
SEPTEMBER 1986 VOL.9 NO.3

a quarLerly bulletin

of the IEEE computer society
technical committee

Database

Engineering
CONTENTS

Chairman’s Message 1

S. Jajodia

Changes to the Editorial Staff of Database Engineering 2

W. Kim

Letter from the Editor 3

H. Boral

An Operating System for a Database Machine 5

C. Nyberg
The JASMIN Kernel as a Data Manager Base 9

W. K. Wlkinson, M-Y Lai

Supporting a Database System on Symbolics Lisp Machines 17

H-i Chou, J. Garza N. Ba/Iou

The Camelot Project 23

A. Spector, J. Bloch, 0. Daniels, R. Draves, D. Duchamp,
J. Eppinger, S. Menees, 0. Thompson

Getting the Operating System Out of the Way 35

J. Moss

Operating System Support for Data Management 43

M. Stonebraker, A. Kumar

Calls for Papers 52

SPECIAL ISSUE ON OPERATING SYSTEMS SUPPORT FOR

DATA MANAGEMENT

Editor-in-Chief, Database Engineering

Dr. Won Kim

MCC

3500 West Balcones Center Drive

Austin, TX 78759

(512) 338-3439

Associate Editors, Database Engineering
Dr. Haran Boral

MCC

3500 West Balcones Center Drive

Austin, TX 78759

(512) 338-3469

Prof. Michael Carey
Computer Sciences Department
University of Wisconsin

Madison, WI 53706

(608) 262-2252

Dr. C. Mohan

IBM Almaden Research Center

650 Harry Road

San Jose, CA 95 120-6099

(408) 927-1 733

Dr. Sunil Sarin

Computer Corporation of America

4 Cambridge Center

Cambridge, MA 02142

(617) 492-8860

Prof. Yannis Vassiliou

Graduate School of Business Administration

New York University
90 Trinity Place

New York, NY

(212) 598-7536

Database Engineering Bulletin is a quarterly publication of

the IEEE Computer Society Technical Committee on Database

Engineering. Its scope of interest includes: data structures

and models, access strategies, access control techniques,
database architecture, database machines, intelligent front

ends, mass storage for very large databases, distributed

database systems and techniques, database software design
and implementation, database utilities, database security
and related areas.

Contribution to the Bulletin is hereby solicited. News items,

letters, technical papers, book reviews, meeting previews.

summaries, case studies, etc., should be sent to the Editor.

All letters to the Editor will be considered for publication
unless accompanied by a request to the contrary. Technical

papers are unrefereed.

Opinions expressed in contributions are those of the indi

vidual author rather than the official position of the TC on

Database Engineering, the IEEE Computer Society, or orga

nizations with which the author may be affiliated.

Chairperson, IC

Dr. Sushil Jajodia
Naval Research Lab.

Washington, D.C. 20375-5000

(202) 767-3596

Vice Chairperson, TC

Prof. Arthur Keller

Dept. of Computer Sciences

University of Texas

Austin, TX 78712-1188

(512)471-7316

Treasurer, TC

Prof. Leszek Lilien

Dept. of Electrical Engineering
and Computer Science

University of Illinois

Chicago, IL 60680

(312) 996-0827

Secretary, TC

Dr. Richard L. Shuey
2338 Rosendale Rd.

Schenectady, NY 12309

(518) 374-5684

Memoership in the Database Engineering Technical Com

mittee is open to individuals who demonstrate willingness to

actively participate in the various activities of the TC. A

member of the IEEE Computer Society may join the TC as a

full member. A non-member of the Computer Society may

join as a participating member, with approval from at least

one officer of the TC. Both full members and participating
members of the TC are entitled to receive the quarterly

bulletin of the TC free of charge, until further notice.

Dear TC DBE Members and Correspondents:

It is a great honor and a challenge for me to serve as the chairperson of the Technical

Committee on Database Engineering. It is a great honor to follow Professor Gio Wiederhold

who contributed significantly towards the growth and prestige of our TC during the past few

years. On behalf of our TC, I wish to express our sincere appreciation for his valuable services.

The chairmanship of the TC is a challenge since we must take rapid action if we are to keep the

Bulletin going in the presence of a severe financial crisis facing the IEEE Computer Society.

Since these problems require our immediate attention, I have taken several steps on which

I need to report to you. Following Gio’s advice, I have appointed Professor Arthur M. Keller

vice chairperson, Professor Leszek Lilien treasurer, and Dr. Richard L. Shuey secretary to help
me tackle these problems. I am also pleased to announce the appointment of Dr. Won Kim as

the new editor-in-chief of the Bulletin. We are grateful to the outgoing editor, Dr. David

Reiner, who has served in this position for several years and wished to step down.

Because of the recent cuts in the Computer Society contribution to the Technical Commit

tees. it has become necessary for us to find new ways to generate funds to meet the publication
cost of the Bt’!!etin. As Gio pointed out in his letter in the last issue of the BuIl~tht, it costs

the Computer Society about $18,000 to publish the Bulletin, requiring close to 40% of Computer

Society Technical Activities Board’s reduced budget, whereas a fair and balanced formula based

on a fixed amount per TC plus a fixed amount per TC member who is also a Computer Society
member would net us about $1,900. In light of this imbalance, we are considering several

different options to set up a viable funding mechanism, but we have agreed to take only two

immediate actions.

Beginning with this issue, we are instituting a voluntary page charge for the manuscripts

accepted for publication in the Bulletin. The author’s company or institution will be requested
to pay a page charge of $50 per printed page, which it may pay in full or in part. I wish to

reemphasize that payment of these charges will be strictly voluntary and will not in any way be

a prerequisite for publication. On the other hand, if there are funds in an author’s grant or

organization that have been set aside for this purpose, their use for this is one concrete way to

show support for the Bulletin.

Moreover, we shall starting with the next issue charge $100 per page for any conference

announcements that are included in the Bulletin. In the past, several conference organizers
have volunteered to pay, but there was no mechanism in place to receive the money.

We are considering other options too, including a subscription fee for the recipients of the

Bulletin. Please feel free to write to me (arpanet: jajodia@?nrl-css uucp: decvax!nrl-css!jajodia)
about how you feel about our efforts to deal with the issues facing us.

In addition to all the individuals mentioned above, I want to acknowledge the invaluable

help of Professor C. V. Ramamoorthy and Professor Ben Wah in working out the ideas

expressed in this letter. Also, we are fortuiiate to have Mr. John Musa as the Vice President

for Technical Activities. I appreciate very much his support of our efforts.

There have been many complaints in the past about the need to update the TC member

ship list. I am pleased to tell you that the Computer Society has recently hired someone for this

purpose and new updates are proceeding rapidly. If you wish to have your name added to the

list, you can do so by filling out a TC Application Form. You can obtain this form by writing

to either me or the Computer Society.

Finally, I would like to mention the Third Data Engineering Conference, which will be held

February 2-6, 1986 in Los Angeles. I along with several other Program Committee members

attended the August Program Committee meeting in Chicago. There were over 200 submissions,

too many of high quality, forcing the Program Committee to make tough decisions. The end

result, I think, will be an excellent conference, and I do hope that all of you will attend.

Sushil Jajodia

September 15, 1986

—1—

Changes to the Editorial Staff of Database Engineering

It is a pleasure to return as Editor—in—Chief of Database Engineering. I would like to thank outgoing

Chief Editor, Dave Reiner, for the great job he has done during the past two years. I also would like to

thank Fred Lochovsky for his services as an Associate Editor during the past three years. I have

invited Mike Carey and Sunil Sarin to serve as new Associate Editors. Haran Boral, C. Mohan, and

Yannis Vassiliou will stay on as Associate Editors. I look forward to working with these outstanding

colleagues on the editorial staff, as well as the new officers of the TC.

Haran Boral has put together the present issue of Database Engineering. The next issue is being put

together by Yannis Vassiliou on the European ESPRIT project. These two issues will complete the 1986

edition of Database Engineering. The uncharacteristic delay in the publication of these two issues is

the result of uncertainty that existed during 1986 about the financial situation of the Database Engineer

ing TO. It was not clear until late 1986 whether the TO would be able to continue publishing the

Database Engineering bulletin. Sushil Jajodia, the new chairperson for the TO, deserves much of the

credit for making it possible for the IC to publish these two issues.

I am presently organizing an issue for March 1987 on integrated software engineering systems and/or

database requirements for such systems. Mike Carey will edit the June issue on extensible database

systems. Sunil Sarin will follow with an issue on federated database systems in September. 0. Mohan

is tentatively scheduled to do the December issue on bridging database theory and practice.

Won Kim

Editor—in—Chief

January, 1987

—2—

Letter from the Editor

This issue of Database Engineering is titled “Operating Systems Support for Data Manage
ment”. Although not widely discussed in the literature, the impact of the operating system

on the DBMS performance is substantial: usually in a negative way as has been originally
discussed by Gray in his Notes on Database Operating Systems ‘and Stonebraker in his

July ‘81 CACM paper and demonstrated by Hagmann and Ferrari in their March ‘86 TODS

paper.

For this issue I asked several people to contribute papers describing existing implementa

tions/experience as well as current work. We are fortunate to have six papers: three

describing running implementations, two describing ongoing research projects, and the

last, examining the relationship between the DBMS needs and the services provided by
current research operating systems.

The first paper, “An Operating System for a Database Machine” by Chris Nyberg of Britton

Lee describes the 1DM kernel. The paper discusses the various decisions undertaken in

order to achieve high performance. It is an excellent example of specialization. It is also

the only paper in the issue describing a commercial system.

Kevin Wilkinson and Ming—Yee Lai of Beilcore contributed “The JASMIN Kernel as a Data

Manager Base”. JASMIN is an operating system kernel operational at Belicore. After

describing the JASMIN DBMS and the kernel Kevin and Ming evaluate the kernel both from

an implementation (i.e., were all the services needed there; could they be used easily)

and performance (which of the features hindered overall DBMS performance) points of

view.

“Supporting a Database System on Symbolics Lisp Machines” by Hong—Tai Chou, Jorge

F. Garza, and Nat Bauou of MCC describes the issues encountered in implementing a

DBMS in Lisp on the Symbolics machine. The main issues addressed in the paper are

storage of Lisp objects on secondary storage and transforming Lisp objects between disk

and in—memory representations.

“The Camelot Project” by Alfred Spector and his students of CMU describes a distributed

transaction system to support transactions against a wide variety of object types, including

databases. The project emphasizes generality as well as performance. After a descrip

tion of the Camelot functions its implementation is outlined with emphasis on its relationship

to Mach, the operating system kernel Camelot runs on.

Eliot Moss of U.Mass. authored the next paper, “Getting the Operating System Out of the

Way”. Eliot proposes DBMS’s to be built in a new programming language on top of a

minimal kernel. The paper outlines some of the desirable language features needed. It

also discusses the pros and cons of the approach.

-3-

The last paper ‘Operating System Support for Data Management” by Michael Stonebraker

and Akhif Kumar of UC—Berkeley examines many of the features of “next generation”

operating systems from the “database guys” point of view. The paper argues that fea

tures such as transaction management and location independent files are harmful whereas

remote procedure calls and light weight processes are essential.

I hope the DBE readers find this issue as enlightening as I have and join me in thanking the

authors for their excellent contributions.

Haran Boral

January 1987

-4-

An Operating System for a Database Machine

Chri8 Nyb erg

Br~tton Lee Inc.

Berkeley, CA

Introduction

The Intelligent Database Machine (1DM) is a backend database machine manufactured by
Britton Lee Inc. Ubell 85, Epstein 80]. The 1DM has been observed to have “surprisingly good”
performance for multi-user benchmarks Boral 86, Boral 84]. This paper describes the characteris

tics of the 11DM that allow it to achieve its high level of multi-user performance.

Resident software on the 1DM consists of a kernel supporting multiple processes. Each 1DM

process implements a connection with a host process, executing transactions (multi-statement
queries or updates) on the host process’ behalf. The special purpose nature of the system allows

the kernel and process code to be highly integrated. The kernel does not need to support hetero

geneous or potentially hostile processes. This integration results in efficient and coordinated allo

cation of resources by both the kernel and processes. Resources such as the cpu and process

memory are more effectively allocated than in a general purpose operating system. The integra
tion also allows the kernel to provide better database support than a general operating system.
Often this support consists of simply letting the processes manage and share their own resources.

The kernel provides a variety of services to the 1DM processes. The focus of this paper is on

the parts of the kernel that take advantage of the special purpose nature of the machine and on

the integration of kernel and process code to provide effective database management support.
Features of the kernel such as queue based process management, host communication support and

tape i/o will not be discussed.

Section 1 explains how the kernel allows processes to access shared data and describes the

allocation method for process memory pages. In section 2 the virtues of the nonpreemptive
scheduling policy are given. Section 3 describes how disk management responsibilities are split
between the kernel and the processes. Support provided by the kernel for concurrency control is

presented in section 4.

1. Memory Management

The 1DM is based on a 16-bit microprocessor with four virtual 64K address spaces, kernel

program and data, and process program and data. A memory management unit maps the 4 64K

address spaces to main memory (1 to 6 megabytes in size). Each virtual address space is divided

into 32 2K pages. Pages for process data space are divided into per-process data (private data,
stack and heap) and data shared by all processes. The kernel data space contains data private to

the kernel and the data shared by all processes. The program images for both kernel and process

are permanently resident in main memory, as are the kernel data and shared process data.

The kernel allocates main memory for the per-process part of each process’ data image. A

simple, efficient memory management scheme is used that does not involve paging or swapping
virtual images to disk. Moving process data to and from disk was considered too expensive. In

addition paging is incompatible with the nonpreemptive scheduling policy of the 1DM (see next

section) since a page fault is a preemption.

1DM processes spend most of their time waiting for a query from the host. During this time

a process’ data image can be taken away and later restored. The kernel uses these facts as the

basis of its memory management algorithm.

To begin a transaction, a process must have data memory allocated to it. The process then

retains its data memory until the end of the transaction. When the process completes its transac

tion and waits for another query from the host, it is eligible to have its data memory taken away

-5-

by the kernel. This is done only if there is another process in need of the memory. Memory-less
processes are always waiting for input from the host and are not inside a transaction. There is

nothing special about the state of their data images that cannot be easily recreated by the kernel.

A process without memory is simply a process table entry that contains the current data

base of the process, the network address of its corresponding host process, and input and output

queues for communication with the host process. Such a process will be granted data memory
when it receives a query from its host process if memory is available. If not, the process must

wait on a queue of processes needing data memory. As memory becomes available, it is allocated

to the queued processes on a first-come-first-serve basis.

The limitation of this algorithm is that the number of simultaneous processes is limited by
the amount of available main memory. By storing virtual data pages on disk the kernel could

support more “simultaneous” processes. However if processes holding locks were swapped to disk,
the system could very easily thrash. The processes not holding locks are those not currently exe

cuting a transaction. Rather than- swapping virtual data for those processes to disk and back, the

1DM kernel simply scuttles it and restores it later.

The limitation on simultaneous processes is of practical concern only with small memory

configurations. With the largest main memory configuration the kernel can allocate memory for

approximately 200 processes. This number of simultaneous transactions is clearly sufficient to

find bottlenecks elsewhere in the system.

2. No Preemptive Scheduling

Once the kernel allows a process to run it does not preempt the process. The kernel imple
ments a “soft” quantum by setting a global variable in process data space after a process has held

the cpu a fixed amount of time. Processes periodicly check this variable at points where it is con

venient to relinquish the cpu. If the variable is set a process will call the kernel to deschedule.

Without preemption, processes can perform critical section code that would normally need

to be executed in a privileged address space. Although kernel and process code are differentiated

by separate address spaces, the “operating system” of the 1DM extends from the kernel and into

process code. Indeed many sections of 1DM code could be executed either in kernel or process

space. Code that involves interrupts (host, disk and tape i/o) or requires numerous memory map

ping changes, such as lock management (see section 4), runs in the kernel. Other critical section

code can be executed in process space where it can be invoked without suffering the overhead of a

system call.

It is possible to allow preemption if processes obtain locks for their critical sections. How

ever this uncoordinated allocation of resources leads to inefficient use of the cpu. The classic

example of this is the convoy phenomenon observed in System R Blasgen ~91. Once a process is

preempted while holding a highly utilized short term lock, a queue of processes waiting for the

lock can quickly form and persist for a long time. There are steps that can be taken to lessen the

degradation of preemptive scheduling on critical sections (such as using finer granularity locks),
however it requires careful monitoring of a preemptive system to identify these degradations. It is

simpler not to allow preemptive scheduling, thereby allowing processes to easily coordinate use of

the cpu with the execution of critical sections.

In addition to critical section execution, nonpreemptive scheduling also allows processes to

make better use of noncritical shared resources. For instance a process will not give up the cpu in

the middle of referencing a disk cache page. If the process was preempted during this time and

the disk page was no longer in the cache when the process was rescheduled, the process would

have to arrange for the page to be read into the cache again. Without preemption 1DM processes

can deschedule when they have completed a short term use of a shared resource.

3. Disk Management

Disk management responsibilities are split between the processes and the kernel. At the low

level the kernel schedules disk i/o at the request of processes and supports the optional mirroring

-6-

of disk data on separate disk drives. Above this the processes control a cache of disk pages and

implement the file system (or access methods).

Disk pages in the 1DM are 2048 bytes in size. A pool of up to 950 main memory pages is

used to cache disk pages, known simply as “buffers”. For each buffer there is a buffer structure in

the shared portion of process data space. Buffer structures contain the disk address and status of

the buffer and allow the buffers to be hashed by disk address, grouped by relation and ordered by
replacement priority. Processes. can directly manipulate the buffer structures and rely on the

nonpreemptive scheduling policy to execute critical sections.

When a buffer is referenced its replacement priority is updated by the referencing process.

The buffer replacement policy implemented is a variation on LRU (Least Recently Used) known

as “Group LRU” Nyberg 84]. The buffers are divided into three groups of decreasing priority:
system relation pages, user relation index pages, and user relation data pages. Within each group

a LRU policy is used. Buffers can also be made never replaceable and, conversely, immediately
replaceable.

A status field in the buffer structure allows buffers to be marked as 8cheduled for i/o, dirty,
or log pinned. A process that finds a buffer scheduled for i/o usually calls the kernel to

deschedule until the i/o has completed. A status of log pinned is used in conjunction with dirty to

indicate that the changed page can not be written to disk before the transaction log is. Log pin

ning is part of the IDM’s write ahead log ~Gray 781 implementation.

The kernel provides system calls that allow processes to initiate disk i/o on buffers.

Processes can either have the disk i/o done asynchronously or be descheduled until the i/o is com

plete. The asynchronous i/o is used to prefetch pages or, better yet, read or write sequential sec

tors.

The kernel supports a system call to flush out all dirty buffers for a particular relation. If

the relation is the transaction relation (i.e. the transaction log) the kernel may have to order the

writes of the buffers due to dependencies among the pages. This is similar to the selected force
out described by Stonebreaker ~Stonebreaker 811. A flush of the transaction log will also cause the

kernel to clear the log pinned status in all buffers, allowing processes to write the these buffers to

disk at will.

Five of the virtual pages in process data space are used to directly address buffer contents.

Processes can specify which buffers are mapped into the pages by using a specific system call. No

data movement is necessary for a process to read tuples from the disk page cache.

In a general purpose operating system, data (presumably a page in size) would have to be

copied from the operating system’s disk cache to the process’ memory. Besides the overhead of

the copying, the operating system must allocate a page of main memory to hold the process’ copy

of the disk page. If virtual memory is used the disk data may get paged to disk, thereby under

mining the operating system’s caching of the disk page. For these reasons, implementing the file

system in process space is more efficient.

4. Concurrency Control

Concurrency control in a database system usually refers to synchronizing data accesses using
data locks so that each transaction gets an atomic view of the data. In this section that definition

will be extended to include other types of inter-process synchronization supported by the 1DM

kernel. The additional functionality includes locks for critical sections that involve disk i/o and

checkpoint support.

Data locks are supported in two forms: relation and page locks. A table for these locks

resides in main memory and can be up to lOOK bytes in size. Since numerous memory mapping

changes may be needed to address the lock table, the setting and clearing of data locks is done in

the kernel. A process will be denied a lock if a conflicting lock is already held. When this hap

pens the requesting process becomes blocked by the process holding the conflicting lock. The ker

nel checks for deadlock at this time. If deadlock is detected the kernel picks a deadlock victim.

The process with the least accumulated cpu time is chosen as the victim and is directed by the

-7—

kernel to abort its transaction. When a process completes a transaction, it calls the kernel to

clear all locks it holds in the lock table and to wake up all processes blocked by it.

Some critical sections of the 1DM process code involve disk i/o. Most of these operations
involve the file system: allocating disk pages, creating, destroying, dumping or loading a database.

Processes in the 1DM are descheduled when waiting for disk i/o. To preserve each of these file

system critical sections there are special locks. The processes set and clear these locks themselves

in shared memory. The kernel allows processes to wait for one of these locks if the lock is already
allocated or wake up other processes waiting for such a lock when the lock is freed.

Checkpoints Gray 781 on each database are periodicly performed by a dedicated process.

The checkpoint procedure consists of writing all dirty buffer pages for the database to disk and

writing a checkpoint record to the database’s log. To make this operation atomic the kernel

allows the checkpoint process to determine what other processes are active updaters in the check-

pointed database and to temporarily suspend these processes during the checkpoint.

Conclusions

The 1DM takes advantage of its specialized nature to allocate main memory for processes in

a manner that does not result in thrashing. Processes share memory and control their own

descheduling, allowing them to efficiently allocate and share resources. The kernel and processes

are integrated to provide efficient disk management tailored to needs of the database management

system. Data locks and other forms of concurrency control are supported by the kernel. The end

result of these techniques is a database system that provides remarkably constant throughput in

the face of an increasing work load.

Acknowledgements

While the implementation of the 1DM kernel was done principally by the author, the design
of the memory management algorithm and integration of kernel and process code came from

database management architects, notably Bob Epstein, Mike Ubell, Paula Hawthorn and Charles

Koester. Many people reviewed this paper and provided useful suggestions: Bob Taylor, Charles

Koester, Scott Humphrey, Mike Ubell and Paula Hawthorn.

References

Blasgen 79) Blasgen, M. et al., “The Convoy Phenomenon,” Operating Systems Review,
vol. 13, No. 2, Apr. 1979, pp. 20-25.

Boral 84) Boral, H. and D.J. Dewitt, “A Methodology for Database System Perfor

mance Evaluation,” Proceedings of SIGMOD ‘84, 1984, pp. 176-185.

Boral 86) Boral, H., “Design Considerations for 1990 Database Machines,” COMPCON
‘86 Proceedings, Mar. 1986, pp. 370-373.

Epstein 80) Epstein, R. and P. Hawthorn, “Design Decisions for the Intelligent Database

Machine,” Proceedings of the 1980 National Computer Conference, 1980, pp.

237-241.

Gray 78) Gray, J., “Notes on Data Base Operating Systems,” Report RJ3120, IBM

Research Lab., San Jose, Calif., Oct. 1978.

Nyberg 84) Nyberg, C., “Disk Scheduling and Cache Replacement for a Database

Machine,” Master’s Project Report, University of Califorina, Berkeley,

August 1984.

Stonebreaker 811 Stonebreaker, M., “Operating System Support for Database Management,”
Communications of the ACM, Vol. 24, No. 7, July 1981, pp. 412-418.

UbelI 85) Ubell, M., “The Intelligent Database Machine (1DM),” Query Processing in

Database Systems, ed. by Won Kim et a!., Springer-Verlag, 1985, pp. 237-

247.

-8-

The JASMIN Kernel as a Data Manager Base

W. Kevin Wilkinson

Ming—Yee Lai

Bell Communications Research

435 South Street

Morristown, New Jersey 07960

ABSTRACT

The JASMIN kernel is an experimental, capability—based operating system kernel that provides a

core set of facilities on which to build distributed applications. The JASMIN database system was

designed as a research project in distributed processing and database management but also serves as

a test of the functionality provided by the JASMIN kernel. This paper provides an overview of the

JASMIN database system and the kernel and reports on our experience in using the kernel. We

discuss the merits and demerits of the various kernel facilities in building the database management

system. We claim that a general—purpose, minimal kernel is an excellent base for a dedicated

application such as a database management system.

1. Introduction

The JASMIN kernel is a capability—based operating system that provides a minimal set of facilities

for distributed applications LEE84]. It offers three types of services: tasking, memory management

and inter—process communication. It includes no database—specific features and even device

drivers are not included. A primary goal of the JASMI\ database system is to support high

throughput transaction processing for a wide range of applications, It is designed as a set of

cooperating software modules. These modules communicate using the kernel facilities which hide

processor boundaries. Thus, modules can be easily moved to multiple processors and modules may

be replicated to achieve higher performance.

The next two sections provide an overview of the JASMIN database system and the JASMIN

kernel. Following that, we discuss implementing the database system on the kernel and describe

the utility of various kernel features and what we found lacking. In a final section, we discuss the

impact of the kernel design on system performance.

2. The JASMIN Database System

The JASMIN database system F1S84], LA1841) was designed to provide high—performance
transaction processing over a wide range of applications. The approach taken was to functionally

decompose the database manager into modules which communicate using a processor—transparent

IPC mechanism. The modules can then be replicated and distributed across multiple processors for

improved performance. Our decomposition consists of 3 modules representing increasing levels of

abstraction: the Intelligent Store (IS) provides a page interface and transaction management, the

Record Manager (RM) provides a record interface and access paths, and the Data Manager (D\4)

provides a relational model interlace. Each module relies on the facilities provided by the lower

level. In addition, each module’s interface is user—accessible. Applications needing only page

-9-

access can access an IS directly and avoid the overhead of higher—level services. Finally, the

system is easily reconfigured since the module interfaces are processor transparent.

2.1 Intelligent Store (ES)

The Intelligent Store R00821) offers a page interface to applications. It models the disk as a

collection of Logical Volumes where each LV has some number of pages. An LV is simply a

number of adjacent disk cylinders. However, an LV differs from a disk extent in that LV page

numbers are logical, rather than physical. Thus, page i may be several cylinders away from page

i+1*. Further, the page size may vary across LV’s allowing an LV containing an index to have

larger pages, for example. The IS is transaction oriented and provides an optimistic, versioning

concurrency control mechanism. Each transaction is guaranteed the view of the database (LV

collection) as of the transaction’s start time as if a snapshot had been taken. Conflicting updates to

the same page are resolved by giving each transaction its own copy of the page. Note, this is how

logically adjacent pages become physically distant. A transaction commits so long as its view of the

database is still current at its commit time, i.e. during the lifetime of the transaction, no other

transaction commited an update to a page accessed by the transaction. Note that, as in other

optimistic schemes, transactions never block. However, our scheme has the additional advantage
that read—only transactions always succeed since they always sees a consistent view of the database

provided by the versionirig scheme of the IS.

The IS provides a priority caching scheme for its buffers. This allows a database designer to specify

higher priority for a particular LV (e.g. an LV containing index pages vs. one containing data

pages). Also, the ES maintains a set of version counters that are used by applications to detect

cache updates. For example, an RM will request the current value of a version counter after

reading meta—datat into a local cache. Transactions which update meta—data will increment the

corresponding version counter. The RM can detect an out—of—date cache by periodically checking
the value of the version counter. Currently, we are working on an implementation to support

distributed transactions.

2.2 Record Manager (RM)

The Record Manager LIN82j) maps records into IS pages. Records consist of any number of

field—value pairs. Variable—length fields, missing values and repeating fields are all supported.

Record types are defined by the user. Each record type has a primary (clustering) index and may

have multiple secondary indices. The user must also specify the LV to contain the index pages and

the LV for the data pages. Thereafter, the RM handles the details of mapping records into LV

pages.

An RM request provides associative access to one record type at a time. Currently, B—trees are the

access method used. Prefix and exact matching are supported as well as the standard comparison

operations. The RM is transaction—oriented and a transaction may access multiple record t~pes

during its lifetime. The RM depends on the concurrency control facilities of the IS for database

consistency.

2.3 Data Manager (DM)

The Data Manager (DM) provides a full relational interface to the user. It has a QUEL interface

ST076J) and maps relations into RM records. In addition to the functions of query optimization

* Some control over placement is possible using “cells” which are not described here.

t By meta—data, we mean the stored schema that describes the database structure.

-10-

and planning, the DM uses the RM to process one or more single—relation queries. Complex

queries are processed in a pipeline fashion with intermediate results from separate single—relation

RM queries being fed, concurrently, to a network of DM tasks that communicate via shared

memory. This avoids the need to create temporary relations.

3. JASMIN Kernel

The JASMIN kernel is a sparse operating system with little of the overhead (and few of the fea

tures) found in conventional operating systems. The motivation was to give the designer of a

distributed application much control over how resources are allocated and scheduled. It basically

provides three types of services: tasking, memory management and inter—process communication.

These are discussed in more detail below.

3.1 Tasking

A JASMIN task represents a single thread of control. It consists of a stack, a priority, private* data

space and capabilities (described below). Tasks are created and destroyed dynamically. Task

scheduling is by priority and is non—preemptive within a priority class. A task releases the processor

only if it waits for a message or a system resource or if a higher priority task becomes runnable.

A JASMIN task executes in the address space of a module. A module consists of one or more

associated tasks that share text (code) space and data space. A module facilitates concurrent

activity within a shared data area, for example, the pipelined tasks within the DM. Modules are

indivisible, i.e. all tasks in a module run on the same processor. However, several modules max’

share a processor. A task cannot tell if a task in a different module is on the same processor. So,

programs cannot contain processor dependencies. By simply changing the assignment of modules to

processors, the system is easily reconfigured with no change to any programs.

Note that there is no kernel facility to create or destroy a module. Such a facility would imply the

existence of a disk server from which to load the module. And since the kernel itself contains no

disk service, module creation must be a higher level service built on top of the kernel. A system is

booted by downloading a large core image containing one or more modules and the kernel.

3.2 Memory Management

The JASMIN kernel provides a separate address space per task but does not do virtual memory

management. Thus, the stack and private space of a task are hardware—protected from other tasks

both within and without the same module. Note that since the kernel provides no disk service, it

would be hard—pressed to do paging.

As mentioned above, a module consists of text space and data space shared by all tasks in the

module. In addition, a module may have a pre—defined section of private data space that is allo

cated to each task. For example, variables containing the task identifier and task creation time

might be in this static private space since these values are unique for each task. At task creation

time, a task inherits the text space and shared data space of its parent. During execution, a task

may create and destroy data segments dynamically. Such segments are normally private except that

any child task created thereafter is also given access to the segment. However, there is no facility

for true dynamic shared segments (e.g. between siblings).

* Like the stack, private data space is hardware—protected and is inaccessible to other tasks.

—11—

3.3 Communication

The JASMIN kernel provides a single message mechanism to he used for both synchronization and

communication. These messages are small and fixed—length (16 bytes) and are sent along one—way

communication channels, called paths. Our paths are similar to links in Roscoe S0L791 and

DEMOS BAS77I. Paths are actually communication capabilities managed by the kernel. A task

may allocate a path and pass it to another task in a message. This grants the receiving task the

capability to send a message to the creator. The rights to duplicate or re—use a path are set when

the path is created and may be further restricted whenever the path is duplicated.

Additionally, a path is created with a class and tag. There are 7 message classes which represent

separate receive queues. They can be used for selective receive and to prioritize messages. A task

can elect to wait for a message on any subset of the classes. When a message is delivered, the class

and tag (of the path on which the message was sent) are returned to the receiving task. The tag is

used to disambiguate messages for paths that use the same class.

The initial rendezvous between tasks is usually accomplished via the Name Manager task. A new

task is typically created with a path to the Name Manager. Any task wishing to advertise services

will register a path and a name with the Name Manager. Tasks requesting service can then get a

copy of the server path from the Name Manager.

Large data transfers between tasks are done by attaching a buffer to a path. A separate kernel

facility (iomove) is used to transfer data between the path buffer and a local buffer.

3.4 Services

The JASMIN kernel provides a few additional functions as aids to application developers. Among

these are the local time—of—day clock, cpu—usage clock, primitives to print a string on the system

console and to read a string from the console keyboard. There is also a routine to print status

information about all tasks in the system.

As mentioned earlier, device drivers are not included in the kernel. Instead, drivers exist as ser

vices which advertise in the Name Manager. For example. requests to read and write disk pages

are sent as messages to the disk server. The message includes a path with an attached buffer. The

disk server then uses the client’s buffer for the disk 1/0 operation. Note that some device drivers

require low—level kernel functions unavailable to normal tasks. For example, the kernel must

translate device interrupts into messages to the appropriate servers. So, a device driver must tell the

kernel its interrupt level and give it a path on which to send an interrupt message. Also, some

device drivers need to directly access path buffers, bypassing iomove (e.g. for DMA operations).

Thus, there is a routine that returns the physical address for a path buffer.

4. Implementation Experience

In this section, we discuss our experience in using the JASMIN kernel to build the JASMIN

database system. We adopt the categorization used in the previous section and, so, discuss the

tasking, memory management and communication facilities of the kernel separately.

4. 1 Tasking

The tasking facilities of the JASMIN kernel were quite satisfactory for our database application.
The ability to multiprogram by using cooperating tasks in a module was exploited by all 3 modules.

—12—

The ES and DM modules used a fixed number of tasks while the number of RM tasks was load—de

pendent. In the DM and IS, a front—end task would receive all requests and then forward the

request to a free worker task for processing. B~’ contrast, in the RM the front—end task only

received start—transaction requests. For each new transaction, it would create a separate task to

process all subsequent requests for the transaction. Thus, the kernel provided the flexibility for

both approaches*. Another good aspect of the kernel tasking facilities was that tasks (within a

module) differed only in their stack and private space. This provides an opportunity for the kernel

to optimize intra—module task switch time, since the memory management registers for text and

shared data do not change. If only one module runs per processor, task switch time can be sig

nificantly reduced. However, the kernel definition does not describe this optimization (although

some implementations have used it).

This brings up a minor complaint. The module notion is not formalized in the kernel definition.

Formalizing a module might involve adding intra—module facilities (e.g. dynamic shared memory)

and changing the semantics of existing facilities. These are things that could be added, of course.

The important point is that a module is more than a collection of tasks as implied by the current

definition. A module involves shared facilities, cooperating tasks and some overall module control

in the form of a coordinator or scheduler. Future designs should recognize this and incorporate

appropriate features.

The kernel provided non—preemptive scheduling which we feel is the correct choice for database

managers. Besides the obvious advantage of preventing interference over the disk arm, it allowed

us to write critical sections with no special synchronization mechanism. For example, the IS uses a

single task to process all commit requests. This ensures no concurrent activity and facilitates

making the commit atomic. However, in spite of the non—preemptive scheduling, it would have

been useful to be able set a limit on processor usage per task to facilitate debugging (detection of

infinite loops, etc.). There is a facility to send a message after some specified delay. But this is not

sufficient since it requires that the receiving task have some control over the sending task (e.g. to

interrupt or destroy it). There is no way to do this in AS\4N. This is another argument for

adding module features to the kernel interface.

4.2 Memory Management

The kernel provides a separate address space per task but does not do virtual memory manage

ment. This is a good compromise for an experimental database management system. Separate

address spaces is good software engineering, especially when several independent programmers are

involved in a project. Good performance argues for no virtual memory management since unex

pected paging can cause problems for query scheduling and execution. The notion of private space

proved very useful. For example, the RM uses private space to store metadata and private buffers

for transactions. The IS, which does not have a dedicated task per transaction cannot take advan

tage of this scheme since multiple requests from a transaction could be processed by different

workers. Thus, the IS needs a more complex buffering scheme which is shared among the workers.

And a transaction’s data is not hardware protected as it is in the RM.

The ability to share data among tasks in a module proved very useful in managing the shared data

buffers for the database. This was necessary in the IS, since, several worker tasks share a common

data buffer. Buffer management is under the full control of the commit and worker tasks.

$ The modules were written by separate programmers; thus the different task structures.

-13-

As mentioned earlier, a feature missing from the kernel is a primitive to create dynamic shared

space. Such a facility could permit more efficient use of memory. Currently, users must preallocate

all shared tables at link time so that they exist in static shared space. Thus, there is always enough

space for the worst case load. But, this reduces the amount of space available for the buffer cache,

etc.

4.3 Communication

The communication facilities of the JAS\’IIN kernel are the most controversial. Some of the best

aspects are the logical message addressing through the use of capabilities and the ability to perform

a selective receive by specifying a subset of message classes. Logical addressing facilitates easy

reconfiguration of the system by eliminating any processor dependencies in the programs. A client

need not know the physical location of a server to obtain a connection. The ability to selectively

receive a message from any one of multiple message queues was very useful. For example, the

front—end task in an RM module may receive messages from either RM clients or RM worker tasks.

Under normal load, it is willing to accept a message from either source. But, under conditions of

heavy load, it must ignore requests from clients to start new transactions. The selective receive

makes this simple. Some other systems decouple the selection from the receive (such as the select

primitive in BSD 4.2) and, so, require an additional system call. Another nice feature of the JAS

MIN communication facilities is that it uses a send—receive protocol as opposed to a call/return

protocol* (which is used in the V—Kernel ICHE83I). This makes it easier to implement

asynchronous processing as is required for two—phase commit.

One major drawback of the JASMI\ IPC design is that communication capabilities are mari~—o—

one, i.e. there can be multiple senders on a path but only one task can receive on the path. A

consequence of this is that multi—cast messages are impossible to send. But, more importantly,

when calling a server, it adds the overhead of an extra message to process a request. Recall that the

IS and DM task structures have a front—end task and multiple worker tasks. Requests must Iirst be

directed to the front—end which forwards them to a free worker.

A better solution would be to have the worker tasks share a request queue and just remote the next

request themselves. But since JASMIN has no shared receive queues (capabilities are owned by

only one task) the worker tasks cannot do this. As an aside, note that the RM task structure does

not have this problem. The RM has a dedicated task per transaction so requests go directly to the

worker. On the other hand, it has the serious limitation that the RM can only process one request

per transaction at—a—time.

Another nuisance of the IPC design is that only one capability path can be passed per message.

Normally, this is sufficient. But there are situations where two paths are needed. Any request that

needs two separate buffers requires an additional message exchange to send the capability for the

second buffer. For example, the RM needs to read both the metadata and cache version numbers

in one request and these are stored in different buffers. Actually, JASMI\ does provide a way to

package a collection of paths into one capability called a path—list. To our knowledge, the facility is

unique among distributed kernels. However, it is not a good solution for this situation due to the

overhead of packing and unpacking the path—list. This situation occurs frequently enough that it

merits special attention.

*

Actually, the mcall and iomcall primitives provide a call/return facility.

-14-

A final drawback is that there is no low—cost synchronization facility (such as semaphores or locks).

Thus, intra—module synchronization must be done with messages which incurs more overhead than

necessary.

5. Perfonnance Implications

Probably the largest impact on performance was the fact that all communication was done via

capabilities, i.e. secure communications channels. A seemingly innocent activity such as passing a

capability in a message could result in a flurry of activity by the kernel, especially if the sending

task, receiving task and the capability owner are all on separate machines. More specifically, the

overhead is not so much due to capability maintenance but to the fact that capabilities require a

connection—based communications protocol. Passing, duplicating and destroying paths requires

creating a channel to the path owner to maintain reference counts, sequence numbers, etc.. And,

this (at times, significant) overhead is hidden from the kernel user since one cannot tell who owns

the path. A clever implementation can piggy—back the bookkeeping information onto other mes

sages. But this only works in certain situations. Connections work well when the amount of com

munication exceeds the overhead of setting up and destroying the channel. In our application,
much of the communication between modules is one—shot so the overhead of maintaining the

connections was often wasted.

And, it is not clear that much was gained by the use of capabilities. They are elegant and in some

cases simplified the programming. But in a dedicated application with ‘trusted’ code such as a

database management system, the protection they offer seems not worth the cost.

Another performance drain was the decision to implement device drivers as servers. Although this

simplified the implementation somewhat and kept the kernel simple it was at great cost. For ex

ample, consider the TTY driver which receives an interrupt per character. Since processing the

interrupt involves at least two messages, this adds an overhead of several milliseconds to the inter

rupt processing time. Similar results hold for the disk driver. In fact, for clients of the disk server,

we found the disk latency to be approximately 3/4’s of a disk revolution for reading consecutive

disk sectors.

Originally, it was hoped and expected that message passing would be fast enough that this overhead

would not be a problem. Unfortunately, that was not the case. In our prototype system, perfor

mance was not the highest priority and future implementations will do better. Although, it is an

open issue it connection—based protocols can ever be competitive with connection—less protocols

for this type of application. Similarly, it was hoped that task creation time would he fast. Thus, the

RM designer was willing to accept the overhead of creating a new task for each transaction in order

to simplify the programming chore. In retrospect, this was not a good choice in our environment

since transactions tend to be short.

It is worth commenting on the separate facilities for data transfer (iomove) and communication

(sendmsg) in JASMIN. An alternative design would have been a single communication mechanism

that supported variable—length messages. Clearly, the iomove facility simplifies the kernel since it

never has to buffer large amounts of data and all messages are fixed—length. It is claimed to be a

performance winner, as well. With iomove, a task never gets data until it is ready. This saves

memory on the receiver side and facilitates DMA between sender and receiver if the hardware is

capable. It is not entirely clear if it really is a performance advantage, however. lomove essentially

requires two synchronization points to transfer data; one message from sender to receiver to indi

cate data is available and a second from receiver to sender indicating the transfer is complete.

—15-

Using variable—length messages, there is just one synchronization point. Thus, the tradeoff is be

tween one extra message and memory space (and a more complicated kernel).

In summary, the kernel provided an excellent development environment. It facilitates fast

prototyping and the tasking and memory management were just what was needed. The com

munication facilities are simple and elegant, but, perhaps are too general for high—performance

applications.

6. Acknowledgements

Thanks to Haran Boral and Premkumar Uppaluru for reading a draft of this paper and making

many helpful suggestions to improve the content and readability. Premkumar and Hikyu Lee

ported the JASMIN kernel to our current hardware at Bellcore.

7. References

BAS77I Baskett, FH, Howard, JH, Montague, JT, Task Communication in DEMOS. Proceedings
of the 6th ACM Symposium on Operating System Principles, November, 1977, pp.

23—3 1.

CHE83] Cheriton, DR, Zwaenepoel, W, The Distributed V Kernel and Its Performance for Disk-

less Workstations. Report No. STAN—CS—83—973, Stanford University, July, 1983.

F1584] Fishman, DH, Lai, MY, Wilkinson, WK, An Overview of the JASMIN Database Machine.

Proceedings of the ACM SIGMOD Conference, Boston, MA, June, 1984,

pp.234—239.

LAI84] Lai, M Wilkinson, W. K. Distributed Transaction Management in JASMIN, VLDB

84, August 1984.

LEE84J Lee, H, Premkumar, U, The Architecture and Implementation of Distributed JASMIN

Kernel. Bell Communications Research Technical Memo, TM—ARH—000324, Oc

tober, 1984, Morristown, N.J.

L1N82] Linderman, J. P. Issues in the Design of a Distributed Record Management System, Bell

System Technical Journal 61, 9 (Nov. 1982), Part 2, 2555—2566.

R0O82] Roome, W. D. A Content—Addressable Intelligent Store, Bell System Technical Journal

61, 9 (Nov. 1982), Part 2, 2567—2596.

SOL79I Solomon, MH, Finkel, RA, The Roscoe Distributed Operating System. Proceedings of the

7th Symposium on Operating Systems Principles, December, 1979, pp.108—’14.

STO76I Stonebraker, M., Wong, E., Kreps, P., and Held, G., The Design and Implementation of

INGRES, ACM TODS 1, 3 (Sept. 1976), 189—222.

-16-

Supporting a Database System on Symbolics Lisp Machines

Hong—Ta! Chou, Jorge F. Garza, Nat Ba/Iou

Microelectronics and Computer Technology Corporation
3500 West Balcones Center Drive

Austin, Texas 78759

ABSTRACT

We examine a number of important issues related to the implementation of a prototype
object—oriented database system on a Symbolics 3600 Lisp machine. Our main focus is

on interfacing with the storage system, memory management, and process control of

the Symbolics operating system. We discuss various implementation problems that we

have encountered and present our solutions.

1. Introduction

ORION is a prototype object—oriented database system under development at MCC to support the
data management needs of object—oriented applications from the CAD/CAM, Al, and OlS domains

BANE87]. The intended applications for ORION imposed two types of requirements: advanced function

ality and high performance. The ORION architecture was designed to satisfy these requirements. ORION

provides a number of advanced features that conventional commercial database systems do not, in

cluding version control and change notification CHOU86], storage and presentation of unstructured

multimedia data WOEL86], and dynamic changes to the database schema BANE86]. For high per
formance, ORION supports efficient access paths, and novel and efficient techniques for query process

ing, buffer management, and concurrency control.

ORION is being implemented in Common Lisp STEE84] on a Symbolics 3600 machine SYMB85aJ.
Supporting an object—oriented database system in a Lisp environment presented a unique challenge.
The general problem of supporting a database system in a Lisp environment is twofold. First, using Lisp
as an implementation language presents some technical difficulties. Lisp was not originally designed for

system programming. Low—level manipulation of primitive data, such as pointers and bytes, requires
careful coding. Second, storing Lisp objects efficiently is a challenge to a database system, mainly
because Lisp objects are so dynamic in terms of data type and length. We shall focus our discussion on

the latter, since the former can be solved more easily by coding techniques. In particular, we will exam

ine implementation issues related to the storage system, memory management, and process control of

the Symbolics operating system.

2. Storing Lisp Objects

The Symbolics machine provides three levels of storage interface to users (Figure 1): the LMFS

(Lisp Machine File System), the FEP (Front—End Processor) file system, and the user—disk system
SYMB85c]. Internally, the Symbolics machine also implements a system—disk component to support
paging of its virtual memory.

—17—

Lisp Machine File System (LMFS)

...~‘...
\. > (paging file)

> (LMFS partition table ~—‘
>LMFS.FILE (LMFS file partition)

Figure 1. Storage Organization of Symbolics

LMFS provides a file stream interface through which a Lisp object can be stored in the form of

printed text, called its printed representation. It is built on top of the FEP file system. Normally, all LMFS

files are stored in a big FEP file, “LMFS.FILE”, which is the default LMFS file partition (file system

space). Alternative or additional file partitions, each implemented as a FEP file, can be specified in the

FEP file “FSPT.FSPT”. An object stored in a file stream is retrieved as a string of characters and recon

structed into an in—memory Lisp object. As shown in Figure 2, a typical in—memory representation of a

memory

new memory

in—memory representation printed representation
in a file stream

Lisp printer

Lisp reader

e
(x (y z))

Figure 2. Representation of a Lisp Object (x (y z))

nested list (x(y z)) is a collection of memory cells connected through pointers. The list can be written to

a file stream by the Lisp printer, and later be read in and reconstructed (in a new collection of memory

cells) by the Lisp reader. For database applications, there are several functional and performance prob

lems with file streams:

page T:-:-i Virtual
I Memory

LMFS

files I h~r.hin

ioo.iisp

FEP

files

I (user
mode)

Disks

~1~
FEP

files

~pack

(system
mode)

Disks

-18-

(1) Some objects do not have a printed representation from which the objects can be recon

structed in memory. For example, the printed representation of compiled code can not be read in.

(2) Storing objects in a file stream is expensive as each in—memory object has to be translated into

a text string before it can be stored.

(3) Certain Lisp objects have a lengthy printed representation. For example, storing a bit vector as

a sequence of one’s and zero’s in the text form is obviously inefficient.

(4) Although random accesses are possible with a file stream, storing an object at an arbitrary
location beyond the end of the stream is not allowed. (In other words, a file stream can not contain

“holes” in which no data has been written.) This makes updating an object difficult, because we

can not reserve space in anticipation of future growth of the object.

(5) Although logically contiguous, the actual data of a file stream may be scattered on disk. Since

Lisp programmers have no control over physical placement of objects, the ability to cluster objects

on disk is severely limited. Further, buffering of disk blocks for a file stream is transparent to the

programmers. Thus, the ability to prefetch objects and to exploit any intelligent buffering algorithm

is lost if file streams are used.

Although binary LMFS files are also provided to help overcome some of these problems, the byte—

at—a—time interface (through which one byte is transferred at a time) makes it too inefficient for dealing
with large amounts of data. Besides, this binary file facility is not very useful since only integers can be

stored.

Symbolics FEP File and Disk Systems

The FEP file system is a low—level storage system that deals primarily with blocks of data. It

provides an interface that allows un—buffered reading and writing of disk blocks (i.e. without intermedi

ate buffering). Such an 10 operation can be either synchronous (blocking) or asynchronous (non—block

ing). Besides providing file space for LMFS, FEP files are used internally by the operating system for

storing system data, such as paging files and boot commands. Underneath the FEP file system is the

Symbolics Disk System, which supports two modes of disk transfer, user mode for normal file storage

and system mode for virtual memory support. Both the FEP file and user—disk interface require a system

resource, disk array, for buffering disk blocks. A disk array is an array of fixnums plus some disk related

header information, and resides in virtual memory. (A fixnum is an integer which has an efficient and

typically fixed—size representation in a Common Lisp implementation.)

Figure 3 shows a typical data flow during retrieval of a Lisp object from an LMFS file. First, LMFS

translates the current file position (within a file stream) into a block number (in a FEP file), and calls the

FEP file system to retrieve the data block into a disk array. The FEP file system, in turn, looks up the

physical disk address of the data block and issues a read request to the disk driver. When the disk—read

operation completes, the FEP file system returns control to LMFS, which then extracts the relevant data

(in the text form) from the disk array and transforms it into an in—memory representation of the Lisp

object. Note that the disk array may have to be paged in through the system disk interface before the

data block can be retrieved.

Building a Database Storage Subsystem

It is desirable to integrate the storage subsystem of a database system with that of the Symbolics

machine to minimize memory management overhead, such as paging. However, this requires modifica

—19—

Figure 3. Data Flow in the Symbolics Storage Hierarchy

tion to the Symbolics operating system. To avoid such a major undertaking, we have chosen the FEP file

system as our primary “disk” interface. However, creating a FEP file is an expensive operation. Further,

performance of the FEP file system may be severely degraded if a disk is fragmented by a large number

of small FEP files. Thus, to reduce FEP system overhead and disk fragmentation, we allocate (semi—per

manently) a large FEP file as a virtual disk. Similar to LMFS, we implement our database storage subsys

tem on top of the FEP file system, and take control of page allocation within the virtual disk.

There are two Symbolics utility programs that dump and load Lisp objects to and from a FEP file in

a binary format SYMB85b]. However, the inability to store a Lisp object at a prescribed position (other

than zero) in a file, among other deficiencies, makes them unsuitable for direct use by a database

system. Therefore, using these two utilities as the basis, we implemented our own dumper and loader.

The dumper encodes a Lisp object into one or more 16—bit packets. The type of the object, and its value

or other information about the object, are recorded in the first packet. Additional packets may follow to

provide space for storing the object value if it can not fit in the first packet. In general, objects are more

compact in the disk format. A small integer, for example, can be encoded in a single packet. With these

two utilities, we can place an object anywhere on a disk page according to our clustering scheme. More

importantly, it allows us to update part of an object in place without extensive storage reorganization.

3. Managing Objects in Memory

The Symbolics main memory, as presented to the users, is organized as a hierarchy SYMB85c].

At the top level, the virtual memory is divided into a number of areas in which related objects are stored.

Each area can have its own paging and garbage collection algorithms, thus enabling knowledgeable

users to fine—tune management of main memory. An area is further divided into a number of regions,

each of which contains data of the same representation type. On the basis of its representation type, a

Lisp object occupies a number of 36—bit memory words. Each memory word consists of three fields:

cdr—code, data type, and pointer or data value. (Cdr—code is a two—bit field for optimizing memory

representation of lists.)

Virtual Memory Management

The Symbolics machine allows a user to have certain control over virtual memory management,

including garbage collection and resource allocation. A resource is basically a data structure definition

-20-

plus a collection of instances, which can be allocated to a user upon request. Of particular interest to us

is the disk—array resource, which is required as block buffers for the FEP file system. The Symbolics
resource manager keeps track of disk—arrays to make them re—usable. Data contained in a disk array,

however, is lost once the disk array is returned to the resource manager. Thus, we have implemented
our own page buffer manager which keeps track of the buffers allocated and the identities of the pages

in the buffers. Initially, page buffers are allocated from the disk—array resource. An allocated buffer is

not released even when the page in it is no longer in use, so that the page may be re—used by others.

Further, a buffer may be re—assigned to another page by the replacement algorithm. In any event, the

buffers are under the control of the page buffer manager until the database system is shut down, at

which time they are returned to the disk—array resource.

Physical Memory Management

The Symbolics operating system also allows users to participate to some extent in physical (real)

memory management, in particular, the paging algorithm. An object or a section of the virtual memory

space can be swapped in or out under user control. In addition, an object or a section of the virtual

memory space can be wired down (locked) in physical memory. Wiring memory is necessary, for exam

ple, to pin down a disk array during an 10 operation. A user can also use this feature to “force” impor
tant or critical data structures to stay in physical memory to avoid performance degradation due to

paging. We use this feature to wire certain important page buffers in physical memory.

4. Process Management and Synchronization

On the Symbolics machine, stack groups (primitive coroutines) are used to support multiprogram

ming. A stack group holds the state information, including a control stack and a binding stack, for its

associated computation. A control stack is a stack of function calls. It keeps track of the Current running
function, its caller, and so on, and the return address of each function on the stack. A binding stack

(environment stack) contains all the values saved by Lambda—binding of special variables STEE84]. At

any time, the Symbolics machine performs a computation that is associated with a stack group. Control

over the Symbolics machine can be passed (switched) from the current stack group to another stack

group through resumption.

Processes on Symbolics are implemented with stack groups. A process can be either active

(ready to run) or stopped (waiting for an event, such as the completion of an 10 operation). The active

processes are managed by a special stack group, called the scheduler, which repeatedly cycles through

the list of active processes and determines which process should run next. The current process, i.e. the

process that is running, continues its computation until it decides to wait, or a system interrupt occurs.

In either case, the scheduler is resumed to select another process to run.

All Symbolics processes share the same virtual address space. With the exception of process

state information, which is kept in each individual stack group, all the Lisp data and global variables are

shared among processes. The ability to share memory address space is important for efficient imple

mentation of common data structures, such as page buffer pool. Direct sharing of in—memory data

structures, however, presents some synchronization problems. Mutual exclusion is necessary to protect

the consistency of critical system data structures (tables). The Symbolics machine provides a special

type of resource called locks, which are similar to semaphores. Concurrent database processes follow a

simple locking protocol to synchronize with one another. When a database process needs to access a

shared data structure, it must first acquire the lock on it. As soon as the process is done with the data

structure, it must release the lock so that another process waiting for the same lock can proceed.

-21-

5. Conclusions

Building a database system on a Lisp machine is a unique experience. Although the basic architec

ture and implementation techniques for a database system are mostly unaffected by the Lisp environ

ment, storing Lisp objects on secondary storage is a problem that requires special consid~-ations. The

need for transforming a Lisp object between the in—memory representation and disk representation

introduces an additional cost factor which must be weighed carefully to avoid potential performance

problems. We plan to conduct a performance study to thoroughly evaluate the ORION system with the

view to validate our design.

Acknowledgments

We thank Won Kim, our project leader, for his contribution and helpful comments on drafts of this

paper. Other members of the project, Jay Banerjee and Darrell Woelk, have also contributed to the work

reported here.

References

BANE86] Banerjee, J., H.J. Kim, W. Kim, and H.F. Korth, “Schema Evolution in Object—Oriented

Persistent Databases”, in Proc. 6th Advanced Database Symposium, Tokyo, Japan, August 1986.

BANE87] Banerjee, J., N. BaIlou, H.T. Chou, J. Garza, W. Kim, and D. Woelk, “Database Support

for Object—Oriented Applications”, to appear in ACM Trans. on Office Information Systems, April 1987.

CHOU86] Chou, H.T., and W. Kim, “A Unifying Framework for Version Control in a CAD Environ

ment”, in Proc. Int’l Con!. on Very Large Data Bases, August 1986, Kyoto, Japan.

STEE84J Steele, Guy L. Jr., Scott E. Fahlman, Richard P. Gabriel, David A. Moon, and Daniel L.

Weinreb, “Common Lisp”, Digital Press, 1984.

SYMB85a) Symbolics Inc., “User’s Guide to Symbolics Computers”, Symbol/cs Manual #996015,

March 1985.

SYMB85b] Symbolics Inc., “Program Development Utilities”, Symbolics Manual # 996045, Febru

ary 1985.

SYMB85c] Symbolics Inc., “Internals, Processes, and Storage Management”, Symbolics Manual

996085, March 1985.

WOEL86J Woelk, D., W. Kim, and W. Luther, “An Object—Oriented Approach to Multimedia Data

bases”, in Proc. ACM SIGMOD Con!. on the Management of Data, May 1986, Washington D.C..

-22-

The Camelot Projecti

Alfred Z. Spector, Joshua J. Bloch, Dean S. Daniels,
Richard P. Draves, Dan Duchamp, Jeffrey L. Eppinger,

Sherri G. Menees, Dean S. Thompson

Department of Computer Science

Carnegie Mellon University

Pittsburgh, PA

Abstract

Camelot provides flexible and high performance transaction management, disk management, and

recovery mechanisms that are useful for implementing a wide class of abstract data types, including
large databases. To ensure that Camelot is accessible outside of the Carnegie Mellon environment,

Camelot runs on the Unix-compatible Mach operating system and uses the standard Arpanet lP

communication protocol. Camelot is being coded on RT PC’s, is being frequently tested on

MicroVaxes, and it will also run on various shared-memory multiprocessors. This paper describes

Camelot’s functions and internal structure.

1. Introduction

Distributed transactions are an important technique for simplifying the construction of reliable and

available distributed applications. The failure atomicity, permanence, and serializability properties

provided by transactions lessen the attention a programmer must pay to concurrency and

failures Gray 80, Spector and Schwarz 831. Overall, transactions make it easier to maintain the

consistency of distributed objects.

Many commercial transaction processing applications already use distributed transactions, for

examp’e, on Tandem’s TMF }-ielland 85]. We believe there are many more a’gorithms and

applications that will benefit from transactions as soon as there is a widespread, general-purpose,

and high performance transaction facility to support them. For example, there are a plethora of

unimplemented distributed replication techniques that depend upon transactions to maintain

invariants on the underlying replicas.

A few projects have developed systems that support distributed transaction processing on abstract

objects. Argus, Clouds, and TABS Liskov and Scheifler 83, Allchin and McKendry 83, Spector et al.

85, Spector 85] are a few examples. These systems permit users to define new objects and to use

1This work was supported by the Defense Advanced Research Projects Agency, ARPA Order No. 4976, monitored by the Air

Force Avionics Laboratory under Contract F33615-84-K-1520, and the IBM Corporation.

The views and conclusions contained in this document are those of the authors and should not be interpreted as

representing the official policies, either expressed or implied, of any of the sponsoring agencies or the US government.

-23-

them together within transactions. While the interfaces, functions, and implementation techniques of

Argus, Clouds, and TABS are quite different, the projects’ goals have been the same: to provide a

common transactional basis for many abstractions with the ultimate goal of simplifying the

construction of reliable distributed applications.

Building on the experience of these and other projects, we have designed and are now

implementing an improved distributed transaction facility, called Camelot (Carnegie Mellon Low

Overhead Transaction Facility). Camelot provides flexible and efficient support for distributed

transactions on a wide variety of user-defined objects such as databases, files, message queues, and

I/O objects. Clients of the Camelot system encapsulate objects within data server processes, which

execute operations in response to remote procedure calls. Other attributes of Camelot include the

following:

• Compatibility with standard operating systems. Camelot runs on Mach, a Berkeley
4.3 UnixTM.compatible operating system Accetta et al. 86]. Mach’s Unix-compatibility
makes Camelot easier to use and ensures that good program development tools are

available. Mach’s support for shared memory, message passing, and multiprocessors
makes Camelot more efficient and flexible.

•Compatibility with Arpanet protocols. Camelot uses datagrams and Mach

messages, both of which are built on the standard Arpanet IP network layer Postel 82].
This will facilitate large distributed processing experiments.

• Machine-independent implementation. Camelot is intended to run on all the

uniprocessors and multiprocessors that Mach will support. We develop Camelot on IBM

RT PC’s, but we frequently test it on DEC MicroVaxes and anticipate running it on

multiprocessors such as the Encore and Sequent machines.

• Powerful functions. Camelot supports functions that are sufficient for many different

abstract types. For example, Camelot supports both blocking and non-blocking commit

protocols, nested transactions as in Argus, and a scheme for supporting recoverable

objects that are accessed in virtual memory. (Section 2 describes Camelot’s functions in

more detail.)

• Efficient implementation. Camelot is designed to reduce the overhead of executing
transactions. For example, shared memory reduces the use of message passing; multiple
threads of control increases parallelism; and a common log reduces the number of

synchronous stable storage writes. (Section 3 describes Camelot’s implementation in

more detail.)

• Careful software engineering and documentation. Camelot is being coded in C in

conformance with careful coding standards Thompson 86]. This increases Camelot’s

portability and maintainability and reduces the likelihood of bugs. The internal and

external system interfaces are specified in the Camelot Interface Specification Spector et

al 86], which is then processed to generate Camelot code. A user manual based on the

specification will be written.

To reduce further the amount of effort required to construct reliable distributed systems, a

companion project is developing a set of language facilities, called Avalon, which provide linguistic

-24-

support for reliable applications Herlihy and Wing 86]. Avalon encompasses extensions to C+ +,

Common Lisp, and ADA and automatically generates necessary calls on Camelot. Figure 1.1 shows

the relationship of Camelot to Avalon and Mach.

I I I I I I
Various Applications

I I I I
Various Servers Encapsulating Objects

Avalon Language Facilities

Camelot Distributed Transaction- Facility

Camelot Mods to Mach Inter-node

Communication Communication

ARPANET IP Layer

Mach, Unix-compatible Operating System

Figure 1.1: Relationship of Camelot to Other System Layers

Mach executes on uniprocessor and multiprocessor hardware. Inter-node communication is logically layered on top of Mach.

Camelot provides support for transaction processing, including certain additions to the communication layer. Avalon provides

linguistic support for accessing Camelot and Mach. Users define servers encapsulating objects and applications that use those

objects. Examples of servers are mail repositories, distributed file system components, and database managers.

One goal of the Camelot Project is certainly the development of Camelot; that is, a system of

sufficient quality, performance, and generality to support not only our own, but others’ development

of reliable distributed applications. In building Camelot, we hope to demonstrate conclusively that

general purpose transaction facilities are efficient enough to be useful in many domains. However,

we are also developing new algorithms and techniques that may be useful outside of Camelot. These

include an enhanced non-blocking commit protocol, a replicated logging service, and a facility for

testing distributed applications. We also expect to learn much from evaluating Camelot’s

performance, particularly with respect to the performance speed-up on multiprocessors.

2. Camelot Functions

The most basic building blocks for reliable distributed applications are provided by Mach, its

communication facilities, and the Matchmaker RPC stub generator Accetta et al. 86, Cooper

86, Jones et al. 85]. These building blocks include processes, threads of control within processes,

shared memory between processes, and message passing.

-25-

Camelot provides functions for system configuration, recovery, disk management, transaction

management, deadlock detection, and reliability/performance evaluation2. Most of these functions

are specified in the Camelot Interface Specification and are part of Camelot Release 1. Certain more

advanced functions will be added to Camelot for Release 2.

2.1. Configuration Management

Camelot supports the dynamic allocation and deallocation of both new data servers and the

recoverable storage in which data servers store long-lived objects. Camelot maintains configuration

data so that it can restart the appropriate data servers after a crash and reattach them to their

recoverable storage. These configuration data are stored in recoverable storage and updated

transactionally.

2.2. Disk Management

Camelot provides data servers with up to 2~ bytes of recoverable storage. With the cooperation of

Mach, Camelot permits data servers to map that storage into their address space, though data servers

must call Camelot to remap their address space when they overflow 32-bit addresses. To simplify the

allocation of contiguous regions of disk space, Camelot assumes that all allocation and deallocation

requests space are coarse (e.g., in megabytes). Data servers are responsible for doing their own

microscopic storage management.

So that operations on data in recoverable storage can be undone or redone after failures, Camelot

provides data servers with logging services for recording modifications to objects. Camelot

automatically coordinates paging of recoverable storage to maintain the write-ahead log

invariant Eppinger and Spector 85].

2.3. Recovery Management

Camelot’s recovery functions include transaction abort, and server, node, and media-failure

recovery. To support these functions, Camelot Release 1 provides two forms of write-ahead value

logging; one form in which only new values are written to the log, and a second form in which both old

values and new values are written. New value logging requires less log space, but results in

increased paging for long running transactions. This is because pages can not be written back to

their home location until a transaction commits. Camelot assumes that the invoker of a top-level

transaction knows the approximate length of his transaction and specifies the type of logging

accordingly.

Camelot’s two logging protocols are based on the old value/new value recovery technique used in

TABS Spector 85] and described by Schwarz Schwarz 84]. However, they have been extended to

2Synchronization mechanisms for preserving serializability are distributed among data servers; Camelot supports servers

that perform either locking or hybrid atomicity Herlihy 85]. This synchronization is commonly implemented with the assistance

of Avalon’s runtime support.

-26-

support aborts of nested transactions, new value recovery, and the logging of arbitrary regions of

memory.

Camelot writes log data to locally duplexed storage or to storage that is replicated on a collection of

dedicated network log servers Daniels et al. 86]. In some environments, the use of a shared network

logging facility could have survivability, operational, performance, and cost advantages. Survivability

is likely to be better for a replicated logging facility because it can tolerate the destruction of one or

more entire processing nodes. Operational advantages accrue because it is easier to manage high

volumes of log data at a small number of logging nodes, rather than at all transaction processing

nodes. Performance might be better because shared facilities can have faster hardware than could

be afforded for each processing node. Finally providing a shared network logging facility would be

less costly than dedicating duplexed disks to each processing node, particularly in workstation

environments.

Release 2 of Camelot will support an operation (or transition) logging technique in which type

implementors can log non-idempotent undo and redo operations. This type of logging increases the

feasible concurrency for some types and reduces the amount of log space that they require.

2.4. Transaction Management

Camelot provides facilities for beginning new top-level and nested transactions and for committing

and aborting them. Two options exist for commit: Blocking commit may result in data that remains

locked until a coordinator is restarted or a network is repaired. Non-blocking commit, though more

expensive in the normal case, reduces the likelihood that a node’s data will remain locked until

another node or network partition is repaired. In addition to these standard transaction management

functions, Camelot provides an inquiry facility for determining the status of a transaction. Data

servers and Avalon need this to support lock inheritance.

2.5. Support for Data Servers

The Camelot library packages all system interfaces and provides a simple locking mechanism. It

also contains routines that perform the generic prOcessing required of all data servers. This

processing includes participating in two-phase commit, handling undo and redo requests generated

after failures, responding to abort exceptions, and the like. The functions of this library are subsumed

by Avalon’s more ambitious linguistic support.

2.6. Deadlock Detection

Clients of Camelot Release 1 must depend on time-out to detect deadlocks. Release 2 will

incorporate a deadlock detector and export interfaces for servers to report their local knowledge of

wait-for graphs. We anticipate that implementing deadlock detection for arbitrary abstract types in a

large network environment like the Arpanet will be difficult.

—27-

2.7. Reliability and Performance Evaluation

Camelot Release 2 will contain a facility for capturing performance data, generating and distributing

workloads, and inserting (simulated) faults. These capabilities will help us analyze, tune, and validate

Camelot and benefit Camelot’s clients as they analyze their distributed algorithms. The information

returned by the facility could also be used to provide feedback for applications that dynamically tune

themselves. We believe that, when properly designed, a reliability and performance evaluation facility

will prove as essential for building large distributed applications as source-level debuggers are

essential for traditional programming.

The reliability and performance evaluation facility has three parts. The first captures performance

data and permits clients to gauge critical performance metrics, such as the number of messages,

page faults, deadlocks, and transactions/second. Certain information is application-independent,

but other useful information depends on the nature of the application. Therefore, the performance

evaluation facility will be extensible and capture application-specific data from higher level

components. Once information is obtained from various nodes on the system, the facility combines

and presents it to system implementors or feeds it back to applications for use in dynamic tuning.

The second part of the performance and reliability evaluation facility permits the distribution of

applications (or workloads) on the system. When many nodes are involved in a workload, this task

can be very difficult unless it is possible to specify the nodes and workloads from a single node. We

have built a prototype facility of this type for TABS, and we will extend it for use on Camelot.

The third part permits simulated faults to be inserted according to a pre-specified distribution. This

is crucial for understanding the behavior of a system in the presence of faults. For example the

low.level communication software may be instructed to lose or reorder datagrams with a pre-specified

probability. Or, a pair of nodes could greatly raise network utilization to probe the effects of

contention.

2.8. Miscellaneous Functions

Camelot provides both a logical clock Lamport 78] and a synchronized real-time clock. These

clocks are useful, for example, to support hybrid atomicity Herlihy 85] and replication using

optimistic timestamps Bloch 86]. Camelot also extends the Mach naming service to support multiple

servers with the same name. This is useful to support replicated objects.

3. Camelot Implementation
The major functions of Camelot and their logical relationship is illustrated in Figure 3-1. Disk

management and recovery management are at the base of Camelot’s functions. Both activities are

local to a particular node, except that recovery may require communication with the network logging

service. Deadlock detection and transaction management are distributed activities that assume

underlying disk management and node recovery facilities. Communication protocols and reliability

-28-

and performance evaluation are implemented within many levels of the system. The library support

for data servers rests on top of these functions.

Data Server Library Support

Deadlock Detection
C

0

Rel. &
Pert

m

m E

Transaction Management

i

C

a

t

0

1

U

a

t

0

Recovery Management
—

Disk Management

Figure 3-1: Logical Components of Camelot

This figure describes the logical structure of Camelot. Camelot is logically hierarchical, except that communication and

reliability and performance evaluation functions span multiple levels.

All of Camelot except the library routines is implemented by a collection of Mach processes, which

run on every node. Each of these processes is responsible for supporting a particular collection of

functions. Processes use threads of control internally to permit parallelism. Calls to Camelot (e.g., to

begin or commit a transaction), must be directed to a particular Camelot process. Some frequently

called functions such as log writes are invoked by writing to memory queues that are shared between

a data server and a Camelot process. Other functions are invoked using messages that are generated

by Matchmaker.

Figure 3-2 shows the seven processes in Release 1 of Camelot3: master control, disk manager,

communication manager, recovery manager, transaction manager, node server, and node

configuration application.

• Master Control. This process restarts Camelot after a node failure.

• Disk Manager. The disk manager allocates and deallocates recoverable storage,

accepts and writes log records locally; and enforces the write-ahead log invariant. For

log records that are to be written to the distributed logging service, the disk manager

3CameIot Release 2 will use additional processes to support deadlock detection and reliability and performance evaluation.

-29-

works with dedicated servers on the network. Additionally, the disk manager writes

pages to/from the disk when Mach needs to service page faults on recoverable storage

or to clean primary memory. Finally, it performs checkpoints to limit the amount of work

during recovery and works closely with the recovery manager when failures are being

processed.

• Communication Manager. The communication manager forwards inter-node Mach

messages, and provides the logical and physical clock services. In addition, it knows the

format of messages and keeps a list of all the nodes that are involved in a particular

transaction. This information is provided to the transaction manager for use during
commit or abort processing. Finally, the communication manager provides a name

service that creates communication channels to named servers. (The transaction

manager and distributed logging service use IP datagrams, thereby bypassing the

Communication Manager.)

l~ Node

Config. • • • Application
Appi icat ion

Data Data

~er s~:r ~er —

Recovery I Transaction

Manager L Manager —

Camelot

System

Disk Communication Components

Manager Manager

Master

Control

~ Mach Kernel

Figure 3-2: Processes in Camelot Release 1

This figure shows the Mach kernel and the processes that are needed to execute distributed transactions. The node server is

both a part of Camelot, and a Camelot data server because it is the repository of essential configuration data. Other data

servers and applications use the facilities of Camelot and Mach. The node configuration application permits users to exercise

control over a node’s configuration.

-30-

• Recovery Manager. The recovery manager is responsible for transaction abort, server

recovery, node recovery, and media-failure recovery. Server and node recovery

respectively require one and two backward passes over the log.

• Transaction Manager. The transaction manager coordinates the initiation, commit,

and abort of local and distributed transactions. It fully supports nested transactions.

• Node Server. The node server is the repository of configuration data necessary for

restarting the node. It stores its data in recoverable storage and is recovered before

other servers.

• Node Configuration Application. The node configuration application permits
Camelot’s human users to update data in the node server and to crash and restart

servers.

The organization of Camelot is similar to that of TABS and R Spector 85, Lindsay et al. 84].

Structurally, Camelot differs from TABS in the use of threads, shared memory interfaces, and the

combination of logging and disk management in the same process. Many low-level algorithms and

protocols have also been changed to improve performance and provide added functions. Camelot

differs from R in its greater use of message passing and support for common recovery facilities for

servers. Of course, the functions of the two systems are quite different; R*Is transactions are

intended primarily to support a particular relational database system.

4. Discussion

As of December 1986, Camelot 1 was still being coded though enough (about 20,000 lines of C) was

functioning to commit and abort local transactions. Though many pieces were still missing (e.g.,

support for stable storage and distribution), Avalon developers could begin their implementation

work. Before we begin adding to the basic set of Camelot 1 functions, we will encourage others to

port abstractions to Camelot, so that we can get feedback on its functionality and performance.

Performance is a very important system goal. Experience with TABS and very preliminary

performance numbers make us believe that we will be able to execute roughly 20 non-paging write

transactions/second on an PT PC or MicroVax workstation. Perhaps, it is worthwhile to summarize

why the Camelot/Mach combination should have performance that even database implementors will

like:

• Mach’s support for multiple threads of control per process permit efficient server

organizations and the use of multiprocessors. Shared memory between processes

permits efficient inter-process synchronization.

• Disk I/O should be efficient, because Camelot allocates recoverable storage
contiguously on disk, and because Mach permits it to be mapped into a server’s memory.
Also, servers that know disk I/O patterns, such as database managers, can influence the

page replacement algorithms by providing hints for prefetching or prewriting.

-31-

Recovery adds little overhead to normal processing because Camelot uses write-ahead

logging with a common log. Though Camelot Release 1 has only value-logging,
operation-logging will be provided in Release 2.

• Camelot has an efficient, datagram-based, two-phase commit protocol in addition to its

non-blocking commit protocol. Even without delaying commits to reduce log forces

(“group commit”), transactions require only one log force per node per transaction.

Camelot requires just three datagrams per node per transaction in its star-shaped commit

protocol, because final acknowledgments are piggy-backed on future communication.

Camelot also has the usual optimizations for read-only transactions.

• Camelot does not implement the synchronization needed to preserve serializability. This

synchronization is left to servers (and/or Avalon), which can apply semantic knowledge
to provide higher concurrency or to reduce locking overhead.

Today, we would guess that Camelot’s initial bottlenecks will be low-level disk code and the

remaining message passing. For example, though the frequent calls by servers to Camelot are

asynchronous and via shared memory, all operations on servers are invoked via message using the

RPC stub generator. To further reduce message passing overhead, we might have to substitute a

form of protected procedure call. This should not change Camelot very much since all inter-process

communication is already expressed with procedure call syntax.

In the course of our implementation and the subsequent performance evaluation, we expect to learn

much about large reliable distributed systems. Once Camelot is functioning, we plan to perform

extensive experimentation on multiprocessors and distributed systems with a large number of nodes.

In particular, we will measure the actual availability and performance of various replication

techniques.

Our overall goal remains to demonstrate that transaction facilities can be sufficiently general and

efficient to support a wide range of distributed programs. We are getting closer to achieving this goal,

but much work remains.

Acknowledgments

Thanks to our colleagues Maurice Herlihy and Jeannette Wing for their advice, particularly as it

relates to support for Avalon.

-32-

References

Accetta et al. 86] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard Rashid,
Avadis Tevanian, Michael Young. Mach: A New Kernel Foundation for UNIX Development.
In Proceedings of Summer Usenix. July, 1986.

Allchin and McKendry 83] James E. Allchin, Martin S. McKendry. Facilities for Supporting Atomicity
in Operating Systems. Technical Report GIT-CS-83/1, Georgia Institute of Technology,
January, 1983.

Bloch 86] Joshua J. Bloch. A Practical, Efficient Approach to Replication of Abstract Data Objects.
November, 1986.Carnegie Mellon Thesis Proposal.

Cooper 86] Eric C. Cooper. C Threads. June, 1986. Carnegie Mellon Internal Memo.

Daniels et al. 86] Dean S. Daniels, Alfred Z. Spector, Dean Thompson. Distributed Logging for

Transaction Processing. Technical Report CMU-CS-86-106, Carnegie-Mellon University,
June, 1986.

Eppinger and Spector 85] Jeffrey L. Eppinger, Alfred Z. Spector. Virtual Memory Management for

Recoverable Objects in the TABS Prototype. Technical Report CMU-CS-85-163, Carnegie-
Mellon University, December, 1985.

Gray 80] James N. Gray. A Transaction Model. Technical Report RJ2895, IBM Research

Laboratory, San Jose, California, August, 1980.

Helland 85] Pat Helland. Transaction Monitoring Facility. Database Engineering 8(2):9-18, June,
1985.

Herlihy 85] Maurice P. Herlihy. Availability vs. atomicity: concurrency control for replicated data.

Technical Report CMU-CS-85-108, Carnegie-Mellon University, February, 1985.

Herlihy and Wing 86] M. P. Herlihy, J. M. Wing. A va/on: Language Support for Reliable Distributed

Systems. Technical Report CMU-CS-86-167, Carnegie Mellon University, November, 1986.

Jones et al. 85] Michael B. Jones, Richard F. Rashid, Mary R. Thompson. Matchmaker: An

Interface Specification Language for Distributed Processing. In Proceedings of the Twelfth

Annual Symposium on Principles of Programming Languages, pages 225-235. ACM,
January, 1985.

Lamport 78] Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM 21(7):558-565, July, 1978.

Lindsay et al. 84] Bruce G. Lindsay, Laura M. Haas, C. Mohan, Paul F. Wilms, Robert A. Yost.

Computation and Communication in R*: A Distributed Database Manager. ACM

Transactions on Computer Systems 2(1):24-38, February, 1984.

Liskov and Scheifler 83] Barbara H. Liskov, Robert W. Scheifler. Guardians and Actions: Linguistic
Support for Robust, Distributed Programs. ACM Transactions on Programming Languages
and Systems 5(3):381.404, July, 1983.

Postel 82] Jonathan B. Postel. Internetwork Protocol Approaches. In Paul E. Green, Jr. (editor),
Computer Network Architectures and Protocols, chapter 18, pages 511 -526.Plenum Press,
1982.

-33-

Schwarz 84] Peter M. Schwarz. Transactions on Typed Objects. PhD thesis, Carnegie-Mellon
University, December, 1984. Available as Technical Report CMU-CS-84-166, Carnegie-
Mellon University.

Spector 85] Alfred Z. Spector. The TABS Project. Database Engineering 8(2):19-25, June, 1985.

Spector and Schwarz 83] Alfred Z. Spector, Peter M. Schwarz. Transactions: A Construct for

Reliable Distributed Computing. Operating Systems Review 17(2):18-35, April, 1983. Also

available as Technical Report CMU-CS-82-143, Carnegie-Mellon University, January 1983.

Spector et al 86] Alfred Z. Spector, Dan Duchamp, Jeffrey L. Eppinger, Sherri G. Menees, Dean

S. Thompson. The Camelot lntérface Specification. September, 1986. Camelot Working
Memo 2.

Spector et al. 85] Alfred Z. Spector, Dean S. Daniels, Daniel J. Duchamp, Jeffrey L. Eppinger, Randy
Pausch. Distributed Transactions for Reliable Systems. In Proceedings of the Tenth

Symposium on Operating System Principles, pages 127-146. ACM, December, 1985. Also

available in Concurrency Control and Reliability in Distributed Systems, Van Nostrand

Reinhold Company, New York, and as Technical Report CMU-CS-85-117, Carnegie-Mellon
University, September 1985.

Thompson 86] Dean Thompson. Coding Standards for Camelot. June, 1986. Camelot Working
Memo 1.

-34-

Getting the Operating System Out of the Way

J. Eliot B. Moss

Department of Computer and Information Science

University of Massachusetts

Amherst, Massachusetts 01003

Abstract. In this note I outline what fundamental support database systems need from

their operating environment. I argue that general purpose operating systems do not provide
the necessary support, or at least not in a very good way, and that they provide a number

of things that mainly get in the way of a database manager. In response, I recommend

a somewhat radical approach: building the database system in a programming language
on top of a minimal kernel consisting of the language run time system. This technique in

essence does away with the operating system, replacing it with a programming language.
While not feasible for use in systems that must support general purpose computing, this

should be an effective way to build efficient, dedicated database management systems.

1 What Databases Need.

First, I will outline the basic needs of database managers, which I categorize as support

for input/output, multiprogramming, and memory management. The primary need is

configuration and device independence, with interfaces for the devices being simple while

allowing very efficient use.

Input/Output. Database systems obviously require support for input/output. They

need I/O to be efficient, and they need to be in a position to take advantage of what

ever performance enhancing features a device offers. However, it is clearly useful for the

database manager to be shielded from a number of device details. While the “topology”

of disks (number of cylinders, tracks per cylinder, sectors per track, etc.) may be useful

in some circumstances, access to fixed size blocks by sequential block number is probably

adequate most of the time. The assumption made is that block numbers are related to

physical position: reading sequential blocks should be fast, moving from one block to an

other will be faster if the blocks’ numbers are close, etc. Efficient reading of a number of

blocks at a time should be supported (full track read/write), and hints concerning good

clustering parameters should be available (these would be derived from disk topology).
A database system needs asynchronous (nonblocking) I/O, directly to and from the

memory it manages for its buffers. Low level error handling should be available, to

mask most I/O errors, through retry, disk sector mapping, etc., reflecting the error to

the database system only if it is unlikely that retry will help matters.

While it seems reasonable, though not trivial, to provide the necessary support for

mass storage such as disks and tapes, device independent communications and terminal

I/O are of equal importance, and more difficult to achieve. In network communications,

database managers seem to need two levels of functionality: essentially packet level I/O,

-35-

useful for commit protocols and the like, and virtual circuits (one way at least) for bulk

data transfer. Other paradigms might include remote procedure call. While the .best

high level model might be an issue for debate, the database manager still needs efficient,

but simple to use (i.e., messy details are hidden) communications support. As with mass

storage, error masking should be provided. The database manager should also be shielded

as much as possible from the vagaries of addressing, packet formats, protocol standards,

etc.

Communication with interactive terminals pretty much falls into the same category,

as far as communcations goes, but raises the additional problems of dealing with visual

formatting so that terminal/workstation features are used to best advantage without lots

of special case code in the database manager. A number of packages already exist that

assist in this endeavor, but there is no easy way around having to support terminals of

vastly different capabilities. However, minor differences among similar devices, as well

as low level details, should be masked. Database systems have an advantage over more

general systems in that they typically do rather stylized interactions (forms, etc.), which,

while varying in detail from terminal to terminal, share most of the top level functionality.

See the next section for further remarks concerning I/O.

Multiprogramming. Some support for multiprogramming is clearly necessary, since

the sort of databases being discussed are shared. The underlying system must provide

means for creating, scheduling, destroying, etc., threads of control. However, these threads

are under the management of the database system. As with I/O, what is needed is a clean

collection of primitives from which the database manager can fashion whatever it requires.

The appropriate kind of multiprogramming support is lightweight processes, sharing a

single address space. A number of process may be managing I/O, some performing actual

data manipulation and computation, and others doing housekeeping functions. Processes

should be cheap. For example, it should be reasonable to fork one for each incoming query

and to let it die when the response has been sent. It is unreasonable to require every logged

on terminal to have an associated process, since processes require a stack, etc., which is

too much space to devote to every user in a large system. Process switching should be

very efficient, too, so that lightweight processes can be used as “interrupt handlers” — that

is, they can block waiting I/O completion.

Input/output and other operating system features should be directly incorporated into

the database manager. By this I mean that these features are only a procedure call away,

not an operating system supervisor call or context switch. If lightweight processes can be

used, we can revert to logically synchronous I/O: the lightweight process will block until

completion, and another lightweight process will be chosen to run in the meantime.

The database manager needs to have control over the scheduling algorithm and pa

rameters, such as time slices, priorities, and so on. It may be sufficient to offer a priority

based scheduler that does round robin scheduling of processes at equal priority. One also

-36-

needs to be able to perform critical sections. This can be made independent of database

concurrency control to some extent, but it is necessary to prevent preemption during crit

ical sections. The support code should not assume that it knows about all the necessary

critical sections. Protecting critical sections must be very efficient (i.e., add little overhead

to locking routines that are perhaps less than 100 instructions long).

Memory Management. This breaks down into two areas: management of memory

containing code, and management of data space. Management of data space should gen

erally not be demand paged in the sense used with timesharing systems. Most global data

should not be eligible for paging, and that which is should probably have priorities asso

ciated with it, according to the priorities of processes that have used or expect to use the

data. That is, it should be possible to give strong hints about the importance of various

pieces of data as a process executes. This will insure that data is paged in with maximum

efficiency, and not paged out when it is likely to be needed again. It would be up to the

system designer to insure that this scheme would not starve processes. However, high

performance systems clearly depend on having enough real memory available to minimize

paging.

Relatively automatic management of code, would be helpful. It could be based on

hinting, when starting to execute some major piece of code, what the piece of code is and

the importance of the activity that will be performed by executing it. When the process

is done, it should also note that. Major pieces of code will probably not be eligible for

paging, and would be managed by the just described method, which is somewhere between

overlays and demand paging in its properties.

It is not clear to what extent code and data paging, as well as I/O buffer space manage

ment, should be tied together or separated. If the priority schemes are coherent, it may be

best to tie all the memory management together, to gain best utilization of real memory.

The point is to provide some minimal functionality, but to allow the database system sub

stantial control over policy, through parameters and hints. It might even be reasonable to

let it decide the page replacement policy, by having the page fault handler call a database

system supplied subroutine for choosing replacement victims. That is harder to use in

some ways, but fully general.

2 What databases do not need.

In this section I deliver my diatribe against general purpose operating systems that attempt

to support database systems, too. The main points of the argument are that in trying

to support database a general purpose operating system provides features that are too

complex, never quite right, rather system specific, and expensive to use. Hence, many

database system developers spend much of their time trying to figure out how to game the

operating system just right, or how to get it out of their way.

-37-

Multiprogramming. In this area operating systems typically provide large, expen

sive processes, primarily because they are trying to protect the system, as well as other

processes, from processes that go haywire, or try to access protected data, etc. If we are

prepared to dedicate the computer to the database application, then the protection issue

goes away. The database system will almost certainly be of high privilege in a time sharing

environment and will itself control user access to the database in ways more sophisticated

than the operating system can, so there is not much point in protecting the database from

itself. There is an increased risk that bugs in the database system itself will be a problem,

but high performance database systems use shared memory already, so I do not think

this can be considered a major problem. Getting rid of the protection (and hence context

switching) boundaries greatly simplifies things, as well as substantially improving perfor

mance. For example, getting at locks, buffers, internal tables, etc., can be done directly

rather than having to call across an interface. We can do things in microseconds rather

than milliseconds. Using a single address space with no per-process protection makes

lightweight processes more practical as well. In sum, to support databases, the operating

system should not provide elaborate protection and security features — get the fences out

of the way for the database system.

Memory management. Straight demand paged virtual memory does not help a

database system very much: it needs control over when data is written to disk, so as to

implement recovery protocols. Further, page replacement algorithms suitable for general

use are not really appropriate, because the database system knows a lot about how data

and code are used. Much better performance can be had by letting the database system

have substantial control in this area.

Input/output. Database systems may not be able to take advantage of elaborate

access methods that come with an operating system. The problem is they probably will

not quite match what the database system wants to do. Besides, the database system will

provide more variety and sophistication in this area, so it is probably not worth the effort

to provide half hearted measures.

Concurrency control. If locking is an operating system call away, the database sys

tem will not use it. The point here is that good locking code is perhaps ten to one thousand

instructions long; I have heard that on typical superminicomputers 100 microseconds is

an average lock acquisition time (for an available lock). An operating system probably

cannot even dispatch the supervisor call that fast, and its data structure probably will not

be quite right either. This relates back to multiprogramming: the operating system should

provide the basic mechanisms, simple and cheap, and let the database system worry about

policy.

Transaction features. While there has been considerable interest of late in the

use of transactions to help build operating systems, it would probably be a mistake to

build a single transaction mechanism to serve them both. Transactions might indeed help

-38-

structure a reliable, distributed operating system, just as they are a powerful and useful

concept for databases, hut the objects being manipulated are probably rather different. As

with concurrency control, the operating system will almost certainly not provide exactly

the right thing. Worse, having provided a mechanism, the operating system may then

preempt the ability to do something different, leaving the database system designer up the

creek.

In sum, operating systems designers should not second guess database system designers,

nor preempt their ability to build more sophisticated capabilities.

3 The Language Based Approach.

Being something of a language designer and implementer by trade, I naturally favor de

signing and then using an appropriate language for building database systems of the kind

I have been describing, in fact, one way to achieve some measure of portability is to de

sign the required primitives into the language. To some extent all I have done is turn an

operating system kernel implementation problem into a language run time system imple

mentation problem. However, the language approach has the additional power of being

able to shove various things onto a compiler and sometimes take care of them at compile

time. A typical example of this is checking various properties of arguments in “system

calls” (which turn into procedure calls or invocations of builtin primitives).
The sort of language I am describing should not be taken as being at as high a level

as a database query language. Rather, we are talking about a systems implementation

language. To a certain extent, Ada, Modula, and Mesa have the right flavor. They

all provide control over the bits, have lightweight processes, and offer some inter-process

synchronization and communication primitives. Since Mesa has been used successfully to

build the operating system Cedar, it might even be a reasonable candidate.

Let us consider more specifically some attributes desirable in a database implemen

tation language. Foremost, I would say, is a good facility for data abstraction and code

modularization. Data abstraction is one of the best ways to hide hardware dependencies.

For example, a data abstraction for page allocation, deallocation, and access can take care

of mapping down to disk cylinders and tracks, optimizing placement of related data (when
given hints from invokers of the abstraction), etc. It could also help insure that data are

written back to the right place, by identifying pages, and, in conjunction with a memory

buffer abstraction, associating database pages with main memory buffers.

However, it would appear that one probably needs ways to escape from type checking

and similar rules, too. In particular, memory management will require the ability to

manipulate addresses, and when data are read from disk, they must be coerced (e.g., via

the type cast construct of the C language) into types known to the program. This is an

issue that has been raised, and dealt with in various ways, in programming language circles,

-39-

but may be less familiar to database cognoscenti. A more ambitious approach would be

to extend the language to include persistence, i.e., directly understand and manipulate

objects on disk automatically. This is an exciting area of current research, but beyond

the scope of the present discussion. While pointer manipulation and memory management

require the use of unsafe features, the unsafe code can be quite localized, reducing the

likelihood of error. The language should encourage such localization; C, for example, is

weak in this respect.

Concerning processes and synchronization, I think the features of Mesa and Modula

are better suited than those of Ada. In particular, using locks seems more natural than

using rendezvous when expressing mutual exclusion in access to internal tables. In any

case, interrupts should turn into synchronization signals (e.g., a V on a semaphore, etc.)
to suspended processes. Thus a process might write a buffer out to disk by executing

the code, including the device driver, itself, blocking for the completion signal, and then

continuing. Components of the system which act as schedulers should be able to access

waiting processes as entities~ and manipulate them easily (e.g., to move them from queue

to queue). It is helpful if a process can lock a data structure, file itself in the data

structure, and then atomically: block, unlock the data structure, and signal a scheduler.

The scheduler can then lock the data structure and get at the suspended process. Similar

arguments suggest that individual messages (or streams) be data objects, with no strong,

fixed relationship to processes, allowing communications to be handled in a flexible, priority

fashion.

Control over paging of code and data is not an issue of the language per se. Rather,

one aspect is the ability to lock and release pages in memory, etc., which can be done via a

page data abstraction. The other aspect is describing pieces of code/data, grouping them,

etc. This is more an issue in the construction of tools, such as the compiler and linker, and

their connection back to the language elements (procedures, variables, etc.). For example,

one might group code into segments. It would then be necessary to determine the segment

containing a given routine, then the location and size of the segment, in order to lock the

routine and its associates into main memory all at once. A complementary approach is to

deliver page faults back to the database system. This requires being able to specify some

pages that must absolutely never be paged out, etc.

In sum, we can identify from our previous discussion some features desired of a database

implementation language. But the features mentioned probably do not form a complete

or exactly correct list.

4 Advantages of the Language Approach

The advantages of the language approach are several. First, it should offer greater porta

bility across machines. We get the usual hiding of hardware differences associated with a

-40-

high level language. But in addition, rather than adapting to different operating systems,

we adapt the maehine to us. Thus we push the differences down to low level abstractions,

and avoid unnecessary variations (e.g., among different operating systems on the same

hardware).
We also gain the many advantages of modern programming languages in support of

system development and evolution. In particular, data abstraction and type checking can

be offered. At present one must choose between an efficient, unsupportive language (e.g.,

assembly or C) or a less efficient, less convenient, more supportive language (Ada might

be an example). In designing a new language we can likely offer both.

Even better, we gain leverage by providing the right features in the language, making

it easier to express what the database implementer wants to do. This will ease implemen

tation and maintenance, as well as reduce errors arising from a poor match of language to

programming task.

Finally, and most importantly, the language approach offers improved performance

by getting the operating system out of the way. We avoid unnecessary process context

switches, unnecessary protection context switches, and unnecessary argument checks. We

also shed entire mechanisms (protection, access control) that add overhead and must be

redone anyway. A more subtle effect is that produced by using less general and more ap

propriate algorithms. Among these are policies (e.g., for paging or device I/O scheduling)
that are more general or even counterproductive compared to database needs. Carried

to its extreme, this argument would suggest eliminating unnecessary features from the

hardware architecture, and thus increasing speed, reducing cost, or both.

In sum, the main advantages of the language approach include: portability (just im

plement the run time system on your target architecture — not trivial, but there should

be a pretty clear specification of what is required); efficiency (no operating system call

overhead, and no protection domains); support for modern software engineering practices

(many languages used in implementing databases do not have adequate safeguards, or

features for building large systems); and leverage (the appropriate set of features makes

programming easier).

5 Objections to My Proposal.

The worst objection is that the approach described is applicable mainly to dedicated

database systems, as opposed to general purpose time sharing systems, which might also

wish to support database access for their users. If the correct set of features can be worked

out, it may be possible to graft a database system of the kind I envision onto a general

purposeoperating system, provided the operating system offers the necessary hooks, How

ever, there will almost certainly be a significant performance penalty compared with the

dedicated system.

-41-

A second objection is portability: to port the database system, one must in essence build

a. new operating system for the target hardware. However, this may not be too bad. First,

we are not talking about a full blown time sharing system, with utilities, and so forth. We

are talking about an operating system kernel only, and one providing a standard interface.

It is conceivable that considerable parts could be written in a reasonable language which

is fairly portable and available, such as C, Modula, or Ada. This would cut the porting

time down substantially. Having the correct specification and design really will help.

Finally, it is clear that I am describing what must for the time being be considered

research or advanced development, by no means a proven concept. If your measure is

“Will it sell in the marketplace?”, then I have some doubts, at least until I have experience

building one of these systems. I am engaged in research to define a language, implement

it, and build a distributed object oriented database with it. However, the language will

itself be object oriented, and, because the emphasis is a little more on functionality and

capability, for the time being we will probably interpret it rather than compile it, and we

will not strain for performance at the moment. (Get it right, then make it fast.)
This note owes a lot to discussions I have had with a number of people, and presenta

tions I have seen over the years, as well as bits written down here and there. It expresses

opinion and religion more than experimentally demonstrated fact, but I think that a num

ber of people agree with substantial parts of my criticisms and suggestions concerning

operating systems. The language part is more radical. Anyway, the words are mine, but

the ideas can frequently be attributed to others. However, I will not mention individuals,

since it is hard to say to what extent they might agree with what I have said.

-42-

OPERATING SYSTEM SUPPORT FOR DATA MANAGEMENT

Michael Stonebraker and Akhil Kumar

EECS Department
University of California
Berkeley, Ca., 94720

Abstract In this paper we discuss four concepts that have been proposed over

the last few years as operating system services. These are:

1) transaction management
2) network file systems and location independence
3) remote procedure calls

4) lightweight processes

From the point of view of implementors of a data manager, we indicate our reac

tion to these services. We conclude that the first service will probably go unused

while the second is probably downright harmful. On the other hand, the absence

of the last two services in most conventional operating systems requires a data

base system implementor to write substantial extra code.

1. INTRODUCTION

An operating system is nominally designed to provide services to client appli
cations, including large scale data managers. In STON81I one of us commented

on the utility of current operating system constructs as services for a data

manager. Since that time, there have been numerous proposals for new operating
system services, and the purpose of this paper is to comment on several of these

from the point of view of perceived utility to the implementor of a data base sys

tem.

We focus our attention on four particular services. First, many researchers

propose next-generation operating systems with support for transactions. Older

proposals include MITC82, BROW81] while more recent ones can be found in

CHAN86, MUEL83, PU86, SPEC83]. Comments on the viability of operating sys

tem transaction managers can be found in STON84, STON85, TRAI82]. In Sec

tion 2 of this paper we present our current thinking on this topic. Then in Section

3 we turn to a discussion of the network file systems that exist in many current

operating systems (for example Sun UNIX and Apollo DOMAIN). Current data

This research was sponsored by the National Science Foundation under Grant DMC

8504633 and by the Navy Electronics Systems Command under contract N00039-84-C-0039.

-43-

managers which run in this environment (e.g. INGRES and ORACLE) usually do

not use this service and we indicate the reasons for this state of affairs. Section 3

then continues to the more general notion of location transparency, such as pro

vided by LOCUS WALK83] and Clouds DASG85]. We indicate the reasons why a

data manager would be obliged to turn this service off to obtain reasonab’e perfor
mance. Section 4 then discusses remote procedure call mechanisms and the use

which a data manager would find for this construct. Although one can code around

their absence in current systems, we conclude they would be a most beneficial

addition. Lastly, we turn in Section 5 to the need and intended use for lightweight

processes. We indicate why they are crucial to data managers and what one would

want them to do. The tax for their non-inclusion in most current systems is quite
high, and we would encourage more operating system designers to think deeply
about providing this service.

2. OPERATING SYSTEM TRANSACTION MANAGEMENT

A transaction is a collection of data manipulation commands that must be

atomic and serializable IIGRAY78]. Current data managers implement the transac

tion concept by means of sophisticated user space crash recovery and concurrency

control software. This software is considered tedious to write, hard to debug, and

its reliability is absolutely crucial. All data base implementors that we have met

would appreciate somebody else being responsible for this function. In particular,
abdicating these functions to the operating system seems the only realistic possibil

ity.

There are two possible ways this abdication could take place, namely:

total abdication

partial abdication

In total abdication, the data manager would accept a ‘‘begin transaction’’ com

mand from a user and pass it directly to the operating system. ‘‘Abort transac

tion’’ and ‘‘commit transaction’’ instructions would be similarly redirected.

Hence, the data manager would be uninvolved in (and unconcerned with) the

details of transaction support.

In partial abdication the data manager would still be required to define the

‘‘events’’ which make up the contents of a current data base log as well as pro

vide the required ‘‘undo’’ and ‘‘redo
-.

routines. Any special case locking of

indexes, system catalogs and other special data structure would also require direct

data manager implementation. Partial abdication would move the basic control

flow surrounding log processing into the operating system as well as the innards of

the lock manager.

In our opinion, partial abdication would simplify data base transaction code

only marginally since the easiest part of the code is all that is removed. Defining
events and implementing them recoverably is still left to the data manager. This

is where a majority of the time and effort in current transaction systems is spent.

Hence we are MUCH more excited by the prospect of total abdication. A recent

IBM Research CHAN86] proposal for moving transactions into the OS is the most

promising one we have seen because it suggests hardware supported locking on

‘small-granularity 128 byte objects and a write-ahead log on the same small

granules. Hence, we are investigating the viability of this proposal by performing

-44-

an extensive simulation study.

We have constructed simulation models to compare the performance of an OS

transaction manager with that of its database counterpart. The models must cap

ture the relative strengths and weaknesses of each approach. The trade-offs

involved in the two alternatives have to be highlighted in the models by means of

parameters that correspond to performance factors in each situation. For example,
our models have to reflect the fact that the OS can set locks at a lower cost than

the data manager. This factor is likely to make the OS solution relatively more

attractive. On the other hand, the OS transaction manager lacks semantic infor

mation about the database. For instance, it cannot distinguish between data

objects and indexes while the data manager can. This ability to distinguish
between different types of objects enables the data manager to apply short-term

locks on hot spots like indexes and system catalogs and, therefore, allow greater
concurrent activity. It also means that the data manager need only log updates to

data objects since the index may be reconstructed from the data at recovery time.

Therefore, the data manager can implement crash recovery mechanisms in a smar

ter way and at a lower cost. This increased level of semantics tends to make the

data manager solution preferable.

Simulation models have previously been used in this area to study the perfor
mance of concurrency control algorithms in a conventional data manager (e.g.,
R1E579], CARE84J, AGRA85]). We have expanded these models in several ways.

First, we are modelling both concurrency control and crash recovery. Second, we

have a more elaborate data base model for treating data and index objects
separately. Thirdly, our model includes buffer management which has been omit

ted in the previous studies where it is assumed that every data object access

involves a disk I/O. As a side result from the study we will be able to examine the

effect, if any, of buffer size on each alternative. Lasitly, our primary motivation is

to study where transactions are supported and not to investigate a range of

different user-space algorithms for transaction management.

Our initial studies indicate that an operating system transaction manager

provides about 30 percent lower transaction throughput than its data base counter

part under a variety of simulation parameters. This performance loss is primarily
the result of a log that is vastly larger than the one used by the data manager, the

presence of more deadlocks, and the larger number of locks set by the operating
system transaction manager. Moreover, recovery time is about twice as long for

the OS transaction manager largely because of the necessity of reading a much

larger log.

Hence, our initial experiments suggest that total abdication results in an

unacceptable loss of performance. Unless there is some way for the operating sys

tem to speed up transaction management, perhaps by providing special hardware

appropriate to the task, we are skeptical that the operating system transaction

manager can provide the performance required by current data managers. A full

paper on this study is in preparation KUMA86].

3. NETWORK FILE SYSTEMS AND LOCATION TRANSPARENCY

Popular Network File Systems (NFS) allow a user to access a remote file in

the same way as he accesses a local file. This level of transparency would seem to

-45-

be a good idea; however, it is unused by data managers in the environments in

which it runs. According to LAZO86], the cost of a remote read is about 2-3 times

the cost of a local read. Although these measurements were particular to one

hardware and operating system environment, they seem to reflect the performance
of most current implementations. Consequently, if a data manager is accessing the

EMP relation to find all employees who live in Boston and are over 50 or alterna

tively live in New York and are over 55, then it can read the entire EMP file over

an NFS to discover the employees who actually qualify. Alternately, it can run

the data manager on the remote node where it will read the entire file as a collec

tion of local reads. Then, only the qualifying records are actually moved between

sites. Obviously, if there are few qualifying employees, the latter tactic will be

much more efficient. Hence, the common wisdom is move the query to the data

and not the data to the query’’ Both ORACLE and INGRES operate in this more

efficient mode in environments supporting NFS. Hence, a data manager is willing
to go to the trouble of executing a remote process and setting up the inter-machine

communication to obtain a perceived substantial performance gain.

Beyond NFS is the possible inclusion of location transparency for a file sys

tem. In this context, a user need never worry about where a file is, he simply
accesses it as if it were local to his site. This generalizes NFS by not requiring a

user to ever know where a file actually resides. Moreover, the operating system
could decide to move the file if disk traffic or accessing patterns warranted a

switch.

Unfortunately, a data manager would insist on turning this service off. If the

data manager accesses files as if they were local, then it would simply run the nor

mal one-site query optimizer built into existing data managers. Such a one-site

optimizer can decide among various query processing options for complex queries
including merge-sort and iterative substitution. However, optimizers that work in

a distributed environment are much more complex. They attempt to minimize a

different cost function that includes the cost of network communication and utilize

additional strategies including semi-joins. Moreover, they worry extensively about

the location of intermediate results produced during the query execution process.

Often it is a good idea to move two objects to a third site and perform a join at that

site.

If a data manager cannot find out the location of objects, then all this optimi
zation cannot be used. Moreover, if the data manager can find out the current

location but later the location might be changed by the underlying operating sys

tem, then the optimization can be performed but may be disasterously sub-optimal
if locations subsequently change. Our intuitive sense is that a system offering
location transparency may well be several orders of magnitude slower than a con

ventional distributed data base system. In this case, a data manager would never

utilize a file system offering location transparency.

4. REMOTE PROCEDURE CALL

As noted in the previous section, the application program often must run at a

different site than the data base engine. In addition, a distributed data base sys

tem is architected by having a local manager which runs at each site containing
data relevant to a user command and then a global manager which coordinated the

-46-

local managers. Hence, to solve a distributed query involving data at N sites,
there will be N local managers and one global manager who must communicate.

Lastly, there is considerable recent interest in extendible data base systems, which

can be tailored to individual needs by including user-written procedures. See

CARE86, STON86] for two different approaches to such a system. In an extendible

environment, one must call procedures written by others, and a robust debugging
environment seems essential. Hence, one would like to link the user written pro

cedure into the data manager for high performance and also to execute a call to a

protected address space for program isolation during debugging. This last feature

requires communication to a remote process running on the same machine.

In all these cases, the run-time system must linearize the parameters of a pro

cedure call, then pass them though the available interprocess communication sys

tem, and then repackage the data structure at the other end. All this effort would

go away if a remote procedure call (RPC) mechanism were available. Hence, we

are enthusiastic about the RPC facilities.

5. LIGHTWEIGHT PROCESSES

A conventional operating system binds each terminal to an application pro

gram. Hence, if there are N active terminals, then N application processes will

exist. Moreover, the obvious way to architect a data manager is to fork a data

base process for each data base user. This will lead to N data base processes and a

total of 2 * N active processes. The N data base processes can all share a single
copy of the code segment and have private data segments. Moreover, if the operat

ing system provides shared data segments, then the lock table and buffer pool can

be placed there.

An alternative approach is to construct a data base server process. Here,
there would be only one data base process to which all N application processes

would send messages requesting data base services. A server process entails writ

ing a complete multi-tasking special purpose operating system inside the data

manager. This duplication of operating system services seems intellectually very

undesirable.

As noted in STON81I a data manager must overcome significant problems
when using either architectures. In this section we indicate one additional problem
that occurs in a process-per-user architecture. When run in commercial environ

ments on large machines, it is not unusual for there to be several hundred termi

nals connected to a system. Five hundred is not a gigantic number, and the larg
est terminal collection we know of exceeds 40,000. Assuming 500 terminals each

supporting a data base user and assuming a process-per-user model of computation,
the OS must support 1000 active processes. Current operating systems tend to

generate excessive overhead when presented with large numbers of propcesses to

manage. For example, the common tactic of having the scheduler do a sequential
scan of the process table to decide who to run next is not workable on large sys

tems.

In addition, memory management with a large number of processes tends to

be a problem because the memory per terminal is often not very large. For exam

ple, a 32 mbyte system with 500 terminals yields only 60 kbytes per terminal.

Consequently, great care must be taken to avoid thrashing. Lastly, excessive

-47-

memory consumption is likely because the implementor of a process-per-user data

manager will likely allocate static areas for such things as parse trees and query

plans. Consequently, the data segment of a process-per-user data manager tends

to be of substantial size. In a server implementation, all such allocation would

likely be done dynamically. Hence, in a 500 user environment, the server data

segment would be much smaller than 500 times the size of a process-per-user data

segment. Consequently, the total amount of main memory consumed by the data

manager is higher in a process-per-user environment, and the probability of

thrashing is increased.

A solution to the resource consumption and bad performance of a process-per

user model is for an operating system to support lightweight processes. This model

of computation would allocate one address space for a collection of tasks. Multiple
threads of control would be active in the single address space and thereby be able

to share open files and data structures. One would like an operating system to

schedule the address space and then as a second decision schedule the particular
thread in the address space. The data manager would like easy-to-use capabilities
to add and delete threads from an address space. Such operations should be much

cheaper than creating or destroying a process.

More generally, the concept of binding an address space to every terminal is

also questionable since in a data base environment, many of the users will be exe

cuting the same application program. Hence, lightweight processes make sense for

application software also. To utilize this construct, the hard binding of a terminal

to a process must disappear. The general idea then would be to create Ni applica
tion servers and N2 data base servers each supporting multiple threads of control.

All the ‘‘plumbing’
-

to connect this environment together should be done within

the operating system. Moreover, one should be able to add and drop servers easily
and have their load be automatically redirected to other servers. CICS in an IBM

environment and Pathway in a Tandem environment are system with this flavor.

Hopefully, some of these capabilities will migrate into future general purpose

operating systems.

REFERENCES

{AGRA85I

Agrawal, R., et. al., “Models for Studying Concurrency Control Performance

Alternatives and Implications,” Proc. 1985 ACM-SIGMOD Conference on

Management of Data, June 1981.

BROW81]

Brown, M. et. al., “The Cedar Database Management System,” Proc. 1981

ACM-SIGMOD Conference on Management of Data, Ann Arbor, Mich., June

1981.

{CARE84}

Carey, M. and Stonebraker, M., “The Performance of Concurrency Control

Algorithms for Database Management Systems,” Proc. 1984 VLDB Confer

ence, Singapore, Sept. 1984.

-48--

CARE86]

Carey, M., “The Preliminary Design of Exodus,” Proc. 11th Very Large Data

Base Conference, Kyoto, Japan, Sept. 1986.

CHAN86I

Chang, A., (private communication)

DASG85]

Dasgupta, P. et. al., “The Clouds Project: Design and Implementation of a

Fault Tolerant Distributed Operating System,” Technical report GIT-ICS

85/29, Georgia Tech., Oct. 1985.

{GRAY78J

Gray, J., “Notes on Data Base Operating Systems,” in Operating Systems: An

Advanced Course, Springer-Verlag, 1978, pp393-48 1.

KUMA86I

Kumar, A., “Performance of Alternate Approaches to Transaction Processing,”
(in preparation).

LAZO86]

Lazowska, E. et. al., “File Access Performance of Diskiess Workstations,”
ACM-TOCS, August 1986.

MITC82]

Mitchell, J. and Dion, J., “A Comparison of Two Network-Based File Servers,”
CACM, April 1982.

MUEL83]

Mueller, E. et. al., “A Nested Transaction Mechanism for LOCUS,” Proc. 9th

Symposium on Operating System Principles, October 1983.

11PU86]

Pu, C. and Noe, J., “Design of Nested Transactions in Eden,” Technical Report
85-12-03, Dept. of Computer Science, Univ. of Washington, Seattle, Wash.,
Feb. 1986.

RIES79}

Ries, D., “The Effects of Concurrency Control on Data Base Management Sys
tem Performance,” Electronics Research Laboratory, Univ. of California,
Memo ERL M79120, April 1979.

SPEC83 I

Spector, A. and Schwartz, P., “Transactions: A Construct for Reliable Distri

buted Computing,” Operating Systems Review, Vol 17, No 2, April 1983.

STON81]

Stonebraker, M., “Operating System Support for Data Managers”, CACM,
April 1981.

STON84J

Stonebraker, M., “Virtual Memory Transaction Management,” Operating Sys
tem Review, April 1984.

STON85I

Stonebraker, M., et. al., “Problems in Supporting Data Base Transactions in

an Operating System Transaction Manager,” Operating System Review,

-49-

January, 1985.

STON86]

Stonebraker, M., Inclusion of New Types in a Data Base System,” Proc. 1986

IEEE Data Engineering Conference, Los Angeles, ca., Feb. 1986.

TRAI82]

Traiger, I., “Virtual Memory Management for Data Base Systems,” Operating
Systems Review, Vol 16, No 4, October 1982.

WALK83]

Walker, B. et. al., “The LOCUS Distributed Operating System,” Proc. 9th

Symposium on Operating System Principles,” Oct 1983.

-50-

IEEE COMPUTER SOCIETY

IEEE COMPUTER SOCIETY

TECHNICAL COMMITTEE APPLICATION

B4STHUCT1OWS: PLEASE PRINT 114 INK OP TYPE (ORE CHARACTER PER BOX INFORMATIOR WRITTEN OUTSIDE OF BOXES
WILt NOT & RECORDED) BECAUSE OF PACKAGE DELIVERY SERVICES. STREET AOORESSES ARE PRE.
FERRED RATHER THAN. OR IN ADDITION TO. POST OFFICE BOX NUMBERS INTERNATIONAL MEMBERS ARE
REQUESTED TO MAKE BEST USE or AVAILABLE SPACE FOP LONG ADORESSES

~I IUJI 11111 H JI I H1~UiJ I IT~ m U±11
LAST ifi.J~ F~ST NM.w diTIa& ~ETC

I H11 III!! 1111111 I ~±!U LII II 1111
~ANV. IwNERS1TS. AGENCY itME O€PA~EMEl4T ~A& STC1NBt*DS~G9 0 ~DX PAPTb~NT ¶TC

rrnIIll!I!!IIIIIIW!mLLIIIIIIU
CIII STATE lie COOE

I I Ii 111111! III liii liii!!! 11111111 LLU
Orrice pi.Ev~ - ~

ri Itililili II I III! iiiii III ii IIIIIIIIII!Itll Ii
ELECTNDe~ MArE N€T~I ELXCThONic MArE A0O~S5 (M~bD~I

rIIllIl1IIIIIr1rHhlIrn~.~~~J1L1
ITEER NU~WER tOW.onie CEE fliEU&RAFFILiATE NO DES rio

DEFiNITiONS:

TC MEMBER—Actively particIpates in 1C activities, receives newsletters and all TC Comn*jn,catlorm Active

participation means that you do or are wilting to do something far the TC such as review papers, help organize

workshops. conferences. etc
.
participate in Standards development, help with TC operations. etc. Person can be a

member in up to 4 TCs

TC CORRESPONDENT—Does not participate actively in TC activities; receives riewsietTers and other TC con’mIj

nications Person can be a correspondent in up tO 4 more TCs

Technical Interests/Specialties:

TECHNICAL COMMiTTEE CODES IC Codon

MEMSER V COORESPONDENT C

Computational MedicIne (01)

Computer Architecture (02)

Computer Communications (03)

Computer Elements (04)

Computer Graphics (05)

Computer Languages (06)

Computer Packaging (07)

Computers in Education (08)

Computing and the Handicapped (09)

Oata Base Engineering (10)

Design Automation (It)

Distributed Processing (t 2)

Fault-Tolerant Computing (13)

Mass Storage Systems & Technology (14)

Mathematical Foundations ot Computing (15)

Microprocessors & Microcomputers (t6)

M.croprograrnming (17)

Multiple-Valued Logic (18)

Oceanic Engineering & Technology (19)

Ollice Automation (20)

Operating Systems (21)

Optical Processing (22)

Pattern Analysis & Machine Intelligence (23)

Personal Computing (24)

Real Time Systems (25)

Robotics (26)

Security and Privacy (27)

Simulation (28)

Sottware Engineering (29)

Test Technology (30)

VLSI (31)

Computer and Display Ergonomics (32)

Supercomputing Applications (33)

please return this torm to (he following address:

01

02

03

04

05

06

07

08

09

to

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

PLEASE INDICATE YOUR IC ACTIVITY

INTERESTS

5 4 3 2

11111! III! II11JIIIIIII! i~m CHECKONE
STREET AOCieESS iCie ~T ~FCE ~AV YEAR

0 NEW APPLICATION

0 INFORMATION UPDATE

‘ItOH INTEREST NO INTEREST

Other (Specify):

-J

IEEE COMPUTER SOCIETY

1730 Massachusetts Ave NW

Washington DC 20036- t903

We Took lorward TO haeing~li will, us!

CALL FOR PARTICIPATION

IFIP WG8.4 Workshop on

Office Knowledge: Representation, Management and Utilization

17-19 August 1987

University of Toronto

Toronto, Canada

WORKSHOP CHAIRMAN PROGRAM CHAIRMAN ORGANIZING CHAIRMAN

Prof. Dr. Alex A. Verrijn-Stuart Dr. Winfried Lamersdorf Prof. Fred H. Lochovsky
University of Leiden IBM European Networking Center University of Toronto

This workshop is intended as a forum and focus for research in the representation, management and utilization of

knowledge in the office. This research area draws from and extends techniques in the areas of artificial intelligence,
data base management systems, programming languages, and communication systems. The workshop program will

consist of one day of invited presentations from key researchers in the area plus one and one half days of

contributed presentations. Extended abstracts, in English, of 4-8 double-spaced pages (1,000-2,000 words) are

invited. Each submission will be screened for relevance and potential to stimulate discussion. There will be no

formal workshop proceedings. However, accepted submissions will appear as submitted in a special issue of the

WG8.4 newsletter and will be made available to workshop participants.

How to submit

Four copies of double-spaced extended abstracts in English of 1,000-2,000 words (4-8 pages) should be submitted

by 15 April 1987 to the Program Chairman:

Dr. Winfried Lamersdorf

IBM European Networking Center

Tiergartenstrasse 15

Postfach 10 3068

D-6900 Heidelberg
West Germany

Important Dates

Extended abstracts due: 15 April 1987

Notification of acceptance for presentation: 1 June 1987

Workshop: 17-19 August 1987

-52-

CALL FOR PAPERS

13th International Conference

on

Very Large Data Bases

Brighton, England, U.K.

1—4 September 1987

THE CONFERENCE

VLDB Conferences are a forum and focus for identifying and encouraging research, development, and the

novel applications of database management systems and techniques. The Thirteenth VLDB Conference will

bring together researchers and practitioners to exchange ideas and advance the subject. Papers of up to 5000

words in length and of high quality are invited on any aspect of the subject but particularly on the topics listed

below. All submitted papers will be read and carefully evaluated by the Programme Committee.

TOPICS

Major topics of Interest include, but are not limited to:

Data Models

Design Methods and Tools

Distributed Databases

Query Optimization

Concurrency Control

Database Machines

Performance Issues

Security

Knowledge Base Representation

Multi-media Databases

Implementation Techniques

Object Oriented Models

The role of toaics

TO SUBMIT YOUR PAPERS

Five copies of double-spaced manuscript in English up
to 5000 words should be submitted by 6 February 1987

to either of the following:

Mr William Kent

Hewlett-Packard

Computer Research Centre

1501 Page Mill Road

Palo Alto CA 94394 USA

Professor P M Stocker

Computer Centre

University of East Anglia
Norwich NR4 7TJ

General Conference Chairman Programme Co-ordinator
Professor Peter J H King Professor G Bracchi
Birkbeck College Politecnico di Milano

University of London Italy
England

Programme Committee
Co-Chairmen

Professor P M Stocker

University of East Anglia, England
Mr William Kent

Hewlett Packard

U.S.A.

-53-

Organi,ing Committee Chairmen
Dr Keith G Jeffery
Science & Engineering Research Council, England
North America Organising Co-ordinator
Professor Stuart E Madnick
Massachusetts Institute of Technology
U.S.A.

1987
~thVU~

BRiGIf~~~
~WND

~PTEM~ 1-4

/

IMPORTANT DATES

PAPERS DUE: 6 FEBRUARY, 1987

NOTIFICATION OF ACCEPTANCE: 27 APRIL, 1987

CAMERA READY COPIES DUE: 29 MAY, 1987

Preliminary Call for Papers

6th International Conference on

APPROACH Entity-Relationship Approach

November 9-11, 1987 New York

Conference Chairmen: Martin Model!, Merrill Lynch
Stefano Spaccapietra, Universit~ de Bourgogne

Program Committee Chairman: Salvatore T. March, University of Minnesota

Steering Committee Chairman: Peter P. Chen, LSU and MIT

The Entity-Relationship Approach is the basis for many Database Design and System
Development Methodologies. ER Conferences bring together practitioners and researchers to

share new developments and issues related to the use of the ER Approach. The conference

consists of presented papers addressing the theory and practice of the ER Approach as well as

invited papers, tutorials, panel sessions, and demonstrations.

Major Themes:
Database Development and Management

* database design
* data models and modelling

* database management systems
* database dynamics

languages for data description and manipulation
* database constraints

Application Systems
* CAD/CAM and engineering databases * multi-media databases
*

knowledge-based systems user interfaces
*

object-oriented systems
* business systems

Managing Organizational Information Resources

data planning
* data dictionaries

* information architectures * information centers
•

translating data plans into application systems
* end user computing

Submission of Papers:
Papers are solicited on the above topics or on any other topic relevant to the ER Approach. Five

copies of completed papers must be received by the program committee chairman by April 15, 1987.

Papers must be written in English and may not exceed 25 double spaced pages. Selected papers will be

published in Data and Knowledge Engineering (North-Holland).

Important Dates:

Papers due: April 15,1987
Notification of acceptance: June 20, 1987

Camera ready copies due: August 15, 1987

All requests and submissions related to the program should be sent to the program committee chairman:

Professor Salvatore T. March

Department of Management Sciences

University of Minnesota Tel: (612) 624-2017

271 19th Avenue South bitnet: march@umnacvx

Minneapolis, MN 55455 USA csnet: march@umn-cs

THE COMPUTER SOCIETY I Non-profit Org
~,OFTHEIEEE I u.S.Postage1730 Massachusetts Avenue. N W

PAID
Washington, DC 20036-1903

Silver Spring, MD I

Permit 1398

Prof PhiliP A,BeTflSteU~

Wang j~5titUte
72 hsr~ Road

01879
Tyn~SbOP0’ ~iA

USA

	40979_DataEngineering_Sept1986_Vol 9_No3.pdf

