
MARCH 1987 VOL.10 NO. 1

a quarterly bulletin of the

Computer Society of the IEEE

technical committee on

Database
eeri

CONTENTS

Letter from the Editor 1

WKim

Model Based Approach to IPSE Architecture and Design 2

M. Lehman

A Short History of the Gandaif Project 14

A. Habermann

Information Management Challenges in the Software Design Process 24

T. Biggerstaff, C. Ellis, F. Halasz, C. Kellogg, C. Richter, D. Webster

The SIGMA Project and Database Issues 32

N. Akima

DAMOKLES—The Database System for the UNIBASE Software Engineering
Environment 37

K. Dittrich, W. Gotthard, P. Lockemann

Database Issues in Software Requirements Development 48

T. Welch, M. Konrad

Nepture: A Hypertext System for Software Development Environments 54

N. Delisle, M. Schwartz

Calls for Papers 60

SPECIAL ISSUE ON INTEGRATED SOFTWARE ENGINEERING

SYSTEMS AND DATABASE REQUIREMENTS

Editor-in-Chief, Database Engineering

Dr. Won Kim

MCC

3500 West Balcones Center Drive

Austin, TX 78759

(512) 338-3439

Associate Editors, Database Engineering

Dr. Haran Boral

MCC

3500 West Balcones Center Drive

Austin, TX 78759

(512) 338-3469

Prof Michael Carey
Computer Sciences Department
University of Wisconsin

Madison, WI 53706

(608) 262-2252

Dr. C. Mohan

IBM Almaden Research Center

650 Harry Road

San Jose, CA 95 120-6099

(408) 927-1733

Dr. Sunil Sarin

Computer Corporation of America

4 Cambridge Center

Cambridge, MA 02142

(617) 492-8860

Prof. Yannis Vassiliou

Graduate School of Business Administration

New York University
90 Trinity Place

New York, NY

(212) 598-7536

Database Engineering Bulletin is a quarterly publication of

the IEEE Computer Society Technical Committee on Database

Engineering. Its scope of interest includes: data structures

and models, access strategies, access control techniques,

database architecture, database machines, intelligent front

ends, mass storage for very large databases, distributed

database systems and techniques, database software design
and implementation, database utilities, database security
and related areas.

Contribution to the Bulletin is hereby solicited. News items,

letters, technical papers, book reviews, meeting previews.

summaries, case studies, etc., should be sent to the Editor.

All letters to the Editor will be considered for publication
unless accompanied by a request to the contrary. Technical

papers are unrefereed.

Opinions expressed in contributions are those of the indi

vidual author rather than the official position of the TC on

Database Engineering, the IEEE Computer Society, or orga

nizations with which the author may be affiliated.

Chairperson, TC

Dr. Sushil Jajodia
Naval Research Lab.

Washington, D.C. 20375-5000

(202) 767-3596

Vice Chairperson, TC

Prof. Arthur Keller

Dept. of Computer Sciences

University of Texas

Austin, TX 78712-1188

(512)471-7316

Treasurer, TC

Prof. Leszek Lilien

Dept. of Electrical Engineering
and Computer Science

University of Illinois

Chicago, IL 60680

(312) 996-0827

Secretary, TC

Dr. Richard L. Shuey
2338 Rosendale Rd.

Schenectady, NY 12309

(518) 374-5684

Memoership in the Database Engineering Technical Com

mittee is open to individuals who demonstrate willingness to

actively participate in the various activities of the TC. A

member of the IEEE Computer Society may join the TC as a

full member. A non-member of the Computer Society may

join as a participating member, with approval from at least

one officer of the TC. Both full members and participating
members of the TC are entitled to receive the quarterly
bulletin of the TC free of charge, until further notice.

Letter from the Editor

This issue is on Integrated Software Engineering Systems and Database Requirements. The increasing

complexity in software systems and increasing cost in developing and maintaining them have moti

vated a number of major research and development projects, both in the industrial research laborato

ries and the universities, to find ways to significantly enhance software development productivity and

quality of software. One approach is to develop a system which will integrate software engineering

tools under a friendly user interface and around a shared database of software components, informa

tion about them, and knowledge about software design process. In an attempt to foster a better

understanding of the role of a database system in such an integrated software engineering environ

ment, I invited a fairly diverse mix of papers for this issue. Three (Lehman, Akirna, and Dittrich, et at)

of the seven papers included are from outside of the United States; five (Lehman, Akima, Biggerstaff,

et at, Welch and Konrad, and Delisle and Schwartz) provide industrial perspectives; four papers (Leh

man, Habermann, Dittrich, et at, and Deliste and Schwartz) discuss operational systems; and five

(Akima, Biggerstaff, et at, Dittrich, et at, Welch and Konrad, and Delisle and Schwartz) attempt to

bring out database requirements in software engineering environments.

I would like to thank the authors who contributed their valuable time to this issue. I enjoyed working

with them. I hope the readers will find this issue informative and stimulating.

Mike Carey is presently organizing the June issue on extensible database systems. Sunil Sarin will edit

the September issue on federated database systems. C. Mohan is tentatively scheduled to do the

December issue on bridging database theory and practice.

Z~
Won Kim

Editor—in—Chief

March, 1987

MODEL BASED APPROACH TO IPSE ARCHITECTURE AND DESIGN

- The 1ST ISTAR Project as an Instantiation -

MM Lehman

Department of Computing
Imperial College of Science and Technology

London SW7 2BZ

1 Introduction - The Nature of Software

Software (by definition) contains no physical components. A program is constructed exclusively of

linguistic elements, character strings, words, phrases, sentences, graphical elements, expressed in

some formal or natural language. These are associated to produce representations that model concepts
and properties of the problem to be solved by a computer system, of the domains or environments in

which the problem and its solution are defined and of the solution which is to be implemented and

used. Even where an end product takes a physical form such as a VLSi chip, its functional properties
will have been defined by a formal text (program).

Since all that is being produced during the development of software is purely linguistic the

development process is also non-physical. Definition, design, realization and continuing adaptation of

a computing application and of the system that implements it is obtained by a sequence of

interpretation, manipulation and transformation steps applied to a textual representation to refine it

WIR71]. The process starts with initial verbalization of an abstract (mental) concept and proceeds
down to the production of executable code and its documentation.

Because of the non-physical nature of software, the software development process and its products are

not disciplined, limited or controlled by natural laws or physical constraints. As a multi-person activity
extensive in time, discipline must be applied to that process if chaos is to be avoided. On-time delivery
of products accurately and reliably satisfying the needs for which the process was undertaken can only
be achieved through precise representation of appropriate concepts and their rigorous application.
Linguistic and process constraints replace the controlling factors that dominate other design and

development processes. It is, therefore, vital for concepts, languages, methods and procedures used in

software development to be precisely formulated and specified. If this is not done the process and its

products will continue to suffer all of the problems that have plagued them for the last three decades.

The dominant role of evolution in software and systems development must also be accepted LEH8SJ.
Evolution arises from a variety of related and interlinked factors {LEH86b]. It is experienced as

iteration and backtracking in the development process and as release sequences of its products. Control

and direction of resultant pressures for change is a key concern of software technology. Mastery of the

evolution phenomenon is crucial to management of each stage of the software development proces.
Process management must be viewed as the direction and control of change.

Evolution is not, primarily, a consequence of ignorance, incompetence, sloppy thinking or incomplete
planning. It is intrinsic to the very being of computing applications and, therefore, software. Defming,
developing, installing and using a computerised application clarifies the need, the problems and means

for their solution. All these activities raise the sights and ambitions of both users and implementers.
Installation and exploitation also changes the application domain and, therefore, both the application
and perception of it. And coupling between user and system is tight. Inadequacies, imperfections,
mismatches with a changing environment are all personally experienced and rapidly become

intolerable. Pressure for change mounts and cannot be resisted for long, particularly in the face of ever

present competition. System attributes, its components and the overall system all evolve.

As mankind places ever more reliance on computers, incorrect, unreliable or unavailable software will

represent an increasing threat to society. Improvement of the software development process SPW84,
86, 87, LEH87c], significant advances in its reliability and timeliness, must be accepted as an urgent
societal priority. The facts summarised above typify the environment within and for which the

technology must be advanced. It is these perceptions and facts that underlie much of the current work

2

in formal software d~velopment methods J0N86, MA187], in data modelling, in studies of the

software development process as above], in software evolution LEH85] and in the development of

Integrated Project Support Environments (IPSEs) and their tools STE85, LEH85b, 87, PDS87].

As observed above, disciplining the products of software systems development and evolution requires
a substitute for the natural laws and physical constraints that operate in other engineering fields.

Through their semantics and grammatical rules natural languages provide a limited degree of control.

Unfortunately, and as so succinctly expressed by Koestler*, their use also limits creativity. Moreover,
the meaning of natural language representations in the developing system will be obscured by the use

of primitives that convey meaning by association, hidden persuaders. in Koestler’s words.

Furthermore, natural language is neither precise nor unambiguous but both are vital to success of the

development process. Finally, the basic operation of transformation by which progress is achieved

must also be precise and correct. It should be calculable, not based on human interpretation and

manipulation. The use of formal languages, whose primitives are logical rather than phenomonological
and with operations that are precisely defined, largely solves all these problems.

Formalisation is, however, not sufficient LEH87b]. Humans play an essential, creative, role in

software development. In general, development can only be achieved through the creative activity and

collaboration of many people over a long period. In this they continuously require full and ready
access to information involved in earlier activity. It is, therefore, necessary to capture and make

available full records of all information and data involved in the development process. Furthermore,
the process by which process steps are defined, sequenced and executed, the management of human

and other resources, controlled association and integration of the components developed over the

lifetime of the product in its many instantiations, are also crucial to success. Process design and

control is essential to achieve quality products since the quality of these will be no better than that of

the process producing them. Thus there emerges the concept of process models LEH84, 85, SPW84,
86, 87]. These provide the starting point for achievement of the goals of software engineering and

hence to the concept of IPSEs as an encapsulation of advanced systems and software technology.
IPSEs can be the realization and embodiment of software technology and an instrument for its transfer

and introduction into industrial practice LEH86]. Achievement, depends heavily on their design.

In what has been said above software has not been defined. The relevance of the observations is not

confmed to code. It applies equally to problem and requirements statements, specifications, databases,
documentation etc. All contain information vital to the success of the application over its lifetime. All

must be unambiguous, precise and correct. All must be preserved to be readily accessible in all their

variations and versions if satisfactory system development, build and evolution is to be achieved and

maintained. The crucial property of a software system is its dynamic correctness as the world changes.

The remainder of this paper concentrates on discussion of the development process, on relevant

models and on IPSE architectural concepts. The 1ST ISTAR environment, developed at Imperial
Software Technology Ltd (1ST) in collaboration with British Telecom (BT), is used as a vehicle for the

discussion. This system is particularly appropriate as the basis for such a discussion. Its design
concepts were directly derived from a specific view of the programming process LEH84]. The

process model that resulted from this collaboration provided the initial conceptual basis and framework

for ISTAR.

2 ISTAR Design Goals

The principal goals of the ISTAR project would appear to apply equally to almost all IPSE

development. They included the provision of full support for software development teams rather than

* The prejudices and impurities which have become incorporated into the verbal concepts of a given ‘universe of
discourse’ cannot be undone by any amount of discourse within theframe of reference of that universe. The rules of
the game, however absurd, cannot be altered by playing that game. Among ailforms of menlation, verbal thinking is

the most articulate, the most complex, and the most vulnerable to infectious diseases. It is liable to absorb whispered

suggestions. and to incorporate them as hidden persuaders into the code. Language can become a screen which stands

between the thinker and reality. This is the reason why true creativity often starts where language ends’ KOE64].

3

just for individual programmers; such teams being, in general, distributed over distinct geographical or

organisational entities. Hence the target system, and in particular its databases, should be distributable.

Moreover, support had to be effective over the full life cycle of each product or, more strictly, of each
application. Since equipment must inevitably differ between locations and over time, the IPSE had also

to be simple to port. Moreover, to ease transition to new development processes and to conserve

resources, the target system should exploit existing methods and tools wherever reasonable.

More generally, since IPSE development must inevitably be costly, the resultant system should be

suitable for use by a wide variety of users to reduce individual usage costs. Even if initially tailored to

current or anticipated needs and desires of a specific client an IPSE should be readily adaptable to

incorporate methods and tools of interest to other groups or organisations. Moreover, software

technology is advancing rapidly and there is no universal or best method. Any process or environment

locked into one particular development method or into the state of the art at some specific time would

rapidly become obsolete. At the very least, new methods and tools relevant to the interests and

activities of potential users must be integratable as they become recognised and available. Finally,
organisations and their workforce cannot change their way of working or adopt new methods or tools

overnight. An IPSE, when first installed, should make possible the continued use of existing methods

and tools, with new ones introduced as the workforce is trained in their use. An IPSE should,
therefore, be flexible and evolvable accommodating, at any one time, a range of approaches and

methods; the design and construction must be open ended so that both process and IPSE evolution will

be feasible as technology advances and as resources become available.

3 The Process of IPSE Development

An PSE must provide support over the entire life-span of an application in a coherent and integrated
fashion, not just for initial development. Moreover, programming, however broadly defined, is only
one of many activities needed for the creation, maintenance and continuing evolution of a software
based product. Specification and design of a software product; algorithm selection (technical
development); planning, control and evaluation (system management); data capture, storage and

retrieval; component and system build management; work planning; resource management; all are

important activities. They are all intrinsically related and interdependant. When concern with an artifact

ranges over its entire lifetime it is the retained process information that links different activities.

An adequate but parsimonious process model involving a minimum number of concepts and

paradigms is key to achieving integration. It must also be complete, spanning technical and

management activities. This model must be complementedby a project model STE85] which defines

organisational and activity structure for the management and conduct of the process. In the case of

ISTAR, the contractual (section 5) and process (section 4) models played a semenal role in the design.

Where the specification and design of an IPSE is developed from specific models, the system that

results cannot be neutral with respect to processes and project organisations supported. Conversely, it

is always beneficial for an IPSE end-user to adopt an approach compatible with process and project
concepts that have influenced its design. Given sufficiently general underlying models, effective IPSE

exploitation should be achievable in most circumstances. Nevertheless, the need to provide lifetime

support will inevitably lead to an IPSE that is process sensitive. Anyone expecting to use an integrated
environment effectively while following an ad hoc operational process is bound to be disappointed.

Models providing the basis of an IPSE architecture and design may, in turn, be used to guide selection

or development of methods to be supported for use during the various stages of system development.
Existing methods should be adopted whenever possible, by adaptation if need be. In the absence of

already available methods one may have to support new development whilst temporarily using ad hoc

approaches to the satisfaction of immediate needs.

Once process and project models have been defined and methods selected, one may develop relevant

data models. Such models must reflect the structure of process and product information; the nature of

specifications and constraints defining project goals and product properties; information flow;

projected relationships between components and between activities; accountability during process
execution and in the project organisation; the need for management data and so on.

4

Identification of (classes of) methods and associated data models, in turn, facilitates definition of tool

attributes and the specification of tools, technical and management, to achieve them. Interplay between
the emerging data models and tool set will provide information for their refinement. The full set of
models may then be applied to guide the development of a framework IPSE subsystem that will

eventually house selected tools and tie them into an integrated whole. This subsystem will normally
include global process facilities such as an information repository and database, interconnection and

communication facilities, work station control, tool building and packaging tools and so on. The

approach to IPSE development described is illustrated by figure 1.

I, ~
JOFTW2Z T~I~GT1~

Figure 1 The IPSE Development Process

4 The Process of Program Development

4.1 Program Development

The term Software Development is generally interpreted as referring to creation of a program that

realises a new application. In fact, it should include adaptation of an existing program; activities arising
from changes in the operational environment, changed perceptions of that environment, revised

objectives, new technology. There is no need to differentiate between these various situations. Indeed

there is every reason to treat them as variations on a common theme; the further development of a
program or systemfrom its current state (which may be empty) to a new state.

At a high level of abstraction, the process whereby this is achieved may be described as the

transformation of an application concept into an operational system or of a change to an existing
concept into a change to an existing system. The transformation cannot, in general, be attained in a

single step. It is achieved as a sequence of transformations, the many steps yielding representations
R1, R~, ... R~, ...

TS. These span the space from initial verbalization of the application concept, AC,
to realization, TS, of the target system.

5

4.2 The Program Step

In the classical process model, the waterfall for example B0E76], individual steps are seen as very

specific. They are normally referred too descriptively by terms such as spec~fication, coding, testing
and so on. Unfortunately, this model is not consistent with the needs of process integration,
coherence, evolution and so on. Nor will it permit development of the global, parsimonious, models

that scientifically based technology demands.

One such model has been described in detail elsewhere {LEH84]. It is based on the observation that

despite the fact that languages and methods used for step activities at different stages will vary, they
satisfy a common paradigm expressed in terms of a base language, a representation in that language, a

target language, a transformation-derived representation in the target language and obligations of

verification and validation. The paradigm also includes provision for decomposition through
partitioning of a base representation and for the recursive introduction of intermediate steps. In the

canonical step as discussed in the source reference, defmition (selection) of the target linguistic system
is the creative act in each step. This is the decision that sets the direction and degree of refmement

desired in that step. Its creation permits derivation of the relationship between base and target
languages. Other forms of creativity can, however, also be visualized.

This paradigm addresses only what is to be achieved, not how. At the highest level of abstraction the

objective of each step is refinement, progressing the dual processes of abstraction from the application
universe and reification to the system universe. It applies equally to early stages of concept
development which might well be conducted in non-formal linguistic systems and to design, that is

stages which should be formalised. Conceptually the paradigm implies a top down analytic approach.
At each and every step the process (as distinct from system) designer will be able to identify methods

and tools that best fit the specified technical and managerial objectives and constraints. He must only
be certain how to fit them into the overall process. The model does not restrict the selection of available

methods and tools. It merely guides that selection.

4.3 Verification

Execution of each transformation step includes an obligation for verification. This must demonstrate

that the target representation is self-consistent and a consequence of the base representation, logical
and extra-logical axioms in the base language, the specified inference rules and the derived relationship
between base and target languages. Verification is automatically achieved when a verified compiler or

other transformation mechanism is used. Alternatively, a sub-step may have been created using the

approaches of constructive correctness. Or a correctness proof may have been generated, perhaps
using a theorem prover. Whatever the approach, the adoption of formal development methods will

simplify the provision of associated verification techniques and tools to support them.

4.4 Validation

Validation is not, in general, a precise, calculable act like verification but involves judgement. It seeks

to confirm that the intent of the original application concept has been correctly interpreted and

preserved during the development process. This judgement will, of course, be made in the light of

improved understanding gained while following that process. Beauty lies in the eyes of the beholder.

His judgement at any stage must include a view of the eventual properties of the operational system.
He will attempt to satisfy himself that, as far as can be determined from current perspectives, the target

system when reached will satisfy the need of the application at the time when the program is invoked.

Such judgement should be made at each step in terms of current observations and knowledge of the

further process. It will seek to demonstrate that, in terms of the linguistic level in which it is

expressed, the derived representation displays or reflects the desired properties of the operational
system. It must also search for implied undesirable properties of the final system. Finally, the

representation should be shown to represent progress towards achievement of the target system; it

must be suitable as a base representation for further development. Such validation may be based on a

comparison of the representation with an image in the validator’s mind. Alternatively, the image may
be explicitly represented in some more understandable form. However represented, the image is a

projection, a viewpoint, a domain sub-model of the application concept.

6

Semantic properties of the representation being validated must be evident to those involved in the

validation process. To obtain maximum benefit from validation it may be necessary to recast the

current representation into a form in which interpretation is simplified. Great care must, however, be

exercised that such interpretation neither adds nor removes properties. Disciplined methods and tools

to support this and other aspects of validation at each process step are most desirable BAR84].

Validation can be interpreted in two ways. One may regard it as a semantic interpretation of the current

representation compared mentally with and judged against one’s expectations of and from the target
system. If the representation is executable one may be able to base this judgement, in part at least, on
the results of execution BAR84] treating it as a prototype. In addition, when the representation is

formal, the systematic application of, for example, theorem proving techniques allows one to examine

consequences of the representations to ensure that such consequences correspond to or imply desired

system properties. Equally, one will wish to ensure that there are no undesirable consequences. In

practice one can, of course, only state that no undesirable properties have been founcL

An apparently alternative view sees the intent of the original application concept expressed in some

domain model. For each process step the current representation must be compared with appropriate
portions of the domain model. One must seek correspondence, in some sense, between interpretations
of the representation and documented expectations, the domain sub-model. That is, validation seeks to

assess the relation of the developing system to some preconceived expression of the objective.
Consider, for example, a well defined problem where the properties of a solution have been be

precisely documented, an earlier program, for example. Being precise, however, the domain model

represents R1. The situation reverts to that of the previous viewpoint with the concept of a domain

model reducing to an image in the human mind. This may be important in the process but lies outside

the reach of the software engineer.

In summary, validation has two aspects. Behavioural validation establishes that each representation is

acceptable as a satisfactory model of the application concept in its operational domain and that a target
system developed from it is likely to present satisfactory attributes and behaviour. Process Validation

must demonstrate that the current representation represents progress towards achieving the goal TS. It

constitutes a useful base from which the development and refmement process can proceed.

4.5 Backtracking

From time to time the results of verification or validation procedures will indicate that an error has been

made or a less than fully satisfactory result achieved. Perception or expression of the problem, of

methods for its solution, of assumptions or of relationships may have been incorrect. Alternatively,
they may have been incomplete or unwise. An error may have been made in transformation. Whatever

the cause, it becomes necessary to backtrack, at least, to that representation in which the error or

omission occurred, perhaps to the linguistic level at which related notions can first be expressed. The

appropriate changes or additions must then be made where appropriate and propagated forward. The

target representation is achieved by iteration around the transformation path.

4.6 Overall Process Structure

As a consequence of backtracking one obtains a new sequence of representations. The linear sequence
of representations implied in the foregoing discussion is, in reality, multi-dimensional. Each act of

decomposition, for example, initiates a new sequence. Each backtracking path overlays an earlier

sequence. The information repository that must retain process-generated information will have to

preserve all generated and accepted representations once they have been released from control by an

individual participant. When variation and evolution is fully taken into account, the conceptually
simple model and its implementation in a database becomes a complex structure. This fact points
clearly to the need for automated configuration control. This must control storage, association and

selection of information and representations for future reference.

4.7 Feedback Driven Evolution

Once the target system representation is attained and accepted, it can be installed and made operational.
With that it becomes an integral part of the application environment, a part of the application.

7

Installation and operation physically changes the application domain. However well the impact of

operation may have .been foreseen, feedback via intelligent human operators, users and so on will

make that foresight less than perfect. Operational experience will inevitably change the users’

understanding of the problem. Hence it modifies their expectation of system properties. Equally, users

will become frustrated with newly perceived inadequacies of the system. The application concept

changes. Its initial verbalization must be modified or adapted and the development process repeated. In

general, usage feedback is inherent in computer application development. It causes the intrinsic rate of

system evolution to be much more rapid than that of other artificial systems S1M69]. As observed

above programs must undergo continuing evolution. Else they become ever more unsatisfactory as a

consequence of increasing mismatch with an evolving operational environment.

A more detailed of the development process than has been possible here, and as illustrated in figure 2,
is given elsewhere LEH85c].

AC - Application Concept, D1 - Domain Sub-model, OS - Operational System, R1 - Representation

TS - Target System

Figure 2 The ISTAR Process Model

The total process depicted in the figure involves people. These apply disciplined, preferably formal,
methods which may be supported by tools. The implementation activity is organised as a project. Thus

one must next consider how that project is defined and structured.

5 The Project Model

As observed in section 1, a multi-person effort spread over a period of time consists, by its very

nature, of many sub-activities. The planning, generation, direction and control of such activities,

individually and collectively, constitutes a major technical and managerial challenge whose successful

pursuit may well determine the value of the immediate product and the success of follow on activities.

The preliminary discussion has already recognised the critical nature of project organisation, its

reflection on system structure. The process model must, therefore, be paralleled by a compatible

project model.

)

‘7

I>

8

It is vital to the success of a project that each sub-activity be defined in terms of the nature and

characteristics of its inputs, outputs and operational environment. These must be agreed before related

activity is initiated; as must any changes subsequently. When work is to be undertaken for a client by
an implementer, the agreement must be recorded in some way, enshrined in a contract for example.
More generally one may model a project and its activity as a structured set of contracts. This records,
inter alia, the agreed view of the externally visible consequences and products of individual activities

as well as the relationships and dependencies amongst them. Such agreement must inevitably change
with time, leading to a dynamic structure, a growing family of contracts, conceived, defined, active,

completed, abandoned and so on. That is, the structure will change as attributes of contracts are

modified in response to external changes, operational experience or process experience; as activities

are completed; as new activities are identified, agreed and initiated.

Full information retention is essential to any multi-contract activity, the more so when the product of

that activity is to be long-lived and continuously evolving. It is, in general, necessary to capture,

record, structure and catalogue most, if not all, information generated during development and to store

and update the data that represents that information. Given the contract-based structure envisaged
above, it is natural to organise information retention and the associated data storage on a per contract

basis, with further separation distinguishing between data that is internal and private to the contract and

data that must be selectively available to other project activity.

Effective and reliable communication channels are equally crucial to success in a many person activity.
They play a critical role in the control of tasks, in conveying information required before initiation and

during execution of each task, in the submission of reports on progress in each activity, in the

transmission of textual products of the process, in liaison with the client or end user, in management
of resources and so on. Once again, the individual contract provides a logical base for the location of

communication channel terminals with contract dependencies indicating prime communication links.

In general, organisational structure provides a valuable guide to the appropriate location and

interconnection of support for the above facilities. In any IPSE based on the models presented, the

contract structure determines the relationship between activities, as determined by individual contract

definitions. That same structure largely determines the structure of the information repository, the site

of database elements and the location of formal communication interfaces.

The activity that identifies and specifies the set of contracts that define and control execution of a

project may be a precursor to that project. It is itself, at least notionally, the subject of a contract. The

latter must then include provision for establishing the relationship between contracts, a relationship that

provides strong guidelines for design of the contract hierarchy. It is, however, more likely that the

need for, at least some, contracts is recognised only as the project progresses. Individual contractual

activity may, therefore, include definition, assignment or management of sub-contracts.

The core of any contract is its specification; a specification as precise as can be achieved at the time of

definition. Notice that ‘precise’ does not necessarily mean detailed. In fact the process of programming
should be viewed as a process which elucidates and formally expresses detail by successive refinement

WIR71]. Thus a contract could require the development of detail in a specified context or, for

example, the clarification andlor formalisation of a requirement informally stated as a contract input.
Moreover, the process of validation may reveal errors, weaknesses in or omissions from original
specifications. Specifications will change as the process proceeds, independently of changes induced

by changes in the application or operational environment.

A contract specification shOuld contain, at least, a technical specification, management constraints (on

process and products) and product acceptance criteria. It must also include identification of

deliverables and, in particular, the contract product and any required reports. Once project activity has

started there may be a more general flow of reports into and out of each sub-project. Some of these

will have been anticipated and required, included in the deliverables or the management constraints.

Others will be ad hoc but may nevertheless represent a significant contribution to the contract product.
Finally, as mentioned above, a contract may give rise to other contracts. A contract hierarchy emerges.

As previously observed the active hierarchy will grow and shrink as tasks are initiated or completed.
The associated databases, however, will continuously grow since the information must, in general, be

retained, at least, for the life time of the product for reference during system build and evolution.

9

At any one time, the active hierarchy defines the structure of current activity. A sequence of snapshots
provides the total project history. In ISTAR the hierarchical structures also defme the physical database

structure, formal communication paths, reporting relationships and accountability, instantaneously and

as they change over project life-time. Other database structures can be envisaged, although at the

present time the project-model-related structure appears optimal.

6 The Information Repository (Databases) and IPSE (Project) Communication

In ISTAR, each active contract has and controls its own database. It is the collection of all such bases

(and of the media in which the bases are to be found) that constitutes the project information

repository. Their accumulation over time provides the product database, a multi-dimensional version

preserving structure. By its very nature this database is distributed. It and its underlying facilities were

developed from an earlier ECE (Pilot Esprit) study. As a consequence of flexibility considerations the

first implementation was based on the binary relationship (BR) model, facilitating mechanical

reasoning as well as direct information retrieval. For certain purposes, however, it is appropriate to

build an ERA model on top of BR but tsuch a complex structure can lead to performance problems. A

new, direct, ERA implementation has therefore been developed.

The distributed nature of project definition on a per contract basis provides a logical structure for

communication facilities that can be individually matched to each activity, to the relationship of each to

other activities, to the probable volume and frequency of communication and to the degree of

protection required. The facilities may range from a boy on a bicycle through telecommunication links

to use of shared devices. The nature of the link need not be predetermined by the process and project
designer or visible to the user. It can be changed as required by needs and circumstances.

7 The Role of the Project Model and its Implementation

The ISTAR project model, the Conrractural Model, provides a conceptual basis for IPSE architecture,
its information and data management and project communication. It also provides a framework for the

design and operation of tools in areas such as project management, data management, system and

quality control. Specifically, the model and its reflection in system structure and functional content

provide an environment for support of management responsibilities such as project planning, work

breakdown and allocation, resource distribution and management, activity control. In general, the

project model plays a crucial role in the provision and organisation of tools for management support.

Equally, it provides conceptual and practical mechanisms for information management as required, for

example, for variant and version control, system building and configuration control. Instances of its

exploitation for quality assurance are provided by methods and tools relating to the management and

implementation of work delivery, defect reporting and their analysis, correction and distribution.

Finally it may be observed that integration of third party tools and tool development must also be

supported so that the IPSE may be adapted to different environments and may evolve.

These examples suggest that a project model may have a direct, as well as a conceptual, role in IPSE

development - both for initial architecture and design and for their evolution. The ISTAR experience,
to date, has fully confirmed the benefit to be obtained from explicit adoption of a project model. The

proposed models and structure provides the logical potential and the framework to meet the needs of

each situation. Whether and how this is exploited in use of the IPSE depends on the process and

project designer and its implementers. They, in turn, will be strongly influenced by methods (technical

development and management) supported by the IPSE and by the availability of tools.

9 Methods and Tools

The objective of this paper has been to present the use of models in IPSE development. This has been

illustrated by description of the top down approach to ISTAR development.. Detailed discussion of

ISTAR functional capability, (methods supported, tools provided) is not directly relevant to these

objectives. It is, nevertheless, of interest to outline the next steps of the development process;

functional decomposition of a target-system. Note that the resultant classification is not necessarily of

10

practical value to a user. In the case of ISTAR, for example, a user’s concern will be with the

properties of a Workbench that groups and links the tools he wishes to use at any particular time, not

with their common global functionality. This dichotomy provides an example of the partial
orthogonality (in a multi-dimentional space) of design and usage concerns and structures.

Brief reference has been made in the paper to two functional categories, framework and tool set. The

conceptual placement of certain capabilities is clearly associated with one or other of these categories.
The logic that is used to assign others is less clear. But then does it really matter?

Framework function could include:

• Work Station Control
• Project Communication
• Information Repository and database
• Management Monitoring, Control and Communication
• Tool Packaging and Building Tools
• Utilities

A four class categorisation is appropriate for tools:

• Project Management
• Technical (Product) Development
• Tool Adaptation, Integration and Development
• Information and Data Management

Further detail of the specific methods and procedures supported in ISTAR, of tools included and of the

workbench facility will not be provided here. To include them would not further clarify the approach.
It would merely divert the readers’ attention from the wider perspective presented and from future

trends. It is, however, of interest that the enveloping facility that permits the ready integration of third

party tools has proved to be one of ISTAR’s most important facilities.

10 Conclusion

The notions presented in this paper are philosophical in nature but their partial realization in ISTAR is

very real. As a consequence of practical experience and of an earlier study, British Telecom, IST’s

collaborator in the project, had developed a view of software development and IPSE requirements
fully consistent with the concepts that 1ST wished to implement. Thus the development team received

full support to follow the approach described to the point at which the above categorisations had been

made. When, however, it came to the selection of specific methods and tools the choice had to be

guided, at least in part, by the client’s desire to move to disciplined, controlled and tool supported
management procedures, to the initial continued use of their current practices and tools and to evolve to

a fully supported development process, increasingly slanted to the use of formal methods. In these

ways it was hoped to achieve greater reliability, increased productivity and a significant improvement
in the capability for responsive but correct system adaptation in a changing operational environment.

In addition to the introduction of disciplined methods and their support, provision of staff

familiarisation and training is an essential component of a strategy to achieve such goals. A change of

attitude on the part of technical and managerial staff is also necessary. None of this can be achieved

over night. Evolution is, therefore, the only practical route to the increasing exploitation of advanced

software technology in an established development environment. The revolutionary introduction of

formality, new methods and tools is neither technically feasible nor commercially viable. Introduction

of new methods, installation of new tools, staff education and achievement of acceptance requires
effort, time and patience. Meanwhile development must go continue.

Any organisation that has recognised the need for change will wish to proceed as speedily as possible.
It will, therefore install development support and gradually enforce usage and enlarge the repertoire,
while recognizing that in a rapidly advancing but, as yet, untested field any installed support will need

itself to be tested in use, evaluated and evolved over a series of releases or versions. In this respect, at

11

least, IPSEs are no different to any other large, software dependent, system LEH85]. Practical

experience with ISTAR is showing this to be a viable transition strategy to advanced software

technology. That is, methods supported by ISTAR in its first releases and tools provided, reflect the

best of currently applicable technology. Emerging technologies such as stepwise formal development,
mechanical verification, systematic validation at each step, the use of mechanised reasoning and of

expert system technology, are all likely to be candidates for application in the process that has been

visualized. That is for the future. In the meanwhile, the likely directions of future expansion and

evolution of 1PSEs in general, and of ISTAR in particular, are well understood. As a consequence of

the model based approach adopted their exploitation, in ISTAR at least, is believed to be within reach.

Software that is in continuing use must be repeatedly adapted to changes in its operational
environment, to changes in the perception of that environment, to advances in technology. Moreover,
the system must remain correct under such adaptation. Dynamic correctness and changeability of a

software system, the ability for the maintenance and system evolution activity to respond correctly and

with the necessary speed to needed adaptation, are all a consequence of the development process. As

computers penetrate ever more deeply into every aspect of society, as mankind becomes more and

more dependant on computers, these attributes become critical for the survival of mankind. It is thus

no wonder that increasing attention is being given to discipline, formality and process support, to the

concept and realization of truly integrated project support environments.

An IPSE is a complex software system. The process by which it is developed will largely determine

the nature and quality of its further evolution, in particular with respect to effort required, correctness

and responsiveness. Its own function and structure will, in turn, influence the characteristics of

programs and systems developed with its use. Thus, if processes and projects it supports are to be

effective, understanding of their desired properties must dominate IPSE design.

It has been the thesis of this paper, reflecting the technical philosophy of Imperial Software

Technology Ltd., that an IPSE design process must begin with adequate models of the program

development process and of project structures that implement it. This was the case for the approach
taken in the development of the 1ST ISTAR IPSE used here to illustrate an approach to software

development in general. Prototypes of ISTAR have been running since April 1985. The first

production release became available on schedule in the spring of 1986. The system is about to be

installed in a number of major sites. All the experience to date suggests that project goals have been

met and that the approach taken to IPSE design and evolution is effective.

11 Acknowledgements

I make grateful acknowledgement to all my colleagues at 1ST who have been infinitely patient in

educating me and providing the information needed to put this paper together. Most especially I must

express my gratitude to Vic Steiming, Technical Director of 1ST and the inspiration behind all those

who have worked on this project. My deep appreciation and thanks also to Wiad Turski who has so

patiently guided me over these past few years.

12 References

{BAR84] Bartlett A J, Cherrie B H, Lehman M M, Maclean R I and Potts C, ‘The Role of

Executable Metric Models in the Programming Process’, Final Report to DARPA, order

no. B-2-3288, under contract no. F49620-82-C-0098, Apr. 1984

B0E761 Boehm BW, ‘Software Engineering’, IEEE Trans. on Comp., vol. C-5, no. 12, Dec.

1976, pp. 1226-1241

1ST83] ‘Requirements for Software Engineering Databases’. Final report to the CEC under the

Preliminary Esprit Program, July 1983, Imperial Software Technology Ltd., 60 Albert

Court, Prince Consort Rd., London SW7 2BH

J0N86J Jones CB, ‘Rigorous Program Development Using VDM’, Prentice Hall mt., 1986

12

K0E64] Koestler A, ‘The Act of Creation’, 1970 edition, Pan Books Ltd. London, pp. 176-177

LEH84] Lehman MM, Stenning V and Turski WM, ‘Another Look at Software Design
Methodology’, ACM Software Eng. Notes, vol. 9, no. 2, Apr. 1984, pp. 38-53

LEH85] Lehman MM and Belady LA, ‘Program Evolution - Processes of Software Change’,
Academic Press 1985

LEH85b] Lehman Mlvi and Stenning NV, ‘Concepts of an Integrated Support Environment’, Data

Proc., Butterworth & Co (Pubs) Ltd., London, vol. 27, no. 3, April 1985, pp. 8-10

LEH86J idem., ‘Advanced Software Technology - Development and Introduction to Practice’,
Invited Lecture, Information Processing ‘86, Proceedings IFIP Congress 1986, Dublin,
Sept. 1-5, PubI. by Elsev~ Sci, Pub. (North Holland), 1986, pp.605-61 1

LEH86b] idem., ‘Modes of Evolution’, see SPW87]

LEH87J Lehman MM and Turski WM, ‘Essential Properties of IPSEs’, SE. Notes, vol. 12, no.1,
Jan. 1987

{LEH87b] Lehman MM,
‘ Process Models, Process Programs, Programming Support - Invited

Response To An ICSE9 Keynote Address By Lee Osterweil’, Proc.9th mt. Conf. on

Software Eng., Monterey, CA, 30 March - 2 Apr. 1987. To be pubi. by IEEE Comp. Soc.

LEH87c] idem., ‘Desirable Properties of the Software Development Process’, sub. to SE. Notes

MA187] Maibaum T and Turski WM, ‘The Specification of Computer Programs’, Addison Wesley,
to be published, Spring 1987

PDS87] Proc. of the 2nd ACM SIGSOFT/SIGPLAN Software Eng. Symp. on Practical

Development Support Environments, ACM SIGPLAN Notices, vol. 2, no. 1, Jan. 1987

S1M69] Simon HA, ‘The Sciences of the Artificial’, M.I.T. Press, Cambridge, MA. 1969

SPW84] Potts C (ed), ‘Proceeding of the Software. Process. Wrkshop’, Egham, Surrey, U.K.,
Feb. 1984. IEEE, cat. no. 84CH2044-6 Comp. Soc., Washington D.C., order no. 587

SPW86] Wileden JC and Dowson M (eds), SE Notes Special Issue on the 2nd International

Workshop on the Software Process and Software Environments, Coto de Caza, Cal.,
27-29 March 1985, vol. 11, no. 4, Aug. 1986

SPW87] Dowson M (ed), ‘Iteration in the Software Process’, Proceedings of the 3rd International

Process Workshop, IEEE Comp. Soc. Press, March 1987

STE85] Stenning V, ‘Software Engineering: Present and Future’ in The Corporate Database, State

of the Art Report 13:3, D Iggulden (ed) 1985, published by Pergamon Infotech Ltd,
Maidenhead, England

WIR71] Wirth N, ‘Program Development by Stepwise Refinement’, Comm. ACM, vol.14, no.4,

Apr. 1971, pp. 221-227.

13

A Short History of the Gandaif Project

A. N. Habermann

Carnegie Melion University
Pittsburgh, PA 15213

6 February 1987

Abstract

The Gandatf project is concerned with the generation of interactive special-purpose programming
environments. The project went through three phases which each lasted approximately two years. A

fourth phase is planned for the period of 1986 -1988. The subjects of study and experimentation during
the first three phases were respectively: tool integration, automatic environment generation and active-

object environments. The fourth phase will focus on building expertise into environments. One of the

tangible results of the project is the Gandalt System which provides elaborate facilities for designers to

specify and automatically generate target programming environments. The Gandalt system is itself an

example of a special-purpose programming environment and serves as a workbench for the design and

implementation of other special-purpose programming environments. The products of the Gandaif

system provide an integrated tool set that interacts with its users in terms of task-specific structured

objects instead of characters and text. This paper describes the development of the Gandatf facilities

during the three completed phases and indicates the project’s long-range research and development

program.

The Gandaif project is supported in part by Siemens Corp. ZTI, MuncherL’P

14

1. IntroductIon

The object of study and experimentation In the Gandatf project Is the design and Implementation of

interactive special-purpose programming environments that provide task-specific assistance to their

users. Some examples of the type of programming environments we have in mind are: an Interactive

electronic mail system, a software development environment for system configuration management, an

interactive environment for teaching introductory programming, etc. Each of these environments includes

facilities that are specifically designed to help the user to do a particular task.

Taking the special-purpose approach, one must face the fact that many slightly different environments are

needed in cases where a single general-purpose environment suffices. The larger the numbers, the more

Important it IS to find ways of reducing the effort of generating a particular instance of an environment.

The special-purpose approach won’t work If creating such an Instance requires the same effort as

creating a general purpose environment. The Gandalf project has therefore focused on the development

of tools and facilities that reduce the effort of generating an environment to a fraction of the time it takes

to do the same job by hand. The reduction Is largely obtained by a high degree of code sharing between

environments and by automatic code generation.

The tools and facilities available for environment generation are assembled in a system that we call the

“Gandalf system”. This system Is a workbench for Implementors to design and automatically generate

target environments. It builds on the general ideas of the Gandalf project and Is itself an example of a

special-purpose environment to support the generation of environments. In order to distinguish the user

of the Gandalf system from users of programming environments generated with the Gandaif system, we

refer to a person in the first category as “designer or “Implementor and to a person In the second

category as “user”. The special-purpose environments generated with the Gandaif system are from here

onwards referred to as Gandalf environments. Using this terminology, a designer uses the Gandaft

system to generate a Gandatf environment.

The Gandalf project went through several phases in which tools and techniques were developed that

facilitate the specification and automatic generation of special-purpose environments with the

characteristics described here. The first phase involved the integration of the tools in a user environment

into a coherent collection that can support a specific user task. This phase started out with integrating

tools for program construction and was continued with the integration of tools for system version control

and system configuration management.

The second phase, which partially ran in parallel with the first, concerned the generic approach to

specifying and generating special-purpose environments. It Included the design and implementation of

the common parts of all Gandaif environments and of a description mechanism for designers to specify

the particular facilities of a target user environment. A large part of the work went into the design and

implementation of program~generators that transform a designer’s formal description into programs and

tables that can be processed by a traditional compiler. The third phase involved the design and

implementation of a mechanism for a designer to describe semantics and runtime support. The most

important aspect of this phase is the development of the Action Routine mechanism which allows a

designer to define so-called daemons that are attached to objects In the user environment for the purpose

of interacting with the user and with other objects in the environment. All Gandaif environments share a

runtime Action Routine support mechanism that triggers daemons depending on the occurrence of

specific events such as the creation or deletion of an object.

15

2. A Historic Overview

The first phase, tool integration, consisted primarily of three subproje~s, S~C,. SVCE and LOIPE, in

which we focussed respectively on tools for project management, for system~configuratiOn control and for

the edit-compile-execute cycle. The results of these three subprojects were later merged into~ a. single

environment, the Gandaif Prototype, which provides a complete set of tools for- software system

development.

It was pretty clear from the beginning of the project that building a variety of task-specific programming

environments is not a viable proposition without mechanizing the generation process. It would take too

long to build one and it would be very haiti to maintain a number of them. The second phase of the

project concentrated therefore on designing a description formalism with a collection of support tools that

allow a designer to specify a target environment and automatically generate it from the description. First,

we focussed on a structured database design and on the representation of objects in the database. This

work was done initially in three subprojects, ALOEGEN, DBGEN and SMILE, dealing respectively with

database editing, environment generation and the working environment for the implementor. These tools

and environments were used to build a number of programming language environments. The most

successful one of these environments is GNOME (for Pascal), which has now been used for a number of

years in the introductory programming course at CMU.

The design of structure and representation in the second phase was followed by a third phase in which

we concentrated on semantics and runtime support. This phase consisted primarily of three subprojects,
the design of the Action Routine Language, ARL, an editing environment for ARL and a system kernel,

IPE, which provides the runtime support for every target environment that is built with the Gandalf tools.

At the end of the third phase, the tools were integrated into a single implementor’s environment, the

Gandaft System. A short description of each of these subprojects follows in subsequent sections.

3. Software Development Control

The Soc environment controls the access of programmers to shared modules and to the common pool in

which these shared modules are kept. The necessary protection of the shared modules in the common

pool is obtained by defining a module as an abstract datatype which can be manipulated only through a

well-defined set of operations.

Changes to the common pool are made through pairs of reserve and deposit operations. A reservation is

not successful if the common module in question is already reserved. A deposit is only successful if the

programmer performing the deposit is the same as the one holding the reservation. This arrangement

assures that the modifications by two or more programmers to the same module cannot overlap in time.

An alternative way of terminating a reservation is by using the release operation which is used when the

programmer wants to give up his reservation without making a new version public.

In addition to the reservation field, the module datatype contains two lists that respectively describe the

access right of programmers and the modification history. SDC distinguishes between three levels of

access rights. The lowest level consists of programmers not listed, who have read-only rights. The

1.6

middle level consists of the project programmers who have source modification rights and can add to

logfiles in which the modification history is kept. The higher level Consists of the project managers who

have all the rights of the others but can also edit and purge Iogflies and access lists.

The logfile of a module contains one message for every deposit. When a programmer deposits a new

version of a module, he is prompted for a description of the modification, while the deposit operation

automatically enters the date and the programmers name to the message. Logfiles can be read in their

entirety or selectively by date and/or programmer name.

4. System Version Control

SVCE allows a system designer to specify the functionality of a module and its dependency on other

modules through an export and an import list. Each specification can be realized by a muttitude of

implementations, both of the variant and of the successive version type.

The most elementary device for building systems is the ability to write a system model that lists a

collection of module versions that together can be used to generate a subsystem. The elements of a

system model are in essence values that represent particular implementation versions of a program

module. Subsystem descriptions in SVCE may contain such specific values, but more common is the use

of variables that represent modules or subsystems. The advantage of using variables is that the logical
structure of a subsystem can be defined without referring to a specific implementation. These variables

represent module and subsystem specifications, but not their implementations. A choice as to which

version or variant to use can then be made each time a subsystem is instantiated.

5. Incremental Program Construction

Lisp environments have the nice characteristic that programs can be debugged in the source language,
because the Lisp interpreter allows one to execute a function in the same environment in which it is

defined. The purpose of the LOIPE subproject was to design a similar uniform interface for procedural

languages based on incremental compilation. LOIPE integrates program editing, compilation, execution

and debugging. All operations in LOIPE are cast in terms of language constructs such as statements,

expressions, functions, etc. LOIPE represents programs as trees that correspond to the intermediate

representation generated by the parser of a traditional compiler. The editor maps the tree representation

into user readable text, while the code generator maps it into object code. Both text and object code can

be viewed as derived objects. The debugger and the runtime system map the state of the executed

object code back into the tree.

LOIPE provides a uniform editing interface to its users. Debugging takes place through inserting trace

and break statements into the tree with the use of the editor. The main difference between LOIPE and

the traditional programming interface is that in LOIPE the editing units are programming language

construct instead of characters and text. One benefit is that no syntax errors can occur, because

programs are not generated as text. Another benefit is that the editor is able to perform static semantic

analysis on the fly and warn the user, for example, when procedure calls don’t agree with their

declarations or when names remain undeclared.

17

LOIPE provides an editing command for executing programs. The execution command does not have to

call the compiler or linking-loader because of LOIPE’s incremental compilation and incremental linking
mechanisms. The code generator is automatically invoked each time the user has completed the

declaration of a function or procedure. lithe user writes short subprograms (on the order of one to two

pages), he will hardly notice the delay caused by the code generator.

Incremental linking is based on generating indirect procedure calls. A module that contains a number of

subprograms starts off with an entiy vector in which the locations of these subprograms are listed.

Access to these subprograms from outside of that module is obtained solely through the entry vector. if

the location of a subprogram changes because of code modifications, all that changes is the value of the

corresponding entry vector element, while access from outside still refers to that element without change.

6. A Language-Oriented Editor Generator

The ALOE subproject started out with the idea to explore the pros and cons of syntax-directed editing.

This work complemented the LOIPE effort in providing the necessary mechanisms for editing the syntax

tree and for mapping the syntax tree into user-readable text’. Soon it became clear that having the user

think In terms of syntactic constructs is not the important issue, but having the user interact with the

environment in terms of structured objects instead of uninterpreted text. We therefore gradually changed

our use of terminology from syntax-directed editing to structure-oriented editing or structure editing.

ALOE distinguishes between abstract syntax and concrete syntax. The abstract syntax describes the

logical structure of objects, while the concrete syntax describes their representation. For instance, the

abstract syntax description of electronic mail messages defines a message as a composition of sender,

receiver, date, subject and text. The concrete syntax defines the keywords and the layout of messages

when printed on paper or when displayed on a screen.

The ALOE design and irT~lementation resutted in an environment generation scheme that is still in use in

the Gandaif system. This scheme is depicted in Fig. 1.

The designers description of the abstract and concrete syntax is represented in the upper left corner.

This description is transformed by the Program Generator into C-programs and tables that implement the

objects that represent the task-specific nature of the target environment. These specific facilities are

compiled and linked with the common facilities that are shared by all target environments in which the

user can generate and manipulate objects defined by the designers syntax description.

The common facilities serve three purposes: input/output, long-range storage and database

management. Input/Output and file storage procedures are provided by the ALOE library and database

management in the target environment by the ALOE kerneL The kernel controls cursor movement,

modifications to the user’s database and interpretation of the concrete syntax descriptions that determine

the output formats.

1This mapping from tree to text is cailed unparsing since it operates in the opposite direction of a parser whidi maps program

text into a syntax tree.

18

Fig. 1: The ALOE Generation Scheme

7. ActIon Routines

Semantics are handled by Action Routines which can be attached to object types described In ALOE. An

Action Routine might be considered as a procedural field of a record. However, an Action Routine field is

not activated directly by the user, but indirectly as a result of events that are caused by the users actions.

This approach makes the Action Routine mechanism suitable for dealing with issues such as memory

management, semantic checking and window management. Action Routines were initially written in C

and later in ARL.

8. SMILE

The SMILE system was designed as a software development environment that combines the features of

SDC and SVCE. The SMILE environment consists of a common pool of shared modules that can be

reserved in the users local workspace. Modular interfaces are defined by export and import lists that are

checked when a system is generated. The facilities of SMILE are not as elaborate as those of SDE and

SVCE combined, but are designed to provide a smooth support for the most frequently applied operations

on modules. SMILE is used intensively in the Gandaft project as a practical environment for tool

development.

The environment designer starts with a SMILE database that serves as the common pool for all project

modules. The designer enters a particular subenvironment depending on the type of module he creates

or modifies. For instance, if he writes a syntax module, he automatically enters the ALOEGEN

subenvironment. When he is finished with a module, the designer automatically enters the enclosing

SMILE environment in which modular interface checking and automatic (re)compilation take place.

19

Sfl.’LL.Z Modu1~r1tg AççUS C~ntraI

Autom~t~c: RicompfletIolT : : :

__

I
__

4LOd~tfl DBGv~fl

Abstrect & Deemons Attnbutes

Concrete
:

. Runtime : Extended

Syntax Support Commends

ALOI -

Fig. 2: SMILE and its Subenvironments

9. The Gandaif Prototype

The Gandaif Prototype is an implementation of an experimental environment that combines SOC. SVC

and LOIPE. The purpose of implementing this prototype was to synthesize the ideas and mechanisms

designed for the various tasks of program construction (programming-in-the-small), system version

control (programming-in-the-large) and project management (programming-in-the-many). The prototype

environment has been used to demonstrate the flexibility of Gandalf environments with respect to the

implementation of program management rules. The rules implemented in the prototype are just an

example that can easily be modified or extended. The importance of implementing management rules in

the environment is that the environment can enforce these rules.

10. EdItors and Gnome

A structure editor can be useful even without an adapted code generator. One can use the text that is

generated by the unparser as ordinary source code. This idea was first applied when we generated a

syntax-oriented editor for Pascal that we wanted to use for teaching programming. The initial expenence

was encouraging enough to start a specific project, the Gnome project, which aimed for a production-

quality Pascal environment for novice programmers. The initial Gnome environment was gradually

transformed into an integrated system in which both editor and codegenerator operate on the tree

representation of a program. The current Gnome system does incremental compilation on the fly.

The Gnome system has been used for a number of years and has improved considerably since its

inception. A major software engineering effort went into providing a smooth user interface. During recent

years a high quality version of the Gnome environment has been created for the Macintosh, which makes

use of mouse control and elaborate window facilities. This version is appropriately called MacGnome.

20

11. The Action Routine Language

The syntax description that the designer generates with the help of ALOEGEN determines the structure

and the representation of the objects in the target environment. This description does not determine the

behavior of these objects, because no operations on these objects are included in the syntax description.
The first step in the direction of describing the behavior of objects in the target environment was the

introduction of the Action Routine concept described earlier in this paper.

The original design had the drawback that Action Routines had no state and depended entirely on

derMng conditions and values from existing user objects. This problem was resolved by the introduction

of attributes that can be attached to objects in addition to Action Routines. The main distinction between

attributes and other object components is that attributes are not visible to the user and cannot be directly
operated upon by the user. Attributes are accessible to Action Routines and to Extended Commands.

Attributes can be of scalar type such as integer or character, but can also be of type tree. Attribute trees

differ in no way from ALOE trees that a designer can describe. It is thus possible for a designer to define

a separate grammar for an attribute tree, or even for a number of attribute trees. The structure

description, then, consists no longer of a single grammar, but of a number of grammars describing the

structure of the visible parts of objects and of the associated tree attributes.

12. The ARL Environment

The ARL environment is an integrated environment in the style of LOIPE. It provides a language-oriented
editor for writing Action Routines, it gives access to the extensive ARL library, and it performs incremental

compilation. The ARL library consists primarily of useful tree-traversal routines that are used for

collecting data from objects and attributes. Semantic checking in ARL is limited to static semantics, which

corresponds to type and parameter checking in other procedural languages. However, even with this

limitation, the ARL environment has proven to be extremely useful. It has made it much easier to

describe the dynamic behavior of objects in the target environment. The combination of language, library
and environment is a tremendous improvement over writing C procedures by hand. Action Routines

written in ARL are called daemons.

13. The IPE Kernel

The runtime environment of all target environments is determined by the IPE kernel, also known by its old

name, the ALOE kernel. The kernel is part of the common facilities (Cf. Fig. 1). The kernel is able to

handle predefined events, such as create or delete an object, and also designer-defined events. The

designer can, for instance, define an event that is triggered in one daemon with the effect of activating
another daemon that is waiting for that event.

The IPE kernel is a completely redesigned version of the ALOE kernel. It contains the necessary

mechanism for activating daemons depending on the occurrence of events. This version of the kernel

gives the database in the target environment its event-driven character. The IPE kernel partitions each

step into three phases: a permission phase, a pre-operation phase and a post-operation phase.

Daemons can make use of these phases and act in different ways depending on whether an operation is

21

attempted, is going to take place, or has been completed.

14. The Gandaif System

The Gandaif System consists of the SMILE environment and the three subenvironments, ALOEGEN,

DBGEN and ARL (cf. Fig. 2). The SMILE environment assists the implementor in the design of modular

interfaces, in system configuration and version control and in automatic system generation. It also

provides a small set of useful project management rules that prevent race conditions and maintain

development history. The ALOEGEN environment is used for describing syntax and for connecting

grammars with daemons, DBGEN for connecting objects with attributes and the ARL environment for

writing daemons.

The system has been released in January 1986 and is available in the public domain. A small fee is

charged for shipping and maintenance. Usage of the system is subject to the normal restrictions on

products of non-profit organizations. The system consists of approximately 40.000 lines of kernel code

and 50.000 lines of code for the four development environments. The ARL language is comparable in

size to Pascal.

15. The Gandaif Programme

The Gandaif project does not have a particular target other than improving the generation of high quality

programming environments. The project is therefore open-ended and will evolve with the development of

the technology. The next phase that is planned for the period 1986-1988 concerns the issue of building

expertise into environments. We believe that the daemon model offers an interesting alternative to

production system implementations of expert rules. A potential advantage of the daemon model is that

expertise can be associated directly with individual objects in the user’s environment which has the

beneficial effect of introducing a natural localization of rule applications. We also believe that an

important element for building expertise into environments is the observation of the user’s behavior and,

in general, of the history of interactions. These types of issues have been adopted as the starting point of

the next research phase.

Further development will take place in parallel with basic research. An important part of the development

effort will go into an implementation of the VIEW mechanism. A mechanism for specifying static and

dynamic views was designed during the past year which allows a designer to generate an environment as

a synthesis of various complementary views.

22

References

a] Hansen, W. J.

“Creation of Hierarchic Text with a Computer Display”

Ph.D. Thesis, Stanford University (June 1971)

b] Habermann, A. N. and D. Notkin

“Gandaif: Software Development Environments”

IEEE Transactions on Software Engineering, Vol. SE-12, No. 12 (Dec 86)

C] Teitelbaum, R. and T. Reps

“The Cornell Synthesizer: A Syntax-Directed Programming Environment”

Comm. ACM, 24, flog. (Sept 1981)

d] Donzeau-Gouge, V. et al.

“Programming Environments Based on Structure Editors: the MentorExperience”

INRIA, Technical Report, No. 26 (May 1980)

Also in interactive Programming Environments”, pp 128 - 140

D. A. Barstow et al. Eds. McGraw Hill, New York (1984)

e] Reiss, S.P.

“Graphical Program Development with PECAN Program Development Systems”
Proc. ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical

Programming Environments

Pittsburgh, Pennsylvania (April 1984)

1] Henhapl, H.

“PSG, a Programming System Generator

Technical Report, TH Darrnstadt (September 1985)

23

Information Management Challenges in the

Software Design Process

T. Biggerstaff, C. Ellis, F. Halasz, C. Kellogg, C. Richter, D. Webster

Microelectronics and Computer Technology Corp. Austin, TX. 78759

Abstract: The upstream software design process challenges database technology via Its requirements for effective

handling of diverse data —— both unstructured and structured, fuzzy and concrete, Incomplete and fully specified, Infor

mal and formal, complex and primitive. Commercial databases provide robust commercial products that deal well with

the “easy” (e.g., complete, regular, precise, formal, consistent) problems. Data, knowledge and Information based

technologies must be developed further and merged to deal with the “hard” ones.

1. Introduction

The MOO Software Technology Program (STP) is dedicated to long—term research in the upstream of

software system design and integration with emerging technologies so as to achieve an extraordinary

improvement in software productivity. Many of the challenges STP faces are peculiar to software,

especially upstream, design (e.g., partial execution, the intangibility of the final product and the need

to support fuzziness, deferral of commitments and exploration). Much of STP’s effort is directed

toward producing an environment, christened Leonardo, that supports team development of very

large, complex, distributed, real—time systems. The rationale behind this research programme has

been discussed elsewhere 3; 11; 17]. Here we wish to emphasize the information management

aspects of Leonardo, to see where STP can or must take advantage of current and projected database

techniques, and where Leonardo will place stringent requirements on developing new information

management technology. After a brief discussion of Leonardo, we will specify a number of Leonardo’s

requirements that seem related to database management and then analyze database concepts and

technologies in terms of their abilities to meet such requirements.

2. Leonardo — The Designer’s Environment

STP is committed to upstream research which significantly improves productivity in large—scale, coordi

nated system development. Whereas the downstream of software development is formal and con

cerned with artifacts such as code, modules and documentation, the upstream is informal, often

fuzzy, and concerned with the early phases of the development process —— requirements, issues,

high—level concepts, in short, with abstractions. The fuzziness of the upstream process is amplified by

difficulties in technical and managerial information flow. The emphasis on large—scale systems is more

specifically directed at distributed systems, as well as organizationally complex systems, such as

those developed by large teams. In fact, an important implication of this emphasis on large, complex

systems is that upstream abstractions must be communicated and explored within an extended, coop

erating group of people, with the aims of finding and representing appropriate abstractions for a prob

lem, and analyzing and refining the representation to a point sufficiently concrete to feed the down

stream.

Much of the effort in Leonardo is concerned with the capture, representation, elaboration, reuse and

presentation of design information, i.e., information that is generated during the design process to

define and discuss the product that is being developed. However, Leonardo must also be aware of the

design process itself, since it cannot be decoupled from (though it may certainly influence) the poli

cies and procedures within the organizational, social and educational structure in which it is embed

ded. Some of the research within SIP addresses issues such as reusing design abstractions and

artifacts 4], designing and programming large distributed systems 10], representing and manipulat

24

ing coordinated systems, visually and dynamically 13], validating a hypermedia representation in. the

design environment 7] and managing a large base of persistent, complex objects 9].

3. Leonardo’s Design Information Space

One of the most striking features of Leonardo is the amount, complexity and diversity of the data that

are encountered in the design environment. With such a vast array of data, management becomes a

key factor. A major part of the Leonardo effort lies in defining its so—called Design Information Space,
deciding what it is and how to manage it.

We envisage the Design Information Space as a large network of diverse data relevant to the design

process, e.g., the /ssues that arise during the design process (including postulated alternatives, their

resolution, through decisons and rationale, ultimately leading to commitments and impacts), represen

tations of the various stakeholders and their views and interests (including work procedures and working
relationships), notes and comments (including to—be—decided’s and questions), and artifacts (including
code, documentation and even the design itself). It is difficult to specify precisely what data structures

are required for the vast diversity of data we see in use today, especially since those structures are

themselves dynamic, evolving entities. Furthermore, there is more to supporting the design process

than merely capturing the information. The information must be represented effectively, so it will be

appropriately accessible, useful and reusable to the design team and other stakeholders. The aim is

to decrease the intellectual burden on the designer by shifting it onto tools and support systems, e.g.,

by managing the data acid their interdependencies as much as possible, identifying potential problems
and consequences, retrieving and even recognizing similarities and analogies. Consequently, we see

the following aspects as being critical in determining both the structure of the Design Information

Space and its requisite support tools:

• Diverse, Non—Canonical Structures: We have given ample indications of this aspect already. The

information elements can be highly irregular or unstructured and not easily described in canonical

data models.

• Mixed Formality and Informality: A software design contains highly diverse elements ranging from

structures as informal as natural language text to structures as formal as predicate calculus expres

sions. Each must be dealt with in its natural mode. For example, we must be able to perform
associative searches on natural language text and logical inferences on predicate calculus expres

sions.

• Fuzzy and Inconsistent Information: Fuzziness arises in the design arena both in terms of incom

plete information or deferred commitments, and plausibilty or probability. In the earliest phases of

design, concepts are often poorly (incompletely o rg~e~tJy)—definedi---4~the~noce.,different

concepts may be inconsistent with one another. Deferring binding until quite late in the design

cycle provides the designer with more flexibility a imp i ies e as of managing an coor a -

ing details. However, such fuzzy, partially specified data must not only coexist with precise, com

pletely defined data, but in general must evolve through degrees of precision. A designer should

be able to create a symbolic representation for something that will eventually develop into a very

complex structure with perhaps far reaching effects, yet can remain fuzzily specified in the interim.

The essence of software design is fuzzy representation evolving into more concrete representation.

• Factored Designs: Designs consist of factored and compartmentalized information elements, with

local attibutes and behaviors that are independent of the specific application programs which use

the elements. Design objects are complex and locally intelligent; they can be decomposed into

multilevel subobjects, each of which can act according to its own pattern of behavior (e.g., produc

ing descriptions and demonstrations of its functionality or usage). A trend toward highly factored
-

designs can be seen in the concepts of structuring (e.g., subroutines, macros and remotely de

fined symbolic names for values), object—oriented programming, remotely defined program proto

25

cols and parameterized packages. Factored structures appear to be a key concept in permitting
deferred commitments and incremental development.

Rich with Dynamic, Unpredictable Relationships: When designing a complex system, we find that

most items are related in various ways to many other items in the system. Such complex webs of

relationships must be represented explicitly. Relationships can arise from both logical associations

among design objects (links) and pragmatic limitations and dependencies within the system (con

straints). Symbolic representation of deferred commitments requires relationships to keep track of

the logical connections between fuzzy or partial structures that will eventually evolve into a tightly
defined and integrated structure. Moreover, in the upstream phase, designs change rapidly and

unpredictably (e.g., as understanding of the problem increases, the stakeholders learn more about

each other’s concerns and the requirements or specifications are altered or renegotiated), creat

ing the need for a system flexible enough to deal with evolving patterns of relationships. Finally,

constraints often represent eventual goals, necessitating nonuniform integrity control throughout
the various design stages.

Size, Scale: Leonardo is concerned with large, complex systems; so the Design Information Space
will contain a vast amount of information, both in terms of design elements and data. We estimate

that the ifl atio.an order of rna~ degreater than_the

source code, and that the common, reusable information (i.e., world knowldege) accumulated

~ai9~~of projects will be several orders of magnitude beyond the source size for any one

application. The scale issue also emphasizes the likelihood that only some, not all, of the data can

be captured.

• Exploration and Navigation: Much of the Communication between the designer and the Information

Space will be both interactive and exploratory. Typically, a designer selects parts of a design and

performs dissimilar operations on them. Navigational or “focused browsing” support will be

needed to allow him to view the objects he and Leonardo deem most relevant, as he attempts to

refine, understand or reuse a design.

• Teams and Coordination: The Information Space will be embedded in a larger system context of

individual workers, technical teams, projects, business units and customers. As such it serves as

the primary coordination mechanism for the sharing of many types of information among the vari

ous stakeholders. While in the past teams have tended to divide system design into disjoint pieces

(allowing everyone to proceed in parallel with a minimum of communication), the goal in Leonardo

is to permit teams to work together as a more productive whole. This goal seems to require
simultaneous access to the same data, or notification mechanisms to allow effective pseudo—con-

• current access. For example, several individuals might need to truly share a file, with changes by
each being visible in real time to everyone else, e.g., in a distributed design meeting in which the

participants are in distant locations, but simultaneously viewing and manipulating the same informa

tion. Large software design projects involve significant planning and coordination efforts. Leonardo

must record administrative and temporal information —— design plans and specifications, pert

charts, module dependency lists, and code segment compilation timestamps, etc. —— and be able

to monitor and act upon this information.

• Complex, long—lived transactions: If we view a design session as a transaction on a design data

base, then we may have_many nested subtransactions witbirl_aJn~jn_tj aacti.o aylst for

se’.’eral~days. Within a “transaction”, a designer will be exploring alternatives, trying one idea, then

partially “undoing” it, and perhaps several other subtransactions, to try another.

• Layered Abstraction and Inheritance: Many information elements and their behaviors can be or

ganized into layers of abstraction with each lower layer being differentiated from the layers above

by the addition of more specific properties. The behavior associated with any specific information

element may then be drawn selectively (i.e., inherited) from those associated with the element and

its parents.

26

• Contexts: Within the Information Space, groups of related information elements will be clustered

into contexts that articulate specific roles or reflect particular perspectives, e.g., the adaptable
views required by different specialists on design teams, as well as individual members’ hypothetical
or exploratory endeavors. Large scale operators and actions generally will be restricted to such

contexts. Moreover, design team members must be able to access public or team data, and

incrementally merge or integrate their views, possibly retaining or modifying their individual per

spectives. Of course, in the design process, a view may be fuzzy and may exist independently of

the unified, global object supposedly being viewed.

• Virtualization of the Information Space: Ideally, the designer should not be aware of any differ

ence in behavior between objects_which are locall created and manipulated arid objects which
—

~~Q~tained:frntithegIobaLinf.oirnation base. The Information Space should appear to be a

seamless, virtual extension of the designer’s workstation environment. However, this ideal must be

relaxed a little in the context of teams, sharing and lengthy design sessions, since designers must

be informed of long delays or important modifications.

• Temporal Data/Histories: Permanent records are required for most Information Space interac

tions. Leonardo must record, mangage and manipulate design changes and alternatives, including
such things as versions (revisions, releases and variants) and configurations. These management

problems are complicated by the fact that design histories can develop along several axes, includ

ing temporal and abstraction axes.

4. Applicabilty of Database Technology

Each of Leonardo’s modifiers —— coordinated, large—scale, complex, distributed, real—time, software

and upstream —— places requirements and constraints on its underlying information management sys

tem. Having described a number of these requirements, we now wish to analyze them in terms of

modern database features and concepts: data models; schemas; queries; views; protection and in

tegrity; concurrency and transaction granularity, backup and recovery; performance.

• Data Model: The diversity, complexity and irregularity of the data in the Design Information Space

provides a modeling challenge. A comprehensive data ei,~gne which can cqpe~with_con~pj~x
as well as simple objects and that can eal with the storage and retrieval requirements of muftime
-

dT~7ffypermedia environm is, is required. Design activity is often concerned with the creation,

~~ö~ificati n, arrcf?~Fiev~ToT iex objects. Design objects can be grouped within a class hier

archy or lattice. The inheritance capabilities usually associated with such structures have proven

useful in support of software design (Cf. 22).). Thus, in many respects our needs seem to natu

rally dictate a semantically enhanced object—oriented database model (Cf. 1; 16].).

• Database Schema: Relational schemas are relatively static, being defined at database creation

time and then changed infrequently thereafter. Object—oriented and functional models may be

more appropriate for the complex, rapidly evolving Information Space schema 2].

• Database Query: In contrast to typical data processing, where one isolates a few tuples prior to an

update or performs the same operation on a large group of selected items, Leonardo’s preferred

access mode should be (composite) object—at—a—time, as the Design Information Space is ex

plored or~~1 (Cf. 16].). StUl, ii~~wer provided~
relational set—at—a—time access capabilities also seems to be essential to support some kinds of

retrievals. Semantic relationships in functional and many object—oriented systems reputedly sup

port the meaningful set—at—a—time accesses, but without a theoretical foundatiàn or some of the

query optimization and join techniques characteristic of modern relational databases. We have also

seen that Leonardo requires more sophisticated query support, e.g., inferencing, pattern—recogni

tion and analogy, than that provided by conventional database systems.

• Database Views: We have seen that Leonardo incorporates widely varying perspectives on the

contents of the design database. Relational methodology provides a sound formal basis for the

27

Construction of arbitrarily complex user views and their use in retrieval and display 25]. View up

date and merge mechanisms are not yet available, but would be highly beneficial in a team design

environment.

• Database Concurrency and Transaction Granularity: Simultaneous access to varied forms of de

sign information by groups implies a need for enhanced sharing. Transactions, the standard

mechanism for maintaining consistency among concurrent activities (the atomicity property), may

be quite long in Leonardo. Conventional databases assume that transactions last a few minutes at

most, or that conflicts will arise infrequently, and thus use some form of locking or optimistic con

currency control. Standard locking mechanisms do not allow several individuals to simultaneously

access an object in write mode. It is not viable to lock everybody out of the Design Information

Space while very long transactions are completing. In the design environment, there is a much

higher probability of access conflicts (or access overlaps, to be more accurate); so optimism

wouldn’t be effective. Hence, there is a need for more flexible concurrency control mechanisms

such as soft locks and notification 9]. Alternately, a version of the database might be created for

each long transaction, with full concurrency and integrity control available for the micro—transac

tions within it.

• Database Protection and Integrity: Standard protection facilities such as passwords and encryp

tion are certainly needed in design databases. However, in the software design environment, there

is much more need for protection against accidental information loss and inconsistency than

against malicious destruction or intruders. Policies for the control and use of different versions of

complex design objects are especially important 6]. Designers need forms of protection which

make distinctions according to user profile (e.g., member of the system design team), and ac

cording to the nature of the information (e.g., execute—only access to system kernel). Integrity

checks will be needed to insure that multiple design constraints are satisfied and maintained during

modification. However, the concept of integrity or consistency control in the context of fuzziness

and team coordination is, like concurrency control, an area for research.

• Backup and Recovery: Many standard backup and recovery techniques seem to apply to the

Information Space. However, transactions provide the wrong granuarity for recovery via the all—or—

nothing “commit” property. Since, in the design environment, transactions will frequently be long—

lived and complex, it is not viable to simply undo transactions 261.

• Performance: Database is a performance—oriented technology, though the object—oriented and

semantic models still extract a significant performance penalty. The anticipated size and complex

ity of Leonardo’s Information Space should eventually make performance a major concern. The

extent to which Leonardo will be used in a navigational mode reduces its performance require

ments. However, the need for interactivity, sophisticated search and integrity mechanisms, and

temporal or historical archiving pushes in the other direction. There is a lot of promising research

along these lines (e.g., 8; 16; 23; 24]).

5. Toward a Comprehensive Information Management Framework

Figure 1 illustrates several areas of research that are expected to influence the development of soft

ware design information technology. Research in the area of information retrieval has produced auto—

indexing 20] and full text search capabilities 8; 14] for retrieving text based design information.

Recent work 18; 19] on extracting formatted data from text has started to fuse a link between infor

mation retrieval and data management technology, while recent efforts in hypertext 71 can be ex

pected to contribute directly to the capture and retrieval of design information.

28

Data Management/Models
:
:1::::::

Knowledge Management
Object—Oriented Functional

Software Design ~ Deductive Question—Answering

Reiat;onai Network Hierarchical I Information Space Logic and Databases

Information Retrieval Other Technologies Artificial Intelligence

Full—Text Search Hypermedia Distributed Systems Languages Semantic Networks Frames

Auto—indexing Auto—abstracts Operating Systems User interface Truth Maintenance Thm. Proving

Figure 1. Software Design Information Technology

The important notion of “object” has evolved in the Al, database and programming worlds, essentially

as an elegant packaging of modularization and encapsulation concepts. Research at MCC is attempt

ing to extend the object—oriented paradigm to inciude much or all of the functionality associated with

relational systems 1], and, reciprocally, to extend the relational model to include complex objects

271 and promote increased efficiency in rule—based inferencing over data 15]. This research

strongiy interacts with work on functionai data models 21], knowledge representation 5] and logic

and databases 121. There are also a number of “peripheral” technologies, such as programming

languages, operating systems, user interface management and distributed systems, which have had

and will continue to have secondary influence on information management.

Thus we have a number of candidate technologies, which might together provide the complement of

properties that we require. Each of these technologies —— hypermedia, relational, functional, and ob

ject—oriented databases, and knowledge representation systems —— has advantages and disadvan

tages for the Design information Space and Leonardo.

Hypermedia systems provide the ability to deal with highly informal and irregular data structures, but

alone, such systems provide little else, and are notably deficient in search mechanisms.

In contrast, relational database systems are strong in the area of search, in that they offer well—

defined, understood search and query facilities over large—scale, but homogeneous and largely pas
sive, databases. However, they are weak elsewhere, notably in representing the nonhomogeneous

and active data elements that arise in the design process. They excel in dealing with simple, regular

structures, or where simple, regular structures can be composed into large—scale structures to which

regular operators can be applied in a “set—at—a—time” style of processing. In the Design Information

Space, simple regular structures and large—scale regular operators are atypical.

One of the major strengths of a semantic or functional model would be its capability for dynamically

representing numerous class and object dependencies and interrelationships. Such dynamics extends

to the database schema level itself, or other settings where it is difficult to determine a priori the nature

and number of relations that are associated with any particular object, as is typical during the design

process.

Some object—oriented models (Cf. 1].) share this capability for dealing with irregular structures.

However, object—oriented systems focus more upon information elements, their properties and their

active behaviors, providing the layers of abstraction, deferral of commitment and the inheritance prop

erties that we need. Unfortunately, object—oriented systems are also weak in the area of search.

Knowledge representation systems also deal well with irregular structures, and in addition, generally

include facilites for complex pattern—based searches, inheritance and inference. These systems lack

29

data management’s concern with effective manipulation of vast quantities of data and the subsequent

issues of efficiency, concurrency, persistence and robustness. The emphasis on real—world structure

rather than real—world quantity has limited applications to moderate size and breadth.

In general we expect that ongoing research in Al, data and knowledge management and information

retrieval will critically affect the overall architecture and development of the Design Information Space
and hopefully lead to the unified model that Leonardo requires.

6. Conclusions

The challenge that software engineering, especially the upstream, poses to database is in the effective

management of “imperfect” or “problematic” (e.g., dynamic, irregular, imprecise, informal, even

inconsistent) data and the support of exploration or navigation as an aid to understanding, improving,

using and reusing this data. It is virtually a truism in commercial data processing that any integrated
information system is best built around a shared database managed by a proper DBMS. Obviously, we

cannot restrict ourselves to standard database technology, but must also be concerned with other

management technologies, such as those for knowledge and information bases, since no one of them

seems to provide the needed flexibility to deal with the full scope of Leonardo and its Design Informa

tion Space.

Although current commercial DBMS’s lack the ability to deal with the diversity, dynamics and complex

ity inherent in application areas such as Leonardo, they exhibit a robustness and attention to effective

ness that is absent in most of the other relevant technologies. However, Al, semantics—oriented,

object—oriented and hypermedia technologies are beginning to mature. Moreover, in the future, it will

be difficult to maintain a distinction between such technologies, as they will unite in most real applica

tions. Further work is needed in merging these technologies and extending them to meet the needs of

Leonardo.

References

1] Banerjee, J., H. Chou, J. Garza, W. Kim, D. Woelk, N. Ballou and H. Kim, Data Model Issues for

Object—Oriented Applications, to appear in ACM Trans. Office Info. Systems, April 1987.

2] Banerjee, J., H. Kim, W. Kim and H. Korth, Schema Evolution in Object—Oriented Persistent Data

bases, Proc. 6th Advanced DB Symposium, Tokyo, 1986, 23—31.

31 Belady, L., MCC: Planning the Revolution in Software, IEEE Software, Nov. 1985, 68—73.

4] Biggerstaff, T. and C. Richter, Reusability Framework, Assessment, and Directions, to appear in

IEEE Software, Vol. 4, No. 2 (1987).

5] Brodie, M. and J. Mylopoulos (eds.), On Knowledge Base Management: Integrating Artificial

Intelligence and Database Technologies, Springer—Verlag, New York, 1986.

6] Chou, C., W. Kim, A Unifying Framework for Version Control in a CAD Environment, Proc. 12th

Int’l Conf. on Very Large Data Bases, Kyoto, 1986, 336—346.

7] Conklin, J., A Survey of Hypertext, MCC Tech Report STP—356—86, October 1986.

8] Christodoukalis, S. and C. Faloutsos, Design and Performance Considerations for an Optical Disk—

Based, Multimedia Object Server, IEEE Computer, Vol. 19, No. 12 (1986), 45—56.

9] Ege, A., and C. Ellis, Design and Implementation of Gordion, an Object Base Management Sys

tem, to appear in Proc. 3rd Int’l Conf. on Data Engineering, Los Angeles, 1987.

10] Forman, I., On the Design of Large Distributed Systems, Proc. 1st Int’l Conf. on Computer

Languages, Miami, 1986, 84—95.

11] Frankel, K., Report on the MCC Conference, CACM, 28 (1985), 808—813.

30

~~allaire, H., J. Minker and J. Nicholas, Logic and Databases: A Deductive Approach, ACM Com

puting Surveys, Vol. 16, No. 2, (1984), pp. 153—186.

13] Graf, M., VERDI: A Visual Environment for Distributed Systems Design, to be submitted to 3rd

Int’l IEEE Workshop on Visual Languages, Linkoping, 1987.

14] Hollaar, L., Text Retrieval Computers, IEEE Computer, Vol. 12, No. 3, 762—772.

15] Kellogg, C., A. O’Hare and L. Travis, Optimizing the Rule—Data Interface in a KMS, Proc. 12th

Int’l Conf. on Very Large Data Bases, Kyoto, 1986, pp. 42—51.

16] Maier, D., Why Object—Oriented Databases Can Succeed Where Others Have Failed, Int’l Work

shop on Object—Oriented Database Systems, Pacific Grove, CA, 1986, 227.

17] Marks, P., What Is Leonardo?, MCC Tech Report STP—141—86, April 1986.

18] Pavlovic—Lazetic, ~3. and E. Wong, Managing Text as Data, Proc. 12 th Int’l Conf. on Very

Large Data Bases, Kyoto, 1986, 111—116.

19] Sager, N., Natural Language Information Processing, Addison—Wesley, 1981.

20] Salton, G., Another Look at Automatic Text—Retrieval Systems, CACM, 29 (1986), 648—656.

21] Shipman, D., The Functional Data Model and the Data Language DAPLEX, ACM Trans. Database

Systems, 66 (1981), 140—177.

22] Smith, R., R. Dinitz and P. Barth, Impulse—86 A substrate for Object—Oriented Interface Design,
Proc. OOPSLA’86, 1986, 167—176.

23] Stanfill, C. and B. Kahle, Parallel Free—Text Search on the Connection Machine System, CACM,

29 (1986), 1229—1239.

24] Stanfill, C. and D. Waltz, Toward Memory—Based reasoning, CACM, 29 (1986), 1213—1228.

25] Wiederhold, G., Views, Objects and Databases, IEEE Computer, Vol. 29, No. 12 (1986), 37—44.

26) Yeh, S., C. Ellis, A. Ege and H. Korth, Performance Analysis of Two Concurrency Control

Mechanisms for Design Environments, MCC Tech Report STP—036—87, February 1987.

27] Zaniolo, C., The Representation and Deductive Retrieval of Complex Objects, Proc. 11th Int’l

Conf. on Very Large Data Bases, Stockholm, 1985, 458—459.

31

THE SIGMA PROJECT AND DATABASE ISSUES

Noboru Akima

Planning Manager, SIGMA Project

Information—Technology Promotion Agency

5F Akihabara—Sanwa—Toyo Bldg.
3—16—8 Soto—Kanda, Chiyoda—ku

Tokyo, Japan

1. INTRODUCTION

SIGMA (Software Industrialized Generator and Maintenance Aids) is a project whose mission is to im

prove software development productivity and software quality. At present, approximately 150 companies

(some are foreign based) participate in the project, including the Japanese government. The project is

funded by investments from the participants, which are planned to be 25 billion Yen over five years

between 1986 and 1990.

To achieve its objectives, SIGMA tries to establish and diffuse two things:

(1) standardized software development environment which is independent of target computers, and

(2) network system for retrieving and transferring programs and technical information.

The project is being undertaken by engineers sent from various companies such as computer manufactur

ers, common carriers, software houses, etc. The number of these engineers is nearly 50, and they are

technically in charge of running the project; selecting the most suitable technologies, managing the jobs

contracted to outside companies; and so forth. Besides these engineers, the SIGMA System Development

Committee, consisting of professionals and representatives from various fields in industries, is in place to

advise the project. Two other committees, the Steering Committee and Technical Committee, are to

support the System Development Committee.

2. SIGMA NETWORK

One of the means to achieve the project’s objective is to establish a computer network. This network

provides services to SIGMA user’s electronic mail, bulletin boards, electronic conversations, file transfer,

remote job entry, virtual terminal functions, etc. These services are provided on DDX—P (Digital Data

Exchange — Packet switching) by NTT, the largest common carrier in Japan. Withip a company or an

organization, LAN (IEEE8O2.3) will be used. Connecting service with public telephones is also consid

ered.

3. SOFTWARE DEVELOPMENT ENVIRONMENT

Software development environment proposed by the SIGMA project is one which can be used to develop

computer programs for various target machines. This environment consists of personal workstations,

software development tools which enable software engineers to computerize their activities and eventually

improve productivity and quality. To make the tools portable, all the tools will be written in C program

ming language.

32

4. SIGMA OPERATING SYSTEM

Standardizing programming language is not enough to assure portability of tools. Therefore, the common

operating system interface is defined. Unix1 is chosen as the base for this operating system. The common

operating system has been named SIGMA 0/S. Unix is chosen because of its superiority for software

development and relative hardware—independence. The SIGMA 0/S extensions, described below, are

those necessary for software development and for assuring the portability of tools. At present, elementary
functions have been defined for developing the first version of 0/S and tools. A detailed specification for

further extensions is still on—going.

(1) Japanese language processing capability.
This capability is essential for software development in Japan.

(2) Network function.

Network functions are enhanced and protocols are defined to enable all SIGMA users to communi

cate. The protocol basically uses TCP/IP.

(3) Graphics.
Recent software tools are supposed to have graphics capability to manipulate charts, graphs, tables,

etc. The graphics interface is based on GKS.

(4) Multi—window.

Multi—window capability is also indispensable for the software development workstations.

5. DATABASE MANAGEMENT SYSTEM (DBMS)

The volume and types of data to be processed on SIGMA 0/S will vary with the magnitude of the software

developed and the development method used. In the SIGMA project, we expect roughly five types of

data.

(1) Data Dictionary.
Data for managing data resources. This contains the names, attributes, and information related to

software resources.

(2) Software Data.

Data for managing software development. This includes results or intermediate results generated

during software development. These include project management data, system configuration data,

program specification data, source/binary, document and test data.

(3) Common Data.

Data for re—use of software resources. This includes terminology dictionary, common code represen

tation, and program modules.

(4) Tool Data.

Data on using the SIGMA system. This includes the tools available to SIGMA users and guides for

their usage.

(5) Fact Data.

Data for productivity guidelines and future enhancements. This contains logging data, data of re

sources spent for development, productivity indexes, and data for quality control.

Today, there is no database system which can deal with all these different types of data. The current

relational DBMSs are adequate for handling data dictionary, project management data, and fact data.

Extensions to the current relational DBMSs are necessary for the common data, tools data, software

1 Unix operating system is developed and licensed by AT&T.

33

development results and documents, which deal with very long unstructured data such as text and binary
data.

Recommended DBMS specification for SIGMA is SQL specification of the ISO international standard

and some SIGMA extensions which are necessary for SIGMA usage and SIGMA tools. However, there

are many Unix tools which do not run with DBMSs. Since one of the most important objectives of the

SIGMA project is to assure portability of tools on various workstations with different makes of SIGMA

OIS, SIGMA allows tools to interface with different kinds of DBMSs, rather than specifying a single

DBMS, as shown below. In particular, SIGMA leaves the choice of access methods and data models to

tool developers.

tools having
proprietary DBMS

structural DBMS,
etc.

tools using
relational DBMS

SQL + extensions

relational DBMS

For the first version of SIGMA O/S, in order to assure the portability of SIGMA tools, the minimum

extensions to SQL language specification have been defined, i.e., standardization of data types (including
extra long character string and Japanese character string), and code assignment in interface area for the C

host language. Additional extensions will be further considered for later versions of SIGMA O/S, depend

ing on the progress of standardization of SQL/Addenduml and SQL2.

6. SOFTWARE DATA BASE (SWDB)

The objective of improving software development productivity is expected to be achieved by tools on good
0/S and workstations. Tools should work systematically and give the power to software engineers to raise

productivity all through their work.

Activities in each phase of the software life cycle are a series of processing and modifying of various types

of information associated with the software and software development. Supporting these activities through

the use of computers requires integrity of this information, and they should be passed over through each

phase without conflicts. To establish an integrated environment which- supports the requirement- analysis

phase down to operation/maintenance, a mechanism is needed for managing the information generated,

referred and modified as the life cycle proceeds through different phases. SWDB is to manage this

information systematically and effectively. SWDB is to be used directly by software engineers or indirectly

by tools. The first version of the SIGMA system, which is scheduled to be test—released to the participants

in late 1987, will not provide this mechanism. The project has two and one—half more years to enhance

and complete this task.

tools using Unix file

system directly

Unix file system

34

In the environment provided by SIGMA, software development is to be done on workstations connected

through a LAN. Under this environment, we are evaluating the following candidate architectures for

managing SWDB and personal files.

(1) Central Server and Diskiess Workstations

All information exists on a central SWDB server. The workstations do not have local database sup

port. Requests for information from workstations are sent to the SWDB server via LAN. This is good

for data security, but will suffer from performance problems when the number of workstations and

frequency of access increase.

(2) Workstation Databases and Central Server with Shared Database

Software development is done on workstations with local database support, and the SWDB server

manages only data to be shared among the workstations. Workstations request the SWDB server for

necessary information which is not on the local workstation. This architecture should be good for

performance. However, updating of the Data Dictionary on the workstations and the server will

require careful control, and the users will need to be aware of the distribution of versions of libraries

and files.

(3) Workstation Databases and Central Server with Full Database

The SWDB server maintains all information. However, each workstation has its private DBMS and

copying is done automatically, as in the virtual memory mechanism. When changes are made to the

private database, they are written back to the master SWDB. This architecture allows a greater de

gree of sharability of data among workstations, since the server will have full copies of all workstation

databases. However, it will require careful control to maintain replicated private and master data

bases. Further, performance will not be as good as (2).

7. LIBRARY MANAGEMENT TOOL AND DATA ARCHITECTURE

Until we implement SWDB, we will provide the Library Management Tool (LMT) and Data Architecture

(DA). DA will integrate tools. It defines input and output (intermediate) of tools, enabling flexible

combination of tools. DA consists of Control Information and Data Structure. Control Information is

used to categorize and systematize the DA itself; while Data Structure consists of semantics information,

plus the method for combining tools. DA makes combining tools easier, as well as maintaining flexibility

for the tools provided by many tool vendors.

LMT will support the management of design documents, source programs, object programs, test data,

JCL, intermediate results, etc., which are produced during software development. Basic functions of

LMT are access control, version management, retrieval, allocation and back—up of libraries. It also has a

function for configuration management. Load modules can be created using source file, macro file,

subroutine libraries and the information of these relations. Engineers access these objects and informa

tion using logical names of program, module and/or type of programming language. Accessing by logical

names, engineers are less annoyed where these objects and information physically reside.

LMT is further divided into some groups of tools:

(1) Library system management tools.

(2) User registration tools.

(3) Member registration tools.

(4) Member access tools.

35

(5) View registration tools.

(6) Member retrieval tools.

(7) Configuration control tools.

(8) Version control tools.

(9) Status control tools.

(10) Reporting tools.

(11) Target machine related tools.

LMT manages the following types of information:

(1) Library system management information

(2) Library system configuration information

(3) User information

—user —group —manager

(4) Member information

—member identification —access qualification
—version —status —keyword

(5) Results management information

—configuration management —version management

—status management

(6) View information

(7) Retrieval information

8. CONCLUSION

At the present time, the SIGMA project has spent one and one—half years designing the first version of

the system. This test—version will be completed within one year from now, and the next stage for modifi

cation and enhancement will follow. The proposed SWDB will be fully implemented during the next

stage. The concrete efforts for implementing SWDB, including a preliminary design, have already started,

and LMT, DA, and other tools, such as project management tools, will be integrated into this concept.

The fundamental policy of the SIGMA project is to integrate existing technologies into a practical system,

as the system is expected to be in use by businesses after the five—year development phase. Therefore, the

technologies introduced into the system should be the best ones, as well as those that would be widely

accepted by engineers and management. The selection criteria are being carefully considered. The

project is named so as to represent the “total sum” of everyone’s cooperation.

36

DAMOKLES — the database system for the

UNIBASE software engineering environment

Klaus R. Diltrich With Gotthard Peter C. Lockemann

Forschungszentrum Inlormatik an der Universität Karisruhe

Haid-und-Neu-Stra& 10-14, D-7500 Karlsruhe 1

Abstract

UNIBASE is a major joint project of a number of German companies and research institutions to

produce an integrated software engineering environment. There is little dispute these days that po
werful data management features are needed at the lower levels of systems like UNIBASE. Likewi

se, it has become clear by now that traditional database systems are in several respects inappropriate
to do the job. The DAMOKLES database system used in UNIBASE therefore has to solve a number

of problems differently than classical systems.

This paper gives a coarse overview of the UNIBASE project. It then provides a short rationale for

database support in this environment, lists the most salient requirements and briefly describes some

of the highlights of DAMOKLES. Finally, the current state of the system is reported.

1. The UNIBASE project

UNIBASE is one of four projects supported by the German Ministry for Research and Technology
that aim at the development of integrated software engineering environments (SEEs). While diffe

rent in their detailed emphasis, all projects are done in close cooperation between software com

panies and research institutions. UNIBASE includes four partners from each side. A total of some 60

professionals is involved over a four year period (1q85 — 88).

The overall UNIBASE architecture (figure 1) consists of a uniform user interface, DAMOKLES as

the common underlying database system, and a number of tools that together support the various

phases of the software life cycle in between. A number of these tools are supposed to provide — toge
ther with the user interface and the database system — the infrastructure of a software engineering
environment; they include basic facilities for

• document management (as far as beyond the scope of the database system),
• project management,

• design procedure management.

All the tools (including e.g. editors, compilers, design tools etc.) are thought to be selected as desired

by the individual installation and plugged into the general framework. Of course, it is not suffi

cient to provide the technical means for integration, and thus a number of tools really have to fit

together in order to reach the environment aimed at.

UNIBASE is designed and implemented for the UNiX operating system and its look-alikes. However,
there are only few dependencies on it and thus other operating systems are not beyond reachability.

37

2. Rationale for and requirements of database support

From an information management viewpoint, software engineering tools generate, transform or ana

lyse documents. Some of these documents are part of the product to be developed (e.g. source and

object code, manuals), others represent intermediate results of the design process and may be used as

starting points for eventual design iterations. A document is often called a representation of the

software product being designed (the design object).

The management of ~ potentially large number of design objects in a software engineering enviro

ment has to fulfill numerous requirements. First, abstracting from the document contents itself, the

following major problems have to be dealt with:

• Various interrelationships, like e.g. depends on or has been constructed from, exist between

the different representations of a design object and have to be managed consistently.
• In the design of software systems, engineers should try to reuse (parts of) existing systems and

modules where appropriate. Thus, libraries of reusable software components and simple ways

for accessing them and selecting from them have to be maintained.

• Software systems are complex systems that are always decomposed into manageable parts; their

structure usually shows some sort of hierarchy, which should be reflected and exploited in the

management of design objects.
• As a result of the development of alternative solutions for a given task, or of revisions due to

changing requirements, error corrections and so on, the “same” document exists more than on

ce, though in slight variations. Thus, we have to deal with versions of representation objects.
Eventually, the designer has to choose a configuration of the (sub-) system by selecting a consi

stent set of versions, one for each representation needed.

• The production of large software systems usually is a team effort. Management of the design
documents, therefore, has to provide for the controlled cooperation of a number of people,
which entails proper synchronization, access control and the supervised exchange of both, com

pleted and in work” documents. Also, recovery capabilities in cases of user errors or system
failures are needed.

A closer look at the documents themselves reveals a second set of requirements:

• Documents often have themselves an internal structure that may again be interpreted as a large
number of objects and relationships among them. Consider, e.g., an attribute syntax tree.

Moreover, relationships may exist between objects located in two or more different documents.

• Other documents do not show any sort of meaningful structure at all (e.g. the decomposition of

a textual description usually is not relevant for tools of a software engineering environment).
• Complex consistency constraints have to be enforced for the objects and relationships of one

document and across documents (e.g. entities imported by one module have to be exported by
some other module).

Not surprisingly, this list of requirements does not look all that different from those for other design
areas like CAD for VLSI-design or mechanical engineering LockS5I. In all these cases, powerful yet
efficient information management mechanisms are needed as basic components in order to relieve to

ols from trying to meet all mentioned requirements themselves. Business and administration appli
cations (e.g. banking, payroll processing, inventory control, airline reservation) over the years have

come to appreciate the features of database m~u~igement systems (DBMSs). The same features

should be attractive for use in SEEs, too:

• data integration (single, standardized data mangement and retrieval interface for all tools)
• application-oriented (in contrast to machine-oriented) concepts for structuring and accessing da

ta: the database thus captures more of the application semantics instead of hiding it within the

application code

38

• consistency control

• multi-user operation (synchronization)
• recovery

• authorization and access control

• data independence (each tool has only the view of the database it needs, and thus remains im

mune against structure changes caused by others, changes in storage management techniques,
changes in hardware devices, etc.)

Previous approaches to software engineering environments tended to use conventional file systems to

store their documents. As file systems do not offer most of the features just mentioned, additional

management components had to be developed. They usually concentrated on version and configura
tion control Tich85] and are not built to deal with all the other requirements.

Summarizing and interpreting the requirements gathered in the previous section from a database sy
stem point of view, we obtain the following list:

• The data model should allow the declaration and manipulation of complex objects (accounting
for their elaborate internal structure) and of arbitrary inter-object relationships; object versions

should be supported and a special domain type for the representation of unstructured informa

tion should complement the usual standard types.
• Complex consistency constraints have to be supported that may be checked at arbitrary times;

in addition the reactions to constraint violations should be explicitly definable.

• Long transactions to model meaningful units of work in the software development process

should use non-suspending synchronization techniques; special recovery features should prevent
the loss of results even though the transaction may not yet have been committed.

• Authorization and access control techniques should be tailored to the objects supported by the

data model.

• Libraries of predefined design objects, products currently under development and private data

of the individual engineers should be accessible in a uniform way.

• A hardware architecture comprising a network of workstations and possibly a database server

should be supported.
• Performance of the whole system should be high enough not to hamper the work of the softwa

re engineers.

Several projects tried to solve the data management problems of software engineering environments

and other design systems by using traditional database technology Habe82, Lint84, Nara85l. Not

surprisingly, they experienced major problems, mainly emanating from the data model Sidl8O]. In a

nutshell,

• simple record-oriented data models (e.g. relational, network) have too little expressive power to

conveniently deal with complex object-oriented application semantics; consequently, database

descriptions and access programs tend to become very obscure and tedious to handle,
• system internals are tailored towards flat records or homogeneous sets of records; thus, perfor

mance of object-oriented operations becomes extremly poor (recent results in the area of geo

metric modelling by Hard86] show that one object-oriented operation may cause around 70 re

cord-oriented operations in a network database system).

Augmenting a conventional database system by putting a more appropriate interface on top (front
end) will cure the first problem, but leaves the second one unchanged. Another popular solution,

keeping documents in files and using a conventional database system as a manager of the administra

tive information associated with them Nara85j, addresses only part one of the requirements (namely
management of interdocument relations) and even introduces new problems with regard to the con

trolled cooperation between the file system and the database system.

39

3. The DAMOKLES approach

Our design of the DAMOKLES system has been guided by two objectives, namely

• to incorporate enough functionality to provide efficient support for the requirements of software

engineering environments, but also

• to be general enough in order to support potentially arbitrary environments and to avoid a sy
stem that would be overloaded with concepts and thus too complicated to apply.

We thus decided to provide a number of rather general basic concepts that may be further refined

by additional levels of tools within the SEE. For example, the UNIBASE document management
provides a more specific concept of design documents, including specific version semantics that are

based on the DAMOKLES data model concepts.

In this chapter, we present the DAMOKLES design object data model (DODM) and briefly touch so

me other system aspects. Ditt86J provides more details and examples.

3.1 The design object data model

From a bird’s eye view, the DODM tries to achieve this balance by providing for

• structured (or complex) objects that may have versions,
• relationships between objects and/or their versions,
• attributes that associate further information to objects and relationships in a more or less struc

tured way.

DODM may be characterized as to belong to the entity-relationship class of data models, but its ex

pressive power goes far beyond the classical approaches of this class Chen7S, 1S0821. In the sequel,
we discuss each of the above constructs in turn.

Structured objects

A simple DODM object, like in classical data models (then called a record or a tuple) is composed of

a number of attributes much like a record in programming languages. One or more of these attribu

tes may be designated to be the object key and is thus required to be unique within the set of current

database objects of the respective type, at any point in time. In addition, DAMOKLES automatic

ally assigns a unique object identifier (Off)) to any object upon its creation. Attributes form the

descriptive part of an object. Structured objects also consist of a structural part: it includes a set of

subobjects (perhaps with relationships among them) that, in turn, are objects in their own right and

thus may themselves be simple or structured.

In the database schema, the descriptive part of an object type is specified as usual by enumerating
the desired attribute names and their associated value sets. For the structural part (if any), the type
names of desired subobjects are listed. As there are no further restrictions,

• recursive objects may occur by (directly or indirectly) using their own object type within their

structure,

• structured objects need not always be simple hierarchies of lesser objects but may overlap in

arbitrary ways.

Instances of structured object types originate in two ways. First, an object of a subobject type may
be created together with a given instance of (one of) its superobject types. Second, an existing sub-

object may dynamically be inserted into its superobject. Subobjeet removal, automatic subobject
deletion upon superobj ect deletion are also supported. Operators for objects further include

40

• locating in sequential order the objects of a given type,
• retrieval based on object identifiers or on attribute values (using a cursor, to be discussed in

more generality later),
• individual or joint attribute retrieval and modification,
• navigation within structural objects to the next subobject of a given type,
• locating the next structured object in which a given object participates (remember that struc

tured objects may overlap),
• copying object attributes or entire objects.

To illustrate the object concept introduced so far, consider the following rather simplified example
of describing the source code of programs (figure 2). A program has a name, an author, and various

other attributes. It may consist of a number of subprograms that may again contain subprograms.
Moreover, subprograms of common interest are collected into a library. Figure 2 shows an excerpt
of a database schema and a graphical representation using DODM concepts, together with a sample
database adhering to this schema.

Object versions

Object versions allow to represent multiple instances of the (semantically) same object under the

auspices of the DBMS; they offer a basic mechanism to deal with revisions and alternatives Ditt87].
The main characteristics of the DODM version concept are as follows:

• Versions are always associated with objects; more precisely, each version belongs to exactly one

object, its generic object.
• Both, the generic object as a whole and its individual versions may have attributes and an inter

nal structure. While the object attributes and internal structure are supposed to be common to

all its versions, the version attributes and the composition from subobjects may differ.

• Generally, versions can be treated as objects in their own right. Linguistically, their type is de

noted as <object type name> .VERSION with <object type name> being the type name of

its generic object.
• Consequently, all versions of an object have the same kind of structure and the same attributes.

They may even have versions themselves. Both, the entire object (with or without all its ver

sions) or individual versions may be referenced.

• Among the versions of one object, an implicit predecessor-successor relationship is maintained

which may optionally be linear, treelike, or acyclic; versions are numbered in creation sequence.

• Operators on versions allow to sequentially locate versions in the version graph for a given ob
ject where the order is determined by the graph structure or by version number, to locate the

generic obj ect of a given version, to insert and remove a version into/from the version graph of

a generic obj ect.

Figure 2 extends the example schema of figure 1 to include subprogram versions. Note that both

programs and libraries contain subprogram versions only and not generic subprogram objects.. Ho
wever, the data model alone (at least as far as discussed up to now) does not guarantee that exactly
one version of a subprogram is part of a program or library object (in fact, this property is essential

for programs but need not apply to libraries).

Relationships

Relationships are n-place (n� 1) bidirectional associations of objects. Each place is characterized by
a role attribute, and relationships in their entirety may possess further attributes. Similar to objec
ts, the database schema describes relationship types with corresponding instances in the database. As

an inherent consistency constraint, the user may specify for each role a minimum and maximum

cardinality for each role. It defines how often an object at least must or at most may participate in

41

a role of a given relationship type.

Relationships play a major part in defining structured objects: like subobjects, they may be included

in them. Obviously, objects of any level, generic objects and individual versions may all be used to

define relationships. Thus all kinds of inter-object or intra-object associations may be defined, and a

powerful set of operators (similar to those for objects) allows to exploit them.

Attributes

DODM provides several predefined value sets for object and relationship attributes (e.g. for integer,
boolean, character and string values). Also, a number of value set constructors exist (subrange,
enumeration, array and record type). A predefined value set deserving special attention is

LONGJIELD. Long fields Hask82J are byte strings of arbitrary length that are used to represent
document contents without making its internal structure known to the DBMS. Long field operators

provide for their manipulation in a way similar to direct access methods for files.

Further concepts

DODM includes a number of additional features we cannot discuss here in detail• for lack of space.

For example, it provides for referential integrity Date8l]: a relationship is automatically deleted if

one of the participating objects is deleted. Another example is cursors that collect a number of

otherwise distinct objects and/or relationships from the database and temporarily hold them as a

unit for computation by an application program. The contents of a cursor is determined by a com

plex search expression that incorporates associative and structural criteria. Cursors can be introdu

ced at will; they may be filled with contents determined by a search expression; the contents may

subsequently be ordered on the basis of a sort expression; the cursor may be emptied of its contents.

Usually, cursors are lost after session termination. However, they may be saved across sessions and

subsequently be restored; such permanent cursors must explicitly be removed.

The contents of cursors can be manipulated on an element-by-element or a set basis. Operators in

the first class include those for inserting or removing an existing object or relationship into/from a

cursor and for sequentially navigating through the cursor. Operators in the second class are the clas

sical set operators of union, intersection and difference.

Discussion

Principally, the object-subobject structure of complex objects as well as object versions may be re

garded as nothing but special cases of general relationships. There are at least two reasons that

justify the dedicated concepts we chose for DODM:

• Since complex objects and object versions are standard requirements for the application area of

interest, it is more convenient for the database designer to have appropriate data model coun

terparts. Also, as experience shows, the schema becomes much more comprehensible than a pu

re entity-relationship schema.

• As the DBMS knows about the special semantics, it can provide efficient implementations for

complex objects and versions (e.g. delta storage Dada84, Tich85l in the~ latter case).

3.2 Other system features

Of course, there are more concepts in a database system than just the data model. Most of them ha

ve to be reevaluated for DBMSs that are to be used in design environments because the classical

solutions are not well-suited. We sketch just a few of the techniques we pursue in DAMOKLES.

42

Multiple databases

The classical concept of a single integrated database is inappropriate for design applications. For

one, design processes involve a high degree of trial and error, return to earlier stages, test of

hypotheses, and they may extend over days, weeks or even months. Consequently, design data often

tend to be transient, volatile, tentative, and tied to individual designers. Such data — usually ex

pressed by the notion of revision — should be kept in the private databases of designers. Only design
data that have been released should be transferred to public databases which may themselves be

organized on two or three levels such as team databases or a project database K1ah85]. Once de

signs have been completed and are not subject to further modification or even maintenance, they

may be transferred to archives. Software objects that are suited for reuse in other projects or for

separate marketing, or that have been acquired from outside sources, may be kept in separate libra

ries. Consequently, an SEE will usually deal with several databases.

DAMOKLES handles multiple databases, subject to the following rules:

• An object is a member of exactly one database; however, copies are allowed in other databases.

• Relationships may be established between objects in different databases. However, the rela

tionship attributes are confined to one of the involved databases (figure 4).
• All databases satisfy the same (global) DODM schema; however, the schema of an individual

database may be just a part of the global schema. We note in passing that subschemas (views)
may be defined as in conventional systems.

Long transactions

Transactions in traditional DBMSs suppose that work units are of short duration and involve small

quantities of data. Thus, the traditional mechanisms implement synchronization strategies on the

basis of suspending transactions, complete rollback on transaction failure, and the like. By contrast,
work units in design applications take considerable time and may involve complex data structures.

Appropriate mechanisms for these long transactions Hask82J are based on the check out/check in-

paradigm: to start a long transaction, the user must check out the desired objects to his private da

tabase; after completion of his work, he checks them back in. In the meantime, others may still re

ad the (previous state of) the objects in the source database, but cannot check out these objects
themselves. However, they may always create new versions (which incidentally is what they do

when working without database support; note, therefore, that versions should only be entered into

the database in a well controlled way).

As for recovery, we provide a save point facility that allows to define application-specific database

states a designer can reset his transaction to (instead of losing the results of a longer working period
as would be the case with present-day transaction mechanisms).

Other features

To provide for the cooperation of software engineers in teams, we prefer to use an extended access

control facility based on the concept of structured objects (including individuals, groups, and

public’s as subjects) instead of exploiting complexly nested transactions Kim841. A basic

mechanism to be used, among others, for the enforcement of complex consistency constraints (outsi
de the data model) is also included Ditt85J. It relies on arbitrarily definable events that trigger
user-defined actions. This allows to check for consistency whenever appropriate, and to react to vio

lations of constraints in a dedicated manner.

43

4. Conclusions

A prototype system supporting the full DODM has been completed just recently (January 1987).
First experience has been gained by some companies who developed DODM schemas for various soft-

ware tools. Not surprisingly, it took some effort to teach the concepts to people that were not used

to think in terms of data models (incidentally, something that has also been observed for the pure

entity-relationship concept!). However, the examples completed to date did not show any lack or su

perfluity of DODM concepts, and alter some training, engineers seem to do a good job in using the

data model.

Up to now, there is little experience in using database technology in software engineering environ~~

ments. With our experiments, we hope to be able to demonstrate that these systems and in turn

their users can really benefit from incorporating an adequate DBMS.

While there are already advantages in integrating today’s tools (even if they can hardly exploit the

facilities for internally structuring the objects), we foresee major simplifications in the construction

of future tools:

• Revision control tools and the like may become integral parts of the DBMS instead of being
placed on top and thus render a really uniform object management interface for the builder of

the “reaV’ life cycle-supporting tools.

• Where appropriate, tools may conveniently use common database structures instead of redun

dant file contents that need additional transformation. In addition, the definition of complex
data structures can be shifted to the DBMS (where it is done once) instead of repeating it in nu

merous tools.

• When defining object structures in detail to the database, DBMS mechanisms may be used to

collect useful statistics (software metrics, Perl8l]), enforce consistency constraints (e.g. ~import
quantities of a module have to be exported by some other module’) and so on.

• Moreover, since a system like DAMOKLES also allows to define schemas resembling those of

classical commercial DBMSs (namely by just not using complex objects, versions, etc.), the sa

me DBMS may even be used as part of a software system built by using the software enginee

ring environment.

Efficient operation is the main requirement for making DBMSs viable parts of complex systems.
We are sure that the techniques currently developed by the database research community are promi
sing steps towards this goal.

5. References

Chen76] Chen, P. P.-S.: The Entity-Relationship Model — Toward a Unified View of Data. ACM

Transactions on Database Systems, Vol. 1, No. 1, March 1976, pp. 9-36.

IDada84l Dadam, P.; Lum, V.; Werner, H.-D.: Integration of Time Version8 into a Relational Da

tabase System. Proc. VLDB 10, 1984, pp. 509-522.

Date8ll Date, C. J.: Introduction to Database Systems. 3rd edition. Addison-Wesley, 1981.

Ditt85] Dittrich, K. R.;~ Kotz, A. M.; Millie, J. A.: Complex Consistency Constraints in Design
~Databases. Technical Report No. 2, FZI Karlsruhe, 1985.

DittS6] Dittrich, K. R.; Gotthard, W.; Lockemaun, P. C.: DAMOKLES — A Database System
for Software Engineering Environments. Proc. mt. Workshop on Advanced Program
ming Environments, Trondheim, Norway, June 1986.

DittS7I Dittrich, K. R.; Lone, R. A.: Version Support for Engineering Database Systems. To

appear in IEEE Trans. on Software Engineering, 1987.

Habe82] Hãbermann, N. et a!.: The Second Compendium of Gandalf Documentation. Department
of Computer Science, Carnegie-Mellon University, Pittsburgh, May 1982.

44

Härd86] Harder, T. et al.: KUNIC1AD — Em datenbankgestfltztes geometrtsches Modellierungssy
stem fur Werk8tflcke. Universität Kaiserslautern, Report 22/86, January 1986.

fHask82J Haskin, R. L.; Lone, R. A.: On Extending the Functions of a Relational Database Sy
stem. Proc. SIGMOD (ACM), June 1982, pp. 207-212.

HendS4] Henderson, P. (ed.): Proc. ACM SIGSOFT/SICPLAN Sympo8ium on Practical Software
Engineering Environments. SIGPLAN Notices, Vol. 19, No. 5, May 1984.

fISO82] J. J. van Griethuysen (ed.): Concepts and Terminology for the Conceptual Schema and

the Information Base. International Organization for Standardization,
ISO/TC97/SC5/WG3, publication number ISO/TC97/SC5 - N 695, 1082.

K1ah85] Kiahold, P. et aL: A Transaction Model Supporting Complex Applications in Integrated
Information Systems. Proc. SIGMOD 1985, pp. 388-401.

Kim84] Kim, W.; Lone, R. A.; McNabb, D.; Plouffe, W.: A Transaction Mechanism for
Engineering Databases. Proc VLDB 10, 1984, pp. 355-362.

Lint84J Linton, M. A.: Implementing Relational View8 of Programs. In: HendS4I, pp. 132-140.

Lock85] Lockemann, P. C. et al.: Database Requirements of Engineering Applications — An Ana

lysis. Proc. GI-Fachtagung Datenbanksysteme in BUro, Technik und Wissenschaft,
Karisruhe, Marz 1985 (in German). Also available in English: Universität Karisruhe,
Fakultat fur Informatik, Technical Report 12/85.

Nara.851 Narayanaswamy, K.; Scacchi, W.; McLeod, D.: Information Management Support for
Evolving Software Systems. Technical Report USC TR 85-324, University of Southern

California, Los Angeles, CA 90089-0782, March 1985.

Perl8l] Penis, A. et al: Software Metrics: An Analysis and Evaluation. MIT Press, 1981.

Sidl8O] Sidle, T. W.: Weaknesses of Commercial Database Management Systems in Engineering
Applications. Proc. 17th Design Automation Conf., Minneapolis, 1980, pp. 57-61.

Tich85] Tichy, W. F.: RCS — A System for Version Control. Software Practice and Experience,
Vol. 15, No. 7, 1985, pp. 637-654.

Acknowledgement

K. Abramowicz, C. Eick, R. L~.ng1e, T. Raupp and T. Wenner together with the authors have been

involved in determining the requirements and designing the DODM. We are also grateful to our

project partners in UNIBASE for their support and cooperation.

USER INTERFACE

— — — —

- - -

I I I
TOOLS

I I I
- -

DATABASE

(DAMOKLES)

Figure 1 Overall UNIBASE architecture

45

OBJECT TYPE program
ATFRIBUTES

name STRING (30]
author : STRING(20]

STRUCTURE IS subprogram
END program

OBJECT TYPE library
ATIRIBUTES

name : STRING (30]

STRUCTURE IS subprogram
END library

OBJECT TYPE subprogram
AT1RIB~T1ES

name : STRING(30]

author

STRUCTURE IS subprogram
END subprogram

.1

P1

Si

I I

I I

I I

I I

I I

I I

I I

• I

I I

I I

I I

I $

I I

I I

L

Figure 2 An example DODM schema together with a database adhering to it

program

subprogram

I..

P2

S4

~~~~.1

S8

P3

46



OBJECT TYPE program
ATIRIBUTES

name : STRING (30]

author : STRING (20]

STRUCTURE IS aubprogram.VERSION
END program

OBJECT TYPE library
ATIRIBITIES

name : STRING (30]

STRUCTURE IS subprogram.VE2WION
END library

OBJECT TYPE aubprogram
ATIRIBIYIES

name : STRING (30]

author

V~SIONS LINEAR

(ATrRIBU1ES

vera_name : STRING (30]

vera_author

)

STRUCTURE IS subprogram.VERSION
END aubprogram

FIgure 3 An example DODM schema (cf. fig. 2) involving versions

-

export

library database

Figure 4 Relationships extending across database boundaries

design database

module Lii

module L2

~Hmo~eL31

47



Database Issues in Software Requirements Development

by Terry A. Welch and Michael D. Konrad

International Software Systems, Inc.

12710 Research Blvd.

Austin, Texas, 78759

Rb st rac t

The requirements problem for large systems is the need to ensure that

the mission needs of end—users are reflected In the technical

requirements descriptions which guide development. The process of

definition, analysis and revision of requirements descriptions involves

a support environment in which two database engineering problems arise:

(1) management of the multi—dimensional relationships that exist within

the requirements descriptions, and (2) support for multiple views Into

the requirements as an aid to their creation and evaluation. We

conclude that a requirements data base is an instance of a design data

base, and presents similar implementation problems.

1. Introduction

To understand the database issues involved In supporting requirements
activities, we characterize the requirements~ process, identify the

entities and relationships that need to be managed, and the database

usage implied. Section 2 defines the requirements engineering process.
Section 3 defines the key entities that would need to be managed by the

data base that would support the requirements engineering process.
Section 4 discusses data access demands during requirements development.

This discussion presents requirements development as a rather formal

activity, as would be appropriate when working on a very large target
system. In smaller design efforts many of the activities described here

become informal, intermixed with implementation actions. Likewise,

requirements need to be more completely described for large systems,
while present practice for smaller systems leaves much of this data

undocumented. All of the activities and data covered here, however,

appear to some extent in all cases, and perhaps will be more formally

approached when tools become available to reduce the human effort needed

to achieve that.

2. The Requirements Engineering Process

The three major types of information we consider in the process are:

Goals, Requirements~ and Solution Architectures. Goals are expressions
of objectives and needs, generally mission—related, and not necessarily
feasible or consistent with each other. Mission users are the primary
source. Requirements are a consistent set of Goals, revised so as to be

48



feasibly realizable within the available resources (especially time,

money, and expertise). \ A Solution architecture is a model of the target
system as a composition,) of parts that satisfy the requirements.

We describe the process by means of a simple scenario: a “requirements
engineer” is required to produce a set of requirements for a system
called the “target/system”. The target system must support the

different roles of jIts users and administrators. Thus there will be

different expectations, or “viewpoints” of what the system should do, of

how well it should be done, and within what cost.

Through interviews with target system users/administrators and through
references to documentation of similar, existing systems and their

environments, the requirements engineer collects and organizes
information on the operational context of the target system. The

resulting information forms a domain model of the environment of the

target system, providing the terminology and context through which user

needs can be expressed, forming Goals. For each viewpoint, there will

be one set of goals, and they should be consistent and complete within

that viewpoint.

Goals are often inconsistent across viewpoints or infeasible. The

requirements engineer can attempt to resolve such difficulties through
further user interviews. He has other methods available to him as will

be discussed below. The merged revised goals define the requirements.

Through his interviews with users, the requirements engineer identifies

and documents scenarios that illustrate typical target system behavior

and/or desired responses to stressful input. Scenario construction and

analysis may aid stating the nonfunctional requirements, In particulars
performance and reliability. Scenarios also become part of the

requ I rements.

During the creation of goals and requirements, their consistency and

completeness can be checked, to detect internal contradictions and

lapses in coverage. While tools to aid in this will be under

development in the future, these checks are presently manual operations.
The requirements engineer might perform a walk—through, analyzing the

dataflows and/or stimuli/responses through the various viewpoints.

At this point, the requirements engineer might construct a solution

architecture and perform analysis on it to gain better insight into:

target system interfaces, functions, performance and reliability, and

Implied development cost and risk. The requirements engineer creates a

solution architecture by specifying how the target system is composed of

parts (e.g. objects, functions) and how those parts use resources (e.g.
people, software, hardware). Reuse of prior designs and resource

models, with modifications, will often simplify this process.

From the solution architecture, the requirements engineer can specify a

prototype or other simulation. He executes a prototype against canned

or user—controlled scenarios, eliciting, user comments on what should be

changed. Simulations also provide performance and consistency
information.

49



As a result of the insights gained through analysis and prototyping, the

requirements engineer determines the revisions to be made to the

requirements. There may be several iterations of prototype, analyze,
evaluate and reformulate before the requirements have stabilized.

3. Requirements Data Characterizations

Requirements data can be structured in many ways, so the following
characterization should be viewed as typical, not definitive. The size

of the various data sets Is very application dependent, with the amount

of information formally stored growing non—linearly with the size of the

system being specified. That is, larger systems not only have more

components but they also have more levels of interconnection description
so that each module can fit within the scope of human grasp. Further,

each interface must become more formally defined as the development team

gets larger and verbal documentation becomes less efficient.

System descriptions can occur at three levels of definition. First,

context information or domain information states the common knowledge
about the environment in which the system must operate. This would

include usage of prior systems, physical constraints, war stories,

available technology, etc. Second, the requirements statements

themselves specify a region of capability which would make an acceptable
system. These come at several levels of definition, reflecting goals
statements, viewpoints of individual users, and system requirements as a

consolidation of those various inputs. Third, a solution architecture

which may satisfy the requirements is stated in terms that reflect an

actual prospective implementation. Models built for simulations

illustrate a form of solution description.

A system description can be viewed as having three components. First, a

functionality description indicates what kind of logical results are

produced by the system regardless of how it is implemented. Second,

constraints on implementation are given, including timing, cost,

reliability, etc. Third, scenarios of expected usage show how the

system should react to typical or stressful input conditions. These

three components are not orthogonal; frequently they provide alternative

formulations of the same requirements. As a trivial example, consider a

sort program; the functional description might say that outputs are

ordered In Increasing order, the performance constraint would specify an

acceptable distribution of execution times, and a typical scenario shows

that inputs ordered in decreasing order would be converted into outputs
In increasing order.

The functionality description is, at all levels of definition (context,

requirements, solution), typically a hierarchical construction

reflecting multiple levels of detail. For example, in a large command

and control system we expect at least six levels of abstraction from the

top level of communications between major system components down to the

human factors of an operator viewing a monitoring display. The

functional description has three intertwined dimensions of data types,
sequencing of events, and calculations; each of these is best viewed

50



hierarchically to let the viewer determine the amount of detail visible

at one time. Functional specifications may often have a graphical
display, as in dataflow diagrams.

One example of functional description, the data dictionary, can

illustrate some characteristics of requirements information. Type
information for program variables, which helps form the data dictionary
of a large application, is typically described as a hierarchical

composition using three operators: record, array, and case (or union or

variant or enumeration, depending on your favorite language). At the

functional specification level for a large system, a type description
can become complex with multiple levels of description. Reports and

databases typify the more complex items. Data types are defined in

terms of other data types, all of which may be used at different points
in calculations and in a sequence of events, so the data type hierarchy
is arbitrarily interconnected with the other hierarchical descriptions
of target system functionality.

The constraint descriptions also entail multiple levels of detail. For

example, a performance constraint at one level is stated as an average

response time, but that needs to be broken down into an ensemble of

response times for different events, and allocated over a set of

component delays In a specification. Delay constraints tie into the

functional description in a variety of ways. These and other

constraints are often vague at one level of detail and extremely
specific in other places.

Scenarios follow the same pattern, being compositions of several levels

of detail, which tie rather arbitrarily into the functional and

constraint descriptions. For example, the story of processing a

transaction has component stories such as file updates, which include

recovery provisions and concurrency synchronization, which in turn have

a variety of possible component scenarios. Sometimes the internal

structure of a scenario description matches the functionality
decomposition, and sometimes It does not.

The common ingredient seen in the above descriptions should be clear.

There Is a great network of relationships between description objects
which is unpredictable in pattern. For example, a single data type may

be related to several things: other data types, data instances,

functions, scenarios, integrity constraints, etc. All of this can

happen at several levels of usage, so that a data type for some

particular report will be vague in a goals statement, be constrained in

a requirements statement, and defined in full detail in a solution.

4. Data Access Patterns

Requirements data must support three types of activity: end—user

interpretation of functionality~ developer interpretation of what has to

be built, and analysis activity to bridge the difference between the

first two as the requirements are being constructed. We presume that

these activities will be carried out by teams of people working on a

network of workstations.

51



The user of the target system will need to see the impact of

requirements statements from a variety of viewpoints which often

correspond to levels of functional abstraction. For example, one type
of person examines the processing of a certain type of transaction while

another person is interested in the flow of multiple transactions

through a specific processing step. Different viewpoints are needed to

review human interfaces, system security, communications capacity, etc.

These users often see the system in stimulus—response terms, asking how

the system will respond if hypothesized inputs are applied.

The developer of the target system is concerned about functional

complexity of system components and about implementation performance.
This requires seeing all system functionality which impacts a particular
facility such as a database or a processor. Critical paths for speed or

reliability must be determined because those components are more

difficult to build. Often these internal system structures are not

prescribed by the requirements, so developers investigate a variety of

partitionings of functions to find a reasonable approach.

The systems analyst must translate user views into developer views and

vice versa, while maintaining the consistency and completeness of the

requirements descriptions. This entails attention to system state and

to data structures. Constraints on parameters such as response time and

reliability must meet a variety of user goals while not making the

system unreasonable to build. The analyst will use several types of

tools: static analysis, such as syntax checks; report generation to

extract data for different viewpoints; prototypes; simulations; etc.

These serve both to debug the requirements descriptions and to translate

requirements into an operational form which is meaningful to potential
system users.

The clear Implication of all this Is the need to retrieve requirements
data from a variety of orthogonal views. Each of these views will be

presented as a hierarchical composition of data elements, as a way of

managing complexity. For example, a discrete event simulator will need

to access the interconnectivity of components In a specification at

several levels of abstraction in order to relate low—level delay
estimates to high—level performance goals.

Since multiple people will be working on a particular set of

requirements, and changes will be constantly occurring~ good facilities

are needed to manage versions of components and configurations of

interconsistent versions.

5. Conclusions

From a database management point of view, requirements development locks

very much like other engineering and design activities. The system Is

characterized by multiple relationships between description objects and

multiple views for data access. The descriptions are Inherently
hierarchical In several dimensions.

52



An effective query language must combine the capabilities of select,

project, and relate. Select retrieves a set of objects having common

attributes. Project determines the amount of related information,

usually hierarchical, which is provided for each object. Relate (or

join or navigate) causes a shift in viewpoint following relationships
from an original object set.

The traditional data models used for commercial transaction processing
have proven inefficient for design data of the type encountered in this

application. A hierarchical model poorly supports access to data across

multiple views. The network model does not provide easy selection of

sets of similar objects. The relational model is poor at retrieving
hierarchical projections. When the best features of each are combined

(hierarchy, pointers, sets), the result is clearly different than any

of the prior models. Interesting work is being carried out on object—
oriented or semantic—net type models, and maybe these will prove more

appropriate.

6. Acknowledgement

This work was supported by a Rome Air Development Center contract on

rapid prototyping (No. R30602—85—C—0129), which has included intensive

investigation of the requirements development process. The authors have

also benefited from discussions with members of the Lockheed Software

Technology Center and other members of a panel brought together to

participate in this RADC effort.

7. Bibliography

1. “Requirements Engineering Environments: Software Tools for Modeling
User Needs”, special issue of IEEE Computer, April 1985, Rzepka and

Yutaka, editors.

2. Information Management for Engineering Design, R. Katz, Springer
Verlag, 1984.

3. “Engineering Data Management”, special issue of IEEE Database

Engineering, June 1984, R. Katz, editor.

53



NEPTUNE: A HYPERTEXT SYSTEM

FOR SOFTWARE DEVELOPMENT ENVIRONMENTS

Norman M. Delisle

Mayer D. Schwartz

Computer Research Laboratory
Tektronix Laboratories

Tektronix, Inc.

P.O. Box 500

Beaverton, Oregon 97077

ABSTRACT

We describe the functionality of the Neptune hypertext system, and show how it can

provide a complete repository for all technical information associated with a software

project. Complete version histories are maintained for all forms of documentation.

Related portions of separate documents can be interconnected allowing traceability
among the phases of the development cycle. Special mechanisms are provided for

configuration management and supporting for collaboration among teams of software

developers. Examples of several software development environments built on top of

Neptune are presented.

INTRODUCTION

Our primary motivation for building the Neptune hypertext system was to provide information

management support for software engineering environments. Recent proposals describing project data

base support for software engineering environments Hun8 1, Pe585] repeatedly state the need to logically
link together documentation, and source code; the need for making annotations for recording explanations
and assumptions; and the need for good version management. Neptune meets all these requirements.

Using Neptune, all documentation, code, project management information and any other data asso

ciated with a software project is stored in a single data base. The documentation typically includes

requirements, specifications, designs, source code, and tests. The project data may also include informal

information such as explanations about why a particular design was accepted or rejected, or assumptions
made about the operating environment. Neptune provides a uniform framework for recording a complete
software development history.

Neptune is based on the notion of hypertext. Hypertext as defined by Nelson is non-sequential writ

ing Ne18 1]. In a hypertext system, documents consist of a collection of nodes connected by directed

links. A node by itself is similar to a piece of normal text — the links between nodes give hypertext its

non-linear aspects. The nodes of a hyperdocument are not, however, restricted to be text. They can

represent graphical images, combined text and graphics, digitally encoded voice, or even an animation.

Links can be used to connect the set of nodes that form a document or they can be used to denote rela

tions between portions of a document or two separate documents. For more information about hypertext
systems, there are several good surveys available Con86, YMD85].

54



Neptune provides several features not found in most hypertext systems. These features include ver

sion histories, attributes, queiy mechanisms, and a partitioning mechanism called contexts. This paper
will focus on the functions of Neptune that specifically support software development environments.

Additional information about Neptune includes a complete description of its functionality DeS86a] and a

rationale for the design of contexts DeS86b}.

CASE DATA BASE REQUIREMENTS

Traditional database management systems have weaknesses when applied to Computer Aided

Software Engineering (CASE) systems. The most glaring weakness is the relative lack of support they
give to version control and configuration management, though Katz and Lehman KaL84} describe an

experimental system that attacks one aspect of the version control problem. Another weakness is that the

traditional models (hierarchical, CODASYL, and relational) do not map well to the kinds of data that

need to be stored in a CASE system. However, the entity-relationship model, and other semantic models,

seem to provide a better fit BaK85]. At the very lowest levels a relational model can be useful, possibly
at the expense of performance Lin84].

To support a large CASE application, many different kinds of data, both textual and graphical, need

to be kept. This data includes source and object code, many forms of supporting documentation and

highly structured information such as symbol tables and abstract syntax trees. Perhaps no single data

model can meet the diverse demands of all the different types of information associated with a software

project. However, we believe that hypertext can provide an excellent coarse-grain data model for CASE

systems. In particular, the Neptune hypertext system can provide for making arbitrary connections

between pieces of data, for interactively viewing and traversing the hypertext database, for accessing ver
sion histories, and for supporting collaboration among development teams. Additionally, Neptune serves

as a common layer on top of which a wide variety of software engineering tools can be built.

AN OVERVIEW OF NEPTUNE

As illustrated in Figure 1, Neptune is designed as a layered architecture. The bottom level is a

transaction-based server named the Hypertext Abstract Machine (HAM). The HAM presents a generic

hypertext model which provides storage and access mechanisms for nodes and links. The HAM provides
distributed access over a computer network, synchronization for multi-user access and transaction-based

crash recovery.

Additional layers of functionality are built on top of the HAM. Typically, one or more application
layers are built on top of the HAM and a user interface layer is built on top of the application layers. The

application layers consist of programs that automatically manipulate or transform hypertext data. In a

CASE application this layer could include high level language compilers or document processors. The

user interface layer can provide a windowed interface for browsing and editing hypertext data and for

controlling application layer programs.

When we speak of Neptune, we are generally referring to the functionality provided by the HAM.

The HAM defines operations for creating, modifying and accessing nodes, links and contexts. It main

tains a complete version history of the hypergraph and provides rapid access to any version of a hyper

graph. The HAM makes no restrictions about the contents of nodes; at the HAM level a node just con
tains binary data. Applications provide the inteipretation for the data.

Associated with each end of a link is a numeric value called an offset. If a node contains text, the

offset can be interpreted as either a character position within the contents of a node. If the node contains

graphics, the offset could be interpreted as a pair of numbers representing either Cartesian or polar coordi

nates.

55



HyDertext Abstract Machine

Apptlcstlon_Proqrsms
_________

r i~

procsdur. csii tnt.rfec.

Atomic oper~tIons (trensections)

.G~ á~~t

Fits sgstem

Figure 1. Neptune System Architecture

An unlimited number of attribute/value pairs can be attached to a node, link or context. The attri

bute is a name; its value is either a string of bytes or a numeric value. A complete version history is

maintained for attribute values.

Two basic query mechanisms are supported by the HAM: traversal and filter. The traversal

mechanism, linearizeGraph, starts at a designated node and follows a depth-first traversal of out-links

ordered by the links’ offsets within the node. The filter mechanism, geiGraphQuery, directly accesses a

set of nodes and their interconnecting links. Both of these mechanisms use predicates based on

attribute/value pairs to determine which nodes and links satisfy the query.

The attribute mechanism is particularly useful for building application layers. As an example, sup

pose a user (or an application program) adopts the convention of attaching an attribute called document to

each node. In a CASE system its values could include requirements, design, sourceCode and objectCode.
The node visibility predicate ‘document = requirements’ could then be used in a getGraphQuery opera
tion to access only those nodes that are part of the specification document.

Contexts are a partitioning scheme designed to support multi-person cooperative efforts. Each user

can derive a private view of the hypertext graph and modifications made in this view are not visible out

side the view. When a set of changes are completed, they can be released to other project team members

by merging the private view with shared ‘master’ views. Conflicts may arise if other authors have

modified the master since the time the private view was created. Neptune provides support for merging
contexts including detecting conflicts and highlighting differences between contexts DeS86b].

NEPTUNE-BASED CASE SYSTEMS

Two software development environments have been built using the Neptune system. The first is an

environment for developing Scheme programs; the second is an enhancement to the Smalltalk-80 pro

gramming environment. In this section we will briefly describe both of these environments and show

how the capabilities of Neptune were used.

56



A Programming Environment for Scheme

The Scheme programming environment uses Neptune to manage both documentation and Scheme

source code. The environment consists of three parts: a user interface implemented in Smalltalk-80, a

Scheme interpreter and the Neptune server. Typically the user interface and interpreter nms on the local

workstation and the Neptune server runs on a remote host, accessed over a local area network.

Scheme is a dialect of Lisp ReC86]. Scheme source code consists of a collection of procedure
declarations. Scheme itself provides no provisions for modularization of encapsulation. To partially
compensate for this language deficiency, we allow procedures to be categorized. A Scheme Source Code

Browser, shown in Figure 2, supports editing of and navigating through these categories.

cspFront: Scheme arowserl
.~sub—trace

scanner trace
semantics unlabeled—process
sets

•(ermnsrerIq

term •-‘ factor term

—, factor “l~ term

—, factor and~ term

—, factor

(define (term)

(let ((factor—tree (factor)))
(let ((000t (car correntlokenfli
(cond ((eq? nest ~%star)

(begin (stool (make—binary—op ‘arnuis factor—tree (termlfl)
(leg? neat ~‘soIash)

(begin (scan) (make—binary—op ‘‘diva factor—tree (termfl)l
((eq? eeoc “sand)

(begin (scan) (make—binary—op ‘vand factor—tree (term))l)
(else factor—tretill))

Figure 2. A Scheme Source Code Browser

This browser has two panes at the top; the left pane contains a list of category names, the right pane
has a list of Scheme procedure names. When one of the categories is selected in the left pane, a list of

procedures defined in that category appears in the right pane. Categories and procedures can be created,

modified or deleted using this browser.

A hypertext node is used to store each category and each Scheme procedure. Attributes are used to

store the names of the objects and to identify how each object is used (i.e. whether the node is a category

or a procedure). Each category node has links to all the procedures in the category. When the browser is

first opened, a getGraphViaAttributes operation is performed that retrieves all the nodes that act as

Scheme Categories (i.e. have the ‘SchemeCategory’ attribute defined). This operation returns a list of

names of scheme categories which is displayed in the upper left pane. When one of these categories is

selected a traverseGraph operation is performed rooted at the selected category node. This operation
returns a list of names of scheme procedures which is displayed in the upper right pane. When one of the

procedures is selected, its text is retrieved from Neptune and displayed in the lower pane. This pane acts

as an editor, new versions of the procedure are created each time the user performs the editor’s ‘accept’
operation.

The Scheme environment takes advantage of the hypertext model by allowing documentation to be

intertwined with source code. This technique was inspired by Knuth’s Literate Programming Knu84].
In Knuth’s system the documentation and code are physically intertwined in the same file and utility pro
grams are available to extract either. Using hypertext, the documentation and code are stored indepen
denfly, with links used to store interconnections; utility programs are available to combine the

57



documentation and code. The hypertext approach has the advantage that the author can directly edit the

separated views rather than being forced to deal with the physically interwined views.

A Source Code Manager For Smalltalk-80

A second CASE application for Neptune is a Smalltalk-80 source code manager. The standard

Smalltalk-80 environment Go184] has two major deficiencies with source code management: inadequate
version management 1, and no integrated mechanism for sharing source code among teams of program
mers. To improve the support in these areas we are integrating Neptune with the Smalltalk-80 environ

ment. Neptune provides storage and retrieval of versions of Smailtalk source code.

lIOn IrOwserl
Stem-Support
stem-Olenges
stem—Co,npfter
Stem—RelelSIng
es—Streams

OS—Interface

~

——.--_~_~ Igraph~erations I eeUact6WIbs4cV~aes:
,S~_.. toys in~cralloios halted
———————————~ LC~setOP$fl&n, ~e:ngArgwne.th

~
~ dass

RCIU Ills 8:1th47 pm
88111/15 8:12:41 pm
SPIll/IS 1:12:05 pm
86/I I/IS 8:10:12 pm
8611 III 3:17:08 1.10

86/12116 6:06:40pm

~
86/I 1/15 8:10:47 pm
86/lI/IS 8:12:41 pm
80111115 8:12:05 pm
86/11115 8:10:12 pm
86/Il/S 3:5705 urn

~6tStIIflgM’iumenI
•.swer I new thing th* I, determined by reading the stream. tromunlz.

mpst fo,n,d K as two-byte ette Sold followed by the nequence of byte,.

liii
I • fromUnix neztNumbert 2.

a thing new: I.

fromUnlo~ I ~: I
SI

ietStiingArgument
Mswe, a new sUing that Is determined by reading the stream. fromUnle.

0rpm fOlmal Is as two—byte size field followed by the sequence of bytes.~

1111

i • fromUnl~ nestNwnben 2.

5 thIng aew:l.

~
en

Figure 3. A Smalitalk Version Browser

Figure 3 shows a Smailtalk Version Browser. This window allows the programmer to view two

versions of source code with differences highlighted. This browser is based on the standard Smalltalk-80

system browser. The top four panes allow navigation through the class structure; the bottom panes are

used for editing and viewing source code fragments. In the version browser the bottom panes have ver

sion time lists on the left side. The code displayed in the right bottom pane is the version corresponding
to the version time selected in the left bottom pane.

The Smailtalk source code is mapped into the hypertext model by separating each code fragment
that can be edited independently into its own node. Thus a node contains a text fragment representing an

entity such as a class definition, a method definition, a category list or a class comment. Links are used to

represent the static structure of the class denoting concepts such as the protocols in a class, or the methods

in a category. With this system we’ve built some of our largest hypertext databases filling almost ten

megabytes of disk space with about 10,000 nodes and links.

Current research on the Smalltalk-80 source code manager focuses on support mechanisms for col

laboration among Smalltalk programmers. We plan to use Neptune’s contexts to provide both private and

shared source code workspaces.

Limited access to old versions is sometimes possible via the crash recovery mechanism.

58



SUMMARY

We have shown how hypertext can provide an appropriate coarse-grain data model for software

engineering environments. We have briefly described Neptune, a hypertext system currently being used
in software development environments research. We also described two examples of this research: a

Scheme programming environment and a Smalltalk-80 source code management system.

Although neither of these languages is what you might call mainstream, the primary focus of both
of these projects was to make the language and its associated development tools more suitable for pro
gramming in the large. The concepts used in these efforts are also applicable to CASE environments for

languages like Ada or C.

In summary, hypertext provides a repository for all the information associated with a software (or
hardware) project. It allows arbitrary structuring of the information, and it keeps a complete version his

tory of the information and the structure. In Neptune, we have provided a hypertext machine that is par
ticularly suited for building CASE systems.

REFERENCES

BaK85] Batory, D.S. and Kim, W. Modeling concepts for VLSI CAD objects. ACM Transactions on

Database Systems 10, 3 (Sep. 85), 322-346.

Con86] Conklin, J. A Survey of Hypertext. MCC Tech. Report STP-356-86, MCC, Austin, Texas,
October, 1986.

DeS86a] Deisle, N. and Schwartz, M. Neptune: A hypertext system for CAD applications. Proc. ACM
SIGMOD ‘86, (May 1986) 132-143.

DeS86b] Delisle, N. and Schwartz, M. Contexts — A Partitioning Concept for Hypertext. Proceedings
of the Conference on Computer-Supported Cooperative Work, Austin, Texas, December, 1986.

Go184} Goldberg, A. Smalltalk-80: The interactive Progra,nming Environment. Addison-Wesley Pub
lishing Company, Reading, Mass. 1984.

Hun8 1] Hunke, H. editor, Software Engineering Environments, North Holland, Amsterdam, 1981.

KaL84] Katz, R.H. and Lehman, T.J. Database support for versions and alternatives of large design files.
IEEE Transactions on Software Engineering SE-lO, 2 (Mar. 1984), 19 1-200.

Knu84] Knuth, D.E. Literate Programming. Computer Journal 27, 2 (Mar. 1984), 97-111.

Lin84] Linton, M.A. Implementing relational views of programs. Proceedings of the ACM

SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Development
Environments, Pittsburg, PA, April 1984, published as SJGPLAN Notices 19, 5 (May 1984), 132-
140.

Nel8l] Literary Machines. T.H. Nelson, Swarthmore, PA., 1981.

IIPeS85] Penedo, M.H., and Stuckle, E.D. PMDB — a project master database for software engineering
environments. Proceedings of the 8th international Conference on Software Engineering, Aug.
1985, 150-157.

ReC86] Rees, I. and Clinger, W. Revised report on the algorithmic language Scheme. SIGPLAN
Notices 1, 12 (Dec. 1986).

YMD8S] Yankelovich, N., Meyrowitz, N., and van Dam, A. Reading and writing the electronic book.

Computer 18, 10 (Oct. 1985), 15-30.

59



INFORMATION SCIENCES - AN INTERNATIONAL JOURNAL

CALL FOR PAPERS

SPECIAL ISSUE ON

DATABASE SYSTEMS

Research papers are solicited on all aspects of database management for a special issue of the

‘Information Sciences - An International Journal,’ to be published early in 1988. Topics of

interest include, but are not limited to, the tollowing:

• Distributed Database Operating • Object Oriented Databases

Systems
• Multi-media Databases

• Concurrency Control and

Deadlock Handling • Query Optimization

• Performance Ana’ysis and • Knowledge Bases

Modeling of Database Systems
• Database Machines and

• Fault-Tolerant Databases Main Memory Databases

• Engineering Databases • Database Security

• Heterogeneous/Federated Databases • Data Models

Submit four copies of a complete manuscript by August 1, 1 987 to the guest editor:

Ahmed K. Elmagarmid

Computer Engineering Program

121 Electrical Engineering East Building

The Pennsylvania State University

University Park, PA 16802

(814) 863-1047

Authors will be notified of the acceptance of their papers by October 30, 1987.

60



SCOPE
Data Engineering is concerned with the semantics and structuring of data in information
system design, development, management, and use. It encompasses both traditional appli
cations and issues, and emerging ones. The purpose of this conference is to provide a

forum for the sharing of practical experiences and research advances from an engineering
point of view among those interested in automated data and knowledge management. Our
expectation is that this sharing will enable future information systems to be more efficient
and effective, and future research to be more relevant and timely.
We are particularly soliciting industrial contributions and participation. We know it is vital
that there be a dialogue between practitioners and researchers. We look forward to reports
of experiments, evaluations, and problems in information system design and implementa
tion. Such reports will be processed, scheduled, and published in a distinct track.

TOPICS OF INTEREST
We invite you to submit papers on topics including but not limited to these:

Applications Expert systems
Autonomous, distributed systems Architectures for database and
Data engineering tools knowledgebase systems
Data management methodologies Logical and physical database design
Data security and integrity Performance evaluation

Design of knowledge-based systems Statistical databases
Distribution of data and knowledge

PAPER SUBMISSIONS
Each paper’s length should be limited to 8 proceedings pages, which is about 5000 words,
or 25 double-spaced typed pages. Four copies of completed papers should be mailed before
June 15, 1987 to:

John V. Carlis, Computer Science Department, University of Minnesota,
207 Church Street SE, Minneapolis, MN 55455, (612) 625-6092; carlis @umn-cs.

TUTORIALS
The day preceding the conference will be devoted to introductory tutorials. The day follow

ing the conference will be devoted to advanced tutorials. Proposals for tutorials on Data

Engineering topics are welcome. Send proposals by June 15, 1987 to:

Amit P. Sheth, Honeywell Computer Sciences Center, 1000 Boone Avenue North,
Golden Valley, MN 55427. (612) 541-6899.

CONFERENCE TIMETABLE AND INFORMATION:
Papers due: June 15, 1987
Tutorial proposals due. June 15, 1987

Acceptance letters sent: September 15, 1987

Camera-ready copy due: November 15, 1987
Tutorials: February 1 and 5, 1988
Conference: February 2-4, 1988

For further information contact the General Chairperson: Benjamin W. Wah,
Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801,
(217) 333-3516; wah°/auicsld @uiuc.arpa.

AWARDS, STUDENT PAPERS AND
SUBSEQUENT PUBLICATION
Awards will be given to the best paper and to the best student paper (denoted as such
when submitted and authored solely by students). The latter will receive the K. S. Fu award,
honoring one of the early supporters of the conference. Up to three grants of $500 each to
help defray travel costs of student authors. Outstanding papers will be considered for publi
cation in the IEEE Computer Society publications: Computer, Expert, Software, and Trans
actions on Software Engineering. For more information contact the general chairman.

EPILOG
Several hundred people have been involved in the data engineering conferences as commit
tee members, reviewers, authors, and attendees. We have benefited by being involved, and
extend an invitation to you to participate.

4. t. ,., .. ,.afla2,’ , ,~ ...-%., - ..~

TIlE COMPUTER SOCIETY THE INSTITUTE OF ELECTRICAL

®OF THE IEEE . AND ELECTRONICS ENGINEERS, NC.

IEEE

—

(~T~

~
~

. .~
.

U~~~~U~
L~9~ic~i S~LWJ

~
—

I

~~,
~•~:

COMMITTEE

Steering Committee:

C. V. Ramamoorthy, University of California,

Berkeley
P. Bruce Berra, Syracuse University
Gio Wiederhold, Stanford University

General Chairperson:
Beniamin W. Wah, University of Illinois

Program Chairperson:
John Carlis, University of Minnesota

Program Co-Chairpersons:
Sushil Jaiodia, Naval Research Laboratory
Iris Kameny, Rand Corporation
Roger King, University of Colorado

Z. Meral Dzsoyoglu, Case Western University
Joseph Urban, University of SW. Louisiana

Tutorials:

Amit P Sheth, Honeywell Corporation

Industrial and Inter-Society Coordinator:
Dick Shuey, Consultant

Awards:

K. H. Kim, University of California, Irvine

Publicity:
Jie-Yong Juang, Northwestern University

International Coordination:
Tadao Ichikawa, Hiroshima University
G. Schlageter, Fern Universitat

Treasurer:

Aldo Castillo

Local Arrangements:
Walter Bond, SOC

Committee Members (Tentative):
A. K. Arora Robert Korfhsge J. F Paris
J L. Baer Tosiyasu L Kunii Gruia-cataiin Roman

Farokh B. Bastani winfried Lamersdorf Domenico Sacca
Don Batory James A. Larson Giovanni Maria sacco
Kate Baumgartner Mart La5aine Vikram Saietore
G. Beiford W.-H. Francis Leung 5haron saiveter
Bhsrat Bhargava Guo-Jie Li Phiihp 5heu
Richard Braegger victor O.K. Li Edgar 5ibIey
C. Robert carison lao-Nan Lien John F Sowa
Nick Cercone Lesnek Lilien David 5pooner
David Du witoid Litwin David stempie
Ramez El-Masri Jane w.s. Liu M. Stonebraker
Domenico Ferrari Ming T. (Mike) Lie 5taniey 5u

Hector Garcia-Molina Raymond A. Liuzzi Denji Taiima
Georges Gardarin Vincent Lum Mariorie Templeton
Robert Gerber Yuen-Wah Eva Ma A. M. Tioa
5akti P. Ghosh Mamoru Maekawa Mas Tsuchiya
Georg Gottiob sai March Yosihiss Udagawa
Lee Hoiiaar Gordon Mcca(a 5usan 0. Urban

Yang-Chang Hong Tadeo Murata Patrick Vaiduriez

David K. Hsiao Philip M. Neches Yann Viemont
H. (shikawa Erich J. Neuhold Kyu-Young Whang
Hemant K. Jam G. M. Niissen Chao-Chih Yang
won Kim Die Dren 5. Bing lao

Dan Kogan Guitekin Ozsoyogiu clement Ye

waiter Kohier c. Parent



THE INSTITUTE OF

ELECTRICAL AND

ELECTRONICS

ENGINEERS,INC.

CALL FOR PAPERS

VLSI AND GaAs PACKAGING WORKSHOP

September 14-16, 1987

Research Triangle Park, NC, USA

The IEEE CHMT Society and the National Bureau of Standards

are jointly sponsoring the Sixth Annual VLSI and GaAs Pack

aging Workshop, to be held at Research Triangle Park, North

Carolina, USA. All attendees are expected to be specialists in the

field and to participate in discussions.

Papers presenting new developments or critical overviews in the fol

lowing areas are solicited

• VLSI and Wafer Scale Package Design : characterization and

implementation; cost and performance driven solutions.

• Package Thermal Design : characteristics, results, and issues.

• Package Interconnection Options: wire bonding, TAB, flip chip,
or optical.

• GaAs IC Packaging: high speed packaging considerations.

• Package Electrical Issues : reduction of parasitics and improve
ments in electrical performances.

• Integrating Package Design (from die to system), including as

sembly and test issues.

• VLSI Package Materials Advancements.

• Die-Attach Solutions for Large Chips.
• New Failure Mechanisms in VLSI Packaging.

Paper Submission

Abstracts should be sent to Arnold Pfahnl, Technical Program
Chairman, AT&T Bell Laboratories, 555 Union Blvd., Allentown,
PA 18103, (215) 439-6326, by May 7, 1987. Two abstracts are

solicited as follows

• Six copies of a 300-word abstract for review and paper selec

tion by the Technical Program Committee. The abstracts,
supplemented with up to four of your most important figures,
will be published as the proceedings and given to all atten

dees.

• One copy of a 25-35 word abbreviated abstract describing the

proposed paper. The abbreviated abstract of accepted papers
will be included in the advance program.

Short “technology update” talks do not require a full abstract.

Send a 25-50 word summary for your proposed 10-minute update
to the Technical Program Chairman.

General Chairman

Archie H. Mones, Dupont

Technical Program Chairman

Arnold Pfahnl, AT&T Bell Labs

Technical Program Committee

USA Committee

George Harman, National Bureau

of Standards

Phil Lutz, Semiconductor Research

Corp.
John Nelson, Burroughs Corp.
Hal Seaman, IBM

European Committee

Karel Kurzweil, BULL, France

Walter Bräckelmann, SIEMENS,
Germany

Jean Joly, BULL, France

Nick Chandler, MRC-GEC Research

Laboratories, United Kingdom

Note:

Research Triangle Park

is adjacent to the

Raleigh-Durham, North

Carolina airport.

PLEASE CIRCULATE TO INTERESTED ASSOCIATES









THE COMPUTER SOCIETY
Non-profit Or~

OFTHEIEEE
US Postage

1730 Massachusetts Avenue. N W
PAID

Washington. DC 20036-1903
Silver Spring, MD

Perr~iit 1398


	40979_DataEngineering_Mar1987_Vol10_No1.pdf

