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Letter from the Editor

From the earliest days of the relational revolution, one of the most challenging and significant components
of relational query processing has been query optimization, which finds the cheapest way to execute

procedurally a query that is (usually) stated non-procedurally. In fact, a high-level, non-procedural query

language has been — and continues to be — a persuasive sales feature of relational DBMSs.

As relational technology has matured in the 1980s, increasingly sophisticated capabilities have been added:

first support for distributed databases, and more recently a plethora of still more ambitious requirements
for multi-media databases, recursive queries, and even the nebulous ~extensible DBMS. Each of these

advances poses fascinating new challenges for query optimization.

In this issue, I have endeavored to sample some of this pioneering work in query optimization. Research

contributions, not surveys, were my goal. Space constraints unfortunately limited the number of contrib

utors and the scope of inquiry to the following:

Although the processing of recursive queries has been a hot topic lately, few have explored the impact
on query optimization, as Ravi Krishnamurthy and Carlo Zaniolo have done in the first article. Patrick

Valduriez expands upon his recent ACM TODS paper on join indexes to show how a query optimizer
can best exploit them, notably for recursive queries.

Multi-media databases expand the scope of current databases to include complex objects combining
document text, images, and voice, portions of which may be stored on different kinds of storage media

such as optical disk. Stavros Christodoulakis highlights some of the unique optimization problems posed
by these data types, their access methods, and optical disk storage media. Elisa Bertino and Fausto Rabitti

present a detailed algorithm for processing and resolving the ambiguities of queries containing predicates
on the structure as well as the content of complex objects, which was implemented in the MULTOS

system as part of the ESPRIT project.

The last three papers present alternative approaches to extensible query optimization. Don Batory discusses

the toolkir approach of the GENESIS system, which uses parametrized types to define standardized

interfaces for synthesizing plug-compatible modules. Goetz Graefe expands upon his optimizer generator

approach that was introduced in his 1987 ACM SIGMOD paper with Dave DeWitt, in which query

transformation rules are compiled into an optimizer. And Arnie Rosenthal and Paul Helman characterize

conditions under which such transformations are legal, and extensible mechanisms for controlling the

sequence and extent of such transformations.

I hope you find these papers as interesting and significant as I did while editing this issue.

Guy M. Lehman

IBM Almaden Research Center



Issues in the Optimization of a Logic Based Language

R. Krishnamurthy Carlo Zaniolo

MCC, 3500 Balcones Center Dr., Austin, TX, 78759

Abstract

We report on the issues addressed in the design of the optimizer for the Logic Data Language
(LDL) that is being designed and implemented at MCC. In particular we motivate the new set of

problems posed in this scenario and discuss one possible solution approach to tackle them.

1. Introduction

The Logic Data Language, LDL, combines the expressive power of a high-level logic-based language
(e.g., Prolog) with the non-navigational style of relational query languages, where the user need only

supply a query (stated logically), and the system (i.e., the compiler) is expected to devise an efficient

execution strategy for it. Consequently, the query optimizer is delegated the responsibility of choosing
an optimal execution——a function similar to that of an optimizer in a relational database system. The

optimizer uses the knowledge of storage structures, information about database statistics, estimation

of cost, etc. to predict the cost of various execution schemes chosen from a pre-defined search

space, and selects a minimum cost execution.

As compared to relational queries, LDL queries pose a new set of problems which stem from the

following observations. First, the model of data is enhanced to include complex objects; e.g., hierar

chies, heterogeneous data allowed for an attribute Z 85]. Secondly, new operators are needed not

only to operate on complex data, but also to handle new operations such as recursion, negation, etc.

Thus, the complexity of data as well as the set of operations emphasize the need for new database

statistics and new estimations of cost. Finally, the use of evaluable functions, and function symbol TZ
86] in conjunction with recursion, provides the ability to state queries that are unsafe (i.e., do not

terminate). As unsafe executions are a limiting case of poor executions, the optimizer must guarantee
the choice of a safe execution.

The knowledge base consists of a rule base and a database. An example of a rule base is given in

Figure 1. Throughout this paper, we follow the notational convention that Pi’s, Bi’s, and f’s are (de

rived) predicates, base predicates (i.e., predicate on a base relation), and function symbols, respec

tively. The tuples in the relation corresponding to the Pi’s are computed using the rules. Note that each

line in Figure la isa rule that contains a head (i.e., the predicate to the left of the arrow) and the body
that defines the tuples that are contributed by this rule to the head predicate. A rule may be recursive

(e.g., R21), in the sense that the definition in the body may depend on the predicate in the head,

either directly by reference or transitively through a predicate referenced in the body.

Figure lb:Processing Graph. Ri : P1(x,y) <—— P2(x,xl), P3(xl,y).
R21: P2(x,y) <—— B21(x,xl), P2(xl,yl),
R22: P2(x,y) <—— P4(x,y).
R3 P3(x,y) <—— B31(x,xl), B32(xl,y).

R4 : P4(x,y) <—— B41(x,xl), P2(xl,y).

ire 1—la: Rule Base
Query is

Fig. 10: Contracted Processing Graph
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In a given rule base, we say that P -> Q, if there is a rule with Q as the head predicate and the

predicate P in the body, or there exists a P’ where P—>P’ and P’—>Q (transitivity). Then a predicate P,
such that P->P, will be called recursive. Two predicates, P and Q are called mutually recursive if P—>Q
and Q ->P. This implication relationship is used to partition the recursive predicates into disjoint sub
sets called recursive cliques. A clique Cl is said to follow another clique 02 if there exists a recursive

predicate in 02 that is used to define the clique Cl. Note that the follow relation is a partial order.

In a departure from previous approaches to compilation of logic KT 81, U 85, N 86], we make our

optimization query—specific. A predicate P1 (c,y). (in which c and y denote a bound and unbound

argument respectively), computes all tuples in P1 that satisfies the constant, c. A binding for a predi
cate is the bound/unbound pattern of its arguments, for which the predicate is computed. Throughout
this paper we use x,y to denote variables and c to denote a constant. A predicate with a binding is
called a query form (e.g., P1(c,y)?). We say that the optimization is query-specific because the

algorithm is repeated for each such query form. For instance, P1 (x,y)? will be compiled and optimized
separately from P1 (c,y)?. Indeed the execution strategy chosen for P1 (c,y)? may be inefficient (or
even unsafe) for P1 (x,y)?.

In this paper we limit the discussion to the problem of optimizing the pure fixpoint semantics of Horn

clause queries Lb 84]. In Section 2, the optimization is characterized as a minimization problem
based on a cost function over an execution space. This model is used in the rest of the paper to

discuss the issues. In Section 3, we discuss the problems in the choice of a search space. The cost

model considerations are discussed in section 4. The problem of safety is addressed in section 5.

2. Model

An execution is modelled as a ‘processing graph’, which describes the decisions regarding the meth

ods for the operations, their ordering, and the intermediate relations to be materialized. The set of

logically equivalent processing graphs is defined to be the execution space over which the optimization
is performed using a cost model, which associates a cost for each execution.

2.1. Execution Model

An execution is represented by an AND/OR graph such as that shown in Figure 1 b for the example of

Figure la. This representation is similar to the predicate connection graph KT 81], or rule graph U
85] , -except that we give specific semantics to the internal nodes as described below. In keeping with

our relational algebra based execution model, we map each AND node into a join and each OR node

into a union. Recursion is implied by an edge to an ancestor or a node in the sibling subtree. A

contraction of a clique is the extrapolation of the traditional notion of an edge contraction in a graph. An

edge is said to be contracted if it is deleted and its ends (i.e., nodes) are identified (i.e., merged). A

clique is said to be contracted if all the edges of the clique are contracted. Intuitively, the contraction

of a clique Consists of replacing the set of nodes in the clique by a single node and associating all the

edges in/out of any node in the Clique with this new node (as in Figure ic).

Associated with each node is a relation that is computed from the relations of its predecessors, by
doing the operation (e.g., join, union) specified in the label. We use a square node to denote materi

alization of relations and a triangle node to denote the pipelining of the tuples. A pipebined execution,

as the name implies, computes each tuple one at a time. In the case of join, this computation is

evaluated in a lazy fashion as follows: a tuple for a subtree is generated using the binding from the

result of the subquery to the left of that subtree. This binding is referred to as binding implied by the

pipeline. Note that we impose a left to right order of execution. This process of using information from

the sibling subtrees was called sideways information passing in U 85]. Subtrees that are rooted under

a materialized node are computed bottom—up, without any sideways information passing; i.e., the

result of the subtree is computed completely before the ancestor operation is started.

Each interior node in the graph is also labeled by the method used (e.g., join method, recursion

methods etc.). The set of labels for these nodes are restricted only by the availability of the techniques
in the system. Further, we also allow the result of computing a subtree to be filtered through a selec

tion/restriction predicate. We extend the labeling scheme to encode all such variations due to filtering.

In summary, an execution is modeled as a processing graph. The set of all logically equivalent proc

essing graphs, ~Pg, (for a given query) defines the execution space and thus defining the search space

for the optimization problem. In order to find practical solutions, we would like to restrict our search

space to the space defined by the following equivalence-preserving transformations:

1) MP: Materialize/Pipeline: A pipelined node can be changed to a materialized node and vice versa.
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2) FU: Flatten/Unflatten: Flattening distributes a join over union. The inverse transformation will be

called unflatten. An example of this is shown in Figure 2.

3) PS: PushSelect/PuIISeIect: A select can be piggy-backed to a materialized or pipelined node and

applied to the tuples as they are generated. Selects can be pushed into a nonrecursive operator

(i.e., join or union that is not a part of a recursive cycle) in the obvious way.

4) PP: PushProject/PullProject: This transformation can be defined similar to the case of select.

5) PR: Permute: This transforms a given subtree by permuting the order of the subtrees. Note that the

inverse of a permutation is defined by another permutation.
Each of the above transformational rules map a processing graph into another equivalent processing
graph, and is also capable of mapping vice versa. We define an equivalence relation under a set of

transformational rules T as follows: a processing graph p1 is equivalent to p2 under T if p2 can be

obtained by zero or more applications of rules in T. Since the equivalence class (induced by said

equivalence relation) defines our execution space, we can denote an execution space by a set of

transformations, e.g., {MP, PS, PR}.

2.2. Cost Model:

The cost model assigns a cost to each processing graph, thereby ordering the executions. Typically,
the costs of all executions in an execution space span many orders of magnitude. Thus “it is more

important to avoid the worst executions than to obtain the best execution”, a maxim widely assumed

by query optimizer designers. Experience with relational systems has shown that even an inexact cost

model can achieve this goal reasonably well. The cost includes CPU, disk I/O, communication, etc,

which are combined into a single cost that is dependent on the particular system D 82]. We assume

that a list of methods is available for each operation (join, union and recursion), and for each method,
we also assume the ability to compute the associated cost and the resulting cardinality.

Intuitively, the cost of an execution is the sum of the cost of individual operations. In the case of

nonrecursive queries, this amounts to summing up the cost for each node. As cost models are sys
tem- dependent, we restrict our attention in this paper to the problem of estimating the number of

tuples in the result of an operation. For the sake of this discussion, the cost can be viewed as some

monotonically increasing function on the size of the operands. As the cost of an unsafe execution is to

be modeled by an infinite cost, the cost function should guarantee an infinite cost if the size ap

proaches infinity. This is used to encode the unsafe property of the execution.

2.3. Optimization Problem:

We formally define the optimization problem as follows: “Given a query Q, an execution space E and

a cost model defined over E,find a processing graph pg in E that is of minimum cost. “It is easy to see

that an algorithm exists that enumerates the execution space and finds the execution with a minimum

cost. The main problem is to find an efficient strategy to search this space. In the rest of the paper, we

use the model presented in this section to discuss issues and design decisions relating to three as

pects of the optimization problem: search space, cost model, and safety.

3. Search space:
In this section, we discuss the problem of choosing the proper search space. The main trade-off

here is that a very small search space will eliminate many efficient executions, whereas a large search

space will render the problem of optimization intractable. We present the discussion by considering the

search spaces for queries of increasing complexity: conjunctive queries, nonrecursive queries, and

then recursive queries.

3.1. Conjunctive queries:
The search space of a conjunctive query can be viewed based on the ordering of the joins (and

therefore the relations) Sel 79]. The gist of the relational optimization algorithm is as follows: “ For

each permutation of the set of relations, choose a join method for each join and compute the cost. The

4



result is the minimum cost permutation.” This approach is based on the fact that, for a given ordering of

joins, a selection or projection can be pushed to the first operation on a relation without any loss of

optimality. Consequently, the actual search space used by the optimizer reduces to {MP, PR}, yet the
chosen minimum cost processing graph is optimal in the execution space defined by {MP, PR, PS,
PP}. Further, the binding implied by pipelining will also be treated as selections and handled in a similar

manner. Note that the definition of the cost function for each individual join, the number of available

join methods, etc. are orthogonal to the definition of the optimization problem. This approach, taken in

this traditional context, essentially enumerates a search space that is combinatoric on n, the number

of relations in the conjunct. The dynamic programming method presented in Sel 79] only improves
this to O(n*(2**n)) time by using O(2**n) space. Consequently, database systems (e.g., SQL/DS,
commercial INGRES) limit the queries to no more than 10 or 15 joins, so as to be (easonably efficient.

In logic queries it is expected that the number of relations can easily exceed 10—15 relations. In KBZ
86], we presented a quadratic time algorithm that computes the optimal ordering of conjunctive que
ries when the query is acyclic. Further, this algorithm was extended to include cyclic queries and other

cost models. Moreover, the algorithm has proved to be heuristically very effective for cyclic queries
once the minimum cost spanning tree is used as the tree query for optimization V 86].

Another approach to searching the large search space is to use a stochastic algorithm. Intuitively,
the minimum cost permutation can be found by picking, randomly, a “large” number of permutations
from the search space and choosing the minimum cost permutation. Obviously, the number of permu
tations that need to be chosen approaches the size of the search space for a reasonable assurance of

obtaining the minimum. This number is claimed to be much smaller by using a technique called simu

lated annealing 1W 87] and this technique can be used in the optimization of conjunctive queries.
In summary, the problem of enumerating the search space is considered the major problem here.

3.2. Nonrecursive Queries:

We first present a simple optimization algorithm for the execution space{MP,PS,PP,PR} (i.e., any
flatten/unflatten transformation is disallowed), using which the issues are discussed. As in the case of

conjunctive query optimization, we push select/project down to the first operation on a relation and

limit the enumeration to {MP,PR}. Recall that the processing graph for any execution of a nonrecursive

query is an AND/OR tree.

First consider the case when we materialize the relation for each predicate in the rule base. As we do

not allow the flatten/unflatten transformation, we can proceed as follows: optimize a lowest subtree in

the AND/OR tree. This subtree is a conjunctive query, as all children in this subtree are leaves (i.e.,
base relations), and we may use the exhaustive case algorithm of the previous section. After optimiz
ing the subtree, we replace the subtree by a “base relation” and repeat this process until the tree is

reduced to a single node. It is easy to show that this algorithm exhausts the search space {PR}.
Further, such an algorithm is reasonably efficient if number of predicates in the body does not exceed

10—15.

In order to exploit sideways information passing by choosing pipelined executions, we make the

following observation. Because all the subtrees were materialized, the binding pattern (i.e., all argu
ments unbound) of the head of any rule was uniquely determined. Consequently, we could outline a

bottom-up algorithm using this unique binding for each subtree. If we do allow pipelined execution,
then the subtree may be bound in different ways, depending on the ordering of the siblings of the root

of the subtree. Consequently, the subtree may be optimized differently. Observe that the number of

binding patterns for a predicate is purely dependent on the number of arguments of that predicate. So

the extension to the above bottom-up algorithm is to optimize each subtree for all possible bindings
and to use the cost for the appropriate binding when computing the cost of joining this subtree with its

siblings. The maximum number of bindings is equal to the cardinality of the power set of the argu
ments. In order to avoid optimizing a subtree with a binding pattern that may never be used, a top-
down algorithm can be devised. In any case, the algorithm is expected to be reasonably efficient for

small numbers of arguments, k, and of predicates in the body, n.

When k and/or n are very large, it may not be feasible to use this algorithm. We expect that k is

unlikely to be large, but there may be rule bases that have large n. It is then possible to use the

polynomial time algorithm or the stochastic algorithm presented in the previous section. Even though
we do not expect k to be very large, it would be comforting if we can find an approximation for this

case too. This remains a topic for further research.

In summary, the technique of pushing select/project in a greedy way for a given ordering (i.e., a

sideways information passing) can be used to reduce the search space to {MP, PR} as was done in the



conjunctive case. Subsequently, an intelligent top-down algorithm to exhaust this search space can be

used that is reasonably efficient. But this approach disregards the flatten/unflatten transformation.

Enumerating the search space including this transformation is an open problem. Observe that the

sideways information passing between predicates was done greedily; i.e., all arguments that can be

bound are bound. An interesting open question is to investigate the potential benefits of partial binding,
especially when flattening is allowed and common subexpressions are important.

3.3. Recursive queries:
We have seen that pushing selection/projection is a linchpin of non—recursive optimization methods.

Unfortunately, this simple technique is inapplicable to recursive predicates AU 79]. Therefore a num

ber of specialized implementation methods have been proposed to allow recursive predicates to take

advantage of constants or bindings present in the goal. (The interested reader is referred to BR 85]
for an overview.) Obviously, the same techniques can be used to incorporate the notion of pipelining
(i.e., sideways information passing). In keeping with our algebra—based approach however, we will

restrict our attention to fixpoint methods, i.e., methods that implement recursive predicates by means

of a least fixpoint operator. The magic set method BMSU 85] and generalized counting method SZ 86]
are two examples of fixpoint methods.

We extend the algorithm presented in the previous section to include the capability to optimize a

recursive query, using a divide and conquer approach. Note that all the predicates in the same recur

sive clique must be solved together——they cannot be solved one at a time. In the processing graph,
we propose to contract a recursive clique into a single node (materialized or pipelined) that is labeled

by the recursion method used (e.g., magic set, counting). The fixpoint of the recursion is to be ob

tained as a result of the operation implied by the clique node. Note that the cost of this fixpoint opera
tion is a function of the cost/size of the subtrees and the method used. We assume such cost func

tions are available for the fixpoint methods. The problem of constructing such functions are discussed

in the next section.

The bottom-up optimization algorithm is extended as follows: choose a clique that does not follow

any other clique. For this clique, use a nonrecursive optimization algorithm to optimize and estimate

the cost and size of the result for all possible bindings. Replace the clique by a single node with the

estimated cost and size and repeat the algorithm. In Figure 3 we have elucidated this approach for a

single-clique example. Note that in Figure 3b the subtree under P3 is computed using sideways infor

mation from the recursive predicate P2; whereas in Figure 3c, the subtree under the recursive predi
cate is computed using the sideways information from the P3. Consequently, the tradeoffs are cost/

size of the recursive predicate P2 versus the cost/size of P3. If, eavluating the recursion is much more

expensive than nonrecursive part of the query and the result of P3 is restricted to a small set of tuples,
then Figure 3c is a better choice.

Unlike in the non—recursive case, there is no claim of completeness presented here. However, it is

our intuitive belief that the above algoriCim enumerates a majority of the interesting cases. An example
of the incompleteness is evident for the fact that the ordering of the recursive predicates from the

same clique is not enumerated by the algorithm. Thus, an important open problem is to devise a

reasonably efficient enumeration of a well-defined search space. Another serious problem is the lack

Ri : Pl(x,y) <—— P2(x,xi), P3(xi,y) Figure 3: R-OPT examph
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of intuition in gauging the importance of various types of recursion, which leads to treating all as

equally important.

4. Cost Model:

As mentioned before, we restrict our attention to the problem of estimating the number of tuples in

the result of an operation. Two problems discussed here are: the estimation for operations on complex
objects, and the estimation of the number of iterations for the fixpoint operator (i.e., recursion).

Let the employee object be a set of tuples whose attributes are Name, Position, and Children, where

Children is itself a set of tuples each containing the attributes Cname, and Age. All other attributes are

assumed to be elementary and the structure is a tree (i.e., not a graph). The estimations for selec

tion, projection, and join have to be redefined in this context as well as defining new formulae for

flattening and grouping. One approach is to redefine the cardinality information required from the

database. In particular, define the notion of bag cardinality for the complexattributes. The bag car

dinality of the children attribute is the cardinality of the bag of all children of all employees, where bag
is a set in which duplicates are not removed. Thus, average number of children per employee can be

determined by the ratio of the bag cardinality of the children to the cardinality of the employees. In

other words, complex attributes have the bag cardinality information associated while the elementary
attributes have the set cardinality information associated. Using these new statistics for the data, new

estimation formulas can be derived for all the operations, including operations such as flattenning and

grouping which restructure the data. In short, the problem of estimating the result of the operations on

complex objects can be viewed in two ways: 1) inventing new statistics to be kept to enable more

accurate estimations: 2) refining/devising formulae to obtain more accurate estimations.

The problem of estimating the result of recursion can be divided into two parts: first, the problem of

estimating the number of iterations of the fixpont operator; second, the number of tuples produced in

each iteration. The tuples produced by each iteration is the result of a single application of the rules,
and therefore the estimation problem reduces to the case of simple joins. To understand the former

problem, consider the example of computing all the ancestors of all persons for a given Parent rela

tion. Intuitively, this is the transitive closure of the corresponding graph. So we can restate the ques
tion of estimating the number of iterations to be the estimation of the diameter of the graph. Formula

for estimating the diameter for a graph parameterized by the number of edges, fan-out/fan-in, number

of nodes etc. have been derived using both analytical and simulation models. Preliminary results show

that a very crude estimation can be made using only the number of edges and number of nodes in the

graph. Refinement of this estimation is the subject of on-going research. In general, any linear recur

sion can be viewed in this graph formalism, and the result can be applied to estimate the number of

iterations. In short, formulae for estimating the diameter of the graph are needed to estimate the

number of iterations of the fixpoint operator. The open questions are the parameters of the graph, the

estimation of these parameters for a given recursion, and extension to complex recursions such as

mutual recursion.

5. Safety Problem:

Safety is a serious concern in implementing Horn clause queries. Any evaluable predicates (e.g.,
comparison predicates like x>y, x=y+y*z), and recursive predicates with function symbols are exam

ples of potentially unsafe predicates. While an evaluable predicate will be executed by calls to built—in

routines, they can be formally viewed as infinite relations defining, e.g., all the pairs of integers

satisfying the relationship x>y, or all the triplets satisfying the relationship x=y+y*z TZ 86]. Conse

quently, these predicates may result in unsafe executions in two ways: 1) the result of the query is

infinite; 2) the execution requires the computation of a rule resulting in an infinite intermediate result.

The former is termed the lack of finite answer and the latter the lack of effective computability or EC.

Note that the answer may be finite even if a rule is not effectively computable. Similarly, the answer of

a recursive predicate may be infinite even if each rule defining the predicate is effectively computable.

5.1. Checking for safety:
Patterns of argument bindings that ensure EC are simple to derive for comparison predicates. For

instance, we can assume that for comparison predicates other than equality, all variables must be

bound before the predicate is safe. When equality is involved in a form “x= expression”, then we are

ensured of EC as soon as all the variables in expression are instantiated. These are only sufficient

conditions and more general ones — e.g., based on combinations of comparison predicates — could be

given (see for instance EM 84]). But for each extension of a sufficient condition, a rapidly increasing

7



price would have to be paid in the algorithms used to detect EC and in the system routines used to

support these predicates at run time. Indeed, the problem of deciding EC for Horn clauses with com

parison predicates is undecidable Z 85], even when no recursion is involved. On the other hand, EC
based on safe binding patterns is easy to detect. Thus, deriving more general sufficient conditions for

ensuring EC that is easy to check is an important problem facing the optimizer designer.
Note that if all rules of a nonrecursive query are effectively computable, then the answer is finite.

However, for a recursive query, each bottom-up application of any rule may be effectively comput
able, but the answer may be infinite due to unbounded iterations required for a fixpoint operator. In

order to guarantee that the number of iterations are finite for each recursive clique, a well-founded

order (also known as Noetherian rderB 40]) based on some monotonicity property must be derived.

For example, if a list is traversed recursively, then the size of the list is monotonically decreasing with a

bound of an empty list. This forms the well-founded condition for termination of the iteration. In UV
86], some methods to derive the monotonicity property are discussed. In KRS 87], an algorithm to

ensure the existence of a well-founded condition is outlined. As these are only sufficient conditions,

they do not necessarily detect all safe executions. Consequently, more general monotonicity proper

ties must be either inferred from the program or declared by the user in some form. These are topics
of future research.

5.2. Searching for Safe Executions:

As mentioned before, the optimizer enumerates all the possible permutations of the goals in the

rules. For each permutation, the cost is evaluated and the minimum cost solution is maintained. All

that is needed to ensure safety is that EC is guaranteed for each rule and a well founded order is

associated with each recursive clique. If both these tests succeed, then the optimization algorithm
proceeds as usual. If the tests fails, the permutation is discarded. In practice this can be done by
simply assigning an extremely high cost to unsafe goals and then let the standard optimization algo
rithm do the pruning. If the cost of the end-solution produced by the optimizer is not less than this

extreme value, a proper message must inform the user that the query is unsafe.

5.3 Comparison with Previous Work

The approach to safety proposed in Na 85] is also based on reordering the goals in a given rule;
but that is done at run—time by delaying goals when the number of instantiated arguments is insuffi

cient to guarantee safety. This approach suffers from run—time overhead, and cannot guarantee termi

nation at compile time or otherwise pinpoint the source of safety problems to the user —— a very
desirable feature, since unsafe programs are typically incorrect ones. Our compile—time approach
overcomes these problems and is more amenable to optimization.

The reader should, however, be aware of some of the limitations implicit in all approaches based on

reordering of goals in rules. For instance a query: p(x, y, z), y= 2*x ?, with the rule

p(x, y, z) <—— x=3, z=x*y

is obviously finite (x=3, y=6, z=18), but cannot be computed under any permutation of goals in the

rule. Thus both Naish’s approach and the above optimization cum safety algorithm will fail to produce a

safe execution for this query. Two other approaches, however, will succeed. One, described in Z 86],
determines whether there is a finite domain underlying the variables in the rules using an algorithm
based on a functional dependency model. Safe queries are then processed in a bottom up fashion with

the help of “magic sets”, which make the process safe. The second solution consists in flattening
whereby the three equalities are combined in a conjunct and properly processed in the obvious order

refered to earlier.

6. Conclusion

The main strategy we have studied proposes to enumerate exhaustively the search space, defined

by the given AND/OR graph, to find the minimum cost execution. One important advantage of this

approach is its total flexibility and adaptability. We perceive this to be a critical advantage, as the field

of optimization of logic is still in its infancy, and we plan to experiment with an assortment of tech

niques, including new and untested ones.

A main concern with the exhaustive search approach is its exponential time complexity. While this

should become a serious problem only when rules have a large number of predicates, alternate effi

cient search algorithms can supplement the exhaustive algorithm (i.e., using it only if necessary), and

also these alternate algorithms should make extensive flattening of the given AND/OR graph practically
feasible. We are currently investigating the effectiveness of these alternatives.
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Among the optimization aspects not covered in this paper we find that of common subexpression
elimination GM 82], which appears particularly useful when flattening occurs. A simple technique
using a hill—climbing method is easy to superimpose on the proposed strategy, but more ambitious
technique provide a topic for future research. Further, an extrapolation of common subexpression in
logic queries can be seen in the following example: let both goals P(a,b,X) and P(a,Y,c) occur in a

query. Then it is conceivable that computing P(a,Y,X) once and restricting the result for each of the
cases may be more efficient.

Acknowledgments: We are grateful to Shamim Naqvi for inspiring discussions during the development
of an earlier version of this paper.
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ABSTRACT

New application areas of database systems require efficient support of complex queries.

Such queries typically involve a large number of relations and may be recursive. There

fore, they tend to use the join operator more extensively. A join index is a simple data

structure that can improve significantly the performance of joins when incorporated in

the database system storage model. Thus, as any other access method, it should be

considered as an alternative join method by the query optimizer. In this paper, we elabo

rate on the use of join indices for the optimization of both non—recursive and recursive

queries. In particular, we show that the incorporation of join indices in the storage model

enlarges the solution space searched by the query optimizer and thus offers additional

opportunities for increasing performance.

1. Introduction

Relational database technology can well be extended to support new application areas, such as

deductive database systems Gallaire 84]. Compared to the traditional applications of relational data

base systems, these applications require the support of more complex queries. Those queries gener

ally involve a large number of relations and may be recursive. Therefore, the quality of the query

optimization module (query optimizer) becomes a key issue to the success of database systems.

The ideal goal of a query optimizer is to select the optimal access plan to the relevant data for an

input query. Most of the work on traditional query optimization Jarke 84] has concentrated on select—

project—join (SPJ) queries, for they are the most frequent ones in traditional data processing (business)

applications. Furthermore, emphasis has been given to the optimization of joins Ibaraki 84] because

join remains the most costly operator. When complex queries are considered, the join operator is used

even more extensively for both non—recursive queries Krishnamurthy 86] and recursive queries Val

duriez 86a].

In Valduriez 87], we proposed a simple data structure, called a join index, that improves signifi

cantly the performance of joins. In this paper, we elaborate on the use of join indices in the context of

non—recursive and recursive queries. We view a join index as an alternative join method that should be

considered by the query optimizer as any other access method. In general, a query optimizer maps a

query expressed on conceptual relations into an access plan, i.e., a low—level program expressed on

the physical schema. The physical schema itself is based on the storage model, the set of data struc

tures available in the database system. The incorporation of join indices in the storage model enlarges

the solution space searched by the query optimizer, and thus offers additional opportunities for increas

ing performance.
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Join indices could be used in many different storage models. However, in order to simplify our

discussion regarding query optimization, we present the integration of join indices in a simple storage

model with single attribute clustering and selection indices. Then we illustrate the impact of the storage

model with join indices on the optimization of non—recursive queries, assumed to be SPJ queries. In

particular, efficient access plans, where the most complex (and costly) part of the query can be per

formed through indices, can be generated by the query optimizer. Finally, we illustrate the use of join

indices in the optimization of recursive queries, where a recursive query is mapped into a program of

relational algebra enriched with a transitive closure operator.

2. Storage Model with Join Indices

The storage model prescribes the storage structures and related algorithms that are supported by

the database system to map the conceptual schema into the physical schema. In a relational system

implemented on a disk—based architecture, conceptual relations can be mapped into base relations on

the basis of two functions, partitioning and replicating. All the tuples of a base relation are clustered

based on the value of one attribute. We assume that each conceptual tuple is assigned a surrogate for

tuple identity, called a TID (tuple identifier). A TID is a value unique for all tuples of a relation. It is

created by the system when a tuple is instantiated. TID’s permit efficient updates and reorganizations of

base relations, since references do not involve physical pointers. The partitioning function maps a

relation into one or more base relations, where a base relation corresponds to a TID together with an

attribute, several attributes, or all the conceptual relation’s attributes. The rationale for a partitioning

function is the optimization of projection, by storing together attributes with high affinity, i.e., frequently

accessed together. The replicating function replicates one or more attributes associated with the TID of

the relation into one or more base relations. The primary use of replicated attributes is for optimizing

selections based on those attributes. Another use is for increased reliability provided by those additional

data copies.

in this paper, we assume a simple storage model where the partitioning function is identity, defin

ing a primary copy, and the replicating function defines one or more selection indices. The primary copy

of a relation R(A, B, ...) is a base relation F(TID, A, B, ...) clustered on TID. Clustering is based on a

hashed or tree structured organization. A selection index on attribute A of relation R is a base relation

F(A, TID) clustered on A.

Let R1 and R2 be two relations, not necessarily distinct, and let TID1 and TID2 be identifiers of tuples

of R1 and A2, respectively. A join index on relations R1 and A2 is a relation of couples (TID1, TID2), where

each couple indicates two tuples matching a join predicate. Intuitively, a join index is an abstraction of

the join of two relations. A join index can be implemented by two base relations F(TID1, TID2), one

clustered on TID1 and the other on TID2. Join indices are uniquely designed to optimize joins.

The join predicate associated with a join index may be quite general and include several attributes

of both relations. Furthermore, more than one join index can be defined between any two relations.

The identification of various join indices between two relations is based on the associated join predicate.

Thus, the join of relations A1 and R2 on the predicate (R1.A = R2.A and R1.B = R2.B) can be captured as

either a single join index, on the multi—attribute join predicate, or two join indices, one on (R1.A = R2.A)

and the other on (R1.B R2.B). The choice between the alternatives is a database design decision

based on join frequencies, update overhead, etc.

Let us consider the following relational database schema (key attributes are bold):
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CUSTOMER (cname, city, age, job)

ORDER (cname, pname, qty, date)

PART (pname, weight, price, spname)

A (partial) physical schema for this database, based on the storage model described above, is (clus

tered attributes are bold)

C_PC (CID, cname, city, age, job)

City_IND(city, CID)

Age_IND (age, CID)

0_PC (OlD, cname, pname, qty, date)

CnamelND(cname, OlD)

CIDJI (CID, OlD)

OID_Jl (OlD, CID)

C_PC and 0_PC are primary copies of CUSTOMER and ORDER relations. City_IND and Age_IND are

selection indices on CUSTOMER. CnamelND is a selection index on ORDER. CID JI and OlD JI are join

indices between CUSTOMER and ORDER for the join predicate (CUSTOMER. Cname = ORDER.Cname).

3. Optimization of Non—Recursive Queries -

The objective of query optimization is to select an access plan for an input query that optimizes a

given cost function. This cost function typically refers to machine resources such as disk accesses,

CPU time, and possibly communication time (for a distributed database system). The query optimizer is

in charge of decisions regarding the ordering of database operations, and the choice of the access

paths to the data, the algorithms for performing database operations, and the intermediate relations to

be materialized. These decisions are undertaken based on the physical database schema and related

statistics. A set of decisions that lead to an execution plan can be captured by a processing tree

Krishnamurthy 86]. A processing tree (PT) is a tree in which a leaf is a base relation and a non—leaf

node is an intermediate relation materialized by applying an internal database operation. Internal data

base operations implement efficiently relational algebra operations using specific access paths and al

gorithms. Examples of internal database operations are exact—match select, sort—merge join, n—ary

pipelined join, semi—join, etc.

The application of algebraic transformation rules Jarke 84] permits generation of many candidate

PT’s for a single query. The optimization problem can be formulated as finding the PT of minimal cost

among all equivalent PT’s. Traditional query optimization algorithms Selinger 79] perform an exhaus

tive search of the solution space, defined as the set of all equivalent PT’s, for a given query. The

estimation of the cost of a PT is obtained by computing the sum of the costs of the individual internal

database operations in the PT. The cost of an internal operation is itself a monotonic function of the

operand cardinalities. If the operand relations are intermediate relations then their cardinalities must

also be estimated. Therefore, for each operation in the PT, two numbers must be predicted: (1) the

individual cost of the operation and (2) the cardinality of its result based on the selectivity of the condi

tions Selinger 79, Piatetsky 84].

The possible PT’s for executing an SPJ query are essentially generated by permutation of the join

ordering. With n relations, there are n! possible permutations. The complexity of exhaustive search is

therefore prohibitive when n is large (e.g., n> 10). The use of dynamic programming and heuristics, as

in Selinger 79], reduces this complexity to 2~, which is still significant. To handle the case of complex

queries involving a large number of relations, the optimization algorithm must be more efficient. The

complexity of the optimization algorithm can be further reduced by imposing restrictions on the class of
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