
JUNE 1987 VOL. 10 NO. 2

a quarterly bulletin of the

Computer Society of the IEEE

technical committee on

Database
eeri

CONTENTS

Letter from the Editor 1

M. Carey

CASE Requirements for Extensible Database Systems 2

P. Bernstein and D. Lomet

Extensible Databases and RAD 10

S. Osborn

Extendability in Postgres 16

M. Stonebraker, J. Anton, and M. Hirohama

Extensibility in the PROBE Database System 24

D. Goldhirsch and J. Orenstein

An Overview of Extensibility in Starburst 32
J. McPherson and H. Pirahesh

Principles of Database Management System Extensibility 40

D.S. Batory

An Overview of the EXODUS Project 47

M. Carey and D. DeWitt

An Extensible Framework for Multimedia Information Management 55

D. Woe/k and W. Kim

DASDBS: A Kernel DBMS and Application—Specific Layers 62

H. Schek

SPECIAL ISSUE ON EXTENSIBLE DATABASE SYSTEMS

Editor-in-Chief, Database Engineering Chairperson, TC

Dr. Won Kim

MCC

3500 West Baicories Center Drive

Austin, TX 78759

(512) 338—3439

Associate Editors, Database Engineering

Dr. Haran Boral

MCC

3500 West Balcones Center Drive

Austin, TX 78759

(512) 338—3469

Prof. Michael Carey

Computer Sciences Department

University of Wisconsin

Madison, Wi 53706

(608) 262—2252

Dr. C. Mohan

IBM Aimaden Research Center

650 Harry Road

San Jose, CA 95120—6099

(408) 927—1733

Dr. Sunhl Sarin

Computer Corporation of America

4 Cambridge Center

Cambridge, MA 02142

(617) 492—8860

Database Engineering Bulletin Is a quarterly publication of

the IEEE Computer Society Technical Committee on Database

Engineering .
its scope of Interest includes: data structures

and models, access strategies, access control techniques,
database architecture, database machines, Intelligent front

ends, mass storage for very large databases, distributed

database systems and techniques, database software design
and Implementation, database utilities, database security
and related areas.

Contribution to the Bulletin Is hereby solicited. News items,

letters, technical papers, book reviews, meeting previews,

summaries, case studies, etc., should be sent to the Editor.

All letters to the Editor will be considered for publication
unless accompanied by a request to the contrary. Technical

papers are unrefereed.

Opinions expressed in contributions are those of the indi

vidual author rather than the official position of the IC on

Database Engineering, the IEEE Computer Society, or orga

nizations with which the author may be affiliated.

Dr. Sushil Jajodia
Naval Research Lab.

Washington, D.C. 20375-5000

(202) 767—3596

Treasurer, TC

Prof. Leszek Lilien

Dept. of ElectrIcal Engineering
and Computer Science

University of Illinois

Chicago, IL 60680

(312) 996—0827

Secretary, IC

Dr. Richard L. Shuey
2338 Rosendale Rd.

Schenectady, NY 12309

(518) 374—5684

Membership In the Database Engineering Technical Com

mittee Is open to Individuals who demonstrate willingness to

actively participate In the various activities of the TC. A

member of the IEEE Computer Society may Join the TC as a

full member. A non—member of the Computer Society may

Join as a participatIng member, with approval from at least

one officer of the TC. Both full members and participating
members of the IC are entitled to receive the quarterly
bulletin of the IC free of charge, until further notIce.

Letter from the Editor

The theme of this issue of Database Engineering is “Extensible Database Systems.” Now that rela

tional database technology is well understood, a number of database researchers have turned their attention to

applications that are not well served by relational systems. Applications such as computer-aided software

engineering, CAD/CAM, scientific/statistical data gathering, image processing, and data-intensive Al applica

tions all have requirements that exceed the capabilities of traditional relational database systems. One

approach to providing the new data types, operations, access methods, and other features needed for such

applications is through developing an extensible database system — a database system that can be customized

to fit the needs of a wide range of potential applications.

I asked eight research groups working on database system extensibility to contribute papers to this

issue, and to my delight, all eight of them agreed. In addition, a ninth group agreed to submit a short research

summary; because their paper was a “late entiy,” time and page count constraints made it impossible for their

contribution to be a full-length paper. I found all nine of these papers to be very informative, and I hope that

the Database Engineering readership will agree.

The first two papers are excellent lead-in papers for this issue. In CASE Requirements for Extensible

Database Systems, Phil Bernstein and David Lomet describe database requirements for computer-aided

software engineering, a challenging application area for extensible database systems. They also describe their

work in progress at Wang Institute. The second paper, Extensible Databases and RAD, is by Silvia Osbom of

the University of Western Ontario. This paper categorizes various approaches to supporting new applications

and then describes the author’s experiences with the RAD system, a relational DBMS extended with a facility

for defining new data types for domains.

The next three papers describe three extensible database system projects. Extendability in POSTGRES,

by Mike Stonebraker, Jeff Anton, and Michael Hirohama, discusses the POSTGRES project at UC Berkeley.

The paper describes the POSTGRES facilities for adding user-defined functions, data types, operators, aggre

gate functions, and access methods. In Extensibility in the PROBE Database System, David Goldhirsch and

Jack Orenstein present an overview of the PROBE project at CCA. They describe PROBE’s data model and

algebra, how new object classes can be added to PROBE, and PROBE’s support for spatial applications. John

McPherson and Hamid Pirahesh describe the Starburst project at IBM Almaden in An Overview ofExtensibil

ity in Starburst. They emphasize the overall Starburst architecture and how it supports extensions in the areas

of storage management, access methods, data types, and complex objects.

The next two papers also describe extensible database system projects; they differ from the previous

three in being oriented more towards supporting the production of customized database systems than towards

providing one particular DBMS which can then be extended. In Principles ofDatabase Management System

Extensibility, Don Batory describes the GENESIS project at UT-Austin. He describes how extensibility is

provided, from low-level storage structures up through user-level data types and operators, via standardized

interfaces and careful layering. In An Overview of the EXODUS Project, David DeWitt and I describe the

EXODUS extensible database system project at the University of Wisconsin. We describe the collection of

components and tools that EXODUS provides, explaining how they simplify application-specific DBMS

development and extensions.

In the next paper, An Extensible Framework for Multimedia Information Management, Darrell Woelk

and Won Kim describe an extensible component of the ORION object-oriented database system at MCC.

They explain how object-oriented concepts are used in ORION’s multimedia information manager, enabling

extensions to be added for handling new storage and I/O devices and new types of multimedia information.

The final paper, DASDBS: A Kernel DBMS and Application-Specific Layers is by Hans Schek (who is

currently on leave at IBM Almaden). He briefly summarizes how the DASDBS project at the Technical

University of Darmstadt is addressing extensibility via their DBMS kernel~approach.

I would like to thank each of the authors for agreeing to participate in this special issue of Database

Engineering. I hope that the readers will find the authors’ contributions to be as interesting as I did.

Michael J. Carey
May, 1987

—1—

CASE Requirements for

Extensible Database Systems

Philip A. Bernstein

David B. Lomet

Wang Institute of Graduate Studies1

1. Introduction
A database system (DBMS) offers functions for

storage managment, type management,
associative access, and transaction management.
State-of-the-art relational DBMSs provide
storage management for small records, type

management for simple record structures,
associative access using relational algebraic
operators, and transaction management for

short-duration transactions. These facilities are

inadequate to support most engineering design
applications, such as mechanical design,
electronic design, and software design
10, 21, 22, 24, 31, 79).
In particular, these facilities are inadequate for

computer-aided software engineering (CASE). A

CASE environment consists of integrated tools

to assist the individual programmer (e.g., editors

and debuggers), to manage multi-component
product configurations (e.g., version control and

automated regression testers), and to plan and

track large projects (e.g., schedulers). Such tools

must store source and object versions of

programs, internal forms of programs (such as

syntax trees and flow graphs), documents, test

data, and project management information. The

absense of appropriately powerful and flexible

database facilities is a major problem for

developers of these tools. Many regard it as the

most serious impediment to qualitative
improvements in CASE environments.

Much of the current research in database

management is focused on repairing this

inadequacy for design environments in general.
Features being studied include: storage
structures for large objects and for multiple
versions of each object, multi-dimensional search

structures, rich data typing, type inheritance,
user-defined operators, more powerful set-

oriented operators (such as transitive closure),
long-duration transactions, nested transactions,
triggers, and semantic integrity constraints. To

support software engineering tools, a DBMS

needs many, perhaps most, of these features.

We recently summarized our view of current

research on these features, especially as they
relate to CASE requirements, in 10). An

abridged version of this paper and its

bibliography appears below, followed by a

summary of our project to respond to these

requirements.

2. Database Facilities for

CASE
This section lists facilities that should be

offered in a DBMS for CASE, but are not

available in the right form in current relational

DBMSs. For each facility, it briefly explains the

desired functionality and why it is useful.

2.1. Storage Management

Large Objects

A DBMS for CASE must be able to store large
variable-length objects, such as documents and

programs. Some large storage objects that are

today stored as a single unit should be

decomposed into smaller pieces, to take full

advantage of DBMS facilities. For example, one

could store each of a program’s procedures as a

separate object, rather than storing all of the

program’s procedures together in a single object,
as is typically done with file systems.

Nevertheless, the requirement to store large
objects is hard to circumvent in all cases.

Conventional relational DBMSs are designed to

store small objects, namely records, and sets of

small objects, namely files. Often the system
has a small maximum length for either records

or fields, which makes it impossible to store a

large object as a single record.

File systems can store each large object as a

file. However, opening a file is a rather

expensive operation, which is mostly oriented to

the needs of end users. A DBMS probably
should circumvent the open operation’s ordinary
access control and name service functions.

Versioning

A CASE environment needs to store many

‘Authors’ address: Wang Institute of Graduate Studies, 72 Tyng Road, Tyngsboro, MA 01879-2099

—2-

versions of documents, programs, and other

objects 1321. Tools for this purpose have been in

widespread use for many years (e.g., SCCS

63] and RCS 78]). The main technical

problem in designing such a tool is the tradeoff

between storage space and execution time; more

compact representations usually require more

execution time to store and retrieve data.

However, if versioning is implemented in the

DBMS’s storage subsystem, then it can be done

on fine granularity components, such as records

or blocks. When creating a new version, only
those components that have changed since the

previous version need to be stored. In the new

version, unchanged components can be

represented by pointers to their previous
versions. This is efficient in storage because

only the changed components are repeated in the

new version. It is also efficient in execution

time; since versions are not encoded, they can be

retrieved directly, instead of being reconstructed

using change logs, as in RCS and SCOS.

Versions may also be correlated to time. The

sequence of versions of an object may be thought
of as the object’s history. One may want to

retrieve versions based on the time they were

created (e.g., the versions of the dump utility
that were created while Jones was running the

utilities project).
Data Representation

The DBMS must cope with different

representations of atomic types. The differences

may be matters of machine architecture (e.g.,
byte-ordering or the representation of integers),
programming language (e.g., representation of

strings), or tools (e.g., representation of trees).
The DBMS must know the representation of

each type as it is stored and as it must be

presented to its users. This knowledge is

maintained by type management facilities,
described in the next section. After the DBMS

knows the source and destination representation
of an object, it must translate between those

representations. There are two issues here: when

to perform the translation and how to do it

efficiently. Experience has shown that the main

efficiency consideration here is reducing
memory-to-memory copying of data.

2.2. Type Management
Tools for a CASE environment need a full

range of atomic and composite data types. Since

tool developers want to share their data, they
must be able to express these data types to the

DBMS. Data types in current relational DBMSs

are usually limited to (non-recursive) record

types, each of which consists of a sequence of

atomic fields. Union types, arrays, and nested

structures are ordinarily not supported 45].
Some data is more conveniently represented in

procedural form 49]. For example, the “length”
attribute of a program could be calculated by a

procedure, rather than stored explicitly. Limited

forms of this facility have been available in

database view mechanisms for many years.

However, a view is a derived object, defined by a

data dictionary entry; it is not a “base-level”

object, physically stored in the database.

Performance improvements may be possible by
making procedural attributes base-level objects.

One important type that appears in many
CASE applications is directed graphs 17]. For

example, tools store parse trees, flow graphs,
dependency graphs, and PERT charts. In

today’s DBMSs, one stores graphs by storing
their edges in relations, and manipulates graphs
using standard relational operators. This is

unfortunate, because many fast algorithms for

manipulating directed graphs are not easily
expressed using relational data structures and

operations.

The DBMS should check the integrity of

objects relative to their type definition.

However, when and where should this integrity
be checked? It could be checked in the

application’s workspace, every time an object is

updated. However, this could be quite slow.

Alternatively, integrity could be checked

whenever an updated object is passed back to

the DBMS. This is more efficient, but allows

users to manipulate invalid objects for some

time before the integrity violation is caught.

Database objects may have integrity
constraints that are more complex than can be

expressed in the type definition language. For

example, one may have a style checking program
that determines whether a document is

consistent with an organization’s standards. To

assist with this process, a DBMS may offer a

trigger mechanism,. For example, one could

define a trigger on document objects, which is

activated by invoking the “check-in” operation,
and causes the style-checker to be invoked.

Triggers can also be used for alerting. For

example, a user U can check-out an object from

the database for reading, and leave a trigger
there in case someone else wants to check-out

the same object for writing. The action part of

the trigger simply sends a message to U.

2.3. Associative Access

A popular and important feature of virtually
all DBMSs is the ability to retrieve data objects
based on their contents. Content-based retrieval

is valuable for many CASE tools: a debugger
may want to find programs that modify variable

-3—

x; a configuration management tool may want

to find modules that are checked out by a

programmer who is on vacation; a project
management tool may want to find unfinished

modules that are blocking the completion of

release 3.2. In today’s record-oriented DBMSs

(i.e., relational, network, and many inverted file

systems), there are four main considerations in

implementing content-based access.

Indexing and Clustering

The changing nature of hardware has changed
performance tradeoffs Much work has been done

in recent years on efficient access structures.

There are now linear hashing algorithms that

cope gracefully with file growth 27, 37, 39, 41].
There are variations of B-trees that use large
and variable-sized nodes to exploit fast

sequential disk access 40, 43]. And there are

multi-attribute index structures that cluster data

based on combinations of fields, so that data

that is frequently retrieved by such combinations

can be retrieved in fewer disk accesses

8, 9, 56, 57, 62, 67]. All of these mechanisms

are potentially valuable for improving
associative access to data in a CASE

environment, but few of them have been

incorporated in commercial DBMS products.

There have been so many new and useful

indexing techniques developed in recent years

that it may be too expensive for a DBMS vendor

to supply a wide enough variety to suit most

users. Therefore, researchers are considering
DBMS architectures in which users can add their

own. In this approach, the DBMS defines an

access method interface. A user may implement
an access method that conforms to this interface

and register it with the DBMS.

Set-at-a-time Operators

A major innovation of relational DBMSs over

their predecessors is support for set—at-a-time

operators: project, select, join, and aggregation.
The operators abstract iteration over all

elements of a set (i.e., all tuples of a relation);
the user provides a property over individual

objects, and the operator retrieves all objects in

the set that satisfy the property. One may want

to encapsulate iteration over other structured

collections of objects, such as graphs or two-

dimensional objects in a plane. Relational

operators are often inconvenient for this

purpose. Like index structures, the range of

possible operators may be too great for the

vendor to build into the DBMS. Thus, it would

be desirable if new operators could be added to a

DBMS without the vendor’s assistance. This

entails giving (sophisticated) users the ability to

program their own operators.

2.4. Transaction Management for CASE

It is inappropriate to regard each activity of an

engineer in a CASE environment to be a

transaction in the usual DBMS sense. Here, an

engineer reads data into a workspace, and may

operate on the contents of that workspace for

many days. If the system fails during that

period, it is unacceptable for all work on that

workspace to be lost. Moreover, the work of

two design engineers may not be serializable.

They may work on shared objects that they pass
back and forth in a way that is not equivalent to

performing their work serially.

There are several ways to modify the notion of

a transaction to suit the needs of CASE. One

way is to ensure that every transaction is short

-- so short that aborting a transaction is only a

minor inconvenience. For example, checking-in
or checking-out objects from a database satisfies

this notion of transaction. Longer activities,
such as fixing a bug, may consist of many

transactions.

Higher level transaction notions may also be

valuable 35]. A transaction to fix a bug may

involve running transactions to check out certain

programs, modify them, test them, and check

them back into the database. The fix-a-bug
transaction is therefore a long transaction within

which smaller transactions are nested. Should

one of the subtransactions fail (e.g., a certain

modification to a program is found to be

infeasible), one may want to abort the fix-a-bug
transaction; or, one might want to push ahead

by trying different subtransactions (i.e., a

different approach to fixing the bug).

Many popular transaction recovery algorithms
use a form of logging. The log keeps track of

the operations that have executed so far. The

recovery algorithm uses the log to obliterate the

effects of aborted transactions, and to redo the

effects of committed transactions whose updates
are lost in a failure.

Today, the DBMS’s logging mechanism is

rarely offered directly to the DBMS user.

However, it could be quite useful this way, e.g.,

so that an interactive tool could create a private
log of its actions. It could use generic DBMS

functions to append log entries, and could

subsequently interpret them in a tool-specific
way.

3. Our Project
We are currently building a DBMS to support

the development and use of CASE tools. We

intend to implement the DBMS to an industrial

standard of reliability and documentation that

will make it easily usable outside Wang
Institute. Working with CASE researchers at

-4-.

Wang Insitute, we will evaluate the effectiveness

of the DBMS in satisfying the needs of CASE

tool developers.

There are many projects to build new DBMSs

in support of engineering design applications.
However, the main goal of most of these projects
is to produce a testhed for research into DBMS

implementation. Such testbeds are needed if the

field is to move forward. However, when

building such a testbed, it is difficult to meet

research goals and users’ needs at the same time.

We chose to reverse these priorities, focusing
first on meeting users’ needs, and secondarily on

advancing the state-of-the-art.

In the user’s view, the most important
property of a DBMS is that it works. It must

reliably perform its advertised functions and

must not, under any circumstances, corrupt
data. (Even commercial products have had bugs
that irreparably corrupted user data.) To avoid

such disasters, we decided to focus especially
hard on system quality, devoting much attention

to coding standards, testing, and documentation.

Simplicity

The major theme of our DBMS development is

design simplicity: Wherever possible, we will

strive to use a small number of abstractions and

simple mechanisms to support those

abstractions. To meet a given set of DBMS

requirements, it is often more difficult to find

simple system designs than complex ones.

However, once found, a simple design has many

benefits.

First, a simple design is easier to validate and

implement, and the resulting implementation is

easier to test. Given our focus on quality, this is

an especially important advantage. This

improves the productivity of our development
group, and helps shorten the development time

to produce a DBMS with a given level of

functionality.

Second, the goals of modularity and

information hiding are easier to reach in a

simple design. Using information hiding, we can

isolate data representations and algorithms used

in each module. This enhances our ability to

maintain and improve the implementation.

Third, by using relatively few mechanisms, and

mechanisms that are relatively simple, we are

better able to predict the performance of the

system. This also helps us tune the system;
bottlenecks are easier to locate (due to

modularity), and once found, they are easier to

repair (due to information hiding).

Overall, a simple design breeds reliability.
Users will not entrust their data to a DBMS

unless it is extremely reliable. The simpler the

design, the more quickly we will be able to reach

a high level of reliability.

This theme of simplicity of mechanism is

analogous to that of reduced instruction set

computers (RISC). We intend to use general-
purpose low-level mechanisms that can be

implemented with good and predictable
performance. Tailoring the mechanisms to

particular applications is left as a higher-level
function. This gives a builder of an application
(in our case, software engineering tool) the

flexibility to tailor the mechanisms for the

particular higher-level functions needed.

The Design

Borrowing a good idea from Exodus, we intend

to use B-trees to store large objects, to identify
sets of objects, to define an index on a set of

objects, and to define versions of objects 15].
Using a single B-tree structure for all of these

purposes is a good illustration of how we intend

to reach our primary goal of design simplicity.

To support versioning of objects, we will use a

modification of Easton’s write-once B-trees 261.
Initially, we will use a relatively standard B-tree,
modified using Easton’s scheme. Later, we hope
to modify the basic B-tree structure for better

performance 40, 42, 43].
Status

We have implemented a B-Tree manager, a

basic data dictionary facility, a lock manager2,
and a logging-based recovery manager. The B-

Tree manager and data dictionary facility have

been integrated, and thoroughly tested. We

hope to release them this summer, along with

our tool for regression testing and the test

scripts themselves (so that others may

conveniently modify and re-test the system).
This summer, we intend to implement write-once

B-trees, and to integrate the lock and recovery

managers with the current (non-versioned) B-

tree manager.

Due to the recent merger of Wang Institute

with Boston University, the status of our

research group is in doubt. We therefore do not

have firm development plans for the system

beyond the summer.

Acknowledgments

This paper was greatly influenced by the

authors’ discussions with Mark Ardis and

Richard Fairley, and Russ Holden, and by the

mountain of previous work cited in the

bibliography. We also thank Michael Carey for

his help in editting the paper for this issue.

2The lock manager was produced under the direction of

Prof. Billy C. Claybrook.

—5—

Bibliography

1. Afsarmanesh, H., Knapp, D., McLeod, D.,
Parker., A. An Extensible, Object-Oriented

Approach to Databases for VLSI/CAD. Proc. of

the International Conference on Very Large
Databases, August, 1985.

2. Ahlsen, M., Bjornerstedt, A., and Hulten, C.

“OPAL: An Object-Based System for

Application Development”. Database

Engineering 8, 4 (December 1985), 31-40.

3. Anderson, T., Lougenia, E., Jr., Earl F., and

Maier, D. PROTEUS: Objectifying the DBMS

User Interface. 1986 International Workshop on

Object-Oriented Database Systems, Pacific

Grove, CA, September, 1986.

4. Bancilhon, F., R. Ramakrishnan. An

Amateur’s Introduction to Recursive Query

Processing Strategies. Proc. ACM-SIGMOD

Conf. on Management of Data, NY, 1986, pp.

pp.16-52.

5. D.S. Batory, J.R. Barnett, J.F. Garza, K.P.

Smith, K. Tsukuda, B.C. Twichell, and T.E.

Wise. Genesis: a reconfigurable database

management system. Tech. Rept. 86-07, Univ of

Texas at Austin, March, 1986.

8. Batory, D.S., and Buchmann, A.P.

Molecular Objects, Abstract Data Types and

Data Models: A Framework. Proc. International

Conference on Very Large Databases, August,
1984.

7. Batory, D.S., and Kim, W. “Modeling

Concepts for VLSI CAD Objects”. ACM

Transactions on Database Systems 10, 3

(September 1985), 322-346.

8. J.L. Bentley. “Multidimensional search trees

used for associative searching”.
Communications ACM 18, 9 (Sept 1975),
509-517.

9. J.L. Bentley. “Multidimensional binary
search trees in database applications”. IEEE

Transaction8 in Software Engineering SE-5, 4

(July 1979), 333-340.

10. Bernstein, P.A. Database System Support
for Software Engineering -- An Extended

Abstract. Proc. 9th Int.’l Conf. on Software

Engineering, Monterrey, CA, April, 1987.

11. P. Bernstein, V. Hadzilacos and

N. Goodman. Concurrency control and recovery

in database systems. Addison-Wesley, 1986.

12. Brodie, M., Blaustein, B., Dayal, U.,
Manola, F., and Rosenthal, A. “CAD-CAM

Database Management”. Database Engineering
7 2 (June 1984).

13. Buchmann, A.P. and Cells, C.P. An

Architecture and Data Model for CAD

Databases. Proc. International Conference on

Very Large Databases, Singapore, August, 1985.

14. Buneman, P., and M. Atkinson.

Inheritance and Persistence in Database

Programming Languages. Proc. 1986 ACM

SIGMOD International Conference on

Management of Data, Washington, DC, May,

1986, pp. 4-15.

15. Carey, M.J., DeWitt, D.J., Richardson,

J.E., and Shekita, E.J. Object and File

Management in the EXODUS Extensible

Database System. Proc. of the Twelfth

International Conference on Very Large Data

Bases, Kyoto, Japan, August 25-28, 1986, pp.

91-100.

16. M.J. Carey, D.J. DeWitt, D. Frank,
G. Graefe, J.E. Richardson, E.J. Shekita, and

M. Muralikrishna. The architecture of the

EXODUS extensible DBMS: a preliminary

report. Tech. Rept. 644, Univ of Wisconsin-

Madison, May, 1986.

17. Clarke, L.A., Wileden, J.C., and Wolf, A.L.

Graphite: A Meta-tool for ADA Environment

Development. Proc. Second International

Conference on ADA Applications and

Environments, Miami Beach, FL, April 8-10,

1986, pp. 81-90.

18. Cockshott, W., Atkinson, M., Chisholm, K.,

Bailey, P., and Morrison, R. “Persistent Object

Management Systems”. Software--Practice and

Experience 1.4 (), 49-71.

19. Copeland, C. and Maier, D. Making
Smalitalk a Database System. Proc. 1984 ACM

SIGMOD International Conference on

Management of Data, Boston, June, 1984, pp.

316-325.

-6-

20. Dayal, U., Buchmann, A., Goldhirsch, D.,

Heiler, S., Manola, F.A., Orenstein, J.A., and

Rosenthal, A.S. PROBE: A Research Project in

Knowledge-Oriented Database Systems:
Preliminary Analysis. Technical Report
CCA-85-03, Computer Corporation of America,

July, 1985.

21. Linn, J.L. and Winner, R.1. (Editors). The

Department of Defense Requirements for

Engineering Information Systems. Volume 1:

Operational Concepts edition, The Institute for

Defense Analyses, Alexandria, VA, 1986.

22. Linn, J.L. and Winner, R.I. (Editors). The

Department of Defense Requirements for

Engineering Information Systems. Volume 2:

Requirements edition, The Institute for Defense

Analyses, Alexandria, VA, 1986.

23. Derrett, N., Kent, W., and Lyngbaek, P.

“Some Aspects of Operations in an Object-
Oriented Databas&’. Database Engineering 8

(December 1985), 66-74.

24. Dittrich, K.R., Gotthard, W. and

Lockemann, P.C. DAMOKLES - A Database

System for Software Engineering Environments.

IFIP Workshop on Advanced Programming
Environments (June, 1986). proceedings to

appear.

25. Eastman, C.M. System Facilities for CAD

Databases. Proc. IEEE 17th Design Automation

Conference, June, 1980.

28. M. Easton. “Key-sequence data sets on

indelible storage”. IBM Journal on Research

Development 50, 3 (May 1986), 230-241.

27. R. Fagin, J. Nievergelt, N. Pippenger and

HR. Strong. “Extendible hashing-a fast access

method for dynamic files.”. ACM Transactions

on Database Systems 4, 3 (Sept 1979), 315-344.

28. Gray, M.. Databases for Computer-Aided

Design, New Applications of Databases.

Academic Press, 1984.

29. Habermann, A.N., and Notkin, D.

“Gandalf: Software Development
Environments”. IEEE Transactions on

Software Engineering SE-12, 12 (December
1986), 1117-1126.

30. Haskin, R.L. and Lone, R.A. On Extending
the Functions of a Relational Database System.
Proc. ACM-SIGMOD International Conference

on the Management of Data, 1983.

31. Katz, R. H.. In formation Management

for Engineering Design. Springer-Verlag, 1985.

32. Katz, R.H., Chang, E., and Bhateja, R.

Version Modelling Concepts for Computer-Aided

Design Databases. Proc. 1986 ACM-SIGMOD

International Conference on Management of

Data, Washington DC, May, 1986, pp. 379-386.

33. Kempf, J., and Synder, A. Persistent

Objects on a Database. Software Technology

Laboratory Report STL-86-12, Hewlett-Packard,

September 23, 1986.

34. Ketabchi, M.A., Berzins, V., and March,
S.T. 0DM: An Object-Oriented Data Model for

Design Databases. Proc. of ACM Annual

Computer Science Conference, 1986.

35. Kim, W., Lone, R., McNabb, D., and

Plouffe, W. A Transaction Mechanism for

Engineering Design Databases. Proc. 10th Int’l.

Conf. on Very Large Data Bases, Singapore,

August 27-31, 1984, pp. 355-362.

36. Lamersdorf, W., Schmidt, J.W., and

Muller, G. “A Recursive Approach to Office

Object Modelling”. Information Processing
and Management 22, 2 (March 1986), 109-120.

Pergamon Press Ltd., Oxford UK.

37. P. Larson. Linear hashing with partial

expansions. Proceedings 6th Conference on

VLDB, Montreal, Canada, 1980, pp. 224-232.

38. LeBlang, D.B., and Chase, R.P., Jr.

Computer-Aided Software Engineering in a

Distributed Workstation Environment. Proc. of

the ACM SIGSOFT/SIGPLAN Software

Engineering Symposium on Practical Software

Development Environments, Pittsburgh, PA,

April 23-25, 1984, pp. 104-112.

39. Litwin, W. Linear Hashing: A New Tool

for File and Table Addressing. Proc. 6th Int.’l

Coaf. on Very Large Data Bases, Montreal,

1980, pp. 212-223.

40. Litwin, W. and Lomet, D.B. “A New

Method for Fast Data Searches with Keys”.
IEEE Software 4, 2 (March 1987), 16-24.

—7-

41. Lomet, D.B. “Bounded index exponential

hashing”. ACM Tran8actions on Database

Systems 8, 1 (March 1983), 136-165.

42. Lomet, D. A simple bounded disorder file

organization with good performance. Tech.

Rept. 86-13, Wang Institute, September, 1986.

Submitted for Publication.

43. Lomet, D.B. “Partial expansions for file

organizations with an indexll. ACM

Transactions on Database Systems 12, 1 (March
1987), 65-84”.

44. Lone, R., Kim, W., McNabb, D., Plouffe,

W., and Maier, A. Supporting Complex Objects
in a Relational System for Engineering
Databases. In Query Processing in Database

Systems, Springer Verlag, Berlin, 1985.

46. Lone, R. and Plouffe, W. Complex Objects
and Their Use in Design Transactions.

Engineering Design Applications, Proceedings of

Annual Meeting, San Jose, May 23-26, 1983, pp.

115-121.

48. Maier, D., Otis, A.,and Purdy, A. “Object-
Oriented Database Development at Servio

Logic”. Database Engineering 8, 4 (December
1985).

47. Maier, D., and Stein, J. Development of an

Object-Oriented DBMS. Proc. Object-Oriented

Programming Systems, Languages and

Applications (OOPSLA ‘86), Portland,

September 29 - October 2, 1986, pp. 472-482.

48. Maier, D., and Stein, J. Indexing in an

Object-Oriented DBMS. 1986 International

Workshop on Object-Oriented Database

Systems, Pacific Grove, CA, September, 1986.

49. Manola, F., and Dayal, U. PDM: An

Object-Oriented Data Model. 1986 International

Workshop on Object-Oriented Database

Systems, Pacific Grove, CA, September, 1986.

50. Marzullo, K., and Wiebe, D. Jasmine: A

Software System Modelling Facility. Proc. of

the ACM SIGSOFT/SIGPLAN Software

Engineering Symposium on Practical Software

Development Environments, Palo Alto, CA,
December 9-11, 1986, pp. 121-130.

51. Mishkin. Managing Permanent Objects.
Technical Report YALEU/DCS RR-338,

Department of Computer Science, Yale

University, New Haven, CT, November, 1984.

52. J. Eliot B. Moss. Ne8ted Tran8actions: An

Approach to Reliable Distributed Computing.
MIT Press, 1985.

53. Nestor, J.R. Toward a Persistent Object
Base. In International Workshop on

Programming Environments, Springer-Verlag,
1986.

54. Kierstrasz, O.M. “Hybrid: A Unified

Object-Oriented System”. Database

Engineering 8, 4 (December 1985), 49-57.

55. Nierstrasz, O.M., and Tsichritzis, D.C. An

Object-Oriented Environment for OIS

Applications. Proc. 11th Int.’l Conference on

Very Large Databases, Stockholm, 1985.

58. J. Nievergelt, H. Hinterberger and

K. Sevcik. “The gridfile: an adaptable,

symmetric multikey file structure”. AC?VI

Transactions on Database Systems 9, 1 (March
1984), 38-71.

57. J.A. Orenstein. “Multidimensional TRIEs

used for associative searching”. Information

Processing Letter8 14, 4 (June 1982), 150-157.

58. Orenstein, J. A., S. K. Sarin, U. Dayal.

Managing Pesistent Objects in Ada: Final

Technical Report. Computer Corp. of America,

4 Cambridge Center, Cambridge, MA 02142,

May, 1986.

59. Plouffe, W., Kim, W., Lone, R., and

McNabb, D. “A Database System for

Engineering Design”. Database Engineering 7,

2 (June 1984).

80. Purdy, A., Maier, D., and Schuchardt, B.

Integrating an Object Server with Other Worlds.

Technical Report CS/E-86-013, Oregon
Graduate Center, December 9, 1986. To appear

in ACM Transactions on Office Information

Systems, April 1987.

81. Riddle, W.E. and Williams, L.G.

“Software Environments Workshop Report”.
ACM SICSOFT - Software Engineering Notes

11, 1 (January 1986), 73-102.

-8-

0

62. J.T. Robinson. The k-d-B-tree; a search

structure for large multidimensional dynamic
indexes. Proceedings SIGMOD Conference on

MOD, New York, 1981, pp. 10-18.

63. Rochkind, M. J. “The Souce Code Control

System”. IEEE Trans. on Software

Engineering 1, 4 (Dec. 1975), 364-370.

84. Rowe, L.A. A Shared Object Hierarchy.
1986 International Workshop on Object-
Oriented Database Systems, Pacific Grove, CA,

September, 1986.

85. Rowe, L.A., and Shoens, K.A. Data

Abstraction, Views and Updates in RIGEL.

Proc. ACM-SIGMOD International Conference

on Management of Data, 1979.

88. Sathi, A., Fox, M.S. and Greenberg, M.

“Representation of Activity Knowledge for

Project Management”. IEEE Transactions on

Pattern Analysis and Machine Intelligence

PAMI-7, 5 (September 1985), 531-552.

67. Scheuermann, P. and M. Ouksel.

“Multidimensional B-trees for associative

searching in database systems”. Information

Systems 7, 2 (1982), 123-137.

68. Schwarz, P., Chang, W., Freytag, J.C.,

Lohman, G., McPherson, J., Mohan, C., and

Pirahesh, H. Extensibility in the Starburst

Database System. 1986 International Workshop
on Object-Oriented Database Systems, Pacific

Grove, CA, September, 1986.

69. Shipman, D. “The Functional Data Model

and Data Language DAPLEX”. ACM

Transactions on Databa8e Systems 8, 1 (March
1981), 140-173.

70. Sidle, T.W. Weaknesses of Commercial

Database Management Systems in Engineering

Applications. Proc. IEEE 17th Design
Automation Conference, June, 1980.

71. Skarra, A. H., and S.B. Zdonik. The

Management of ChangingTypes ixran~Object-~
Oriented Database. OOPSLA ‘86 Proceedings,

1986, pp. pp. 483 -495.

72. Skarra, A.H., Zdonik, S.B., and Reiss, S.P.

An Object Server for an Object-Oriented
Datbase System. 1986 International Workshop
on Object-Oriented Database Systems, Pacific

Grove, CA, September, 1986.

73. Spooner, D., Milicia, M., and Faatz, D.

Modeling Mechanical CAD Data with Abstract

Data Types and Object-Oriented Techniques.
Proc. 2nd International Conference on Data

Engineering, Los Angeles, February, 1986.

74. Stonebraker, M. and L.A. Rowe. The

design of POSTGRES. Proc. SIGMOD Conf. on

Management of Data, June, 1986, pp. 340-355.

75. Stonebraker, M., and Rowe, L.A. The

Postgres Papers. Memorandum No. UCB/ERL
M86/85, Electronics Research Laboratory,

College of Engineering, University of California,

Berkeley, CA 94720, November 5, 1986.

76. Stonebraker, M., Rubenstein, B., and

Guttman, A. Applications of Abstract Data

Types and Abstract Indices to CAD Databases.

Engineering Design Application Proceedings
from SIGMOD Database Week, May, 1983.

77. Thatte, S.M. Persistent Memory: A

Storage Architecture for Object-Oriented
Database Systems. 1986 International

Conference on Object-Oriented Database

Systems, Pacific Grove, CA, September, 1986.

78. Tichy, W. F. “RCS - A System for Version

Control”. Software Practice and Experience 15

(1985).

79. Wiederhold, G. “Views, Objects, and

Databases”. Computer 19, 12 (December 1986),
37-44.

80. Woelk, D., Kim, W., and Luther, W. An

Object-Oriented Approach to Multimedia

Databases. Proc. 1986 ACM-SIGMOD

International Conference on Management of

Data, Washington DC, May, 1986, pp. 311-325.

81. Zdonik, S.B. Object Management Systems

Concepts. Proc. ACM/SIGOA Conference on

Office Information Systems, 1984.

82. Zdonik, S.B. Language and Methodology
for Object-Oriented Database Environments.

Proc. Nineteenth Annual Hawaii International

Conference on System Sciences, January, 1986.

— 9-.

0

Extensible Databases and RAD

Sylvia Osborn

Department of Computer Science

The University of Western Ontario

London, Ontario, Canada N6A-5B7

April 28, 1987

1 Definitions

The 1980s have seen a new generation of database management systems being developed. The

main motivation for this activity is the need for database management system functionality in new

application areas such as computer aided design, office information systems, pictorial and graphic

databases, software engineering systems, etc. Many researchers are studying these problems, some

looking at only parts of the problem while others are designing and building systems which will

make up a new generation of database systems.

These new DBMS’s can be classified into 3 categories: extensible database systems, object-

oriented database systems and database system generators. We use the term extensible database

8ystem to refer to a DBMS which allows an applications programmer to add new data types and

new operations on these new data types to an existing DBMS. These new types would be added to

the system by an application programmer or data base administrator. In an extensible database

system, the underlying DBMS will always be the same in such modules as concurrency control,

recovery, basic storage, and query language. Extensible databases may also allow the addition of

access methods and hooks to allow the query optimizer make use of these new access methods.

Note that the new operations added usually pertain to operations on what would be the domains in

the relational model, and that the major operators of the query language would not be modifiable.

Note also that we are assuming that we already have a database system so that persistence of

data and data structures from one instantiation of a program to another is already taken care of.

-10-

Persistence only becomes an issue if such a system is implemented by augmenting a traditional

programming language. Some examples of extensible database systems are RAD, ADT-Ingres

and POSTGRES 0sb86, Ston86a, Ston86b]. An object oriented database system is an extensible

database system which incorporates a semantic data model, which in turn is sufficiently powerful

to allow reasonably straightforward modelling of complex objects. Complex objects are objects

which have a highly nested structure, like a large piece of software or an engineering design. They

may also be very large. The semantic data model should be able to model such things as arbitrary

levels of aggregation Smith77], components of aggregates which may be sets of other objects

or ordered sequences of other objects, and IS-A or generalization hierarchies with inheritance of

object components and of operations. Some object-oriented database systems also model versions

and knowledge. One should be able to define new operations on these objects, which could have the

effect of changing the query interface. It is also reasonable to expect that the other pieces of the

database management system work at the object level, for example that the objects are passed to

the storage manager as a unit, that locking and recovery are done on a per-object basis, etc. Since

this definition inherits all the properties of an extensible database system, object oriented database

systems also allow the definition of new data types, operations on them and access methods. They

will have the same underlying concurrency control methods, recovery etc. from one instantiation

to another, although, being object oriented, these modules may differ quite a lot from those found

in traditional DBMS’s. Some examples of object oriented database systems are GemStone, Probe,

and Iris Cope84, Man86, Lyng86].

The third category of new systems is the database 8y8tem generators, customizers or compil

ers. These systems allow a database system implementor or architect to design and implement a

new type of database management system without having to write all the code for this new sys

tem from scratch. Using one of these database generators, one could generate different database

management systems which differ in virtually all of their modules. The resulting system could be

a traditional (non-extensible) DBMS, an extensible one or an object-oriented one. Examples of

database generators are EXODUS, the Data Model Compiler and GENESIS Carey86, Mary86,

Bat86].

All three kinds of new database systems highlight some new roles for the people who use them.

With traditional DBMS’s, database administrators designed the data structures for an application,

having a good understanding of the data model and its use. Application programmers used these

structures to carry out tasks which were either non-trivial or not possible using the interactive

—11—

query language. End users were not usually expected to be programmers, but would use some

transactions set up by an applications programmer, or would express queries in an interactive

query language such as SQL. With these new systems, we will also have these roles, but there will

be some new roles to be played as well. All three of these new types of systems require code to be

written and attached to the database system. For the extensible systems the code for the operations

on abstract data types and new access methods is required. For object-oriented systems, code is

needed for the operations on objects, which may be more complicated than that for an abstract

data type. This code should be written by an experienced programmer, but not someone who has

implemented a DBMS. Another challenge is to find ways for the end users, who are professionals,

say, like engineers, to specify non-trivial operations unanticipated when the operations were defined

for the complex object, the way end users of current relational systems can specify things in SQL.

The database compilers provide the greatest challenge. They may require a data model designer

(how many people have ever designed successful data models?), a database system architect, etc.

One of the goals of these systems is to provide tools to make these tasks simpler.

2 RAD

RAD (which stands for relations with abstract data types) was conceived in the early 1980s as an

attempt to address the problems of these challenging application areas, using a simple extension

to the relational model, namely allowing the definition of new domains 0sb86]. The application

programmer is allowed to issue a CREATE DOMAIN statement which registers a new domain with

the relational database. Along with this goes some code for managing the bytes which these domain

values will occupy. These primitive operations include inserting new values, outputing values,

updating values, constant validation, and testing for equality and comparisons. The definition

of an arbitrary number of predicates involving an arbitrary number of parameters is also allowed.

RAD also has a method for defining aggregates on columns of these new data types and for defining

arbitrary transformations. Aggregates provide a way of mapping a relation onto a single value of

any type. A transformation maps a relation to a relation, thus providing a very general tool for, say,

transforming images from one format to another, or coding such things as the group-by construct

of SQL or the transitive closure operation of QBE.

A single user version of RAD was partially implemented and a small experiment was run

involving four student projects: a menu-driven calendar manager, a random quiz generator for a

—12-

first-year programming course, a drug information system for a hospital pharmacy giving doses,

side effects, other names for medications, etc., and a system for a real estate agent which matches

descriptions of houses in the database with the requirements of a customer. Two versions of each

project were implemented: one as a stand-alone program, and one using RAD. Some problems

were encountered because RAD was not fully debugged. The general consensus was, however,

that the RAD version took significantly less time to develop, involved less code, and would be

easier to modify and extend because it involved a more general approach and was shorter. Further

development on RAD has been abandoned for reasons which should become apparent below.

RAD and systems like it are not suitable for modelling really complex objects. The reason for

this is the absence of a semantic data model, i.e. because they are not object-oriented. Let us

consider for a moment a software engineering environment. A software project consists of designs,

requirements, programs, modules, abstract data types, submodules, procedures, authors of all of

these things, which pieces go with each other in what ways, and so on. It would be possible to define

RAD domain types for designs, requirements, programs, etc., which would then be associated with

their authors, submodules, etc. by appropriate relations.

The trick with a system like RAD, is to pick the right place in the complex structure to define

the domains. One could define a domain for the whole software project, which would tend to

force the implementation of a semantic data model in a single domain. One can flatten the whole

structure into atomic domains — the smallest units one ever needs to talk about, which could be

less than a line of code in one of the programs — and construct a complex set of first normal

form relations to describe the projects. Since the relational model only provides the operations

on domain values, and the relational operators on relations, the first choice means that we can

not apply the relational operators on parts of the software project (for example “find all modules

written by J. Smith”). The second choice means that when we want to look at a significant portion

of a project, the data for it will be in dozens of relations. Although RAD would allow us to define

a transformation to “gather up all the modules written after Jan. 1, 1985”, this transformation

would be very costly and inefficient. Any compromise between these two extremes will be very

difficult to choose and will still suffer some of the drawbacks of the two extreme solutions. If one

could use a semantic data model insead of the relational model, there are probably more than two

object classes to use to model a complex application. As well, type constructors other than the flat

tuple would be available, say to allow a set or sequence of modules as a component of a program.

Relational systems also lack an inheritance mechanism. Although inheritance is not ideal

—13—

Snyd86], it is a very useful tool for managing complexity. The applications for which these sys

tems are intended are very large and complex. Inheritance of components of an object class by

its subclasses is a natural way to model many applications and is becoming well understood. In

heritance of operations on objects can provide an economical implementation of a complex set of

activities. It seems that for any of these new DBMS’s to be really successful in supporting these

application areas, it must include inheritance in its data model. It is difficult to add inheritance to

the relational model because, as it stands, the relational model only allows one to declare relation

instances, not types. Inheritance is usually defined between object classes or data types. Even

Codd found he had to add the concept of an entity type to the relational model before talking

about inheritance Codd79].

RAD was very successful in providing a simple mechanism whereby a programmer could define

new domain types. The four students who took part in the experiment were in their senior un

dergraduate year, so they could barely be called professional programmers and they certainly had

never implemented a database system, nor did they know the internals of the RAD implementa

tion. In spite of the problems they had because of bugs and a lack of good manuals, they all were

able to write the code necessary to implement the abstract data types and operations required for

their application and link it in to the database management system.

3 References

Bat86 Batory, D.S. GENESIS: A Project to Develop an Extensible Database Management System. Proc.

1986 rnternational Workshop on Object-oriented Database Systems, Sept. 1986, 207-208.

Carey86 Carey, M. et al. The Architecture of the EXODUS Extensible DBMS. Proc. 1986 International

Workshop on Object-oriented Database Systems, Sept. 1986, 52-65.

Codd79 Codd, E.F. Extending the database relational model to capture more meaning. ACM Trans.

Database Syst. 4, 4 (1979), 397-434.

Cope84 Copeland, G. and Maier, D. Making Smalitalk a database system. Proc. 1984 ACM-SIGMOD

International Conference on Management of Data, Boston, Ma. June, 1984, 316-325.

LyngSO Lyngbaek, P. and Kent, W. A Data Modeling Methodology for the Design and Implementation

of Information Systems. Proc. 1986 International Workshop on Object-oriented Database Systems,

Sept. 1986, 6-17.

Man8O Manola, F. and Dayal, U. PDM: an Object-oriented Data Model. Proc. 1986 International

Workshop on Object-oriented Database Systems, Sept. 1986, 18-25.

-14-

Mary86 Maryanski, F. et a!. The Data Model Compiler: A tool for generating object-oriented database

systems. Proc. 1986 International Workshop on Object-oriented Database Systems, Sept. 1986,

73-84.

0sb86 Osborn, S.L. and Heaven, T.E. The design of a relational database system with abstract data types

for domains. ACM Trans. Database S~st. 11, 3 (1986), 357-373.

Smith77 Smith, J.M. and Smith, D.C.P. Database abstractions: Aggregation. Communications ACM 20,

6 (1977), 405-414.

SnydSO Snyder, A. Encapsulation and Inheritance in Object-oriented Programming Languages. OOPSLA

‘86, Sigplar& Notices 21, 11 Nov. 1986, 38-45.

Ston86a Stonebraker, M. Inclusion of new types in relational data base systems. Proceedings 1986 Inter

national Conference on Data Engineering, Los Angeles, Ca. Feb., 1986, 262-269.

Ston86b Stonebraker, M. and Rowe, L. The Design of POSTGRES. Proc. 1986 ACM-SIGMOD Interna

tional Conference on Management of Data, Washington, D.C., May, 1986, 340-355.

-15-

EXTENDABILITY IN POSTGRES

Michael Stonebraker, JeffAnton, and Michael Hirohama

Department ofElectrical Engineering
and Computer Sciences

University of California
Berkeley, CA 94720

Abstract

This paper presents the mechanisms being designed into the next-generation data manager

POSTGRES to support extendability. POSTGRES supports user defined data types, operators, functions,

aggregate functions and access methods. This paper sketches the specification and implementation of each

of these constructs.

1. INTRODUCTION

POSTGRES is a next-generation data manager being built at Berkeley. Although formally a rela

tional DBMS because duplicate tuples are not allowed in any relation, the system contains substantial new

facilities to support procedural objects, rules, versions, inheritance, and user extendability. The

POSTGRES data model is discussed in ROWE87], the rules system is described in STON87a], and the

storage system is presented in STON87]. A (now obsolete) overview of the system appears in

STON86a], and a preliminary description of the extendable type system is contained in STON86b]. In

turn this builds upon the original paper on the subject STON83]. Although much of the material in the

current paper previously appeared in STON86b}, extendable aggregates are new, and the other mechan

isms have changed somewhat. Hence, this paper should be viewed as an update on POSTGRES extenda

bility and an indication of the status of the implementation in April 1987.

POSTGRES contains facilities for extendabiity in five areas, namely functions, data types, opera

tors, aggregates, and access methods. In the next five sections we discuss each area. Then, in Section 7 we

make some general comments and indicate the status of the code.

2. EXTENDABLE FUNCTIONS

POSTGRES allows the query language to be extended with new functions which can be user defined.

For example, if “arrogance’ has been previously registered as such a function taking an integer argument
and returning a floating point number, then the following POSTQUEL command becomes permissable:

retrieve (EMP.name) where arrogance (EMP.salary) > 5.3

Another function, high-arrogance, could return a boolean and allow the following expression:

retrieve (EMP.name) where high-arrogance (EMP.salary)

To register a new function, a user utilizes the following syntax:

DEFINE <cachable> PROCEDURE proc-name (type-i, type-2, ..., type-n)
RETURNS type-r
LANGUAGE IS (C, LISP)
FILE = some-file

This research was sponsored by the Naval Electronics Systems Command Contract N00039-84-C-

0039.

-16-

Basically, the implementor of the function indicates the input data types and the return data type. Then, he

indicates the language in which the function is coded, and the current options are C and LISP. Other than

putting a shell script for the compiler in a particular system catalog relation and enswing that routines writ

ten in the new language can be called from C, there is no other difficulty to adding new languages. The

source code for the function appears in the indicated file, and the cachable~ flag indicates whether the

function can be precomputed. Since query language commands can be stored in the data base and

POSTGRES is planning to cache the results of such procedures, it must know whether a function used in

such a query language statement can be executed before the user specifically requests execution. Most

functions, such as arrogance and high-arrogance, can be evaluated earlier than requested; however some

functions such as time-of-day cannot. The cachable flag is present to indicate which option is appropriate
for the function being defined.

POSTGRES accepts the source code in the indicated file and compiles it for storage in a system cata

log. Then, the code is dynamically loaded when necessary for execution. Repeated execution of a function

will cause no extra overhead, since the function will remain in a main memory cache. Functions can be

either called in the POSTGRES address space or a process will be forked for the function and a remote pro

cedure call executed. The choice of trusted or untrusted operation is controlled by the data base adminis

trator of the data base in question who can set the trusted flag in the same system catalog.

Lastly, POSTGRES automatically does type-checking on the parameters of a function and signals an

error if there is a type mismatch. Hence

retrieve (EMP.name) where arrogance (EMP.name) > 5.0

results in an error because arrogance does not accept a character string argument.

3. EXTENDABLE DATA TYPES

POSTGRES contains a collection of built-in data types which are required to define the system cata

logs. These include many of the standard ones such as integers and character strings. In addition, a user

can define new data types of the following forms:

new base data types

arrays of base data types

procedural data types

parameterized procedural data types

The last three kinds of types are described in ROWE87]; hence we concentrate only on the first one in this

paper.

A user can create a new base data type using the following syntax:

DEFINE TYPE type-name (
LENGTH = N,
DEFAULT =

INPUT = proc-name-i,
OUTPUT = proc-name-2,
SEND = proc-name-3,
RECEIVE = proc-name-4,
<by-value>)

Data types can be fixed length, in which case LENGTH is a positive integer or variable length, in which

case LENGTH is negative and POSTGRES assumes that the new type has the same format as the

POSTGRES data type, text, which is an arbitrary length byte string containing its length as the first 4 bytes.
A default value is optionally availab~eji~_ case a user wants some specific bit pattern to mean ~‘4ata not

present”. The first two registered procedures are required to convert from ascii representation to the inter

nal format of the data type and back. The next two registered procedures are used when the application
program requesting POSTGRES services resides on a different machine. In this case, the machine on

which POSTGRES runs may use a different format for the data type than used on the remote machine. In

this case it is appropriate to convert data items on output to a standard form and on input from the standard

format to the machine specific formaL The send and receive procedures perform these functions. The

optional by-value clause indicates that operators and functions which use this data type should be passed an

argument by value rather than by reference.

—17—

An example use of the above syntax is now shown to create the BOX data type:

DEFINE TYPE box (LENGTH =8,
INPUT = my-procedure-i,
OUTPUT = my-procedure-2)

A user can then create relations using the type. For example, the following relation contains box descrip
tions along with their associated identifier.

create MYBOXES (id = integer, description = box)

4. USER DEFINED OPERATORS

For existing built-in types as well as for user defined data types, a user can define new operators with

the following syntax:

DEFINE OPERATOR opr-name.1 AS proc-name(
PRECEDENCE = number,
ASSOCIATIVITY = string,
COMMUTATOR = opr-name-2,
NEGATOR = opr-name-3,
HASHES,
SORT = opr-name-4,
RESTRICT = proc-name-2,
JOIN = proc-name-3)

For example, the following syntax defines a new operator, area-equal, for the BOX data type:

DEFINE OPERATOR AE AS my-procedure-1(
PRECEDENCE =3,
ASSOCIATWJTY = yes,

COMMUTATOR = AE,
NEGATOR = ANE,

HASHES,
SORT = ALT,
RESTRICT = my-procedure-2,
JOIN = my-procedure-3)

Here, AE is defined by the registered procedure, my-procedure- 1. The precedence level is used to resolve

non-parenthesized expressions, e.g.:

5 ** MYBOXES.description AE MYBOXES2.description

Here ** is a second operator and might be the one with higher precedence and therefore applied in prefer
ence to AE.

The next several fields are for the use of the query optimizer. The associativity flag is used to denote

that multiple instances of the operator can be evaluated in any order. For example, consider the area-

intersection operator, ~ and the following expression:

MYBOXES2.description ~ “0,0,1,1” ~ MYBOXES.description

The associativity flag indicates that

(MYBOXES2.description ~ “0,0,1,1”) ~ MYBOXES.description

is the same as

MYBOXES2.description ~A (“0,0,1,1” A~ MYBOXES.description)

The commutator operator is present so that POSTGRES can reverse the order of the operands if it

wishes. In the case of AE, the order of operands is irrelevant. However, with the operator ALT, one would

have a commutator operator, area-greater-than, AGT. Hence the query optimizer could freely convert

“0,0,1,1” ALT MYBOXES.description

to

-18-

MYBOXES.description AGT “0,0,1,1~’

This allows the execution code to always use the latter representation and simplifies the access method

interface somewhat.

The negator operator allows the query optimizer to convert

not MYBOXES.description AE “0,0,1,1

to

MYBOXES.description NAB “0,0,l,1~

The next two specifications are present to support the query optimizer in performing joins.
POSTGRES can always evaluate a join (i.e. processing a clause with two tuple variables separated by an

operator that returns a boolean) by iterative substitution WONG76]. In addition, POSTGRES is planning
on implementing a hash-join algorithm along the lines of SHAP86]; however, it must know whether this

strategy is applicable. For example, a hash-join algorithm is usable for a clause of the form:

MYBOXES.description AE MYBOXES2.description

but not for a clause of the form

MYBOXES.description ALT MYBOXES2.descnption.

The HASHES flag gives the needed information to the query optimizer concerning whether this strategy is

usable for the operator in question.

Similarly, the merge-sort operator indicates to the query optimizer whether merge-sort is a usable

join strategy. For the AE clause above, the optimizer must sort the relations in question using the operator,
ALT. On the other hand, merge-sort is not usable with the clause:

MYBOXES.description ALT MYBOXES2.description

If other.join strategies are found to be practical, POSTGRES will change the optimizer and run-time

system to use them and will require additional specification when an operator is defined. Fortunately, the

research community invents new join strategies infrequently, and the added generality of user-defined join
strategies was not felt to be worth the complexity involved.

In a similar vein, there has been considerable interest in adding operators, such as outer join and tran

sitive closure, to a DBMS which do not readily fit the paradigm described above. POSTGRES takes the

position that the number of such operators is quite small and they can be safely added to the query

language and hardcoded into the optimizer. If new ones are desired, the syntax can be extended and the

optimizer changed. Other groups (e.g. CARE86]) have reached a different conclusion on these issues.

The last two pieces of the specification are present so the query optimizer can estimate result sizes.

If a clause of the form:

MYBOXES.description ALT “0,0,1,1~

is present in the qualification, then POSTGRES may have to estimate the fraction of the tuples in

MYBOXES that satisfy the clause. The procedure, my-procedure-2, must be a registered procedure which

accepts one argument of the correct data type and returns a floating point number. The query optimizer
simply calls this function, passing the parameter “0,0,1,1 and multiplies the result by the relation size to

get the desired expected number of tuples.

Similarly, when the operands of the operator both contain wple variables, the query optimizer must

estimate the size of the resulting join. The procedure, my-procedure-3, will return another floating point
number which will be multiplied by the cardinalities of the two relations involved to compute the desired

expected result size.

The difference between the function

my-procedure-i (MYBOXES.description, “0,0,1,1 ~)

and the operator

MYBOXES.description AE “0,0,1,1

is that POSTGRES attempts to optimize operators and can decide to use an index to restrict the search

-19-

space when operators are involved. However, there is no attempt to optimize functions, and they are per
formed by brute force. Moreover, functions can have any number of arguments while operators are res

tricted to one or two.

S. AGGREGATE OPERATORS

POSTGRES also supports the inclusion of user defined aggregate operators. Traditional systems
hard code aggregates like sum, average, count, etc., and therefore cannot handle a new aggregate such as

median or 2nd largest. POSTGRES, on the other hand, allows a user to define new aggregates. Syntacti
cally, POSTQUEL supports the notion of a collection of tuples and can compare sets of tuples for equality.
The following query illustrates this construct by testing whether the toy department exists on all floors:

retrieve (true = 1)
where (DEPT.floor) == (DEPT.floor where DEPT.dname = “toy”)

Such collections of tuples are indicated by the brace notation (...). The mechanism chosen for aggregates
is to allow them to be a function with one argument which is a collection of tuples. Hence, the following
expression computes the average salary of the shoe department

retrieve (comp = avg (EMP.salaiy where EMP.dept = “Shoe”))

The notion of an aggregate function, expressed clumsily in SQL and QUEL, can be more elegantly
expressed in POSTQUEL. The following command computes the average salary for each department:

retrieve (EMP.dept,
comp = avg(E.salary from E in EMP where E.dept = EMP.dept))

In the former case, the (...) evaluate to a single collection of tuples, each with a salary. In the second case,

the (...) evaluates to a collection of collections of salaries, one for each value of EMP.dept. POSTGRES

will transform the expressions above to the internal form currently used for aggregates in INGRES

EPST79] and will apply the standard aggregate processing techniques developed previously. Hence, a

user defined aggregate, e.g:

retrieve (EMP.dept,
comp = foobar(E.salary using E in EMP where E.dept = EMP.dept))

must consist of two functions, a state transition function, T of the following form:

T(internal-state, next-salary) ---> next-internal-state

and then a final calculation function, C:

C(internal-state) ---> aggregate-value

For example, the average aggregate consists of a state transition function which uses as its state the

sum computed so far and the number of values seen so far. It accepts a new salary and increments the

count and adds the new salary to produce the next state. The state transition function must also be able to

initialize correctly when passed a null current state. The final calculation function divides the sum by the

count to produce the final answer. A second example is the aggregate 2nd largest which must have a state

consisting of the current two largest values. It uses a state transition function which accepts a new value

and returns the current two largest by discarding either the new input or one of the two elements in the

current state. The final calculation function outputs the smaller of the two objects in the state.

Consequently, an aggregate is defined in the following way:

DEFINE AGGREGATE agg-name AS state-transition-function, final-calculation-function

These functions are required to have the following properties:

1) the output of state-transition-function and the input of final-calculation-function must be the same type,
S.

2) the output of final-calculation-function can be of arbitrary type.

3) the input to state-transition-function must include as its first argument a value of type S. The other argu

ments must match the data types of the objects being aggregated.

-20-

6. EXTENDABLE ACCESS METHODS

It is expected that sophisticated users will be able to customize POSTGRES by adding their own

access methods. Because we expect users to add access methods much less frequently than operators,
functions, data types, or aggregates, we have not attempted to define a user-friendly syntax for this task.

Hence, the reader should simply note that this task is intended to be performed by an expert. In this section

we will explore the steps to integrating a new access method into POSTGRES and then discuss the steps a

user must go through to use an access method defined by someone else.

Access methods are used only for secondary indexes in POSTORES, and there is a POSTGRES sup

plied storage manager which handles data records. Hence, an access method stores a collection of keys
and a pointer to a tuple which is stored by the storage manager. In addition, to assist the rule manager each

access method must store a collection of rule locks. Consequently, all access methods must manage
records that are variable length. In addition, POSTGRES also assumes that any access method is willing to

store fixed or variable length keys. Collections of records managed by an access method will be called

relations since POSTORES treats them in the same way as collections of data records.

It is generally expected that an access method will choose to use the POSTGRES buffer manager. If

so, the access method implementor must call POSTGRES supplied routines to read and write pages in the

buffer pool and to pin and unpin buffer pages. This is a standard interface with the buffer manager, and

those four procedures are registered so this step is straightforward. In addition to being aware of buffer

management, the access method implementor must implement any required locking for objects in his

index. He can use the POSTGRES lock manager or code one of his own choosing. If he does the latter,
there may be deadlocks between his lock manager and the POSTGRES lock manager which are undetect

able. Lastly, the access method implementor must specify any required ordering on the times that particu
lar index pages are forced to stable memory. Such orderings may be required to preserve the consistency
of the index when failures occur, and are supported by a call to a last buffer manager routine. Because of

the POSTGRES storage architecture there is no need to write any other crash recovery functions. Although
these interfaces are somewhat complicated, the access method implementor is assumed to be an expert and

capable of mastering them.

The first step for the access method implementor is to write a collection of procedures that

correspond to a POSTGRES defined access method interface which includes routines to open a relation,
close a relation, get a unique tuple by key, get the next tuple in a scan, insert a new tuple, delete a topic,
begin a scan of a relation, end a scan of a relation, mark the position in a scan of a relation, and restore a

previously marked position. The specifications of these routines are somewhat lengthy, and we restrict

ourselves in this paper to making a few comments. First, there is no replace function because access

methods are used only for secondary indexes and updating a secondary index always requires deleting a

tuple and reinserting it somewhere else. It should also be noted that an access method implementor who
adheres to the page layout of the access methods built by the POSTGRES designers (so far just B-trees;
however R-irees GUTM84J are planned), can utilize all the B-tree routines except insert, delete, and get-
next. Hence, there is much less code to write in this case.

Next, all access method routines are called with a ~‘relation descriptor” as one argument. This

descriptor indicates the type of each field and its length and position. Hence, each access method routine is

passed complete information about the tuple it will be manipulating. Lastly, the access method must be

coded with a collection of strategies in mind. For example a B-tree access method can support efficient

access for clauses of the form

relation.key operator value

where operator is one of

(=, <=, <, >, >=)

Hence, five strategy numbers must be assigned, one for each such operator.

The implementor of the access method must register each of his access method routines as a pro
cedure and then enter the access method into an access method system catalog. This catalog contains the

name of the access method, the name of each procedure to use, and a comment field indicating how many

strategies there are and what each intuitively means. This information is used by the others to assist them in

binding new operators to an existing access method as now discussed.

-21-

The next step is for the implementor or another user to define an operator class containing an opera

tor for some or all of the strategies. Each operator in this class would be entered in another access method

catalog, indicating its class, the access method to use, the strategy number for the operator, and two addi

tional procedures. The first has the same meaning as the “restrict’~ procedure in the operator definition. It

will return the expected fraction of the records which satisfy the clause

relation.key operator value

The second operator returns the expected number of pages examined in evaluating a clause of the above

form. These two procedures are used by the query optimizer in the obvious way.

For example, by making direct entries into this system catalog, the class, area-ops can be defined

containing the operators:

AE, ALT, ALE, AGT, AGE

The last step in utilizing an access method is to create the actual index. An index for the MYBOXES

relation using the class, area-ops, would be defined as follows:

DEFINE INDEX box-index ON MYBOXES (description) using B-tree (area-ops)

After this step, the index is ready to use and is automatically kept consistent with the corresponding data

records by POSTGRES.

7. DISCUSSION

There are several comments to be made at this time. First, no attempt has been made to allow

POSTGRES to have user defined storage managers. One of the goals of POSTGRES is to remove all crash

recovery code from the system by not overwriting data records. Hence, the storage manager is quite com

plex and uses coding techniques to differentially encode records. It was felt that allowing users to define

alternate storage managers was a task far to complex to attempt.

However, users can create new storage managers external to POSTGRES. The mechanism is to

define a data type and then store the actual data externally and have the POSTGRES value of each item

simply be a pointer to the object stored elsewhere. For example, a document data type can use this tech

nique to store the actual bytes in each document in an external file. The conversion routines discussed ear

lier in the paper and all the operators which use the document data type must be coded carefully to use the

POSTGRES supplied value as a pointer to an external location. The only missing function in this utiliza

tion of the data type facility is recovery of document data in case of a transaction failure. To support this

capability, POSTGRES would have to pass begin and end transaction statements to such managers so they
can provide crash recovery for their objects. This is a straightforward step which we may attempt if there

is sufficient demand.

Another comment concerns performance. In some applications one wants to directly call the access

methods and is unwilling to pay any extra overhead for a high level data management system. In such

applications POSTGRES allows a user to run queries such as the following:

retrieve (result = get-unique (tuple-id))

Although some of the parameters have been purposely omitted for simplicity, this illustrates that a user can

directly call access method functions and incur very low overhead. To further reduce overhead,

POSTGRES will special case queries such as these to go directly to the low level execution routines and

bypass intermediate layers of the data base system. With this architecture in which low level routines are

functions that arc semantically identical to user defined functions, very high performance appears possible.

At the current time, POSTORES supports user defined access methods (although only one has been

written by us), user defined data types, and user defined operators. The parser and query optimization rou
tines are all operational. The only restriction is that all the operator code must be preloaded, since our

dynamic loader is not yet running. Moreover, the remote procedure call interface has not been started.

Execution of user defined functions and aggregates is not yet possible; implementation of the former is

nearly working, but aggregates have not been started. We expect to have a complete system with all capa

bilities we have defined toward the end of this year.

-22-

REFERENCES

CARE86] Carey, M., et. aL, “The Architecture of the EXODUS Extensible BMS Proc.

International Workshop on Object-Oriented Database Systems, Pacific Grove, Ca.,

September 1986.

EPST79] Epstein, R. and Ries, D., “Aggregate Processing in INGRES,” Electronics

Research Laboratory, University of California, Technical Report, M79-42,
October 1979.

GUTM84] Gutman, A., “R-trees: A Dynamic Index Structure for Spatial Searching,” Proc.

1984 ACM-SIGMOD Conference on Management of Data, Boston, Mass. June

1984.

ROWE87J Rowe, L. and Stonebraker, M., “The POSTGRES Data Model,” (submitted for

publication).

SHAP86] Shapiro, L., “Join Processing in Database Systems with Large Main Memories,”
ACM-TODS, Sept. 1986.

STON83] Stonebraker, M., et. al., “Application of Abstract Data Types and Abstract

Indexes to CAD Data,” Proc. Engineering Applications Stream of 1983 Data

Base Week, San Jose, Ca., May 1983.

STON86aJ Stonebraker, M. and Rowe, L., “The Design of POSTGRES,” Proc. 1986 ACM

SIGMOD Conference on Management of Data, Washington, D.C., May 1986.

STON86b] Stonebraker, M., “Inclusion of New Types in Relational Data Base Systems,”
Proc. Second International Conference on Data Engineering, Los Angeles, Ca.,
Feb. 1986.

STON87a] Stonebraker, M. et. al., “The Design of the POSTGRES Rules System,” Proc.

1987 IEEE Data Engineering Conference, Los Angeles, Ca., Feb. 1987.

STON87b] Stonebraker, M., “The POSTGRES Storage System”, (submitted for publication).

WONG76] Wong, E., and Youseffi, K., “Decomposition; A Strategy for Query Processing,”
ACM-TODS, Sept. 1976.

-23—

Extensibility in the PROBE Database System

David Goldhirsch

Jack A. Orenstein

Computer Corporation of America

4 Cambridge Center

Cambridge, MA 02142

1. Introduction

It is widely recognized that existing database systems do not address the needs of

many “non-traditional” applications such as geographic information systems (GISs), solid

modeling and VLSI design. The underlying data models, query languages, and access

methods were designed to deal with simple data types such as integers and strings, while

the new applications are characterized by spatial data, temporal data, and other forms

of data having both complex structure and semantics. Performance is likely to be a

problem because of the mismatch between the requirements of the application and the

capabilities of the database system. (For a more complete discussion of the motivations

for the PROBE project and the range of issues addressed see DAYA85].)

In response to these problems, several new database system architectures have been

developed over the past ten years. These systems provide different answers to the fol

lowing questions: What extensions should be added to a database system? How should

these extensions be incorporated? These questions require answers at the implementa
tion level and at the level of the data model and query language. For example, in GIS

and CAD applications, the “convex hull” operation is important. How can the database

system be augmented with a convex hull subroutine? What construct in the data model

represents the convex hull subroutine, and how does the subroutine get invoked from the

query language? In this paper we present a framework into which previously described

systems can be placed, and then discuss how extensibility is achieved in the PROBE

database system.

2. Extensibility in PROBE

Work on the problem of extending database system capabilities has led to three stra

tegies:

Use an Existing Database System: One approach to extending database system func

tionality is to embed all the new functionality in the application program as in CHOC84,
SMJT84]. This requires the application programmer to map the types and operations of

the application into those of the database system. The mapping of representations is

usually not difficult. For example, any representation of spatial data can usually be

mapped onto a relational schema without difficulty. However, it is often difficult or

impossible to formulate even the simplest queries (for example, given some relational

schema that stores the vertices and edges of polygons, try writing a query that retrieves

all polygons overlapping a given polygon).

-24-

Providing adequate performance is another problem with this approach. The data

structures and access paths provided by the database system may not be suitable for the

data types being represented, and the DDL may not provide the means to specify the

desired physical organization. Also, the complexity of the queries will probably cause

the optimizer to miss many opportunities for improvement.

Add a ‘Hardwired’ Extension: In this plan, application-specific features are explicitly
added to an otherwise general-purpose data model. Such extensions have been proposed
for image data CHAN81, LIEN77], text retrieval SCHE82, STON82], geographic infor

mation processing AUTO87, IEEE??, MORE85}, and VLSI design KATZ85].

The problem with this approach is that, in each case, the specific extensions added

are application-specific and limited in generality. For example, the spatial capabilities
required for geographic data would be, at best, of limited usefulness in a mechanical

CAD application. Moreover, even for a single type of data, e.g., geographic data, there

are many ways to represent and manipulate the data, and each way may be the best in

some specific application. It does not seem possible to select one approach to build in

and maintain generality. At the same time, it is clearly impossible to provide all useful

approaches in the same database system.

Use an Extensible Database System: The problem common to the strategies
described above is that database systems do not provide, in their query languages or

architectures, facilities for the addition of extensions. Object—oriented or extensible

database provide this feature explicitly. The architecture of an extensible database

sytem consists of these two components:

1. A database system kernel: A query processor designed to manipulate objects of

arbitrary types, not just the numeric and string types of conventional database

syste ms.

2. A collection of abstract data types or object classes (we will use the latter term):
The object class specifies the representation of objects of a new type, and pro

vides operations for manipulating objects of the type.

The difference between an EDB and the hardwired approach is that an extensible

database system is much simpler to extend, because the interface between the database

system and the extension is clearly defined. This also facilitates the handling of multiple
extensions.

However, the process of adding an object class to an EDB is not trivial. The

designers of EXODUS describe their system as a database generator and discuss the need

for a database implementer (DBI) -- a person who creates a database system for an appli
cation by adding object classes to EXODUS CARE86]. This is an accurate view of how

any EDB would be used, and the PROBE and POSTGRES STON86] systems would also

benefit from the services of a DBI, since this process of customization requires expertise
beyond what could reasonably be expected of an application programmer. The other

duties of a DBI will depend on the particular EDB being customized.

In designing PROBE (as in the design of any EDB system), it was necessary to specify
an exact division of labor between the database kernel and the object classes. We

believe that the database system should provide the operations of some data model, e.g.,

select and project, suitably generalized for dealing with collections of objects of the

most generic types. It shàuldthèreföre be The responsibility of each object class to

implement specialized operations on individual objects. Note that for reasons similar to

those that led us to the extensible database system approach, this division of labor

corresponds well with a desirable division of labor among implementors -- application
specialists (who supply the object classes) will not be concerned with database system
implementation issues (e.g., relating to the management of collections of objects), while

the EDB implementers do not have to consider application-specific issues (that might

—25—

limit the generality of the system).

The PROBE architecture (as shown in figure 1) reflects both this basic paradigm and

a need to efficiently serve certain kinds of applications. To support basic extensibility,
the data model supports the notion of generalization. At the root of the hierarchy is the

most generic type, ENTITY. Below this are types with more semantics such as numeric

types, string types and spatial types. Application-specific types can be added. To

efficiently support spatial and temporal applications, a generic PTSET (point set) type
was included. This type provides a very general (yet optimizable) notion of both spatial
and temporal data (see MANO86a]).

This architecture is consistent with our chosen division of labor: the database sys
tem kernel handles sets of generic objects, while the application-specific object classes

handle individual objects of specialized types. The application program invokes database

operations as usual. What is different. is that the invocation will refer to functions pro
vided by the object classes. For example, a VLSI CAD database built on top of PROBE

might invoke a selection where the selection predicate checks a given instance of the

GATE object class for overlap with all objects on a given layer. The selection is done in

the database system kernel, and the overlap predicate is supplied by the object class that

represents the GATE’s geometry (e.g., the BOX object class).

3. The PROBE Data Model

A brief discussion of the PROBE data model (PDM) is necessary before proceeding
(see MANO86b, MANO86c] for detailed information). The basic modeling constructs of

PDM are entities and functions. An entity is used to represent a real-world object. An

entity is a member of one or more types, and types are organized into a generalization
hierarchy. Functions are used to represent properties of entities (e.g., the age of a per

son), as well as relationships among entities (e.g., the containment of an entity by
another). Functions can take any number of arguments (including 0) and return any
number of results. The semantics of functions do not distinguish between those that are

stored and those that are computed. The distinction is important to an implementer and

to a query optimizer, but not to an application programmer. A stored function is essen

tially the same thing as a relation in the relational model.

Functions and entities are manipulated by the PDM algebra. This algebra can be

viewed as an enhanced relational algebra. The differences include the notion of an

entity, the ability to manipulate entities of arbitrary types, support for computed func

tions, and support for spatial and recursive queries. An operation of the PDM algebra
that will be important in a later section is apply—append. This operations is essentially a

natural join adapted to work with PDM functions.

Example: F is a stored function with three arguments, x, y and z. Since it is stored,

any subset of the arguments can be used as input and the others can be treated as output.
PLUS is a computed function that takes y and z as input and returns w as output. Con

ceptually, PLUS is the infinite set of (y, z, w) tuples for which w = y + z. If F(x, y, z) =

a, 1, 2], b, 5, 8], Fe, 7, 3}} then apply-append(F, PLUS) returns this stored function (with

arguments x, y, z and w): a, 1, 2, 3], b, 5, 8, 13], c, 7, 3, 10]]. (This is equivalent to a

natural join between the relation corresponding to F and the infinite relation

corresponding to PLUS.) When given two stored relations, apply-append returns the

natural join. When given two computed relations, the result is a new computed relation

(i.e., the composition of the two functions).

—26-

4. Adding an Object Class to PROBE

One of the tasks of the DBI is to “customize” an EDB by incorporating specialized
object classes. To do this, the DBI must produce an adapter. What is described here is

oriented towards the current implementation of PROBE; but the issues are applicable
to any EDB.

Consider a geographic application that manipulates polygons. The PDM function

edges: POLYGON —p set of LINE-SEGMENT returns the line segments comprising the

edges of polygon p. For purposes of this discussion, assume that edges is computed.
Associated with the POLYGON type is an object class giving the implementations of all

the computed functions of polygons. These subroutines compute their results from the

representation of polygons which are stored in the database and accessed (but not inter

preted) by the database system kernel. For a polygon, the representation might be an

array of points defining the vertices of a polygon (i.e., edges returns an instance of the

LINE-SEGMENT object class for each pair of adjacent array elements).

To support edges, the DBI must supply an adaptor routine that reconciles the follow

ing two views of this function:

1. PROBE sees edges as a PDM function. When invoked by apply-append, this func

tion receives a tuple (containing a POLYGON instance) and returns a relation

(containing a set of LINE-SEGMENT instances). (Internally, the PROBE bread

board uses relations and tuples.)

2. The object class view of edges is that of a subroutine (written in C for example).
The array storing the polygon is passed to the function by the usual parameter
passing mechanism, and the result (multiple line segments) is returned using a

data structure supported in the language, e.g., an array or a linked list.

There are three things to be reconciled. First, PDM functions have labelled argu
ments (in the style of Ada), while most programming languages uses “positional” notation

(i.e., the order of arguments is important). Therefore the adapter has to make sure that

each labelled argument appears in the correct position in the argument list of the sub

program. Second, below the level of the query language, PROBE works with tuples and

relations, while the subprogram works with integers, pointers, arrays, records, etc. The

adapter has to convert from one representation to the other. The problem is most severe

for set-valued functions. The implementation of apply-append passes a tuple to the sub

program (via the adapter) and expects a relation in return. That relation may be a single
ton (in case of a single-valued function), but for the edges function it will not be since

each polygon will return multiple line segments. The adapter is responsible for travers

ing the data structure returned by the subprogram and constructing the relation

expected by the implementation of apply-append. The third incompatability has to to

with the processing of null values. The POLYGON object class may not have any such

notion, or may have its own specialized representation of null values, with its own

semantics. Furthermore, the treatment of nulls may differ from one object class to

another. PDM on the other hand, specifies a particular treatment of null values. One

aspect of this is that a “don’t care” null value is defined as being a member of every

object class. The adapter has to intercept these null values from the database and handle

them, not allowing them to reach the subprograms. The adapter may substitute the

correct null value for that object class or handle the null input without invoking any

object class functions at all.

-27-

The adapter will also provide access to functions needed for aggregation. For exam

ple, in order to compute a sum (one kind of aggregation), the application program directs

PROBE’s aggregation operator to call a SUM function, provided by the adapter, which

adds a value (from one of the tuples being accumulated) to the value of an accumulator.

The object class view (from the INTEGER object class, for example) is to add two

numbers using the binary ‘+‘ operator.

Continuing the POLYGON example, aggregation could be used to define an assemble

function that converts a collection of LINE-SEGMENTs to a POLYGON (i.e., assemble is

the inverse of edges). The adapter provides the assemble function which stores as input a

single LINE-SEGMENT and an accumulator over a partially-constructed polygon. The

POLYGON function actually adds the line segment to the polygon. After all the line

segments of a polygon have been passed to assemble, the accumulator will contain the

completed polygon.

5. An Example: A Spatial Query

We now briefly describe how PROBE’s approach to extensibility is used in processing
a spatial query. This data and this query are currently supported by the breadboard

PROBE system. The point of the example is to show that (a) PROBE can efficiently pro

cess spatial queries and (b) under the proposed division of labor between the database

kernel and the spatial object classes, it is relatively easy to implement this kind of appli
cation.

The database represents some of the major roads in the eastern part of Mas

sachusetts. Consider the query “find all gas stations within a mile of the Massachusetts

Turnpike”. Two spatial object classes are used:

1. The ELEMENT object class. PROBE’s geometry filter uses a special approximate
representation that is grid-like but runs faster and uses less space (see OREN86a,
OREN86b] for details). The geometry filter algorithms are part of the database

system kernel, but the ELEMENT object class is handled exactly as any other

object class.

2. The LINESEG object class, to provide precise handling of geometric data,
represented by line segments.

We also constructed a third object class, that implemented the operations of a graphical
interface (e.g., construct a box, place the box on the screen, highlight a box). This

allowed us to implement the entire graphical interface using PDM Algebra.

The query is evaluated by a series of nested PDM Algebra expressions that imple
ment the following strategy:

1. From the name “Massachusetts Turnpike” the entity representing this road can be

located. A road is a complex object, so the “road segments” comprising the road

must be located. Next, find the spatial object representing each road segment.
Each one of these steps requires a call to apply-append. Since all the functions

involved are stored, all that is occurring is a selection over a series of natural

joins.

2. The spatial object representing a road segment is used to locate the straight-line
segments that represent the shape of the road. Apply-append is used here too.

The function that returns these line segments can be stored or computed (it is

very similar to the edges function discussed above). We chose to use a stored

function.

-28-

3. Form a one-mile buffer around each line segment that will contain all gas stations

of interest (and possibly some others). This can be done using apply-append and a

function which computes a box (the buffer) surrounding a given line segment.

4. The geometry filter representation of the buffers is obtained by using apply-
append and the decompose function defined for the ELEMENT object class (a spa
tial object is decomposed into elements.) Decompose does not assume anything
about the type of the spatial object being decomposed. It calls two generic func

tions that check overlap and containment. The type-specific implementations of

these operations are invoked by the corresponding generic functions after check

ing the type of the spatial object being decomposed.

5. The points representing the gas stations have been decomposed as part of the

loading of the database, so the geometry filter can now be run. The filter is

invoked via the spatial join operation of PDM algebra and returns a (stored) func

tion of (gas station, line segment) pairs. These objects are likely to be within the

required distance of one another. The output from this step is an approximate
(but conservative) answer to the query, corresponding to the “Candidates” box in

figure 1. Refinement of this result occurs in the next step.

6. Each (gas station, line segment) pair now has to be verified. If the distance

between the two objects is more than one mile, it is rejected. This step is imple
mented by first using apply-append to compute the distance between the gas sta

tion and the line segment. Then a cartesian product with the function ONE-MILE()
“1 mile” is executed. Next, the select operation is used to compare the distance

to 1 mile. Select takes as input the stored function just computed, and the com

puted function LESSTHAN which specifies the selection condition. Finally, a pro

jection onto the gas station entity yields the result.

The data set used in our development has 500 gas stations and 178 line segments. The

Massachusetts Turnpike is represented by 14 of those line segments. Of the 7000 possi
ble gas station / line segment combinations (following selection for line segments of the

Massachusetts Turnpike), the geometry filter identified 165 candidates and the final step
reported 20 gas stations. There are many open issues regarding the optimal setting of

parameters used by the geometry filter and regarding spatial query processing stra

tegies. For example, the figure of 165, representing about 2% of the possible pairs,
could certainly be lowered by adjusting the parameters, and this would speed up the

refinement step, although other costs would increase (e.g., the time to do the decompo
sition in step 4).

6. Conclusions and Work in Progress

In order to provide a database system that can meet the needs of a wide variety of

applications, it is necessary to build in extensibility, rather than a specific set of exten

sions. PROBE provides this capability by supporting the incorporation of arbitrary object
classes. This facility supports a division of labor in which the database system kernel is

concerned with manipulating sets of uninterpreted objects, while only the object classes

are concerned with application-specific details. In particular, the implementer of a spe

cialized object class does not have to be concerned with database issues such as secon

dary storage, concurrency control and recovery.

These ideas were demonstrated in the context of an application being developed on a

“breadboard” implementation of PROBE. The breadboard currently supports the PDM

algebra and the geometry filter (as well as some spatial object classes). The recursion

facilities (described in ROSE86a, ROSE86b}) will be added in the near future.

-29-

Acknowledgements

We are grateful to Alex Buchmann, Upen Chakravarthy, Umeshwar Dayal, Mark

Dewitt, Sandra Heiler, Frank Manola and Arnie Rosenthal for their contributions to the

development of PROBE.

7. References

AUT087]
Proc. 8th International Symposium on Computer-Assisted Cartography.

CARE86]
M. J. Carey et a!. The architecture of the EXODUS extensible DBMS. Proc. Interna

tional Workshop on object-oriented database systems, (1986).

CHAN81I
S.-K. Chang, ed. Pictorial Information Systems. Special issue, Computer, 14, 11

(1981).

CHOC84}
M. Chock et al. Database structure and manipulation capabilities of a picture data

base management system (PICDBMS). IEEE Trans. on Pattern Analysis and Maci-tine

Intelligence 6, 4 (1984).

KATz85]
R. H. Katz. Information management for engineering design. Springer-Verlag (1985).

DAYA85}
U. Dayal et al. PROBE — a research project in knowledge-oriented database systems:

preliminary analysis. Technical Report CCA-85-03 (1985), Computer Corporation of

America.

IEEE77]
Proc. IEEE Workshop on Picture Data Description and Management (1977).

LIEN77J
Y. E. Lien, D. F. Utter Jr. Design of an image database. Proc. IEEE77 Workshop on

Picture Data Description and Management, (1977).

MANO86a]
F. Manola, J. Orenstein. Toward a general spatial data model for an object-oriented
DBMS. Proc. 12th International Conference on Very Large Databases, (1986).

MANO86b]
F. Manola, U. Dayal. PDM: An object-oriented data model. Proc. International

Workshop on object-oriented database systems, (1986).

MANO86c]
F. Manola. PDM: an object-oriented data model for PROBE. Computer Corporation
of America technical report, to appear.

MORE85]
Scott Morehouse, “ARC/INFO: A Geo-Relational Model for Spatial Information”,
Proc. Seventh Intl. Symp. on Computer—Assisted Cartography, American Congress on

Surveying and Mapping, 1985.

-3D-

OREN86a]
J. A. Orenstein. Spatial query processing in an object-oriented database system.
Proc. ACM SIGMOD, (1986).

EOREN86b]
J. A. Orenstein, F. A. Manola. Spatial data modeling and query processing in PROBE.

CCA Technical Report CCA-86-05, (1986).

ROSE86aI
A. Rosenthal, S. Heiler, U. Dayal, F. Manola. Traversal recursion: a practical

approach to supporting recursive applications. Proc. ACM SIGMOD (1986).

ROsE86b]
A. Rosenthal, S. Heiler, U. Dayal, F. Manola. Traversal recursion: a practical

approach to supporting recursive applications. Computer Corporation of America

technical report CCA-86-06, (1986).

SCHE82]
H.-J. Schek, P. Pistor. Data structures for an integrated data base management and

information retrieval system. Proc. VLDB 8, (1982), 197-207.

SMIT84]
J. D. Smith. The application of data base management systems to spatial data han

dling. Project report, Department of Landscape Architecture and Regional Planning,

University of Massachusetts, Amherst (1984).

STON82]
M. Stonebraker et al. Document processing in a relational data base system. ACM

TOOlS 1, 2 (1983), 143-158.

STON86}
M. Stonebraker. Object management in POSTGRES using procedures. Proc. Interna

tional Workshop on object-oriented database systems, (1986).

Database Extensible database system Queries

Figure 1: ArchItecture of the PROBE Database System ~ Data

—31— Function invocation

An Overview of Extensibility in Starburst

by

John McPherson

Hamid Pirahesh

IBM Almaden Research Center

650 Harry Road

San Jose, CA 95120

Abstract

One of the goals of the Starburst project is to design and implement an extensible database management

system. It is felt that extensibility is required if one hopes to meet the diverse requirements of today’s
applications and to be able to adapt to the needs of future applications and technologies. This paper will

provide a brief overview of the Starburst database management system followed by a discussion of several

areas of extensibility in Starburst including relation storage management, access paths, abstract data types,
and complex objects.

Starburst Overview

There are four primary research areas that are being addressed by Starburst: extensibility, system
structure and performance, portability, and distributed data and function. Extensibility is the primary
topic of this paper so we will defer discussion of this topic until later sections. In the area of system
structure and performance, we are looking at new strategies for locking and recovery. Starburst will permit
record level locking and will use a write ahead logging protocol. We are also looking at new optimization
and execution strategies. Our portability goal is to design a system that can be easily ported to different

hardware and operating systems. We are attempting to isolate hardware and operating system dependencies
to a small set of clearly defined modules that will need to be modified to support different environments.

Finally, we will be investigating techniques for distribution of data and function between workstations,

departmental servers, and mainframes. Areas that need special attention include naming, security, and

control. The emphasis in Starburst will not be on geographic distribution of data between homogeneous
mainframes, as that was dealt with in R’ LINDSAY84] which was a predecessor project to Starburst.

The Starburst system is divided into two major subsystems named Core and Corona. Core provides
tuple at a time access to stored relations. It includes support for record management, indexes, transaction

management, buffer management, integrity constraints, and triggers. Corona provides an interface to

applications and users. It includes support for query parsing and optimization, generation of runtime

access plans, catalog management, and authorization. Core and Corona are similar to the Relational

Storage System (RSS) and Relational Data System (RDS) in System R IASTRAHAN76I. However,

there is a more symbiotic relationship between Core and Corona than between the RSS and RDS. In

-32-

Starburst, for example, Core catalog information will be managed by Corona and passed to Core when it

is called. This eliminates the need for Core access to any catalogs at query execution time. The ~agged
interface between Core and Corona reflects mutual trust and support between the two components, and

is motivated primarily by performance considerations.

Extensibility

Database systems have traditionally provided support for the typical business data processing applications
such as order entry, inventory control, and billing. In these applications, the database system has provided
a repository for the applications’ data that includes support for concurrency control, recovery, and in the

case of relational databases, a query language that makes it easy to access and manipulate data. The

database system has allowed these applications to concentrate on using data without worrying about the

intricacies of data management. Other applications such as CAD/CAM, office information, statistical

databases, expert systems, and text applications would also benefit from these database management
services, but such applications require data models, storage techniques, and access methods that are not

normally provided by traditional database management systems. For example, techniques for storing
formatted records of modest size are inappropriate for storing large segments of text or images that may

consume several megabytes of storage. Furthermore, standard access methods are inadequate for indexing
structured documents or objects in an image.

While there is a desire to support a wider class of applications, one does not want to lose the benefits

of a relational database management system including the set..oriented query language feature. The broad

acceptance of relational databases demonstrates their usefulness for a large class of existing applications.
It does not seem prudent, therefore, to completely abandon the existing relational database technology in

attempting to support new applications with a database management system. We feel that non-traditional

database applications can be supported with appropriate extensions to a relational database management

system, resulting in a system that has the ease of use of a relational system and the performance and

function required for the new application.

One approach to adding the new functions would be for us to design and build an extended database

management system, that is, a system where we have determined in advance what function the system will

contain. The major problems with the extended approach are that we would end up with a very large
database system that tries to be all things to all applications, and there would undoubtedly be many

applications and technologies that we would still be unable to support. Furthermore, the resulting system
would be difficult to modify if we ever decided to try to add support for another type of application. Our

approach, therefore, will be to build an exten.cible relational database management system, that is, a system
that provides a full function relational database management system as a base and that can be easily
extended to provide support for new applications and technologies. Any particular instance of the database

system will be extended for those applications that are currently using the system. Other groups have also

been investigating extensible database systems as witnessed by this issue of Databa.ce Engineering and other

papers STONEBRAKERS6,BATORY86,CAREY86,DAYAL85].

Several types of extensions are being examined in Starburst and a few of them will be considered in

this paper. Starburst will be able to support different methods of storing relations, different access paths
for locating stored data, integrity constraints that control the consistency of the database, and other

attachments to the database that are triggered by modifications to the database and result in actions either

-33-

inside or outside of the database. It is recognized that there will always be some data that is stored in

external databases and Starburst will be able to access data in those external databases and coordinate

concureency control and recovery, as long as the external databases are capable of participating in two

phase commit and in global deadlock detection protocols. Users will be able to define abstract data types,
and we will provide support for complex objects. All of the Starburst extensibility features will be supported
with appropriate changes to SQL. Some of the extensions to Starburst can only be made by knowledgeable
programmers at the factory. Such extensions include many of the Core extensions that, for performance
reasons, require unprotected access to critical system resources. Other extensions, such as the definition

and use of abstract data types based on existing types, can be made by casual database users. The

remainder of this paper will discuss the data management extension architecture which provides support
for alternative relation storage methods, access paths, integrity constraints and triggers. We will then

discuss support for abstract types and complex objects.

Data Management Extension Architecture

Core provides extensible data management services for Starburst including support for alternative

relation storage methods and alternative access paths. The principle features of the data management
architecture LINDSAY87j supported by Core are: a well defined set of interfaces for relation storage
methods, access structures, integrity constraints, and triggers; an efficient and flexible way of determining
what relation storage method, access paths, integrity constraints, and trigger routines need to be activated

based on an extensible relation descriptor; an efficient way to activate these routines using vectors of

routine entry points; and a formulation of common services such as logging, locking, event notification,
and predicate evaluation, to coordinate the activities of the different extensions and to make their imple
mentation easier.

The data management extension architecture treats extensions as alternative implementations of certain

generic abstractions having generic interfaces. The architecture defines two distinct generic abstractions:

relation storage methods; and access paths, integrity constraint, or triggers, called attachments, that are

associated with relation instances.

Relation Storage Methods

Alternative relation storage method extensions, known simply as storage methods, allow different

relations to be implemented in different ways to fit the needs of various applications and technologies.
For instance, the records of a relation may be stored sequentially in a disk file or they may be stored in

the leaves of a B-tree index. Read only relations on optical disks that are used for document storage

might have very unique storage structures to facilitate efficient text searches. In any case, a storage method

implementation must support a well-defined set of relation operations such as delete, insert, destroy
relation, and estimate access costs (for query planning). Note that some of these operations, such as insert,
delete, and update for read only relations, may be null operations. Additionally, storage method imple
mentations must define the notion of a record key and support direct-by-key and key-sequential record

icce~ies to selected~fields of the records The definition and interpretation of record keys is controlled by
the storage method implementation. For example, record keys may be record addresses or may be

composed from some subset of the fields of the records.

-34-

Attachments

Access path, integrity constraint, and trigger extensions are called attachments. Examples of attachment

types include B-tree indexes, hash tables, join indexes, single record integrity constraints, and referential

integrity constraints. In principle, any type of attachment can be applied to any storage method. However,
some combinations (e.g., a permanent index on a temporary table) may not make sense. Attachment

instances are associated with relation instances, and a single relation instance may have multiple attachment

instances of the same or different types.

Attachments, like storage methods, must support a well-defined set of operations. The attachment

access operations can be invoked directly by the data management facility user. Access path extensions

support direct-by-key and (optionally) key-sequential accesses which return the storage method key of the

corresponding relation records. Unlike storage methods, however, attachment modification operations,
that is, insert, update, and delete, are not directly invoked by the data management facility user. Instead,
attachment modification interfaces are invoked only as side effects of modification operations on relations.

Whenever a record is inserted, updated, or deleted, the (old and new) record is presented by the data

management facility to each attachment type with instances defined on the relation being modified.

Attachments can then take actions to add the record keys to access path data structures, to check integrity
constraints, or to trigger additional actions within the database or even outside of the database system.

Any attachment can abort the relation operation if the operation violates any restrictions of the attachment.

Indirect. Attached

Operations

Relation

Storage
M.thod

Attachment

Types

Figure 1: Data Management Interfaces

—35—

In this way, the data management facility automatically ensures that all attachments are notified when a

relation is modified.

Common Services

Storage method and attachment extensions, while isolated from each other by the extension architecture,

are embedded in the database management system execution environment and must therefore obey certain

conventions and make use of certain common services. A few of these will be discussed briefly.

The Core relation descriptor is stored by Corona and passed to Core at runtiine. The Core relation

descriptor contains a field for the storage method that implements the relation and a field for every

attachment type defined to Core. Each storage method and attachment type is assigned an internal

identifier, and field N in the Core relation descriptor is used by the attachment type with internal identifier

N. if there are no instances of attachment N defined on the particular relation, then field N will be null.

Field 0 is used for the storage method descriptor for the relation. The actual contents of each field is

defined by the corresponding storage method and attachment, and for attachments, will describe all of the

attachment instances that are defined on the relation. For example, the relation descriptor field for our

B-tree index attachment will itself be a record with a field for each index defined on the associated relation.

The relation descriptor is used by the common services to determine what attachments need to be notified

for a particular relation modification operation. The relation descriptor is used by storage methods and

attachments to stOre information that is necessary to perform the Core operations on relation and attach

ment instances.

In order to be able to coordinate the activity of multiple attachments during relation modification

operations, it is necessary to be able to undo the effects of the storage method modification and the

already-executed, attached procedures when a subsequently executed attachment vetoes the relation mod

ification operation. The data management extension architecture relies on the use of a common recovery

facility to drive, not only system restart and transaction abort, but also the partial rollback of the actions

of the transaction. When a relation modification operation fails, for any reason, the common recovery log
is used to drive the storage method and attachment implementations to undo the partial effects of the

aborted relation modification. The same log-based driver also drives storage method and attachment

implementations during transaction abort and during system restart recovery.

The data management extension architecture assumes that all storage method and attachment imple
mentations will use a locking-based concurrency controller to synchronize the execution of their operations.
While a system-supplied lock manager will be available to the storage method and attachment implemen
tations, they can also provide their own lock controllers. However, all lock controllers must be able to

participate in transaction commit and system-wide deadlock detection events.

It is possible for an attachment instance to defer an action until certain transaction events occur such

as ‘before transaction enters the prepared state’ or transaction commit. Deferred action queues are

provided by common system services. An attachment instance can place an entry on the queue that will

caUse an in&cated~ attachment procedure to be invoked with the indicated data when the event occurs.

For example, certain integrity constraints cannot be evaluated when a single modification occurs but must

be evaluated after all of the modifications have been made in the transaction. When the integrity constraint

attachment is activated as a result of a modification to a relation on which the integrity constraint is

-36-

defined, the attachment can place an entry on the deferred action queue for the ~before transaction enters

prepared state event. The entry would contain the address of the attachment routine that should be

invoked to evaluate the integrity constraint and a pointer to data that, in this case, describes the integrity
constraint that needs to be tested. After all database modifications have been made and before the

transaction enters the prepared state, the corresponding deferred action queue will be processed. The entry
that had been queued earlier will be removed and the indicated routine will be called and passed a pointer
to the data. if the integrity constraint is not satisfied then the transaction can be aborted by the attachment.

Another common service interface supports the evaluation of filter predicates during direct-by-key and

key-sequential accesses, and supports integrity constraint checking. In order to quickly reject unqualified
entries during accesses, it is important to evaluate filter predicates as early as possible. The filter predicate
expression, along with a list of fields needed from the current record, is passed to the access procedures.
The access procedures, after isolating the needed fields, will invoke the filter expression evaluator on the

filter predicate and the fields of the current record. The intention of this common service facility is to

allow filter predicates to be evaluated while the field values from the relation storage or access path are

still in the buffer pool. Figure 1 shows the relationship between storage methods, attachments, common

services, and the operations on storage methods and attachments.

Abstract Data Types

The base system will provide support for basic types including integer, floating point, fixed length
character string, variable length character string, and long field. It is often desirable, however, to permit
a user or application to define new types and operations on those types in order to structure data in a

more convenient form, to permit more control over how data is manipulated, and to increase performance
by allowing user functions to be evaluated in the database management system instead of in the application.
The support of abstract data types provides a way to offer extensible user data types.

An abstract data type is an encapsulation of data and operations on that data. The data associated

with an abstract data type can only be accessed and manipulated by the operations that are associated

with the abstract data type. We would like to support operations or functions that are written in general

purpose programming languages such as C, and we would also like to support functions with embedded

SQL statements. We will consider two kinds of abstract data types in Starburst: scalar types and structured

types. Scalar types can be represented directly by an instance of one of the base types. For example, an

angle can be represented as a floating point number. Functions for such an abstract data type might
include trigonometric functions. Structwed types allow collections of fields to be treated as a unit, and

this concept can be generalized to hierarchically-structured types. For example, a ‘time’~ abstract data type
can be composed of three fields for hours, minutes, and seconds with functions for elapsed time, conversion

to number of seconds, etc.

Support for abstract data types requires support from many components of the DBMS. SQL support
is required for their definition and use. The query processor must ensure that data within an abstract data

type is only accessed and modified using the functions that are associated with the abstract data type. The

query optimizer needs to know cost and selectivity for the functions. Finally, we would like to be able to

evaluate functions in Core when possible in order to eliminate costs associated with the Core/Corona
interface such as locking, latching, and the pinning of buffers in the buffer pool.

-37-

Complex Objects

The base system will provide support for complex objects; however, a database extension may provide
special access path attachments or storage methods for better performance. The basic approach is similar

to XSQL HASKIN83], ILORIES3I where a complex object is a collection of heterogeneous components,

represented by tuples, which are bound together with predicates, e.g., foreign key matching. This is in

contrast to the abstract data type approach described in BROWN83J, where a complex object is defined

as a set of nested abstract data types. In BATORY84I, two major attribute pairs are defined for complex

objects: disjoint versus non-disjoint, and recursive versus non-recursive, forming four categories of objects.
While many of the approaches reported in the literature lack support for at least one of these categories
of objects, Starburst will support all four.

The system allows definition of complex object views. As with views over normal form tables, multiple
views may overlap. Different views over the same object may structure the object differently. For example,
a parent component in one view may be a child component in another view. We believe this capability
is crucial for applications (e.g. CAD/CAM), where the same complex object (e.g. a VLSI chip) may be

viewed differently by different applications (e.g. VLSI editor, simulator, or fabricator). The result of a

query over a complex object is a complex object, i.e., the language has the closure property. Hence, the

same language constructs are used to query a complex object as well as to define a new one. The closure

property, which is an important attribute of normal form relational languages FDATE84], is preserved in

the enhanced relational language for complex objects. In this language, ~the relational operations are

enhanced for complex objects. Projection is enhanced to include component projection, selection can be

done at the object level or at the subobject level, and a new type of join allows multiple complex objects
to form a new composite complex object. Complex object traversal is allowed, and this capability is used,
for example, in the tuple at a time application interface.

The data associated with complex objects and its components is kept in normal form tables. Clustering
allows components of a complex object to share the same set of pages as much as possible to minimize

I/O. Special access paths (attachments) may be added to speed up complex object retrieval.

Summary

The extension mechanisms that have been discussed are currently being implemented in the experimental
Starburst database management system at IBM Almaden Research Center. These mechanisms support
efficient execution through close coupling of the extensions to the operations they support and to the

common service facilities they require. Additionally, some changes to SQL have been proposed to support

extensions, providing an easy-to-use interface to the database and its extensions.

Acknowledgements

The authors would like to acknowledge the other members of the Starburst project, past and present,
who contributed to ideas expressed in this paper: Walter Chang, Bill Cody, J. C. Freytag, Roberto

Gagliardi, Laura Haas, George Lapis, Bruce Lindsay, Guy Lohnian, C. Moban, Kurt Rothermel, Peter

Schwarz, liv Traiger, Paul Wilms, and Bob Yost.

-38-

Bibliography

ASTRAHAN 76] M. Astrahan, et al., System R: Relational Approach to Database Management,
ACM Trans. on Database Systems, Vol. 1, No. 2 (June 1976), pp. 97-137.

BATORY 84] D. Batory, A. Buchmann, Molecular Objects, Abstract Data Types, and Data

Models: A Framework, Proc. of the Tenth International Conference on Very Large
Data Bases (1984).

BATORY 86] D. Batory, GENESIS: A Reconfigurable Database Management System, University
of Texas at Austin Technical Report Number TR-86-07 (1986).

BROWN 83] V. Brown, S. Navathe, S. Su, Complex Data Types and Data Manipulation
Language for Scientific and Statistical Databases, Proc. of International Workshop
on Statistical Database Management, Los Altos, California (1983).

CAREY 861 M. Carey, D. DeWitt, J. Richardson, and E. Shekita, Object and File Management
in the EXODUS Extensible Database System, Proc. 6th International Conference

on Very Large Data Bases, Kyoto, Japan (August 1986), pp. 91-100.

DATE 84] C. Date, Some Principles of Good Language Design, ACM SIGMOD RECORD

(November 1984), pp. 1-7.

DAYAL 85] U. Dayal, A. Buchmann, D. Goldhirsch, S. Heiler, F. Manola, J. Orenstein, and

A. Rosenthal, PROBE - A Research Project in Knowledge-Oriented Database

Systems: Preliminary Analysis, Computer Corporation of America Technical Re

port CCA-85-03 (July 1985).

HASKIN 83] R. Haskin, R. Lone, On Extending the Functions of a Relational Database

System, Proc. of ACM Engineering Design Applications (1983).

LINDSAY 84] B. Lindsay, L. Haas, C. Mohan, P. Wilms, and R. Yost, Computation and

Communication in R: A Distributed Database Manager, ACM Trans. on Com

puting Systems, Vol. 2, No. 1 (February 1984), pp. 24-38.

LINDSAY 87] B. Lindsay, J. McPherson, H. Pirahesh, A Data Management Extension Archi

tecture, To appear in Proc. ACM SIGMOD ‘87, San Francisco (May 1987).

LORIE 83] R. Lone, W. Plouffe, Complex Objects and Their Use in Design Transactions,
Proc. of ACM Engineering Design Applications (1983).

STONEBRAKER 76] M. Stonebraker, E. Wong, and P. Kreps, The Design and Implementation of

INGRES, ACM Trans. on Database Systems, Vol. 1, No. 3 (September 1976),
pp. 189-222.

STONEBRAKER 86] M. Stonebraker and L. Rowe, The Design of POSTGRES, Proc. of ACM

SIGMOD ‘86, Washington, D.C. (May 1986), pp. 340-355.

-39-

Principles of Database Management System Extensibility

D.S.Batory

Department of Computer Sciences

The University of Texas at Austin

1. Introduction

Database research has shifted away from traditional business applications. Support for VLSI CAD,

graphics, statistical and temporal databases are today’s ‘hot topics’. Among the issues that are being addressed

are new data types and operators, algorithms for transitive closure and sampling, specialized storage structures,

and novel methods of concurrency control. It is well-known that to admit new algorithms, operators, or struc

tures into existing DBMSs is a very difficult and costly process (if it is possible at all). The utility of new

research results hinges on a technology by which DBMSs can be customized rapidly and cheaply. Such a tech

nology raises fundamental issues on how DBMSs should be built. Extensible database systems address these

architectural concerns.

GENESIS is a project to develop an extensible DBMS. Our approach is unique in that we are developing
models of DBMS implementation, and validating the models by prototype development. Our work makes

explicit fundamental principles of DBMS construction and reveal ways in which a practical technology for cus

tomizing DBMSs can be realized. We review some of these principles in this paper, and give more detailed

explanations in {Bat82-87].

2. Simplest Common Interface

Extensible DBMSs require open architectures with standardized interfaces. The key to extensibility lies

in how these interfaces are designed. It is our belief that declaring an ad hoc interface to be a standard is the

worst of all possibilities. A better approach is to 1) identify a class of algorithms to be implemented, and 2)
design the simplest interface that supports all algorithms of the class. The greater the number of algorithms, the

more likely it is that the inteiface capturesfundamental properties of the algorithm class. Such an interface is

no longer ad hoc, but is justified by its demonstratable generality. We call this the simplest common interface

(SCI) method for standardized interface design.

The SCI method provides a useful form of extensibility. As all (implementations of the) algorithms of

the class support the same interface, they are interchangeable. Thus, if a particular algorithm doesn’t provide
the desired performance, it can be replaced by another without altering higher-level modules.

As an example, shadowing, page logging, and db-cache are three well-known database recovery algo
rithms. If one were to give each algorithm to a different implementor, three disparate interfaces would be

designed. Algorithm interchangabiity would not be present. However, by defining an interface for all three,

interchangeability is guarenteed.

The ingenuity of our colleagues ensures us that no single interface can encompass all future algorithms.
(Note this is also true for ‘extensible’ DBMSs with ad hoc interfaces). However, SC1s have a distinct advan

tage since they capture properties of algorithm classes. If the initial class is sufficiently large to begin with,

adding a new algorithm requires either no changes or simple, evolutionary changes. Radical modifications,
which should be expected for ad hoc interfaces, are unlikely.

SCI is a necessary, but not sufficient, design principle for extensible DBMSs. As an example, one could

build a monolithic file management system that prOvides an SC! interface to all~file structures. While the inter

changeability of different structures is an important and recognized goal in DBMSs, there are lower level primi
tives on which all file structures rely; the implementations of these primitives should not be duplicated. A

better approach is to use a layered architecture, where each layer provides the primitives on which the next

higher layer is defined. To provide maximum extensibility, each layer should have an SCI.

GENESIS uses SCIs. JUPITER, the file management system of GENESIS, has SCIs to file, node, block,

recovery, and buffer management algorithms Twi87]. Principles for layering DBMS architectures are

addressed in the following sections.

-40-

3. Storage Structure Extensibility and Layered DBMS Architectures

Extensible DBMSs must be able to accommodate new storage structures. We have shown in earlier

papers Bat82-85] that storage structures are conceptual-to-internal mappings of data. Although the mappings
(structures) for a particular DBMS can be very complicated, they can be described simply by a composition of

primitive mappings (primitive storage structures). We explain the basic ideas in the context of a network data

model.

Network models represent databases by files and links. Every file represents a set of records and every

link represents a relationship between the records of two or more files. The implementation of a database can

be specified by assigning an implementation to each file and an implementation to each link. Files have direct

implementations on secondary storage as simple file structures. Classical examples are indexed-sequential, B+

trees, and heaps. Links can be implemented by join algorithms or by linkset structures. Classical linkset

structures include pointer arrays, linear lists, and ring lists. Alternatively, files and links have indirect imple
mentations in that they are mapped to lower-level files and links by elementary transformations. Classical

transformations include indexing, long fields, transposition, compression, and horizontal partitioning. Lower-

level files and links can be implemented by any of the above methods: simple files, linksets/join algorithms, or

elementary transformations. These concepts lead to a building-blocks view of storage structures.

We assume readers are familiar with the concepts of simple files and linksets, but elementary transforma

tions may be new. We digress briefly to illustrate the indexing and transposition mappings. Figure la shows

indexing, which maps a higher-level or abstract file to an inverted file. An inverted file contains a data file and

an index file for each attribute that is to be inverted. Each index file is connected to the data file by precisely
one link (which is implemented by a pointer array or inverted list linkset). Figure lb shows transposition,
which maps an abstract file to a transposed file, which is a column partitioning of a file/relation.

Abs --->~

(a)

Abs

.‘

S

I

(b)

Figure 1. Indexing and Transposition Transformations

Every elementary transformation introduces some implementation detail that was not present previously.

Indexing, for example, adds inverted file structure and transposition adds transposed file structure. The intro

duction of new structures must also be accompanied by algorithms to maintain them. This is accomplished by

mapping operations.

Consider the indexing transformation of Figure la. A retrieve of abstract records invokes inverted file

retrieval algorithms (i.e., scan the data file or access index records and follow pointers). A deletion of an

abstract record causes its corresponding data record to be deleted and connecting index records to be updated.
These and other operation mappings (algorithms) for inverted files are well-known. Similarly for transposition

(Fig. lb), a retrieve of abstract records invokes transposed file retrieval algorithms Bat79]. The deletion of an

abstract record causes the deletion of all of its subrecords. And so on for other operations.

The combination of data and operation mappings that are identified with an elementary transformation is

a layer. There are indexing layers, transposition layers, etc. DBMS architectures are compositions of layers.
Architectures differ in the layers that they use or the order in which layers are composed. For example, Figure
2a shows indexing occurring before transposition. This composition was first studied by Hammer and Niamir

/

IColi I ICoin I
it it’ it

T

-41-

Ham79~1 and was first implemented by Statistics Canada as the RAPID DBMS rur79]. Figure 2b shows tran

sposition occurring before indexing. This composition, called the decomposition storage model (DSM), was

first studied by Copeland and Khoshafian Cop85]. DSM was the starting point for the storage architecture of

MCC’s database machine. Even though the individual layers are the same in Figures 2a-b, the algorithms (if
not the structures) that result from their compositions are not the same.

I Abs
(a) I

(b) I Abs

Icoit Ico~ I

T

Figure 2. Compositions of Indexing and Transposition

It is important to understand that storage structure extensibility is not simply the ability to add, say, an R

tree or new isam structure to a DBMS. Rather, it is the ability to compose primitive structures and their algo
rithms. This point is not yet widely-appreciated.

Building a DBMS that has storage structure extensibility follows directly from these ideas. Let’s look at

a retrieve operation on an abstract file. RET(F,Q,O) retrieves the records in 0 order from abstract file F that

satisfy query Q. RET is implemented as a case statement; one case for each simple file and elementary
transformation implementation:

RET(F,Q,O)
(case (F.implementation) of

(bplus: RET_BPLUS(F,Q,O);
isam: RET ISAM(F,Q,O);

index: RET_INDEX(F,Q,O);

xpose: RET_XPOSE(F,Q,O);

/* B+ tree retrieval ~/

t~ isam retrieval */

/~ inverted file retrieval */

f* transposed file retrieval */

That is, if a retrieval on an abstract file F is to be performed, one calls the B+ tree retrieval algorithm if F is

implemented as a B÷ tree. If F is an isam file, the isam retrieval algorithm is called. If F is an inverted file, the

inverted file retrieval algorithm is called. And so on. To achieve storage structure extensibility is simple: one

identifies the basic operations on files and links. (These operations form the SCI to files and links). Each

operation is realized as a case statement; one case for each file/link implementation. If a new file structure or

IColi JCol,, ~
t

T

-42-

elementary transformation is invented, it and its algorithms are added to the system as new cases.

The GENESIS prototype implements these ideas in a table driven manner. Tables are used to specify the

implementation of each file and each link in a database, and indicate which case to execute when an operation
on an abstract file is to be performed. As lower-level files and links are generated by elementary transforma

tions, they too are entered into these tables, along with their case identifiers.

Storage structure customization is achieved in GENESIS by filling in these tables by simple C programs,
whose length is typically on the order of 100 lines. Because these programs are so short, changes to the target
DBMS’s architecture can be made very rapidly (in minutes or hours). If the required implementations are in the

case statement library, the target system can be synthesized immediately. If not present, they’ll need to be writ

ten. Although system development time is increased by several months, an advantage of our approach is that

these algorithms are reusable; they should not need to be written again.

Further details on storage structure extensibility are given in Bat86a].

4. Algorithm Extensibility

Extensible DBMSs must be able to accommodate new algorithms. Let’s first consider the extensibility of

storage structure algorithms; the extensibility of other algorithms follows similarly.

We explained in the last section how layers map operations. In general, there are many ways to accom

plish such mappings; each is represented by a distinct algorithm. As an example, there are three standard algo
rithms (mappings) that implement the retrieve operation for inverted files:

RET_INDEX(F,Q,O)
{ case (choose_cheapest) of

Algi: SCAN_DATA_FILE(F,Q,O); f~ scan data file */

Alg2: USE_I_INDEX(F,Q,O); f~ use one index file */

A1g3: USE_n_INDICES(F,Q,O); t” use many indices */

The first algorithm scans the data file. (It always works but is slow). The second uses one index file to process

a query. (This is the strategy of System R). The third is the classical algorithm which accesses multiple index

files to form the union and intersection of inverted lists. There are other algorithms, which we did not list, that

exploit the indexing of compound attributes. To incorporate them into the above scheme is simple: add another

case for each new algorithm. This is identical to the extensibility method of the previous section. However,
there is a fundamental difference in the manner in which a particular case is chosen.

For storage structures, it is the elementary transformation (primitive storage structure) that maps the

abstract file; the case which is executed is fixed at DBMS compilation-time. For algorithms, the cheapest is

selected at query execution time; the actual choice is query dependent. Choosing the cheapest algorithm to exe

cute is part of query optimization.

Not all algorithms are tied to storage structures. Consider the JOIN operation which produces the join of

two abstract files Al and A2. By analogy, we implement this operation as a case statement, one case for each

basic join algorithm:

JOIN(A1 ,A2)
(case (choose_cheapest) of

Algi: NESTED_LOOPS(A I ,A2); /* nested loops join ~/

Alg2: MERGE_SCAN(A1,A2); f~ merge-scan join *1

A1g3: GRACE_HASH(A1,A2); 1* GRACE hash join ~/

Algn: LOWER_LEVEL_JOIN(A1 ,A2); f* lower-level join*/
);

-43-

As before, the cheapest algorithm is selected at query-evaluation time. Nested loop, merge-scan, GRACE hash

join, block nested loop algonthms, etc. could be used to compute the join of Al and A2. Each calls RETrieve

operations on Al and A2 to get their records; these are the operations that are mapped to lower-levels.

It is important to note that none of the above-mentioned join algorithms exploit implementation details of

files Al and A2; these algorithms operate strictly at the conceptual level. There are, however, join algorithms
that do exploit such details. The Blasgen and Eswaren join-index algorithm B1a77}, as an example, computes

the join of Al and A2 by joining index files of Al and A2. This algorithm cannot be described in detail at the

conceptual level as indicies are not visible. It can only be expressed as an operation, LOWER_LEVEL_JOIN,

which is mapped to lower layers. (LOWER_LEVEL_JOIN is another of the basic operations on files that is

supported by all layers). At the indexing layer where indices are visible, the Blasgen and Eswaren algorithm
would appear as an implementation of LOWER_LEVEL_JOIN. Analogously, join algorithms that exploit tran

sposition would be implementations of LOWER_LEVEL_JOIN at the transposition layer. In this way, our lay

ered framework accommodates the spectrum of join algorithms.

The GENESIS prototype implements operation mappings and algorithm extensibility in this manner. A

model of query optimization for extensible DBMSs, based on the above, is forthcoming Bat87].

5. Data Type and Operator Extensibility

Extensible DBMSs must be able to accommodate new data types and operators. A careful study of a

variety of nontraditional database applications reveals that objects, not tuples or relations, are the primary enti

ties that users want to deal with. Forcing users to deal with tuples or relations brings them closer to implemen
tation details. Not only is this burdensome, but it makes application programs more difficult to write. For

example, aggregation functions, multivalued functions, multivalued attributes, and recursive queries require

special and (we feel) awkward treatment in relational data languages.

A conceptually cleaner approach is based on the functional data model. This model is object-based and

has the following features: it is inherently open-ended, i.e., new data types and operations can be added easily;

relationships between objects and operations on objects are treated uniformly; and recursive functions (which

express recursive queries) can be defined. These features are ideal for extensible DBMSs.

The functional data model has been around for some time, but hasn’t caught on. The primary reason, we

feel, is the perception that functional implementations of systems are slow. Also, the seminal works on this

topic, DAPLEX Shi8l] and FQL Bun82], have computation models that are more complicated than they have

to be. We have found a variant of the functional model which simplifies the computation model of DAPLEX

and FQL, and has implementations that are demonstratably efficienL

The basic idea is the following distinction between sequences and streams. A sequence is a series of

objects enclosed by braces. Here is a sequence of three objects:

dl d2 d3 I

A stream is an encoding of a sequence. The above sequence is a stream of five tokens: a begin brace Land

end brace), and three objects. Here’s a more complicated example which deals with nested sequences. The

first subsequence contains two objects, while the second is empty:

((dl d2) () I

It is also a stream of eight tokens: three (‘S. three)‘s, and two objects.

Our data model is based, not on functions, but on productions, which are stream rewrite rules. A pro

duction maps an input stream of tokens to an output stream. An implementation of a production is a stream

translator. Figure 3 shows a graphical depiction of the increment translator INC:INT—~INT. It replaces

integers in an input stream with their incremented value, and transmits brace tokens directly.

-.44-

((

))

a a+1

Figure 3. The INC Stream Translator

Thus,INCtranslatesthesequence(123)to(234). Similarly,((4)(56) ())istranslatedbylNCto
((5) (6 7) (1). In both examples, the nesting remains the same and only the integers are changed.

A more complicated production is COUNT: (*OBJ)_,INT, which replaces a sequence of objects (recog
nized by a begin brace, a stmam of objects, and an end brace) with the number of objects in that sequence.

Thus, (1 2 3) is mapped by COUNT to 3, and ({ 4) (5 6) ()) is mapped to (1 20). Note that COUNT

always operates on the innermost sequences.

Composition of productions is straightforward. Let AVE: (*INT) —*FLOAT be the production that

replaces a sequence of integers with its floating point average. The composition of COUNT with AyE, written

COUNT.AVE and executed from left to right, computes the average number of objects in a subsequence. Com

positions are simple for stream translators, as one links the output of the COUNT translator to the input of AVE

(see Fig. 4).

input stream ~ COUNT AVE ~ output stream

Figure 4. Composition of Stream Translators

Using this computation model, traditional and nontraditional database tasks can be processed by exploit
ing the inherent extensibility of the functional/production model. (In the following examples, system-defined
productions are listed in capital letters). Consider the following expression that lists the names of departments
that employ workers over the age of 55:

Dept.WHERE(Emp.Age>55).Dname.PRINT

Dept generates the sequence of all departments in the database. WHERE eliminates departments if they do not

employ workers greater than 55. Dname replaces department objects with their names, and PRINT prints
streams of names. In principle, handling traditional database operations (insertions, deletions, etc.) is straight
forward.

The support for nontraditional database applications is handled in an identical manner - i.e., by introduc

ing new productions. Consider the problem of displaying a 3-dimensional graphics database. Suppose each

object in the database is described by collections of polygons. (A box, for example, would have six rectangles;
each representing a side of the box). The following expression would display this database:

GraphicsYolygons.MATRIX_MULTIPLY.CLIP.SURFACE_REMOVAL.DISPLAY

Graphics generates the sequence of all graphics objects in the database. Polygons replaces each graphics object
with its stream of polygons. MATRIX_MULTIPLY maps an untransformed polygon to a transformed polygon
via matrix multiplication in homogeneous coordinates. CLIP clips polygons to a view screen,

-45-

SURFACE_REMOVAL eliminates hidden surfaces, and DISPLAY draws polygons on a display terminal.

Further details are given in Bat86b].

6. Molecular Database Systems Technology

The principles that we have reviewed in the previous sections are leading us to a building-blocks technol

ogy for DBMS construction. The building blocks, or atoms, of data type and operator extensibility are stream

translators, while layers are the atoms of storage structure extensibility. DBMSs are molecules of these primi
tive building blocks.

We are finishing the development of an algebra for molecular database system design which is based on

these principles Bat87}. The algebra reduces a wide spectrum of database algorithms to a few discrete points,
called basic algorithms. Variants, which constitute the remainder of the spectrum population, can be gen

erated from basic algorithms using simple rewrite rules. The algebra unifies query processing algorithms in

centralized DBMSs, distributed DBMSs, and database machines by showing that different systems are

described by different rewrite rules. In this way, significant aspects of DBMS architecture design can be

reduced to a simple formalism, and rules by which atoms can be composed can be expressed algebraically.

References

Bat79] D.S. Batory, ‘On Searching Transposed Files’, ACM Trans. Database Syst. 4,4 (Dec. 79), 531-

544.

Bat82] D.S. Batory and C.C. Gotlieb, ‘A Unifying Model of Physical Databases’, ACM Trans. Database

Syst. 7,4 (Dec. 1982), 509-539.

Bat84] D.S. Batory, ‘Conceptual-To-Internal Mappings in Commercial Database Systems’, ACM PODS

1984, 70-78.

BatSS] D.S. Batory, ‘Modeling the Storage Architectures of Commercial Database Systems’, ACM

Trans. Database Syst. 10,4 (Dec. 1985), 463-528.

Bat86a] D.S. Batory, J.R. Barnett, J.F. Garza, K.P. Smith, K.Tsukuda, B.C. Twichell, T.E. Wise,

‘GENESIS: An Extensible Database Management System’, to appear in IEEE Trans. Software

Engineering.

Bat86b] D.S. Batory and T.Y. Leung, ‘Implementation Concepts for an Extensible Data Model and Data

Language’, TR-86-24, University of Texas at Austin, 1986.

Bat87] D.S. Batory, ‘A Molecular Database System Technology’, to appear.

B1a7’fl M.W. Blasgen and K.P. Eswaren, ‘On the Evaluation of Queries in a Relational Database System’,
IBM Systems Journal 16 (1976), 363-377.

Bun82] P. Buneman, R.E. Frankel, and R. Nikhil, ‘An Implementation Technique for Database Query

Languages’, ACM Trans. Database Syst. 7,2 (June 1982), 164-186.

Cop85] G.P. Copeland and SN. Khoshafian, ‘A Decomposition Storage Model’, SIGMOD 1985, 268-279.

Ham79] M. Hammer and B. Niamir, ‘A Heuristic Approach to Attribute Partitioning’, SIGMOD 1979, 93-

100.

Shi8l] D. Shipman, ‘The Functional Data Model and the Data Language DAPLEX’, ACM Trans. Data

base Syst., 6,1 (March 1981), 140-173.

Tur79] M.J. Turner, R. Hammond, and P. Cotton, ‘A DBMS for Large Statistical Databases’, VLDB 1979,

3 19-327.

TwiS7] B.C. Twichell, ‘Design Concepts for an Extensible File Management System’, M.Sc. Thesis, Dept.

Computer Sciences, University of Texas at Austin, 1987.

-46-

An Overview of the EXODUS Project

Michael I. Carey
David I. DeWitt

Computer Sciences Department
University of Wisconsin

Madison, WI 53706

1. INTRODUCTION

In the 1970’s, the relational data model was the focus of much of the research in the database area. At this

point, relational database technology is well understood, a number of relational systems are commercially available,
and they support the majority of business applications relatively well. One of the foremost database problems of the

1980’s is how to support classes of applications that are not well served by relational systems. For example,
computer-aided design systems, scientific and statistical applications, image and voice applications, and large, data-

intensive Al applications all place demands on database systems that exceed the capabilities of relational systems.
Such application classes differ from business applications in a variety of ways, including their data modeling needs,
the types of operations of interest, and the storage structures and access methods required for their operations to be

efficient.

The EXODUS project at the University of Wisconsin Care85, Care86a, Care86b, Gzne87, Rich87J] is

addressing the problems posed in these emerging applications by providing tools that will enable the rapid imple
mentation of high-performance, application-specific database systems. EXODUS provides a set of kernel facilities

for use across all applications, such as a versatile storage manager and a general-puipose manager for type-related
dependency information. In addition, EXODUS provides a set of tools to help the database implementor (DBI) to

develop new database system software. The implementation of some DBMS components is supported by tools

which actually generate the components from specifications; for example, tools are provided to generate a query

optimizer from a rule-based description of a data model, its operators, and their implementations. Other com

ponents, such as new abstract data types, access methods, and database operations, must be explicitly coded by the

DBI due to their more widely-vatying and highly algorithmic nature.1 EXODUS attempts to simplify this aspect of

the DBI’s job by providing a set of high-leverage programming language constructs for the DBI to use in writing the

code for these components.

2. RELATED PROJECTS

A number of other database research efforts have recently begun to address the problem of building database

systems to accommodate a wide range of potential applications via some form of extensibility. Related projects
include PROBE at CCA Daya85, Mano86J, POSTGRES at Berkeley Ston86a, Ston86b}, STARBURST at iBM

Almaden Schw86I, and GENESIS at UT-Austin Bato86]. Although the goals of these projects are similar, and

each uses some of the same mechanisms to provide extensibility, the overall approach of each project is quite dif

ferent. STARBURST, POSTGRES, and PROBE are complete database systems, each with a (different) well-

defined data model and query language. Each system provides the capability for users to add extensions such as

new abstract data types and access methods within the framework provided by their data model. STARBURST is

based on the relational model; POSTORES extends the relational model with the notion of a procedure data type,
triggers and inferencing capabilities, and a type hierarchy; PROBE is based on an extension of the DAPLEX func

tional data model, and includes support for spatial data and a class of recursive queries.

This research was partially supported by the Defense Advanced Research Projects Agency under contract N00014-85-K-

0788, by the National Science Foundation under grant DCR-8402818, by IBM through a Fellowship and a Faculty Development
Award, by DEC through its Initiatives for Excellence program, and by a grant from the Microelectronics and Computer Technol

ogy Corporation (MCC).

‘Actually, EXODUS will provide a library of generally useful components, such as widely-applicable access methods in

cluding B÷ trees and some form of dynamic hashing, but the DBI must implement components that are not available in the II

brary.

-47-

The EXODUS project is distinguished from all but GENESIS by virtue of being a “database generator’ effort

as opposed to an attempt to build a single (although extensible) DBMS for use by all applications. The EXODUS

and GENESIS efforts differ significantly in philosophy and in the technical details of their approaches to DBMS

software generation. GENESIS has a stricter framework (being based on a “building block” plus “pluggable
module” approach), whereas EXODUS has certain powerful fixed components plus a collection of tools for a DBI to

use in building the desired system based around these components. The remainder of this paper describes the

approach of EXODUS in more detail.

3. THE EXODUS ARCHITECTURE

3.1. Overview

Since EXODUS is basically a collection of components and tools that can be used in a number of different

ways, describing EXODUS is more difficult than describing the structure/organization of other extensible database

system designs that have appeared recently. We believe that the flexibility provided by the EXODUS approach will

make the system usable for a much wider variety of applications (as we will discuss later).

The fixed components of EXODUS include the EXODUS Storage Object Manager, for managing persistent
objects, and a generalized Dependency Manager (formerly called the Type Manager), for keeping track of informa

tion about various type-related dependencies. In addition to these fixed components, EXODUS also provides tools

to aid the DBI in the construction of application-specific database systems. One such tool is the E programming
language, which is provided for developing new database software components. A related resource is a type-

independent module library; E’s generator classes and iterators can be used to produce useful modules (e.g., vari

ous access methods) that are independent of the types of the objects on which they operate, and these modules can

then be saved away for future use. Another class of tools are provided for generating components from a

specification. An example is the EXODUS rule-based Query Optimizer Generator. We also envision providing
similar generator tools to aid in the construction of the front-end portions of an application-specific DBMS. The

components of EXODUS are described further in the following sections. More detail on the Storage Object
Manager can also be found in Care86a], the E programming language is described in Rich8l], and details regard
ing the Query Optimizer Generator and an initial evaluation of its performance can be found in Grae87].

3.2. The Storage Object Manager

The Storage Object Manager provides storage objects for storing data and files for logically and physically
grouping storage objects together. Also provided are a powerful buffer manager that buffers variable-length pieces
of large storage objects, primitives for managing versions of storage objects, and concurrency control and recovery
services for operations on storage objects and files.

A storage object is an uninterpreted container of bytes which can be as small (e.g., a few bytes) or as large
(e.g., hundreds of megabytes) as demanded by an application. The distinction between small and large storage

objects is hidden from higher layers of EXODUS software. Small storage objects reside within a single disk page,
whereas large storage objects occupy potentially many disk pages. In either case, the object identifier (OLD) of a

storage object is an address of the form (page #, slot #). The OlD of a small storage object points to the

object on disk; for a large storage object, the OlD points to its large object header. A large object header can

reside on a slotted page with other large object headers and small storage objects, and it contains pointers to other

pages involved in the representation of the large object. Pages in a large storage object are private to that object
(although pages are shared between versions of a large storage object). When a small storage object grows to the

point where it can no longer be accommodated on a single page, the Storage Object Manager will automatically
convert it into a large storage object, leaving its header in place of the original small object.

All read requests specify an OlD and a range of bytes; the desired range of bytes is read into a contiguous
region in the buffer pool (even if the bytes are distributed over several partially full pages on disk), and a pointer to

the -bytes- is-returned to the caller. Bytes may be-overwritten-directly, using this pointer, -and a call is provided to tell

the Storage Object Manager that a subrange of the bytes that were read have been modified (information needed for

recovery to take place). For shrinking/growing storage objects, calls to insert bytes into and delete bytes from a

specified offset within a storage object are provided, as is a call to append bytes to the end of an object. To make

these operations efficient, large storage objects are represented using a B+ tree structure to index data pages on byte
offset.

-48-

The Storage Object Manager also provides support for versions of storage objects. In the case of small

storage objects, versioning is implemented by making a copy of the entire object before applying the update. Ver

sions of large storage objects are maintained by copying and updating only those pages that differ from version to

version. The Storage Object Manager also supports the deletion of a version with respect to a set of other versions

with which it may share pages. The reason for only providing a primitive level of version support is that different

EXODUS applications may have widely different notions of how versions should be supported. We do not omit

version management altogether for efficiency reasons — it would be prohibitively expensive, both in terms of

storage space and I/O cost, if clients were required to maintain versions of large objects externally by making entire

copies.

For concurrency control, two-phase locking of byte ranges within storage objects is used, with a “lock entire

object” option being provided for cases where object-level locking will suffice. To ensure the integrity of the inter

nal pages of large storage objects during insert, append, and delete operations (e.g., while their counts and pointers
are being changed), non-two-phase B+ tree locking protocols are employed. For recovery, small storage objects are

handled by logging changed bytes and performing updates in place at the object level. Recovery for large storage

objects is handled using a combination of shadowing and logging — updated internal pages and leaf blocks are sha

dowed up to the root level, with updates being installed atomically by overwriting the old object header with the

new one. A similar scheme is used for versioned objects, but the before-image of the updated large object header

(or entire small object) is retained as an old version of the object.

Finally, the Storage Object Manager provides the notion of a file object. A file object is an unordered set of

related storage objects, and is useful in several different ways. First, the Storage Object Manager provides a

mechanism for sequencing through all of the objects in a file, so related objects can be placed in a common file for

sequential scanning purposes. Second, objects within a given file are placed on disk pages allocated to the file, so

file objects provide support for objects that need to be co-located on disk.

3.3. The Dependency Manager

The EXODUS Dependency Manager is a repository for information related to persistent types.2 It maintains

information about all of the pieces (called fragments) that make up a compiled query, including type definitions and

other E code, and about their relationships to one another. It also keeps track of the relationship between files and

their types (by treating files in a manner similar to fragments). In short, the Dependency Manager keeps track of

dependencies between types and most everything else that is related to or dependent upon such information.

More specifically, certain time ordering constraints must hold between the fragments constituting a complete

query. For example, a compiled query plan must have been created more recently than the program text for any of

the types or database operations that it employs, as otherwise out-of-date code will have been used in its creation. A

given abstract data type, or a set of operations, is also likely to have multiple representations (e.g., E source code, an

intermediate representation, and a linkable object file), and similar time ordering constraints must hold between

these representations. The Dependency Manager’s role is thus similar to the Unix’~ make facility Feld79].
Unlike make, which only examines dependencies and timestamps when it is started up, the Dependency Manager
maintains a graph of inter-fragment dependencies at all times (and updates it incrementally).

The Dependency Manager also plays a role in maintaining data abstraction that distinguishes it from make.

In particular, a given type used by a query plan is likely to use other types to constitute its internal representation.
Strictly speaking, the first type is not dependent upon the linkable object code of its constituent types’ operations;
that is, while it must eventually be linked with their code, it is not necessary that their object code be up to date, or

even compiled, until link time. We call fragments of this sort companions; make has no facilities for specifying
and using companions. The Dependency Manager requires such a facility, as otherwise it would be unable to pro

vide a complete list of the objects constituting the compiled access plan for a query, which is necessary when a

query is to be linked.

The Dependency Manager maintains the correct time ordering of fragments via two mechanisms, rules and

actions. The set of fragments constitutes the nodes of an acydic directed graph; rules generate the arcs of this

graph. When a fragment is found to be older than those fragments upon which it depends (with the dependencies
being determined from the rules), a search is made for an appropriate action that can be performed to bring the

2As we will explain shortly, new types in EXODUS are defined using the class and clbclass constructs of the E pro

gramming language.

-49-

fragment up to date. Both rules and actions are defined using a syntax based on regular expressions to allow a wide

range of default dependencies to be specifed conveniently.

3.4. The E Programming Language

A major tool provided by EXODUS is the E programming language and its compiler. E is a extension of C++

Stro86] that aids the DBI in a number of problem areas related to database system programming, including interac

tion with persistent storage, accommodation of missing type (class) information, and query compilation. E is

designed to be upward compatible with C++, and its extensions include both new language features and a number of

predefined classes.

E was designed with the following database system architecture in mind: First, all access methods, data

model operators, and utility functions are written in E. In addition to these modules, the Storage Object Manager,
and the Dependency Manager, the database system includes the E compiler itself. At run time, database schema

definitions (e.g., create relation commands) and queries are first translated into E programs and then compiled. One

result of this architecture is a system in which the “impedance mismatch” Cope84] between type systems disap

pears. Another is that the system is easy to extend. For example, the DBI may add a new data type by implement
ing it as an E class, storing its definition and implementation in files, and registering the resulting module with the

Dependency Manager for later use.

The following paragraphs describe some of the more important features of E from the standpoint of the DBI.

More details can be found in Rich8ll.

3.4.1. Generator Classes for Unknown Types

One of the problems faced by the DBI is that many of the types involved in database processing are not

known until well after the code needing those types is written. For example, the code implementing a hash-join
algorithm does not know what types of entities it will have to join. Similarly, index code does not know what types
of keys it will contain nor what type of entities it will index.

To address this problem, E augments C++ with generator classes, which are very similar to the parameterized
clusters of CLU LiskllJ. Such a class is parameterized in terms of one or more unknown types; within the class

definition, these (formal) type names are used freely as regular type names. This mechanism allows one to define,
for example, a class of the form stack T 3 where the specific type (class) T of the stack elements is not

known. The user of such a class must instantiate it by providing specific parameters to the class; e.g., one may

declare x to be an integer stack via the declaration stack mt] x. Similarly, the DBI can define the type
of a B+ tree node as a class in which both the key type and the type of entity being indexed are class parameters.

Later, when the user builds an index over employees on social security number, the system generates and compiles a

small E fragment which instantiates BTnode (S SN_type, EMP_type 3. Such instantiation can be

efficiently accomplished via a linking process Atki78].

3.4.2. Class ileof T] for Persistent Storage

Another problem in database system programming is that most file systems provide the DBI only with

untyped storage. Thus, after being read from disk, all data must be explicitly type cast in the DBI’s code before it

can be operated upon. In addition, since the data resides on secondary storage, the DBI must include explicit calls

to the buffer manager in order to use it. These factors increase the amount of code that the DBI must write, and they
also provide increased opportunities for coding errors.

E’s answer to this problem is the “built-in” generator class fi].eof T 3 where T must be a dbclass.

A dbclass is declared in the same way as a C++ class with the restriction that a dbclass may contain only other

dbclasses. (Predefined dbclasses exist for the fundamental types mt. float, char, etc.) Dbclasses were introduced so

that the compiler can always distinguish between objects residing only on the heap and those that generally reside

on disk (but may also reside in memory) since the implementation of the two is verydifferent.- -

Instances of the fi].eof generator class are implemented as a descriptor (in memory) associated with a phy
sical file (on disk). This implementation is hidden behind an operational interface that allows the user to bind typed
pointers to objects in a file, to create and destroy objects in a file, etc. For example, the following function returns

the sum of all the integers in a file of integers. (The file is passed by reference.)

-50-

mt filesuxn(ileofdbint)& f

db±nt *p; 1* dbint is the predefined dbclass for mt *,

mt sum = 0;

for(p = f.getfirstO; p != 0; p = f.getnext(p)) sum += *p;
return sum;

Although this example is extremely simple, it illustrates the two features mentioned above. The first is that no cast

ing is needed to use the integer pointer p; the second is that no buffer calls are necessary to access the objects in

file f. Clearly, an important research direction related to the implementation of E is the optimization of the calls to

the buffer manager generated by the E compiler (especially for files containing very large objects such as images).

3.43. Iterators for Scans and Query Processing

A typical approach for structuring a database system is to include a layer which provides scans over objects in

the database. A scan is a control abstraction which provides a state-saving interface to the “memoryless” storage

systems calls; this interface is needed for the record-at-a-time processing done in higher layers. A typical imple
mentation of scans will allocate a data structure, called a scan descriptor, to save all needed state between calls; it is

up to the user to pass the descriptor with every call.

The control abstraction of a scan is provided in EXODUS via the notion of an iterator Lisk7l, OBri86]. An

iterator is a coroutine-like function that saves its data and control states between calls; each time the iterator pro
duces (yields) a new value, it is suspended until resumed by the client. Thus, no matter how complicated the

iterator may be, the client only sees a steady stream of values being produced. Finally, for implementation reasons,

the client can only invoke an iterator within a new kind of structured statement, the iterate loop (which general
izes the for

... inloopofCLU).

The general idea for implementing scans should now be clear. For example, to implement a scan over B+

trees, we would write an iterator function which takes a B+ tree, a lower bound, and an upper bound as arguments.
It would begin by searching down to the leaf level of the tree for the lower bound, keeping a stack of node pointers
along the way. It would then walk the tree, yielding object references one at a time, until the upper bound is

reached. At that point, the iterator would terminate.

Iterators are also used to piece executable queries together from a parse tree. If we consider a query to be a

pipeline of processing filters, then each stage can be implemented as an iterator which is a client of one or more

iterators (upstream in the pipe) and which yields its results to the next stage (downstream in the pipe). Execution of

the pipeline will be demand-driven in nature. For example, the DBI for a relational DBMS would write code for

select, project, and join as iterators implementing filters. Given the parse tree of a user query, it is a fairly simple
task to produce E code that implements the pipeline.

3.5. Type-Independent Access Methods and Operator Methods

Layered above the Storage Object Manager is a collection of access methods that provide associative access

to files of storage objects and further support for versioning (if desired). For access methods, EXODUS will pro

vide a library of type-independent index structures including B+ trees, Grid files Niev84J, and linear hashing
Litw8O}. These access methods wilt be implemented using the class generator and iterator capabilities provided by
the E programming language. This capability enables existing access methods to be used with DBI-defined abstract

data types without modification — as long as the capabilities provided by the data type satisfy the requirements of

the access methods. In addition, a DBI may wish to implement new types of access methods in the process of

developing an application-specific database system. EXODUS provides mechanisms to greatly simplify this task.

First, since new access methods are written in E, the DBI is shielded from having to map main memory data struc

tures onto storage objects and from having to write code to deal with buffering. E will also simplify the task of han

dling concurrency control and recovery for new access methods.

Layered above the access methods is a set of operator methods that implement the operations of the

application’s chosen data model. As for access methods, the class generator and iterator facilities of E facilitate the

development of operator methods. Generally useful methods (e.g., selection) will be made available in a type-

independent library; methods specific to a given application domain will have to be developed by the DBI.

—51—

3.6. The Rule-Based Query Optimizer Generator

Since we expect that EXODUS will be used for a wide variety of applications, each with a potentially dif

ferent query language, it is not possible for EXODUS to furnish a single generic query language, and it is accord

ingly impossible for a single query optimizer to suffice for all applications. As an alternative, a generator for pro

ducing query optimizers for algebraic query languages has been implemented. The input to the query optimizer
generator is a collection of rules regarding the operators of the target query language, the transformations that can

be legally applied to these operators (e.g., pushing selections before joins), and a description of the methods that can

be used to execute each operator in the query language (including their costs and side effects). The Query Optim

izer Generator transforms these description files into C source code3, producing an optimizer for the application’s
query language. Later, to optimize queries using the resulting optimizer, a query is first parsed and converted into

its initial form as a tree of operators; it is then transformed by the generated optimizer into an optimized execution

plan expressed as a tree of methods. During the process of optimizing a query, the optimizer avoids exhaustive

search by using Al search techniques and employing past (learned) experience to direct the search. As described

above, each method in the tree produced by the optimizer is implemented as an iterator generator in E. Thus, a

post-optimization pass over the plan tree is made to produce E code corresponding to the plan. For queries involv

ing more than one operator, the iterators are nested in a manner that allows the query to be processed in a pipelined
fashion, as mentioned earlier.

4. APPLICATION-SPECIFIC DBMS DEVELOPMENT

Figure 1 presents a sketch of the architecture of a functionally complete, application-specific database system

implemented using EXODUS. The components in Figure 1 that are implemented by the DBI in E are the access

methods and operator methods. As discussed above, EXODUS provides a library of type-independent access

methods, so it might not be necessary for a DBI to actually implement any access methods. EXODUS will also pro

vide a library of methods for a number of operators that operate on a single type of storage object (e.g., selection),
but it will not provide application or data model specific methods. For example, since a method for examining
objects containing satellite image data for the signature of a particular crop disease would not be useful in general, it

does not belong in such a library. In general, the DBI will need to implement (using E) one or more methods for

each operator in the query language associated with the target application. The DBI must also write code (i.e.,
dbclass member functions) for the operations associated with each new abstract data type that he or she wishes to

define.

To clarify by using a familiar example, a DBI who wanted to implement a relational DBMS for business

applications via the EXODUS approach would have to obtain code for the desired access methods (e.g., B+ trees

and linear hashing) by extracting existing code from the library anWor by writing the desired code from scratch in E.

Similarly, code must be obtained for the operator methods (e.g., relation scan, indexed selection, nested loops join,
merge join, etc.) and for various useful types (e.g., date and money). A DBI implementing a database management

system for an image application would have to implement an analogous set of routines, presumably including vari

ous spatial index structures, operations that manipulate collections of images, and an appropriate set of types. As

discussed earlier, E is provided to greatly simplify these programming tasks.

Finally, the top level of the EXODUS architecture consists of a set of components that are generated from

DBI specifications. One such component is the query optimizer and compiler. We also plan to investigate and

develop tools to automate the process of producing new DML/DDL components, which are the query parser and

DDL support components shown in Figure 1. (This idea is similar to the data model compiler notion of Mary86].)
DML components generate operator trees to be fed to the query optimizer, while DDL components produce com
piled E code; that is, user-level schema definitions result in the definition of associated E types (which are stored

away and registered with the Dependency Manager) and E code to create the associated EXODUS files.

Note that is also possible to use E as a lower-level mechanism for accessing a database directly, for applica
tions needing such low-level access. Assume that one has used the tools provided by EXODUS to construct an

application-specific database system. “Normal” accesses to the database would be processed through its ad-hoc or

embedded query interfaces, while those applications needing direct access to storage objects would be developed
using E. Since schema information for all storage objects is maintained internally in E form, the application

3Note: While E is the language that the DBI will use to implement a DBMS, we are implementing the various components
of EXODUS inC.

-52—

;1

/

/

-

— generated
L_~~ comp~ent

f~1
-

coded by
LJ DBI

~fixedcomp~fl

Figure 1: An EXODUS-Based DBMS.

programs can access storage objects corresponding to entity instances that were created via the ad-hoc query inter

face. One could also layer an application program on top of the access methods or operator methods layers without

necessarily using the front-end portion of the system. Thus, one shared database can be used by both types of appli
cations with little or no loss of efficiency and minimal loss of data independence. For certain applications, the avai

lability of such a direct interface is critical to obtain reasonable performance Rube87]. The flexibility of the

EXODUS approach to extensible database systems will enable users to customize the system to fit such needs.

5. SUMMARY

In this paper we have briefly described the components of the EXODUS extensible database system and how

it supports the development of application-specific DBMSs. The current state of the project is that the Query
Optimizer Generator is running and is undergoing evaluation, much of the Dependency Manager is operational, and

the Storage Object Manager should be completed soon as well. The E programming language design is finished,
and the implementation of the E compiler is now underway. Our goal is to have all of the pieces ready for use later

on this year. Once they are ready, we will use the EXODUS tools to build a relational DBMS prototype, after

which we plan to apply the tools to data management problems that arise in more challenging application areas (e.g.,
image data processing, computer-aided software engineering, or data-intensive expert systems).

ACKNOWLEDGEMENTS

We wish to acknowledge the graduate students associated with the EXODUS project, as they have contri

buted significantly to the ideas described here: Daniel Frank, Goetz Graefe, Joel Richardson, Eugene Shekita, and

Scott Vandenberg. Also, Dan Schuh and Isa Hashim are working on the implementation of the E language and por

tions of the Storage Object Manager (respectively).

/

—53-

REFERENCES

Atki78] Atkinson, R., B. Liskov, and R. Scheifler, “Aspects of Implementing CLU,” Proc. of the ACM National

Con!., 1978.

Bato86l Batory, D., et al, “GENESIS: A Reconfigurable Database Management System,” Tech. Rep. No. TR

86-07, Department of Computer Sciences, University of Texas at Austin, March 1986.

Care85] Carey, M. and D. DeWitt, “Extensible Database Systems,” Proc. of the Islamorada Workshop on Large
Scale Knowledge Base and Reasoning Systems, February 1985.

Care86a] Carey, M., et a!, “Object and File Management in the EXODUS Extensible Database System,” Proc. of
the 1986 VLDB Conf, Kyoto, Japan, August 1986.

Care86b] Carey, M., et a!, “The Architecture of the EXODUS Extensible DBMS,” Proc. of the Int’l Workshop on

Object-Oriented Database Systems, Asilomar, CA, September 1986

CopeS4l Copeland, G. and D. Maier, “Making Smalitalk a Database System,” Proc. of the 1984 SIGMOD Coaf,
Boston, MA, May 1984.

Daya8S] Dayal, U. and J. Smith, “PROBE: A Knowledge-Oriented Database Management System,” Proc. of the

Islamorada Workshop on Large Scale Knowledge Base and Reasoning Systems, February 1985.

Grae87J Graefe, G. and D. DeWitt, “The EXODUS Optimizer Generator,” Proc. of the 1987 SIGMOD Conf,
San Francisco, CA, May 1987.

Feld79] Feldman, S., “Make — A Program for Maintaining Computer Programs,” Software — Practice and

Experience, Vol. 9, 1979.

Lisk77] Liskov, B., et a!, “Abstraction Mechanisms in CLU,” Comm. ACM, 20(8), August 1977.

Litw8O] Litwin, W., “Linear Hashing: A New Tool for File and Table Addressing,” Proc. of the 1980 VLDB

Conf, Montreal, Canada, October 1980.

Mano86] Manola, F., and U. Dayal, “PDM: An Object-Oriented Data Model,” Proc. of the Int’l Workshop on

Object-Oriented Database Systems, Pacific Grove, CA, September 1986.

Mary86J Maryanski, F., et al, “The Data Model Compiler: A Tool for Generating Object-Oriented Database

Systems,” Proc. of the Int’l Workshop on Object-Oriented Database Systems, Pacific Grove, CA, Sep
tember 1986.

Niev84] Nievergelt, J., H. Hintenberger, and K. Sevcik, “The Grid File: An Adaptable, Symmetric Multikey
File Structure,” ACM Trans. on Database Systems, Vol.9, No. 1, March 1984.

Obri86] O’Brien, P., B. Bullis, and C. Schaffert, “Persistent and Shared Objects in Trellis/Owl,” Proc. of the

Int’l Workshop on Object-Oriented Database Systems, Pacific Grove, CA, September 1986.

Rich8l] Richardson, J., and M. Carey, “Programming Constructs for Database System Implementation in

EXODUS,” Proc. of the 1987 SIGMOD Conf., San Francisco, CA, May 1987.

Rube8l] Rubenstein, W. and R. Cattell, “Benchmarks for Database Response Time,” Proc. of the 1987 SIGMOD

Conf, San Francisco, CA, May 1987.

Schw86] Schwarz, P., et al, “Extensibility in the Starburst Database System,” Proc. of the Int’l Workshop on

Object-Oriented Database Systems, Pacific Grove, CA, September 1986.

Ston86a] Stonebraker, M., and L. Rowe, “The Design of POSTGRES,” Proc. of the 1986 SIGMOD Conf, Wash

ington, DC, May 1986.

Ston86b] Stonebraker, M., “Object Management in POSTGRES Using Procedures,” Proc. of the Int’l Workshop
on Object-Oriented Database Systems, Pacific Grove, CA, September 1986.

Stm86] Strousirup, B., The C++ PrOgramming Language, Addison-Wesley, Reading, 1986.

- 54...

An Extensible Framework for

Multimedia Information Management

Darrell Woelk and Won Kim

Microelectronics and Computer Technology Corporation
3500 West Balcones Center Drive

Austin, Texas 78759

1 Introduction

The management of multimedia information such as images and audio is becoming an important
feature of computer systems. Multimedia information can broaden the bandwidth of communication

between the user and the computer system. Although the cost of the hardware required for the cap

ture, storage, and presentation of multimedia data is decreasing every year, the software for effec

tively managing such information is lacking. Future database systems must provide this capability if we

are to be able to share large amounts of multimedia information among many users.

In our earlier work (WOEL86], we concluded that an object—oriented approach would be an ele

gant basis for addressing the data modelling requirements of multimedia applications. Subsequently,
we developed an object—oriented data model by extracting a number of common concepts from exist

ing object—oriented programming languages and systems, and then enhancing them with a number of

additional concepts, including versions and predicate—based access to sets of objects. The data

model, described in detail in BANE87], has been implemented in a prototype object—oriented data

base system, which we have named ORION. ORION is implemented in Common Lisp STEE84], and

runs on a Symbolics 3600 Lisp Machine SYMBB5]. ORION adds persistence and sharability to the

objects created and manipulated by object—oriented applications from such domains as artificial intelli

gence, computer—aided design, and office information systems. Important features of ORION include

transaction management, versions BANE87], composite objects BANE87], and multimedia informa

tion management. The Proteus expert system PETRB6] developed by the MCC Artificial Intelligence

Program has recently been modified to interface with ORION. The MUSE multimedia system LUTH87J

developed by the MCC Human Interface Program will be integrated with ORION in the near future.

The focus of this paper is multimedia information management in ORION. In particular, we will

describe how we support extensibility (generalizability and modifiability) for the system developers and

end users to extend the system, by adding new types of devices and protocols for the capture, stor

age, and presentation of multimedia information. To satisfy this requirement, we have implemented

the multimedia information manager (MIM) as an extensible framework explicitly using the object—ori

ented concepts. The framework consists of definitions of class hierarchies and a message passing

protocol for not only the multimedia capture, storage, and presentation devices, but also the captured

and stored multimedia objects. Both the class hierarchies and the protocol may be easily extended

and/or modified by system developers and end users as they see fit.

2. Extensibility Objectives

Extensibility is required to support new multimedia devices and new functions on multimedia infor

mation. For example, a color display device may be added to a system with relative ease, if at a high

level of abstraction the color display can be viewed as a more specialized presentation device for

spatial multimedia objects than a more general display device which is already supported in the sys

tem. The color display device may be further specialized by adding windowing software, and the win

-55-

dows can in turn be specialized to create new display and input functionality. Future database systems

should support the presentation of multimedia information on these presentation devices as described

in CHRI86aJ. Further, database systems must also support the capture of multimedia information

using such capture devices as cameras and audio digitizers.

It is also important to be able to add new multimedia storage devices, or to change the operating

characteristics of storage devices. For example, read—only CD ROM CDRO86] disks and write—once

digital optical disks CHRl86b~ are both storage devices having desirable characteristics for the storage

of certain types of multimedia information. The integration of these hardware devices into a system is

becoming easier due to standard disk interfaces such as SCSI KILL86]. A natural framework for logi

cally accessing these devices must be provided by the database system.

Even multimedia information stored on magnetic disk may require special formatting for efficiency
in storage and access. For example, an image may be stored using approximate geometry as de

scribed in OREN86]. This storage format allows the expression of powerful spatial queries. The new

storage format and the new query functionality can be defined as specializations of the more general

capability for storing and presenting images.

3. Implementation of the Multimedia Information Manager

We have analyzed scenarios for the capture, storage, and presentation of many types of multi

media information and have generalized these into a framework of classes and a message protocol for

interaction among instances of these classes. This framework is highly extensible, since it is based on

the class lattice and message passing concepts of the object—oriented paradigm. In Section 3.1 we

will describe some of the multimedia classes which are defined for ORION. Section 3.2 will present the

message passing protocol among instances of these classes, in terms of the storage and presentation
of a bit—mapped image.

3.1 Class Definitions

Multimedia information is captured, stored, and presented in ORION using lattices of classes

which represent capture devices, storage devices, captured objects, and presentation devices. How

ever, each instance of one of the device classes represents more than just the identity of a physical
device as we will describe in the following paragraphs. The class lattices for the presentation and

storage of multimedia information are described in this section. The class lattice for capture device

classes is not described here due to space limitations. The capture device class lattice is described in

WOEL87].

3.1.1 Presentation—Device Classes

The MIM uses ORION classes to represent presentation devices available on the system. An in

stance of the presentation—device class, however, represents more than just the identity of a physi
cal presentation device. Each instance also has attributes which further specify, for example, where

on the device a multimedia object is to be presented and what portion of a multimedia object is to be

presented. These pre—defined presentation—device instances can be stored in the database and used

for presenting the same multimedia object using different presentation formats. Methods associated

with a class are used to initialize parameters of a presentation device and initiate the presentation

process. The class lattice for the presentation devices is shown in Figure ~1-. The~shaded classes are

provided with ORION. Other classes in the lattice are shown to indicate potential specializations for

other media types by specific installations.

Figure 2 shows details of a portion of the class lattice for the presentation—device class. The

screen—window subclass represents a window on a workstation screen that is to be used to display an

image. An instance of the screen—window class has the attributes win—upper—left—x, win—upper—left—y,

—56-

win—width, and win—height that represent where the window is positioned on the workstation screen. It

inherits from the spatial—pres—device class the attributes upper—left—x, upper—left—y, width, and height
that specify the rectangular area of an image that is to be displayed. This screen—window instance can

be stored in the database and used whenever a specific rectangular area of an image is to be dis

played in a specific position on the workstation screen.

3.1.2 Captured-Object, Storage—Device, and Disk Stream Classes

We have adapted the storage and access techniques for multimedia objects in ORION from previ

ous research into the manipulation of long data objects (HASK82]. Every multimedia object stored in

ORION is represented by an instance of the class captured—object or one of its subclasses. Figure 3

illustrates the class lattice for captured objects. The captured—object class defines an attribute named

storage—object which has as its domain the class storage—device. The class lattice for storage devices

and for disk streams are also shown in Figure 3. Transfer of data to and from storage—device instances

is controlled through disk—stream instances. The shaded classes in Figure 3 are provided with ORION.

Other classes in the lattice indicate potential specializations.

Figure 4 shows details of a portion of the class lattice for the captured—object class, the storage—

device class, and the disk—stream class. Each instance of the captured—object class has a reference

to a storage—device instance stored in its storage—object attribute. The spatial—captured—object class

has attributes which further describe spatial objects. The attributes width and height describe the size

and shape of the spatial object. The attribute row—major indicates the order in which the transformation

from linear to spatial coordinates should take place. The attribute bits—per—pixel specifies the number

of bits stored for each pixel in the spatial object.

As with presentation—device instances, each mag—disk—storage—device instance represents more

than just the Identity of a magnetic storage device. Each instance describes the portion of the device

which is occupied by a particular multimedia object. The mag—disk—storage—device class has the

block—list attribute which contains the block numbers of the physical disk blocks that make up a multi-

presentation—device

spatial—pres—device

Attributes:

upper—left’-x
upper—left--y
width

height
row—major
bits—per—pixel

image—pres~~e~.’l~e
screen—window

Figure 1. Presentation Device
Class Lattice

Attributes:

win—upper—Ieft—x
win—upper—Veft—y
win—width

win—height
Methods:

present
capture
persistent—pres

Figure 2. Details of Presentation

Device Class Lattice

—57.-

Storage—device

meg—disk— optical—disk video-disk— pc—file—

~$t9di~~ storage—device storage—device

disk—stream

read—disk—stream write—disk-stteam

Figure 3. Captured-Object, Storage-Device, and

Disk Stream Class Lattices

captured—object

Attributes:

storage—object
logical—measure
phys—logic—ratio

spatial—captured—object

Attributes:
width

height
row—major
bits—per—pixel

storage—device

mag-disk—storage-device

Attributes:

block—list

allocated—block—list

mm—object—size—in—disk—pages
seg-id

Attributes:

storage—object

read—disk—stream write—disk—stream

ir
Figure 4. Details of Captured-Object, Storage-Device,

and Disk Stream Class Lattices

media object. The allocated—block—list attribute specifies the blocks in the block—list which were actu

ally allocated by this mag—disk—storage—device instance. The mm—object—size—in—disk—pages attribute

specifies the number of disk pages that should be allocated each time data is added to a multimedia

object. The seg—id attribute specifies the segment on disk from which disk pages are to be allocated.

An instance of the read—disk—stream class is created whenever a multimedia object is read from

disk. The read—disk—stream instance has a storage—object attribute which references the mag—disk—

storage—device instance for the multimedia object. It also has a read—block—list attribute which main-

V

disk—stream

Attributes:

read—block—list

Attributes:

write—block—list

-58-

tains a cursor indicating the next block of the multimedia object to be read from disk. Similarly, an

instance of the write—disk—stream class is created whenever data is written to a multimedia object.

3.2 Message Passing Protocol for Presentation

This section will describe the message protocol for the presentation of multimedia information

using the ORION classes described in the previous section. The protocol will be discussed by using the

example of a bit—mapped image; however, the protocol is similar for many types of multimedia infor

mation. There is a similar message passing protocol for the capture of multimedia information which is

not described here because of space limitations. This capture protocol is described in WOEL87].

Figure 5 shows an instance of a class called vehicle which has been defined by an application

program. It also shows instances of the image—pres—device, captured—image, read—disk—stream,

and mag—disk—storage--device classes described earlier. The arrows represent messages sent from

one instance to another instance. The vehicle instance has an image attribute that specifies the iden

tity of a captured—image instance that represents a picture of the vehicle. It also has a display—dev
attribute that specifies the identity of an image—pres—device instance. This image—pres—device in

stance has attributes pre—defined by the user that specify where the image is to be displayed on the

screen and what part of the image should be displayed. When the vehicle instance receives the pic
ture message, the picture method defined for the class vehicle will send a present message shown

below to the specified Image—pres—device instance.

(present presentation—device captured—object (physical—resourcej)

APPLICATION

Figure 5. Message Passing Protocol for Presentation of Multimedia Information

picture

vehicle

I price
‘~picture

new—picture
Attributes:

Image
display—dev

present

image—pres—device

Methods:

present
capture
persistent—pres

—next—blockC free—block

read—disk—stream

open—for—read

captured—image

open—for—read

Attributes:

storage—object
Attributes:

storage—object
read—block—list ~

ORION

storage subsystem

-59-

The physical—resource parameter above specifies a physical resource, such as the address of the

video frame buffer for image presentation. We use italics to denote the message name, bold—face for

the object receiving the message, non—bold face for the parameters of a message, and square brack

ets for optional parameters. Classes specified for the parameters in these messages will always be the

most general class acceptable. In the example above, the captured—object parameter will have a value

which is an instance of the captured—image class, a subclass of the captured—object class.)

The present method of the image—pres—device class transfers image data from the captured—im

age instance and displays the image on a display device. The image—pres—device instance has attrib

utes which specify the rectangular portion of the image to be displayed. It translates these rectangular
coordinates into linear coordinates to be used for reading the image data from disk. It then initiates

the reading of data by sending the following message to the captured—image instance:

(open—for—read captured—object start—offset])

The start—offset is an offset in bytes from the start of the multimedia object.

The captured—image instance then creates a read—disk—stream instance and returns its identity

to the image—pres—device instance. The image—pres—device will then send the following message to

the read—disk—stream:

(get—next—block read—disk—stream)

The read—disk—stream instance calls the ORION storage subsystem to retrieve a block of data

from disk. The address of the ORION page buffer containing the block is returned. The image—pres—
device instance will transfer the data to a physical presentation device, and then send the following

message to the read—disk—stream:

(free—block read—disk—stream)

A cursor will also be automatically incremented so that the next get—next—block message will read the

next block of the multimedia object. When the data transfer is complete, the image—pres—device
sends a close—read message to the read—disk—stream instance.

New methods may be written to extend the system so that the media type of the presentation—de
vice and the captured—object may be different. For example, an audió—pres—device instance present

ing a captured—text instance could result in text—to—speech translation.

4. Concluding Remarks

In this paper, we described our implementation of the Multimedia Information Manager (MIM) for

the ORION object—oriented database system and how it met our design objectives for extensibility. A

framework representing multimedia capture, storage, and presentation devices has been imple
mented using ORION classes. This framework may be specialized by system developers and end users

to extend the functionality of the MIM. A message passing protocol was defined for the interaction

among instances of these classes. This protocol may also be specialized.

Using the multimedia classes and message passing protocol described in this paper, we have

implemented capture, storage, and presentation of bit—mapped images and audio with ORION on the

Symbolics LISP Machine. We were able to use the Symbolics Flavors window system for displaying

images but we did not wish to add special—purpose camera or audio—recording hardware to the Sym

bolics for capturing images, capturing audio, and presenting audio. We did have access over a local

area network to other systems which had this type of multimedia capability. Therefore, we created new

classes to represent remote capture and presentation devices by further specializations of the cap

ture—device and presentation—device classes. The present and capture methods for these classes

-60-

were specialized in some cases to move captured data across the local area network and in other

cases to actually capture multimedia data remotely, store it in the remote device, and present it

remotely under the control of ORION.

References

BANE87] Banerjee, J., H. T. Chou, J. Garza, W. Kim, D. Woelk, N. Ballot,, and H. J. Kim. “Data

Model Issues for Object—Oriented Applications,” to appear in ACM Trans. on Office Infor

mation Systems, April 1987.

CDRO86] CD ROM, The New Papyrus, edited by S. Lambert and S. Ropiequet, Microsoft Press,

Redmond, WA., 1986.

CHRI86aJ Christodoulakis, S., F. Ho, and M Theodoridou. “The Multimedia Object Presentation

Manager of MINOS: A Symmetric Approach,” Proc. ACM SIGMOD Intl Conf. on the

Management of Data, May 1986, pp. 295—310.

(CHRI86bJ Chnistodoulakis, S., and C. Faloutsos. “Design and Performance Considerations for an

Optical Disk—Bases, Multimedia Object Server,” IEEE Computer, Dec. 1986, pp. 45—56.

HASK82] R. Haskin and R. Lone. “On Extending the Functions of a Relational Database System,”
in Proc. ACM SIGMOD Intl Conf. on Management of Data, June 1982, pp. 207—212.

KILL86] Killmon P. “For Computer Systems and Peripherals, Smarter is Better,” Computer De

sign, January 15, 1986, pp. 57—70.

LUTH87] Luther W., D. Woelk, and M. Carter. “MUSE: Multimedia User Sensory Environment,”

IEEE Knowledge Engineering Newsletter, February 1987.

OREN86] Orenstein J. “Spatial Query Processing in an Object—Oriented System,” Proc. ACM

SIGMOD Intl Conf. on the Management of Data, May 1986, pp. 326—336.

PETR86] Petrie, C., D. Russinoff, and D. Steiner. “Proteus: A Default Reasoning Perspective,”
Fifth Generation Systems Conf., National Institute for Software, Washington, D.C., Octo

ber, 1986.

STEE84] Steele, G. Jr., Scott E. Fahlman, Richard P. Gabriel, David A. Moon, and Daniel L.

Weinreb, “Common Lisp,” Digital Press, 1984.

SYMB85] Symbolics Inc., “User’s Guide to Symbolics Computers,” Symbol/cs Manual #996015,

March 1985.

WOELB6J Woelk, D., Won Kim, and W. Luther. “An Object—Oriented Approach to Multimedia

Databases,” Proc. ACM SIGMOD Intl Conf. on the Management of Data, May 1986, pp.

311—325.

WOEL87J Woelk, D. and W. Kim, “Multimedia Information Management in an Object—Oriented Da

tabase System,” to appear in Proc. 13th Intl Conf. on Very Large Data Bases. Septem
ber, 1987.

-61-

DASDBS: A Kernel DBMS and Application-Specific Layers

Hans-Joerg Schek, Technical University of Darmstadt’

1. History

The initial ideas about a new database system arose while the author worked on the AIM project at the IBM

Heidelberg Scientific Center. This project started in 1978 with the objectives of integrating textual data with data

base systems. The need for ‘complex objects’ was observed there as well as similar requirements from other

applications such as geographical information systems and engineering applications. After moving to the Uni

versity of Darmstadt the DASDBS (Darmstadt Database System) project was established in early 1983 with the

main objective to build a modular and configurable database system. l’his objective complemented the objectives
of the ongoing AIM project /Da86/.

2. Motivation and Requirements

Our motivation for the project caine from the insight that no single database system can satisfy ‘all’ applications.
Rather one should facilitate the development of specific database systems for different application classes. This

position is justified by the requirements for new database systems supporting advanced applications such as

object orientation and knowledge representation which must support notions of ‘molecules’ (Buchmann) or

‘complex objects’ (Lone). The integration of ‘concepts’ or ‘frames’ known from A! is also desirable. Extensibility
and modularity means that the DBMS must be extensible (ADT support) to application-specific needs. Suitable

components of the system must be replaceable, depending upon the demands of the application. A requirement
which strongly influenced the design of DASDBS is set orientation: Sets of complex objects are often needed in

application programs rather than single data items with one call of the database. The database architecture must

preserve the set orientation down to the operating system level in order to guarantee the required performance.

3. Kernd Architecture

Facing these requirements, several approaches to new DBMS architectures have been proposed /SL83/: Special-
purpose systems for specific applications, full-scale next-generation DBMSs which try to identify an interface

suitable for all new applications, and database kernel architectures or extensible DBMSs. We follow the latter

direction: We pursue an architecture that builds application-specific front-ends on top of a common and (nearly)
application- independent DBMS kernel. As shown in Fig. 1, DASBS is a database system family. Based on the

kernel, different layers support various application classes as geo-sciences, office filing and retrieval, standard

relational applications, and frames or molecule-oriented models. Within the DASDBS project we are working
on these four application classes.

Server

Record Server

Figure 1: Architecture of the DASDBS family

For one class, the architecture can be represented as shown in Fig. 2. The application-specific object manager

(AOM) utilizes the services of the complex record manager (CRM) which in turn is supported by the functions

provided by the stable memory manager (SMM). All three interfaces are set-oriented, i.e. application objects are

1 present address: IBM Almaden Research Center (SCHEK at ALMVMA.bitnet)

Server

FIgure Ii DASDBS as 3-level interface system

-62-

mapped to sets of complex records if necessary, a complex record in turn is mapped to a set of pages, which is

ideally provided by the operating system in one call of the I/O subsystem. Overviews on the architecture are

given in /DOPSSW85,SWe86/.

4. DASDBS Main Concepts

The Kernel: A difficult design decision was the functionality of a general-purpose DBMS kernel. Discussion of

this topic is contained in /PSSWD87/. Basically, complex records offerd by the kernel are tuples of nested (NF2)
relations. Operations at the kernel interface form a a subset of the NF2 algebra /SS86/, characterized by the

single-pass property on a single (nested) relation /Sche8S/. In addition, addresses of records and subrecords are

made available in order to build access paths on top of the kernel. The storage scheme and addressing of records

and components within a record as well as the management of the page set forming the storage cluster of a

complex record are described in /DPS86/.

Transaction Management: In our multi-level architecture, lower levels provide basic services for higher levels.

This is also valid for transaction management. In order to benefit from the semantics of operations in the

definitions of conflicts at higher layers, and to get rid of so-called pseudo-conflicts at lower levels we provide
transaction management (conceptually) at any level. Locks at a particular layer are only needed to make single
actions of the next higher layer appear atomic, and are released as soon as possible. Only ‘semantic’ locks at

the top level are held until EOT. l’his is the generalization of the principle of ‘open nested transactions’ applied
in System R. More details can be found in /WS84,We86/.

5. Higher Layers

Geometric Objects and ADT Support:
Geometric objects roughly consist of usual attributes and of a geometric description which may have various

formats. A tempting idea at the beginning of our project was to utilize our notion of complex records directly.
Starting with geometric primitives like points or line segments or rectangles, we could have built higher-level
objects by a repeated combination of primitives. However, in pursuing this idea, we were faced with the problem
that any geometric description defined at some higher level must be mapped to some of the predefined primitives
and their combinations, If this is not possible, e.g. for a new type of spline, its representation must be available

to the DBMS. This is neither desirable nor necessary. We have shown in /SWa86/ that, instead of actually
building access routines for each new type into the DBMS code, it is more elegant to call a few user-supplied
functions (such as test, clip, and compose) defined on the various geometries a user wants support for. Such

functions axe necessary to create storage clusters according to spatial neighborhood or to create and to maintain

indices for spatial queries. The nice observation here is that these functions can be defined for many different

geometries which achieves extensibility simply by switching to a specific instance of one of these functions.

Office Filing and Retrieval: The office filing and retrieval layer is different from the geometric layer in that a

different method of indexing (text search) must be applied. The mapping of office objects (according to a

proposed filing and retrieval standard interface) to our kernel is described in /PSSW87/. A hierarchical signature
search technique, also applicable for file directories, is described in /De86/. Similar to the direction chosen for

geometries, the management of textual attributes is also regarded as a user-specific data type, an approach which

was also taken in the AIM project.

4NF Rdations: The kernel will also support classical flat relations for applications that want them. Although
efficient implementations for relational databases exist, we see the following advantages when supported by our

kernel. We may store the result of joining and nesting some of the 4NF relations. Therefore some of the

expected joins are already materialized /SPS87/. In order to benefit from this observation, an algebraic optimizer
has been developed which transforms 4NF expressions into ‘optimal’ NF2 kernel expressions /Scho86/.

6. Discussion and Condusion

Other projects on extensible database systems described in this issue of Database Engineering, such as

STARBURST, POSTGRES, or PROBE, aim at an extension of a full-scale database system, i.e. all main

-63-

components of an (existing) database system must be extensible. EXODUS and GENESIS will provide even a

database generator for specific databases. Our project is much more conservative: The higher layers, e.g. the

query processor or optimizer, are not generated automatically. Rather, they have to be coded on top of the

kernel. However, our kernel should provide a (much?) better basis for the development of special-purpose
databases than current operating systems and their file management systems. Moreover, we expect to utilize

some modules such as those supporting B-trees in many higher layers.

We are trying also to restrict extensibility, in the sense of supporting domain-level ADTs, to as few places as

possible yet necessary for obtaining performance. As an example, we are implementing spatial indexes and spatial
clusters according to user-defined geometries without incorporating new data storage structures. We are trying
to show by developing various front-ends that the kernel is a sufficiently broad basis to cover a variety of storage
schemes also supporting new data types. Our multi-level (sub-) transaction management facilitates the imple
mentation of index structures, e.g. a user is not allowed to implement his own concurrency control or recovery

scheme, as is possible, for example, in STARBURST. Currently we are evaluating a first version of the kernel

written in Pascal and we are implementing an improved version in C.

Acknowledgement: I would like to thank to J.C. Freytag, G. Lobman, and G. Weikum for their spontaneous

help in preparing this last minute summary.

7. Referenem

This list contains references to more detailed descriptions of the DASDBS project. References to other work can

be found there and are not listed here:

/Da86/ Dadarn, P., et. al: A DBMS prototype to support extended NF2 relations: An integrated view an flat
tables and hierarchies, ACM SIGMOD, Washington, 1986.

/De86/ Deppisch, U.: S-Tree: A dynamic balanced signature index... ACM Conf. Res. & Dev. in IR, Nsa, 1986.

IDOPSSW85/ Deppisch, U., Obermeit, V., Paul, 11.-B., Schek, H.-J., Scholl, M., Weikum,G.: The Storage
Component of a Database Kernel System, Techn. Rep. DVS 1-1985-Ti, in Springer IFB 94, 1985.

/DPS86/ Deppisch, U., Paul, H.-B., Schek, H.-J.: A storage system for complex objects, Proceedings of the

International Workshop on Object Oriented Database Systems, Pacific Grove, Ca., Sept. 1986

/PSSWS7/ Paul, 11.-B., Schek, H.-J., Soeder, A., Weikum, G.: Supporting the office filing and retrieval service

by a database kernel system (in German), Proc. GI Conf. on Database Systems for Office, Eng., and Scient.

Appi., Springer, 1987.

/PSSSWD87/ Paul, H.-B., Schek, H.-J., Scholl, M., Weikum, G.: Architecture and implementation of the

Darmstadt database kernel system, ACM SIGMOD, San Francisco, 1987.

/ScheSS/ Schek, H.-J.: Tt7wards a basic NF2 algebra processor, Conf~ on Found. of Data Org., Kyoto, 1985.

/SchoS6/ Scholi, M.H.: Theoretical foundation of algebraic optimization utilizing unnormalized relations, mt.

Conf. on Database Theory, Rome, 1986.

1SL831: Schek, H.-J., Lum, V. Complex Data Objects: Text, Voice, Images: Can DBMS Manage Them?,
Panel Discussion at the VLDB, Florence, 1983

ISPSS7I Scholl, M.H., Paul, H.-B., Schek, H.-J.: Supporting flat relations by a nested relational kernel, Proc.

VLDB, Brighton, 1987.

/SS861 Schek, H.-J., Scholl, M.H.: The relational model with relation-valued attributes, Information Systems
11(1986), No. 2, pp. 137-147.

/SWeS6/ Schek, H.-J., Weikurn, G.: DASDBS: concepts and architecture of a database system for advanced

applications, Tech. Rep. DVSI-1986-Tl, to appear in Informatik - Forschung und Entwicklung, Springer, 1987

/SWaS6/ - Schek, H.-J., Waterfeld, ~W.: A database kernel sy.~tem for scientjflc applicauons, Proc. of the 2nd

Intl. Symp. on Spatial Data Handling, Seattle, 1986.

/We86/ Weikum, G.: A theoreticalfoundation ofmulti-level concurrency control, ACM PODS, Cambridge, 1986.

IWSS4/ Weikum, 0., Schek, H.-J.: Architectural issues of transaction management in layered systems, VLDB,

Singapore, 1984.

-64-

THE COMPUTER SOCIETY
Non-profit Or~

OF THE IEEE
U S Postage1130 Massachusetts Avenue. N W

PAIDWashington, DC 20036-1903

Silver Spring, MD
Permit 1398

	40979_DataEngineering_June1987_Vol10_No2.pdf

