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Guest editors’ introduction to HPTS papers in Database Engineering

The Workshop on High Performance Transaction Systems, sponsored by IEEE and

ACM, was held at Asilomar, California on September 23rd to 25th, 1985. The

Workshop brought together about 70 developers and users of high volume

transaction processing systems to exchange views, discuss experiences, and

present methods for constructing large transaction processing systems. The

presentations ranged from reports on the use and management of very large,
on-line systems to methods for improving performance in specific areas of high

performance transaction systems.

Two broad themes emerged as basic issues for high volume transaction systems:

the methods used to divide the work when one CPU cannot handle the entire

workload, and the management of interference between concurrent transactions in

large systems.

When one CPU cannot service the workload, three alternative architectures are

available: shared memory multi-processors; shared disk multi-processors; and

fully partitioned multi-processor systems. Shared memory systems must

communicate to synchronize processor caches. Shared disk systems communicate to

synchronize disk buffers in private memories and to serialize transaction access

to the shared data. Partitioned systems must communicate to transfer

transaction execution to the partitions holding the needed data and to transfer

results. The tradeoffs between intense, low level communication arid less

intense, high level communication were much discussed at the Workshop.

Another theme of the Workshop centered on the problems introduced by
concurrent execution of (large) batch transactions and (small) on-line

transactions, ~nd the problems caused by frequent updates of summary data (i.e.,
“hot spots”). Both problems seem to require specialized techniques to allow

concurrent access to data without compromising data integrity. Among the

techniques discussed were multi-version data bases, breaking up batch

transactions, and fuzzy values for “hot spots”.

In this issue of Database Engineering, we present four articles from the

Workshop on High Performance Transaction Systems. We concentrate on the

architectural theme of the Workshop, with articles representing each of the

three partitionings of the workload. Mike Stonebraker discusses the tradeoffs

among the architectures and advocates the partitioned data architecture. Kurt

Shoens discusses shared disk systems with an emphasis on methods used to insure

correct synchronization of main memory buffer pools and transaction execution.

Phil Bernstein describes the approach taken to synchronize caches in the shared

memory Sequoia system. Finally, Livriey, Khoshafian, and Boral present a study
of data placement and arm scheduling for large systems with many disks. Their

simulation results confirm the folklore about spreading data over many arms to

even out the request load.

The Workshop on High Performance Transaction Systems, by bringing together

expert designers and practitioners, provided a forum for evaluation and

discussion of the problems and promises in a increasingly important computing
domain. The articles reproduced in this issue -of Database Engineering will



allow readers to better understand some of the basic issues and to follow the

debates over the “best” approach to high performance transaction processing.

Irving L. Traiger
Bruce G. Lindsay

(Guest Editors)
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Letter from the Editor-in-Chief

Following the four papers from the Workshop on High Performance Tran

saction Systems, we have added a fifth, by Madnick, on the INFOPLEX project
at MIT. The paper is related to the central theme of this issue; it summarizes

an ongoing research effort on fundamental architectural changes to support
large-scale information management.

The upcoming June issue of Database Engineering is being guest-edited by
Sham Navathe. It will consist of summaries of the four panels at the recent

Database Directions IV: Information Resource Management Workshop (spon
sored by the National Bureau of Standards).

I have received a number of letters about missing or delayed copies of DBE,
and about difficulties people have had in getting onto our mailing list. My apo

logies for the problems, some of which are due to a data entry backlog at the

IEEE Computer Society headquarters in Washington.

• If you think that an earlier request to join the TC on DBE has not been

processed, or you are not a member of the TC, ask the Computer Society
for an application form and (re)apply. Their address is: IEEE Computer
Society, 1730 Massachusetts Avenue NW, Washington, D.C. 20036-1903. I

have spare TC application forms as well (at the address on the inside front

cover). Membership is free.

• If you have recently changed your address and have stopped receiving
issues, be sure to notify the IEEE Computer Society (at the above address)
as well as the IEEE. It probably wouldn’t hurt to mention that you’re in the

TC on Database Engineering, and want to continue to receive DBE.

• If you have missed any of the 1985 issues of DBE, or would like to have

them collected together in a convenient format, the IEEE Computer
Society will shortly be publishing them as a softbound volume. This will

be Volume 4 of the collected issues of DBE. Volumes 1-3 (1982-84) are

also available, as far as I know.

• If all else fails, I have a few spare copies of specific back issues and can

send these out until my supplies are gone.

Finally, if you know of anyone who has had subscription problems, please pass

along the above suggestions.

David Reiner, Editor-in-Chief

Database Engineering
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The Case for Shared Nothing

l’Jichael Stoneb raker

University of California

Berkeley, Ca.

ABSTRACT

There are three dominent themes in building high transaction rate multiprocessor
systems, namely shared memory (e.g. Synapse, IBM/AP configurations), shared disk (e.g.
VAX/cluster, any multi-ported disk system), and shared nothing (e.g. Tandem, Tolerant).
This paper argues that shared nothing is the preferred approach.

1. INTRODUCTION

The three most commonly mentioned architectures for multiprocessor high transaction

rate systems are:

shared memory (SM), i.e. multiple processors shared a common central memory

shared disk (SD), i.e. multiple processors each with private memory share a

common collection of disks

shared nothing (SN), i.e. neither memory nor peripheral storage is shared among processors

There are several commerica~ examples of each architecture. In this paper we argue that

SN is the most cost effective alternative. In Section 2 we present a “back of the envelope”
comparison of the alternatives. Then in Sections 3 through 5 we discuss in more detail

some of the points of comparison.

2. A SIMPLE ANALYSIS

In Table 1 we compare each of the architectures on a collection of 12 points. Each

architecture is rated 1, 2 or 3 to indicate whether it is the best, 2nd best or 3rd best on each

point. For certain points of comparison, there are apparent ties. In such situations we give
each system the lower rating. Most of the ratings are self-evident, and we discuss only a

few of our values.

The first two rows indicate the difficulty of transaction management in each

environment. SM requires few modifications to current algorithms and is the easiest

environment to support. Hence it receives a “1” for crash recovery. The “2” for concurrency
control results from the necessity of dealing with the lock table as a hot spot. SN is more

difficult because it requires a distributed deadlock detector and a multi-phase commit

protocol. SD presents the most complex transaction management problems because of the

necessity of coordinating multiple copies of the same lock table and synchronizing writes to

a common log or logs.

This research was sponsored by the U. .S. Air Force Office of Scientific Research Grant 83-0254 and the
Naval Electronics Systems Command Contract N39-82-C.0235

—4—



System Feature shared nothing shared memory shared disk

difficulty of

concurrency 2 2 3

control

difficulty of

crash 2 1 3

recovery

difficulty of

data base 3 2 2

design

difficulty of 3 1 2

load balancing

difficulty of 1 3 2

high availability

number of 3 1 2

messages

bandwidth 1 3 2

required

ability to

scale to large 1 3 2

number of machines

ability to have

large distances 1 3 2

between machines

susceptibility to 1 3 2

critical sections

number of 3 1 3

system images

susceptibility to 3 3 3

hot spots

A Comparison of the Architectures

Table I

The third and fourth points are closely related. Data base design is difficult in current
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one-machine environments, and becomes much harder in an SN system where the location

of all objects must be specified. The other environments do not add extra complexity to the

one-machine situation. Balancing the load of an SN system is complex, since processes

andior data must be physically moved. It is obviously much easier in the other

environments. The next five points are fairly straightforward, and we skip forward to

critical sections. They have been shown to be a thorny problem in one-machine systems

IIBLAS79], and an SN system does not make the problem any worse. On the other hand, an

SM system will be considerably more susceptible to this problem, while an SD system will

be in-between. SN and SD systems have one system image per CPU, and system
administration will be more complex than an SM system which has only a single system

image. Lastly, all architectures are susceptible to hot spots.

Several conclusions are evident from Table 1. First an SM system does not scale to a

large number of processors. In my opinion this is a fundamental flaw that makes it less

interesting than the other architectures. Second, an SD system excells at nothing, i.e. there

are no “l”s in its column. Lastly, one should note the obvious marketplace interest in

distributed data base systems. Under the assumption that every vendor will have to

implement one, there is little or no extra code required for an SN system. In order to

justify implementing something else (e.g. SD) and paying the extra software complexity,
one should be sure that SN has some insurrountable flaws. In the next section we discuss

the issues of data base design, load balancing and number of messages, which are points of

comparison where SN was the poorest choice. In each case we argue that the problems are

unlikely to be very significant. Then we discuss hot spots in Section 4, and argue that these

are easier to get rid of than to support effectively. Lastly, we discuss concurrency control,
and suggest that scaling to larger data bases is unlikely to change the ratings in Table 1.

Hence, we will conclude that SN offers the most viable and cost effective architecture.

3. Problems with Shared Nothing

It appears that most data base users find data base design to require substantial

wizardry. Moreover, tuning a data base is a subject that data base vendors have clearly
demonstrated proficiency relative even to the wisest of their customers. To ordinary
mortals tuning is a “black art”.

Consequently, I expect many automatic tuning aids will be constructed for most data

managers, if for no other reason than to lower the technical support burden. There is no

evidence that I am aware of that such tuning aids will be unsuccessful. Similarly, there is

no evidence that automatic data base design aids will fail in an SN environment where the

data base is partitioned over a collection of systems. Furthermore, balancing the load of an

SN data base by repartitioning is a natural extension of such a design aid. Moreover,

applications which have a stable or slowly varying access pattern will respond successfully
to such treatment and will be termed tunable. Only data bases with periodic or

unpredictable access patterns will be untunable, and I expect such data bases to be

relatively uncommon. Hence, load balancing and data base design should not be serious

problems in typical environments.

Consider the number of messages which an SN system must incur in a typical high
transaction processing environment. The example consists of a data base with N objects

subject to a load consisting entirely of transactions containing exactly k commands, each

affecting only one record. (For TP1 the value of k is 4). For any partitioning of the data

base, these k commands remain single-site commands. Suppose that there exists a

partitioning of the data base into non-overlapping collections of objects such that all

transactions are locally sufficient WONG83]. Such a data base problem will be termed

delightful. Most data base applications are nearly delightful. For example, the TP1 in

ANON84] has 85% delightful transactions.
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Assume further that the cost of processing a single record command is X and the cost

of sending and receiving a round-trip message is Y. For convenience, measure both in host

CPU instructions, and call T X/Y the technology ratio of a given environment.

Measured values of T for high speed networks and relational data bases have varied

between I and 10 and reflect the relative efficiency of data base and networking software in

the various situations. An environment where each is tuned well should result in a T of

about 3. We expect the long term value of T to stay considerably greater than 1, because it

appears much easier to offload network code than data base code.

As long as T >> 1, network costs will not be the dominent system cost in delightful
data bases; rather it will be processing time on the local systems. Moreover, data bases that

are nearly delightful will require a modest number of messages. (With a reasonable

amount of optimization, it is conceivable to approach 2 messages per transaction for locally
sufficient transactions.) Hence, the number of messages should not be a problem for the

common case, that of nearly delightful data bases.

4. Hot Spots

Hot spots are a problem in all architectures, and there are at least three techniques to

dealing with them.

1) get rid of them

2) divide a hot spot record into N subrecords ANON84]

3) use some implementation of a reservation system REUT8I]

It has never been clear to me why the branch balance must be a stored field in TP1. In the

absence of incredible retrieval volume to this item, it would be better to calculate it on

demand. The best way to eliminate problems with hot spots is to eliminate hot spots.

Unfortunately, there are many hot spots which cannot be deleted in this fashion.

These include critical section code in the buffer manager and in the lock manager, and

“convoys” BLAS79] results from serial hot spots in DBMS execution code. In addition, the

head of the log and any audit trail kept by an application are guaranteed to be hot spots in

the data base. In such cases the following tactic can usually be applied.

Decompose the object in question into N subobjects. For example, the log can be

replicated N times, and each transaction can write to one of them. Similarly, the buffer

pool and lock table can be decomposed into N subtables. Lastly, the branch balance in TP1

can be decomposed into N balances which sum to the correct total balance. In most cases, a

transaction requires only one of the N subobjects, and the conflict rate on each subobject is

reduced by a factor of N. Of course, the division of subobjects can be hidden from a data

base user and applied automatically by the data base designer, whose existence we have

speculated in Section 3.

Lastly, when updates are restricted to increment and decrement of a hot spot field, it

is possible to use field calls (e.g. IMS Fast Path) or a reservation system REUT82]. It is

clear that this tactic can be applied equally well to any of the proposed architectures;

however, it is not clear that it ever dominates the “divide into subrecords” tactic.

Consequently, hot spots should be solvable using conventional techniques.

5. Will Concurrency Control Become a Bigger Problem?

Some researchers REUT85] argue that larger transaction systems will generate a

thorny concurrency control problem which may affect the choice of a transaction processing
architecture. This section argues that such an event will probably be uncommon.

Consider the observation of GRAY81] which asserts that deadlocks are rare in

current systems and that the probability of a transaction waiting for a lock request is rare

(e.g. .001 or .0001). The conclusion to be drawn from such studies is that concurrency
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control is not a serious issue in well designed systems today. Consider the effect of scaling
such a data base application by a factor of 10. Hence, the CPU is replaced by one with 10

times the throughput. Similarly 10 times the number of drives are used to accelerate the

I/O system a comparable amount. Suppose 10 times as many terminal operators submit 10

times as many transactions to a data base with 10 times the number of lockable objects. It

is evident from queuing theory that the average response time would remain the same

(although variance increases) and the probability of waiting will remain the same. The

analyis in {GRAY81] can be rerun to produce the identical results. Hence, a factor of 10

scaling does not affect concurrency control issues, and today’s solutions will continue to act

as in current systems.

Only two considerations cloud this optimistic forcast. First, the conclusion is

predicated on the assumption that the number of granules increases by a factor of 10. If the

size of a granule remains a constant, then the size of the data base must be linear in

transaction volume. We will term such a data base problem scalable. Consider the

transactions against a credit card data base. The number of transactions per credit card per

month is presumably varying slowly. Hence, only a dramatic increase in the number of

cards outstanding (and hence data base size) could produce a large increase in transaction

rates. This data base problem appears to be scalable. In addition, suppose a fixed number

of travel agent transactions are generated per seat sold on a given airline. Consequently,
transaction volume is linear in seat volume (assuming that planes are a constant size) and

another scalable data base results.

One has to think hard to discover nonscalable data bases. The one which comes to

mind is TP1 in an environment where retail stores can debit one’s bank account directly as

a result of a purchase ANON84]. Here, the number of transactions per account per month

would be expected to rise dramatically resulting in a nonscalable data base. However,

increasing the size of a TPI problem will result in no conflicts for the account record (a

client can only be initiating one retail transaction at a time) and no conflict for the teller

record (a clerk can only process one customer at a time). Hence, the only situation with

increased conflict would be on summary data (e.g. the branch balance). Concurrency
control on such ‘hot spots” should be dealt with using the techniques of the previous
section.

The following conclusions can be drawn. In scalable data bases (the normal case)

concurrency control will remain a problem exactly as difficult as today. In nonscalable data

bases it appears that hot spots are the main concurrency control obstacle to overcome.

Hence, larger transaction systems in the best case present no additional difficulties and in

the worst case aggravate the hot spot problem.

6. CONCLUSIONS

In scalable, tunable, nearly delightful data bases, SN systems will have no apparent

disadvantages compared to the other alternatives. Hence the SN architecture adequately
addresses the common case. Since SN is a nearly free side effect of a distributed data base

system, it remains for the advocates of other architectures to demonstrate that there are

enough non-tunable or non-scalable or non delightful problems to justify the extra

implementation complexity of their solutions.
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Data Sharing vs. Partitioning

for Capacity and Availability

Kurt Shoens

IBM San Jose Research Laboratory
K55/281

5600 Cottle Road

San Jose, CA 95193

Abstract

This paper describes a transaction system architecture called data sharing and compares it

with the parririoned system. Data sharing is shown to have several operational advantages over

partitioned systems.
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Introduction

As enterprises expand their use of computers, they demand increasing transaction process

ing capacity. Often, the transactions must (at least conceptually) run against a large, centralized

database. In many cases, the rate o( growth has exceeded the corresponding rate of growth in

computer instruction execution rates and in disk I/O rates. While the disk throughput limitations

can be solved by spreading the database over many independent disk volumes, more complex

means are needed to cope with instruction rate limitations.

Another important trend in transaction processing systems has been availability. As organ

izations build larger single system databases and become dependent on them, the cost of service

outages increases.

Several approaches have been tried to increase transaction processing capacity and avail

ability. Chief among these are:

1. Get faster computers

2. Partition the data among several computers

3. Share the data among several computers

In order to get a faster computer, one can buy a larger, more expensive model, if one is

available. Unfortunately, the instruction rates of large mainframes have not kept pace with

transaction processing demands. Promising new technologies that would provide a quantum leap

in single machine speeds have not yet proved to be practical. Computer manufacturers have re

sponded by building tightly-coupled multiprocessors, where two or more processors share access

to primary memory. Due to memory contention and caching problems, there seems to be a (rel

atively small) limit on the number of processors that can be effectively connected in a tightly-

coupled system.

Having a faster computer does not solve the availability problem alone. Keeping a spare

computer around in case the main one breaks is fairly effective, but expensive. Often, the spare

computer can be used to run low priority work when it is not needed to substitute for the trans

action processing computer.

To date, the most popular method of applying several computers to the management of a

single database has been to split the data into two or more partitions, each of which is managed by

a single computer. Examples of this approach include the Tandem NonStop system Bartlett 781,

the IMS/VS Multiple Systems Coupling Feature McGee 77], and the Stratus system Kim 84].

When a transaction enters some system, it is sent to the system that “owns” the data to be refer

enced. If the data referenced by a transaction spans partitions, most systems automatically gen

erate a strategy to access the remote data.
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A partitioned complex has the advantage that when a single system fails, the rest of the

systems can continue to operate. In the simple case, requests for data owned by the failed system

must wait for correction of the failure. Improved availability can be achieved by providing mul

tiple paths to the data. Then, a surviving system can assume responsibility for data owned by a

failed system and make it available quickly.

Recently, the approach of using several systems with direct access to the disks holding the

database has been tried. We will show in this paper how this architecture, called data sharing, is

an attractive alternative to partitioning. In a data sharing system, a transaction can be executed

on any of the systems in the complex and reference any part of the data base. Due to the uniform

accessibility of data, the failure of a single system does not preclude access by other systems.

Data sharing

Figure 1 on page 3 shows a data sharing architecture. Transactions are entered at terminals

connected to front end processors and queued for processing on one of the data base processors.

Each of the data base processors is a large, standard mainframe and runs a standard operating

system and somewhat modified data base system. Transactions execute to completion on a single

data base processor (barring failures) and return their results to the originating terminal.

Critical parts of a data sharing system can be duplexed to avoid single points of failure. For

example, one would need a redundant multi-way connection mechanism and redundant paths to the

disks. Otherwise, failures of these components could stop the entire complex.

The data sharing approach is used by the Synapse N+1 system Kim 84], the DEC VAX

Cluster system, and the IMS/VS Data Sharing Feature Strickland 821. We are prototyping com

ponents of an experimental data sharing system in the Amoeba Project Shoens 85] at the IBM

San Jose Research Laboratory.

New approaches to transaction management are needed for data sharing systems. These

aspects are discussed in the next section.
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Database Database

Processor Processor

Multi-way
disk connection

Figure 1. Data sharing architecture

Transaction management

The data sharing architecture requires new approaches to concurrency control, message

queue management, and scheduling. This section highlights the differences.

Concurrency Control

Unlike single processor data base systems, a data sharing system has no instruction-

accessible memory to hold the data structures needed for locking or other concurrency control

schemes. Instead, arbitration must be performed through mcssagcs. Because message passing

implies a large overhead (in particular, the requirement to suspend the requestor until a response

is returned) a technique based on locality of reference is used. As succeeding transactions on a

database processor reference similar parts of the database, the processor acquires temporary

rights to the locks that allow it to acquire and release the locks quickly. Other approaches used

combine locking techniques with optimistic concurrency control Kung 811 to reduce the number
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of synchronized messages (where the sender synchronously waits for a reply) needed to process a

transaction.

Message queue manager

Each request to run a transaction entered on a terminal is encoded as a message by a front-

end processor and put on the queue for the application program that supports the transaction.

We currently envision ownership of a transaction t~ype by a single database processor. When a

copy of the application is ready to run the transaction, it removes the message from its input

queue, executes it, and puts a result on the output queue for the terminal as an atomic action.

The message queue manager is responsible for routing messages to the right destinations and

for recovering messages that are lost due to failures such as database processor crashes. Also,

when a database processor crashes, the transaction queues that it owns need to be moved to vari

ous surviving database processors.

Scheduling

With several equivalent processors available to run transactions, the scheduling component

must decide how to split up the workload effectively. Due to buffer management considerations

and the design of the concurrency control component, there is an advantage to executing

“similar” transactions on the same system. The scheduler’s role is to find similar sets of trans

actions to run together, while keeping the database processors more or less evenly loaded.

Comparison with partitioned systems

Growth aspects

The main advantage that a data sharing system enjoys over a partitioned approach is that

the system structure does not change when database processors or disks are added or fail. In

contrast, adding resources to a partitioned system may require careful analysis. For example, if a

new processor is added, someone must decide what part of the database to take away from exist

ing processors and give to the new processor. In general, this may mean moving data among all

elements of the partitioned system and require much down time. A sophisticated partitioned sys

tem will work with any partitioning, but the performance will suffer unless care is exercised.

Similar care is needed when extra disks are added.

With a data sharing system, the disks and database processors can be considered separately.

If more computing power is needed, then additional database processors can be added without

changing the arrangement of data on the disks. If more disk space or throughput is needed, extra
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disks can be added and the database can be rearranged on them, without modifying applications

or determining which of the new disk drives should be owned by which processors.

Partitioned systems require careful analysis to split the database effectively plus physical

movement of the data between disks. With a good split, most transactions can run completely on

a single database processor. In addition, a good split roughly balances the total workload among

the database processors. Transactions that are “badly behaved” with respect to the database split

will require additional inter-processor communication to run. An effective data partitioning will

invariably be a compromise that runs the current mix of transactions reasonably well. A new

application may access a significantly different cross section of the database and require that the

split be reexamined. Finally, the workload characteristics may vary during the day as the activ

ities of the enterprise change. A partitioned system does not have the flexibility to adapt to

changes on a hourly basis.

In contrast, a data sharing system splits up the workload among its set of processors.

Changing the workload split simply requires that new work be scheduled on a different processor

and can be done while the system is running. Since transactions run to completion on a single da

tabase processor, “badly behaved” applications that reference data scattered over the database

can be executed efficiently. Bringing a new application online may cause the system to distribute

the workload in a different way, but does not require data movement or reorganization. The

flexibility in assigning work to database processors also allows the system to adapt to changes in

the workload characteristics that occur during the day.

The symmetry of a data sharing system allows the enterprise to allocate some of the data

base processors to other tasks during lulls in transaction activity. A partitioned system cannot

usually tolerate reallocation of its processors.

Recovery

Recovery and availability are simplified in a data sharing system. After a database

processor failure, the structure of the system remains unchanged. Any surviving database

processor can begin recovery immediately after a failure. When recovery is complete, the sched

uler can redistribute the workload among the surviving systems and the complex can resume

normal operation. Subsequent failures can be handled in a similar way. After each failure, the

additional work given to the surviving processors is a fraction of the workload that the original

processor was responsible for.

In contrast, a partitioned approach has less flexibility in its handling of processor crashes.

Due to limited accessibility to the disks of a failed processor, only certain processors can assume

responsibility for recovering from a failure and executing new work originally destined for the

failed system. When a system fails, its work is transferred to one of the surviving systems. The
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system that takes over this work may now be overloaded, since it must process its own work as

well as the new work it has been assigned. Subsequent failures may render parts of the database

inaccessible.

Conclusions

Data sharing systems provide an alternative to partitioned approaches. Data sharing sys

tems offer significant advantages in the areas of capacity growth and recovery. To realize these

benefits, new approaches are needed in the areas of concurrency control, scheduling, and recov

ery.
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Synchronizing Shared Memory in the

SEQUOIA Fault—Tolerant Multiprocessor

Philip A. Bernstein *

Sequoia Systems

Boston Park West

Marlborough, MA 01752

1. introduction

The Sequoia computer uses a tightly—coupled multiprocessor architec

ture, combined with a hardware approach to fault detection and isola

tion. The computer is unique in its ability to expand to very large

configurations — up to 48 NIIPS of processing, 96 I/O channels, and

256 MB of main memory. The machine is designed to meet the reliabil

ity, modular expandability, and high performance requirements of tran

saction processing. This paper gives an overview of how the hardware

architecture and operating system work together to provide these bene

fits. Other computer architectures for transaction processing are

described in 1,2,5].

2. Hardware Overview

A Sequoia computer consists of processor elements (PE’s), memory ele—

rnents (ME’s) and I/o elements (bE’s) connected by a system bus (see

fig. 1).

Each PE contains dual 10MHz MC68010 microprocessors, operating in

lock—step with comparators that test for identical operation on each

clock cycle. Each PE also has 1024 128—byte blocks of cache memory
and a memory management unit that maps 24—bit virtual addresses into

32—bit physical addresses.

The cache is non—write—through, meaning that updates written to cache

by the microprocessor are not iimnediatêly written to main memory

(ME’s). Instead, the operating system (Os) must explicitly ask the PE

to flush the contents of its dirty (i.e., updated) data blocks to ME

memory. The OS may choose to flush the cache to refresh the main

memory copy of data recently updated in cache, or to make room for new

data when the cache overflows. Special—purpose PE hardware flushes

all dirty cache blocks in one instruction.

* Author’s current address: Prof. philip A. Bernstein,

~ng Institute of Graduate Studies, School of Information

~chnology, Tyng Road, Tyngsboro, MA~ 01879.
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Figure 1. Sequoia Hardware Architecture

Each ME contains 2 MB of RAM and 128 test—and—set locks, which the OS

uses to ensure mutually exclusive access to shared memory. The opera

tion test—and—set(x, y) performs the following sequence atomically:
(1) if x = 0 (i.e., the lock is not set), then set the lock by stor

ing into X the value Y (Y > 0); and (2) return the number stored in X

before the test—and—set was executed.

Each IOE has two sections (see fig. 2): a bus adapter (BA), which con

nects to a memory bus segment; and a multibus adapter (MA), which con

nects to an IEEE—standard 796 bus (the Multibus*) functioning as the

I/O bus. Each BA contains four 4096—byte buffers, and DMA logic for

passing information between its associated MA and all of the ME’s.

Each MA contains dual self—checking 10 MHz MC68O1O’s and 512 KB of

RAM, used both for data buffering and program storage. Each Multibus

supports up to 14 i/O controllers for tape, disk, and communications.

The bus consists of two 40—bit 10 MHz buses that operate indepen

dently, for an aggregate throughput of 80 MB/sec. The buses are made

up of three types of segments (see fig. 1): processor bus segments
that hold PE’s; memory bus segments that hold ME’s and bE’s; and sys

tem bus segments that connect processor and memory bus segments. Each

processor segment holds up to 8 PE’ s, and connects to the system bus

through a master interface (MI). Each memory segment also holds up to

8 elements, and connects to the system bus through a slave interface

(SI). The MI arbitrates access to the buses. Both the MI’s and SI’S

are repeaters that electrically isolate each bus segment. Up to 8

processor bus segments and 16 memory bus segments can be connected by

* Multibus is a trademark of Intel Corporation
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system bus segments in a single system. Thus, a system contains up to

64 PE’S and 128 ME’s and bE’s (combined total).

Each type of element and the bus is fully covered by fault—detection

mechanisms: error—detecting codes, comparison of duplicated opera

tions, and protocol monitoring. upon detecting a fault, an element

instantaneously disables all of its outputs to prevent the malfunction

from corrupting other elements. The OS is notified of the fault on

the next attempt to access the faulted element. At this point, the Os

takes over by initiating the fault recovery activity, which is

sketched in Section 4.

3. Operating System Architecture

Sequoia’s operating system is compatible with the various tJNIX* ver

sions 3]. It is based on a proprietary kernel, which is designed to

meet the many special—purpose needs of high performance transaction

processing 4,6].

Sequoia’s kernel provides the user with fault—tolerance at the level

of fail—sate processes and files. As long as the system is configured
with at least two of each element (PE, ME, bE), each process is resi—

lient to any single—point hardware failure. Some performance degrada
tion can result from the failure. However, the larger the configura
tion, the smaller the marginal loss in computing po~r that results

from the failure of any single element.

Given Sequoia’s tightly—coupled architecture, there is only one copy

of the kernel and its assoicated tables in ME memory, and that kernel

copy is executed on demand by any PE. That is, when a process execut

ing on a PE performs a system call, that system call invokes the ker

nel on that same PE. Since the kernel may be executing on more than

* UNIX is a trademark of AT&T.

I
_____

___________

<—— ME/bE bus segment

<—— I/O Element
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one PE at a time, each PE must synchronize its access to shared kernel

data structures.

Each area of memory that can be concurrently accessed by the OS on

aore than one PE is assigned a test—and—set lock. Accesses to that

area are protected by the following protocol:

Get test—and—set lock;

Invalidate non—dirty cache;

Critical section code that

accesses the memory area;

Flush dirty cache;

Release test—and—set lock;

The lock ensures that only one PE accesses the memory area at a time.

The cache invalidation ensures that old values still in cache from the

last access to the memory area are not used; this forces the cache

hardware to retrieve the most up—to—date values from ME memory. The

cache flush ensures that the updated values of the memory area are

available to the next PE that access it. This protocol is embedded in

a low layer of the kernel that supports the abstraction of shared ker

nel memory.

There are two principal issues that any locking algorithm must attend

to: deadlock and lock contention. Deadlocks are handled by totally
ordering all resources on which locks can be obtained and requiring
that those resources be locked according to that total order.

When a PE requests an unavailable test—and—set lock, it spins in a

loop, periodically testing whether the lock has become available yet.
Lock contention may cause pE’s to lose a significant fraction of their

computing cycles to this ioop. To reduce lock contention, all lock

able resources are randomly partitioned into smaller granularity
units, with a separate lock for each partition. With this strategy,
two PE’s are less likely to contend for locks on a resource, because

they are less likely to require access to the same partition. The

partitioning occurs dynamically, in response to increased contention

for locks. When the kernel detects high contention for a particular
lock, it adds a new partition for the lock.

4. Kernel Support for Fault Recovery

The system nay experience a hardware fault at any time. No matter when

a fault occurs, it must be possible to recover the process that

experienced the fault without losing its process state or losing or

duplicating I/O operations.

Suppose a PE faults at a time when it is not flushing its cache. The

main memory image of the process that it was executing at that time is

the state of that process as of the PE’s last cache flush, and
-
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therefore is consistent. So the kernel (running on another PE) need

only identify the process that was assigned to the faulted PE and

return it to the ready queue.

What if the PE was flushing its cache at the time it faulted? A cache

flush is not atomic relative to PE faults. So a fault during a cache

flush may leave an inconsistent memory image of a process, some memory

containing the image of the process before the flush and some after

it.

To avoid this problem, writable pages are shadowed in main memory.

‘That is, each writable page is stored in two different MEt s. Program

pages and read—only data pages are not shadowed, because they are

never written and therefore cannot be corrupted by a cache flush.

When a PE flushes its cache, it actually flushes twice. First, it

flushes to tne primary copy of its pages and, when that is complete,
it flushes to the backup. If a PE faults during its primary cache

flush, then the backup copy of the pages is consistent as of the pre

vious cache flush. If it faults during its backup cache flush, then

the primary copy is consistent as of the current cache flush. In

either case, the inconsistent copy is refreshed by reading the con

sistent copy. After memory is successfully refreshed in this way, the

process is returned to the ready queue and continues executing later

on another processor.

All writable data pages are shadowed on two ME’s. All code and read—

only data pages in an ME are backed up on disk. So, if an ME fails,

every page that was resident in that ME exists elsewhere in the system
and can be recovered.

To initiate an I/o operation, a PE contructs a description of the

operation in cache and then flushes that description to a queue in

main memory. Suppose a PE fails during a flush that will initiate an

I/O. After the failure, the memory state is recovered either to the

state before the PE’s last cache flush or to the new state. In the

former case, the i/o is not issued, because the flush was undone, and

the process state is rolled back to a state before it issued the I/O.
In the latter case, the I/O is issued, because the flush is completed,
and the process state is just past the point that it issued the 1/0.

Disk failures are handled in a conventional way, using dual—ported
mirrored devices on different bE’s.

5. User Shared Memory

The kernel supports a segmented address space for each process. A

segment can be shared among processes and can be writable. Writable

shared segments pose the same mutual exclusion problem to processes

that shared OS tables pose to the kernel. To help processes synchron
ize access to shared segments, the kernel supports semaphores, imple
mented in shared kernel memory. To request or release a semaphore,
the kernel sets and releases the test—and—set lock that protects
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access to the semaphore.

~fore accessing a segment, a process requests the semaphore that pro

tects access to the segment. After the access is complete, it

releases the semaphore. Since requesting and releasing a semaphore
forces the kernel to set and release locks, the appropriate cache

flushing and invalidation happen “automatically”. Requesting the

semaphore entails setting a lock, which causes nondirty cache to be

invalidated. Releasing the semaphore entails setting and releasing a

lock, which causes a cache flush.

Using shared segments, users can implement other interprocess comrnuni—

cation primitives, such as message passing. The user’s implementation
can be nearly as efficient as the kernel’s would be, since the user

has direct access to the shared memory containing the messages. This

is especially useful in transaction processing, where no one form of

message passing is satisfactory for all applications.

6. Final Remark

We believe that the cost of fault tolerance in sequoia’s architecture

is relatively low. In the absense of failure, the normal mode of

operation, most redundant modules contribute to overall system perfor
mance. All nonfailed pE’s perform useful work, with no dedicated

backups. The dual buses operate independently. And mirrored disks

add to the bandwidth of disk reads. ~mong modules that are duplicated
for fault tolerance, only the shadowed memory does not add to system

capacity. Although there is cost associated with the electronics

needed for fault detection, this function allows the system to

automatically self—diagnose its errors, thereby cutting the cost of

testing in manufacturing and in the field.
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1. Introduction

With current technological trends, fast transaction processing requires
efficient solutions to the I/O bottleneck. Presently, DBMS’s and transaction pro

cessing systems avoid the I/O bottleneck by utilizing only a small portion of the

available I/O bandwidth. We believe there are five alternative approaches to

solving this problem, some of which are orthogonal:

(1) Main memory resident databases

(2) Alternative, “performance-friendly” mass storage devices

(3) Buffering techniques

(4) Clustering techniques

(5) Utilization of parallelism in a multiple disk I/O system

We are currently exploring these solution types, as well as analyzing their

orthogonality and integration. In this paper we study data organizations and

scheduling policies for a multiple disk I/O system. We assume the database

resides on several disks and explore different methods by which the DBMS can

take advantage of the disk multiplicity. We examine two data layout strategies:

(i) clustered, in which each relation is stored on contiguous cylinders on a single

disk, and (ii) declustered, in which each relation is laid out across all the disks in

“bands” (or logical cylinders). Three scheduling algorithms are compared: (i)
FIFO, (ii) Shortest Seek First (SSF), and (iii) our own algorithm designed

specifically for the declustered data organization.

Our results, obtained form a simulation model, show that except for a highly
utilized disk system (greater than 90% utilization) the declustered approach
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outperforms the clustered approach using a variety of metrics. In spite of the

increase in access time due to the declustered data organization, the net impact
of this layout is a decrease in the expected queuing time of a request. The con

current execution of a multi-block request, and the uniformity of service demand

imposed on each device overcome delays introduced by the additional seeks.

Declustering also yielded a much smaller standard deviation for request response

times, and almost a factor of two shorter response time delays for the first block

of a multi-block request.

In comparing our own algorithm to FIFO we found that it performed better

than FIFO (clustered or declustered) for the shorter request sizes (especially the

one track requests). However, the improvements were not as significant as we

had hoped. Finally, the performance of SSF with a declustered storage organiza

tion, suggested to us that we need to pursue some extensions to pure SSF, in

order to make it realistic for general workloads (i.e. avoid starvation).

The remainder of the paper is organized as follows. Multi-disk management

is described in Section 2. The disk scheduling algorithms are described in Section

3. In Section 4 we discuss the simulation model and the workload. In Section 5

we describe the experiments and interpret the results. A summary of the paper

and future work are outlined in Section 6.

2. Multi-Disk Management

There are two main orthogonal issues for multi-disk management:

(1) storage schemes, and

(2) disk scheduling algorithms

For (1) we consider two types of storage structures: (a) clustered, and (b)
declustered. To understand the difference between these two strategies, assume

we have a direct storage representation of the relational model, and each relation

is clustered on one or more attributes. With a clustered scheme, all the secon

dary storage blocks of each relation are stored contiguously on as few disk

modules as possible.

For the declustered case, the data blocks of the relation are distributed in a

round robin fashion across the multiple disks (i.e. block B1 is stored in disk

module D1 mod k
where k is the number of disk drives). With the clustered

scheme a query accessing b contiguous blocks will retrieve the blocks from adja
cent extents of a disk drive. With the declustered scheme the b adjacent blocks

will be retrieved with maximum declustered parallelism (i.e. from all k disk drives

if b > k and from b disk drives otherwise). Contiguous multiblock requests

correspond to range queries on clustered attributes, exact match queries on

category attributes in statistical databases, and partial match queries on multi

attribute clustered files (such as k-d trees). Another type of request we have

analyzed is multi-block non-contiguous requests pertaining to the same relation.

These types of requests arise in processing exact match or range queries for a

relation through an inverted attribute and in semijoin processing.
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For multi-block requests, declustering has a drawback -- it increases seek

time. However, by spreading data out over several disks we can take advantage
of the resource multiplicity of the multi-disk environment.

For (2) it has been argued (see Kim85] for example) that since in conven

tional systems the observed queue lengths are typically short, multi-disk schedul

ing is unimportant. This contention is true but only because disks are purposely
underutilized in most systems (typically less than 50%). That is, by increasing
the system cost and underutilizing the available disk resources the I/O bottleneck

is avoided. However, with current technology trends (processor speeds increasing
at a much higher rate than either increases in disk bandwidth or decreases in disk

access time) we see disk scheduling as becoming increasingly important.

3. Disk Scheduling Algorithms

We analyzed the following disk scheduling algorithms:

(1) FIFO - first in first out

(2) SSF - shortest seek first

(3) FFBF - fastest fitting block first

The simplest scheduling algorithm is FIFO. SSF without any modifications

is not a reasonable scheduling algorithm, since in real workloads uniformity can

not be guaranteed, and hence some requests will starve. However, the perfor
mance of the SSF scheduling strategy provided useful insights while comparing
the clustering and declustering storage schemes. In forthcoming studies we will

be investigating fixed batched SSF strategies, where the request queues are pro

cessed in fixed sized batches and other SSF variants.

Our FFBF scheduling algorithm works as follows: if a multi-block request

consisting of b blocks on b different disk modules is delivered to the I/O subsys
tem, the current status of the queues for each of the disk modules is checked, and

an attempt is made to place the parallel block request in the disk queues in such

a way that the average response time of the requests approximates the response

time for the retrieval of the block whose disk has the longest queue. This stra

tegy implies there will be “holes” in the request queues for some of the disk

modules. We shall identify these as NULL requests. The last slot of each queue

will also be NULL. A NULL request in the beginning of a request queue is disre

garded. Figure 1 contains a brief sketch of the algorithm:

4. The Multi-disk Model and Workload Characterization

Our multi-disk system is modeled by m single-queue, single-server queuing

systems and a dispatcher. There are three classes of parameters: (i) those that

describe the database, (ii) those that describe the hardware, and (iii) those that

describe the workload.
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Request(B11, B1) /* the p block request */

For j in lii, ,i~,) /* j spans the block set indices */

IRSTj] := Position of First NULL in Queue j /* for each queue set FIRST to

the “position” (i.e. the index) of the first NULL request of the queue */
LI := Max(FLRST) /* LI is the position of the NULL slot furthest away from the head

of the queue among the queues ~i1, . . ~,] */
For .j in Ei~, . ,i~,J /* this loop will place the request in the appropriate slots

according to the FFBF strategy */
Position of Last NULL in Queue j < LI /* i is set to the index of the last

NULL request in the current queue, such that the NULL request position

is less or equal to LI. Note that for the queue which yielded the value LI,

i is set to LI. */
Put request B~ in slot i

Figure 1

The FFBF Algorithm

The database is characterized by the number of relations in it (NR) and the

size of each individual relation (the size of relation R, is SR1).

The hardware is characterized by the number of disks (m). There are several

parameters used to describe the workload. The offered load (OL) is the parameter

which determines the number of tracks accessed per second. Requests arrive

according to a Poisson process. There are K different classes of requests and the

probability that a request is of class i is p1. Each class has a different request size

distribution. The number of tracks a request of class i accesses is uniformly dis

tributed on the interval 11,h11. The dispatcher disassembles multi-track requests
into a set of single track requests and routes each of them to the disk on which

the requested track resides. Consecutive requests to contiguous tracks are

chained at the server. We assume that the unit of transfer between main

memory and disk is 1 track, that there is no memory access contention, and that

buffer space is unlimited. The dispatcher has complete information on both the

static layout of data and the current load of each disk drive.

A single request may access (1) a single track, (ii) a sequence of contiguous
tracks of a relation, or (iii) a random subset of the relation tracks. We assume

that C percent of the multi-track requests are for contiguous tracks.

When the data layout is clustered each relation is stored on a contiguous set

of cylinders. In the case of a declustered layout it is assumed that the relation

occupies the same set of cylinders on all disks. The random data organization is

modeled by a uniform distribution of tracks over the m disks and the cylinders
within a disk.

The disk scheduler is located at each server. Depending on the scheduling

policy, a waiting request is initiated upon the completion of a previous data

transfer. Global information, supplied by the dispatcher, regarding the state of
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other queues as well as local information is employed by the scheduler in order to

select the request to be served next. Access delay for a given request is derived

according to the current position of the disk head, and the location of the

requested track. We assume “immediate reads” and thus add a uniformly distri

buted latency delay with a mean equal to a half sector transfer time to the

access delay. When reading contiguous tracks from the same cylinder a “bead

correction” delay is assumed for each head switch within the same cylinder.

The main advantage of using this approach is that we can examine the effect

of varying the frequency of each class type for a fixed offered load or we can keep
the frequencies constant and examine the effect of increasing the load on the sys

tem by varying the value of OL.

A summary of the parameters and their meaning is given in Table 1 below.

Parameter Parameter
Explanation

Class Name

NR Number of relations
Database

SR, Size of relation R,

Hardware m Number of disks

OL Offered Load

K Number of request classes

Workload Probability of a request being from class

11,h1] Interval of request size

C Percent of contiguous-track multi-track requests

Table 1

Summary of Parameters

5. Simulation study

In order to evaluate the different data organizations and scheduling stra

tegies a discrete event simulator of the multi-disk model has been constructed.

The simulator is written in DISS Me1m84] and is composed of a source, mass

storage, and sink modules. We have used the simulator to predict the perfor
mance of different combinations of data organization and scheduling disciplines
under a variety of workloads. As described in Section 4, the load imposed on the

simulated system by its users is controlled via the offered load, OL, parameter
which determines the number of tracks accessed per second. The request arrival

rate of the system is derived from the OL parameter and the attributes of the

different classes (p1, I~, h1).

For our simulation studies we have assumed m = 8 identical RA81 Dec82]
disk modules, where each module possesses its own buffer. In other words there

is no bus contention for RAM accesses. Furthermore we have assumed unlimited

buffer space, and negligible processing overheads. Although both of these
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assumptions are unreasonable, we wanted to understand the performance gains of

multi-disk I/O subsystems in a completely I/O bound environment.

Figures 2-6 summarize the results of a set of simulation runs with three

classes of requests (K = 3). The relative frequencies, and the request size distribu

tions for each class are given in Table 2.

No. Of Tracks Frequency
Class

11—h1 p,

Class 1 1 70%

Class2 2-5 15%

Class3 6-8 15%

Table 2

Workload Parameter Values Used

We assumed that the disks are fully occupied with relation and that each spans

112 tracks. That is, SR1 has the same value for all i. So, in this initial study the

parameter NR is determined by the number of tracks in the disk system and the

single relation size. The relation referenced by each request is picked randomly.
Further, half of the multi-track requests were assumed to access a contiguous set

of tracks (C = 50%). The length of each simulation was 1000 seconds.

In Figure 2 we plot the performance by transaction class for the clustered

and declustered organizations for the SSF scheduling policy. The figure shows

the expected response time of a request as a function of OL. Each curve in the

figure represents a request class. The declustered and clustered layouts are

represented by the solid and the dashed lines respectively. Figure 2 provides a

clear display of the beneficial impact declustering has on the performance of a

multi-disk system. Since the SSF strategy minimizes the access overhead due to

declustering, the concurrent scheduling and uniformity of service demands of the

declustered system cause a significant reduction in response time. For high
values of OL the response time of a multi-track request is longer in the

declustered case than in the clustered case. However, declustering leads to a

reduction of 30% in the expected response time of single track requests. Declus

tering has the desired property of giving short service demands preferable service.

The performance of the multi-disk system, for both the clustered and the

declustered layout, under the three scheduling algorithms is presented in Figures

3, 4, and 5. Each figure shows the expected response time of a different class of

requests for the three scheduling disciplines and the two layouts. For low OL

values all three disciplines have a shorter response time in the declustered case

then in the clustered layout. However, when the OL is larger than 150 tracks per

second the increase in disk utilization due to access time overheads dominates the

FIFO and FFBF performance and leads to an exponential increase in response

time. (This is the reason for the smaller range of OL values in Figures 3-6.) As

anticipated, the FFBF discipline improves the expected response time of single
tracks without penalizing multi-track requests. As the OL increases the difference

between the performance of the FIFO and FFBF increases. From the point of
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Figure 4 : Class 2 — SSF. FIFO. and FFBF
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Figure 6 F~r’st Track Response Times — Class 3
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view of single track requests FFBF is a winner as long as the OL is under 170

tracks/sec. In cases where a pure SSF strategy cannot be implemented, the

underlying principle of the FFBF discipline should be incorporated in order to

improve the response time of short requests.

The expected response times for the first track of a class 3 request are given
in Figure 6. For all disciplines, the response time of the first page in the

declustered case is shorter than in the clustered case. In most cases the difference

between the two layouts is about 50%. Observe that the response time is almost

independent of the OL for the declustered case if SSF is used. For high OL FFBF

causes an increase in the expected response time of first pages due to the prefer
able treatment it gives to small requests. Note that it is often possible to process

tracks as they arrive independently of the order in whIch the requests were sub

mitted. Thus, the combination of a storage scheme and scheduling algorithm
which delivers the first track in a multi-track request “very quickly” is most

desirable.

8. Conclusions

The objective of our work is to study storage organizations and disk schedul

ing for multiple disk systems. Our preliminary results are encouraging. We have

shown that despite the disadvantage of longer access time, response time is actu

ally reduced. There are three important benefits in the declustered organization:

(1) concurrent scheduling, (ii) reduction in the deviation of service demands, and

(iii) faster response time for “first track” in a multi-track request.

The expected time of a request is an increasing function of the coefficient of

variation of of the service demands. Thus a decrease in the deviation of the

demands reduces waiting time.

It is reasonable to expect that a system which issues a single request for

several tracks will be able to process the tracks in any order. Out of order pro

cessing can be used in any set oriented operation. For example, in simple selec

tions using inverted files and in processing aggregate functions. As shown by the

curves in Figure 6 the response time for the “first track” was significantly lower

in the declustered storage scheme than in the clustered one (even for “heavy”
load on the system).

We have also seen that the principle of providing faster service to requests

that place small demands on the system can be applied to the declustered storage
scheme (as shown in the curves for the FFBF disk scheduling algorithm).

We know of two related papers in the literature. Kim Kim85] studied the

effects of declustering by simulating a parallel readout drive using multiple disks.

Salem and Garcia-Molina 5a1e84] looked at almost the same problem. The main

difference is in the unit of layout -- Kim lays the data out on the multiple disks

by bytes whereas Salem and Garcia-Molina do it by sectors. Both papers show

an improvement in response time for large block transfers. Using a byte parallel
data layout scheme (as in Kim85]) to obtain the parallelism entails keeping the
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disks synchronized. Sectors seem more appropriate. However, it has been argued

quite convincingly in the literature (see Smit84] for an example) that track

transfers make optimal use of the disks. Clearly, the majority of applications will

exhibit a variety of access patterns. Thus, optimizing the storage system for a

particular type of access (large amounts of data in both papers) does not appear

to be wise. As we have shown, declustering is a viable approach even when there

are small amounts of data to be accessed.

Our conclusions are rather tentative at the moment. Further experimenta
tion with storage schemes and scheduling algorithms is required. We already ran

a variety of tests for the random storage organization and will shortly be looking
at a batched version of the SSF scheduling algorithm. We will also be looking at

the effect of varying the types of requests for a fixed OL value. More long term

work involves a more realistic model involving the CPU.
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INFOPLEX:
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1. Summary

INFOPLEX is an on-going research effort pursuing technologies for large-scale information

management for the 1990’s. The goal is to achieve orders of magnitude improvement in speed
performance, availability and cost-effectiveness for computers used in information management

through fundamental architectural changes. This document provides an introduction to the

approaches of the INFOPLEX research project, as well as a summary of the recent research

results.

2. Motivation

Due to their enormous storage capacity and processing speed, computers have become a

dominating tool for managing information in an information society. The notion of information
utility was proposed in HM77, Madnick75b, Madnick77] which described a community in which

personal computers and large scale computers are connected to a complex of information nodes

that provides information services to the community (Figure 1). This view of the future is

becoming increasingly plausible, particularly in light of the revolution of the computer industry
in the recent past.

To provide information utility, large shared databases are inevitable for a variety of

economic and technical reasons ~Madnick79]. A computer serving as an information node must

satisfy the requirements of high performance, high capacity and high reliability. In Madnick79]
it was envisioned that information nodes in 1990’s would be required to have the capability of

processing tens or even hundreds of thousands of requests per second (versus around a thousand

requests per second on the largest computers today Scrutchin85]), handling in excess of one hun

dred billion bytes of on-line structured data, and having the appearance of being operational
continuously round the clock.

It has been argued that it would become increasingly costly to improve the speed of the

conventional single-processor computer system. One avenue, th&refore, to realize the informa

tion processing requirements of the 1990’s is to seek for changes in computer architecture.

Research work in this direction has been categorized as adopting one of the following four

approaches HM77]: (1) new instructions through microprogramming, (2) intelligent controllers,
(3) dedicated minicomputers for database operations (“backend computers”), and (4) specialized
database computers. In the recent past, commercial database machines, such as Britton Lee’s

IDM-500 and Teradata, have begun to appear.

3. The INFOPLEX Approach

INFOPLEX is a computer system with special hardware and software architecture dedi

cated to large-scale information management. The hardware architecture being pursued is a

structured multi-processor complex, comprising of up to thousands of micro-processors. The

software architecture of the system emphasizes functional decomposition and intelligent syn

chronization and coordination algorithms to achieve the highest degree of parallelism and

robustness.
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3.1. The Architecture of INFOPLEX

The conceptual organization of the INFOPLEX architecture is shown in Figure 2. The

architecture design goal of INFOPLEX is to offer large processing capacity economically, reli

ably and modularly. The trend in hardware technology motivates the use of a large number of

microprocessors to take advantage of the cost-effectiveness of the general-purpose microproces
sors. In INFOPLEX, these processors are connected via a two-level bus hierarchy. The bus

architecture is chosen for its simplicity. However, to alleviate the limitation on the number of

processors that a single bus can handle, multiple single-bus processor clusters are connected

together via a second-level bus, the global bus. With such a bus hierarchy and a special high-

throughput bus protocol, this architecture is expected to be able to connect a large number of

processors together to achieve the required processing capacity.

Central to the coordination of INFOPLEX is the notion of distributed control. To attain

high performance and high availability, one of the principles followed in the design of

INFOPLEX is to have activities of the system coordinated through distributed control algo
rithms. Distributed control algorithms allow components of the system to perform relatively

independently of each other by executing predefined protocols without relying on a central coor

dinator. The use of a central coordinator is often the source of performance and reliability
bottleneck problems in a system. Distributed control algorithms are needed to eliminate such a

bottleneck. This principle for design is manifested in both of the two major components in

INFOPLEX: the functional hierarchy and the storage hierarchy.

INFOPLEX provides a very large virtual storage that exploits reference locality, is

dynamically managed, and does away with centralized memory mangement control. The storage

devices are organized into a storage hierarchy. The higher levels of the storage hierarchy utilizes

fast but more expensive storage devices, while the lower levels slower but less expensive devices.

The objective is to employ intelligent memory management algorithms for migrating data

between levels of the storage hierarchy, achieving the goal that a very large percentage of the

data referenced can be found in the higher levels of the storage hierarchy. To perform memory

management functions such as memory map, storage allocation and data migration reliably and

in a distributed manner, each storage level is also controlled by multiple microprocessors that

implement intelligent memory management functions.

The INFOPLEX storage hierarchy is specifically designed to be able to handle any type of

storage devices. Thus unlike some other database computer designs which may be specialized to

a particular type of storage devices, INFOPLEX can adapt to the changing application needs as

well as take advantage of new technological advances in storage devices.

The functional processor clusters are collected into a functional hierarch!,, each level of the

functional hierarchy corresponds to a single-bus processor cluster. The storage hierarchy there

fore appears to the functional hierarchy as a very large and intelligent virtual storage. The

functional hierarchy therefore dedicates its effort to performing information management tasks,
such as message processing, security checking, query decomposition, and internal organization of

the data in the database.

The first step towards achieving distributed control in the functional hierarchy is func
tional decomposition. The complex information management function is broken into small tasks.

These tasks are arranged in a pipeline manner where each task, representing a stage in the

pipeline, may be performed concurrently with other stages. Each stage is assigned to a cluster

of processors which comprises a level of the functional hierarchy. Within a level, processors per

form just one task, with multiple instances of the task being processed in parallel by all proces

sors in that level, thereby gaining further concurrency. Since processors within the same level

perform the same set of tasks, intra-level communication/synchronization is more economically
achieved through shared memory, while high-throughput inter-level buses are provided for com

munication among tasks.

—39—



In summary, the INFOPLEX architecture is motivated by the need to provide for large

processing and storage capacity reliably and economically. The consequence of adopting a

structured multiprocessor complex as the basic architecture is the need for these processing and

storage components to be organized intelligently and coordinated through distributed algorithms
to eliminate potential performance bottleneck.

4. INFOPLEX Recent Research Results

4.1. Research Objectives

Within the above architectural framework, research in INFOPLEX is conducted with the

following research objectives:

(1) Discover and define efficient distributed control algorithms and their formal properties;

(2) Study and verify the nature of locality of references in databases for measuring
effectiveness of storage hierarchy;

(3) Identify and construct relevant performance evaluation methodologies and apply them to

predict INFOPLEX performance and to uncover potential bottlenecks; and

(4)- Experiment through software and hardware test vehicles.

4.2. Distributed Algorithms

We describe two particular research efforts aiming at discovering algorithms that are suit

able for controlling activities in INFOPLEX: the first effort studies algorithms for controlling
migration of data in the storage hierarchy; the second aims at increasing parallelism in data

base concurrency control and reducing overhead.

In Madnick75a and LM79}, algorithms for data migration in a generalized storage hierar

chy are identified. Specifically, data migration algorithms can be classified along two dimen

sions, both concerning the problem of the maintenance of the LRU (Least Recently Used) stack:

the first addresses the treatment of references to the virtual storage from functional processors,

the second addresses the treatment of references to levels of the storage hierarchy due to

overflow placement.

Along the first dimension, two alternatives are possible: global LRU, which considers every

reference to the virtual storage from the functional processors a reference to all levels of the

storage hierarchy as far as the maintenance of the LRU stacks at each level is concerned; and

local LRU, which only updates the LRU stack at levels of the storage hierarchy that are needed

to satisfy the virtual storage reference from the functional processors. Along the second dimen

sion, there are also two alternatives: static overflow placement (SOP) and dynamic overflow

placement (DOP). Under SOP, overflow of a page from a higher level i of the storage hierarchy

(i.e., closer to the functional hierarchy) to a lower level j of the storage hierarchy is not con

sidered a reference to that page at level j, unless the overflown page is not resident at level j at

the time of overflow. Under DOP, however, the overflown page is always considered as being
referenced at the lower level, causing an update to the LRU stack at level j.

Two desirable properties significant to the data migration algorithms are also identified:

multi-level inclusion (ML!) and multi-level overflow inclusion (MLOI). A storage hierarchy
satisfies the ML! property if every page resident at a level i is also resident at the next lower

level 1+1. On the other hand, MLOI is satisfied if every page overflown from level i is also found

to be resident at level 1-i-i at the time of overflow. These two properties enable the overflow

handling algorithms to be simplified considerably and have important implications on data avai

lability. It is proven in LM79} that only global LRU algorithms can achieve ML! and MLOI. In

addition, depending on whether dynamic or static overflow placement algorithm is used, in order

for these properties to hold, there is a specific constraint on the size of the lower level of the

storage hierarchy in comparison with that of the higher level. The precise nature of the size
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requirements is also shown in 1LM791.

Using the formal results described above, the design of the INFOPLEX data storage

hierarchy is described in LM79a, LM79b, LM79c, Abraham79, and Madnick8O}.

In jHMS3I, a database concurrency control algorithm is identified which aims at reducing

synchronization needs among data partitions. In a large database, the data can often be found

to be organized in an information hierarchy, with some transactions updating raw data, some

transforming the raw data and updating the partition that contains the derived data, and some

transforming the first-level derived data and updating the second-level derived data. When the

database is partitioned accordingly and distributed to multiple processors, it is desirable that

inter-partition synchronization be minimized.

The hierarchical concurrency control algorithm described in HM831 takes advantage of

such a hierarchical structure of the database and leads to protocols which allow the transac

tions updating one partition to proceed without interfering with transactions updating another

partition, thereby minimizing inter-partition synchronization. The protocols described and pro

ven in HM83] were further extended in Hsu83) to allow certain degree of cyclic accesses in

hierarchically partitioned database.

The above hierarchical algorithms are timestamp based concurrency control algorithms.
However, the underlying principles of the algorithm can be abstracted to apply to two-phase

locking based algorithms. In HC8S], the adaptation of the hierarchical timestamp algorithm to

partitioned two-phase locking is described. This generalization broadens the applicability of the

theoretical results.

4.3. Database Locality

The INFOPLEX data storage hierarchy - as well as many file servers, database machines,
and DBMS packages - employ dynamic buffering techniques that rely upon pragmatically plausi
ble, but often unproven, database locality for success. The study of database locality provides a

theoretical framework for measuring load placed on a memory system by a sequence of requests

for access to data. A consistent measure of load at the logical, internal and storage stages of

database processing was needed to facilitate the study and comparison of alternative DBMS

designs and database structures.

In Madnick73l, notions of temporal and spatial localities are defined. Temporal locality
describes the clustering of references along the time dimension: if a data element is referenced at

time t, then it is likely to be referenced again shortly after t. Spatial locality, on the other

hand, refers to the clustering of references along the space dimension: if a data elementd is

referenced at time 1, then it is likely that some data element d’ in the vicinity of d is referenced

at time t+J.

This first attempt to approach locality formally was followed by McCabe78, Robidoux79}
in which reference strings obtained from an existing application system wa~ analyzed for pur

pose of identifying reference locality. These empirical works further illuminated the need for a

theoretical framework for the study of database locality.

In Moulton86], a theoretical foundation for database locality has been developed using
models that are close analog of program locality working set models, but applicable at all stages

of database processing - logical, internal, and storage. A two dimensional model that incor

porates both temporal and spatial locality effects, with separately adjustable spatial and tem

poral parameters, is defined. The model reduces to the pure temporal model in the limiting spa
tial case. This model enables one to measure the locality of a given reference string. Work is

currently being performed in applying the above model to measure locality of existing database

systems and examining the theoretical properties of the model.
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4.4. Performance Evaluation

In this part we describe research efforts directed towards evaluating the speed performance
of INFOPLEX. Early performance modeling through simulation for the INFOPLEX storage

hierarchy was reported in LM79d, WM81]. Due to the high level of concurrency being simu

lated, these early simulation efforts were very costly and it became clear that it was necessary

to build analytical evaluation tools that are suitable for a distributed architecture. However,
the very nature of the system having unbalanced asynchronously-spawned (UAP) parallel tasks

violates the flow balance requirement of classical queueing theory.

In WM84a], an analytical performance evaluation methodology for flow-unbalanced net

works is described. The method enables a flow-unbalanced queueing network to be transformed

into an “equivalent” flow-balanced queueing network through decomposition. For flow-

unbalanced open queueing networks, this transformation enables the key performance measures

to be computed by directly applying the classical queueing theory. For flow-unbalanced closed

queueing networks, however, the transformation is feasible only when conditions of network sta

bility are satisfied. These conditions are formally derived and readily computable given the

parameters of a flow-unbalanced closed queueing network. In addition, an efficient iterative

procedure for estimating the key performance measures of a flow-unbalanced closed queueing
network is developed. The procedure is based on Buzen’s convolution algorithm which efficiently
computes the normalization constant in the product form solution of a classical closed queueing
network.

The solution methodology for flow-unbalanced queueing networks is applied to the

INFOPLEX storage hierarchy WM84b and WM86]. The necessary and sufficient conditions for

the INFOPLEX storage hierarchy to be stable when modeled as a closed queueing network are

identified. Furthermore, an algorithm has also been devised to test whether a design alternative

of the INFOPLEX storage hierarchy will be stable.

4.5. Experimental Test Vehicles

In this section, the approach taken to build a test vehicle for INFOPLEX is described. It

consists of a multi-microprocessor hardware test vehicle and a simulated software test vehicle.

4.5.1. Software Test Vehicle

The purpose of the software test vehicle (STV) project is to test out the preliminary
designs of the functional hierarchy Hsu8O] and the storage hierarchy LM79a] in software emu

lation on contemporary hardware before committing them to hardware prototypes. The first

approach was to emulate the parallelism of the target architecture on a conventional single-

processor computer. The STV project was carried out on an IBM 370 mainframe and was

implemented in PL/1. The project consisted of three parts: a functional hierarchy STV BM81,
Hsu82a, Lee82, Lu82], a storage hierarchy STy, and a hardware emulator, called Shell To82].

The preliminary design implemented in STV adopts a software paradigm composed of

modules. The modules in STV are distributed to functional levels in the emulated functional

hierarchy based on the nature of the task performed by the modules. The inter-level module

invocation is performed through message passing, emulated by “Shell”, and no argument passing

through shared memory variables is allowed. From the STV experience, it appears that there is

a need to identify a software paradigm, or a functional decomposition methodology, that is

more sensitive to the distributed nature of the target hardware, and subject the design of the

functional modules to the paradigm. Work is currently being performed to identify such a

methodology.

The cost of software emulation of a concurrent system architecture employing high degrees
of parallelism and pipeline processing on a conventional mainframe renders it impractical to

conduct extensive experiments. A more effective method for experimenting with the concurrent

functional software is to adopt parallel computers, such as off-the-shelf micro-computers inter-
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connected through a high bandwidth network. Work is currently being pursued to set up such a

more advanced test bed environment for further software experiments.

4.5.2. Hardware Test Vehicle

For the hardware test vehicle, the purpose is to demonstrate the feasibility of the

INFOPLEX multi-level multiprocessor hardware architecture. The first task is to build a one-

level shared-memory multiprocessor system. Several issues are investigated. The first issue is the

choice of the processor. To this end, off-the-shelf microprocessors are evaluated TG81, GT83a,
GT83b, GT83c] and trends in evolution monitored closely (GT85bJ. Methodologies for evaluat

ing microprocessors are reported in GAT81, GT82]. In particular, in GT82], a hierarchical

approach to evaluating microprocessors is also proposed.

The issue of multiprocessor interconnection scheme is studied in GT8O, GST8O, Gupta82J
In particular, the pended bus architecture utilizing the split transaction protocol is shown to be

especially effective in minimizing potential contention on the bus and therefore able to support a

large number of processors on the bus. The split transaction bus protocol allows a processor to

relinquish control of the bus when its memory request is being serviced at a memory module,

enabling another processor or memory module to obtain control of the bus in the mean time to

transfer another request or data over the bus. The proto~o1 therefore allows the effective bus

throughput to be increased. Performance of the pended bus architecture is studied in detail to

resolve relevant design decisions at the implementation level. These results are reported in

Gupta82, GT82, GT84, GT85a], and are used in designing the bus interface unit (BIU) that

connects processors and memory modules to the intra-level bus of INFOPLEX.

Another shared memory multiprocessor issue is the cache consistency problem. In A~vI81],
this problem is studied in detail and simulation conducted to evaluate the performance of vari

ous schemes. In the prototype multiprocessor system, the cache consistency problem is avoided

by not allowing data segments to be cached.

The prototype one-level shared-memory multiprocessor system is completed, together with

its kernel software, i.e., the local operating system TAL86]. Work is being performed in replicat

ing the one-level prototype and connecting them through a global bus (i.e., the inter-level bus).
The same BIU design will be utilized in connecting a level to the global bus. The local operat

ing system will also be extended to handle inter-level communication protocols.

5. Conclusion

The purpose of the INFOPLEX research project is to advance the technologies for infor

mation management through both basic and experimental research within the framework of a

structured multi-processor architecture. In this document, a summary of the recent research

results of the project is reported. The research falls in the following categories: (1) distributed

algorithms, (2) database locality, (3) performance evaluation methodology, and (4) experimental
test vehicles. These works lay the foundation for future research and implementation efforts,

while additional work is needed to refine and apply the theoretical results and resolve detailed

design and implementation decisions.
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