
DECEMBER 1986 VOL. 9 NO. 4

a quarterly bulletin of the

Computer Society of the IEEE

technical committee on

Database
eeri

CONTENTS

Letter from the Editor 1

G. Lohman

Issues in the Optimization of a Logic Based Language 2

R. Krishnamurthy, C. Zaniolo

Optimization of Complex Database Queries Using Join Indices 10
P. Valduriez

Query Processing in Optical Disk Based Multimedia Information Systems 17

S. Christodoulakis

Query Processing Based on Complex Object Types 22

E. Bert/no, F. Rabitti

Extensible Cost Models and Query Optimization in GENESIS 30
D. Batory

Software Modularization with the EXODUS Optimizer Generator 37
G. Graefe

Understanding and Extending Transformation—Based Optimizers 44

A. Rosenthal, P. He/man

SPECIAL ISSUE ON RECENT ADVANCES IN QUERY OPTIMIZATION

Editor-in-Chief, Database Engineering Chairperson, TC

Dr. Won Kim

MCC

3500 West Balcones Center Drive

Austin, TX 78759

(512) 338—3439

Associate Editors, Database Engineering

Dr. Haran Borai

MCC

3500 West Balcones Center Drive

Austin, TX 78759

(512) 338—3469

Prof. Michael Carey

Computer Sciences Department

University of Wisconsin

Madison, Wi 53706

(608) 262—2252

Dr. C. Mohan

IBM Almaden Research Center

650 Harry Road

San Jose, CA 95120-6099

(408) 927—1733

Prof. Z. Meral Ozsoyoglu

Department of Computer Engineering and Science

Case Western Reserve University
Cleveland Ohio 44106

(216) 368—2818

Dr. Sunil Sarin

Computer Corporation of America

4 CambrIdge Center

Cambridge, MA 02142

(617) 492—8860

Database Engineering Bulletin is a quarterly publication of

the IEEE Computer Society Technical Committee on Database

Engineering .
Its scope of Interest includes: data structures

and models, access strategies, access control techniques,
database architecture, database machines, intelligent front

ends, mass storage for very large databases, distributed

database systems and techniques, database software design
and implementation, database utilities, database security
and related areas.

Contribution to the Bulletin is hereby solicited. News items,

letters, technical papers, book reviews, meeting previews,
summaries, case studies, etc., should be sent to the Editor.

All letters to the Editor will be considered for publication
unless accompanied by a request to the contrary. Technical

papers are unrefereed.

Opinions expressed in contributions are those of the indi

vidual author rather than the official position of the TC on

Database Engineering, the IEEE Computer Society, or orga

nizations with which the author may be affiliated.

Dr. Sushil Jajodia
Naval Research Lab.

Washington, D.C. 20375—5000

(202) 767—3596

Vice-Chairperson, TC

Prof. Krithivasan Ramamrlthan

Dept. of Computer
and Information Science

University of Massachusetts

Amherst, Mass. 01003

(413) 545—0196

Treasurer, TC

Dr. Richard L. Shuey
2338 Rosendale Rd.

Schenectady, NY 12309

(518) 374—5684

Membership in the Database Engineering Technical Com

mittee is open to Individuals who demonstrate willingness to

actively participate in the various activities of the TC. A

member of the IEEE Computer Society may join the TC as a

full member. A non~-member of the Computer Society may

join as a participating member, with approval from at least

one officer of the TC. Both full members and participating
members of the TC are entitled to receive the quarterly
bulletin of the TC free of charge, until further notice.

Prof. Leszek Lilien

Dept. of Electrical Engineering
and Computer Science

University of Illinois

Chicago, IL 60680

(312) 996—0827

Secretary, TC

Letter from the Editor

From the earliest days of the relational revolution, one of the most challenging and significant components
of relational query processing has been query optimization, which finds the cheapest way to execute

procedurally a query that is (usually) stated non-procedurally. In fact, a high-level, non-procedural query

language has been — and continues to be — a persuasive sales feature of relational DBMSs.

As relational technology has matured in the 1980s, increasingly sophisticated capabilities have been added:

first support for distributed databases, and more recently a plethora of still more ambitious requirements
for multi-media databases, recursive queries, and even the nebulous ~extensible DBMS. Each of these

advances poses fascinating new challenges for query optimization.

In this issue, I have endeavored to sample some of this pioneering work in query optimization. Research

contributions, not surveys, were my goal. Space constraints unfortunately limited the number of contrib

utors and the scope of inquiry to the following:

Although the processing of recursive queries has been a hot topic lately, few have explored the impact
on query optimization, as Ravi Krishnamurthy and Carlo Zaniolo have done in the first article. Patrick

Valduriez expands upon his recent ACM TODS paper on join indexes to show how a query optimizer
can best exploit them, notably for recursive queries.

Multi-media databases expand the scope of current databases to include complex objects combining
document text, images, and voice, portions of which may be stored on different kinds of storage media

such as optical disk. Stavros Christodoulakis highlights some of the unique optimization problems posed
by these data types, their access methods, and optical disk storage media. Elisa Bertino and Fausto Rabitti

present a detailed algorithm for processing and resolving the ambiguities of queries containing predicates
on the structure as well as the content of complex objects, which was implemented in the MULTOS

system as part of the ESPRIT project.

The last three papers present alternative approaches to extensible query optimization. Don Batory discusses

the toolkir approach of the GENESIS system, which uses parametrized types to define standardized

interfaces for synthesizing plug-compatible modules. Goetz Graefe expands upon his optimizer generator

approach that was introduced in his 1987 ACM SIGMOD paper with Dave DeWitt, in which query

transformation rules are compiled into an optimizer. And Arnie Rosenthal and Paul Helman characterize

conditions under which such transformations are legal, and extensible mechanisms for controlling the

sequence and extent of such transformations.

I hope you find these papers as interesting and significant as I did while editing this issue.

Guy M. Lehman

IBM Almaden Research Center

Issues in the Optimization of a Logic Based Language

R. Krishnamurthy Carlo Zaniolo

MCC, 3500 Balcones Center Dr., Austin, TX, 78759

Abstract

We report on the issues addressed in the design of the optimizer for the Logic Data Language
(LDL) that is being designed and implemented at MCC. In particular we motivate the new set of

problems posed in this scenario and discuss one possible solution approach to tackle them.

1. Introduction

The Logic Data Language, LDL, combines the expressive power of a high-level logic-based language
(e.g., Prolog) with the non-navigational style of relational query languages, where the user need only

supply a query (stated logically), and the system (i.e., the compiler) is expected to devise an efficient

execution strategy for it. Consequently, the query optimizer is delegated the responsibility of choosing
an optimal execution——a function similar to that of an optimizer in a relational database system. The

optimizer uses the knowledge of storage structures, information about database statistics, estimation

of cost, etc. to predict the cost of various execution schemes chosen from a pre-defined search

space, and selects a minimum cost execution.

As compared to relational queries, LDL queries pose a new set of problems which stem from the

following observations. First, the model of data is enhanced to include complex objects; e.g., hierar

chies, heterogeneous data allowed for an attribute Z 85]. Secondly, new operators are needed not

only to operate on complex data, but also to handle new operations such as recursion, negation, etc.

Thus, the complexity of data as well as the set of operations emphasize the need for new database

statistics and new estimations of cost. Finally, the use of evaluable functions, and function symbol TZ
86] in conjunction with recursion, provides the ability to state queries that are unsafe (i.e., do not

terminate). As unsafe executions are a limiting case of poor executions, the optimizer must guarantee
the choice of a safe execution.

The knowledge base consists of a rule base and a database. An example of a rule base is given in

Figure 1. Throughout this paper, we follow the notational convention that Pi’s, Bi’s, and f’s are (de

rived) predicates, base predicates (i.e., predicate on a base relation), and function symbols, respec

tively. The tuples in the relation corresponding to the Pi’s are computed using the rules. Note that each

line in Figure la isa rule that contains a head (i.e., the predicate to the left of the arrow) and the body
that defines the tuples that are contributed by this rule to the head predicate. A rule may be recursive

(e.g., R21), in the sense that the definition in the body may depend on the predicate in the head,

either directly by reference or transitively through a predicate referenced in the body.

Figure lb:Processing Graph. Ri : P1(x,y) <—— P2(x,xl), P3(xl,y).
R21: P2(x,y) <—— B21(x,xl), P2(xl,yl),
R22: P2(x,y) <—— P4(x,y).
R3 P3(x,y) <—— B31(x,xl), B32(xl,y).

R4 : P4(x,y) <—— B41(x,xl), P2(xl,y).

ire 1—la: Rule Base
Query is

Fig. 10: Contracted Processing Graph

L

In a given rule base, we say that P -> Q, if there is a rule with Q as the head predicate and the

predicate P in the body, or there exists a P’ where P—>P’ and P’—>Q (transitivity). Then a predicate P,
such that P->P, will be called recursive. Two predicates, P and Q are called mutually recursive if P—>Q
and Q ->P. This implication relationship is used to partition the recursive predicates into disjoint sub
sets called recursive cliques. A clique Cl is said to follow another clique 02 if there exists a recursive

predicate in 02 that is used to define the clique Cl. Note that the follow relation is a partial order.

In a departure from previous approaches to compilation of logic KT 81, U 85, N 86], we make our

optimization query—specific. A predicate P1 (c,y). (in which c and y denote a bound and unbound

argument respectively), computes all tuples in P1 that satisfies the constant, c. A binding for a predi
cate is the bound/unbound pattern of its arguments, for which the predicate is computed. Throughout
this paper we use x,y to denote variables and c to denote a constant. A predicate with a binding is
called a query form (e.g., P1(c,y)?). We say that the optimization is query-specific because the

algorithm is repeated for each such query form. For instance, P1 (x,y)? will be compiled and optimized
separately from P1 (c,y)?. Indeed the execution strategy chosen for P1 (c,y)? may be inefficient (or
even unsafe) for P1 (x,y)?.

In this paper we limit the discussion to the problem of optimizing the pure fixpoint semantics of Horn

clause queries Lb 84]. In Section 2, the optimization is characterized as a minimization problem
based on a cost function over an execution space. This model is used in the rest of the paper to

discuss the issues. In Section 3, we discuss the problems in the choice of a search space. The cost

model considerations are discussed in section 4. The problem of safety is addressed in section 5.

2. Model

An execution is modelled as a ‘processing graph’, which describes the decisions regarding the meth

ods for the operations, their ordering, and the intermediate relations to be materialized. The set of

logically equivalent processing graphs is defined to be the execution space over which the optimization
is performed using a cost model, which associates a cost for each execution.

2.1. Execution Model

An execution is represented by an AND/OR graph such as that shown in Figure 1 b for the example of

Figure la. This representation is similar to the predicate connection graph KT 81], or rule graph U
85] , -except that we give specific semantics to the internal nodes as described below. In keeping with

our relational algebra based execution model, we map each AND node into a join and each OR node

into a union. Recursion is implied by an edge to an ancestor or a node in the sibling subtree. A

contraction of a clique is the extrapolation of the traditional notion of an edge contraction in a graph. An

edge is said to be contracted if it is deleted and its ends (i.e., nodes) are identified (i.e., merged). A

clique is said to be contracted if all the edges of the clique are contracted. Intuitively, the contraction

of a clique Consists of replacing the set of nodes in the clique by a single node and associating all the

edges in/out of any node in the Clique with this new node (as in Figure ic).

Associated with each node is a relation that is computed from the relations of its predecessors, by
doing the operation (e.g., join, union) specified in the label. We use a square node to denote materi

alization of relations and a triangle node to denote the pipelining of the tuples. A pipebined execution,

as the name implies, computes each tuple one at a time. In the case of join, this computation is

evaluated in a lazy fashion as follows: a tuple for a subtree is generated using the binding from the

result of the subquery to the left of that subtree. This binding is referred to as binding implied by the

pipeline. Note that we impose a left to right order of execution. This process of using information from

the sibling subtrees was called sideways information passing in U 85]. Subtrees that are rooted under

a materialized node are computed bottom—up, without any sideways information passing; i.e., the

result of the subtree is computed completely before the ancestor operation is started.

Each interior node in the graph is also labeled by the method used (e.g., join method, recursion

methods etc.). The set of labels for these nodes are restricted only by the availability of the techniques
in the system. Further, we also allow the result of computing a subtree to be filtered through a selec

tion/restriction predicate. We extend the labeling scheme to encode all such variations due to filtering.

In summary, an execution is modeled as a processing graph. The set of all logically equivalent proc

essing graphs, ~Pg, (for a given query) defines the execution space and thus defining the search space

for the optimization problem. In order to find practical solutions, we would like to restrict our search

space to the space defined by the following equivalence-preserving transformations:

1) MP: Materialize/Pipeline: A pipelined node can be changed to a materialized node and vice versa.

I Figure 2—2: Example of Flatten/Unflatten

Answel

&
r~i Join

— —-n~ —

2) FU: Flatten/Unflatten: Flattening distributes a join over union. The inverse transformation will be

called unflatten. An example of this is shown in Figure 2.

3) PS: PushSelect/PuIISeIect: A select can be piggy-backed to a materialized or pipelined node and

applied to the tuples as they are generated. Selects can be pushed into a nonrecursive operator

(i.e., join or union that is not a part of a recursive cycle) in the obvious way.

4) PP: PushProject/PullProject: This transformation can be defined similar to the case of select.

5) PR: Permute: This transforms a given subtree by permuting the order of the subtrees. Note that the

inverse of a permutation is defined by another permutation.
Each of the above transformational rules map a processing graph into another equivalent processing
graph, and is also capable of mapping vice versa. We define an equivalence relation under a set of

transformational rules T as follows: a processing graph p1 is equivalent to p2 under T if p2 can be

obtained by zero or more applications of rules in T. Since the equivalence class (induced by said

equivalence relation) defines our execution space, we can denote an execution space by a set of

transformations, e.g., {MP, PS, PR}.

2.2. Cost Model:

The cost model assigns a cost to each processing graph, thereby ordering the executions. Typically,
the costs of all executions in an execution space span many orders of magnitude. Thus “it is more

important to avoid the worst executions than to obtain the best execution”, a maxim widely assumed

by query optimizer designers. Experience with relational systems has shown that even an inexact cost

model can achieve this goal reasonably well. The cost includes CPU, disk I/O, communication, etc,

which are combined into a single cost that is dependent on the particular system D 82]. We assume

that a list of methods is available for each operation (join, union and recursion), and for each method,
we also assume the ability to compute the associated cost and the resulting cardinality.

Intuitively, the cost of an execution is the sum of the cost of individual operations. In the case of

nonrecursive queries, this amounts to summing up the cost for each node. As cost models are sys
tem- dependent, we restrict our attention in this paper to the problem of estimating the number of

tuples in the result of an operation. For the sake of this discussion, the cost can be viewed as some

monotonically increasing function on the size of the operands. As the cost of an unsafe execution is to

be modeled by an infinite cost, the cost function should guarantee an infinite cost if the size ap

proaches infinity. This is used to encode the unsafe property of the execution.

2.3. Optimization Problem:

We formally define the optimization problem as follows: “Given a query Q, an execution space E and

a cost model defined over E,find a processing graph pg in E that is of minimum cost. “It is easy to see

that an algorithm exists that enumerates the execution space and finds the execution with a minimum

cost. The main problem is to find an efficient strategy to search this space. In the rest of the paper, we

use the model presented in this section to discuss issues and design decisions relating to three as

pects of the optimization problem: search space, cost model, and safety.

3. Search space:
In this section, we discuss the problem of choosing the proper search space. The main trade-off

here is that a very small search space will eliminate many efficient executions, whereas a large search

space will render the problem of optimization intractable. We present the discussion by considering the

search spaces for queries of increasing complexity: conjunctive queries, nonrecursive queries, and

then recursive queries.

3.1. Conjunctive queries:
The search space of a conjunctive query can be viewed based on the ordering of the joins (and

therefore the relations) Sel 79]. The gist of the relational optimization algorithm is as follows: “ For

each permutation of the set of relations, choose a join method for each join and compute the cost. The

4

result is the minimum cost permutation.” This approach is based on the fact that, for a given ordering of

joins, a selection or projection can be pushed to the first operation on a relation without any loss of

optimality. Consequently, the actual search space used by the optimizer reduces to {MP, PR}, yet the
chosen minimum cost processing graph is optimal in the execution space defined by {MP, PR, PS,
PP}. Further, the binding implied by pipelining will also be treated as selections and handled in a similar

manner. Note that the definition of the cost function for each individual join, the number of available

join methods, etc. are orthogonal to the definition of the optimization problem. This approach, taken in

this traditional context, essentially enumerates a search space that is combinatoric on n, the number

of relations in the conjunct. The dynamic programming method presented in Sel 79] only improves
this to O(n*(2**n)) time by using O(2**n) space. Consequently, database systems (e.g., SQL/DS,
commercial INGRES) limit the queries to no more than 10 or 15 joins, so as to be (easonably efficient.

In logic queries it is expected that the number of relations can easily exceed 10—15 relations. In KBZ
86], we presented a quadratic time algorithm that computes the optimal ordering of conjunctive que
ries when the query is acyclic. Further, this algorithm was extended to include cyclic queries and other

cost models. Moreover, the algorithm has proved to be heuristically very effective for cyclic queries
once the minimum cost spanning tree is used as the tree query for optimization V 86].

Another approach to searching the large search space is to use a stochastic algorithm. Intuitively,
the minimum cost permutation can be found by picking, randomly, a “large” number of permutations
from the search space and choosing the minimum cost permutation. Obviously, the number of permu
tations that need to be chosen approaches the size of the search space for a reasonable assurance of

obtaining the minimum. This number is claimed to be much smaller by using a technique called simu

lated annealing 1W 87] and this technique can be used in the optimization of conjunctive queries.
In summary, the problem of enumerating the search space is considered the major problem here.

3.2. Nonrecursive Queries:

We first present a simple optimization algorithm for the execution space{MP,PS,PP,PR} (i.e., any
flatten/unflatten transformation is disallowed), using which the issues are discussed. As in the case of

conjunctive query optimization, we push select/project down to the first operation on a relation and

limit the enumeration to {MP,PR}. Recall that the processing graph for any execution of a nonrecursive

query is an AND/OR tree.

First consider the case when we materialize the relation for each predicate in the rule base. As we do

not allow the flatten/unflatten transformation, we can proceed as follows: optimize a lowest subtree in

the AND/OR tree. This subtree is a conjunctive query, as all children in this subtree are leaves (i.e.,
base relations), and we may use the exhaustive case algorithm of the previous section. After optimiz
ing the subtree, we replace the subtree by a “base relation” and repeat this process until the tree is

reduced to a single node. It is easy to show that this algorithm exhausts the search space {PR}.
Further, such an algorithm is reasonably efficient if number of predicates in the body does not exceed

10—15.

In order to exploit sideways information passing by choosing pipelined executions, we make the

following observation. Because all the subtrees were materialized, the binding pattern (i.e., all argu
ments unbound) of the head of any rule was uniquely determined. Consequently, we could outline a

bottom-up algorithm using this unique binding for each subtree. If we do allow pipelined execution,
then the subtree may be bound in different ways, depending on the ordering of the siblings of the root

of the subtree. Consequently, the subtree may be optimized differently. Observe that the number of

binding patterns for a predicate is purely dependent on the number of arguments of that predicate. So

the extension to the above bottom-up algorithm is to optimize each subtree for all possible bindings
and to use the cost for the appropriate binding when computing the cost of joining this subtree with its

siblings. The maximum number of bindings is equal to the cardinality of the power set of the argu
ments. In order to avoid optimizing a subtree with a binding pattern that may never be used, a top-
down algorithm can be devised. In any case, the algorithm is expected to be reasonably efficient for

small numbers of arguments, k, and of predicates in the body, n.

When k and/or n are very large, it may not be feasible to use this algorithm. We expect that k is

unlikely to be large, but there may be rule bases that have large n. It is then possible to use the

polynomial time algorithm or the stochastic algorithm presented in the previous section. Even though
we do not expect k to be very large, it would be comforting if we can find an approximation for this

case too. This remains a topic for further research.

In summary, the technique of pushing select/project in a greedy way for a given ordering (i.e., a

sideways information passing) can be used to reduce the search space to {MP, PR} as was done in the

conjunctive case. Subsequently, an intelligent top-down algorithm to exhaust this search space can be

used that is reasonably efficient. But this approach disregards the flatten/unflatten transformation.

Enumerating the search space including this transformation is an open problem. Observe that the

sideways information passing between predicates was done greedily; i.e., all arguments that can be

bound are bound. An interesting open question is to investigate the potential benefits of partial binding,
especially when flattening is allowed and common subexpressions are important.

3.3. Recursive queries:
We have seen that pushing selection/projection is a linchpin of non—recursive optimization methods.

Unfortunately, this simple technique is inapplicable to recursive predicates AU 79]. Therefore a num

ber of specialized implementation methods have been proposed to allow recursive predicates to take

advantage of constants or bindings present in the goal. (The interested reader is referred to BR 85]
for an overview.) Obviously, the same techniques can be used to incorporate the notion of pipelining
(i.e., sideways information passing). In keeping with our algebra—based approach however, we will

restrict our attention to fixpoint methods, i.e., methods that implement recursive predicates by means

of a least fixpoint operator. The magic set method BMSU 85] and generalized counting method SZ 86]
are two examples of fixpoint methods.

We extend the algorithm presented in the previous section to include the capability to optimize a

recursive query, using a divide and conquer approach. Note that all the predicates in the same recur

sive clique must be solved together——they cannot be solved one at a time. In the processing graph,
we propose to contract a recursive clique into a single node (materialized or pipelined) that is labeled

by the recursion method used (e.g., magic set, counting). The fixpoint of the recursion is to be ob

tained as a result of the operation implied by the clique node. Note that the cost of this fixpoint opera
tion is a function of the cost/size of the subtrees and the method used. We assume such cost func

tions are available for the fixpoint methods. The problem of constructing such functions are discussed

in the next section.

The bottom-up optimization algorithm is extended as follows: choose a clique that does not follow

any other clique. For this clique, use a nonrecursive optimization algorithm to optimize and estimate

the cost and size of the result for all possible bindings. Replace the clique by a single node with the

estimated cost and size and repeat the algorithm. In Figure 3 we have elucidated this approach for a

single-clique example. Note that in Figure 3b the subtree under P3 is computed using sideways infor

mation from the recursive predicate P2; whereas in Figure 3c, the subtree under the recursive predi
cate is computed using the sideways information from the P3. Consequently, the tradeoffs are cost/

size of the recursive predicate P2 versus the cost/size of P3. If, eavluating the recursion is much more

expensive than nonrecursive part of the query and the result of P3 is restricted to a small set of tuples,
then Figure 3c is a better choice.

Unlike in the non—recursive case, there is no claim of completeness presented here. However, it is

our intuitive belief that the above algoriCim enumerates a majority of the interesting cases. An example
of the incompleteness is evident for the fact that the ordering of the recursive predicates from the

same clique is not enumerated by the algorithm. Thus, an important open problem is to devise a

reasonably efficient enumeration of a well-defined search space. Another serious problem is the lack

Ri : Pl(x,y) <—— P2(x,xi), P3(xi,y) Figure 3: R-OPT examph

0

of intuition in gauging the importance of various types of recursion, which leads to treating all as

equally important.

4. Cost Model:

As mentioned before, we restrict our attention to the problem of estimating the number of tuples in

the result of an operation. Two problems discussed here are: the estimation for operations on complex
objects, and the estimation of the number of iterations for the fixpoint operator (i.e., recursion).

Let the employee object be a set of tuples whose attributes are Name, Position, and Children, where

Children is itself a set of tuples each containing the attributes Cname, and Age. All other attributes are

assumed to be elementary and the structure is a tree (i.e., not a graph). The estimations for selec

tion, projection, and join have to be redefined in this context as well as defining new formulae for

flattening and grouping. One approach is to redefine the cardinality information required from the

database. In particular, define the notion of bag cardinality for the complexattributes. The bag car

dinality of the children attribute is the cardinality of the bag of all children of all employees, where bag
is a set in which duplicates are not removed. Thus, average number of children per employee can be

determined by the ratio of the bag cardinality of the children to the cardinality of the employees. In

other words, complex attributes have the bag cardinality information associated while the elementary
attributes have the set cardinality information associated. Using these new statistics for the data, new

estimation formulas can be derived for all the operations, including operations such as flattenning and

grouping which restructure the data. In short, the problem of estimating the result of the operations on

complex objects can be viewed in two ways: 1) inventing new statistics to be kept to enable more

accurate estimations: 2) refining/devising formulae to obtain more accurate estimations.

The problem of estimating the result of recursion can be divided into two parts: first, the problem of

estimating the number of iterations of the fixpont operator; second, the number of tuples produced in

each iteration. The tuples produced by each iteration is the result of a single application of the rules,
and therefore the estimation problem reduces to the case of simple joins. To understand the former

problem, consider the example of computing all the ancestors of all persons for a given Parent rela

tion. Intuitively, this is the transitive closure of the corresponding graph. So we can restate the ques
tion of estimating the number of iterations to be the estimation of the diameter of the graph. Formula

for estimating the diameter for a graph parameterized by the number of edges, fan-out/fan-in, number

of nodes etc. have been derived using both analytical and simulation models. Preliminary results show

that a very crude estimation can be made using only the number of edges and number of nodes in the

graph. Refinement of this estimation is the subject of on-going research. In general, any linear recur

sion can be viewed in this graph formalism, and the result can be applied to estimate the number of

iterations. In short, formulae for estimating the diameter of the graph are needed to estimate the

number of iterations of the fixpoint operator. The open questions are the parameters of the graph, the

estimation of these parameters for a given recursion, and extension to complex recursions such as

mutual recursion.

5. Safety Problem:

Safety is a serious concern in implementing Horn clause queries. Any evaluable predicates (e.g.,
comparison predicates like x>y, x=y+y*z), and recursive predicates with function symbols are exam

ples of potentially unsafe predicates. While an evaluable predicate will be executed by calls to built—in

routines, they can be formally viewed as infinite relations defining, e.g., all the pairs of integers

satisfying the relationship x>y, or all the triplets satisfying the relationship x=y+y*z TZ 86]. Conse

quently, these predicates may result in unsafe executions in two ways: 1) the result of the query is

infinite; 2) the execution requires the computation of a rule resulting in an infinite intermediate result.

The former is termed the lack of finite answer and the latter the lack of effective computability or EC.

Note that the answer may be finite even if a rule is not effectively computable. Similarly, the answer of

a recursive predicate may be infinite even if each rule defining the predicate is effectively computable.

5.1. Checking for safety:
Patterns of argument bindings that ensure EC are simple to derive for comparison predicates. For

instance, we can assume that for comparison predicates other than equality, all variables must be

bound before the predicate is safe. When equality is involved in a form “x= expression”, then we are

ensured of EC as soon as all the variables in expression are instantiated. These are only sufficient

conditions and more general ones — e.g., based on combinations of comparison predicates — could be

given (see for instance EM 84]). But for each extension of a sufficient condition, a rapidly increasing

7

price would have to be paid in the algorithms used to detect EC and in the system routines used to

support these predicates at run time. Indeed, the problem of deciding EC for Horn clauses with com

parison predicates is undecidable Z 85], even when no recursion is involved. On the other hand, EC
based on safe binding patterns is easy to detect. Thus, deriving more general sufficient conditions for

ensuring EC that is easy to check is an important problem facing the optimizer designer.
Note that if all rules of a nonrecursive query are effectively computable, then the answer is finite.

However, for a recursive query, each bottom-up application of any rule may be effectively comput
able, but the answer may be infinite due to unbounded iterations required for a fixpoint operator. In

order to guarantee that the number of iterations are finite for each recursive clique, a well-founded

order (also known as Noetherian rderB 40]) based on some monotonicity property must be derived.

For example, if a list is traversed recursively, then the size of the list is monotonically decreasing with a

bound of an empty list. This forms the well-founded condition for termination of the iteration. In UV
86], some methods to derive the monotonicity property are discussed. In KRS 87], an algorithm to

ensure the existence of a well-founded condition is outlined. As these are only sufficient conditions,

they do not necessarily detect all safe executions. Consequently, more general monotonicity proper

ties must be either inferred from the program or declared by the user in some form. These are topics
of future research.

5.2. Searching for Safe Executions:

As mentioned before, the optimizer enumerates all the possible permutations of the goals in the

rules. For each permutation, the cost is evaluated and the minimum cost solution is maintained. All

that is needed to ensure safety is that EC is guaranteed for each rule and a well founded order is

associated with each recursive clique. If both these tests succeed, then the optimization algorithm
proceeds as usual. If the tests fails, the permutation is discarded. In practice this can be done by
simply assigning an extremely high cost to unsafe goals and then let the standard optimization algo
rithm do the pruning. If the cost of the end-solution produced by the optimizer is not less than this

extreme value, a proper message must inform the user that the query is unsafe.

5.3 Comparison with Previous Work

The approach to safety proposed in Na 85] is also based on reordering the goals in a given rule;
but that is done at run—time by delaying goals when the number of instantiated arguments is insuffi

cient to guarantee safety. This approach suffers from run—time overhead, and cannot guarantee termi

nation at compile time or otherwise pinpoint the source of safety problems to the user —— a very
desirable feature, since unsafe programs are typically incorrect ones. Our compile—time approach
overcomes these problems and is more amenable to optimization.

The reader should, however, be aware of some of the limitations implicit in all approaches based on

reordering of goals in rules. For instance a query: p(x, y, z), y= 2*x ?, with the rule

p(x, y, z) <—— x=3, z=x*y

is obviously finite (x=3, y=6, z=18), but cannot be computed under any permutation of goals in the

rule. Thus both Naish’s approach and the above optimization cum safety algorithm will fail to produce a

safe execution for this query. Two other approaches, however, will succeed. One, described in Z 86],
determines whether there is a finite domain underlying the variables in the rules using an algorithm
based on a functional dependency model. Safe queries are then processed in a bottom up fashion with

the help of “magic sets”, which make the process safe. The second solution consists in flattening
whereby the three equalities are combined in a conjunct and properly processed in the obvious order

refered to earlier.

6. Conclusion

The main strategy we have studied proposes to enumerate exhaustively the search space, defined

by the given AND/OR graph, to find the minimum cost execution. One important advantage of this

approach is its total flexibility and adaptability. We perceive this to be a critical advantage, as the field

of optimization of logic is still in its infancy, and we plan to experiment with an assortment of tech

niques, including new and untested ones.

A main concern with the exhaustive search approach is its exponential time complexity. While this

should become a serious problem only when rules have a large number of predicates, alternate effi

cient search algorithms can supplement the exhaustive algorithm (i.e., using it only if necessary), and

also these alternate algorithms should make extensive flattening of the given AND/OR graph practically
feasible. We are currently investigating the effectiveness of these alternatives.

C,

Among the optimization aspects not covered in this paper we find that of common subexpression
elimination GM 82], which appears particularly useful when flattening occurs. A simple technique
using a hill—climbing method is easy to superimpose on the proposed strategy, but more ambitious
technique provide a topic for future research. Further, an extrapolation of common subexpression in
logic queries can be seen in the following example: let both goals P(a,b,X) and P(a,Y,c) occur in a

query. Then it is conceivable that computing P(a,Y,X) once and restricting the result for each of the
cases may be more efficient.

Acknowledgments: We are grateful to Shamim Naqvi for inspiring discussions during the development
of an earlier version of this paper.

References:

AU 79] Aho, A. and J. Uliman, Universality of Data Retrieval Languages, Proc. POPL Con!., San
Antonio, TX, 1979.

B 40] Birkhoff, G., “

Lattice Theory”, American Mathematical Society, 1940.

BMSU8S] Bancilhon, F., D, Maier, Y. Sagiv and Uliman, Magic Sets and other Strange Ways to Imple
ments Logic Programs, Proc. 5—th ACM SIGMOD—SIGACT Symposium on Principles of Da
tabase Systems, pp. 1—16, 1986.

BR 86] Bancilhon, F., and R. Ramakrishan, An Amateur’s Introduction to Recursive Query Process
ing Strategies, Proc. 1986 ACM—SIGMQD Intl. Conf. on Mgt. of Data, pp. 16—52, 1986.

D 82] Daniels, D., et. al., “An Introduction to Distributed Query Compilation in ~ Proc. of
Second International Conf, on Distriuted Databases, Berlin, Sept. 1982.

GM 82] Grant, J. and Minker J., On Optimizing the Evaluation of a Set of Expressions, mt. Journal
of Computer and Information Science, 11, 3 (1982), 179—189.

1W 87] loannidis, Y. E, Wong, E, Query Optimization by Simulated Annealing, SIGMOD 87, San
Francisco.

KBZ 86] Krishnamurthy, R., Boral, H., Zaniolo, C. Optimization of Nonrecursive Queries, Proc. of
12th VLDB, Kyoto, Japan, 1986.

KRS 87] Krishnamurthy, R, Ramakrishnan, R, Shmueli, 0., “Testing for Safety and Effective Comput
ability”, Manuscript in Preparation.

KT 811 Kellog, C., and Travis, L. Reasoning with data in a deductively augmented database system,
in Advances in Database Theory: Vol 1, H.Gallaire, J. Minker, and J. Nicholas eds., Plenum
Press, New York, 1981, pp 261—298.

Lb 84] Lloyd, J. W., Foundations of Logic Programming, Springer Verlag, 1984.

M 84] Maier, D., The Theory of Relational Databases, (pp. 542—553), Comp. Science Press, 1984.

Na 86] Naish, L., Negation and Control in Prolog Journal of Logic Programming, to appear.

Sel 79] Sellinger, P.G. et. al. Access Path Selection in a Relational Database Management System.,
Proc. 1979 ACM—SIGMOD Intl. Conf. on Mgt. of Data, pp. 23—34, 1979.

5Z 86] Sacca’, D. and C. Zaniolo, The Generalized Counting Method for Recursive Logic Queries,
Proc. ICDT ‘86 ——mt. Conf. on Database Theory, Rome, Italy, 1986.

TZ 86] Tsur, S. and C. Zaniobo, LDL: A Logic—Based Data Language,Proc. of 12th VLDB, Kyoto,
Japan, 1986.

U 85] Ullman, J. D., Implementation of logical query languages for databases, TODS, 10, 3, (1985
), 289—321.

UV 85] Ullman, J.D. and A. Van Gelder, Testing Applicability of Top—Down Capture Rules, Stanford
Univ. Report STAN—CS—85—146, 1985.

V 86] Viflarreal, M., “Evaluation of an O(N* *2) Method for Query Optimization”, MS Thesis,
Dept. of Computer Science, Univ. of Texas at Austin, Austin, TX.

Z 85] Zaniolo, C. The representation and deductive retrieval of complex objects, Proc. of 11th

VLDB, pp. 458—469, 1985.

Z 86] Zaniolo, C., Safety and Compilation of Non—Recursive Horn Clauses, Proc. First mt. Con!.
on Expert Database Systems, Charleston, S.C., 1986.

3

OPTIMIZATION OF COMPLEX DATABASE QUERIES

USING JOIN INDICES

Patrick Valduriez

Microelectronics and Computer Technology Corporation
3500 West Balcones Center Drive

Austin, Texas 78759

ABSTRACT

New application areas of database systems require efficient support of complex queries.

Such queries typically involve a large number of relations and may be recursive. There

fore, they tend to use the join operator more extensively. A join index is a simple data

structure that can improve significantly the performance of joins when incorporated in

the database system storage model. Thus, as any other access method, it should be

considered as an alternative join method by the query optimizer. In this paper, we elabo

rate on the use of join indices for the optimization of both non—recursive and recursive

queries. In particular, we show that the incorporation of join indices in the storage model

enlarges the solution space searched by the query optimizer and thus offers additional

opportunities for increasing performance.

1. Introduction

Relational database technology can well be extended to support new application areas, such as

deductive database systems Gallaire 84]. Compared to the traditional applications of relational data

base systems, these applications require the support of more complex queries. Those queries gener

ally involve a large number of relations and may be recursive. Therefore, the quality of the query

optimization module (query optimizer) becomes a key issue to the success of database systems.

The ideal goal of a query optimizer is to select the optimal access plan to the relevant data for an

input query. Most of the work on traditional query optimization Jarke 84] has concentrated on select—

project—join (SPJ) queries, for they are the most frequent ones in traditional data processing (business)

applications. Furthermore, emphasis has been given to the optimization of joins Ibaraki 84] because

join remains the most costly operator. When complex queries are considered, the join operator is used

even more extensively for both non—recursive queries Krishnamurthy 86] and recursive queries Val

duriez 86a].

In Valduriez 87], we proposed a simple data structure, called a join index, that improves signifi

cantly the performance of joins. In this paper, we elaborate on the use of join indices in the context of

non—recursive and recursive queries. We view a join index as an alternative join method that should be

considered by the query optimizer as any other access method. In general, a query optimizer maps a

query expressed on conceptual relations into an access plan, i.e., a low—level program expressed on

the physical schema. The physical schema itself is based on the storage model, the set of data struc

tures available in the database system. The incorporation of join indices in the storage model enlarges

the solution space searched by the query optimizer, and thus offers additional opportunities for increas

ing performance.

10

Join indices could be used in many different storage models. However, in order to simplify our

discussion regarding query optimization, we present the integration of join indices in a simple storage

model with single attribute clustering and selection indices. Then we illustrate the impact of the storage

model with join indices on the optimization of non—recursive queries, assumed to be SPJ queries. In

particular, efficient access plans, where the most complex (and costly) part of the query can be per

formed through indices, can be generated by the query optimizer. Finally, we illustrate the use of join

indices in the optimization of recursive queries, where a recursive query is mapped into a program of

relational algebra enriched with a transitive closure operator.

2. Storage Model with Join Indices

The storage model prescribes the storage structures and related algorithms that are supported by

the database system to map the conceptual schema into the physical schema. In a relational system

implemented on a disk—based architecture, conceptual relations can be mapped into base relations on

the basis of two functions, partitioning and replicating. All the tuples of a base relation are clustered

based on the value of one attribute. We assume that each conceptual tuple is assigned a surrogate for

tuple identity, called a TID (tuple identifier). A TID is a value unique for all tuples of a relation. It is

created by the system when a tuple is instantiated. TID’s permit efficient updates and reorganizations of

base relations, since references do not involve physical pointers. The partitioning function maps a

relation into one or more base relations, where a base relation corresponds to a TID together with an

attribute, several attributes, or all the conceptual relation’s attributes. The rationale for a partitioning

function is the optimization of projection, by storing together attributes with high affinity, i.e., frequently

accessed together. The replicating function replicates one or more attributes associated with the TID of

the relation into one or more base relations. The primary use of replicated attributes is for optimizing

selections based on those attributes. Another use is for increased reliability provided by those additional

data copies.

in this paper, we assume a simple storage model where the partitioning function is identity, defin

ing a primary copy, and the replicating function defines one or more selection indices. The primary copy

of a relation R(A, B, ...) is a base relation F(TID, A, B, ...) clustered on TID. Clustering is based on a

hashed or tree structured organization. A selection index on attribute A of relation R is a base relation

F(A, TID) clustered on A.

Let R1 and R2 be two relations, not necessarily distinct, and let TID1 and TID2 be identifiers of tuples

of R1 and A2, respectively. A join index on relations R1 and A2 is a relation of couples (TID1, TID2), where

each couple indicates two tuples matching a join predicate. Intuitively, a join index is an abstraction of

the join of two relations. A join index can be implemented by two base relations F(TID1, TID2), one

clustered on TID1 and the other on TID2. Join indices are uniquely designed to optimize joins.

The join predicate associated with a join index may be quite general and include several attributes

of both relations. Furthermore, more than one join index can be defined between any two relations.

The identification of various join indices between two relations is based on the associated join predicate.

Thus, the join of relations A1 and R2 on the predicate (R1.A = R2.A and R1.B = R2.B) can be captured as

either a single join index, on the multi—attribute join predicate, or two join indices, one on (R1.A = R2.A)

and the other on (R1.B R2.B). The choice between the alternatives is a database design decision

based on join frequencies, update overhead, etc.

Let us consider the following relational database schema (key attributes are bold):

11

CUSTOMER (cname, city, age, job)

ORDER (cname, pname, qty, date)

PART (pname, weight, price, spname)

A (partial) physical schema for this database, based on the storage model described above, is (clus

tered attributes are bold)

C_PC (CID, cname, city, age, job)

City_IND(city, CID)

Age_IND (age, CID)

0_PC (OlD, cname, pname, qty, date)

CnamelND(cname, OlD)

CIDJI (CID, OlD)

OID_Jl (OlD, CID)

C_PC and 0_PC are primary copies of CUSTOMER and ORDER relations. City_IND and Age_IND are

selection indices on CUSTOMER. CnamelND is a selection index on ORDER. CID JI and OlD JI are join

indices between CUSTOMER and ORDER for the join predicate (CUSTOMER. Cname = ORDER.Cname).

3. Optimization of Non—Recursive Queries -

The objective of query optimization is to select an access plan for an input query that optimizes a

given cost function. This cost function typically refers to machine resources such as disk accesses,

CPU time, and possibly communication time (for a distributed database system). The query optimizer is

in charge of decisions regarding the ordering of database operations, and the choice of the access

paths to the data, the algorithms for performing database operations, and the intermediate relations to

be materialized. These decisions are undertaken based on the physical database schema and related

statistics. A set of decisions that lead to an execution plan can be captured by a processing tree

Krishnamurthy 86]. A processing tree (PT) is a tree in which a leaf is a base relation and a non—leaf

node is an intermediate relation materialized by applying an internal database operation. Internal data

base operations implement efficiently relational algebra operations using specific access paths and al

gorithms. Examples of internal database operations are exact—match select, sort—merge join, n—ary

pipelined join, semi—join, etc.

The application of algebraic transformation rules Jarke 84] permits generation of many candidate

PT’s for a single query. The optimization problem can be formulated as finding the PT of minimal cost

among all equivalent PT’s. Traditional query optimization algorithms Selinger 79] perform an exhaus

tive search of the solution space, defined as the set of all equivalent PT’s, for a given query. The

estimation of the cost of a PT is obtained by computing the sum of the costs of the individual internal

database operations in the PT. The cost of an internal operation is itself a monotonic function of the

operand cardinalities. If the operand relations are intermediate relations then their cardinalities must

also be estimated. Therefore, for each operation in the PT, two numbers must be predicted: (1) the

individual cost of the operation and (2) the cardinality of its result based on the selectivity of the condi

tions Selinger 79, Piatetsky 84].

The possible PT’s for executing an SPJ query are essentially generated by permutation of the join

ordering. With n relations, there are n! possible permutations. The complexity of exhaustive search is

therefore prohibitive when n is large (e.g., n> 10). The use of dynamic programming and heuristics, as

in Selinger 79], reduces this complexity to 2~, which is still significant. To handle the case of complex

queries involving a large number of relations, the optimization algorithm must be more efficient. The

complexity of the optimization algorithm can be further reduced by imposing restrictions on the class of

12

PT’s Ibaraki 84), limiting the generality of the cost function Krishnamurthy 86), or using a probabilistic

hill—climbing algorithm loannidis 87].

Assuming that the solution space is searched by an efficient algorithm, we now illustrate the possi

ble PT’s that can be produced based on the storage model with join indices. The addition of join indices

in the storage model enlarges the solution space for optimization. Join indices should be considered by
the query optimizer as any other join method, and used only when they lead to the optimal PT.

In Valduriez 87], we give a precise specification of the join algorithm using join index, denoted by

JOINJI, and its cost. This algorithm takes as input two base relations R1(TID1, A1, B1, ...) and R2(TID2,

A2, B2, ...), and a join index JI (TID1, TID2). The algorithm JOINJI can be summarized as follows:

for each pair (tid1, tid2) in JI do

t1 := read (R1, tid1)

t2 := read (R2, tid2)

concatenate the tuples t1 and t2

endfor

The actual algorithm optimizes main memory utilization and clustered access to relations R1 and R2. The

cost of JOINJI can be abstracted in terms of Yao’s function Yao 77]. This function, denoted by Y, gives
the expected number of page accesses for accessing k tuples randomly distributed in a relation of n

tuples stored in m pages:

Y(k,m,n)=m*

k

n—(nlm)—i+1

Assuming that relations R1 and R2 are clustered on TID, and ignoring the access to indices and the

production of the result, the cost of JOINJI can be summarized as:

cost (JO/NJ!) = (Y(k1, R11, 11R111) + Y(k2, 1R21, IIR2H)) * /0

where k1 is the number of tuples in R1 that participate in the join, IA I is the number of pages of R1
is the cardinality of R1 ,

and 10 is the time to read a page on disk.

The combined use of join indices and selection indices may generate PT’s that defer to the last

part of the query the access of the primary copies of relations (much larger). Let us first consider a

type of query that involves a selection and a join. We suppose a join index exists for the join and an

selection index exists for the selection. An example of such a query is “give the name and age of

customers in Paris with the part names ordered”. Many alternative PT’s may be found for such a simple

query. Figure 1 illustrates two interesting PT’s for this query, represented by a query tree on conceptual

relations. Both PT’s provide clustered accesses. For simplicity, we have left the algorithms unspecified

for the operations in the PT’s. PT1 describes a traditional strategy in which only the relevant tuples of

CUSTOMER are accessed and joined with the primary copy of relation ORDER using the index on the join

attribute. PT2 describes a strategy based on a join index. The join of the primary copies of CUSTOMER

and ORDER is performed with the relevant subset of the join index (semi—joined by the list of relevant

CID’s) using the algorithm JOINJI. Both PT1 and PT2 can dominate depending on select and join selectivi

ties.

Let us now consider a type of query involving multiple joins, possibly with selections. If every join

can be processed using a join index, then an interesting PT consists of first joining all the join indices,

thus providing all the identifiers of relevant tuples, and finally accessing the relevant tuples based on

those identifiers. Therefore, the primary copies of the relations are only accessed through clustered

TID’s in a final phase.

13

CUSTOMER ORDER City_IND City_IND

/ CPC CIDJI

ocity = Pans
crcity = Pat~ /

—

ocity = Pa~i~~ /
—

\ CID N CID 1Cname_~ CID N CID

cname N cname \ /
I cname N cname C_PC 0_PC

Y 0_PC \ /
ircrlame, age, pname cxl

OlD~l0lD
iTcname, age, pname

lTcname, age, pname

Query Tree PT1 PT2

Figure 1: Alternative Processing Trees for A Non—Recursive Query

If not every join can be processed using a join index, then joins with join indices may be combined

with more traditional join algorithms. Let us consider the query whose query tree is given in Figure 2.

Suppose that only one join index exists for that query. Two cases can occur: there is a join index on

ORDER and PART, or a join index on CUSTOMER and ORDER. In the first case, a traditional join precedes

the join using join index. The traditional join produces relation A, which is then used both in a semi—join

with the join index (to select the relevant subset of the join index) and in the final join using the join index.

In the second case, the join using the join index precedes the traditional join. Figure 2 shows the PT’s

corresponding to each case.

CUSTOMER ORDER C PC 0 PC C_PC Jl(CID,OlD) 0_PC

N
/

PART N

\ / PPC

N

Jl(OID,PID)

N

P_PC ~

Query Tree Join Index on ORDER and PART Join Index on CUSTOMER

and ORDER

Figure 2: Processing Trees for Different Join Indices

4. Optimization of Recursive Queries

Recursive queries can be mapped into loops of relational algebra operations Bancilhon 861, where

the operations of iteration i use as input the results produced by iteration (i—i). In Jagadish 87], it is

shown that the most important class of recursive queries, called linear queries, can be mapped into

programs consisting of relational algebra operations and transitive closure. Thus, the transitive closure

operator, extensively used for fix—point computations, is of major importance and requires efficient

implementation. In Valduriez 86a], we have illustrated the value of join indices for optimizing recursive

queries, and particularly transitive closure.

14

A join index captures the semantic links that exist between tuples. If we view the join of two tuples

as an arc connecting those tuple identifiers, a join index can represent directed graphs in a very com

pact way. Therefore, it will be very useful to optimize graph operations like transitive closure. Let us

consider again the PART relation:

PART (pname, weight, price, spname)

where spname is the name of a subpart (or component part). Assuming that PID and SPID stand for

PART tuple identifiers, then we can have two join indices (each clustered on its first attribute)

Jl1 (PID, SPID)

J12 (SPID, PID)

J11 associates a part_id with its subpart_id’s, while J12 associates a subpart_id with its parent part_id.

Therefore, Jl1 is well suited for traversals in the part—subpart direction. J12 allows efficient traversals that

follow the subpart—part direction.

Assuming that a recursive query is mapped into a conceptual query tree of relational algebra

operators and transitive closure, the query optimization algorithm discussed in Section 3 still applies.

However, the introduction of transitive closure yields a larger solution space, since transitive closure

may be permuted with other relational operators (e.g., select and join). The transitive closure operator

can be implemented efficiently by a loop of joins, unions, and possibly difference (for cyclic relations).

Superior performance is consistently attained when transitive closure is applied using join index rather

than the primary copy of the relation Valduriez 86a]. For instance, let us consider the recursive query

on the PART relation “list the component parts and their prices for part A”. Figure 3 illustrates the

corresponding query tree and a possible processing tree, in which transitive closure (noted IC) is ap

plied to the join index. The selection “pname = A” precedes the transitive closure so that only those

parts that are (transitively) components of part A are produced. In the PT, the result of the transitive

closure on join index JI is a set of pairs (PID of A, PID of a subpart of A). Therefore, an additional join

with relation PART is necessary to complete the query. Thus, the most complex part of the query is

done on small data structures (selection index, join index). The value of performing the transitive clo

sure using join index is to avoid repeated access to relation PART, which is potentially much larger than

the join index.

pname_IND

PART
Jl1 (PID, SPID)

PART a pname = A

a pname = A /
PART

SPID 1~1 PID

‘IT pname, price ‘~ pname, price

Query Tree PT with Join Index

Figure 3: Processing of a Recursive Query with Join Index

5. Conclusion

Join indices are data structures especially designed to speed up join operations. The incorporation

of join indices in a storage model provides the query optimizer with a larger solution space and hence

more opportunities for optimization. We have illustrated the use of join indices to optimize non—recur-

15

sive and recursive queries, which typically involve many joins. Using join indices permits the generation

of execution strategies in which the complex part of the query can be performed through indices, and

the primary copies (base relations) can be accessed in a final phase. Since indices are much smaller

than base data, a substantial gain may be obtained.

However, there are cases where classical indexing (selection indices on join attribute) outperforms

join indices. First, if the query only consists of a join preceded by a selection with high selectivity, then

the indirect access to the join index will incur additional index accesses. Second, join indices require

systematic access to the relation primary copy for projection. If the only projected attributes are join

attributes, then selection indices on join attribute will save having to access the primary copy. Intui

tively, join indices are more suitable for complex queries than for simple queries.Therefore join indices

should be considered as an additional access method by the query optimizer.

References

LBancilhon 86] F. Bancilhon, R. Ramakrishnan, “An Amateur’s Introduction to Recursive Query Process

ing Strategies”, ACM—SIGMOD mt. Conf., Washington, D.C., May 1986.

Gallaire 84] H. Gallaire, J. Minker, and J.M. Nicolas, “Logic and Database: A Deductive Approach”,

ACM Computing Surveys, Vol. 16, No. 2, June 1984.

Ibaraki 84] T. lbaraki, T. Kameda, “On the Optimal Nesting Order for Computing N—Relation Joins”,

ACM TODS, Vol. 9, No. 3, September, 1984.

loannidis 87] Y.E. loannidis, E. Wong, “Query Optimization by Simulated Annealing”, ACM—SIGMOD Int.

Conf., San Francisco, CA, May 1987.

Jagadish 87] H.V.Jagadish, R. Agrawal, L. Ness, “A Study of Transitive Closure as a Recursion Mecha

nism”, ACM—SIGMOD Int. Corif., San Francisco, CA, May 1987.

Jarke 84] M. Jarke and J. Koch “Query Optimization in Database Systems”, ACM Computing Surveys,

Vol. 16, No. 2, 1984.

Krishnamurthy 861 A. Krishnamurthy, H. Boral and C. Zaniolo “Optimization of Non—Recursive Queries”,

Int. Conf. on VLDB, Kyoto, Japan, 1986.

Piatetsky 84] 0. Piatetsky—Shapiro, C. Connell, “Accurate Estimation of the Number of Tuples Satisfying

a Condition”, ACM—SIGMOD Conf., Boston, MA, 1984.

Selinger 79] P. Selinger et al., “Access Path Selection in a Relational Database Management System”,

ACM SIGMOD Conf., Boston, MA, May 1979.

Valduriez 86a] P. Valduriez and H. Boral, “Evaluation of Recursive Queries Using Join Indices”, 1St Int.

Conf. on Expert Database Systems, Charleston, SC, 1986.

Valduriez 86b] P. Valduriez, S. Khoshafian, and G. Copeland, “Implementation Techniques of Complex

Objects”, Int. Conf. on VLDB, Kyoto, Japan, 1986.

Valduriez 87] P. Valduriez, “Join Indices” ACM TODS, Vol. 12, No. 2, June 1987.

Yao 77] S.B. Yao, “Approximating Block Accesses in Database Organizations”, CACM, Vol. 20, No. 4,

April 1977.

16

QUERY PROCESSING IN OPTICAL DISK BASED

MULTIMEDIA INFORMATION SYSTEMS

Stavros Chris todoulakis

Department of Computer Science

University of Waterloo

Waterloo, Ontario N2L 301

Canada

ABSTRACT

MINOS is a project in multimedia information management. In this project we investigate issues

related to the integrated magnetic and optical disk storage management for multimedia objects, content

addressibility for multimedia objects, access methods, user interfaces, editing and formatting tools,

distributed system aspects, and finally query optimization in a multimedia server environment.

In this project we have implemented and demonstrated a series of prototypes. We are using the

prototypes for experimentation and evaluation of our ideas. Currently we are involved in the

implementation of a high-performance multimedia object server based on optical disk technology. Optical

disks have been chosen because of their ability to store inexpensively large volumes of multimedia

information. We are studying various aspects of query processing in such an environment analytically

and experimentally. The results of our investigations will be incorporated in our system implementation.

In this report we outline our research efforts in multimedia query processing.

Issues in Optical Disk Based Multimedia Query Processing

In the environment described above, a number of new issues and problems in query processing

appear. First, performance estimates for retrieval must be derived. Such estimates have to take into

account the nature of the storage media (e.g., for optical disks), the distribution of the lengths of the

objects in the data base, the selectivities of the queries (mainly text-based), the placement of the

qualifying objects on the disk (block boundaries may be crossed), the interactive nature of the retrieval of

multimedia objects, as well as the characteristics of the access methods that MINOS uses. These issues

and some preliminary results of our studies are described in more detail below.

17

Retrieval Performance of CAV Optical Disks

Optical disks present different performance characteristics than magnetic disks. For Constant

Angular Velocity (CAV) disks, a major performance difference from magnetic disks is the existence of a

mirror with small inertia that can be used to deflect the reading beam very fast. As a result, it is much

faster to retrieve information from tracks that are located near the current location of the reading head.

We call this a span access capability. The span access capability of optical disks has implications for

scheduling algorithms and data structures that are appropriate for optical disks, as well as significant

impact on retrieval performance Christodoulakis 87a].

In Christodoulakis 87] we also derive exact analytic cost estimates as well as approximations that

are cheaper to evaluate, for the retrieval of records and longer objects such as text, images,voice, and

documents (possibly crossing block boundaries) from CAV optical disks. These estimates may be used by

query optimizers of traditional or multimedia data bases.

Retrieval Performance of CLV Optical Disks

Constant Linear Velocity (CLV) optical disks have different characteristics than the CAV optical

disks. CLV optical disks vary the rotational speed so that the unit length of the track which is read

passes under the reading mechanism in constant time, which is independent of the location of the track.

This has implications on the rotational delay cost which, in CLV disks, depends on the track location.

This also implies that, in CLV disks, the number of sectors per track varies (outside tracks have more

sectors). The latter (variable capacity of a track) has many fundamental implications on selection of data

structures that are desirable for CLV optical disks and the parameters of their implementation, for the

selection of access paths to be supported for data bases stored on CLV disks, as well as for the retrieval

performance and the optimal query processing strategy to be chosen. (These implications are studied in

detail in Christodoulakis 87b], in which is shown that these decisions depend on the location of data

placement on the disk.)

Analytic cost estimates for the performance of retrieval of records and objects from CLV disks are

also derived in Christodoulakis 87b]). These estimates may be used by traditional or multimedia query

optimizers. It is shown that the optimal query processing strategy depends on the location of files on the

CLV disk. This implies that query optimizers may have to maintain information about the location of files

on the disk.

Estimation of Selectivities in Text

In multimedia information systems much of the content specification will be done by specifying a

pattern of text words. Queries based on the content of images are difficult to specify, and image access

methods are very expensive. Voice content is transformed to text content if a good voice recognition

18

device is available. Thus accurate estimation of text selectivities is important in query optimization in

multimedia objects.

There is another important reason why accurate estimation of text selectivities is important.

Frequently the user wants to have a fast feedback of how many objects qualify in his query. If too many

objects quality, the user may want to restrict the set of qualifying objects by adding more conjunctive

terms. If too few objects qualify, the user may want to increase the number of objects that he receives

by adding more disjunctive terms. (Tradeoffs of precision versus recall are extensively described in the

information retrieval bibliography.) Although such statistics may be found by traversing an index on text

(possibly several times for complicated queries) indexes may not be the desirable text access methods in

several environments Haskin 81].

Given a set of stop words (words that appear too frequently in English to be of a practical value in

content addressibility), it is easy to give an analytic formula that calculates the average number of words

that qualify in a text query Christodoulakis and Ng 87]. This analytic formula uses the fact that the

distribution of words in a long piece of text is Zipf with known parameters.

However, the average number of documents may not be a good enough estimate (in some cases) for

query optimization or for giving an estimate of the size of the response to the user Christodoulakis 84].

More detailed estimates will have to consider selectivities of individual words and queries. This can be

done using sampling. A sampling strategy looks at some blocks of text, counts the number of occurrences

of a particular word or text pattern, and based on this extrapolates the probability distribution of the

number of pattern occurrences to the whole data base. A potential problem with this approach is that in

order to be confident about the statistics a large portion of the file may have to be scanned.

Instead of blocks of the actual text file, blocks of the text signatures could be used when signatures

are used as text access methods. Since more information exists in blocks of signatures than in blocks of

the actual text file, fewer blocks would have to be looked at; alternatively, by sampling the same number

of signature blocks, sharper probability distributions (for the number of occurrences of the pattern in

data base) can be obtained.

Query Optimizers for Interactive Multimedia Retrieval

The multimedia retrieval environment has the following important difference with the traditional

data base environments: it is very difficult for the user to specify precisely what he wants to see. (It is

difficult, for example, to specify content in images, and there are many synonyms of text words. Voice

segments may also be only partially recognized by a voice recognizer.) It is frequently the case that the

user has to look carefully within a document in order to decide if a document is relevant or not, and

which parts of it are relevant. Retrieving all qualifying documents at once may not be the best query

processing strategy, because users frequently quit when they find what they want or when they look at

19

the first few pages of a document. The time that a user spends on a document may depend on the order

of the document in the retrieved ordered set of documents. In addition, users frequently want to

reformulate their queries if the filter was not good enough (too many or too few documents qualify). The

above observations may have significant impact in the structure of query optimizers for multimedia data.

We are experimenting with a user model in order to integrate it in our performance studies

Christodoulakis and Ng 87]. We are also experimenting with several query processing strategies in this

environment.

A second aspect of the interactive multimedia retrieval has to do with the retrieval of delay-

sensitive data such as voice, video, annimations. For long voice segments for example, it may not be

desirable to prefetch all the voice information. This may require many block accesses from secondary

storage, and it may occupy large main memory resources for long time intervals. Care however in

scheduling must be taken to guarantee that enough voice information is delivered to user workstations so

that voice interruptions are minimized. This implies that performance measures used should also take

into account delay-sensitive data (data type), unlike traditional data bases.

It is however hard to study reliably the performance of the system using analytical methods in such

an environment. We are currently implementing a distributed testbed for multimedia management based

on a server architecture Christodoulakis and Velissaropoulos 87]. The testbed is modular so that we can

easily replace components for experimentation. We will be using the testbed for experimenting with

various scheduling algorithms and performance measures in a multimedia server environment with delay-

sensitive data.

Processing of’ Multiple Requests

MINOS extensively uses signature techniques as access methods Christodoulakis and Faloutsos 84],

Faloutsos and Christodoulakis 87]). Signature files are mainly sequential access methods (however,

multilevel signature methods may also be used). Sequentially accessed files are good candidates for

parallel processing of several requests at a time (unlike tree organizations). This may be particularly

useful for jukebox optical disk based architectures where disk interchanges to the reading device(s) may

be slow and therefore requests queued. New requests may also arrive during processing and it may be

desirable to join the queue of requests in progress. We are currently experimenting with several

algorithms for processing requests in parallel in such a multimedia environment using signatures of one or

more levels. The best of these algorithms will be incorporated into the query processing component of

MINOS.

20

Integrated System Implementation

The system under implementation is based on a server architecture using SUN workstations,

Ethernet, and magnetic and optical mass storage devices for the server. The multimedia presentation

manager resides in the workstations. A high-performance object filing system that combines magnetic

and optical disk technology has been implemented Christodoulakis et al. 87]. The filing system is general,

in that it allows the designer to choose from a variety of access methods and implementations of access

methods, data placement strategies and implementations of data placement strategies to be defined for a

file. This set of access methods and placement strategies is extensible. We are currently testing the

system. The filing system will be used for low-level support of the archival component of the server. The

query processing strategies that will perform best in the performance studies outlined in this paper will be

incorporated in the system.

References

Christodoulakis 84] 5. Christodoulakis: “Implications of Assumptions in Database Performance

Evaluation”, ACM TODS, June 1984.

Christodoulakis 87aJ S. Christodoulakis: “Analysis of Retrieval Performance for Records and Objects

Using Optical Disk Technology”, ACM TODS, June 1987.

Christodoulakis 87b] S. Christodoulakis: “Analysis and Fundamental Performance Tradeoffs for CLV

Optical Disks”, Technical Report, Department of Computer Science, University of Waterloo, 1987.

Christodoulakis and Velissaropoulos 87] S. Christodoulakis and T. Velissaropoulos: “Issues in the Design

of a Distributed Testbed for MINOS”, Transactions on Management Information Systems”, 1987.

Christodoulakis and Ng 87] 5. Christodoulakis and R. Ng: “Query Processing in a Multimedia Retrieval

Environment”, in preparation, 1987.

Christodoulakis et al. 87] S. Christodoulakis, E. Ledoux, R. Ng: “An Optical Disk Based Object Filing

System”, Technical Report, Department of Computer Science, University of Waterloo, 1987.

Christodoulakis and Faloutsos 84] S. Christodoulakis and C. Faloutsos: “Performance Analysis of a

Message File Server”, IEEE Transactions on Software Engineering, March 1984.

Faloutsos and Christodoulakis 87] C. Faloutsos and S. Christodoulakis: “Analysis of Retrieval

Performance of Signature Access Methods”, ACM TOOlS, 1987.

Haskin8l] L.A. Haskin: “Special Purpose Processors for Text Retrieval”, Database Engineering 4,1, Sept

1981,16-29.

21

Query Processing Based on Complex Object Types

Elisa Bertino, Fausto Rabitti

Istituto di Elaborazione della Inform azione

Consiglio Nazionale delle Ricerche

Via S.Maria 46, Pisa (Italy)

ABSTRACT

In applscatwn areas where the data management system has to deal with a large number of complex data

objects with a wide variety of types, the system must be able to process queries containing both conditions

on the schema of the data objects and on the values of the data objects. In this paper we will focus on a

particular phase in query processing on a data base of complex objects called Type-Level Query Processing. In

this phase, the query is analyzed, completed, and transformed on the basis of the the definitions of the complex
object types. We will present, in particular, the techniques used in the ESPRIT project MULTOS. In this

project, a data server has been implemented in which data objects are constituted by multimedia documents

with complex internal structures.

1. Introduction

Many applications, such as office information systems (OIS), particularly filing and retrieval of multime

dia documents IEEE84], computer-aided design and manufacturing (CAD/CAM), and artificial intelligence
(Al) in general and knowledge-based expert systems in particular, need to deal with a large number of data

objects having complex structures. In such application areas, the data management system has to cope with

the large volumes of data and to manage the complexity of the structures of these data objects BANE87J.
An important characteristic of many of these new applications is that there is a much lower ratio of instances

per type than in traditional data base applications. Consequently, a large number of objects implies a large
number of object types. The result is often a very large schema, on which it becomes difficult for the users

to specify queries. The data management system must be able to process queries containing both conditions

on the schema (i.e. partial conditions on type structures of the complex data objects to be selected) and

on the data objects (i.e. conditions on the values of the basic components contained in the complex data

objects).

In this paper we will focus on a particular phase in query processing on a data base of complex objects.
In this phase the query is analyzed, completed, and transformed based on the information contained in the

definitions of the complex object types. We call this phase Type-Level Query Processing. With this phase,
the system realizes a two-fold functionality:

• The system does not force the user to specify exactly the structures (i.e. the types) of the complex data

objects to select. On the contrary, it allows the user to specify only partial structures of these complex
objects, so making queries on content is much more flexible. In fact, the user can specify the type of

only a few components of the complex objects (and giving conditions on the values), without specifying
the complete type of the complex objects.

• The system exploits the complex structures of the data objects, described according to a high-level

model, for query transformations which simplify the rest of the query processing.

During Type-Level processing, some transformations allow pruning of the query, so that the resulting

query contains fewer predicates to evaluate. In other words, for a given query, the Type-Level processor

checks whether there are conjuncts or disjuncts in the query that are always true for instances of the object

types referenced in the query. In certain cases, during this phase, it may also be deduced that the query is

empty without having to access the data. In this paper, we will describe such transformations and also in

which cases the Type-Level processor deduces that a query is empty.

L~.

For this purpose, we will present the techniques used for this phase of query processing in Project
MULTOS, for the implementation of a data server in which data objects are constituted by multimedia

documents with complex internal structures.

2. The MULTOS System

The MULTOS multimedia document server has been designed and implemented within project MULTOS

(BERT85] (BERT86I, which is part of the European Strategic Programme for Research in Information

Technology (ESPRIT).

The internal structure of the document server consists of a certain number of components: the type
handler maintains type definitions and manages all the operations on types; the storage subsystem provides
access methods for document retrieval and allows the storage of large data values, the operation and structure

translator maps document level operations onto the data structures of the storage subsystem. The query

processor is responsible for the execution of queries. It checks the syntactic correctness of the query and

performs query decomposition and query optimization. The result of query execution is the set of identifiers

of all documents satisfying the query. The query processor is also the module which performs Type-Level
processing of the queries.

2.1. The Document Model

A multimedia document is a collection of components which contain different types of multimedia

information, and may be further structured in terms of other components (such as the body of a paper

that is composed of sections and paragraphs and contains images and attributes embedded in text). For

these reasons, we can consider multimedia documents as complex data objects. These complex structures,

which can vary greatly from one document instance to another, cannot be adequately described with the

structuring mechanisms of traditional data models. Thus, an important issue concerns the adoption of a

suitable conceptual model. The data model adopted in MULTOS is defined in IMULT86], and is based on

the ideas expressed in RABI85] and IBARB85I.

Document

Place Date Reçeiver+ Sendel Letter
-~

-

Nam~ ____

Name rAd~1S ~
Street City Country Street City Country

Figure 1: Example of Document Type: Generic_Letter

Document

- -

-

Place Date ~~e~er+ Send~tter_Body
fT ii

etc. etc.

~~~ ~ -

-

Company_Logo Product_Description Signature

Product_Presentation Product_Cost

Figure 2: Example of Document Type: Business_Letter

2~



In order to support different operations (i.e., editing, presentation, retrieval), the document model

supports several structural descriptions of a multimedia document. The logical structure determines how

logical components, such as sections and paragraphs, are related HORA85]. The layout structure describes

how document components are arranged on an output device at presentation time HORA85I. There may be

couplings between logical and layout structures. The document model adopts a standardized representation
based on ODA (the Office Document Architecture, a standard under definition by ISO, ECMA and CCITT

ECMA85]) for the logical and layout structures.

It is also important to see a document in terms of its conceptual components: a conceptual component
is a document component which has some commonly understood meaning for the community of users. The

conceptual structure is used for query specification, since conceptual components are more meaningful to

the user than logical or physical components and, also, the conceptual structure i8 often less complex than

the logical and layout structures. The main type constructor used in this data model is aggregation, which

allows the definition of a complex component as the composition of its sub-components. In this model, the

type definition of complex objects (i.e. multimedia documents) can be organized in a is—a hierarchy, where

the inheritance of (conceptual) components between complex object types is described.

In Fig.1 the conceptual structure of the type Generic_Letter is sketched. In Fig.2 the conceptual structure

of the type Business_Letter is sketched. The second type is a specialization of the first type, since the

component Letter_Body has been specialized into five new components. In conceptual modelling terms, we

can say that Business_Letter is—a Generic_Letter.

In the examples of document types, the “+“ symbol attached to the component Receiver means that

it is a multi-valued conceptual component. It should be noticed also that the conceptual components Name

and Address appear in two subtrees having as roots respectively the conceptual components Receiver and

Sender.

2.2. The Query Language

Queries may have conditions on both the content and the conceptual structure of documents. Express
ing conditions on the document’s conceptual structure means to ask for documents having the conceptual
components whose names are specified in the condition. The query language is fully described in IMULT86aI.
In general, a query has the following form:

find documents version
... scope ... type TYPE-clause; where COND-clause;

One or more conceptual types can be specified in the TYPE clause. The conditions expressed in the

query apply to the documents belonging to the specified types. If the types indicated in the query have

subtypes, then the query applies to all the documents having as type one of these subtypes. When no type is

specified, the query will apply to all possible document types. The conditions expressed in the COND clause

are a Boolean combination of conditions which must be satisfied by the documents retrieved. Conditions

on text components and conditions on attribute components, of different types, can be mixed in the COND

clause. A text condition on the special component named “text” is applied to the entire document.

In order to reference a conceptual component in a document, a path-name must be specified. A path-
name has the form:

name1 I*]name2.I*] . . .name~_jI.I*1name~
where each narne~ is a simple name.

The path-name specifies that the conceptual component being referenced is the component having simple
name narne~ which is contained within the conceptual component whose name is name~_1. The conceptual
component name~_~ is in turn contained in name~_2, and so forth. Component names within a path-name
can be separated by either a “.“ or a “*“. When a “.“ is used, it means that the conceptual component of

the left side of the “.“ contains directly the component on the right. When a “*“ is used, there may be one

or more intermediate components between the component on the left side and the one on the right.

In our query language, conditions are usually expressed against conceptual componentsof documents,
that is, a condition has the form: “component restriction”, where component is the name (or path-name)
of a conceptual component and restriction is an operator followed by an expression. This expression may

contain other component names.

It should be noticed that any component name (or path-name) may refer to a conceptual component

which is contained in several conceptual components. For instance, in the example in Fig.2, we could have a

24



condition of the form: “Name restriction”. The restriction applies to both components whose path-names
are Sender.Name and Receiver.Name. The problem is to decide how such a condition is satisfied. There are

four possibile interpretations:

(1) Name restriction = True if

(Sender.Name restriction = True) A (~ (Receiver.Name restriction = True))

(2) Name restriction = True if

(Sender.Name restriction = True) A (V (R.eceiver.Name restriction = True))

(3) Name restriction = True if

(Sender.Name restriction = True) V (V (Receiver.Name restriction = True))

(4) Name restriction = True if

(Sender.Name restriction = True) V (3 (Receiver.Name re8triction = True))

Our system uses the third interpretation, since it is the most general: the answer to query (3) contains

the answers to queries (1), (2), and (3). This choice reflects the approach of giving to the user the most

general answers, when there are ambiguities in the query. Then, the user, who did not know exactly the

types defined in the document base, can refine the the original query specifying exactly the meaning of the

query. The four different semantics, in our query language, can be specified explicitly as:

(1) Sender.Name restriction and some Receiver.Name restriction

(2) Sender.Name restriction and every Receiver.Name restriction

(3) Sender.Name restriction or every Receiver.Name restriction

(4) Sender.Name restriction or some Receiver.Name restriction

In addition to the previous types of conditions, the language must allow conditions on the existence

of conceptual components within documents. This allows expressing queries on the conceptual structure of

documents. Therefore we have defined the operator “with”. A condition containing the “with” operator
has the form: “with component”. This condition expresses the fact that the component whose name (or
pathname) is given must be a conceptual component of the documents to be retrieved. To express conditions

that require that a conceptual component having name narne~ is contained in a conceptual component having
name name,, the path-name name1 * name, is used.

The “with” operator is conceptually very important in our query language. While the other operators
allow the definition of conditions on data (ie. document instance), the “with” operator allows the definition

of conditiou8 on meta-data (ie. document types).

An example query that will be used throughout this paper is:

find documents where Document.Date > /1/1/1987/ and

(*Sender.Name = “Olivetti” or *ProductYresentation contains “Olivetti”) and

*Product.Description contains “Personal Computerl” and

(*Address.Country = “Italy” or text contains “Italy”) and

with *CompanyLogo;

It should be noticed that no type is specified for this query. As we will see, one of the tasks associated

with Type-Level Processing is to determine the type(s), if any, to which the query applies.

3. Initial Steps in Query Processing

The task of query processing consits of several steps, some of which are concerned with query opti
mization IBERT87I. In this paper we consider the pre-processing steps, in which some initial activities

are performed, such as query parsing and accessing the type catalog. Also during this phase, the query is

modified in light of the type hierarchy.

3.1. Parsing

The query is parsed by a conventional parser. The parser verifies that the query has a correct syntax.
The parser output is a query parse tree, which is augmented and modified by the subsequent steps in query

processing. The COND clause (the boolean combination of conditions) is expressed in the parse tree in

Conjunctive Normal Form (CNF).

25



3.2. Type-Level Processing

If a list of types is specified in the query (clause TYPE), then it is checked that the conceptual compo
nents present in the query belong to those types. Also, each conceptual component name is expanded to its

complete path name. If there are several paths corresponding to a given name, the condition C in which the

component appears is substituted by a disjunction of conditions Cj, . . . , C,~, where n is the number of path
names. Each C has the same form as C, except that the name of the conceptual component appearing in

C is substituted by the ~—th path name.

If no type is specified, the type catalog is accessed to determine the document types containing the

conceptual components whose names appear in the query conditions (clause COND). The list of these types
is added to the query tree. If no document type exists containing such conceptual components, the query

results in an empty set and query processing stops.

The transformations on the query parse tree include the elimination of all “with” conditions (in most

cases), the reorganization (i.e. addition and/or deletion) of disjuncts in some conjuncts and the possible
elimination of some conjuncts. If the conjuncts have mutually exclusive requirements (i.e. no document

type exists containing the required conceptual components) the query results in an empty set and the query

processing stops. If all conjuncts are eliminated the answer to the query is the set of documents belonging
to one of the types determined in the Type-Level query processing, and no query optimization is necessary

any more. The algorithms used in this query processing phase will be described in the following section.

The example query, resulting from the transformations performed by the Type-Level query processor,

is the following (this query applies only to the type Business_Letter):

find documents type Business.Letter; where Document.Date > /1/1/1987/ and

(Document.Sender.Name = “Olivetti” or

Document .LetterBody.ProductYreaentation contains “Olivetti”) and

Document .Letter..Body.ProductDescription contains “Personal Computer%” and

(some Document.Receiver.Address.Country = “Italy” or

Document.Sender.Address.Country = “Italy” or text contains “Italy”);

4. The Algorithm for Type-Level Query Processing

The input to the algorithm is the initial list of types L contained in the clause TYPE and the query

parse tree, derived from the COND clause and expressed in CNF:

COND =

where r,3 is the 3—th condition in disjunction in the 2—th conjunct.

In order to illustrate the algorithm for Type-Level Query Processing, we show how each step applies to

the query of the previous example. We suppose that the types in the catalog are:

t1 Generic_Letter, t~ = Business_Letter.

The algorithm is composed of the following steps:

1) All path-names, P = (P1, P2, . . . , p~,}, identifying document components on which query conditions are

defined, are extracted from the parse tree.

In the example, we have P = {p1,p2, . . . ,p~} where:

P1 : Document.Date

P2 : sSender.Name

p3 : *Product_Presentation

p4 : *Product_Description

p5 : *Address.Country
P6 : *Company_Logo

2) A p. can either be a complete path-name (i.e. without “*“) or a partially specified path-name (i.e.
with “~i~”). For each p1, we determine the set N1 = {n1,l,nl,2,. . .,rzj,,~,} of all complete path-names

corresponding to p~ according to the applicable type definitions in the document type catalog (if p, is

already a complete path-name, N1 contains only p itself, provided that the component name is found

in at least one type definition). N1 can be empty. Then, for each n~, the list of document types

26



= {t1, t2,. . , t~13} containing this component name is determined by accessing the type catalog
(including sub-types found in the type hierarchy).

In the example, for each path-name p. in set P determined in the previous step, the set N1 is:

N1 = {Document.Date}
N2 = {Document.Sender.Name}
N3 = {Document.Letter_Body.Product_Presentation}
N4 {Document.Letter.Body.Product..Description}
N5 = {Document.Receiver. Address.Country, Document.Sender. Address.Country}
N6 = {Document.Letter..Body. Company..Logo}

Also, the sets T1,, are:

T1,1 = {t1, t2}, T2,1 = {t1, t2}, T3,1 = {t2}, T4,1 = {t2}, T5,1 = {t1, t2}, T5,2 = {t1, t2},
T6,1 = {t2}

3) The set of all types referenced in the query conditions is determined by T’ = U1(U,(T~,1))

In the example, T’ = {t1,t2}.

4) If the TYPE clause exists, the types listed in it are assigned to the set L. Let T” = L be the transitive

closure, according to the type is—a hierarchy of all the types listed in L. Otherwise T” is the set of all

types in the catalog.

In the example, since there is no TYPE clause in the query, T” is the set of all types in the cata

log: {t1,t2}.

5) The initial set of types for the query is determined by T = T’ fl T”.

In the example, T = {t1,t2}.

6) Now the query is expanded. Let ps,, be the path-names of the condition r,3, as Bpecified in the query.
We discuss only the case in which each condition contains only one path-name. The extension to the

case in which more path-name are contained in the same condition is straightforward.

If N1,, is empty, disjunct r~,1 must be eliminated. Otherwise, if N1,1 contains k complete path-names
n1,. . ., n~, the disjunct r1,1 is replaced by k new disjuncts (inside the same i—th conjunct), where p,,
has been replaced by n1,. . . , n~.

In the example, the following disjuncts are modified by this step:

r2,1 (name expansion): Document.Sender.Name = “Olivetti”

r2,2 (name expansion): Document.Letter_Body.ProductYresentation contains “Olivetti”

ra,i (name expansion): Document.Letter_Body.Product.Description contains “Personal Computer%”
is replaced by two new disjuncts, one for each complete path-name contained in set N5. They are

as follows:

r4, 1’: Document.Receiver.Address.Country = “Italy”
r4, i”: Document.Sender.Address. Country = “Italy”
r~,j (name expansion): with Document. LetterBody.CompanyIogo.

7) For each conjunct i, the set of types which contains at least one component referenced by a “non-with”

condition of this conjunct is determined by T1 = U(X1,,) where X1,, is the list of types associated with

the name n,3 of the condition r1,3, provided that this is not a “with” condition.

In the example, for each conjunct i (i = 1, . . ., 5), the set T1 is determined:

T1 = {t1,t2}, T2 = {t1,t2}, T3 = {t2}, T4 = {t1,t2}, T5 = 0.

8) For each conjunct i, the set of types which contains at least a component referenced by a “with” con

dition of this conjunct is determined by W1 = U,(Y1,,), where Y1,, is the list of types associated with

the name nj,1 of the condition r~,1, provided that this is a “with” condition. Let the set S1 be the list

of “with” conditions r~,1 whose Y1,1 constitute the minimal covering of the set W1.

27



In the example, for each conjunct i (i = 1~. . .,6), the set W1 is:

W1= 0, W2 = 0, W3 = 0, W4 = 0, W5 = {t2}
For conjunct 5 the set S is: S5 = {r5,j}.

9) Let W=fl1(W1).

In the example, we obtain the following set W: W = 0.

10) The set of types which contain at least one component in each conjunct is determined by:
T = Tfl (fl1 (7~ U W1)). If T is empty, the query is empty and query processing stops.

In the example, we obtain:

T = {t1,t2}fl ((fl({t1,t2}, {t1,t2}, {t2}, {t1,t2}, {t2})) = {t2}.
Therefore, the set of types to which the query applies contains only the type t2 = Business_Letter.

11) Now query reduction starts. For each conjunct ~, each disjunct r1,3 is examined. If the associated set

of types ~ is not contained in T, condition r,3 cannot become True and must be eliminated, if the

whole conjunct become empty, the query becomes empty and query processing stops.

In the example, this step has no effect, since there are no disjuncts that satisfy the condition expressed
in the algorithm.

12) The set of types T1 and W1 are now restricted: Vi, T1 = T1 flT W1 = W1 flT

In the example, the sets T1 and W, are restricted by this step to be:

T1={t2} fori=1,...,4
T5=O
W1 = 0 Ion = 1,...,4
W5 = { t2 }

13) For each conjunct i, each disjunct r,1 which is a “with” condition and which is not a member S1 is

eliminated.

In the example, this step has no effect since there are no disjuncts that satisfy this condition.

14) For each conjunct i, each disjunct n,1 which is not a “with” condition and whose T1,1 is contained in

W1 is eliminated.

In the example, this step has no effect since there are no disjuncts that satisfy this condition.

15) If conjunct i contains only “with” conditions and W1 is contained in W, then it is always True, since it

is implied by the other conjuncts. Thus, this conjunct can be eliminated.

In the example, this step has no effect since there is only one conjunct which is constituted by “with”

conditions, conjunct 5, but W5 is not contained in W.

16) If conjunct s contains only “with” conditions and W1 contains T, then it always True, since it is implied
by the list of types T. Thus, this conjunct can be eliminated.

In the example, conjunct 5 is eliminated, since it contains only a “with” condition and l4’~ contains

T.

The output of the algorithm is the list of types T on which the query is to be restricted and the modified

query parse tree: A.(V,(ni,1)). if the query parse tree is empty (i.e. all conjuncts have been eliminated),
the answer to the query is the set of documents belonging to one of the types in T, and no query optimization
is necessary.

In the example, the output of the algorithm yields the set of types T = {Business_Letter} and the

modified COND clause:

r1,1 : Document.Date > /1/1/1987/
r2,1 : Document.Sender.Name = “Olivetti”

r2,2 : Document.Letter_Body. Product_Presentation contains “Olivetti”

28



r3,1 : Document.Letter_Body.Product_Description contains “Personal Computer%”
Document.Receiver.Address.Country = “Italy”
Document.Sender.Address.Country = “Italy”

r4,2 : text contains “Italy”.

5. The MULTOS Prototype

The query processing techniques (including Type-Level query processing) described above have been

implemented in project MULTOS. The design and implementation of the MULTOS prototype will require
a total effort of about 100 man-years, distributed over five years. The implementation of the first prototype
of the MULTOS multimedia document server was completed as of June 1987. In this prototype, query

processing is based on data and text components of documents. A second prototype will follow, in which

image and audio components will also be considered. In particular, graphics and image components should

play an active role in the query processing.

References

BANE8T} Banerjee, J., et al., Data Model Issues for Object-Oriented Applications, ACM Trans. on Office

Information Systems, Vol.5 N.1, Jan. 1987.

BARB85] Barbic F. and Rabitti F., The Type Concept in Office Document Retrieval, Proc. VLDB Con

ference, Stockholm, August 2 1-23, 1985.

BERT85J Bertino, E., Gibbs, S., Rabitti, F., Thanos, C., Tsichritzis, D., Architecture of a Multimedia
Document Server, Proc. 2nd ESPRIT Technical Week, Brussels, Sept. 1985.

BERT86] Bertino E., Gibbs S., Rabitti F., Thanos C., and Tsichritzis D., A Multimedia Document Server,
Proc. Advanced Database Symposium, Japan, August 29-30, 1986.

BERT87] Bertino E., Rabitti F., Gibbs S., Query Processing in a Multimedia Document System, IEI-CNR
Technical Report B4-18, Pisa, Italy, 1987.

ECMA85I ECMA TC-29, Office Document Architecture, Standard ECMA-101, European Computer Man
ifacturer Association, Paris, Sept. 1985.

HORA85I Horak W., Office Document Architecture and Office Document Interchange Formats: Current
Status of International Standardization, Computer, Vol.18, N.10, pp.50-62, October 1985.

IEEE84] IEEE Database Engineering, Special Issue on Multimedia Data Management, Vol.7, N.3, Septem
ber 1984.

MULT86J Rabitti F., Document Model, MULTOS Tech. Deliverable IEI-86-02, IEI-CNR, Pisa, March
1986.

MULT86a] Bertino E., Rabitti F., Definition of the Query Language, MULTOS Tech. Deliverable IEI-86-

03.1, IEI-CNR, Pisa, March 1986.

RABI8S] Rabitti F., A Model for Multimedia Documents, in Office Automation: Concepts and Tools,
D.Tsichritzis ed., Springer-Verlag, 1985.

‘)O



Extensible Cost Models and Query Optimization in GENESIS’

D.S. Batory
Department of Computer Sciences

The University of Texas at Austin

Abstract

The GENESIS extensible DBMS is founded on the premise that customized DBMSs can be syn

thesized from primitive and prewritten modules. In this article, we explain how cost models used

in query optimization can be synthesized from primitive cost functions.

1. Introduction

GENESIS is an extensible database system: Its distinguishing feature is that it is a realization of a theory
of DBMS implementation Bat82-87a} whose principles were reviewed in an earlier DBE article Bat87bJ. The

underlying premise of the theory is that DBMSs can be synthesized from primitive, prewritten modules that

have standardized interfaces. If all components are available, GENESIS can synthesize a target DBMS in

minutes, in contrast to the man-years of effort required to customize existing DBMSs.

Query optimization is among the most important features of DBMSs. One of the fundamental problems
in extensible DBMS technologies is the development of extensible query optimizers Fre87, Gra87]. Query
processing algorithms and their cost functions are at the heart of query optimization; a DBMS uses the cost

functions to identify the cheapest available algorithm to process a query. In GENESIS, complex algorithms are

compositions of primitive algorithms. By symmetry, complex cost functions can be seen as compositions of

primitive cost functions.

In this article, we briefly outline the steps that are taken to process queries in GENESIS. We review the

ideas of how DBMS software can be constructed from components, and show how these same ideas can be

applied to the construction of cost models that are required by query optimizers.

Keep in mind that the GENESIS approach is not primarily aimed at the development of new query pro

cessing algorithms, but rather at the development of a framework in which recognized and new algorithms can

be cast. (This point should be evident in the following sections). The framework that we outline provides the

means for standardizing interfaces, defining plug-compatible modules, and demonstrating a building-blocks
technology for extensible DBMSs. We show in Bat87a] how many different query processing algorithms (e.g.,
join algorithms) conform to a very simple algebraic framework.

2. Overview

Nontraditional database applications require new data types and operators. A functional data model and

data language, we feel, provides the greatest flexibility for addressing these needs. GENESIS users see data

bases consisting of objects that are related by functions Bat86b]. User requests, such as queries and updates,
are functional expressions, called GDL-expressions, that map streams of objects.

In contrast, the algorithms and storage structures of DBMS implementations are traditionally expressed in

terms of record/tuples, rather than objects. A record-based model with a functional data language, we feel, pro
vides the best description of DBMS implementations Bat87aJ. GENESIS DBMS implementors (DBIs) see

databases as networks of files and links. Database algorithms, such as file retrieval and joins (i.e, link traver

sals), are defined by functional expressions called record expressions or r-expressions that map streams of

records. The precise syntax and semantics of GDL-expressions and r-expressions are not essential to this arti

cle. We note, however, that the distinction between GDL-expressions and r-expressions is similar to the

*

This work was supported by the National Science Foundation under grant DCR-86-00738.

30



difference between SQL statements and their relational algebra counterparts.

Query processing and optimization in GENESIS involves a translation between these representations and

is accomplished in three steps: 1) mapping a user’s GDL-expression to an equivalent, but not optimized, r
expression, 2) optimizing the r-expression, and 3) evaluating the optimized expression. Figure 1 shows these

steps and their intermediate results.

Object-to-record data mappings are needed in Step 1. These mappings are provided by database adminis

trators (DBAs) when an object-based schema is initially declared. (Database design tools could be invented to

automate such mappings). GENESIS provides a good deal of flexibility here, as it supports non-1NF records,
i.e., records with repeating fields and nested repeating fields BatS6a].

Mapping GDL-expressions to r-expressions does not involve query optimization. The r-expression that is

produced in Step 1 consists solely of operations on conceptual files, conceptual links, and record streams. No

reference is made to the algorizh,ns that implement these operations (e.g., which join algorithm to use, which

indices to use, etc.).

Optimizing an r-expression and selecting the algorithms to implement the conceptual operations is the

task of Step 2. This can be accomplished by rule-based optimizers or by traditional query optimizers.
(GENESIS has no fixed optimizer, the optimizer that is used in a GENESIS-produced DBMS is part of the

DBMS’s specification).

Query optimization in GENESIS clearly requires an extensible cost model which estimates the cost of

executing conceptual operations. In the following sections, we outline a framework in which software for

DBMSs can be synthesized from components, and how extensible cost models can be produced in a similar

manner.

3. DBMS Software and Cost Model Building Blocks

The underlying concepts of GENESIS can be explained in terms of paranieterized types Gog841. A

classical example of a parameterized type is TACK_OFx}; stack algorithms can be defined independently of
the objects that are placed on a stack. Nonparameterized types, such as INT and STRING, can be used as

parameters of STACK_OF to define stacks of integers STACK_OFINT}) and stack of strings
STACK_OFSTRINGJ). The modules that implement the STACK_OF, INT, and STRING types, can be

recognized as building blocks of more complicated systems.

DBMS implementations can be viewed in the same way. One can define the nonparameterized types
BPLUS, ISAM, and HEAP. Instances of these types are B+ tree, indexed-sequential, and heap structures.

Declaring a file F to be of type BPLUS, for example, means that file F has a B+ tree implementation.

Parameterized types arise in all but the most trivial of DBMSs. NDEXdf,xfl is a parameterized type that

defines a partial implementation of an inverted file. When a file F is defined to be of type INDEX, the INDEX

module maps F (henceforth called an abstract file) to a data file and a set of zero or more index files (hen
ceforth called concrete files). INDEX also maps operations on F to data file and index file operations. The key
idea behind the pararneterization is that the data and operation mappings of INDEX do not rely on the

conceptual

r-expression

internal

r-expression

Figure 1. Query Optimization in GENESIS

31



implementations of the concrete data file and concrete index files. For this reason, the file types of the data and

index files are parameters to INDEX. Specifically, the df parameter specifies the implementation of the data file

and xf the implementation of the index files. A composition of types is a module expression. The module

expression of a typical inverted file is NDEXHEAP,BPLUS]: a FIEAP structure implements the data file and

BPLUS trees implement the index files of an inverted file. Of course, assigning different file structure imple
mentations to parameters df and xf yield different inverted file implementations. A large list of parameterized

types (or elementary transformations) is given in Bat85].

A consequence of describing DBMS implementations as module expressions is a rather unusual notion of

software layering. Normally, different layers in a system have completely different interfaces. In the

GENESIS approach, each parameterized and nonparametenzed file type corresponds to a distinct layer. Layers
are stacked in the order in which their corresponding types are nested in a DBMS’s module expression.
Because each type defines a file implementation, all types/modules/layers support exactly the same interface,
and are thus plug-compatible.

When modules (types) are composed, the notions of abstract and concrete are relative. The most abstract

files are conceptual files, and the most concrete files are internal files. If file C is of type

NDEXHEAP,BPLUS], it is a conceptual file. The heap data file and the B+ tree index files that are generated

by this module expression are the internal files.

Every GENESIS module or layer maps operations on an abstract file to operations on concrete files. To

illustrate operation mappings, let’s first consider two simple file types: BPLUS and HEAP. Let AF be an

abstract file and Q be a selection predicate. The abstract operation RET(AF,Q) generates the stream of AF

records that satisfy Q. The implementations of RET in the BPLUS and HEAP modules are:

RET(AF,Q) /* taken from the BPLUS module */

RET_BPLUS(AF,Q); 1* B+ tree retrieval algorithm */

RET(AF,Q) f* taken from the HEAP module */

RET_HEAP(AF,Q); t~’ heap retrieval algorithm */

That is, if file AF is a BPLUS tree, the RET operation on AF is realized by a B+ tree retrieval algorithm (i.e.,

RET_BPLUS). If AF is a HEAP, the RET operation on AF is realized by a heap retrieval algorithm
(RET_HEAP). Similar discussions hold for other file structures (e.g., ISAM, RTREE, etc.).

Another retrieval operation which accesses an abstract record given its pointer p. denoted ACC(AF,p),
would be implemented in a similar manner. (ACC_BPLUS would be the access algorithm for B+ trees,

ACC_HEAP for heaps, etc.). So too would other abstract operations, such as inserting, deleting, and updating
abstract records.

From an extensibility viewpoint, if a new file structure is invented, a new file type can be defined. The

module that implements the type supports the same interface as all other file modules and encapsulates the

retrieval, access, insertion, deletion, etc. algorithms that are associated with the file structure. Adding new file

structures in this way is simple, and is called storage structure extensibility.
1

Query optimization requires cost estimates of file structure retrievals. An obvious organization to impose

on an extensible optimizer is to express costs of abstract operations in terms of costs of concrete operations.
Let $RET(AF,Q) denote the cost of performing the RET(AF,Q) operation. For the BPLUS and HEAP types,

1
A slightly different, but equivalent, description of storage structure extensibility was given in Bat87b), where BPLUS,

HEAP, ISAM, and other storage structure algorithms were encapsulated in a single module (INTERNAL), where different

algorithms were distinguished within a large case statement. Our use of the parameterized type analogy eliminates the need

for this case statement.

32



we can supply definitions for $RET:

$RET(AF,Q)

C

$RET_BPLUS(AF,Q);

$RET(AF,Q)

$RET_HEAP(AF,Q);

/* taken from BPLUS module */

1* B+ iree retrieval cost function */

f” taken from HEAP module */

/~‘ heap retrieval cost function */

As before, when a $RET(AF,Q) is to be executed, the implementation of the file AF determines the cost func

tion to be evaluated. Thus, if AF is a heap, then $RET_HEAP(AF,Q) is executed.

In general, every GENESIS file type supports a common set of operations and cost functions. The opera

tions are basic operations (e.g., record retrieval, insertion, deletion, etc.) on abstract files. The algorithm(s) for

each abstract operation are expressed in terms of operations on concrete files. By analogy, there is one cost

function for each abstract operation. The expression that defines such a cost function is expressed in terms of

cost functions for concrete file operations.

Now let’s look at a more complicated file type: INDEX. INDEX maps an abstract file and its operations
to an inverted file, which consists of a data file and n�O index files, each of which is connected to the data file

by a link (Fig. 2). Let AF be the abstract file, D be the (concrete) data file, and I~ be an index file (j=1..n). A

possible implementation of RET(AF,Q) in INDEX is:

RET(AF,Q) /* taken from INDEX module */

case (use_$RET(AF,Q)_to_choose_cheapest) of

( Algi: RET(D,Q);

A1g2: USE_1_INDEX(AF, Q, RET(I~, Q~). ACC(F,p));

A1g3: USE_n_INDICES(AF, Q, RET(I~, Q~), ACC(F,p));

The three retrieval algorithms listed above are among the most popular in inverted file implementations. The

first processes query Q by scanning the data file, the second uses one index (as is done in System R), and the

third is the classical algorithm that takes the intersection and union of multiple inverted lists.

I AF~{---~

Figure 2. Indexing Layer Data Mappings

Three comments. First, note that the USE_i_INDEX and USE_n_INDICES algorithms have the opera
tions RET(I~, Q~) and ACC(F,p) as parameters. These operations represent, respectively, index file retrievals

and data file accesses. Note that the algorithms that implement these operations are not specified; only when

the implementation of these files is given in a module expression are algorithms actually assigned to these

1;

/~ scan data file */

/~ use one index file */

1* use many indices */

/

S.

33



operations. As we will see, this is critical to a plug-compatible software technology.

Second, there are other algorithms besides the three listed above. To add a new inverted file retrieval

algorithm, one simply adds another case. The same applies for other abstract operations (e.g., abstract record

insertion, deletion, etc.). They too are implemented as case statements, and new algorithms are included as

additional cases. Introducing another algorithm to process an abstract file or abstract link operation is called

algorithm extensibility.

Third, an element of query optimization can be seen in this example. When a RET(AF,Q) is to be pro

cessed, the cheapest available algorithm is selected. This is accomplished by evaluating cost functions for each

algorithm and choosing the cheapest algorithm. The code template for making this optimization decision has

the following organization:

$RET(AF,Q) /* taken from INDEX module */

retum( minimum_of

( $RET(F,Q), /* Mgi cost function ~/

$USE_1_INDEX(AF, Q, $RET(I~, Q~)~ $ACC(F,p)), 1* A1g2 cost function *1

$USE_n_IND1CES(AF, Q, $RET(I~, Q~). $ACC(F,p)) 1* A1g3 cost function *1

)

Two points. First, the cost functions $USE_1_INDEX and $USE_n_INDICES have algorithms to determine

which indices to use to process ~ in order to achieve the optimal performance. (As there are many such algo
rithms, the algorithm that is actually used could be a parameter to the $RET(AF,Q) cost function. Doing so

would provide a simple means by which optimizing algorithms could be changed). The information about what

indices to use is retained as part of the optimization process, and is later used when the selected algorithms are

executed.

Second, note that actual expressions for the cost functions for index file retrieval $RET(I~, Q~) and data

file accessing $ACC(F,p) are not specified; only when the implementation of these files is given in a module

expression can actual cost expressions be assigned to these functions.

In summary, the building blocks of DBMSs are parameterized and nonparameterized file types. The

software building blocks are the algorithms that map operations on abstract files to operations on concrete files.

The cost model building blocks are cost functions that are associated with these operation mappings. Composi
tion of building blocks is considered in the next section.

4. Synthetic DBMSs and Synthetic Performance Models

As mentioned in the previous section, a simple inverted DBMS, similar to INGRES, is described by the

module expression NDEXHEAP,BPLUS]. In this particular example, data file operations referenced in the

INDEX algorithms are mapped to heap file operations, and index file operations are mapped to B+ tree opera

tions. Let C be a conceptual file, D be its corresponding data file, I~ be an index file, and Q be a selection predi
cate. The algorithms to retrieve conceptual records are a composition of INDEX, BPLUS, and HEAP retrieval

and access algorithms:

RET(C,Q)

( case (use_$RET(C,Oj_to_choose_cheapest) of

Mgi: RET_HEAP(D,Q);

Alg2: USE_1_INDEX(C, Q, RET_BPLUS(IJ, Q~). ACC_IiEAP(D,p));
A1g3: USE_n_INDICES(C, Q, RET_BPLUS(I~, Q~). ACC_HEAP(D,p));

The above algorithms were derived by replacing RET(D,Q) with RET_HEAP(D,Q), RET(I~,Q~) with

RET_BPLUS(IJ, Q~). and ACC(D,p) with ACC_HEAP(D,p).

34



A cost model for the inverted DBMS can be constructed in an identical manner by composing inverted

file and internal cost functions. We obtain by function substitution:

$RET(C,Q)

retum( minimum_of

( $RETHIEAP(D,Q), 1* AIgi *1

$USE_1_INDEX(C, Q, $RET_BPLUS(IJ, Q~). $ACC_HEAP(D,p)) 1* Alg2 *1

$USE_n_INDICES(C, Q, $RET_BPLUS(IJ, Q~). $ACC_HEAP(D,p)) /* Alg3 *1

);

In principle, the software and cost models of a DBMS that has a more complicated module expression (and thus

has more complicated storage structures) can be synthesized in an identical manner by composing prewritten
software/cost components. A model of DBMS software composition and examples of more elaborate DBMSs

are given in Bat87a-b].

Another way to understand synthetic query optimizers is in terms of a hierarchy of optimizers. The top

most optimizer is identified with the conceptual level. Given a query, it generates access plans (i.e., r

expressions) that reference only operations on conceptual files and conceptual links. This optimization, as we

stated earlier, could be accomplished by rule-based optimizers or by traditional heuristic or enumerative means.

(The actual algorithm to search the solution space is a parameter to the DBMS’s specification). The cost of an

access plan is computed by estimating the frequency with which conceptual operations are executed, times the

cost of their execution. The latter is estimated by the cost functions that are generated in the composition pro

cess, such as $RET(C,Q) in our above example.

Query optimization in synthetic DBMSs is functionally no different than in traditional DBMSs: first, the

solution space of possible access paths for processing the query is searched, the cheapest plan is selected (and
in the process, information about what indices to use, etc, is retained), and finally an expression (i.e., composi
tion of algorithms) is generated to implement the plan.

Acknowledgements. I thank Jim Barnett, Brian Twichell, and Tim Wise for their comments and suggestions on

earlier drafts of this article.

References

Bat82] D.S. Batory and C.C. Gotlieb, ‘A Unifying Model of Physical Databases’, ACM Trans. Database

Syst. 7,4 (Dec. 1982), 509-539.

Bat84] D.S. Batozy, ‘Conceptual-To-Internal Mappings in Commercial Database Systems’, ACM PODS

1984, 70-78.

Bat85] D.S. Batory, ‘Modeling the Storage Architectures of Commercial Database Systems’, ACM

Trans. Database Syst. 10,4 (Dec. 1985), 463-528.

Bat86a] D.S. Batory, J.R. Bamett, J.F. Garza, K.P. Smith, K.Tsukuda, B.C. Twichell, T.E. Wise,

‘GENESIS: An Extensible Database Management System’, to appear in IEEE Trans. Software

Engineering.

Bat86b] D.S. Batory and T.Y. Leung, ‘Implementation Concepts for an Extensible Data Model and Data

Language’, TR-86-24, University of Texas at Austin, 1986.

Bat87a] D.S. Batory, ‘A Molecular Database System Technology’, TR-87-23, Dept. Computer Sciences,

University of Texas, Austin, 1987.

Bat87b] D.S. Batory, ‘Principles of Database Management System Extensibility’, IEEE Database

Engineering, 10, 2 (June 1987), 40-46.

Fre87] J.C. Freytag, ‘A Rule-Based View of Query Optimization’, ACM SIGMOD 1987, 173- 180.

35



Gog84] J. Goguen, ‘Parameterized Programming’, Trans. Software Engr., SE-b, 5 (September 1984),
528-543.

Gra87] G. Graefe and Di. DeWitt, ‘The EXODUS Optimizer Generator’, ACM SIGMOD 1987, 160-

172.

Gut77} J. Guuag, ‘Abstract Data Types and the Development of Data Structures’, Comm. ACM, 20,6

(June 1977), 396-404.



Software Modularization

with the EXODUS Optimizer Generator

Goetz Graefe

Department of Computer Sciences and Engineering

Oregon Graduate Center’

Abstract

In this paper, we describe the outline of the rules and procedures that need to be written to create a query

optimizer in the extensible database system EXODUS. The emphasis is put on the support the EXODUS optim
izer generator architecture provides for software modularity and incremental evolution of the data model and the

query optimizer.

1. Introduction

In Graefel987], we presented the design and an initial performance evaluation of the EXODUS optimizer
generator. EXODUS is an extensible database system currently under design and implementation at the Univer

sity of Wisconsin. An overview of its architecture is given in Carey 1986]. EXODUS is not a database system in

itself. It is a collection of software tools and libraries that allows for rapid and structured development of data

base systems. To implement a new database system, the database implementor, henceforth called the DBI,
invokes EXODUS software tools with appropriate description files, and links the generated code with EXODUS

libraries and some of her or his own code into an executable database system, ready to assist the users. Besides

the optimizer generator, there is the implementation language E Richardsonl98l], the storage

system Careyl986aJ, the type and dependency manager, the access plan translator to generate E programs for

queries, and the user interface generator.

2. Rule-Based Optimization of Operator Trees

The design goal of the EXODUS optimizer component is twofold. First, it is imperative to provide a very

general and powerful model of optimization. Second, it should be easy to specify the optimization process, and

the DBI should be encouraged to use a modular design in his or her implementation efforts.

While pondering what a suitable model of optimization would be, we let ourselves be guided by the model

of execution that we anticipate for future data models. Incidentally, this model of execution also received special
attention in the design of the E programming language Richardson 1987]. A run-time system for a database typi
cally consists of a limited set of procedures. Each of these procedures transforms a data stream according to an

argument that was derived from the original query. A typical example is a selection operator which eliminates

those tuples, records, or objects from a stream that do not satisfy a predicate provided in the query. To evaluate

complex queries, such procedures can be nested, i.e. the output of one of them can be the input of another one.

We call the transfer of data between such procedures a data stream or simply a stream, without making any

assumptions about how this transfer is physically arranged, e.g. by temporary files, shared memory, or messages,
and how the procedures are synchronized.

If we assume that this is how queries will be evaluated in EXODUS based databases, we can infer that

queries can always be expressed as trees of operators. For EXODUS, we decided to require the user interface to

produce a tree of operators that represents one correct sequence of operations to answer a query. Notice that we

intend to automate this process using the user interface generator which is still in the early design phase. The

operator tree is on the logical level only, it does not specify which algorithms and implementation methods are to

be used. The optimizer will transform the presented query tree into one that promises more efficient execution of

the query. This is done step by step, each step being the transformation of a query tree or a part of it into an

equivalent query tree. These transformations include replacement of operators (e.g. Cartesian product and selec

tion by a join), insertion of new operators (e.g. an additional project to eliminate fields as early as possible), and

rearrangement of operators to achieve lower processing cost.

1 This work was done at the Computer Sciences Department, University of Wisconsin — Madison.

37



Frequently, there is more than one implementation procedure for a given operation. For example, a

number of join methods have been developed for the relational equi-join Blasgen 1977], and most database sys
tems employ a repertoire of them. Therefore, the optimizers for EXODUS based database systems will distin

guish between operators and methods. Operators are on the logical level, i.e. an operator and its argument deter

mine the mapping from the input stream(s) to the output stream. Methods are on the physical level, i.e. a method

specifies the algorithm employed. For example, a relational equi-join is an operator, and nested loops join, merge
join, and hash join are corresponding methods for this operator. Part of the optimization process is to find the

least expensive set of methods to implement a particular operator tree.

It is important to notice that the correspondence between operators and methods can be complex. A single
method can implement more than one operator, or a single operator can require more than one method. Consider

a relational equi-join as an example. If duplicate elimination is not considered a part of the project operator, it is

easy to include a projection in any procedure that implements the join. A single method (algorithm, procedure)
can perform more than one operator. Similarly, a merge join is only possible if both inputs are sorted, otherwise

extra sort procedures are required. This potentially complex relationship between operators and methods must be

captured in the optimization process. In EXODUS, it is part of the optimization to select which of several imple
mentation methods for an operation is the most suitable in each case.

The easiest way to describe tree transformations and the correspondence of operator trees and method

trees is by means of rules. Rules for operator reordering are termed transformation rules, and rules for method

selection implementation rules. In our framework for optimization, the data model of the target DBMS is

described by a set of transformation rules and implementation rules together with a set of cost functions to predict
the processing cost for implementation alternatives.

The rule set must have two formal properties — it must be sound and complete. Sound means that it

allows only legal transformations. If a rule is not correct, no optimizer employing this rule can work properly. It

is impossible for a software tool such as the EXODUS optimizer generator to determine whether a set of rules is

sound, this can only be determined by the DBI who defines the data model by specifying the rules. Verifying the

soundness of the rules would only be possible if the data model can be described independently, and the two

descriptions could be compared. Complete means that the rule set must cover all possible cases, such that all

equivalent query trees can be derived from the initial query tree using the transformation rules. If the rule set is

not complete, the optimizer will not be able to find optimal access plans for all queries. Again, this cannot be

verified automatically because the set of equivalent query trees and access plans is defined only once.

To summarize, in our optimization model the optimizer maps a tree of operators into an equivalent tree of

methods, and it does so by operator reordering and method selection. The set of operators and the set of methods

are data-model-dependent, and hence must be specified by the DBI. Similarly, the rules that govern the tree

transformations and the operator-to-method mappings must also be specified by the DBI.

2.1.1. Cost Model

The purpose of the optimization step is to find the least expensive execution plan for a given query.

Clearly, the cost model plays a crucial role in the optimization process. It is very important that the cost model

accurately anticipates execution cost for a given query. Cost measures (CPU, I/O, network transfer) and formulas

to anticipate query processing cost in database systems have received significant attention Selingerl979,
Lohman1985, Mackertl986, Mackertl986a]. For generality, the only assumption about the cost model is that the

sum of the costs of all methods in a plan is the cost of the entire plan. For the methods that are applied in a query
evaluation plan, the appropriate cost function is invoked to calculate the cost for this method with the particular
arguments and inputs.

2.1.2. Search Strategies

The search strategy adopted for EXODUS is a best first search Barrl98l]. A state in the general formula

tion of the search strategy is a query tree. Every state can, in general, be expanded (or transformed) in several

directions. It is quite likely that the benefits of the various expansions differ considerably, hence we decided that

not all states will be expanded fully in our search strategy. At any time during the search, there will be states

which are exhaustively expanded, others which are partially expanded, and some which are unexpanded. The

expansions which are possible but not applied yet are called the OPEN set. Each entry in OPEN is a pair of a

query tree and a transformation rule.

All query trees and access plans explored so far are stored in a data structure called MESH. Since as

many nodes as possible are shared among query trees, and since several different searches are supported on

~~0



MESH, MESH is a complex network of pointers.

At each step in the search, the transformation performed is the one which carries the most promise that it

will eventually, via subsequent transformations, lead to the optimal query evaluation plan. The crucial element in

this search strategy is the promise calculation, called the promise evaluation function. It must include the current

query and plan, other queries and plans which have were found earlier in the search process, and information

about the transformation rule involved. The most natural measure for promise is the cost improvement of the

access plans.

3. Modularization of DBI Code

In an extensible database system, there are always some parts in the optimizer (and in other components as

well) that cannot be expressed in a restricted, e.g. rule-based language. These parts are best written in the DBI’s

implementation language. A software tool is used to combine the rules and the DBI’s source code.

For easy extensibility, it is very important to assist the DBI in dividing the code into meaningful, indepen
dent modules. Not only is a modular optimizer easier to implement, we envision this as an aid for maintaining a

database management system that evolves over time.

Some optimizer components can only be defined after the data model has been defined (data-model-
dependent components), and hence must be provided by the DBI. In this section, we will briefly review these

components, and how they are broken into modules. We generally associate these procedures with one of the

concepts that we have introduced earlier, namely operators, methods, and rules.

3.1. Data-Model-Dependent Data Structures

There are two types of data-model-dependent data structures that are important in the optimization pro

cess. First, there are arguments for operators and methods. Second, in almost all cases it is desirable to maintain

some dictionary information for intermediate results in a query tree. We term such dictionary information pro

perties of the intermediate results. Since defining these data structures is part of customizing an extensible data

base system, the optimization component of such a system must treat these structures as “black boxes”. In

EXODUS, we define and use a procedural interface to maintain and query properties. Furthermore, we distin

guish between operator and method arguments, and between operator-dependent and method-dependent proper
ties. As an example from a relational system, cardinality and tuple width are operator-dependent properties,
whereas sort order is a method-dependent property.

3.2. Rules and Conditions

In the EXODUS optimization concept, the set of operators, the set of methods, transformation rules, and

implementation rules are the central components that the DBI specifies to implement an optimizer. The rules are

non-procedural; they are given as equivalence laws that the generator translates into code to perform tree

transfonnations. Each of these rules should be self-contained. Only then is it possible to expand the rule set

safely as the data model evolves.

The rules express equivalence of query trees. Tree expressions, i.e. algebraic expressions, embody the

shape of a tree and the operators in it. For some rules, however, applicability does not depend on the tree’s shape
and the operators alone. For example, some transformations might only be possible if an operator argument
satisfies a certain condition. Since operator arguments should be defined by the DBI, such conditions cannot be

expressed in a data model independent form. We allow the DBI to augment rules with source code to inspect the

operator arguments, the data dictionary, etc.

3.3. Cost Functions

As mentioned earlier, processing cost occurs by executing a particular algorithm. The cost calculation is

closely related to the processing method being executed. Hence, we associate cost functions with the methods,
and calculate the cost of a query execution plan as the sum of the costs of the methods involved. The parameters
of a cost function are the characteristics of the data streams serving as inputs into the method, e.g. the number of

data objects in each input data stream, and the method argument, e.g. a predicate.

3.4. Property Functions

The characteristics of the data stream which are needed as parameters to the cost functions are data

model-dependent. Thus, they must be defined by the DBI. We attach characteristics, which we call properties,
with both the operators and the methods. Operators (and their arguments) determine the logical properties of a

node in a query tree, e.g. cardinality. A particular algorithm or method chosen defines physical properties of an

39



interinedliate result, e.g. sort order.

Besides the conceptual differentiation of operator and method properties, there is also a practical reason

why the two should be separated. The operator properties should be computed as early as possible, in particular
before the cost functions are invoked. Determining the cost can be easier if the operator properties, e.g. cardinal

ity, have been derived alteady. The method properties, on the other hand, can only be computed after the method

has been determined, which is after the least expensive method has been found using the cost functions.

3.5. Argument Transfer Functions

Arguments to operators and methods, e.g. predicates, are also data-model-dependent, and can, therefore,

only be modified by DBI code. If a transformation involves only operator reordering, there is a correspondence
between operators in the old query tree and in the new query tree. In these cases, arguments can be copied
between corresponding tree nodes. If this is not possible, the DBI is allowed to associate a function with a

transformation rule. When the rule is applied to transform a query tree, this function is invoked to determine the

arguments of the new operator nodes. For example, if a complex selection predicate must be broken up into

smaller pieces, a function associated with the transformation rule is called to perform the necessary manipulations
of the argument data structure.

3.6. Promise Estimation Functions

In the search strategy, a promise evaluation or estimation function is used to anticipate how beneficial the

application of a rule will be, and to decide which transformation to apply next. it is not easy to design a general
scheme to do this, and any general scheme will suffer from its generality; sometimes it might be necessary to

consider data-model-dependent aspects of the query tree to be transformed. For example, join commutativity
will, on the average, have a neutral effecL If there are asymmetric join methods like hybrid hash

join DeWittl984J, however, the benefit of join commutativity depends on whether one or both of the relations

will fit into a main memory hash table. Therefore, an extensible database system should provide a general
scheme to estimate the benefit of applying a transformation to a query tree, and leave the option to the DBI to

augment this scheme with specialized estimation procedures.

4. The EXODUS Design and Implementation

We implemented a prototype of the optimizer generator. It was intended to serve several purposes. First,
it shows the feasibility of the approach. Second, it is used to get preliminary performance figures. Third, it helps
to identify the important parameters, their influences, and their ranges. Finally, it will constitute the optimization
component of the EXODUS extensible database system.

In addition to the concepts introduced in the last section, we also allowed the DBI to organize the optimi
zation as several phases. For each phase, there can be a different rule set, different search parameters, and dif

ferent stopping criteria. The query tree corresponding to the optimal access plan of one phase serves as the input
tree of the next phase.

To produce an optimizer, the DBI invokes the generator on a model description file. This is done only
once, at database system generation time. The resulting query optimizer can then be used indefinitely. The

output of the generator are two files: one with C code and one with C definitions to be included in other souzce

code files written by the DBI. The model description file has two required parts and one optional part. The first

required part is used to declare the operators and the methods of the data model. It can include C code and C

preprocessor declarations to be used in the generated code. The second required part consists of transformation

rules and implementation rules. The optional third part contains C code which is appended to the output file. The

format of the model description file and the rule language used in the second part are described in Graefel987].

The third part of the model description file can be used to append source code to the optimizer code. For

instance, it is a good place to put cost functions and other support functions. it is also possible, however, to put
the source code for the cost functions and the other support functions in separate files. This section briefly
describes the support functions and their purposes.

A cost function is associated with each method. The name is built by the generator by concatenating the

word cost and the name of the method. To find the least expensive implementation method for a query tree, the

procedure ANALYZE matches the query against the implementation rules, and calls the cost functions of the

matching methods. The input arguments to a cost function are the node of the query tree in MESH and the nodes

in MESH which would produce the input stream(s) according to the implementation rule.

40



With each operator or method, an argument specifies exactly how the operator or method should be

applied to the input streams. An argument appears once in every node in the original query (for the operator) and

in the access plan (for the method), and twice in every node in MESH (for the operator and for the method). Its

type is defined by the DBI in a code section of the declaration part in the model description file. Typically, this

field will have a union-type (C keyword for variant record).

When an argument transfer function is included in a transformation rule, this function is called to set all

the argument fields in the new query tree immediately after the tree is created. To compare argument fields when

searching for duplicate nodes in MESH, the DBI must provide a Boolean function called

DIFFERENT_ARGUMENTS. When a duplicate node is removed, the function UNDO_NODE is called to allow

the DBI to do some housekeeping if necessary, e.g. deallocate space that a pointer in an argument field points to.

By default, argument fields are copied from the initial query tree into MESH, between corresponding
nodes in MESH, and from MESH to the final access plan. If this is inappropriate for some reason, these defaults

can be overwritten. To do so, the DBI defines function names COPY IN for transfers from the initial query tree

into MESH, COPY_OUT for transfers from MESH to the final access plan, COPY_OPERATOR_ARGUMENT
for use in transformation rules, and COPY_METHOD_ARGUMENT for use in implementation rules in a code

section of the declaration part.

In each node in MESH, there are two fields called OPERATOR_PROPERTY and METHOD_PROPERTY
which allow the DBI to store data dictionary information about intermediate results, for example cardinality and

sort order. The types of these fields are defined by the DBI in a code section of the model description file. Infor

mation which can be derived from the operator, the operator argument, and the properties of the input stream(s)
belongs in the operator properties, whereas information that depends on the chosen implementation method

belongs in the method properties. These two are distinguished, as this allows the cost functions to use operator
properties before method properties can be derived.

To derive the properties of MESH nodes, the DBI associates a property function with each operator and

each method in the system. The names of these functions are the word properly concatenated with the name of

the operator or method respectively. The generator inserts calls to these functions into the generated code at the

appropriate places.

As mentioned earlier, the DBI may wish to assist the optimizer in estimating the benefit of a transfonna

ton before the transformation is performed. A function name given in a transformation rule with the keyword
estimate will be called by the optimizer to calculate the cost of a query after a transformation from the query tree,
the operator arguments, and the operator and method properties.

At first glance, there seems to be a lot of code to write. Not all of the functions outlined above, however,
are required. Only the cost functions are absolutely necessary. If no type for operator property fields is specified,
operator property functions are not necessary. Similarly, calls to method property functions are only inserted into

the generated code if a type for a method property has been specified. Argument transfer functions and estima

tion functions are only used if they are indicated in a rule.

Some or all of the functionality provided by these procedures is required in any optimizer. Since they are

data-model-dependent, they cannot be provided for the DBI. What we have done, though, and what we consider

important, is to provide a framework that breaks the data-model-dependent code in a query optimizer into small

but meaningful pieces.

We expect that our system allows incremental development of database systems. Hopefully, even small

subsets of operators, methods and rules can be designed, implemented, and tested independently.

S. Conclusions

To support query optimization in extensible database systems, the data model specific part must be

separated from those parts that can be used for any data model. The reusable parts are part of the EXODUS

effort, whereas the data model specific parts are defined by the Database Implementor (DBI). An optimization
model general enough to fit all modern data models is provided to specify the data model specific parts for the

optimization componenL Our optimization model is based on an algebra view of the data model, i.e. on operator
trees and method trees. Optimization in this model consists of operator reordering and method selection.

The data model specific part is captured in a rule language designed for this purpose and in a set of sup
port functions written in the DBI’s implementation language. The rules are transformation rules for operator
reordering and implementation rules for method selection. In general, the rules are non-procedural, but the rule

41



language allows the DBI to support the optimizer by estimating the promise of a transformation. Support func

tions may be associated with operators, methods, and rules. They include the cost functions for methods, pro

perty functions for operators and methods, and argument transfer and estimation functions for rules.

Using a rule set as a base for the optimizer builds a very clear and concise framework for modularization

of the DBI’s optimizer code, and facilitates incremental development and testing.

The rules are translated by the optimizer generator into executable source code, which is compiled and

linked with the support functions and other database software. Interpretative techniques were ruled out by our

research because the resulting optimizers, including one prototype implementation undertaken in Prolog, are lim

ited to the interpreter’s search strategy, and bound to be slow.

One interesting design issue that remains is to provide general support for predicates as some form of

predicate is likely to appear in all data models. Writing the DBI code for predicates, and operator arguments in

general, was the hardest part of developing our optimizer prototypes. In the current design, the DBI must design
his or her own data structures and provide all the operations on them for both rule conditions and argument
transfer functions. It may be difficult to invent a generally satisfying definition and support for predicates, but it

would be a significant improvement of the optimizer generator. The fact that predicates are a special case of

arguments poses an additional challenge, since the overall design of the argument data structure must still remain

with the DBI.

More generally, we realize that the optimizer generator works largely on the syntactic level of the algebra.
The semantics of the data model are left to the DBI’s code. This has the advantage of allowing the DBI maximal

freedom with the type of data model implemented, but it has the disadvantage of leaving a significant amount of

coding to the DBI. We therefore would like to incorporate some semantic knowledge of the data model into the

description file. This, however, is a long-term goal to which we have not yet given much attention.

6. Acknowledgements

The author appreciates the generous support and advice by David DeWitt, Mike Carey, and the student

members of the EXODUS project.

References

Barrl98l.

A. Barr and E.A. Feigenbaum, The Handbook of Artificial Intelligence, William Kaufman, Inc., Los

Altos, CA. (1981).

Blasgenl977.
M. Blasgen and K. Eswaran, “Storage and Access in Relational Databases,” IBM Systems Journal

16(4)(1977).

Carey1986.
MJ. Carey, DJ. DeWitt, D. Frank, G. Graefe, J.E. Richardson, EJ. Shekita, andM. Muralikrishna, “The

Architecture of the EXODUS Extensible DBMS: A Preliminary Report,” Proceedings of the Int’l

Workshop on Object-Oriented Database Systems, pp. 52-65 (September 1986).

Careyl986a.
MJ. Carey, DJ. DeWitt, J.E. Richardson, and E.J. Shekita, “Object and File Management in the

EXODUS Extensible Database System,” Proceedings of the Conference on Very Large Data Bases, pp.

91-100 (August 1986).

DeWittl984.

DJ. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebraker, and D. Wood, “Implementation Techniques
for Main Memory Database Systems,” Proceedings of the ACM SIGMOD Conference, pp. 1-8 (June
1984).

Graefel987.

G. Graefe and DJ. DeWitt, “The EXODUS Optimizer Generator,” Proceedings of the ACM SIGMOD

Conference, pp. 160-171 (May 1987).

42



Lohmanl985.

0. Lohman, C. Mohan, L. Haas, D. Daniels, B. Lindsay, P. Selinger, and P. Wilms, “Query Processing in

R*,” pp. 31-47 in Query Processing in Database Systems, ed. J.W. Schmidt,Spnnger, Berlin (1985).

Mackertl986.

L.F. Mackert and G.M. Lohman, “R* Optimizer Validation and Performance Evaluation for Local

Queries,” Proceedings of the ACM SIGMOD Conference, pp. 84-95 (May 1986).

Mackertl986a.

L.F. Mackert and G.M. Lohman, “R* Optimizer Validation and Performance Evaluation for Distributed

Queries,” Proceedings of the Conference on Very Large Data Bases, pp. 149-159 (August 1986).

Richardson 1987.

J.E. Richardson and MJ. Carey, “Programming Constructs for Database System Implementation in

EXODUS,” Proceedings of the ACM SIGMOD Conference, pp. 208-219 (May 1987).

Selingerl979.
P. Griffiths Selinger, M.M. Astrahan, D.D. Chamberlin, R.A. Lone, and T.G. Price, “Access Path Selec

tion in a Relational Database Management System,” Proceedings of the ACM SIGMOD Conference,
(June 1979).

4



Understanding and Extending Transformation-Based Optimizers

Arnon Rosenthal

Computer Corporation of America, 4 Cambridge Center,

Cambridge MA 02142. arnie©cca.cca.com (arpanet) or cca!arnie (uucp)

Paul Helman

Computer Science Dept., University of New Mexico,

Albuquerque NM 87131. unmvax!helman (uucp)

ABSTRACT

We present elements of a framework for describing query optimizers, especially optimizers
based on transformations. Using the framework, we discuss correctness of the optimizer, modeling
the computational steps of current optimizers, convenient specification of search strategies, analyz

ing the search process, and addition of new transformations.

1. Introduction

We provide formalisms for modelling query optimizers, and~ discuss ways of making optimizers
extensible. A major barrier to better optimizer architectures is the inadequacy of formal frame

works in textbooks and the research literature. For example, many designers still learn the subject
by studying the classic papers (e.g. SELI79]), which present algorithm fragments and intuitions,
but few unifying formalisms. In our experience, designs produced after such study tend to use too

low a level of abstraction in data structures and operations, and therefore to lack generality and

modularity. In fact, designers often lack criteria for determining whether an optimizer modification

is valid. A more thorough formalization would aid understanding of both conventional and

transformation-based optimizers.

Optimizer extensibility is needed to accomodate new query language operators (e.g., recursion,

outerjoins), new datatypes, semantic query optimization, multiple query optimization, and con

tingency planning for uncertain environments. Researchers are actively developing new optimiza
tion algorithms for these purposes. But with current optimizer architectures, adding a new algo
rithm requires modifying considerable existing code.

For example, suppose one has a “semantic query optimizer” that suggests alternative transla

tions of various subexpressions of a query, to explóit integrity constraints. The efficiency of each

alternative can be judged only after checking low-level details such as availability of indexes to

support each join. Even a system programmer would have difficulty integrating this new capabil

ity into most existing optimizers, except by evaluating each combination of alternatives as a

separate query, leading to an exponential number of queries.

To alleviate these problems, we try to organize or model optimizers as having three nearly-

orthogonal aspects -- operator graphs, transformations of those graphs, and search-control rules.

Like other researchers {BATO87.FREY87,GRAE87], our approach is to use transformation rules

that can be added (nearly) independently.

Sections 2 and 3 discuss operator graphs and transformations, respectively. Our definitions of

operator graphs and transformations provide some refinements of previous graph formalisms (such
as data nodes, a view of operators as predicate transformers, and correctness conditions at any

stage of optimization). Section 4 discusses theoretical and practical issues in searching a space

44



described by transformations.

Our results include the ability to directly model computational strategies in the optimizer, a

basis for verifying a wide variety of optimizers, ways of controlling search in an extensible optim

izer, and criteria for comparing the breadth and thoroughness of the searches carried out by

different optimizers.

2. Operator Graphs

In this section we describe how an operator graph is used to model alternative query processing

strategies. When the graph is ‘weIl formed.” we can guarantee the correctness of any strategy

selected from the graph. We also explain ways that our node and predicate formalisms differ from

{BATO87,FREY87 ,G RA E87j.

An operator graph is an acyclic digraph composed of operator nodes, which may represent

arbitrary operators such as join or sort, and data nodes, which represent inputs to -- and results

from -- operators. An expression (or, s~’nonymously, strategy) is an operator graph in which each

data node has only a single incoming path; it is analogous to one solution of an AND/OR graph.

The figure below illustrates a sample operator graph at the detailed level, for the query shown.

Select R1.A, R2.B

From Ri, R2

Where (R1.Proj# = 123) and

(R2.code = 9000) and

(R1.Dept# = R2.Dept#)
Order By R2.Age

Note: After query inputs are

scanned, all operands are tuple
streams. Apostrophes on relation

names indicate that all relevant

selections (e.g., RI, Proj # = 123)
have been applied.

45



Data nodes are labelled with node predicates (not to be confused with query predicates) that

describe the result available at the node. Conjuncts of the predicates (called node properties)
include logical data content as a relational expression over the inputs, sort ordering, location, etc.

The predicates are an interface specification, a promise to later operators about the results of all

expressions entering the node. When a data node has multiple incoming edges, each edge

represents an alternative computation which produces a result satisfying the node’s predicate.

An elementary graph consists of one operator, its input and output data nodes, and edges con

necting them. An elementary graph is well formed if inputs satisfy the predicates on the input

node(s)] is sufficient to imply outputs satisfy the predicates on its output data node(s)]. The con

dition can be tested by using a description of each operator’s semantics, expressed as a predicate
transformation (in the sense of program verification). For example, in the previous figure the R2

input node, sequential scan operator, and (R2’ sorted on Dept#) form an elementary subgraph;

sequential scan transforms the input predicate to stream and (in our interpretation) applies

relevant selections.

Well-formed graphs are the basic “correctness” condition to be preserved during algorithm

modifications and handled by a verifier. An arbitrary graph is called well-formed if each elemen

tary subgraph is well-formed. It is easily shown that if the inputs to a well-formed subgraph G

obey the predicates on C’s input nodes, the output of any expression entering an output. data node

D will obey the predicates on D. In particular, when the query inputs satisfy the predicates on

input nodes, and the output node predicate implies the desired query result, then any expression

for the graph is a correct computation for the query.

Operator graphs are helpful in understanding and verifying two very different optimization

approaches. Query transformers start with an operator graph for the query and repeatedly apply

transformations, always keeping a well formed operator graph that implements the entire query.

This approach is used in many proposals for extensible optimizers. In contrast, older optimizers

are bottom-up strategy generators that gradually produce an operator graph. The building process

typically runs off an auxiliary data structure (e.g., a “query graph,” showing relations and incident

predicates).

A further advantage of operator graphs is that they can contain operators at different concep

tual levels. This is useful when optimizing a global query to be executed over several different

DBMSs (e.g., relational and Codasyl) that have interfaces at different levels.

Data Nodes: Data nodes are not explicit in most transformation-based optimizer formalizations,

but can be quite useful, as described below. When their power is not needed, they can be omitted,

with incoming edges routed directly to the next operator.

A data node provides a location for information such as the node predicate, result size, and

best known cost. Transformations that insert unary operators into the graph are more naturally

applied to a data node rather than to all binary operators that may use the node. For results that

may be produced in several ways, and used by several follow-on operators (or by several indepen

dent queries), a data node removes the need for pairwise connections. Alternative (or parallel)

plans for a subquery can be attached to a data node, to cope with failures or to optimize unpredict

able subqueries by running alternative algorithms on separate processors. Data nodes also are use

ful in multiple query optimization, since they help to identify common intermediate results.

A data node can be created anytime we wish to describe a convenient intermediate result. For

example, one can create a separate data node representing “cheapest data node for Ri, regardless

of sort order”. Operators that are oblivious to the input’s sort order (Sort: inner loop of nested

join) can use just this node instead of each of the Ri data nodes separately.

46



3. Operator Graph Transformations

A transformation-based optimizer applies a series of transformations to an operator graph.
The transformations can decompile subgraphs to a higher level of abstraction (such as combining a

query and its subqueries so as to allow more join orderings), generate alternatives (such as alterna

tive forms based on semantic query optimization), elaborate a strategy to a more detailed level

(multi-argument joins to two argument joins, and then to nested loops), or can postprocess the

strategy (performing local improvements that do not affect the optmizer’s search, e.g., minimizing
the labor of projections).

A transformation is described by an initial graph and result graph, also called patterns. The

result graph’s data nodes are labelled by predicates; predicates on its input nodes are called “appli
cability conditions.” Conceptually, applying a transformation consists of two steps.

1. Find an instance of the initial pattern within the current operator graph. For a match to be

found, the predicates on the input nodes must imply the applicability conditions. Properties of the

result nodes may receive values from corresponding properties of the initialpattern.

2. Add the result graph to the operator graph, and connect its outputs to appropriate data nodes

in the result.

Correctness conditions: The formalism suggests a feasible approach to verify strategies -- simply
verify that all procedures that add nodes to the graph preserve well-formedness. (Correctness is

not usually verified when the query is compiled -- rather, builders of the optimizer verify that each

routine that modifies the graph preserves these conditions.) While this approach does not verify
the efficiency of the generated strategy or termination of the optimizer, correctness of compiled
code is often the main goal, especially in critical or secure applications.

To verify a transformation-based optimizer, three conditions must be proved about each

transformation: First, the transformation’s result graph must be well-formed. Next, the input data

nodes’ predicates in the operator graph must imply the predicates on the input nodes of the input
pattern (often by possessing a superset of the node properties). Finally, predicates on the result

graph’s output nodes must imply the predicates on data nodes to which they are attached. If the

above conditions hold, the transformation introduces no violations of “well-formedness.” The con

ditions apply to transformations used in either query transformation or strategy generation
approaches. The first condition can be verified when the transformation is defined; the other two

involve simple tests to be included in the pattern matching. ~

An alternative way of justifying transformations is to show that each transformation’s result

pattern preserves all properties of the result node in the input subgraph. However, this formula

tion does not handle transformations that build a strategy graph bottom-up, creating new result

nodes that do not correspond to nodes of the input pattern.

It seems desirable to express as much as possible of compilation as transformations of operator

graphs. When we leave the theoretical framework we lose both conceptual tools (e.g., “well-formed

graphs”) and software tools (e.g., pattern matchers, prettyprint debugging routines).

‘Most properties are atomic (e.g.. sort-field=A1) and can be checked by direct inspection. Non-atomic properties

are only slightly more difficult to check. For example. if subexpressions place the queIy~s restrictions and projections
as early as possible, then checking for a match between relational subexpressions means determining whether they
involve the same set of relations.

47



By modelling optimization as adding alternatives to a single operator graph, we are able to

minimize redundant optimization and complex tests for common subexpressions. To see this, con

sider the alternative scenario of adding transformations above a conventional optimizer (whose
facilities for managing alternatives and recognizing common subexpressions are embedded deep

within Select/Project/Join optimization). If a high level transformation like semantic query optim

ization simply generates alternative queries, one cannot tell which is best without expanding the

alternative implementations of each. Suppose the original query involves N nodes, and each of m

such transformations (applied to different subgraphs) generates an alternative form of its input

graph. Then 2**m complete queries will be generated, each containing roughly N nodes; a total of

2**m N-node graphs need to be expanded, an exponential explosion. In contrast, operator graph

transformations generate alternatives within the same subgraph. If s denotes be the number of

nodes added in an average subgraph, one graph containing N+m*s nodes needs to be expanded.
2

4. Searching

Section 4.1 provides a theoretical analysis of searches that guarantee optimality within a stra

tegy space. Section 4.2 discusses the management of an extensible set of transformations, and

mechanisms for choosing the next transformation to apply.

4.1 Analysis of the search -- definitions from combinatorial optimization

Describing the thoroughness of the search: This section attempts to provide a vocabulary for

analyzing design decisions in the search strategies of an optimizer. Like the proverbial drunk who

looks for his keys only under streetlights (the light is better), we focus here on the more tractible

analysis of searches that guarantee not to miss an optimum.

In classical (operations research) optimization theory, an optimization problem is defined by its

search space (i.e., the feasible solutions) and the cost model. Unfortunately, for query optimization

the search space is hard to describe. Feasible solutions are Query Evaluation Plans (QEPs) --

well-formed expression with appropriate predicates on input and output nodes, and operators

described in sufficient detail for cost modelling and execution. But QEPs are still subject to more

global constraints on execution, constraints that may be difficult to describe or exploit. For exam

ple, if an expression is not a tree, the strategy must be checked to see if it correctly synchronizes

multiple uses of the same tuple stream.

Transformation-based formalisms are a more procedural way of describing the optimization

problem. They can describe much of the processing in current optimizers, and can naturally define

each transformation at an appropriate level of abstraction. However, it is difficult to get an over

view of the entire set of candidate strategies. And there is still no explicit model of execution limi

tations to help the transformation-definer ensure that all generated strategies are executable.

We now present some definitions that are useful in understanding optimizers’ search mechan

isms. The potential operator graph of a set of transformations is the operator graph generated by

applying transformations until no more apply. Assuming that transformations do not delete their

input graphs, the definition is order independent. The potential strategy space for a query Q con

sists of all expressions in the potential operator graph. It has operators at many different levels of

2The number of detail-li~vel data nodes obtained from a high level node may increase slightly, if more sort orders

become interesting.

48



abstraction, and may be conveniently described level by level. (For example, what are the legal

sequences of joins; what subgraph can be the implementation of a join, what interesting sort orders

should be considered?)

The searched strategy space consists of those strategies that have been considered (explicitly or

implicitly) in the search. Typically, we restrict attention to detail-level strategies, since this is

where strategy elimination occurs. (Rules for eliminating suboptimal strategies are discussed

below). An optimizer fully searches its potential strategy space if it performs sufficient strategy

generation and cost evaluation guarantee that it has found the lowest cost expression in the space.

(In contrast, directed searches try to quickly find a good solution). If all elaborations of some

abstract-level subgraph have been searched, we say that that abstract level has been searched.

System R uses dynamic programming to fully search its potential strategy space. Elimination

is based on substitutability (the principle of optimality): If two partial expressions are sufficiently
similar that one can be substituted for the other, then the more expensive partial solution cannot

appear as part of an optimal expression. All extensions of the loser are eliminated from considera

tion. Substitutability requires that the cost function for an operator know nothing about the

operator’s inputs except information determined by predicates on its input data nodes. Also, cost

of an expression must be the sum of individual operator costs.

Another rule is bounding: Any partial QEP that costs more than some complete QEP must be

suboptimal. The major saving from bounding is that a good bound can eliminate all strategies into

some data nodes (e.g., which can only be produced using sequential scans on large relations). The

eliminated data node then does not appear as an input to other patterns. A low cost QEP can be

generated by a directed search GRAE87,ROSE86I.

A third elimination rule is for the implementer to assert dominance, that a transformed sub-

graph T(S) dominates S. (5’ dominates S if the best expression derived from 5’ is as cheap as the

best derived from 5). For example, transformations that move selections earlier, remove inessential

joins, or replace outerjoins by ordinary joins often exhibit dominance. Dominance is a higher-level
elimination rule than substitutability or bounding in the sense that it relies on an implementor
assertion rather~than on a cost model.

How not to speed an optimizer: For optimizers that thoroughly search their strategy space, simpli

city and flexibility should probably govern whether the optimizer generates all alternatives at less

detailed levels. We expect that most of the optimization time will be spent in generating

implementation-level strategies, and especially in evaluating operator costs.

Several researchers have mentioned the possibility of looking ahead from a data node to deter

mine the cost of completing the computation above the data node. That is, one somehow finds a

lower bound L on the cost of completing the computation above the data node. Then if B is the

cost of the best known QEP, B-L (rather than B) is the maximum allowable cost for strategies into

the data node. We suspect that such techniques will be “cleverness sinks” with little effect on per

formance. It seems unlikely that the improved cutoff of B-L will eliminate, say, 50% of the nodes

that survive simple cutoffs and substitutability.

In general, accurate cost estimates seem obtainable only by analyzing detailed strategies.
Accurate estimates are not possible until all large transformations have been completed. (For
example, in ROSE85I semantic transformations exploit constraints to eliminate unnecessary joins).
Inaccuracy in estimating an operator’s cost will be multiplied by the number of iterations over that

operator within a QEP. For example, an error in the cost of a Scan used on the inner relation of

nested-loop join is multiplied by the number of outer tuples.

49



4.2 Transformation Selection in an Extensible Optimizer

This section focuses on the selection mechanism that selects the pair (transformation, matched

input graph) for the next transformation, and on how this mechanism is affected by optimizer
extensions. The selection mechanism requires speed, flexibility for adding new operators, and the

intelligence to expand the most promising parts of the operator graph.
~

Extensibility approaches

The Postgres approach to extensibility STON86J does not add new optimizations, but instead

extends existing rules to new data types. For example, the implementer of a spatial datatype may

identify generic optimization techniques (retrievals via index, sorting, etc.) that are to be applied to

the new datatype. The search process and strategy space are not really changed by the new types,
and the optimizer need not be transformation-based.

A more difficult problem is to add optimization techniques that do not have analogues in the

current optimizer GRAE87, BATO87]. New methods must be added to handle operators not

currently subject to optimization (e.g., outerjoins, nested subqueries, recursion), and for adding
alternative strategies for existing joins (e.g., index intersections, which greatly improve perfor
mance of some queries ROSE82]).

A transformation-based optimizer is relatively easy to extend, because transformations can be

written and validated separately. In our framework, adding new transformations requires mechan

isms for extending the set of data node properties easily accomplished by representing properties

using a set of pairs (property_name, legal values)] and for extending the transformation selector to

include the new transformations.

Transformation Selection

A monolithic program for selecting transformations is too difficult to modify as new types of

transformations are added. Below, we speculate about extending a more promising approach.

GRAE87] uses expected cost factors (denoted “ECFs”) to evaluate the likelihood of getting a use

ful result from a transformation. Their selection mechanism is very extendable, because ECFs are

learned from previous queries, without implementer intervention. In experiments on

select/project/join queries, ECFs provided excellent results.

Nevertheless, we suspect that larger rule bases will follow the same path as other rule-based

applications, and will need to be structured. This structure must then be considered when exten

sions are made. (It is preferable to define appropriate structuring constructs rather than to subtly
encode control information into the rules.) EXODUS GRAE87] and GENESIS BATO87] include

some limited implementer-supplied structuring, in the form of declarations that certain rules are 1-

way or nonrepeatable. Even these simple structuring rules may need to be modified when the

optimizer is extended. For example, a transformation that elaborates multiple-input joins to 2-

input joins will be “one-way” in a select-project-join optimizer. But when optimizing a user query

over a view-relation, one begins by collapsing two-input joins from the query and the view

definition into a single three-way join.

3Database design systems need very fa.st optimization. in order to find the optimum strategy for a wide ra.zi~e of

physical designs.

50



To illustrate the need for implementer help in the overall control, imagine that independent

groups have supplied transformations for semantic query optimization, outerjoins, recursion optimi

zation, and nested subqueries (including views). The ECF for a transformation depends on

whether the resulting graph has an efficient implementation. For transformations whose result is at

a fairly abstract level, “implementation” involves both simplification transformations (e.g., detec

tion of unnecessary joins), and low-level details such as available buffer space or indexes. Hence

the abstract transformations are justified by good solutions many steps ahead. This long look a-

head makes it difficult to learn good orderings automatically; for example, could a program

efficiently learn whether collapsing nested subqueries to multiway joins should be given higher

priority than selecting a recursion implementation? Instead, the implementer might specify the

relative priorities for “clusters” of transformations.

5. References

BATO87] D. Batory. “A Molecular Database Systems Technology”, Computer Science Depart
ment TR-87-23, University of Texas at Austin.

FREY87} J.C. Freytag, “A Rule-Based View of Query Optimization”, Proc. ACM-SIGMOD

Conference on Management of Data, San Francisco, 1987.

GRAE87] G. Graefe and D. DeWitt, “The Exodus Optimizer Generator”, Proc. ACM-SIGMOD

Conference on Management of Data, San Francisco, 1987.

ROSE821 A. Rosenthal and D. Reiner, “An Architecture For Query Optimization,” Proc. ACM

SIGMOD Conference on Management of Data, Orlando, FL, 1982.

R0SE851 A. Rosenthal and D. Reiner, “Querying Relational Views of Networks,” in W. Kim, D.

Reiner, and D. Batory, eds., Query Processing in Database Systems (New York: Springer-Verlag,

1985).

ROSE86~ A. Rosenthal, U. Dayal, and D. Reiner, “Fast Query Optimization over a Large Strategy
Space”, (draft, available from the authors)

SELI79I P. Selinger et. al, “Access Path Selection in a Relational Database Management System”,
Proc. ACM-SIGMOD Conference on Management of Data, 1979.

{STON8G] M. Stonebraker and L. Rowe, “The Design of POSTGRES”, Proc. ACM-SIGMOD

Conference on Management of Data, Washington DC, 1986.







THE COMPUTER SOCIETY Non-profit Org.
~ Of THE IEEE U.S. Postage

1730 Massachusells Avenue. N W PAID
Washington. DC 200361903

Silver Spring. MD
Permit 1398


	40979_DataEngineering_Dec1986_Vol 9_No4.pdf

