficient level of knowledge about the data and the data formats of the database to retrieve data from it.

— 48 —



Since the primary purpose of data formats is to locate, define, and control data, a database browser must

give its users easy access to data formats as well as data, and it must present both in the same way. In

addition to the metadata strictly needed by the database system there should be metadata aimed at sup

porting the database browser. These include lists of aliases and synonyms for names, textual descriptions,
subject indices, descriptions of derivations, etc. One of the unique characteristics of a Self-Describing Data
base System is that it represents data and data formats in exactly the same way; therefore the browser can

be used to browse both data and data formats and to jump between them using one simple set of concepts
at both levels of data description.

Data Format Editor:

Having located some data of interest, a user must be able to request data in a data format which fits the

application best. To meet the user’s request a set of operations allowing the user to specify and store a

desired data format using existing data formats must be available to the user. In addition, a set of opera
tions for defining data formats from scratch and storing them must be available.

To eliminate errors and provide a high level of support in the definition or derivation of data formats, the

above operations are best supported by a syntax directed editor for each DDL used.

The specific set of operations on data formats will of course depend on the DDLs used. Some examples of

operations on data formats that are defined in terms of the DDL for the relational data model are: union of

two formats or parts of two formats; intersection of two formats or parts of two formats; join of some of the

relations in a format or of relations in different formats; projection of some relations in a format; and, selec

tion of a subset of the data of some relation in a format.

Two important function of the data format editors are the registration of new data formats and the control

of versions of data formats. If new data formats are not registered, then data represented according to the

data formats cannot be interpreted.

SFDU Editor:

To eliminate errors and provide a high level of support in the definition of SFDUs, a syntax directed editor

for SFDEJ assembly should be provided. This editor will aid the user in correctly defining and storing
SFDUs by controlling that SFDU assembly follows the syntax defined above.

The syntax directed SFDU editor will also support operations on SFDUs to construct new SFDUs.

SFDIJ Sender:

The SFDU sender encodes SFDUs produced by an SFDU editor in a representation that conforms to the

ISO-OSI network Presentation Layer Protocol, used and sends the SFDU. It is relatively unimportant
which language we use for the concrete encoding of an SFDU, ISO-8211 fISO 86b), GDIL ~Billingsley 861,
etc., as long as the language supports a precise representation of all elements of the SFDU. For a descrip
tion of the ISO-OSI Reference Model see ISO 811.
The SFDU sender may be combined with and accept input directly from the SFDU editors, or it may

accept stored SFDUs identified by the user when the SFDU sender is called.

SFDUs need not neccesarily be send over an ISO-OSI network, it could be send via e-mail, on a discette, on

a tape, etc. In this case there is no need for encoding the SFDU.

SFDU Receiver:

The SFDU receiver autonomously receives SFDUs from the ISO-OSI network represented in accordance

with the Presentation Layer Protocol. It performs the inverse decoding function of the SFDU sender and

stores the received SFDU in the database. As an alternative, the SFDU receiver may be combined with

and produce input directly to the SFDU interpreter to be described next.

We note, that the data contents created at the SFDU originator’s end of the system by an application pro

cess is delivered in a semantically unaltered form to the peer level of the recipient system regardless of the

transmission and storage means. What happens in the communication path is not of concern to the SFDU

domain.

SFDU Interpreter:
Au sites in the open system exchanging information in SFDUs must be equipped with software to read and

interpret SFDUs. The function performed by the SFDU interpreter is very simple and basically consists in

separating SFDUs into their Type Fields and Value Fields.

— 49 —



Data Format Interpreter
For each DDL used at a given site there must be software to read and interpret the data format definitions

and the data represented in accordance with the data formats.

For each DDL used at a given site, the data dictionary schema defines to the extent possible all syntactic

rules for defining data formats using the DDL. This implies that the data dictionary schema becomes an

active part of the interpreter for data formats and that any data format can be stored in the extension of

the data dictionary schema. If the description of the DDL is complete, then the core DBMS takes on the

role of data format and data interpreter for the DDL.

The data format interpreter interprets data from a Value Field using the data format identified by the

corresponding Type Field. The data format interpreter may be combined with and receive input directly

from the SFDU interpreter described above.

There are basically two possible situations discussed in details in the following.
In the first situation, the data format definition is already stored in an interpreted form in the data dic

tionary at this site. Using this data format definition, the data format interpreter and the core DBMS can

interpret and store the data contents as data under the data format definition.

In the second situation, the data format definition is not currently stored at this site. The data format

interpreter requests the data format definition identified by the Type Field. The data format definition will

be received in a separate SFDU and will be interpreted using the data dictionary schema and the data for

mat definition will be stored in the data dictionary. This brings us back to the first situation again, and the

interpretation of the original data contents can continue.

We note that exactly the same software is needed by the SFDU recipient to interpret data format

definitions and data. The underlying assumption is that we have used the sau~ set of concepts for format

ting data and for formatting data formats. This assumption is equivalent to the basic assumption used for

the intension- extension dimension of data description in a Sell-Describing Database System.

One of the problems that usually requires a considerable amount of attention in information interchange

systems is the conversion of primitive types between different hardware, operating systems, database sys

tems, and programming languages. This problem has a local solution if we include an explicit description

of the required precision in the data format definition.

~anq~e

meterologicaljnfo=
time: yy.mm.dd.hh.mm.ss: 0.. 100,1.. 12, 1.boxht 1,0..23,0.boxht9,0.boxht9
location=

longitude: hh.mm.ss: 0.boxht9,0.boxht9,0.boxht9
latitude: degree 4: 0..90,nb
altitude: feet: dddddd;

temperature: °F: ddddd.d

humidity: %: 0.. 100

pressure: mb: 400. .1600;

This data format definition describes the units of measure and the required precision of a physical represen

tation of the data.

The DDL is very close to a relation definition in for example SQL ISO 86a]. What is intensionally left out

from the definition is a specification of the domains, i.e. the primitive data types. With the required preci

sion specified we need an algorithm that can pick an appropriate set of domains for representing the data

in this particular system. This means, that we need only n data conversion algorithms for n systems,

whereas the order of n /2 algorithms are needed to convert between n systems in the general case.

5. Data Dictionary for Inlonmtion Interchange

To support infonnation interchange between Self-Describing Database Systems using SFDUs, the following

requirements must be satisfied.

— 50 —



The data dictionary data must define data structures for storing received, but not interpreted SFDUs. The

SFDUs must be stored in such a way that they can be retrieved for interpretation at a later time. This is

best done by stripping off and storing the Type Field separately and using it as the search key when the

corresponding Value Field is retrieved for interpretation. This organization also supports the storage of

SFDUs that are assembled, but not yet sent. And, it allows for more permanent storage of not interpreted
SFDUs.

The data dictionary schenia must to the extent possible describe the syntax and construction rules for

SFDIJs. This will allow the data dictionary schema to be used by the SFDU interpreter, and it will allow

the components of an SFDU to be stored when the SFDU is interpreted. It will also allow the data diction

ary schema to be used be the syntax directed SFDU assembler to ensure correctly assembled SFDUs. It will

allow the data dictionary schema to be used to control operations that create SFDUs from other SFDUs.

It will finally allow the syntax and construction rules for SFDUs to evolve; this would not be possible
without reprogramming if the syntax and construction rules were not explicitly represented in the data dic

tionary schema.

The data dictionary schema must to the extent possible describe the syntax of any standardized DDL used

at this site. This will allow the data dictionary schema to be used by the data format interpreter for inter

preting data formats, and it will allow data format definitions to be stored as data dictionary data. This

will also allow browsing of data formats stored as data dictionary data, and it will allow the data dictionary
schema to control all operations on data formats, such as copying, modifications, and operations reusing
data formats to create new data formats. With the data format stored as data dictionary data the data

format interpreter will be able to interpret the value part of an SFDU and store it as interpreted data.

The data dictionary schema must completely control the assignment of Format Identifiers for new data for

mats. The correct assignment of Format Identifiers must be guaranteed for each data format definition;
this process can be automated. Format Identifiers can never be changed or reused, and the assignment of

them should not be under user control. Format Identifiers must be strings without embedded encoded

meaning; this can only be guaranteed if their assignment is not under user control.

The data dictionary schema must completely model the relationship between Format Identifiers and physi
cal addresses in the communication net.

The data dictionary schema should - in addition to the above - automatically enforce any additional poli
cies to the extent possible. With an explicitly represented model for the definition, management and use of

SFDUs the data dictionary will be flexible wrt. changes in policies. Without an explicit representation the

system will not be able to accomodate to changes without reprogramming. If any formal rules for control

ling the proliferation of data format definitions are defined, then these should be included in the data dic

tionary schema.

No commercially available data dictionary system or database system has a data model which is sufficiently

powerful to define a data dictionary schema fulfilling the above requirements. The data models are espe

cially weak when it comes to describing constraints and operations on the stored data formats and SFDUs.

If a commercially available database system is used for the implementation, it is therefore desirable that the

data dictionary schema be encaprulated in a software module that provides a set of primitive operations on

data formats and SFDUs. This could be implemented using triggers and event-procedures. These primitive

operations should be the only operations that can access and change the data formats and SFDUs stored in

the data dictionary directly. Other compound operations, such as the Data Management Tools, should

access and change data formats and SFDUs stored in the data dictionary only through calls of the primi
tive operations.

References

ANSI/SPARC X3H4 part 1- 4

American National Standards Institute: (Draft Proposed) “American National Standard information

resource dictionary system: part 1 - Core standard, part 2 - Entity-level security, part 3 - Application pro

gram interface, part 4 - Support of standard data models,” ANSI X3H4, American National Standards

— 51



Institute, New York 85.

Billingsley 86

Billingsley, F.: “Draft Specification for a General Data Interchange Language,”, May 8, 1986. Jet Propul
sion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109.

Burns 86

Burns, T.; Fong, E.; Jefferson, D.; Knox, R.; Mark, L.; Reedy, C.; Reich, L.; Roussopoulos, N.; Truszkowski,
W.: “Reference Model for DBMS Standardization,” ACM SIGMOD Records, March 1986.

CCSDS 86

Consultative Committee for Space Data Systems,: “Standard Formatted Data Units - Structure and Con

struction Rules,” Red Book, Issue-i, September 1986. CCSDS Secretariat, Communications Division

(Code-TS), NASA, Wash., DC 20546.

Dolk 87

Dollc, D.R. and Kirsch II, A.: “A Relational Information Resource Dictionary System,” Communications of

the ACM, Volume 30, number 1, January 1987.

Griethuysen 82

Griethuysen, J.J. van (ed.): “Concepts and Terminology for the Conceptual Schema and Information Base.”

ISO/TC97/SC5/WG3 - N695, 1982.

ISO 81

International Standards Organization: “Information Processing Systems - Open Systems Interconnections -

Basic Reference Model.” Computer Networks 5, 1981.

ISO 86a

International Standards Organization TC97/SC21 N1479: (Working Draft) “Database Language SQL2,”
October 1986.

ISO 86b

International Standards Organization TC97/SC15 N198: (Working Draft) “150-8211 Specification for a

Data Descriptive File for Information Interchange,” National Bureau of Standards IDocket No. 50719-5 119],
1986.

Mark 85a

Mark, L.: “Self-Describing Database Systems - Formalization and Realization,” TR-1484 Computer Science

Department, University of Maryland, U.S.A., 1985.

Mark 85b

Mark, L. and Roussopoulos, N.: “The New Database Architecture Framework - A Progress Report,” in

(Ed.) Sernadas, A., Bubenko, J., and Olive, A., “Theoretical and Formal Aspects of Information Systems,”
North-Holland 1985.

Mark 86

Mark, L. and Roussopoulos, N.: “Metadata Management,” IEEE Computer Magazine Special Issue on

“Future Directions in Database Systems - Architectures for Information Engineering”, December 1986.

McCarthy 84

McCarthy, J.L.: “Scientific Information = Data + Meta-data,” Technical Report, Lawrence Berkeley

Laboratory, University of California, Berkeley, CA 94720.

Roussopoulos 83

Roussopoulos, N. and Mark, L.: “A Self-Describing Meta-Schema for the RM/T Data Model,” In Proc.

IEEE Workshop on Languages for Automation, IEEE Computer Society Press, 1983.

— 52 —



DATA RETRIEVAL IN A DISTRIBUTED TELEMETRY GROUND DATA SYSTEM

Carol J. Steinberg1
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, California 91109

1.0 INTRODUCTION

Flexible management and manipulation of large volumes of telemetry data for the

Jet Propulsion Laboratory’s unmanned deep-space missions has motivated the design of
the Space Flight Operations Center (SFOC) distributed ground data system EBER85]
JPL85J. SFOC supports real-time and non-real-time spacecraft telemetry data

management, monitoring, and analysis as depicted in Figure 1. A Central Data

Management (CDM) node lies at the heart of the system for managing the telemetry data.

Application programs residing at SFOC workstation and function-dedicated computer
nodes (herein referred to collectively as workstations) are provided with a set of services

to access the telemetry data under CDM control. This paper proposes a concept for a

runtime data retrieval subsystem for SFOC that is referred to as the Session Manager.

The Session Manager offers workstations a set of programmer services enabling
them to establish a session with CDM, submit data requests to CDM, and process the

data results returned from CDM. The Session Manager must gather the data satisfying
the submitted data request from the storage structures at CDM and distribute that data

to the requesting workstation application program. This scenario is not unlike what

many commercial data management products offer their customers. But the Session

Manager is set apart by key features mandated by the SFOC environment:

1) Support of several distinct data retrieval control mechanisms to accommodate

real-time as well as non-real-time data retrieval and delivery;

2) Ability to access a variety of storage media via a variety of access strategies
in a manner that is transparent to the user;

Author’B current employer:

Philip8 Ultrasound International

2722 South Fairview Street, Santa Ana, California 92704

FIGURE L SFOC LOGICAL CONFIGURATiON FOR THE DATA MANAGB~IENT NODE AND CUB~JT NODES

1

— 53 —



3) A programmer’s runtime interface modeled after those used for commercial

relational database management systems BL185] but generalized to any form of

record by record data retrieval;

4) Data retrieval by predefined commands identified by name and parameter list,
and whose definitions reside at CDM

5) Design that is both flexible and extensible to insure against locking the SFOC

project into a fixed set of vendors and commercial products, and to allow for

painless growth as SFOC matures over its projected 15 year life span.

2.0 SESSION MANAGER ARCHITECTURE

Figure 2 represents the functional layers for access of data at CDM. The Central

Data Store represents the on-line data stored at CDM. The architecture of CDM includes

a mix of storage media and data access strategies to accommodate the large data volumes

and data usage variations. Consequently, several functional components must exist for

extracting this data from CDM.. These include File Transfer, Forms Interface, and

Session Manager components. The Session Manager itself is composed of two layers: the

Central Session Manager and the Session Manager Runtime Services. The Session

Manager Runtime Services along with CDM Distributed Utilities provide a collection of

non-procedural services and tools to the workstation environment.

Worbtailon Applicabons

Session Manager
Runlime Services

//J,,,~
Central Session

Manager

Central

Data Store

File Forms
::•:: Transfer Interlbce

CDM Distributed Utililies

~j~j~jj Session Manager Components

FiGURE 2. CENTRAL DATA STORE ACCESS LAYERS

The Session Manager Runtime Services (SMRS) is the programmer’s “user interface”

to CDM. The SMRS accepts session directives from the client application and conveys

them to the Central Session Manager (CSM). Consequently, the CSM regulates the

processing of data requests for a given CDM session. Given a data request, the CSM

accesses the Central Data Store for data satisfying the client’s data request and exports

the data to SMRS for subsequent presentation to the requesting client.

The division of function in the Session Manager is a natural boundary for physical
distribution of function across SFOC logical nodes. The SMRS resides on the

workstations while CSM is resident at the CDM node. The SMRS and CSM communicate

with one another via network services and a set of well-defined control and data

messages.

— 54 —



An invocation of CSM (CSM server) exists for every active CDM session. An

application may have any number of active CDM sessions. Figure 3 illustrates the

interaction of workstation applications, SMRS and

CSM, where application A has two active CDM

sessions, and application B has one open session.

One CSM server is always listening for a new

workstation client.

3.0 CENTRAL SESSION MANAGER OVERVIEW

CSM coordinates data retrieval from CDM for

workstation clients via received SMRS control and

data request directives. CSM responds accordingly
with status and data result messages. CSM’s main

responsibilities include 1) ensuring that the user

establishing the session is a legal user, 2) vali

dating data requests, 3) controlling data request

execution, 4) accessing storage structures, and 5)
exporting data results and status information to

the SMRS.

The CSM is composed of a set of distinctive states, some of which are tightly
coupled to the messages received from SMRS. Figure 4 represents the state transitions
in fairly simple terms.

_____ SlATES WHERE ME~AGES

MAY SE RECEIVED FROM SMI~.

After a valid client has initiated a session with CDM, the CSM awaits a command

message from the SMRS. The WAITING FOR NEXT COMMAND state is the resting state

to which the CSM always arrives until a close command is received. If a data request is

received, it is validated and the CSM proceeds to execute the data request. In the

course of executing, the data are accessed from the Central Data Store, then packaged
and exported to the SMRS via network services. (Network services handle the buffering
of exported data for both client and server.) When all the data have been exported for

a given data request, the CSM waits for the next command message. Should the client

wish to abort a data request while it is executing, a cancel command may be sent to

stop execution. Again, the CSM returns to the WAITING FOR NEXT COMMAND state.

It is from this State that a new data request may be accepted for execution, or from

which the session may be terminated.

Sh~ SESSION MANAGFRT SEJNT1~~E SYSTEM

C~4: aNTPAL SESSION MANAGER

FIGURE 3. APPLICATION INTERACTION
WITH SESSION MANAGER

OPEN COMMAND

RECEIVED FROM

INVALID CLIENT

RGURE 4. STATE TRANSITION DLA~GRAM FOR ONE CEN1flAL SESSiON MANAGER SEI7F/ER

— 55 —



3.1 EXECUTION OF DATA REQUESTS

The state EXECUTING DATA REQUEST can

interaction of two functional layers: 1) a control

distinct classes of data requests, and 2) a data

access layer for managing data retrieval from

distinct storage structures. Figure 5 illustrates

how the layers are configured. A “processing
path” exists for each class of data request. The

CSM follows one processing path per submitted

data request. A processing path has at its disposal
all of the available data access methods, using one

per submitted data request.2 The important point
here is that the CSM may be expanded to handle

new classes of data requests as support is required.
Similarly, new storage structures and their

associated access methods may be supported as

CDM hardware and software tools evolve.

3.1.1 Data Request Classes

be considered a task that involves

layer for managing the execution of

The two main data request classes are discrete and continuous. The discrete

requests are those in which a data request is received, validated, and executed

immediately. Only current data in the Central Data Store at the time the request is

processed are available for distribution. When all data satisfying the request have been

accessed by the CSM, the request is complete. For discrete requests, transition from the

EXECUTING DATA REQUEST state to the WAITING FOR NEXT COMMAND state is on

the end-of-data condition or upon receipt of a cancel command.

Continuous requests are those in which a data request is received, validated, and

executed until a cancel command is received, at which point the CSM returns to the

WAITING FOR NEXT COMMAND state. There are three distinct control mechanisms for

continuous requests: 1) event-driven, 2) temporally-driven, and 3) data-driven. Con

tinuous requests are targeted for data received in real-time where data exportation is

triggered by one of the three control mechanisms listed. For instance, workstations may
be alerted of real-time telemetry data that is outside of acceptable limits via an event-

driven request control mechanism. This same control mechanism could be used to

distribute maps for decoding incoming telemetry frames as maps become available or

effective.

Based on this discussion, four data request classes, hence four processing paths have

been identified: 1) discrete, 2) continuous-event-driven, 3) continuous-temporally-driven,
and 4) continuous-data-driven. Each one is represented in Figure 5 as a distinct element

in the control layer for managing the execution of data request classes.

2
In the SFOC environment, data is expected to be partitioned across storage structures in a manner that is

tailored to usage such that a candidate data request need never span a set of storage structures. Hence, the Session

Manager has not been designed with a “merge” capability across storage structures. That a “processing path” has at its

disposal all data access objects means that it can accommodate a data request operating on any one data access object

known to it.

PROCESSING DATA ACCESS

PAT

FIGURE 5. FUNCTiONAL LAYERS FOR
DATA REQUEST EXECU11ON

— 56 —



3.1.2 Data Access Objects

The Central Data Store is composed of a variety of storage structures which are

themselves composed of a mix of media and data access strategies. Each storage
structure has an associated set of operations for managing it. The storage structure

along with its operations can be termed a “data access object”. Examples of data access

objects include relational DBMS, optical disk files, ISAM disk files, flat disk files, and

tape.

3.2 REQUEST CONTROL CATALOG

The Request Control Catalog is the heartbeat of the Session Manager. It is through
the Request Control Catalog that the CSM knows how to process a data request

submitted by a workstation application. Data requests are predefined at CDM and are

identified by name. The Request Control Catalog captures the following information

about the data request: 1) a data request follows one processing path, e.g., discrete

request, 2) a data request accesses one storage structure, e.g., relational DBMS, 3) a data

request has zero or more substitutable parameters used as selection criteria for the

request, and 4) a data request has a set of one or more data-items composing a target

list of results to be returned by the request.

4.0 SESSION MANAGER RUNTIME SYSTEM OVERVIEW

The SMRS facilitates development of application programs which use CDM data

resources. SMRS drives a CDM session via control and data request messages sent to

the CSM.. The SMRS must, in turn, respond to result and status messages returned by
the CSM..

SMRS is composed of a set of functions for CDM session control, query, and result

processing. Table I lists the fundamental functions of the SMRS in a synchronous
environment. Note that this interface is a subset of function calls typically available in

runtime systems of commercial relational databases. But in this case, the interface is

applied to all program delivered data, independent of central data storage structure.

Moreover, its modular nature lends itself nicely to expansion to accommodate expected
new features; for example, asynchronous data request and delivery.

CLASS FUNCTION DESCRIPTION

Control OPEN Establish a CDM session.

CLOSE Close a CDM session.

CANCEL Cancel the current data request.

Query REQUEST Submit a predefined data request to CDM for runtime

execution.

Process BIND Associate a program variable to a retrieved target

list element.

FETCH Fetch a retrieved result record.

DESC Get datatype information about a target list element

for the currently active~ data request.

Table I. Basic Set of Session Manager Runtime System Functions

- 57 —



The application programmer must be aware of the data request’s name, its
parameters (data selection criteria), and the target list of data-items returned with each
FETCH. Recall that this information is maintained in the Request Control Catalog
referenced by the CSM.

The SMRS functions are independently invocable. Nonetheless, there is an inherent
ordering to the functions as depicted in the state transition diagram of Figure 6. AU
SMRS directive messages sent to CSM are acknowledged via status and data messages
returned to SMRS. CSM status messages indicate receipt of a valid SMRS directive,
error conditions, CDM target list specification, end of data conditions, etc.

FIGURE 6. STATE TRANSITION DIAGRAM FOR SESSiON MANAGER RUN11ME SERVICES FUNCTION INVOCATION

For a given CDM session, the functions communicate with one another via a shared
SMRS Control Block which maintains information about that session’s current runtime
state. Hence, several data requests may be processed in a serial fashion in any CDM
session. Furthermore, several SMRS Control Blocks, hence several CDM sessions, may
coexist in a given application. This allows for submission of multiple data requests to
CDM for parallel processing.

5.0 SESSION MANAGER AS AN EVOLVING SYSTEM

The Session Manager can potentially support other kinds of features. What has
been described in this paper has been specific for sessions run in a synchronous mode.
(A small portion of this has been prototyped for discrete requests.) It is conceivable
that users may want to submit data requests for later execution, similar to batch runs,
with data results returned to the same or even different workstation. In future versions,
it may be desirable to loosen control over data request structure and instead of
predefining all data requests at CDM, allow users to submit requests composed on-the-fly
from a query language.

AwAmNG APPUCATION ACI1ON

TERMINATE CDM SESSION

CDM SESSiON ESTABLISHED

SUBMflIING SlOPED ~TA REQUEST / (REQUEST)

GET A TARGET LIST ELEMENT SPECIFICATION

jSURMIT A DATA REQUEST

LIST

SPECIFICATION

States where messages ore sent to and/or received from CSM.

ASSOCIATE A TARGET LIST ELEMENT

TO A PROGRAM VARIABLE

GET NEXT RESULT RECORD

— 58 —



SMRS and CSM design is modular to facilitate expansion. As already pointed out,
CSM design has been equipped to accept new processing paths for new data request
classes. Also, as new data storage tools are made available to CDM, new data access

objects may be added to the pool of objects available to the existing processing paths
for data retrieval. The SMRS is similarly expandable. As new features are added to the

Session Manager, for instance, data requests submitted for later execution, new functions

may be easily added to the SMRS’ user interface to accommodate these features. Finally,
communications between the SMRS and CSM occur within well defined states. Additional

message classes may be easily accommodated as functionality requires. Session Manager
is an evolving subsystem and should evolve throughout the lifetime of SFOC.

ACKNOWLEDGEMENTS

I would like to thank Joan Van Cleef for preparation of the diagrams and manuscript.

The work described in this publication was carried out by the Jet Propulsion Laboratory,
California Institute of Technology, under National Aeronautics and Space Administration

contract.

REFERENCES

BL185] Fortran Programmer’s Guide to JDMLJB, The Intelligent Database Machine,

Britton-Lee, Incorporated, November 1985

EBER85] Ebersole, M.M~, The Space Flight Operations Center Development Project,
Journal of the British Interplanetary Society, Vol. 38, pp. 472-478, 1985

JPL85] JPL Future End-to-End Information System Architectural Design, JPL

Publication D-952, April 1985

— 59 —



PRELIMINARY CALL FOR PAPERS
1988 ACM-SIGMOD

International Conference on Management of Data

June 1-3, 1988 Chicago, Illinois

Dma Bitton

University of Illinois at Chicago

Organizing Committee

General Chairpersons:

Peter Scheuermann

Northwestern University

Tutorials:

Panels:

Treasurer:

Local Arrangements:

Registration:

Publicity:

European Coordinator:

Clement Yu, University of Illinois at Chicago
Meral Ozsoyoglu, Case Western Reserve University
Udai Gupta, AT&T, Naperville
Leszek Lilien, University of Illinois at Chicago
Michael Carey, University of Wisconsin, Madison

Edward Omiecinski, Georgia Institute of Technology
Witold Litwin, INRIA, France

The 1988 ACM-SIGMOD Conference will feature two concurrent tracks: Concepts & Techniques and

Applications & Implementations, each representing a vertical slice of Database Technology. Concepts & Techniques
will focus on theoretical and algorithmic aspects of data and knowledge management encompassing data

models, query languages, deductive databases, database design, access methods, query optimization,

concurrency control and recovery. Applications & Implementations will focus on characterization of application
profiles, requirement analysis, tools for logical and physical design, architectures for parallel and distributed

database systems, and experimental performance studies.

Our goal is to have a balanced conference representing both the real users’s needs, problems and experiences
and possible solutions at the algorithm and system level.

Papers are solicited for both tracks. Four copies of each paper should be mailed to the appropriate Program
Committee chairman.

Program Committee Chairpersons:

Concepts & Techniques Track

Per-Ake Larson

Department of Computer Sciences

University of Waterloo

Waterloo, Ontario

Canada N2L 3G1

palarson%waterloo@relay.cs.net

Applications & Implementations Track

Haran Boral

MCC

3500 West Balcones Center Drive

Austin, Texas 78759

boral@mcc.com

Important Dates

Papers and Panels Submission Deadlines:

Notification of Acceptance:

December 4, 1987

February 12, 1988

-60-



Call for Papers and Participation

Second International Conference on Expert Database Systems

George Mason
University

Conference General Chairman

Edgar H. Sibley
George Mason University

Program Chairman

Larry Kerschberg
George Mason University

Program Committee

Robert Abarbanel, lntelliCorp
Hideo Also, Keio University
Antonio Albano, U. of Pisa

Stephen J. Andriole, GMU
Robert Balzer, USC - IS!

Francois Bancilhon, Altair, France

Alex Borgida, Rutgers University
Don Batory, U. of Texas

Michael L. Brodie, CCA
Janis Bubenko, U. of Stockholm
Peter Buneman, U. of Pennsylvania
Stefano Cen, Politecnico di Milano
Umesh Dayal, CCA
Mark Fox, Carnegie-Mellon University
Antonio L. Furtado, Rio Sd. Center, IBM Brash
Herve Gallaire, ECRC, Munich, FRG
Barbara Hayes-Roth, Stanford University
Yannis loannidis, Univ. of Wisconsin
Sushil Jajodia Naval Res Lab

Matthias Jarke, U. of Passau, FAG
Jonathan King, Teknowledge, Inc.

Roger King, U. of Colorado

Robert Meersman, Tllburg University
Tim H. Merrett, McGill University
Matthew Morgenstern, SRI International
John Mylopoulos, U. of Toronto

Sham Navathe, U. of Florida
Erich Neuhold, GMD, FRG

Setsuo Ohsuga, U. of Tokyo
D. Stott Parker, Jr., UCLA
Alain Pirotte, Philips Lab, Belgium
W. Don Potter, U. of Georgia
Larry Reeker, 8DM Corporation
Nick Roussopoulos, U. of Maryland
Enk Sandewall, Linkoping University
Timos Sellis, U. of Maryland
John Miles Smith, CCA
Reid Smith, Schlumberger-Doil Research
Ame Solvberg, U. of Norway
John Sowa, IBM SRI

Jacob Stein, ServioLogic
Michael Stonebraker, UC - Berkeley
Adrian Walker, IBM T.J

.

Watson Center
Gio Wiederhold, Stanford University
Androw B. Whinston, Purdue University
Eugene Wong, UC - Berkeley
Carlo Zaniclo, t~’*~C

Tutorial and Panel Coordinator

Lucan Russell, Computer Sciences Corp.

Conference Coordinator

Nancy D. Joyner, GMLJ

Exhibits Coordinator

Diane Entner, E-Systems

Publicity Chairman

Jorge Diaz-Herrera, GIWJ

April 25-27, 1988

The Sheraton Premiere at Tysons Corner

Tysons Corner, Virginia

Sponsored by:

George Mason University

in Cooperation With:

American Association for Artificial Intelligence
Association for Computing Machinery -- SIGART and SIGMOD
IEEE Computer Society -- 1. C. on Data Base Engineering

Conference Objectives

The international Conference on Expert Database Systems has established itself as a

leading edge forum that explores the theoretical and practical issues in making database
systems more intelligent and supportive of Artificial Intelligence (Al) applications. Expert
Database Systems represent the confluence of R&D activities in Artificial intelligence,
Database Management, Logic, information Retrieval, and Fuzzy Systems Theory. It is

precisely this synergism among disciplines which makes the Conference both stimulating
and unique.

Topics of interest

The Program Committee invites original theoretical and application papers (of approximately
5000 words) addressing (but not limited to) the following areas:

Theory of Knowledge Bases (including knowledge representation, knowledge models,
knowledge indexing and transformation, knowledge servers, and formal semantics of

knowledge/data bases).

Object-Oriented Systems (including object-oriented data models, query languages,
transaction management, version control, and modeling applications for enterprises, CAD/
CAM, VLSI. material properties databases, knowledge-based software engineering
environments. etc.).

Reasoning on Knowledge/Data Bases (including reasoning under uncertainty,
sensor fusion, non-monotonic reasoning, analogical reasoning, deductive databases, logic-
based query languages, semantic query optimization and constraint-directed reasoning).

Knowledge Management (including methodologies for knowledge acquisition, the
knowledge engineering process, constraint and rule management, knowledge-based
requirements gathering and specification, and knowledge administration).

DIstributed Knowledge/Data Bases (including loosely- and tightly-coupled
architectures, intelligent query decomposition and processing, federated architectures,
distributed problem-solving, and blackboard techniques for distributed control).

Intelligent Database Interfaces (including expert system -- database
communication, knowledge gateways, knowledgeable user agents and browsers).
Natural Language InteractIon (including question-answering, extended responses,
cooperative behavior, explanation and justification).

Piease send five copies of papers by October 14, 1987 to

Professor Larry Kerschberg
Dept. of Information Systems and Systems Eng.
George Mason University
4400 University Drive

Fairfax, Virginia 22030, USA

Important Dates

Submission Deadline: October 14, 1987

Acceptance Notification: December 15, 1987

Camera-Ready Version: February 1, 1988

Conference Dates: April 25-27, 1988

-(1



THE CONFERENCE

PRELIMINARY PROGRAM

International Conference on Data and Knowledge
Systems for Engineering and Manufacturing

October 19-20, 1987

The Hartford Graduate Center

Hartford, Connecticut

This conference will bring together leading researchers and practicing
engineers for an intensive series of presentations and discussions on sys

tems, methods, and techniques for improving the productivity of manufactur

ing and engineering processes. It will provide a forum for interactions

between university researchers and design and manufacturing engineers on

intelligent data and knowledge systems for manufacturing automation. It

will also offer an opportunity for the discussion and promotion of research

and development cooperacions in manufacturing automation between univer

sities, industries, and government agencies.

CONFERENCE PROGRAM

The conference program includes paper sessions, panel discussions, and

plenary sessions. Paper sessions address:

• Distributed Architectures for Manufacturing and Engineering

• Data Objects and Models

• Case Studies

• CAD/CAM Databases

• Expert and Knowledge-based Systems

• Intelligent User Interface Systems

Panel sessions include:

• The DOD Engineering Information Systems; Chair: Robert Winner, Insti

tute for Deftnrc Analyser

• Heterogeneous Database Support for Manufacturing and Engineering;
Chair: Sandra Heiler, Compiaer Corporation of America

• Joint R&D Between Government, Industry, and University; Chair:

Howard Bloo,n, National Bureau of Standards

The plenaiy sessions include the keynote address and an invited speaker.

Keynote Address:

Michael J. Worny, National Science Foundation

Invited Speaker~
Robert Booth, General Motors

ORGANIZATION

The conference will be held at the Hartford Graduate Center, 275 Windsor

Street, Hartford, Connecticut. The conference hotel is the Holiday Inn,
Hartford - Downto~i, 50 Morgan Street, Hartford Connecticut, (203) 549-

2400. Reservations should be made by September 30, 1987.

For a copy of the Advance Program contact:

David L Spooner
Competer Science Deparunent
Rensselaer Polytechnic Institute

Troy, New York 12180

Phone: (518) 276-6890

STEERING COMMTITEE

Fred Maryanski, Conference Otairman

T. C. Ting, Program Osainnan

Tim Martyn, Local Arrangements
David Spooner, Publicity
Dong-Guk Shin, Registration and Treasurer

Peter Luh, Speakers

PROGRAM COMMITFEE

David Anderson

Howard Bloom

Frank Manola

Stefano Ceri

Edith Martin

T. C. Chen
George Nagy
Nicholas

J. D. Domg
Roussopoulos

Jack Smith
Richard Garrett

Tadao Ichikawa
StonebyaJcer

James Jordan
Stanley

Erlang Jungert
Weber

Gio

Tok Wang Ling
Wiederhold

Robert
Vincet Lurn

Winner

Stanley Zdonik

SPONSORED BY

The University of Connecticut

The Hartford Graduate Center

Rensselaer Polytechnic Institute

National Science Foundation (requested)
Institute for Defense Analyses

IN COOPERATION WITH

SIGMOD, ACM
IEEE Competer Society

ThE COMPUTER SOCiETY
oc mi iut

-62-



~ ~

i~i ‘vi A~, ~

Ii
.~l

A~ ~

~~

COMMITTEE

Steering Committee:

C. V. Ramamoorthy, University of California.
Berxetey

P Bruce Berra. Syracuse University
Gio Wiederhold, Stanford University

General Chairperson:
Benjamin W. Wah. University of Illinois

Program Chairperson:
John Carlis. University of Minnesota

Program Co-Chairpersons:
Taaeo ichtkawa, Hiroshima University. Japan
Sushii Jaiodia. Naval Research Laboratory
Iris Karreny, Rand Corporation
Roger <ing. University of Colorado
Witcid Ltwin, INRIA. Le Chesmay. France
Z Mersi Ozsoyoglu, Case Western University
Joseon Urban, University of S W Louisiana

Tutorials:

Amrt P Sheth, Honeywell Corporation

Industrial and Inter-Society Coordinator:

Dice Shuey, Consultant

2330 Rosendale Rd., Schenectady, NY 12309

Awards:

K H K:m. University of California, Irvine

Publicity:
Jie-Ycng Juang, Northwestern University

International Coordination:

G. Scrvageter, Fern Universitat. Hagen. FRG

Treasurers:

Kate Baumgartner, University of Illinois
Aldo Cast~ilo, Cray Research

Local Arrangements:
Waiter Bond. SOC

Homioeh Afsarmanesh, Cal State.

Dominquez Hills

Committee Members (Tentative):

Moran Ahuia Robert Korthage Krithi Ramamrrthan
A K Artr~ Tosiyasu L Kunu David Reiner
J L Bee- Winfned Lamersdorf Gruia-Cataiin Roman
Farcur- B Bastani James A Larson Domenico Sacca
Don E~cry Matt LaSaine Govanni Maria Sacco
Kate Baumgartner
G Be ~:rc

W-H Francis Leung
Guc-Jie Li

Vkram Saletcre

Sharon Saiveter
Sharet Bhargava Victor 0 K Li Phtilip Sheu
Ricr.ar-~ Eraegger
C Rcoer~ Carison

Yao-Nan Lien

Leszek Litten
Edgar Sibley
John F Sowa

Nice Ce’ccne Witold Litwin David Spooner
Davio :,i Jane WS Liu David Stempie
Earr E:kund Ming T (Mikel Liu M Stanebraker
Ramez E~-Masri

Dorrerico Ferrari

Raymond A. Liuzzi

Vincent Lum
Stanley Su

Deity Taiima
Hec~r Garcia-Molina Yuen-Wah Eva Ma Marione Temoieton
Geor-es cardarin Mamoru Maekawa A M. Tioa
Rooe’- Geroer Sal March Mas Tsuchiya
Saxt F ~hosh Gordon McCalIa Yosihisa Udogawa
Geor~ 3ott:ob J. Eliot Moss Susan 0. Urban

Lee -c,iaar Tadeo Murata Patrick Valduriez

Yang.Chang Hong Philip M. Neches Yann Viemont
Dava K rtsiao Erich J Neuhold Kyu-Young Whang
H sr.Kawa 0. M. Nipssen Chao-Chih Yang
Hemant K Jan Die Qren S Bing Yao

Won <rn Guitekin Ozsoyogiu Ciement Yu

Dan ‘Kogan C Parent

Waiter <crier J F. Paris

SCOPE
Data Engineering is concerned with the semantics and structuring of data in Information

system design. development, management. and Use. It encompasses both traditional appli
cations and issues, and emerging ones. The purpose of this conference is to provide a

forum for the sharing of practical experiences and research advances from an engineering
point of view among those interested in automated data and knowledge management. Our
expectation is that this sharing will enable future information systems to be more efficient
and effective, and future research to be more relevant and timely.
We are particularly soliciting industrial contributions and participation. We know ;t is vital
that there be a dialogue between practitioners and researchers. We look forward to reports
of experiments, evaluations, and problems in information system design and implementa
tion. Such reports will be processed, scheduled, and published in a distinct track.

TOPICS OF INTEREST
We invite you to submit papers on topics including but not limited to these:

Applications Expert systems
Autonomous, distributed systems Architectures for database and

Data engineering tools knowledgebase systems
Data management methodologies Logical and physical database design
Data security and integrity Performance evaluation

Design of knowledge-based systems Statistical databases

Distribution of data and knowledge

PAPER SUBMISSIONS
Each paper’s length should be limited to 8 proceedings pages. which is about 5000 words.
or 25 double-spaced typed pages. Four copies of completed papers should be mailed before
June 15, 1987 to:

John V. Carlis, Computer Science Department, University of Minnesota,
207 Church Street SE. Minneapolis, MN 55455. (612) 625-6092; carlis ~umn-cs.

TUTORIALS
The days before and after the conference will be devoted to tutorials. Proposals for
tutorials on Data Engineering topics, especially advanced topics. are welcome.
Send proposals by June 15, 1987 to:

Amit P. Sheth, Honeywell Computer Sciences Center, 1000 Boone Avenue North,
Golden Valley, MN 55427, (612) 541-6899.

CONFERENCE TIMETABLE AND INFORMATION:

Papers due: June 15, 1987

Tutorial proposals due June 15, 1987

Acceptance letters sent: September 15. 1987

Camera-ready copy due: November 15, 1987
Tutorials: February 1 and 5. 1988
Conference’ February 2-4, 1988

For further information contact the General Chairperson: Benjamin W. Wah,
Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801.
(217) 333-3516; wah%uicsld @uiuc.arpa.

AWARDS, STUDENT PAPERS AND

SUBSEQUENT PUBLICATION
Awards will be given to the best paper and to the best student paper (denoted as such
when submitted and authored solely by students). The latter will receive the K. S. Fu award.

honoring one of the early supporters of the conference. Up to three grants of $500 each to

help defray travel costs of student authors. Outstanding papers will be considered for publi
cation in the IEEE Computer Society publications: Computer. Expert, Software. and Trans
actions on Software Engineering. For more information contact the general chairman.

EPILOG
Several hundred people have been involved in the data engineering conferences as Commit

tee members, reviewers, authors, and attendees. We have benefited by being involved, and

extend an invitation to you to participate.

THE COMPUTER SOCIETY
‘~~CF THE IEEE + THE INSTITUTE CF ELECTRICAL

AND ELECTRONICS ENG!NEERS, INC.

.1
I.: ~.‘

—.

I.,

-63-
IEEE



IEEE COMPUTER SOCIETY

IEEE COMPUTER SOCIETY

TECHNICAL COMMITTEE APPLICATION

d3TRUCT1ONS: PLEASE PRINT IN INK QP YP ONE CHARACTER PER BOX INFORMATION WRIrTEN OUTSIDE OF BOXES
WIU NOT BE RECORDED) BECAUSE OF PACKAGE DELIVERY SERVICES, STREET ADDRESSES ARE PRE
FERRED RAThER THAN. Q19 IN ADDITION TO POST OFFICE BOX MJUBERS INTERNATIONAL MEMBERS ARE
REQUESTED TO MAXF REST USE OF AVAILAL1LE SPACE FOP tONG ADDRESSES

___

1111117 ~~~UIT~ rn JTh
IAST NA&~ F~T Ma.~ eella& ~~WS~s.5.ssv~ ETC

I I I II liii IL! III Ii~ IIHHII I HI
cTa~a.ihn ‘~FRS1T5 OG(NCC ~IAM(

~Lfl!l]1]111 Il 111111 m LU 111111
CIrr STATE 7W COO(

O€~ARrUEN1~&A& 5TOP~UlLD~V 0 ACE nPARTI~NT ETC

~]iJ lilt]! iii 1111111111 Li Lii!!! liii! Li
~Jr~rnn cWFCE Pi~ i-0s Pi4~4 ic~~wi

LU~’ff~ LU 11111111 II LU LI 111111 III liii!!! I Ill
F LECT~5A MAR raET~ ELECT~ MAE AOO~SS(Mbo~)

~TI 111111111 iii 1~ ~
Ttif 0 raUA~EA I~wiAi *EEMFM&RAFFItIATt F~ Cr5 ,~

DEFiNITiONS:

TC MEMBER—Actively participates Ft 1C aclivilies. receives newsletters and all TC communIcations ActIve

partIcipation means that you do or are wilIng to cia somethIng for the TC such as review papers, help organize

workshops, conferences. etc
-
particIpate In standards development, help with TC operations, etc Person cart be a

rniember In up to 4 TCs

TC CORRESPONDENT—Does not particIpate actively n TC activItIes, receIves newsletters and other IC comnmnu-.

rricatlorts Person cart be a correspondent ItT up to 4 more TCs

Technical Interests/Specialties:

TECHNICAL COMMITTEE CODES TC Codea

Corrrputatronal Medicwe (01)

Computer Architecture (02)

Computer Communications (03)

Computer Elements (04)

Computer Graphics (05)

Computer Languages (06)

Computer Packaging (07)

Computers in Education (08)

Computing and the Handicapped (09)

Data Base Engineering (tO)

Design Automation It

Distributed Processing (t 2)

Fault-Tolerant Computing (13)

Mass Storage Systems & Technology It 4)

Mathematical Foundations of Computing (15)

Microprocessors & Microcorrrouters (16)

Microprogramrning (t 7)

Multiple-Valued Logic (t8)

Oceanic Engineering & Technology ItS)

Office Automation (20)

Operating Syslems (21)

Optical Processing (22)

Pattern Analysis & Machine Intelligence (23)

Personal Computing (24)

Real Time Systems (25)

Robotics (26)

Security and Privacy (27)

Simulation (28)

Software Engineering (29)

Test Technology (30)

VLSI (3t)

Computer and Display Ergonomics (321

Supercomputing Appticatlons (331

please return this form to the following address IEEE COMPUTER SOCIETY

t730 Massachusetts Ave NW

WashIngton DC 20036-1903

1JiIi!l!liliIi11IlIi!llIIIir~mmmCHECKONE
sTAll r apOAfsS icw POST ~FCE ACR I~TH Den YEAR

_________________________
_______

__________________

0 NEW APPLICATION

_______________________

0 INFORMATION UPDATE

PLEASE INDICATE YOUR TC ACTIvIrY

INTERESTS

5 4 3 2 j

HIGH INTEREST NO INTEREST

Other (Specify):

01

02

03

04

OS

06

07

08

09

To

11

12

13

14

15

16

17

18

19

20

2t

22

23

24

25

26

27

28

29

30

31

32

33

We look forward to having you with IS’






	40979_DataEngineering_Sept1987_Vol10_No3.pdf

