
SEPTEMBER 1985 VOL. 8 NO. 3

a quarterly bulletin

of the IEEE computer society
technical committee

Database

Engineering
Contents

Letter from the Editor 1

Databases and Natural Language Processing
Z. W. Pylyshyn and R. I. Kittredge 2

TEAM: An Experimental Transportable Natural Language Interface

P. Martin, D.E. Appelt, 8.J. Grosz, and F. Pereira 10

A Multilingual Interface to Databases

H. Lehmann, N. Ott, and M. Zoeppritz 23

Evaluation and Assessment of a Domain-Independent Natural Language
Query System

M. Jarke, J. Krause, Y. Vassiliou, E. Stohr, J. Turner, and N. White 34

Modelling Natural Language Data for Automatic Creation of a Database from

Free-Text Input
N. Sager, E.C. Chi, C. Friedman, and M.S. Lyman 45

Alternatives to the Use of Natural Language in Interfacing to Databases

Z. Pylyshyn 56

Menu-Based Natural Language Interfaces to Databases

C. W. Thompson 64

Calls for Papers 71

Special Issue on Natural Language and Databases

Chairperson, Technical Committee

on Database Engineering

Prof. Gio Wiederhold

Medicine and Computer Science

Stanford University
Stanford, CA 94305

(415) 497-0685

ARPANET: Wiederhold@ SRI-Al

Editor-in-Chief,
Database Engineering

Dr. David Reiner

Computer Corporation of America

Four Cambridge Center

Cambridge, MA 02142

(617) 492-8860

ARPANET: Reiner@CCA

UUCP: decvax!cca!reiner

Database Engineering Bulletin is a quarterly publication of

the IEEE Computer Society Technical Committee on Database

Engineering. Its scope of interest includes: data structures

and models, access strategies, access control techniques,
database architecture, database machines, intelligent front

ends, mass storage for very large databases, distributed

database systems and techniques, database software design
and implementation, database utilities, database security
and related areas.

Contribution to the Bulletin is hereby solicited. News items,

letters, technical papers, book reviews, meeting previews,

summaries, case studies, etc., should be sent to the Editor.

All letters to the Editor will be considered for publication
unless accompanied by a request to the contrary. Technical

papers are unrefereed.

Opinions expressed in contributions are those of the indi

vidual author rather than the otficial position of the TC on

Database Engineering, the IEEE Computer Society, or orga

nizations with which the author may be affiliated.

Associate Editors,
Database Engineering

Dr. Haran Boral

Microelectronics and Computer
Technology Corporation (MCC)

9430 Research Blvd.

Austin, TX 78759

(512) 834-3469

Prof. Fred Lochovsky
Department of Computer Science

University of Toronto

Toronto, Ontario

Canada M5S1A1

(416) 978-7441

Dr. C. Mohan

IBM Research Laboratory
K55-281

5600 Cottle Road

San Jose, CA 951 93

(408) 256-6251

Prof. Yannis Vassiliou

Graduate School of

Business Administration

New York University
90 Trinity Place

New York, NY

(212) 598-7536

Memoership in the Database Engineering Technical Com

mittee is open to individuals who demonstrate willingness to

actively participate in the various activities of the TC. A

member of the IEEE Computer Society may join the TC as a

tull member. A non-member of the Computer Society may

join as a participating member, with approval from at least

one officer of the TC. Both full members and participating
members of the TC are entitled to receive the quarterly
bulletin of the TC free of charge, until further notice.

Letter from the Editor

The term “natural language” has certainly generated controversy in the database area.

Even taking aside the staunch supporters and opponents of natural language as an interface to

databases, we have seen waves of praise, hope, and promise, followed by disappointments
and condemnations.

I believe that the relationship between natural language and databases is now in calmer

seas- we are seeing an upswing of interest in natural language and much research activity.
This new interest may be explained by three recent developments: (1) the technical improve.
ments of natural language systems following knowledge base technology, (2) the considera

tion of natural language not on’y in isolation as a query language but also in combination

with other forms of interfaces (e.g., menus), and (3) the commercialization of natural

language - always a strong indicator of research interest.

This issue of DBE is on Natural Language and Databases. It investigates not only
natural language as a query language, but also free-text analysis and mapping of text into

databases. A large number of research projects and development efforts using natural

language in conjunction with databases are currently under way in North America and

Europe. The goal of this issue is to collect and present some representative work from both

continents, from both industry and academia, and for both natural language processing and

natural language system evaluation.

The first article, Databases and Natural Language Processing by Zenon Pylyshyn and

Richard Kittredge, introduces the topic and points to the major research projects. This article

is followed by descriptions of two systems which are in advanced development stages. First,
Paul Martin et al describe the project TEAM at SRI International (TEAM: An Experimental
Transportable Natural Language Interface), a state-of-the-art natural language query system.
Second, Hubert Lehmann et al present the USL project at IBM Heidelberg (A Multilingual
Interface to Databases), a research effort that uses a more global definition of natural

language (not only English!). The latter system has been the subject of extensive empirical
evaluations, the results of which are summarized in the article by Matthias Jarke et al

(Evaluation and Assessment of a Domain-Independert Natural Language Query System). Map
ping English text in technical domains (e.g., medicine) into a database for further processing
is the topic of the article by Naomi Sager et al (Modeling Natural Language Data for Automatic

Creation of a Database from Free-Text Input). To put things into perspective, limitations of

current natural language systems, as well as two suggestions for future research directions to

overcome some of these limitations, are given in Alternatives to the Use of Natural Language
in Interfacing to Databases, by Zenon Pylyshyn. One of these research directions is exempli
fied by the last article of the issue (Menu-Based Natural Language Interfaces to Databases) by
Craig Thompson.

I wish to thank all the authors of this DBE issue for accepting my invitation, for the

time they devoted to produce quality contribudon~, and for meeting all deadlines with no

complaints.

Yannis Vassiliou

July 1985.

Databases and Natural Language Processing

Zenon W. Pylyshyn, University of Western Ontario, London, Canada

Richard I. Kittredge, Universite de Montreal, Montreal, Canada

Progress In the computer analysis of natural language (NL) text offers a number of promising

new directions In database design. For example, the use of unrestricted NL queries to

interrogate databases offers an attractive option to artificial query languages or menus

especially for nontechnical users. Recent successes in developing such “front- ends” to

databases represent an Important commercial application of NL processing. Other potential

applications are also briefly examined, Including automatic text analysis for indexing,

abstracting and formatting of textual Information. Several accomplishments and shortcomings

of this technology are sketched.

1. General Introduction

Databases for general office, management and consumer use, present special

problems both in terms of challenging computer science techniques for dealing efficiently

with large databases and in terms of the design of user interfaces. Because such

databases are intended to be used by nontechnical people it is crucial that accessing

these databases be convenient and natural, or at least easy to learn. One of the largest

obstacles to the widespread acceptance of consumer and management databases Is the

resistance of the average user to the relatively cumbersome method of access, or at least

to the perceived rigidity of the Interface between the user and the stored information.

In this overview we will consider some actual and potential contributions of Artificial

Intelligence technologies to the alleviation of some of these difficulties, with particular

regard to developments in natural language processing.

A slogan In the commercial use of artificial intelligence is that we must make the

machine know more about the user so that the user will need to know less about the

machine. This slogan highlights an Important general point, namely that if a user is to

continue to operate the way he or she normally would, then the machine will have to

adapt to that way. Since the usual way that we seek Information is by asking questions

in our native language, this implies that a natural language query system may be the

most natural way to access information. Furthermore, since a great deal of the

information that we need Is In the form of natural language text, the analysis of such

text could be an important component of database processing. Below we examine a

number of developments in the processing of natural language, with a view to its

relevance to database technology.

2. Natural Language as a Database Query Interface

W00D83] presents some persuasive arguments for the importance of natural

language as a communication channel between man and machine. They are based on

the observation that (1) People already know natural language, so they do not need to

bear the burden of learning an artificial language nor of remembering its conventions

over periods of disuse, and (2) UsIng a natural language spares the user from having to

—2—

translate his requests from the form in which they presumably occur to him into a

restricted artificial form. These two reasons alone can be the bases of a major

justification for developing natural language interfaces. Even when users have the time

and patience to learn an artificial language, and even when they become experts In the

use of an artificial language, these two reasons remain Important. Even with

experienced users there arise occasions when they know what they want the machine to

do but cannot recall how to express it in the artificial language, or find It difficult to do

so, or attempt it and make errors. Furthermore, even in those cases where the user does

remember how to express the query in an artificial language, and can do so with little

error, the mismatch between the conceptual structure of a computer query system and a

human natural conceptualization of problems and intentions presents a serious problem

which leads users to prefer to consult with a human interlocutor -- even when that

course appears inefficient -- than deal with the conceptualization of the machine. This

is especially true when the data being interrogated are intrinsically natural language

data.

Woods argues that the fundamental difficulty with artificial query languages does

not lie in their superficial syntactic form, but in their underlying conceptual structure --

e.g. their failure to use devices such as anaphora, ellipses, metalinguistic references -- in

other words, just the sorts of constructions that typically make natural language

processing difficult. Many (e.g. HAYE81], COHE81] have also made similar points. As

a consequence, some have suggested that artificial languages or a restricted subset of

natural languages should preserve the Important conceptual properties of natural

language (e.g. HAYE81]).

The use of natural language to query databases is not without its problem,

however, especially if the language analysis system is lImited. Some difficulties with the

use of natural language and several alternative interface strategies are discussed in the

articles in this issue by Pylyshyn and by Thompson.

2.1. State of the Art

The use of natural language to interrogate databases has been one of the most

successful and most visible areas of application of artificial intelligence in recer~t y jars.

The commercial success of products such as INTELLECT, which is currently being

marketed by IBM (see ARTI81]; HARR77]), ENGLISH and Francais (Natural
Language front ends to the RAMIS II database, Marketed by Mathematica Products

Group), Themus (a Natural Language front end to the Oracle database system which

has a learning capability -- marketed by MBS) and products being developed for

personal computers by companies like Symantec, has made many people look to such

interface systems as a potential answer to the problem of allowing computer-naive

consumers access to large-scale databases.

Current natural language systems not only have the capability pf answering

complete self-contained grammatical questions, but In some cases can also understand

user inputs containing simple pronoun references to words in earlier queries, inputs with

misspelled words or minor grammatical errors, certain cases of ellipses (queries that are

incomplete and rely on reuse of words from a previous query -- e.g. How many grocery

stores are there? Hardware stores~?), and certain definitions Introduced by the user.

Current systems allow only limited updates of the database by the user in Interaction

—3—

with the Natural Language system, incorporate only a very limited theory of the domain

of application, do not translate the query into a general logical form from which

inferences can be carried out, and in general are not capable of analysis at the level of

discourse pragmatics, which requires that the system maintain a model of the user’s

needs and intentions. HEND82] calls such systems ‘level 1’ systems.

While current ‘level 1’ systems are broader in the range of queries they can accept

than the research systems of 10 years ago (e.g. W00D72], W1N072]), most of them

are, in fact, based on grammatical and parsing ideas that differ little from those early

systems. Indeed, most of them use parsers based on the augmented recursive transition

network system developed by Woods, Kaplan and others (see W00D72]). They

accomplish their more impressive performance by narrowing their domain of application.

As well as using a separate grammatical module (a highly desirably architectural feature

which makes it easier to change and fine-tune the system to different applications), they

generally make heavy use of the lexicon in order to add a variety of tricks that apply In

limited domains. Such devices can be used, for example, In order to resolve certain types

of anaphoric reference as well as to eliminate certain potential ambiguities. In addition,

most of these systems require some customization for specific databases. This is the

case, for example, In the INTELLECT, which requires a customized module for mapping

entries in its lexicon directly onto data fields.

Even the best current commercial systems are poor at handling expressions with

two or more quantifiers (Does every shop supervisor earn more than any of the

craftsmen who works under him?). In addition, they do not contain a model of the

user. Some such model Is necessary to deal sensibly with a variety of queries -- for

example, in order to correctly handle questions which result In a null answer (e.g. if

asked Do union members earn more than non-union workers? when all workers in a

certain company are either unionized or none of them are, a system which had no

representation of what a user needed to know would simply provide the unilluminating

answer no).

Several substantial level 1 systems are in the advanced prototype state. Among

the better-known Ones are the following:

• The TQA system, under development at Yorktown Heights since the early 1970’s, has

undergone a constant evolution, but is still based on a transformational parser developed by

Petrick and Plath. During 1978-79 the system was given an extensive test by the White Plains

municipal office for querying their database on zoning and land use. Statistics collected during

that trial DAME81] showed that some 65% of the 800 queries to the system were correctly

parsed and answered. Users sometimes had to reformulate a query to stay Inside the artificial

limits of the system’s syntax and vocabulary (a typical problem for present query systems).

• The USL system at IBM-Heidelberg represents about the same degree of advancement as the

TQA system, although It uses a different parser and semantic approach. Its market advantage

lies in the fact that there exists a version for German as well as for English, Italian, French

and Spanish (see the article in this Issue).

• The ASK system is being developed at the California Institute of Technology THOM83] for

commercialization by Hewlett-Packard Corporation. ASK uses semantic networks to give a

simple knowledge representation of the database domain. In addition to rapid parsing and

analysis, its features include a facility for tailoring an existing database to a particular user’s

‘Context’ through an interactive dialogue. This Includes the ability to add new definitions and

extend the database structure through dialogues.

—4—

The only large scale working systems are level 1. Many research systems contain

significant improvements over commercial level 1 systems, and there are also fragments

of level 2 desIgns In various stages of development. These will be mentioned briefly in

section 4. Below we discuss some applications of developments in natural language

processing for other than providing a natural language query capability.

3. Natural Language for Updating and Maintaining a

Database

A major problem arises in natural language ‘updates’ to databases. Even though

natural language is not necessarily the most convenient medium for bulk data entry, it Is

important to have some facility for making limited changes. At the very least, one wants

to be able to add or modify individual facts. But unless very carefully controlled, natural

language updates are potentially dangerous. The potential ambiguity of update

commands may not be obvious to the user, and allow damage to data which is hard to

undo.

In addition to such on-line updating capabilities, a major area of research involves

the preparation of natural language text for inclusion in a database. This requires the

analysis of extended text to extract its meaning so that efficient database techniques and

indexing methods can be applied. Systems which analyze extended text usually cannot

be interactive, since the author of the text may not be on-line. In any case, the

demands of high volume processing normally make Interaction prohibitive. Because of

this, extended text systems must usually be richer in linguistic detail, since there is no

‘second chance’ to rephrase the input.

One of the most significant advances in text analysis over the past decade has been

the refinement of techniques for mapping texts from specialized subject areas into

‘information formats’, which are tabular representations of the data contaIned in the

texts. These ‘informatting’ techniques have grown out of work done at New York

University (e.g., SAGE78I) which has concentrated on scientific and technical writing in

medicine and related fields. This work has several applications for information science.

One of the most important ones is in creating a database from full text.

For example, HIRS82] report on the conversion of hospital discharge summaries,

written by an attending physician in telegraphic style, into a relational database. This

access to information contained in the text opens up a new source of medical data for

statistical analysis. GRIS78] also reports on the use of such techniques for query

systems, where the query can be processed into semantic form using the same techniques

(more details of this work are given in the article by Chi et. al. in this issue). Central to

this approach is a detailed linguistic study of the particular technical ‘sublanguage’.

Although a number of experiments have been carried out on converting

subIanguage~ texts~to Information-formats~-t~his~technlque appears~to~ be-~at least~ a few

years from substantial commercial application, at least for complex medical texts. The

reason for this is that while a large percentage of sentences in a typical report can be

mapped into a structured format, not all sentences can be formatted. In part, this is

due to the fact that even technical reports will typically contain material which lies

outside the particular subianguage for which the system was specialized (e.g., remarks

on the personal history of the patient and his family in a hospital record). Because of

—5—

this one needs a much larger grammar and lexicon, perhaps one that begins to approach

that of the language as a whole.

One of the more ambitious goals In the area of text analysis, and one that could

potentially have a large impact on database design, Is automatic abstracting. Much of

the work on this problem was carried out a number of years ago, and hence does not use

state-of-the-art techniques. However, there are several recent revivals of interest, which

approach the problem from quite different perspectives. One Is some recent work at the

U.S. Naval Research Laboratories on the automatic dissemination and summarization of

telegraphic messages concerning malfunctioning electronic equipment on board ships at

sea. A system has constructed a system which uses the NYU string parser and

sublanguage techniques to convert paragraph-length messages Into information formats.

Format entries are analyzed for revealing combinations of semantic classes, leading to

the choice of one entry (the equivalent of a sIngle proposition) which best summarizes

the whole paragraph. The NRL team has built a prototype system which successfully

produces single-sentence summaries for many of the simpler paragraphs, though Its

performance is at present very limited. It appears that much more research is needed on

the linguistic problems of telegraphic sublanguages.

Another approach to abstracting, is the work on summarizing news reports,

carried out by R. Schank and a number of his former students from Yale (e.g.,

DEJO7Q]. They have used ‘sketchy scripts’ to represent the structure of stereotypical

events and their subevents. The hierarchical structure of scripts allows a summarization

(on the topmost level) of a story which has been ‘understood’ (I.e., matched) according

to the script representation. This approach has only been applied in very limited

domains at present and its generalizability to less restricted text is open to debate. One

interesting recent application of these ideas is the NOMAD system at the University of

California at Irvine GRAN83]. NOMAD is designed to analyze telegraphic ship-to-shore

messages In ‘command and control’ situations. The system uses script-based

expectations to interpret messages and paraphrase them Into full standard English.

Specific ‘syntactic’ patterns of the sublanguage are also used. This system is still in the

early experimental stage.

4. Research Issues. in Natural Language Analysis
Level 1 systems can sometimes be improved in a number of ways without requiring

representation of very large amounts of general knowledge of the domain and the user --

as would be required for higher level systems. For example, one of the most promising

techniques for allowing natural language interfaces to be transported to new database

domains (with their associated differences in input vocabulary) is to have the system

acquire this linguistic information during a dialogue with a database administrator who

has no knowledge of computational linguistics. The TEAM system at SRI GROS83]
(see also the description in this issue) has an acquisition component which queries the

database administrator about the data types to automatically set up a grammar and

dictionary usable by the interface component. Another Improvement, still in the

research stage, Is a faculty for providing ‘concise responses’, so that instead of answering

a question like “Who drives a company car?” with a list of people (an extensional

reply), the system would give a more meaningful response (the Intenslonal reply) such as:

“The president and the vice- presidents”.

—6—

Current operational systems do not employ either an explicit, detailed

representation .of the knowledge associated with the application domain, or a model of

the user’s goals, state of knowledge, and limitations. EHEND82] have called systems

with extensive explicit domain knowledge ‘level 2’ systems and systems with a detailed

model of the user (in addition) ‘level 3’ systems. A good deal of direct research is taking

place on modelling such systems or on the underlying problems of representing the

linguistic and extralinguistic knowledge which they require.

A number of experimental systems which Incorporate level 2 capabIlities are now

under construction. Representative of these are the IRUS system from BBN

the KNOBS system PAZZ83] under development at MITRE Corporation,

and the HAN’I-ANS system from Hamburg. KNOBS makes use of several knowledge

sources during the processing of a query, including scripts with stereotypical knowledge

of the particular domain and inferencing rules for explicating information which is

missing from the user’s input. Within the context of the problem domain (an expert

system providing consultant services to an Air Force tactical air mission planner),
KNOBS illustrates the feasibility of integrating several different kinds of knowledge-

based processing in a natural language interface. The HAM-ANS system, being

developed at the University of Hamburg, also uses several different knowledge sources.

It is an attempt to design a “core” natural language interface to three different

background systems: an expert system, a vision system, and a database system

HOEP83].

Some preliminary attempts are being made to integrate a (partial) model of the

user into natural language interfaces to query systems. A project at the University of

California at Berkeley is aimed at building a consultant (‘UC’) for the UNIX operating

system. In particular, UC provides an analysis of the user’s goals during interaction

with the system, employing rules (‘frames’) of considerable generality. For an overview

of UC, see WILE82].

A good deal of research is being conducted at several major American centers on

knowledge representation and discourse pragmatics, with the specific intention of

extending the performance of natural language interfaces. For example, the University

of Pennsylvania Is carrying out a study of Flexible Communication with Knowledge

Bases, with a strong emphasis on discourse pragmatics. One of the features of this

research will be to acquire an integrated view of both linguistic and visual

communication with databases. This requires a representation of certain types of

knowledge which will interface with both linguistic structures and with two and three-

dimensional images. This research has also emphasized the recognition of various kinds

of user misconceptions on the basis of rules for goal-oriented linguistic behavior.

Despite the acknowledged commercial successes of level 1 systems, and the

encouraging research on level 2 systems, there are reasons for thinking that In the short

and perhaps even medium term (5-10 years), Natural Language systems may not be the

best solution for making consumer- databases widely- -available- a-nd~convIvia1.- -Problems

of interpreting queries have only been solved in an ad hoc way for very narrow

relational databases, and the customization of such natural language query systems to

new subject areas (new databases) represents a serious investment of time and effort,

assuming it is possible at all. A large number of problems have to be solved before such

systems can be considered useful for the general consumer, many of which have to do

with low-level problems associated with the use of the keyboard. The tedium of typing

—7—

suggests the importance of allowing abbreviations (and even automatic word-

completions), providing rapid on-line spelling correction, dictionary maintenance

(including facilities for defining new macro-expansions based on function keys and

special keyboard aids) as well as helpful on-line syntax checking, ambiguity reduction

and other help facilities. The resistance to the use of keyboards also emphasizes the

importance of exploring other possible modes of input, including speech and pointing
devices.

In addition, as we have already suggested, development of the sort of natural

language system that would be truly useful raises a host of deep problems that are

currently under Investigation -- such as that of assigning anaphoric reference to general

terms and pronouns, interpreting fragmentary and ungrammatIcal queries, recovering

the presuppositions of questions, determining the meaning and scope of quantifiers (such
as “some”, “most”, “none”, “all”) and negation, and Interpreting indirect “speech acts”

(such as “I need to know...”) or metalinguistic assertions (such as “No, I meant the most

recent figures,” as a response to the data reported when the system was asked for trends

In the price of certain commodities.)

4.1. Location of Natural Language research

Most of the long-term frontier research In natural language processing is being

carried out in large research laboratories specIalizing in Artificial Intelligence. These

include laboratories universities such as Pennsylvania, Stanford, Carnegie-Mellon, MIT,

New York or Yale in the USA; Marseille, Hamburg, or Edinburgh in Europe.; or

Toronto, Simon Frazer, Montreal or Western Ontario In Canada. The smaller

Institutions typically specialize in particular problems associated with natural language

processing (for example, the Canadian universities tend to focus on problems of

knowledge representation). Among nonacademic institutions, significant research in

natural language processing is being carried out at SRI International, Bolt Berenek and

Newman, Bell Laboratories, Xerox, IBM and Hewlett-Packard. One of the largest and

most ambitious basic research projects is being pursued at the Center for the Study of

Information and Language, a consortium of research laboratories centered at Stanford.

A considerable amount of work has also been done on the natural language problems

implicit in machine translation (e.g. the TAUM project at the Universite de Montreal,

the Eurotra project being carried out by the European Economic Community, or the

machine translation projects in Japan).

REFERENCES

ART!81J Artlflcial Intelligence Corporation. INTELLECT User’s Manual. Waltham, Mass.,

1981.

COHE8I] Cohen, P., Perrault, C., and Alien, J. “Beyond question-answering”, Technical Report
No. 4644, Bolt Beranek and Newman Inc., May, Cambridge, Mass., 1981.

jDAME8II Damereau, F. “Operating Statistics for the Transformational Question Answering

System.” American Journal of Computational Linguistics, 7:1, 30-42, 1981.

DEJO79] Dejong, G. Skimming Stories in Real Time: An Experiment in Integrated

—8—

Understanding. Res. Rep. No. 158, Yale Computer Science Department, 1979.

fGRIS78] Grishman, R., and Hlrschman, L. “Question Answering from Natural Language Data

Bases”. Artificial Intelligence, 11:25-43, 1978.

GRAN83] Granger,R., Staros, C., Taylor, C., and Yoshli, R. “Scruffy Text Understanding: Design

and Implementation of the NOMAD System”. Pros, of the Conf. on Applied Natural

Language Processing, Santa MonIca, 1983.

GROS83] Grosz, B. TEAM: Transportable Natural Language Interface System. Pros. of the

Conf. on Applied Natural Language Processing, Santa MonIca, 1983.

HARR77] Harris, L. User oriented data base query with the ROBOT natural language query

system. mt. J. Man-Mach. Stud., 9:6 (November), 697-713, 1977.

I-IAYE8II Hayes, P.J. “Anaphora for Limited Domain Systems”, Proc. Seventh International

Joint Conference on Artificial Intelligence, Vancouver, 416-422, 1981.

HEND82] Hendrix, G., et. al. “Natural Language Interface.” American Journal of

Computational Linguistics, 8:2, 56-61, 1982.

1-11RS821 Ilirschman, K., and Sager, N. Automatic Informatting of a Medical Sublanguage. In

Kittredge, R. and Lchrberger, J. (eds.) Sublanguage: Studies of Language in Restricted

Semantic Domains, de Gruyter, 1982.

I-10EP83] Hoeppner, W. et. al. “E3eyond Domain Independence: Experience with the development
of a German language access system to highly diverse background systems”. IJCAI-83,

Karlsruhe, 1983.

EPAZZS3] Pazzani, M., and Engelman, C. Knowledge-Based Question Answering. Proc. of the

Conf. on Applied Natural Language Processing, Santa Monica, 1983.

PYLY85] Pylyshyn, Z. “Alternatives to the Use of Natural Language In Interfacing to Databases”,

Database Engineering, this issue, 1985.

SAGE78] Sager, N. “Natural Language Information Formatting: The Automatic Conversion of

Texts to a Structured Data Base”. In M.C. Yovits, (Ed.), Advances in Computers, 17,

89-162, New York: Academic Press, 1978.

THOM83] Thompson, B., and Thompson, F. Introducing ASK, a Simple Knowledgable System.

Proc. of the Conf. on Applied Natural Language Processing, Santa Monica, 1983.

WILE82] Wilensky, R. Talking to UNIX in English: an Overview of UC. Proc. of the 2nd AAAI

Conf., 1982.

WINO72] Wlnograd. Understanding Natural Language. New York: Academic Press, 1972.

W00D83] Woods, W. “Natural Language Communication with Machines: An Ongoing Goal:,

Technical Report No. 5375, Bolt Beranek and Newman, Cambridge, Mass., July, 1983.

W00D72] Woods, W., Kaplan, R., and Nash-Webber, B. The Lunar Sciences Natural Language
Information System: Final Report, Bolt, Beranek and Newman, TR 2378, Cambridge,
Mass., 1972.

—9—

TEAM: An Experimental

Transportable Natural-Language Interface

By Paul Martin, Douglaa E. Appdt,Barbara J. Grosz, Fernando Pereira

Artificial Intelligence Center

SRI International

ABSTRACT

This paper is a brief description of TEAM, a project whose goal was to design an experimental

natural-language interface that could be transported to existing database systems by people who

already possessed expertise in their use. In presenting this overview, we have concentrated on those

design aspects that were most constrained by the requirements of transportability.

1 A Functional Description

A natural-language interface (NLI) to a computer database provides users with the capability of

obtaining information stored in the database by querying the system in a natural language (e.g.,
English). The use of natural languages as a means of communication with computer systems

allows users to frame a question or a statement in the way they think about the information being
discussed, thereby freeing them from the need to know how the computer stores or processes the

information. However, most existing NLI systems have been designed specifically to treat queries
that are constrained in three ways: (1) they concern a single application domain; (2) they pertain
to information in a single database; (3) they handle only a single task, namely, database query.’
Constructing a system for a new domain or database requires a new effort almost equal to the

original one in magnitude.

Transportable NLIs that can easily be adapted to new domains or databases are potentially
much more useful than domain- or database-specific systems. However, because many of the tech

niques already developed for custom-built systems preclude automatic adaptation of the systems

to new domains, the construction of transportable systems poses a number of technical and theo

retical problems. In describing the transportable NLI system called TEAM (Transportable English
database Access Medium), that was the focus and objective of a four-year project, this article em

phasizes those choices in system design imposed by the requirement of transportability.2 For some

problems, the design decisions incorporated in TEAM are generally applicable to a wider range of

natural-language processing systems; for others, we were forced to take a more limited approach.

1.1 Transportability

One of the major challenges faced in building NLIs is to provide the information needed by the

system to bridge the gap between the way the user thinks about the domain of discourse and the way

the computer handles the information it possesses about the domain. Existing databases employ

‘This constraint is more limiting in many ways than the other two. For example, queries are typically treated

largely in isolation; very few features of dialogue are handled. Since this remains a constraint in TEAM it will not

be discussed further in this article.

2Space limitations have compelled us to omit many of the specific problems faced in this research; for a fuller

treatment, please see the journal article tGros85I.

— 10 —

different representational conventions, many of which favor storage efficiency over perspicuity. For

example, one might encode geographic information about mountain peaks in Switzerland as part

of a file of information about the mountain peaks of the world, identifying them with a “SWZ”

in a COUNTRY field, or using a SWISS? feature field for which a “Y” indicates that a peak is

in Switzerland and an “N” indicates it is not. Or the information might reside in a separate file

on Switzerland, or one on Swiss mountain peaks. The kinds of queries a user might pose—for

example “What is the highest Swiss peak?” “Are there any peaks in Switzerland higher than Mt.

Whitney?” “Where is the Jungfrau?” —are equally appropriate for all the aforementioned encodings
and the inputs to the NLI (an English query) remain unchanged. The output (commands to a

database system), however, will be quite different. One of the main functions of the NLI is to make

the necessary transformations, thus insulating the user from the particularities of the database

structure.

To provide this insulation and to bridge the gap between the user’s view and the system’s
structures requires a combination of domain-specific and general information. In particular, the

system must have a model of the subject matter of the application domain. Included in this model

will be information about the objects in the domain, their properties and relationships, and the

words and phrases used to refer to each. Finally, the system must know the connection between

entities in that model and the information in the database. A major challenge in constructing

transportable systems is to provide a means for easy acquisition of domain-specific information.

TEAM is one of several recent attempts to build transportable systems (some of which are

described elsewhere in this issue.) Different approaches to transportable systems reflect diverse

conceptions of the kinds of skills and knowledge that might be required of those who will be doing
the adaptations (in particular, whether they must have expertise in natural-language processing),
and what parts of the system might change (in particular, whether the database can be restructured

to fit the requirements of the N LI).
A major hypothesis underlying TEAM may be stated as follows: if an NLI is constructed in

a sufficiently well-principled manner, the information needed to adapt it to a new database (and
its corresponding domain) can be acquired from users who have general expertise about computer

systems and the given database, but who do not have any special knowledge about natural-language
processing or this NLI.

In testing this hypothesis, we also assumed (for both theoretical and practical reasons) that

the database could not be restructured. Theoretically, it is the most conservative choice we could

have made; it imposed general solutions upon certain issues of system design, because we could not

restructure the data to alleviate problems of natural-language processing. Such restructuring can

often bring about a closer match between the way information is stored and the way it is referred

to in NL expressions. For instance, in the previous example, a database structure that includes

the SWISS? feature field is more difficult to handle in a general manner than one that uses the

COUNTRY field encoding. From a practical standpoint, the choice reflected our desire to provide
techniques adequate to handle existing databases, some of which are quite large and complex, hence

fairly difficult to restructure.

1.2 Using TEAM

The TEAM system is designed to iñteract ‘with two kinds of users: a database èzpert(DBE) and

an end user. The DBE engages in an acquisition dialogue with TEAM to provide the information

needed to adapt the system to a new database, and, when desired, to expand its capabilities in

answering questions about a database (e.g., by adding new verbs or synonyms for existing words).
Once a DBE has provided TEAM with the information it needs about a database and domain, any

— 11 —

IIORLOC PERK

NA~ ~CNT~NT CAPITAl. AJ~A POP

Afghani,tan AsIa Kabul 260,000 17,450,000

Albania Europe Tlrana 11,100 2,620,000

Algeria Africa AlgIers 919,951 16,510,000

CONT

NA~ HEM AJWA POPt&AlkWd

Africa S 11,600,000 41,200,000

Antarctica
- -

S 5,000,000 500

Asia N 16,990,000 2,366,000,000

NA~ COUNTRY HEN~HT VOL

Aconcagua Argentina 23,080 N

Annapurna Nepal 26,504 N

Chimborazo Ecuador 20,702 V

NA~ cOtIdIRY POP

Brussels BelgIum 1,050,787

Buenos Aires Argentina 6,925,000

Canberra AustralIa 210,600

Figure 1: Sample Database

number of end users can use the system to query the database.

The TEAM system thus has two major modes: acquisition and question-answering. The ac

quisition dialogue with the DBE is oriented around the database structure. it is a menu-driven

interaction through which the DBE provides information about the files and fields in the database,3
the conceptual content they encode and how they encode it, and the words and phrases used to

refer to these concepts. Hence the DBE must know about the particular database structure and

the subject domain its information covers, but he does not need to know how TEAM works or any

special language-processing terminology.
The question-answering system consists of two major components: (1) the DIALOGIC sys

tem GrosS2] for mapping natural-language expressions onto formal logical representations of their

meanings; (2) a schema translator that transforms these representations into statements of a

database query language. DIALOGIC and the schema translator require both domain-specific and

domain-independent information. The requisite domain-independent information is part of the core

TEAM system; the domain-specific information is obtained by the acquisition component.

1.3 A Sample Database

We will use the database shown schematically in Figure ito help illustrate various aspects of TEAM.

This database comprises four files (or, relations) of geographic data. The first file, WORLDC, has five

fields—NAME, CONTINENT, CAPITAL, AREA and POP; respectively, they specify the continent,
capital, area, and population for each country in the world. Various mountains in the world are

represented in the second file, named PEAK, along with their country, height, and an indication

as to whether they are volcanic. The third file, named CONT, shows the hemisphere, area, and

population of the continents. The fourth file, BCITY, contains the country and population of some

of the larger cities of the world. Because several files may have fields with the same names, TEAM

prefixes file names to field names to form unique identifiers (e.g., WORLDC-NAME, PEAK-NAME,
CONT-POP, BCITY-POP); we will do likewise in our discussion.

TEAM distinguishes among three different kinds of fields: feature, arithmetic, and symbolic.
Feature fields contain true/false values indicating whether or not some attribute is a property of the

file subject. PEAK-VOL and CONT-HEMI are feature fields. Arithmetic fields contain numeric values

on which computations (e.g., averaging) can be performed WORLDC-AREA and PEAK-HEIGHT are

examples of arithmetic fields. Let us note, however, that a field containing social security numbers

8TEAM currently assumes a relational database with a numl~er of files. No difficult language-processing problems
would result from conversion to other models.

BC IT Y

— 12 —

would be treated more naturally as a symbolic field than as an arithmetic field, because it is unlikely
that any arithmetic computations would be done on such numbers. Symbolic fields typically contain

values that correspond to nouns or adjectives denoting the subtypes of the domain denoted by the

field. WORLDC-NAME and PEAK-COUNTRY are examples.
More information can be gleaned from a database than simply what the individual files contain.

For instance, the continent on which a peak is located can be derived from the country in which

it is located and the continent of the country. Likewise, the hemisphere in which a country is

located can be determined from the continent on which the country is located and the hemisphere
of that continent. TEAM allows the DBE to specify virtual relations that convey such additional

information.

2 The TEAM System Architecture

The design of TEAM reflects several constraints imposed by the demand for transportability; our

discussion will emphasize those aspects of the design. The need to decouple the representation of

what a user means by a query from the procedure for obtaining that information from the database

obviously affected the choice of system components. In addition, the need to separate the domain-

dependent knowledge to be acquired for each new database from the domain-independent parts of

the system influenced the design of the particular data structures (or “knowledge sources”) selected

for encoding the information used by these components.

Figure 2 illustrates the major processes of TEAM, the various sources of knowledge they use,

and the flow of language-processing tasks from the analysis of an English sentence to the generation
of a database query. The rectangular boxes represent the processes, and the ovals to their right,
the various knowledge sources. The acquisition box on the right points to those knowledge sources

that are augmented through interaction with the DBE. All other modules and knowledge sources

are built into TEAM and remain unchanged during acquisition.
In this section we will look at the TEAM system from several angles. To begin, we will sketch

the overall flow of processing during question-answering, describing the various processes involved

in transforming an English query into a formal database query. Because the particular logical form
(LF) TEAM uses to encode the meaning of a query plays a crucial role in mediating between the

way queries are posed and the way information is obtained from the database, it affects the design
of several components of the system. We then look in somewhat more detail at the data structures

that encode domain-specific information. Finally, we discuss the overall strategy used for acquiring
information about specific domains and databases.

2.1 Flow of Control

The flow of control during TEAM’s translation of a natural-language query into a formal query

to the database is illustrated as the path on the left side of Figure 2, from top to bottom. The

transformation takes place in two major steps: first, a representation of the literal meaning of the

query, or logical form, is constructed; second, this logical form is transformed into a database query.

The translation into logical form is performed by the DIALOGIC system, which comprises the

following -components, shown surrounded- by the~dotted~ box in Figure 2: the DIAMOND parser,

the DIAGRAM grammar, the lexicon, semantic-interpretation functions, basic pragmatic functions,
and procedures for determining the scope of quantifiers.

Since a description of DIALOGIC is provided elsewhere GrosS2], let us discuss here only those

aspects of the system that were influenced by the development of TEAM. Two central data structures

in DIALOGIC that are affected by TEAM’s acquisition process are described: the lexicon and

— 13 —

Figure 2: TEAM System Diagram

the conceptual schema. To understand the semantic and pragmatic components of TEAM, it is

also necessary to appreciate DIALOGIC’s separation of semantic interpretation operations into two

main classes: translators, which define how the interpretations of the constituents of a phrase
are combined into the phrase’s interpretation; basic semantic functions, which are called by the

translators to assemble the actual logical-form fragments that form the interpretations of phrases.
hi brief, when the end user asks a query, DIALOGIC parses the sentence, producing one or

more trees representing possible syntactic structures. The “best” parse tree, based on a priori
syntactic criteria, is selected and annotated with semantic information (Robi82,Mart83J. Next,

pragmatic analysis is applied to assign specific meanings that are relevant to the current domain to

noun-noun combinations and to “vague” predicates like HAVE and OF.4 Finally, the quantifier-

scope determination process, after considering all possible alternatives, determines the best relative

scope for the quantifiers in the query. The logical form thus constructed, using a set of predicates
that are meaningful with respect to the given domain and database, constitutes an unambiguous
representation of the English query.

The logical form produced by DIALOGIC is translated into a query in the SODA Moor79J ~

database query language by the schema translator. In addition to the conceptual schema, the

schema translator uses a database schema that furnishes information about the particular database

structures. This schema, described briefly below, is also affected by the acquisition process.

4We consider these predicates vague because they can be applied to many kinds of entities; they are replaced by
~ predicates during pragmatic processing.

5SODA is actually a query compiler that takes queries in a standard relational fonnalism and compiles them into

optimized queries in the languages of other database management systems; both relational and codicil DBMSs

have been accommodated. For our experiments, an interpreter that follows SODA commands to access a small

database in primary memory was used in lieu of the actual SODA system.

ANSWER FROM DATABASE

— 14 —

Finally, the database query produced by the schema translator is given to SODA, which executes

the query and displays the answer for the user. SODA was not developed as part of TEAM but

was chosen for its features, which are consistent with the overall goal of transportability. SODA

was designed for querying distributed databases and is capable of interfacing with several actual

database management systems.

The processes TEAM executes in replying to an end user’s query are similar to those that any

custom-designed NLI would execute. What is different in the case of TEAM is that the modules

must be carefully designed to allow for maximal generality, which precludes many of the shortcuts

that are common in custom-built NLI systems (e.g., LADDER (Hend77I, PLANES (Walt75J). Two

techniques that are ruled out are the using a semantic grammar and combining the determination

of what a query means with the formulation of the DBMS query.

Semantic grammars are based on constituent categories that are chosen not for their ability to

embody linguistic generalizations, but rather for the ease of parsing and interpretation that results

when the grammar reflects the conceptual structure of the database domain. For example, instead

of the general categories of “noun” and “verb phrase,” semantic grammars may have categories 8uch

as “country” and “location specification.” Such grammars are hopelessly tied to a single domain,

and probably to a single database as well.

Efficiency also results from mapping a natural-language query directly into the code required
for retrieving an answer from the database, but at the cost of being tied to a particular database.

A number of database query systems (e.g., LADDER) construct a query directly while parsing the

input with semantic grammar rules, but without building any other representation of what the

query means.

Although the SODA query that results from the analysis of an English query represents, at

least in some sense, the intended meaning of the latter, it does so in a way that directly reflects

the structure of the database being queried. Consequently, if two databases encode the same

information in different structures, the result will be two different database queries for the same

English sentence. For example, if a user asks “How many Swiss mountains are there?” the database

queries generated in response to his query can look very different, depending on whether the tuples

representing Swiss peaks are distinguished from those representing other peaks by their membership
in a different relation, or by the presence of the word “SWZ” in a COUNTRY field.

The problem this creates is not just an aesthetic one: to acquire the semantic and pragmatic
rules necessary for generating a database query directly from an English query, TEAM would have

to ask the DBE about far more than the structure and contents of the database. Answering the

essential questions for such an acquisition would require the kind of expertise in natural-language
processing that TEAM is intended to render unnecessary. Thus, the demands of transportability

preclude use of the SODA language as the primary representation of the meaning of queries.6

2.2 Logical Form

Logical form plays a central role in TEAM: it mediates between the way an end user thinks about

the information in a database, as revealed in his queries to the system, and the way information

can be retrieved through queries in a formal database-query language. The predicates and terms in

thelogical form-fora particular query are derived-from information in the lexicon -and conceptual

1n addition, DIALOGIC was designed to be a general language understanding system that can be applied to tasks

other than database querying. Therefore, it was undesirable to restrict its application by choosing an unsuitable

semantic representation.

— 15 —

schema;7, hence, the choice of logical form indirectly affects the design of those components of the

system and determines, in part, the information the DBE must supply.

The logical form employed by TEAM is first-order logic extended by certain intensional and

higher-order operators and augmented with special quantifiers for definite determiners and inter

rogative determiners. Much research has been done to devise appropriate logical forms for many

kinds of sentences Moor8l], but that investigation lies beyond the scope of this article.

2.3 What Information Is Acquired

2.3.1 The Lexicon

The lexicon is a repository of the information about each word that is necessary for morphological,

syntactic, and semantic analysis. There are two classes of lexical items: closed and open. Closed

classes (e.g., pronouns, conjunctions, and determiners) contain only a finite, usually small number

of lexical items. Typically, these words have complex and specialized grammatical functions, along

with at least some] fixed meanings that are independent of the domain. They are likely to occur

with high frequency in queries to almost any database. Open classes (e.g., nouns, verbs, adjectives)

are much larger and the meanings of their members tend to vary, depending on the particular

database and domain. Therefore, most closed-class words are built into the initial TEAM lexicon,

while open-class words are acquired for each domain separately. However, there are a number

of open-class words, such as those corresponding to concepts in the initial conceptual schema (see
Section 2.3.2) and words for common units of measure (e.g., “meter”, “pound”), that are so broadly

applicable to so many database domains that they are included in the initial lexicon as well.

Lexical entries include those for the names of file subjects (i.e., the entities about which some

relation contains information—e.g., peaks for PEAK, and countries for WORLDC in the sample

database illustrated in Figure 1.3), field names, and field values. In addition, the DBE can supply

adjectives and verbs, as well as synonyms for words already acquired (see Section 2.4). Associated

with every lexical entry is syntactic and semantic information for each of its senses. Syntactic

information consists of its primary category (e.g., noun, verb, or adjective), subcategory (e.g.,

count, unit, or mass for nouns; object types for verbs), and morphology. Semantic information

depends on the syntactic category. The entry for each noun includes the sort(s) or individual(s)
in the conceptual schema (Section 2.3.2) to which that noun can refer. Entries for adjectives and

verbs include the conceptual predicate to which they refer, plus information about how the various

syntactic constituents of a sentence map onto arguments of the predicate. Scalar adjectives (e.g.,

“high”) also include an indication of direction on the scale (plus or minus).

2.3.2 Conceptual Schema

The conceptual schema contains information about the objects, properties, and relations in the

domain of the database. It includes sets of individuals, predicates, constraints on the arguments

of predicates, and the information needed for certain pragmatic processing. The informational

content is similar to that commonly encoded in semantic networks, but the apparatus used is more

eclectic. The conceptual schema consists of a sort hierarchy and descriptions of various properties

of nonsort predicates.
The sort hierarchy relates certain monadicj predicates that play a primary role in categorizing

individuals. These are called sort predicates (represented here in italics as in PERSON). TEAM was

designed with a considerable amount of this conceptual information built in. Figure 3 illustrates

7As noted previously, the specific form depends also on general syntactic, semantic, and pragmatic rules for English
that are encoded in the various components of DIALOGIC.

— 16 —

THING

pJIysiCal-obfeet atitract-otJ.ct ttgat-pezsw

.pefit iocatioi, scald, ~hst-qbs mwsuze-wit lcgcZ-ab~ name qnality fsaW.r.

COWit nwsate time

time -~wsate WCiIM-mmasvze sped-measare eotw,w-m~asart lir.sar-meaSVJi area -medsate worth-measure tpera~re -measure

/
peak-height

Figure 3: A Fragment of TEAM’s Sort Hierarchy

a portion of this hierarchy. Each line connecting levels of the hierarchy signifies a set-subset

relationship between two categories of individuals. The sorts connected by the small arcs directly
below the nodes are disjoint; that is, no individual ca~ be in two sorts joined in this manner. The

sort hierarchy grows as information about a database is acquired. Th~ DBE is required to position
some of the newly acquired concepts in their appropriate places in the hierarchy.

Each field in the database is associated with the sort of objects that can appear in that field.

Several additional properties are associated with the sorts derived from symbolic fields and from

certain kinds of arithmetic fields.

With each sort obtained from a symbolic field, TEAM associates a predicate that encodes the re

lationship between that sort and the sort of the file subject. For example, for the relation WORLDC

in Section 1.3, which includes information about capitals and continents, the system would link the

sort WORLDC-CAPITAL with the predicate WORLDC-CAPITAL-OF (in this article, predicates
are shown in boldface), which takes two arguments: the first of sort WORLDC-CAPITAL, the second

of sort COUNTRY. This link is used in handling queries like “What is the capital of each country

in Europe?” In particular, it is used to determine what it means for a capital to be “of” a country,
orlor a country to be “in” Europe. Additional properties of the sort indicate whether individual

instances of it can modify or stand for instances of the sort of the file subject (e.g., “European
countries,” but not “Europeans” can be used to refer to the countries c satisfying the predication
(CONTINENT-OF c EUROPE)).

Sorts that correspond to arithmetic fields containing measures (e.g., length, age) also include

information about both the implicit unit of measurement (e.g., feet, years), and the kind of thing
being measured (e.g., linear extent, temporal extent).

Several other kinds of information are associated with nonsort predicates. A delineation specifies
the constraints on the sorts for each of a predicate’s arguments; multiple delineations are supported
but cannot be described in this brief format. Predicates corresponding to comparative-forming
adjectives (e.g.,~ “tall”)~have two additionalproperties:~a link~ to~the predicate that specifies the

degree (e.g., PEAK-HEIGHT in our example), and an indication of polarity along the scale being
measured (e.g., plus for TALL, minus for SHORT).

— 17 —

2.3.3 AssocIated Processes

Several general predicates have semantic and pragmatic specialists associated with them. The se

mantic specialists are Is-semantics and Degree-semantics; the pragmatic specialists are the Cenitive,

Noun-noun, Have, Of, General-preposition, Time, Location, Do-specialist, and Comparative.
The Is-semantics specialist is associated with the predicate IS and propagates sort restrictions

across all the variables that are being equated by the IS assertion. This specialist is invoked prior
to pragmatic processing (hence the “semantics” label); it attempts to reconcile any conflicts it

detects and may revise some sort predications on variables in the process. For example, it is used

in processing the query, “What is the area of Nepal?” to ascertain that the variable corresponding
to the “what” is a WORLDC-AREA, not a CONT-AREA.

The Degree-semantics specialist replaces the general predicate DEGREE-OF with a more spe

cific one. For example, by determining that predication (DEGREE-OF peaki x) refers to the

predicate PEAK-HEIGHT—i.e., that it is equivalent to the predication (PEAK-HEIGHT-OP
peaki z)—the specialist allows TEAM to further constrain the sort of x to be a linear-measure, thus

allowing the comparative specialist invoked during pragmatic processing to make the right choice

between the alternatives of comparing the heights of two objects and comparing an object’s height
with a height value.

The (Jenitive, Noun-noun, Have, and Of specialists replace the vague predicates GENITWE,
NN (for noun-noun combinations), HAVE, and OF with more specific ones. The individual spe

cialists differ only slightly, the differences reflecting the special restrictions associated with each

construction.

The General-preposition specialist is associated with ON, FROM, WITH, and IN, converting
these predicates into their appropriate domain-specific counterparts. For example, the Do-specialist
determines that the phrase “countries in Asia” means those countries c for which the predication

(WORLDC-CONTINENT-OF c ASIA) holds.

The Time-specialist and Location-specialist serve to map TIME-OF and LOCATION-OF into

predicates that are appropriate for the database at hand. They can be invoked obliquely by the

interrogative constructions “when” and “where.”

The Do-specialist replaces the predicate DO (from the verb “do”) with a more specific verb

chosen from those acquired for a domain. Although “do” does not appear as the main verb very

often in the database query task
,
the translators deduce its implied presence in some queries—for

instance in such comparative questions as “What countries cover more area than Peru Ldoes~?”.
The comparative specialist examines the two arguments of a comparison to determine whether

the comparison to be made is between two attribute values (e.g., Jack’s height and seven feet) or

between an entity and some value (e.g., Jack and seven feet). In the latter case, TEAM tries to

identify the appropriate attribute of the entity (e.g., Jack’s height).

2.3.4 Database Schema

The translation from logical form to SODA query requires knowing the exact structure of the target
database and the manner in which the predicates appearing in the logical form are associated with

the relations in the database. This information is provided by the database schema, which includes

the following information8:

• Definition of sorts in terms of database relations (subject) or fields (and field value for sorts

derived from feature fields).

8The schema translator also uses certain information in the conceptual schema, including taxonomic information in

the sort hierarchy and delineation information associated with nonsort predicates.

— 18 —

-

‘Iris

enu
IIORLDC BCITY CONT

ield P1~nu
CITY—COUNTRY BCITY—NRME BCITY—POP CONT—ARER
ONT-HEMI CONT—NRPIE CONT—POP PEAK-COUNTRY
ERK-HEIGHT PEAK—MAPlE PEAK-VOL WURLOC-RRER
IORLDC-CRPITRL WORLOC—COtITIIIEIIT UORLDC—TIRME WORLDC—POP

ord Plenu
RER (n) CAPITAL (n) CITY (n)

ONTINENT (n) COUNTRY (o) HEIGHT (n)
EPII (n) HEMISPHERE (n) HIGH (edj)
ARGE (adj) LOW (edj) N (n)

RME (n) MORTIIEN (edj) PERK (n)
OP (n) POPULATION (n) POPULOUS (sdj)
(n) SHORT (edj) SMALL (adj)

uestjon Rnswerjn9 Area
4e~d PERK-HEIGHT 1~ part or an ACTUAL rs)ation.

Typs of 11.14- SYMOOUC A~1)~TIC FEATURE

elun typ. DATES ~Ait~S COUNTS

Au tha units Impfcit? YES NO

Mar Implicit unit — FOOT

I000urs ty~ of this unit - TIME WEIONT SPEED VOLUME I3~A~ AMA WORTH TCt,WERATURE OTHER

Abbr.vI.don for this unit? — FT

Conv.r,lon formula from METERS to FEET - (I K 0.3048)
Conv.rilon fonoula from FEET to METERS - K 0.3040)
‘ositly. edjactivu — HIGH TAb.

Nagetiva odiscdvsa - SHORT LOW Figure 4: The Acquisition Menu

• List of convenient identifying fields for each sort corresponding to a file subject or field.

• Definition of predicates in terms of actual database relations and attributes; this is done for

predicates derived from both actual and virtual relations (for relation subjects and attributes).

• List of each relation’s key fields.

The database schema relates all the predicates in the conceptual schema to their representation
in a particular database. For each predicate, the database schema generates a logic formula defining
the predicate in terms of database relations. For example, the predicate WORLDC-CAPITAL-OF

has as its associated database schema a formula representing the fact that its first argument is

taken from the WORLDC-CAPITAL field of a tuple of the WORLDC relation, and that its second

argument comes from the WORLDC-NAME field of the same relation. If a predicate has multiple

delineations—i.e., if it applies to different sorts of arguments (e.g., a HEMISPHERE-OF predicate
could apply to both COUNTRIES and CONTINENTS)—the schema will include a separate definition

for each set of arguments. In some cases (e.g., predicates resulting from the acquisition of some

verbs and adjectives), the mapping associated with a predicate indicates that it is equivalent to

another conceptual schema] predicate with certain arguments set to fixed values.

2.4 Acquisition

The acquisition component of TEAM is crucial to its success as a transportable system. Recall that

one constraint on TEAM is that the DBE not be required to have any knowledge of TEAM’s internal

workings, nor about the intricacies of the grammar, nor of computational linguistics in general. Yet

detailed information, often necessarily linguistic in its orientation, must somehow be extracted from

-~desirable that the acquisition component

be designed to allow a DBE to change answers to questions and add information as he gains

experience with TEAM and the types of questions that are asked by the end users.

In an attempt to satisfy all these constraints, the menu-oriented system depicted in Figure 4

was developed. The acquisition system consists of a menu of general commands at the very top,
three menus associated with relations, fields, and lexical items respectively, and, at the bottom, a

— 19 —

Figure 5: Acquiring the Virtual Relations PKCONT and HEMIC

window for questions and answers. When the DBE uses the mouse to select one of the items from

the three menus, a set of questions appears in the question-answering area at the bottom of the

display, to which he can then respond.
One of the general principles of acquisition is evident from this display, namely, that the acqui

sition is centered upon the relations and fields in the database, because this is the information most

familiar to the DBE. The answers to each question can affect the lexicon, the conceptual schema,
and the database schema. The DBE need not be aware of exactly why TEAM poses the questions it

does—all he has to do is answer them correctly. Even the entries displayed in the word menu owe

their presence to questions about the database. The DBE volunteers entries to this menu only in

the case of verb acquisition, to supply an adjective corresponding to some noun already in TEAM’s

lexicon, or to enter a synonym for some lexicon-resident word.

The DBE is assumed not to have any knowledge of formal linguistics or of natural-language
processing methods. He is assumed, however, to know some general facts about English—for
example, what proper nouns, verbs, plurals, and tense are, but nothing more detailed than that.

If more sophisticated linguistic information is required, as in the case of verb acquisition, TEAM

proceeds by asking questions about sample sentences, allowing the DBE to rely on his intuition as

a native speaker, and extracting the information it needs from his responses.

Virtual relations are specified iconically. The left side of Figure 5 shows the acquisi
tion of a virtual relation that identifies the continent (PKCONT-CONTINENT, derived from

WORLDC-CONTINENT) of a peak (PKCONT-NAME, from PEAK-NAME) by performing a database

join on the PEAK-COUNTRY and WORLDC-CONTINENT fields. Similarly, the right side of Figure
5 shows the acquisition of the virtual relation that encodes the hemisphere (HEMIC-HEMI) of a

country (HEMIC.NAME) by joining on the WORLDC-CONTINENT and CONT-NAME fields.

If he wishes, the DBE can change previous answers. Incremental updates are possible because

most of the methods for updating the various TEAM structures (lexicon, schemata) were devised

to undo the effects of previous answers before the effects of new answers could be asserted. Help
information is always available to assist the DBE when he is unsure how to answer a question.
Selecting the question text with the mouse produces a more elaborate description of the information

TEAM is trying to elicit, usually accompanied by pertinent examples.
Finally, the acquisition component keeps track of what information remains to be supplied before

TEAM has the minimum it needs to handle queries. The DBE does not have to determine himself

how much information is sufficient; all he has to do is to perceive that no acquisition window

indicates remaining unanswered questions. Of course, the DBE can always provide information

beyond the minimum—for example, by supplying additional verbs, derived adjectives, or synonyms.

— 20 —

3 Conclusions

TEAM has been tested in a variety of multifile database domains by a fairly large number of people
in addition to its original implementation team. While the testing has been much less rigorous than

would be required for an actual product, enough has been learned to conclude that the basic ideas

~work”—namely, that it is possible to build a natural-language interface that is general enough
to allow its adaptation to new domains by users who are familiar with these domains, but are

themselves neither experts on the system itself nor specialists in Al or linguistics.
TEAM handles a wide range of verbs, a capability that is absolutely essential for fluent natural-

language communication. As it embodies no discourse model, its handling of pronoun resolution

and determiner scoping is correspondingly limited. While its grammar coverage is quite extensive,
the formalism used to represent it and the processes used to implement it are yielding to newer

and more perspicuous designs~Shie84]. We are now investigating ways to provide transportability
in natural-language systems that can interact with a variety of software services beyond database

access and which more extensive discourse capabilities will be embodied.

Acknowledgments

Jerry R. Hobbs, Robert C. Moore, Jane J. Robinson, and Daniel Sagalowicz played important
roles in the design of TEAM. Armar Archbold, Norman Haas, Gary Hendrix, Lorna Shinkle, Mark

Stickel and David H. Warren also contributed to the project.9

References

Gros85} Barbara Grosz, Douglas E. Appelt, Paul Martin, and Fernando Pereira. TEAM: An

Experiment in the Design of Transportable Natural Language Interfaces. Technical Note,
Artificial Intelligence Center, SRI International, Menlo Park, California, 1985.

Cros82] Barbara Grosz, Norman Haas, Gary C. Hendrix, Jerry Hobbs, Paul Martin, Robert

Moore, Jane Robinson, and Stan Rosenschein. DIALOCIC: A Core Natural-Language
Processing System. Technical Note 270, Artificial Intelligence Center, SRI International,
Menlo Park, California, November 1982.

Hendl7] Gary G. Hendrix. Human engineering for applied natural language processing. In Proc.

of the Fifth International Joint Conference on Artificial Intelligence, pages 183—191,
International Joint Conferences on Artificial Intelligence, Cambridge, Massachusetts,
August 1977.

Mart83] Paul Martin, Douglas Appelt, and Fernando Pereira. Transportability and generality
in a natural-language interface system. In Alan Bundy, editor, Proc. of the Eight Inter

national Joint Conference on Artificial Intelligence, pages 573—581, International Joint

Conferences on Artificial Intelligence, August 1983.

IMoor79I Robert C. Moore. Handling Complex Queries in a Distributed Database. Technical

~Note470,~Artificial Intelligence Center, SRI International, Menlo Park, California, Oc
tober 1979.

Moor8l] Robert C. Moore. Problems in logical form. In Proc. of the 19th Annual Meeting of the

Association for Computational Linguistics, Stanford, California, 1981.

9The development of TEAM was supported by DARPA contracts N00039.80.C.0645, N00039.83.C-0109, and

N00039.80-C.0575; the National Library of Medicine NIH grant LM03611; and NSF grant IST.8209346.

— 21 —

Robi82] Jane J. Robinson. Diagram: a grammar for dialogues. Communications of the ACM,

25(1):27—47, 1982.

Shie84] Stuart M. Shieber The design of a computer language for linguistic information. In

Proc. of Coling84, pages 362—366, Association for Computational Linguistics, June 1984.

Wa1t75J David Waltz. Natural.language access to a large data base: an engineering approach. In

Proc. of the Fourth Internatioal Joint Conference on Artificial Intelligence, pages 868—

872, International Conferences on Artificial Intelligence, September 1975.

— 22 —

A MULTILINGUAL INTERFACE TO DATABASES

Hubert Lehxnann, Nikolaus Ott, Magdalena Zoeppritz
IBM Germany, }~eidelberg Scientific Center

Abstract

The User Specialty Languages (USL) System, a portable interface to rela

tional databases in restricted English, French, German, Italian, and

Spanish is described. We briefly discuss our design objectives, theore

tical and practical problems we encountered during system realization,
and the consequences we have drawn for a successor project. The German

and English versions of the USL System have been extensively evaluated

with real users and real applications, which not only showed us where we

could improve our system but also provided valuable insights for the

methods of software ergonomics.

Introduction

When we talk about interaction with databases we must clarify two things:
1. who are the groups of people who want to obtain information, and 2.

what are the operations to be performed on the database to yield the in

formation desired? Then we can think about how these operations are to

be specified by a given user.

A number of query languages have been developed during the 70’s and ef

forts to show their “user-friendlinesstt, their appropriateness for

“non-DP experts” have been made with greater or lesser success (cf. e.g.

LEHN 79] for a survey). A different approach is to regard human

question-answering dialog as a model for the interaction with a database,
as presumably it is best to talk to the computer in one’s own language.
The problem then is to relate natural language expressions to data in the

database and to the operations to be performed on them.

In the USL project we showed that

• fragments of natural language can be implemented that are large enough
to be usable for database access,

• the syntax and semantics of such fragments can be described in such

a way that the system becomes independent of the particular domain

of discourse (this property has become known as (trans)portability),
• adaptation to a new domain can be achieved without training in lin

guistics,
• natural language interfaces can be built which operate on standard

databases (i:e~ neither requirespe~ial representatiofl nor maMp~
lation of data).

— 23 —

Design principles

The USL System was designed with the objectives to be usable in realistic

applications, to be portable, to enable adaptation to new domains by

non-linguists, and to provide an interface to ~.i.aitdard databases. A later

goal was the adaptation to a variety of different languages, which brought
in a few new aspects, but was on the whole a relatively straightforward
task.

These objectives had a number of consequences for the design of the USL

system which we discuss in the following sections.

Consequences of portability

A system is portable if it is “easy” to adapt it to new domains of dis

course. We do not believe it is possible to give a proper definition of

portability, but we can find a number of features that we feel are im

portant:

1. the distinction of domain dependent and domain independent words

(e.g. the meaning of prepositions should be invariant),
2. domain independent syntax (where a syntactic category “ship” as in

versions of Semantic Grammar is not allowed),
3. the interpretation of syntactic constructions independent of the do

main of discourse (e.g. what does it mean for a noun to be modified

by a relative clause),
4. separation of domain dependent information from domain independent

information (adaptation to a new domain should not involve program

ming)

Application development by non - linguists

Once a system has the features mentioned above for portability, a big step

towards application development by non-linguists has been made. What has

to be done in addition is to find ways to elicit the required domain de

pendent information from application developers. In the design of the

USL System we chose to restrict the linguistic information we use for

domain specific words to an absolute minimum, and to write a vocabulary
definition program that elicits all required morphological, syntactic,
and semantic information from the user by giving appropriate examples and

guidelines where needed.

Linguistic coverage

Ideally the linguistic coverage of a natural language system is such that

a user never falls outside its boundaries. Realistically, it is a corn

— 24 —

promise between what is feasible with the current state of computational

linguistics and what is necessary to perform the desired database oper

ations. To be acceptable the compromise must be such that a) there always
is some (easily identifiable) way for the user to get his result, b) when

a linguistic construction is understood in one context, it should be un

derstood in all appropriate contexts.

Since there is no way to know in advance how these criteria can be ful

filled we tried to find out with user studies whether the linguistic

coverage provided in the USL System is in fact acceptable. The linguistic
coverage includes interrogative, imperative, and declarative sentences.

The following constructions are provided:

• nouns and noun phrases (definiteness, quantification, interrogative

pronouns, personal pronouns, possessive pronouns, relative pronouns),
• verbs (including “to be” and “to havett),
• adjectives (including gradation, modification by modal adverbial and

by ordinal number),
• temporal adverbials,
• units of measure,
• comparatives,.
• verb complements (subjects and nominative complements, accusative

objects, dative objects, genitive objects, prepositional objects),
• noun complements (relative clauses, participial attribute phrases,

genitive attributes, appositions, prepositional attributes),
• complements of noun and verb (negation, adverbials of place and time)
• coordination for nouns, noun phrases, adjectives, verb complexes and

sentences

• computational expressions (aggregate functions, arithmetic ex

pressions)

— 25 —

System structure

In this section we give an overview of the structure of the USL System
(cf. fig. 1) which consists of

1. the language processing component ULG IB~1 81] which includes a

parser, a semantic executer, and the language META for describing
grammars,

2. grammars for French, English, German, Italian, and Spanish,
3. a set of about 75 interpretation routines to transform parse trees

into Intermediate Structures,
4. a code generator to generate expressions in the query language SQL

from Intermediate Structures,
5. a high-level optimizer for SQL queries,
6. the relational database system SQL/DS IBM 83],
7. a vocabulary definition facility.

Fig. 1: USL System ~Structure

— 26 —

In the following sections we will give some details on these system com

ponents.

Syntax analysis

The parser used in the USL system was originally described by Kay KAY
67] and subsequently implemented in the REL system THOM 69]. For USL

we adopted a modified version of this parser which is part of the ULG

system due to Bertrand and Daudenarde (published as IBM 81]) which has

the following characteristics:

• it accepts general phrase structure grammars written in META, which

is similar in appearance to Backus-Naur-Form;
• with any rule it allows the invocation of arbitrary routines to con

trol its application or to perform arbitrary actions

• it allows sophisticated checking and setting of syntactic features;
• it produces all parses in parallel;
• it operates in a bottom-up fashion, working from right to left.

The ULG parser together with the META grammar writing formalism is a

powerful tool for grammatical description. It is easy to express in it

feature operations as suggested by Gazdar with his Generalized Phrase

Structure Grammar (GPSG) or in Lexical Functional Grammar (LFG). The only
linguistic tools missing are transformational cycles in the sense of

Transformational Grammar. For this reason, necessary rearrangement and

reconstruction is done by means of interpretation routines.

The German grammar of the USL System is described in detail by Zoeppritz
in ZOEP 84a]. It has the coverage outlined above and the most thoroughly
tested grammar we have. It comprises about 700 rules and thus represents
one of the most comprehensive grammars operational in a computer. Com

pared to English, German is interesting for its inflectional system, its

relatively free word order, and its disjoint constituents (e.g. separable
verb prefixes). These aspects are responsible for the much larger size

of the German grammar compared to our English grammar which has about 450

rules, but approximately the same linguistic coverage.

A Spanish grammar for USL was written and documented by Sopena SOPE 82],
a French grammar by Roes ler ROES 85]. The documentation of the Italian

grammar which has also been completed, is forthcoming.

In addition to syntactic structures the grammars contain sets of about

450 structural words (domain independent words) such as ‘the’, ‘of’,
‘have’, ‘be’.

— 27 —

which organizations do france and Spain belong to

Parse tree

SENT

+ +

Sc

+ +

PP VC

+ >x< +

vc

+ +

VC

+ +

NP NP

+ + + +

NONEN NP NP VC

+ + +----+

QU NOMEN FIN VC NAME CONJ NAME VERB PREP

+- - -+ + + +---+ +- -+ +- ---.4- +---- -+ +----+ +----+ +----+

@ WHICH ORGANIZATION S DO FRANCE AND SPAIN BELONG TO

QUEST Tree of

I interpretation
TWO routines

POB

-PREP TWO

I I I NOM

WQUE PP GENER

I

I I I
I I TO NCOORD VERB

WELCHE NOMEN

I

I
I I I BELONG

ORGANIZATION VAREVAL VAREVAL GENER

I I I
STRING.1 STRING.1 1

FRANCE SPAIN

Fig. 2.1: Syntax analysis

Parsing yields one or more trees spanning the input sentence. Each node

in the tree is associated with the name of the interpretation routine that

was specified in the grammar rule according to which the node has been

constructed (cf. the example in fig. 2.1).

— 28 —

Interpretation

In this section we give a brief summary of how interpretation of natural

language expressions is done in the USL System. A more detailed de

scription can be found in LEHM 78] and in GUEN 64].

We take the view that a database is a model of the world which consists

of objects arid relationships. Words express concepts which are in some

way, namely by giving their extensions, represented in the database.

Concepts are represented then as values or relations: common nouns, ad

jectives, and verbs are associated with relations, proper names with

values in the database. Thus a word like population may be associated

with a set of pairs of population figures and country names, and a query

like what is Spain’s population must then be translated into an SQL query

referring to this set. An important question to decide is what columns

of a relation should correspond to what parts of a sentence. This was

solved by the introduction of role names which relate complements of

verbs, nouns, and adjectives to columns of relations.

Interpretation of linguistic constructions is realized by systematic,
i.e. domain independent, translation into SQL expressions which are

evaluated by the database system. SQL expressions are not directly gen

erated from parse trees, as it would be difficult to correctly interpret
the scope of quantifiers in this way or to cope with a number of other

linguistic phenomena. Therefore we chose to transform parse trees into

so-called Intermediate Structures, which are trees quite similar to

F-structures in LFG (but developed independently). This transformation

is the result of the execution of the interpretation routines mentioned

above. In a sense the interpretation routines express the meaning of word

classes and syntactic constructions. There are routines attaching a

relative clause to a noun, modifying nouns by interrogatives, etc. Thus

all languages having relative clauses or interrogatives modifying nouns

can be described using these routines, regardless of the particular syn

tactic form in which they are realized.

- 29 -

which organizations do france and spain belong to

R: BELONG Intermediate

A(TO):l 1: R: ORGANIZATION structure

A(NOIi):l 2: K: 1

‘FRANCE’

‘SPAIN’

Additional fields contain information on negation,

quantifiers, possessives and their referents,

definiteness, interrogatives, comparatives, etc.

UNOPTIMIZED QUERY: After recursive

code generation:
SELECT DISTINCT X03.WNOM_ORGANIZATION query against views

FRON BELONG X02,BELONG X01,ORGANIZATION X03

WHERE (((X02.WNOM COUNTRY = ‘FRANCE’

AND XO1.WNOM COUNTRY = ‘SPAIN’)
AND XOl .WTO ORGANIZATION = X02 .WTO_ORGANIZATION)
AND XOl .WTO_ORGANIZATION = X03 .WNON_ORGANIZATION)

JOIN OF XO3B1 AND XO2B1 RENOVED BY ABSORPTION PROPERTY

OPTINIZED QUERY: Optimized query

sent to data base

SELECT DISTINCT X02B1.ORGANIZATION

FRON OTT.BELONGB XO2B1 ,OTT.BELONGB XO1B1

WHERE XO2B1.COUNTRY = ‘FRANCE’

AND X01B1.COUNTRY = ‘SPAIN’

AND X01B1.ORGANIZATION = X02B1.ORGANIZATION

ORGANIZATION Answer returned

CCD

ECE

FAO

Fig. 2.2: Code generation and optimization

The interpretation routines are invoked by the semantic executer in the

order in which they appear in the parse tree, starting at its root. (The
results of this and the following steps are shown in fig. 2.2.)

The code generation program is called after the completion of the Inter

mediate Structure which is then processed recursively, and thus gradually
the executable query is built up. Quantification, negation, and coordi

nation may lead to more than one SQL query being generated from a given
Intermediate Structure.

- 30 -

The resulting SQL query or queries are transmitted to an optimizer which

eliminates redundant join operations that appear for instance when dif

ferent views are defined on the sane base relation (cf. OTT 85] for de

tails). The resulting SQL query is sent to SQL/DS for evaluation. In

case of yes/no questions the-answer YES or NO is displayed, complement

questions are answered by one or (in some cases of coordination) several

tables.

Evaluation of usability

Few natural language systems have reached a point where it made sense to

evaluate their usability. Evaluation methods for software in general are

still not very well developed, and evaluating natural language systems

seems to be particularly difficult. The USL System was evaluated both

in laboratory and “field” studies. Laboratory studies provide good con

trol of the environment, but there is always a danger that the wrong hy

potheses are tested (cf. ZOEP 84b]). The USL System was compared to SQL
and it was found that for very simple and very complex queries SQL was

at some advantage whereas for medium complexity queries USL was superior.
Further it was found that the restrictions of USL had to be learned, but

also that they could be learned (for details see JARK 85a] and VASS
83]). An extended case study was very successfully conducted with 3

school teachers who posed more than 7000 queries with a total error rate

of about 8 percent (details are presented in KRAU 80] and KRAU 82]).
A number of smaller studies with different application domains were also

successfully conducted, which in our view confirms our claim that the USL

System is both a portable and a usable interface to a database system.

(Cf. also JARK 85b] in this issue.)

Conclusions

The construction and evaluation of the USL System has been an important
step towards viable natural language interfaces to databases. Yet the

experience with the USL System also showed where further research is de

sirable. We want to point out three areas:

1. While the fragments of natural language provided in the USL System
proved to be usable, improved facilities for meta-communication are

needed: This concerns primarily error situations (parsing ill-formed

input, constructions outside the scope of the system), inappropriate
questions (e.g. violated presuppositions), possibilities to review

the capabilities of the system and the contents of the database.

2. Grammars should be extended to virtually complete coverage even if

constructions cannot be properly interpreted: This is important to

~syste~m’s
linguistic capabilities.

3. Modelling of complex domains needs further investigation, even when

portability has been achived: This typically involves mass terms,

complex spatio-temporal relations, and a number of concepts whose

relational represention involves relation-valued attributes.

— 31 —

In conclusion we want to mention that the USL system forms the basis for

the natural language component of an expert system project we are cur

rently working on and which has been described in GUEN 84]. It is the

goal of this project (called Linguistics and Logic based Legal Expert
System) to investigate problems of discourse representation and process

ing of knowledge in the domain of German trdflic law. Emphasis is laid

on the integration of expert system technology and natural language
processing methods in order to facilitate knowledge acquisition and

problem solving through natural language discourse.

References

GUEN 84] F. Guenthner, H. Lehmann, “Automatic Generation of Discourse
It IRepresentation Structures

,
Proc. COLING 84

IBM 811 IBM, User Language Generator: Program Description I Operations
Manual

,
IBM France, Paris.

IBM 83] IBM, SQL/Data System General Information, GH24-5013, IBM Corp.,
Endicott, USA.

JARK 85a] N. Jarke, J. Krause, Y. Vassiliou, “Studies in the Evaluation

of a Domain-Independent Natural Language Query System”, in L. Bolc (ed.),
Cooperative Interactive Information Systems, Springer, Heidelberg (to

appear).

JARK 85b] (this issue).

KAY 67] N. Kay, “Experiments with a Powerful Parser”, Second Interna

tional Conference on Computational Linguistics, Grenoble, August 1967.

KRAU 801 J. Krause, “Natural Language Access to Information Systems.
An Evaluation Study of its Acceptance by End Userst’, Information
Systems, vol. 5, pp. 297 - 318.

KRAU 82] J. Krause, Mensch-Maschine Interaktion in natuerlicher

Sprache, Niemeyer, Tuebingen.

LEHM 78] H. Lehmann, “Interpretation of Natural Language in an Informa

tion System”, IBM J. Res. Develop., vol. 22, pp. 560 - 572.

LEHN 79] H. Lehmann, A. Blaser, “Query Languages in Database Systems”,
in K. H. Boehling, P. P. Spies (eds.): Proc. of the 9th Annual Meeting
of the Gesellschaft fuer Informatik (GI), Springer, Heidelberg, p. 64 -

80.

OTT 85] N. Ott, K. Horlaender, “Removing Redundant Join Operations in

Queries Involving Views”, Information Systems, vol. 10, no. 2 (1985).

ROES 85]S. Roesler, “Syntax for French in the User Specialty Languages
System”, TR 85 .04 .003, IBM Heidelberg Scientific Center.

— 32 —

SOPE 82] L. Sopena-Pastor, “Documentation of the Spanish Grammar”, TR

82.05.004, IBM Heidelberg Scientific Center.

THOM 69] F. B. Thompson, P. C. Lockemann, B. H. Dostert, R. S. Deverill,

“REL: Ai Rapidly Extensible Language System”, Proc. 24th National ACM

Conf., New York, August 1969.

VASS 83] Y. Vassiliou, H. Jarke, E. A. Stohr, J. A. Turner, N. H. White,

“Natural Language for Database Queries: A Laboratory Study”, MIS

Quartely, December 1983, pp. 47 - 61.

ZOEP 84a] M. Zoeppritz, Syntax for German in the User Specialty Lan

guages System, Nienieyer, Tuebingen.

ZOEP 84bJ H. Zoeppritz, “Investigating Human Factors in Natural Language

Data Base Query”, TR 84.08.008, IBM Heidelberg Scientific Center.

— 33 —

EVALUATION AND ASSESSMENT OF A DOMAIN-INDEPENDENT

NATURAL LANGUAGE QUERY SYSTEM

Matthias Jarke (*), Jurgen Krause (**), Yannis Vassiliou (*)

Edward Stohr (*), Jon Turner (*), and Norman White (*)

Abstract

This paper presents a synopsis of the results of several empirical studies

which investigated the same domain-independent natural language query system,
using various applications in two different natural languages -- English and

German. Taken together, these experiments involved about 100 subjects and over

12,000 queries. Discrepancies and open questions requiring additional research

are highlighted.

1.0 INTRODUCTION

There is growing consensus that some of the most crucial questions
concerning the feasibility and desirability of natural language interfaces to

databases can only be resolved by empirical research. Specifically, three

central questions concerning NLI themselves are still awaiting an answer.

(1) Can NLI be implemented at all? It seems clear that a full natural

language system corresponding to interhuman communication is presently
infeasible; any practice-oriented NLI must be application-specific. On the

other hand, a NLI would be unacceptable if each user required support by
language engineers for an excessive period of time, if the subset of natural

language that can be implemented efficiently were not sufficient to support a

practical application, or if users had insurmountable difficulties recognizing
the boundaries of the implemented subset.

(2) If NLI can be implemented, do they support human problem solving more

successfully than competing end user interfaces, such as formal query languages?
A meaningful answer to this question requires measurements beyond the percentage
of submitted queries that is accepted by a system.

(*) Computer Applications and Information Systems, Graduate School of Business

Administration, New York University, 90 Trinity Place, New York, N.Y. 10006, USA

(**) Linguistische Inforniationswissenschaft, Universitat Regensburg,
Universitatsstr. 31, 81~0O Regensburg, West Germany

— 34 —

(3) How difficult is it to transport a NLI to a new application? This

question is important since it may not be economically feasible to develop a

completely new NLI for each new application -- and maybe for each user of each

application!

This paper focuses on NLI for database querying (NLQS). Within this group,
two essentially different approaches can be distinguished: domain-specific NLQS

in which a large portion of the system has to be redeveloped for each new

application, and domain—independent systems in which most of the system is

portable between applications and the parts to be changed are clearly isolated

and relatively small. The latter have also being referred to as “subset”

systems - drawing on general language knowledge, application—specific
vocabularies, and the database itself.

This paper examines the three questions raised above in the context of a

particular restricted subset NLQS, called USL (see, Lehmann et al in this

issue), which represents this type of natural language system in a rather pure

form. There seems to be no NLQS or other NLI that has been subjected to a

comparable number of empirical studies. The first objective of this paper is to

present -— in a common framework —— the experience gained from multiple
evaluation methods applied to the same system. A second objective is to

contribute to a better understanding of the overall feasibility and desirability
of the domain-independent approach to NLI, based on the empirical assessment of

one specific system.

2.0 RESEARCH OVERVIEW

The NLQS whose evaluation is reported here provides a natural language
interface (English, French, German, Italian, and Spanish) to relational

databases. The system does not engage the user in clarification dialog, and to

that extent the system is similar to any formal database query language. An

extended description of the system is given in another article of this issue

(see, Lehmann et al).

2.1 Basic Evaluation Methodologies

The simplest and most widely used approach for the evaluation of NLI is the

exchange of intuitive arguments about implementation techniques and language
features. For example, the information about natural language systems found in

the literature is typically highlighted with a list of supported features (e.g.,
coordination or ellipsis).

Such a list is only useful for the features not included. It can be very

misleading since it rarely addresses the important question: “to what degree is

the~~Th~r~fore i~t~becomes~aimost impossible ~to effectively
evaluate the usability of any system based on the information given by the

system description. Furthermore, opposing arguments of comparable plausibility
are confronted without much prospect for a purely argumentative synthesis.
Empirical evaluation research may lead out of this dilemma.

— 35 —

Answering the three questions, set forth in the introduction with respect
to the domain-independent type of NLI, requires a carefully designed methodology
for generating and verifying research questions. In this subsection, some of

the basic design parameters for empirical investigations of NLQS will be

analyzed. The leftmost two columns of Table 2-1 provide an overview of such

parameters (compare also KRAU82; TURN8II]).

DECISION VARIABLE DESIGN ALTERNATIVES STAGE A STAGE B STAGE C

evaluation team I designers
outside researchers

x

x z

evaluation strategy absolute

comparative

z z field

(x) lab x

evaluation ~riteria quantitative:
success

effort

qualitative:
problems
strategies

level:

work task

query

x

(x)

x

x

(x)

x

x

x

I

x

x

(x)

x

x

evaluation object simulated NLI

realNLI a Ix
(5)
a

type or study laboratory experiment
field study a

(a)

a

a

a

subject selection students

paid subjects
end users, novices

end users, experts

a

a

I

I lab

a

a TA

I

a

I

database and structure:

application simple a

medium a a a

complex
size:

small a a a lab

large a field

TABLE 2—1: Design Parameters for Empirical NLQS Evaluation Studies

and Characterization of the Studies Reported in this Paper

Evaluation Team The first step in evaluating a natural language system
empirically is an on-site test of the parser, often termed as an acceptance
test. After an iterative process (each iteration corresponding to an

improvement of the grammar and the interpretation routines) the system may reach

a steady ‘acceptable’ state.

There is certainly a need for performing this kind of evaluation but there

is also the danger of deriving optimistic conclusions about the usability of the

system, after attaining a steady state, or of abandoning useful research efforts

if a steady state is not reached. Better control is provided by formal

evaluation studies conducted by researchers outside the design team. Such an

empirical evaluation can be seen as part of a cost-benefit analysis required
before introducing a query language into an actual user environment JARK82].
Several design decisions are of critical importance in this process.

— 36 —

Evaluation Strategy The first issue is whether the NLI should be

evaluated in the absolute or compared to a competing interface, such as a formal

query language. Some useful analyses (e.g., of user problem solving strategies)
can be performed in the first case. However, performance evaluations using this

strategy are meaningful only if’ the system under study is either close to

perfect, or the results are so disastrous that any alternative would be

preferable. Otherwise, a comparative study is necessary.

Evaluation Criteria This discussion leads to the second design question:
how can one measure the costs and benefits of a natural language user interface?

Of interest are: the success rate of users working with the system, the effort

to achieve such success (or failure), the language and system related problems,
the strategies users develop to work around the limitations, and finally the

subjective perceptions and opinions of the users. Additional criteria may be

required to control for confounding outside factors.

Orthogonal to these criteria are the amount of skills the user has acquired
SCHN8Z~], and the level on which performance is evaluated. The former refers to

the differentiation between learning and routine task performance MORA81],
which is closely related to the definition of user types 1JARK82]. The latter

addresses the distinction between the sOlution of a problem or work task, for

which the database is a tool among others employed by the user, and the

generation of an answer to a specific database query.

Evaluation Object The organizational setting of the study must be

decided. Some studies assume a simulated rather than a real NLI (e.g., CHAP73;
SMAL77; SHNE8O]). Studies of this type can give valuable hints concerning the

desirability of NLI but are usually unsuited for establishing their feasibility.

Type of Study A more important distinction is between laboratory
experiments and field studies of real systems. Laboratory experiments allow for

a controlled setting. Methodologies to run them have been extensively studied,
and the experiments are economically affordable. Such studies, if performed
correctly, are best suited for examining the short-term ‘learnability’ of a

language, identifying language constructs likely to cause user difficulties, and

for estimating the number and type of words used for a particular set of tasks,
as well as the language features most likely to be employed.

On the other hand, drawing practical conclusions about the overall

usability of a natural language system from laboratory experiments may be

dangerous REIS81 1.

Despite the critical remarks by Tennant 1979], the lack of’ field studies

has hardly changed. Aside from the studies described in this paper, the main

exception is a year-long field study of TQA, yielding about 700 queries with an

acceptance quote of approximately 65% DAME79]. However, the setting did not

allow for the implementation of detailed controls, nor was this intended. Some

even more informal studies HARR77] report only about 20% language-related
errors but disregard certain other kinds of failure of the man-machine

communication. In general, field studies shoUld be sUitable for the evaluation

of actual task performance over an extended time period if close observation or

carefully designed controls permit the elimination of outside confounding
factors.

— 37 —

Subject Selection The type and intrinsic motivation of users often has a

strong impact on the results of laboratory and field studies. The preferred

type of users, actual end users, can be quite demanding and may actually abandon

system usage if an alternative way to solve their problems is available. On the

other hand, student subjects may be less motivated to achieve good performance.
The intermediate solution, using paid subjects, may yield good results if their

compensation is related to their success with the system or a good motivation

can be achieved in a different way.

Database and Application Last but not least, the size and complexity of

both the application domain and the underlying database may influence the

outcome of the experiments, by response time effects as well as by the impact of

complexity on the user’s ability to fully understand the application.

3.0 OVERVIEW OF EVALUATION STUDIES

Experiments with the NLQS have been conducted by different research groups

(IBM Scientific Center Heidelberg, University of Regensburg, New York

University), using two different natural languages (German and English) and

various experimental designs. Three stages of experimentation can be

distinguished.

In the first phase (stage A), the development team tested the system

informally to uncover errors and gaps in coverage. However, with the exception
of one application, no actual field usage was reached since high error rates

required continuous drastic changes of the prototype.

The second set of experiments (stage B, the KFG study at Heidelberg and at

the University of’ Regensburg since 1978) was still performed in part at the

development site and with technical support by the development team but by an

external researcher. At the heart of these experiments was a long term (16

months) observation of a single user working on a practical application.

Detailed qualitative analyses were performed, and the original field study was

complemented by another field study and several minor laboratory experiments.

The evaluation studies of stage B can be seen as parts of an extended

evaluation scheme, outlined in Figure 3-1. The plan starts with a real

application to be analyzed in a field study. Laboratory experiments are based

on a typical session of this real application. The field studies and laboratory

experiments of stage B consisted of three subgroups:

1. A field study with teachers of the Karl-Friedrich-Gymnasium (KFG) at

Mannheim in West Germany (the KFG field study).

2. An effort to transport the same system version to another application
(the TA field study).

3. Several laboratory tests to compare error rates in the KFG field study
with those achieved by using formal query languages.

— 38 —

Comparison of Comparison of

Evaluation Methods Content—Oriented

Factors

I ‘typical’ I real

I KFG session application I

KFG database I

I ISBL I I SQLI I QBE -~

Task variations: I

a) real application situation

b) translation tests

c) exercise tasks (maybe extended to ‘ideal NLQS)

Extreme user groups:

I) users with excellent knowledge
of database and formal language

II) controlled learning by users without knowledge
of database or formal language

remove disadvantages use different

I of each single .iethod databases, NLQS,

I by parallel interpretation task specifications,
user groups

FIGURE 3-1: Evaluation Plan - KFG Studies

LAB EXPERIMENT I FIELD STUDY LAB EXPERIMENT II

8 subjects 8 subjects 61 subjects

13 requests 39 requests 15 requests
1OZ~ tasks/queries 87 tasks 915 tasks/queries

“COST” “BENEFIT’

required effort: languagc power:

necessary queries/ task solvable tasks

input length correctable queries
actual effort: success:

actual querles/ task solved tasks

time per task or query accepted queries

PROBLEM ANALYSIS

task and query complexity
problem sources

user perceptions
technical problems

FIGURE 3—2: Evaluation Plan and Descriptive Statistics — ALP Studies

— 39 —

For the third series of experiments (stage C, the Advanced Language Project
(ALP) at New York University from 1981-1983), the system was transfered to a

different natural language (English), and to a site where little linguistic or

technical support by the development team was available. A quantitatively
oriented evaluation strategy was chosen for comparing the NLI to a formal

database query language in a partially controlled field study and two controlled

laboratory experiments. The rightmost columns of Table 3-1 characterize each of

the three stages by the design parameters presented in the previous section.

Detailed information about each stage can be found in LEHM78; KRAU8O;
JARK85a; VASS83] and in JARK85b]. This paper concentrates on the collective

conclusions from all studies.

The purpose of ALP was to study the English language version of the system
in a real application (alumni fund raising), and in a location remote from that

of the development team. The database contained four base relations with

approximately 100,000 tuples, substantially more than in previous applications
of the natural language system.

The research centered on the question of whether -- in this setting -- the

system (as an example for a transportable NLQS) is superior to a formal query

language, such as SQL, in terms of learnability, problem-solving success, or

effort to use. A comparative study design and mostly quantitative evaluation

criteria were chosen for all experiments.

The project design coupled a field study with two controlled laboratory
experiments. The experiments began in 1981 with the design and generation of

the database and of the application-specific vocabulary, followed by the

application and language training and testing of 8 experimental subjects. This

skill acquisition phase was organized as a controlled laboratory experiment.
After subjects had reached sufficient proficiency in application and language,
they performed real work tasks in the actual setting for more than six months

(the field study). The field study raised several additional research

questions, and the results of the first laboratory test had to be confirmed with

a larger number of subjects. Therefore, a second laboratory experiment with 61

subjects was conducted as a paper-and-pencil test in late 1982. Global design
and descriptive statistics of the ALP project are summarized in Figure 3—2.

L(.0 SYNOPSIS OF EMPIRICAL RESULTS

In this section, we investigate the relationships between the data gained
by the evaluation studies of stage B (KFG) and stage C (ALP). Having a common

empirical base, we point out the major results and attempt to explain the

differences.

Based on results of both studies, five statements seem to have a fairly
strong empirical backing.

1. Users do not communicate with a NLI in the way they do with a human, as

suggested in CHAP73). In particular, they are very careful in typing
input, as evidenced by a low percentage of typographical errors. It is

open, how this would change with widespread availability of automatic

spelling correction for NLI.

— 40 —

2. Small vocabulary subsets are sufficient for restricted application areas.

This result may not extend to some of the knowledge-based systems which

require the definition of all words used (including, in particular, values

appearing in the database, see, e.g., BATE83I).

3. Natural language is more concise than formal query languages. In

particular, SQL requires substantially longer Input even for rather simple
queries.

14• Formal query languages cannot be rejected on the grounds that a substantial

effort is needed to learn them.

5. Neither study confirmed the fear that natural language queries grow more and

more complex over time. Rather, there seems to be evidence that users adapt
to what they perceive as the system’s limitations. In the KFG field study,
query complexity remained about stable over time, whereas in ALP it actually
decreased.

I
I USER GROUP I NO. USERS SESSIONS QUERIES ERROR RATE

ISTAGEA

I Planning
I School

I Reception
I Rooms

STAGE B

KFG main 1

KFG user 2

KFG user 3
TA study

I

I 2 7 59 46.0%
I 1 6 356 12.9%
I 1 4 115 47.0%
I 3 47 781 39.9%

1 39 6603 6.9%
1 5 582 16.9%
1 1 93 31.1%
1 1 67 52.7%

STAGE C (‘)
ALP phase 1

w/o line noise

ALP phase 2

yb line noise

4 34 256 77.0%
69.1%

II 31 271 82.3%
74.9%

(‘) ALP figures do not contain incomplete query typing attempts.

TABLE 1I~1: Performance Overview NLQS Field Studies

On first sight, the main discrepancies between the results of ALP and KFG

concern the error rates (Table ~-1). These are much higher in ALP than in the

KFG studies, yet comparable to the stage A studies. The most plausible
explanation regarding the differences in the laboratory experiments seem to be

deviations in the test designs. In the field study, a second startling
discrepancy is visible in the number of queries per session, resulting from the

differences In time per submitted query. Possible explanations of the poor

showing of the NLQS in the ALP field study in contrast to the good results in

the KFG field study could be:

Language Dependence
the model of the syntax
user-independent vocabulary
word order were deleted.

The English syntax of the NLQS has been written on

for German. For example, morphological rules and the

were replaced, and the rules for dependent clause

The interpretation routines are the same as in the

— 41 —

German version with some minor modifications. ALP was the first application of

the English system version. Therefore the simplest explanation of the high
error rates would be that there was still a need for debugging tests.

Database De~endence While the database schemata of KFG and ALP as well as

those of the stage A studies were of comparable complexity (two to six base

relations), the size of the ALP database turned out to cause serious response
time problems through inefficient translation of natural language into SQL.

This does not affect the general concept of the system but stresses the

necessity of query optimization in the natural language system.

User Dependence Since the KFG study was mainly a one-user study, it could

be suspected that the main KFG user was a happy coincidence and that the very

long usage period and his involvement in the application design provided him

with a deeper understanding of the system. On first sight, the fact that KFG

was the only application reaching such a low error rate would seem to confirm

this assumption. Even the other two KFG users had somewhat higher error rates.

However, one has to be cautious: Krause 1982] shows clearly that the main KFG

user had few changes in error rates over time, thus denying a learning effect

after the initial phase.

Experimental Design Dependence The application-specific part of the ALP

grammar was hardly changed after initial testing, whereas the KFG application
was adapted whenever problems became visible in a user session. On one hand,
the KFG experience shows that the NLQS is powerful enough to cover the language
subset required for a particular application in an impressive manner (93%
success). Moreover, it is perfectly acceptable to expect a certain period of

time, during which the system has to be adapted to a user. On the other hand,
the question arises: when will this user adaptation terminate? The answer is

clearly important for the commercial (rather than technical) feasibility of NLI.

Technical Environment Dependence A final reason for the high NLQS failure

rates in ALP is obvious when looking at the EDP protocols: the poor system
performance at New York University (caused by slow and noisy communication

lines, and system overload), and difficulties with the operating system.

5.0 CONCLUSIONS

The comparison of several experiments with the same domain-independent
natural language query system has yielded methodological results and preliminary
conclusions about this type of natural language interface, as well as gaps in

the studies and opportunities for future research.

Research Methodology There seems to be a natural sequence to be followed

in the evaluation of a natural language query system in order to yield
meaningful results. Starting with exploratory on—site system tests, the

strategy proceeds towards a qualitative Teati e~ariaIysis, upon ~which~structured

quantitative evaluation models can be based. The ALP experience has

demonstrated that such a schema can be exploited to its fullest only if the

prototype under study has reached sufficient maturity; otherwise, quantitative
analyses must be complemented by qualitative studies in order to separate
generalizable results from those influenced by the prototype status of the

system. It is also critical to provide an adequate technical environment.

— 42 —

Domain-Independent Natural Language Query Systems Concerning the three

introductory questions set forth about domain-independent natural language query

systems, some conclusions can be drawn, whereas other Issues require further

study. Addressing first the desirability question, we know that natural

language allows for more concise query input and requires less formulation time

than a formal query language. However, nobody has been able so far to

demonstrate advantages of natural language over formal query languages In terms

of learnability, language power, task performance, or query acceptance rates.

Concerning NLQS feasibility, there is no evidence that, any of the

experiments exceeded the boundaries of what can be easily implemented within the

domain-independent subset system approach. Thus, practice-oriented natural

language query systems appear to be technically feasible and able to fulfill the

purpose they were developed for. However, additional studies will be required
to confirm this result.

The third question asked for the cost of adapting a NLQS to a new

application. It is not clear how long the adaptation to an application or a new

user will take, or to what degree end ‘users will be able to take over this job
from specialists in computational linguistics. The experience with ALP

indicates that building and stabilizing a new application needs major linguistic
information science (computational linguistic) support. That is, different

personnel requirements from those for introducing an end user system based on

formal query languages may arise VASS85].

There are indications that in addition to the performance problems some

gaps and inadequacies in the application-dependent part of the NLQS are

partially responsible for the high error rates in ALP. There are no hints so

far that the general philosophy of domain-independent NLQS is insufficient. But

these statements are subject to change pending further evidence.

Acknowledgments This work is based on several studies in cooperation with the

IBM Corporation. The projects would not have been possible without the

continued support by members of IBM Heidelberg Scientific Center, in particular,
A. Blaser, H. Lehmann, N. Ott, and M. Zoeppritz.

REFERENCES

BATE83J
Bates, M., Bobrow, R.J., “A transportable natural language interface for

information retrieval”, Proceedings 6th ACM-SIGIR Conference Washington,
D.C., June 1983.

CHAP73]
Chapanis, A., “The communication of factual information through various

channels”, Information Storage and Retrieval 9 (1973), 215—231.
DAME79J

Damerau, F.J.: “The Transformational Question Answering (TQA) System.
Operational Statistics”, American Journal of Computational Linguistics 7, 1

(1979), 3O~LI2.
HARRTTI

Harris, L.R., “User oriented data base query with the ROBOT natural language
system”, Proceedings 3~ VLDB Conference Tokyo 1977, 303-311.

— 43 —

JARK82]

Jarke, M., Vassiliou, Y., “Choosing a database query language”, New York

University Working Paper Series CRIS #68, GBA 81~_39 (CR), submitted for

publication, November 1982.
JARK85aJ

Jarke, M., Turner, J.A., Stohr, E.A., Vassiliou, Y., White, N.H.,
Michielsen, K., “A field evaluation of natural language for data retrieval”,
IEEE Transactions on Software Engineering SE-li, 1 (1985a), 97—11~~.

JARK85bI

Jarke, M., Krause, J., Vassiliou, 1., “Studies in the Evaluation of a

Domain—Independent Natural Language Query System”, in H.Bolc (ed.):
Cooperative Interactive Systems Springer, to appear, 1985b.

KRAu8O)
Krause, J., “Natural language access to information systems: an evaluation

study of its acceptance by end users”, Information Systems L~ (1980),
297—3 18.

{KRAu82]

Krause, J.: Mensch-Maschine-Kommunikation in natuerlicher Sprache
Niemeyer, Tuebingen 1982.

LEHM78II

Lehmann, H., Ott, N., Zoeppritz, M., “User experiments with natural language
for database access”, Proceedings 7th International Conference on

Computational Linguistics Bergen 1978b.
{MORA81I

Moran, T., “An applied psychology of the user”, ACM Computing Surveys 13, 1

(1981)
,

1—12.

REIS81J

Reisner, P., “Human factors studies of database query languages: a survey
and assessment”, ACM Computing Surveys 13, 1 (1981), 13-32.

SCHN81~]

Schneider, M., “Ergonomic considerations in the design of control

languages”, in Y. Vassiliou (ed.): Human Factors and Interactive Computer
Systems Ablex, Norwood, NJ, 1981L

SHNE8O]
Shneiderman, B., Software Psychology Winthrop 1980.

SMAL77]

Small, D., Weldon, L.J., “The efficiency of retrieving information from

computers using natural and structured query languages”, Report
SAI-78-655-WA, Science Applications, September 1977.

TENN79]

Tennant, H.R.: Evaluation of natural language processors Ph.D. diss.,
University of Illinois, Urbana 1979.

{TURN81II

Turner, J.A., Jarke, M., Stohr, E.A., Vassiliou, Y., White N.H., “Using
restricted natural language for data retrieval - a plan for field

evaluation”, in Y. Vassiliou (ed.): Human Factors and Interactive Computer
Systems Ablex, Norwood, NJ, 198~4.

vASS83]
~Vassiliou, Y~, ~Jarke,~M.,--Stohr, E.A., Turner, J.A~,~White, N-.H.: ‘!Natural

language for database queries: a laboratory study”, MIS Quarterly 7, ~

(1983), ~7—61.
vAsS85]

Vassiliou, Y., Jarke, M., Stohr, E.A., Turner, J.A., White, N.H.,
“Requirements for developing Natural Language Query Applications”, in

Languages for Automation S-K.Chang, (ed.), Plenum Press, 1985 (to appear).

— 44 —

Modeling Natural Language Data for Automatic Creation of a

Database from Free-Text Input’

Naomi Sager, Emile C. Chi, Carol Friedman, Margaret S. Lyman, MD-f

Linguislic String Project,
Courant Institute of Mathematical Sciences, NYU
+ Department of Pediatrics, NYU Medical Center

ABSTRACT

This paper describes (a) computer programs developed by the Linguistic String Project (LSP) of

N.Y.U. that map the free-text of technical documents into a semantic representation of document

content; and (b) the further mapping of the processed narrative into a database using network and
relational data models. The data used in experiments have been primarily hospital discharge sum
maries and physician’s notes on outpatient encounter forms. When the medical narrative is processed
and mapped into a database, applications programs can generate summary tables of symptoms, thera

pies, diagnoses and other features ranging over several dozen variables, and can compute complex
relations, such as possible side effects of drugs.

1. INTRODUCTION

This paper shows how narrative documents in technical areas can be analyzed by computer and

mapped into a database for retrieval in terms of the informational categories and relations in the nar
rative. The algorithms are based on fundamental properties of language as a carrier of information
that are particularly marked in scientific and technical writing. In such texts, where the primary pur
pose is to communicate information, the situation is very different than for the language as a whole.
The concrete vocabulary is limited to the terms that for the most part have clear denotations,
representing the objects of interest to the field, and the types of statements that are made are those
that constitute “say-able” (not necessarily true or clear) utterances in the field. In a medical docu

ment, for example, one will find words for diseases, symptoms, medications, etc., not airplane parts;
and the statements will be of the types that can be said of these objects, e.g., patient is taking aspirin
for rheumatoid arthritis, NOT aspirin is taking rheumatoid arthritis for patient, NOT aspirin has swol

len joints, etc.

The restricted use of language in a specialized subject area can be characterized by quasi-
grammatical rules. The discourse in that subject area is then called a sublanguage and the rules its

sublanguage grammar HARR68, K1T1’82]. Syntactic formulas summarizing the well formed state

ment types for the sublanguage form the informational skeletal structure of the discipline. Each sub-

language formula is in effect a template, or Information format, for information of a given type
SAGE78]. Sublanguage text sentences can then be mapped by computer into the information for
mats of the sublanguage SAGE81], with the result that the information-formatted sentences consti
tute a formal semantic representation of the information in the documents.

2. INFORMATION FORMATS

Information-formatting has been implemented for the sublanguage of clinical reporting, i.e.,
narrative portions of patient records, with data drawn from hospital discharge summaries in diverse
disease areas KORE63] and outpatient encounter forms, including the VIS 0 viSit forms of the

1 This research was supported in part by National Library of Medicine grant number 1-RO1.LM03933, awarded by
the National Institutes of Health, Department of Health and Human Services, and in part by National Science Foundation

grant number 1ST83-14499 from the Division of Information Science and Technology.

— 45 —

American Rheumatism Association Medical Information System (ARAIvIIS).2 The VIS G form con

tains a checklist covering most of the physical examination (about 2/3 page) and additional space for

the physician to enter narrative Progress Notes. The coded material is entered into a database. One

goal of the study using ARAMIS data is to computer-analyze the narrative material, so that it can be

compared with the database of coded material.

The transcribed narrative portion of a YES G document is input to the text processing system
and automatically assigned a code number as shown in Fig. 1. As an example of the results of text

processing, Fig. 2 shows a table of information obtained by processing the narrative progress notes

seen in Fig. 1. (The Plan section has been omitted). The successive rows of the table correspond to

the individual events or observations in the narrative in the sequence in which they appear in the

document. Each column holds a particular kind of information, corresponding for the most part to a

single sublanguge word class (e.g., a word in the symptom class maps into the SYMPTOM slot of the

PATIENT STATE DATA format). Syntactic relations among the columns are not shown in the table

but are known to the program; e.g., under PATIENT-STATE DATA, the first column contains the

subject of the observation and the second column the predicate (ankle has/shows fatigue, in row 3).
Like wise, EVIDENTIAL and TIME modifiers are linked internally to the item they modify (the
CHANGE item increased is associated with fatigue in row 3).

3. NARRATWE PROCESSING

Input to the LSP narrative processor consists of the text of patient documents as transcribed

from dictation or the physicians’ handwritten reports. In the development to date, editorial conven

tions have been kept to a minimum so that the input can be truly natural language. Thus, shortened

sentence forms and run-on strings of descriptors are tolerated, but some prepositions are filled in

(burning sensation soles both feet burning sensation on soles of both feet) and some symbols are

translated into words (e.g., into increaseé).

The processing requires a lexicon that provides for each word its major parts of speech (e.g.,
noun, adjective), its English subclass memberships (e.g., singular, plural) and its medical subclasses

(e.g., bodypart, sign/symptom). Currently, about 100 English subclasses and 50 medical subclasses

are in use, both to aid in processing (to resolve structural ambiguity), and to represent the semantic

content of the material. A preliminary step prior to document processing is to run the words of the

documents past the existing computer lexicon and to provide new entries for the words not found.

At this writing the medical lexicon contains about 8,000 words, and an English back up dictionary
about 12,000 words.

Document sentences are analyzed in five main processing steps consisting of parsing, selection,
regularization, information-formatting, and normalization. Previous papers have described four

steps. The first module (parsing) has recently been split into two components for a better integration
of the sublanguage constraints with the English processing.

Parsing

The parsing component segments the sentence into its major syntactic units and identifies the

grammatical relations within and among these units, e.g., which word is the subject and which the

object of a given verb, and which strings are modifiers of others. The parser uses a broad coverage
English grammar SAGE81] which has been modified for the special syntax found commonly in mcd-

- ical~documentse.g., sentence1ragmentsand~run~onsentences.

2 VIS G -. Rheumatoid Arthritis, Version 15-220V G (Rev. 1/80), developed by a Committee of the American
Rheumatism Association as part of a Uniform Database for Rheumatic Disease. Completed VIS 0 forms on 50 patients
were provided through the courtesy of Dr. James Fries of Stanford University Medical Center, Palo Alto, CA.

- 46 -

~‘~-

E2F~
1T~1

NO.

PAM-

GEAR!

ENTEBOE

I.D.

FOR-

MAT

TYPE

PATIENT-STATE DATA

¶‘REAT
MENT

DATA
PENT DA~A

£VID!R

TIAL TD(E

BODYPAEI/
BODYPUNCTION/
BODY MEASURE

SIGN!
BThP1~CI4/
DIM)

MED

MIE~T

EST

TSP

QUART BVEIVT-

TD~E

TD~-~BPSCT

cui~x/Bzozi/
~NO

le 15 HISTGEY H1P014

15.1.1

5 !senaation
-sole (on)
--foot (of)
---both

!burnj.ng

.

since viii

see next

line)

/develop

— HIF~
15.1.1

1 visit

— —

laSt

—

—

1II~4

15.1.2

5 ankle (of) /fstigue

—

increased

HIPO~4

15.1.2
HTP0~4

151.2
~

15.1.2

~

15.1.2
HIPOV

15.1.2

HIPOII

5

5

~4

foot (of)

ankle (of)

foot (of)

ankle (of)

foot (of)

!fattgue

/acbing

/achthg

/eveuing

swelling

trua 13

increased

increased

increased

increased

increased

decrease
15.1.3 ~n to]]. .g

pIr~sIcAL

EXAM

p~poI~

15.1.1

5 !vascuhitts
(of)

no evi

dance

PEPO~

15.1.2

5 notor /weekness no -

PEPC4

15.1.3

5 / sensory
-stocking dis

tribution

--toot (in)
- --both

floss

—

D1PRES-

SlOE

IPPc4

15.1.1

5

—

I/rheumatoid
arthritis

— — -_______

IPPOI
15.1.1

5 /f!isease-
sctivit~t

Inc easing
— — —

Figure 2

COMPUTER-ANALYZED PROGRESS NOTES: Inforn1gtio5~ Table fo~ Pt 4. Visit 15, ARAMIS deta

FIgure 1

INPUT TO A TEXT PROCESSING SYSTEM

Pt. 4, VISIt 15, ARAMIS Deta

HIPO4 15.0.0 HISTORY

HIPO4 15.1.1 HI — flEVELOPED BURNING SENSATION ON SOLES OF BDTH FEET

SINCE LAST VISIT

HIPO4 15.1.2 HI — INCREASED FATIGUE
,

ACHING
,

SWELLING OF

ANKLES AND FEET

HIPO4 15.1.3 HI — MB HAS DECREASED FROM 13 TO It GM

PEPO4 15.0.0 PHYSICAL EXAM

PEPO4 15.1.1 PE — NO EVIDENCE OF VASCUL IllS

PEPO4 15.1.2 PE — NO MOTOR WEAKNESS

PEP~O4 15.1.3 PE — STOCKING DISTRIBUTION SENSORY LOSS IN

BOTH FEET.

IPPO4 15.0.0 IMPRESSION

IPPO4 t~.1.1 P — RA WITH INCREASING ACTIVITY OF DISEASE

PLPO4 15.0.0 PLAN

PLPO4 15.1.1 PL — INCREASE PENICILLAI4INE TO 750 MC DAILY

PLPO4 15.1.2 PL — RTC 1 MONTH

- 47 -

SelectiQfl

Th~ selection component FRIE83, FRIE84] utilizes medical word subclasses as they may occur

in particular syntactic relations to rule out unacceptable analyses in the medical sublanguage, and to

identity which particular sublanguage statement type is occurring. Consider the sentence Patient on

aspirin with RA. Aspirin is in the subclass H-MED for medications. RA is in the subclass H-DJAG

for diagnoses or diseases. As the medical subianguage does not allow the combination H-MED

“with” H-DIAG, the selection module rules out aspirin with RA (interpreted as aspirin has RA) and

attaches with RA to patient, which is the correct combination.

This component also resolves many sublangauge homographs (words with more than one sub-

language usage, such as discharge from hospital vs. discharge from nose) by checking the occurring
word class sequence against a list of weliformed word class patterns. Thus, in the preceding exam

ple, in both cases the correct subclass of discharge will be selected from the two assigned it in the

lexicon because of its occurrence with words of different medical subclasses in the two cases (hospital
in the class of INSTitutions in the one case, and nose in the class of BODYPARTs in the other).

Regularization

A third stage of processing (regularization) is required because natural language provides alter

native grammatical forms for the same information: pain in left leg; left leg pain; patient complains of

painful sensations in left leg; pain, left leg, etc. In this component, English transformations operate
on the output of the parsing stage so as to eliminate all but one of a set of informationally equivalent
forms. Also conjunctional constructions are expanded (Knee is red and swollen -. Knee is red and knee

is swollen) and connectives are given a uniform operator-argument form where the arguments are

elementary assertions or fragments. E.g. a sentence containing a subordinate clause is changed to a

structure consisting of the subordinate conjunction operating on two elementary assertions. Thus, in

the parse tree obtained for Patient had fever when he was seen in the ER, the subordinate clause when

he was seen in the ER appears syntactically as a modifier of Patient had fever. The parse tree for this

sentence is transformed into a structure in which the operator is when and its arguments are the ele

mentary assertions: patient hadfever and he was seen in the ER. (ER = Emergency Room.)

There is also a set of sublanguage regularization transformations that are executed in this com

ponent. Some nounphrases in the medical subianguage contain two medical events, which later the

processor should map into two different formats (= 2 rows of the table). The English function word

(preposition) is not sufficient to decide the issue; the sublanguage classes of the nouns must be con

sidered. For example, headache from fever contains two events while headache from last Tuesday
onwards contains one event. A sublanguage regularization transformation breaks up phrases whose

composition in terms of sublangauge word classes with particular prepositions indicates that two

events should be represented, and gives them the same operator-argument form as two full assertions

under a subordinate conjunction.

Information-Formatting

The fourth stage in converting the information in a medical sentence from narrative to struc

tured form is to transform the regularized parse tree of every component assertion into a semantic

structure (information format)in which words carrying a particular kind of medical information (usu
ally members of the same medical word class) are assigned a unique position.

In clinical narrative, six main statement types have been distinguished (Fig. 3). The mapping of

~p~ s~tys4ep on the medical word

classes of the words occurring in the assertion and their syntactic relations within it. Figure 4 shows

a simplified version of the PATIENT-STATE format. Under each node is the crucial word subclass

(or subclasses) that determines which words can occur as values of the node (with examples). The

nodes PTSTATE-SUBJ and PT-STATE represent the subject-predicate relationship of the assertion.

The four nodes under PTSTATE-SUBJ carry values of the alternative options for the subject; those -

under PT-STATE carry the five options for the predicate. EXAMTEST and TESTRES nodes are

- 48 -

FIGURE 3

CLINICAL NARRATIVE FORMAT TYPES

FORMAT TYPE NUMBER EXAMPLE

GENERAL MED. MGMNT. I PATIENT WAS SEEN IN THE EMERGENCY ROOM

TREATMENT OTHER 2 WEARING ORTHOPEDIC SHOES

THAN MEDICATION

MEDICATION 3 TAKING ASPIRiN 12 TABS QD

TEST & RESULT Li RA SERO POSITIVE FOR 15 YEARS

PATIENT STATE 5 PAiN IN KNEES AND ANKLES, RT LT

PATIENT BEHAVIOR 6 HAS SMOKED FOR 30 YEARS

FIGuRE 4: FoRMAT 5 (PATIENT STATE)

--

SIMPUFIED

FO~AT5 (PATIRIIT STATE)

XMTEST~ TESTREJ PT-STATE1 VEJ
.1 .1

p

H-EXAIITEST H-TESTRES

P.E, ESSENTIALLY NORMAL
NL

POSITIVE

CLEAR

PT BODYPART BOOYFUNC BODYMEAS flAG SIGN-SYMPTOM NORMALCY QUA~NT DESCR

I -~ -~
-

_ ~
H PT H-BODYPART H BODYFIJNC H BODYMEAS H flAG H INDIC H NORMAL Q H-PTDESCR

MTIEIIT SYNOVIAL FLEXION NP RA PAIN NORMAL Q-N DESCR-TAG
RIGHT SI4OUI.DER SENSATION WEIGHT RASH WELL

YJIEE SWELLING 140/180 RED

WRISTS TENDER 150 us

• OILY OI(RODE CAN BE FILLED.

— 49 —

for the statement of a physical examination test procedure and its result. Instances of the

PATIENT-STATE format were seen in Fig. 2.

Format modifiers (Fig. 5) carry crucial information, characteristic of natural language and diffi

cult to accommodate in check-list type data collection forms. EVENT-TIME is for explicit time men

tions in an assertion. TIME-ASPECT covers BEGinning and END of events as well as CHANGE of

state and REPetition. MODS carry NEGation, uncertainty (MODAL) or positive EViDence. Some

modifiers may also have modifiers because this frequently occurs in natural language. For example,
in pain did not start to decrease until she took extra strength tylenol, decrease, a CHANGE, modifies

pain, a SIGN-SYMPTOM; start, a BEG, modifies decrease; not, a NEG, modifies start. Also, the

richness of anatomical description is carried in nested bodypart modifiers. This nesting must be accu

rately represented in the formats in order to be correctly interpreted for retrievals.

Normalization

The final stage of processing, normalization, prepares the structured narrative for mapping into

a database or for other applications. Implicit information that can be recovered from context is filled

in, with special emphasis on time information. One complex aspect of narrative is the structure

imposed by the time sequence of events. This partial ordering of medical events in the narrative can

be reconstructed to a large extent from the time expressions in the text HIRS81].

4. DATABASE DESIGN

Mapping information formats into a database imposes further schematization on the information

in the original narrative. The structured narrative must be fitted into a data model: into a schema of

record-types with ownership relations and set memberships (network model), or into relational tables

(relational model). Our first design was a network (CODASYL) model. The other designs have

been relational models, using SYSTEM R, RIM, and our own design, which maps the data into a

form suitable for querying directly with application programs, and also for straightforward mapping
into a DBMS like INGRES. The guiding principle of all but the RIM design has been to map the full

tree structure of the information formats into the database, so as to facilitate the implementation of

complex queries.

Early Models

The CODASYL design was implemented using the DMS1100 DBMS on a UNIVAC Series 1100

SAGE8O]. At that time, a large single information format, with fields accomodating all the possible
combinations of medical word subclasses was used to structure medical narrative HIRS82]. The for

mat also specified positions for all of the modifiers discussed above. The database design defined a

record type, MEDFACT, into which information formats were mapped, labelled according to the dif

ferent types of medical information present (this is now achieved by the division into the format

types seen above). An EVENT record type was defined to correspond to major linguistic units

within the MEDFACT record, mainly subject and object noun phrases, and verbs or predicates. A

MEDFACT record owned all of the EVENT records belonging to the same information format.

The network design was very useful for showing us how to approach the problem of imposing a

standard DBMS structure on linguistically derived information formats. However, it proved very dif

ficult to query. The complexity of the data which is obtained from narrative input leads to queries
with more complex logic than are common with typical tabular data. Using the network query pro

cèss~r, OLP, it was difficult th implement retrievals which test for complex ~cothbinaiiOñi~f pãth~
occurrences in the network.

The first relational model used an experimental version of IBM’s relational DBMS SOL/DS on

an IBM 4341 running VM370-CMS. Relations (tables) were defined corresponding to the record

types of the network design, including an EVENT attribute for each of the format modifiers.

Linguistic connectives between elementary assertions were represented with a CONNECtIVE

- 50 -

FICURI 5

FORMAT MODIFIERS

EVENI-TIP(Tl~-ASPECT

IPREPI ~I TPREP2 ~F-P1 BEG END O1ANGE H

- 1
H-BEG

IH-€ND LCHNIG(T-PER ifi-REP
3 DAYS PRIOR TO ADMISSION STAPTU DISCONTINUED INCREASED PERSISTENT EPISONIC

DEVELOPER DIMINISHED CHRONIC FBEOttNT

ON*DUAL INTER

MITTENT

3• I~S Ii BP-~D S. OVANTIIY 6. lINDE

NEG3 PWAL3 EVID3 ~ODYPART NLJl/NOH-MII

.11
H-HEG H-NDDAI. H-EVID H-BODYPART H-ANT H-TENSE

NO HAY PREDENT H—AREA ONI.H%ER
NONE POSSIBLY EVIDENT FUTON
NEVER PROBASLY ONVINUs H-LEE SEVERE

THERE IS 5
PINCER
BORDER
LEFT

Figure 6

CONNECTIVE TREES

HIP17 5.1.1 No CHANGE ON PENICILLAMINE EXCEPT DYSGEUSIA~.

ANOSMIA AND UPPER 6! PAIN.

EXCEPT

F5 F3 F5 AND

NO CHANGE PENICILLAMINE DYSGEUSIA

CONDIT1O~

F5 F5

ANOSMIA UPPER 6! PAIN

— 51 —

relation, with PARENT, LOFF, and ROFF attributes serving to map the recursive linguistic struc

ture of connectives into a binary tree. (In the network version, connective records were represented
outside of the schema due to limitations of the current CODASYL set mechanisms).

Retrieval requests for the SOlIDS database were drawn from a set of 56 test queries of varying

complexity culled from health care evaluation criteria and research protocols in the literature. The

queries were implemented in SQL, on a small experimental database consisting of hospital discharge
summaries CHIE83]. It proved easy to implement simple queries such as FIND ALL PATIENTS

WiTH POSS~LE POSiTIVE CHEST X-RAY and possible (although awkward) to implement more

complex queries such as: FIND ALL PATiENTS WiTH DIAGNOSIS OF PNEUMONIA WHOSE

HISTORY OR EXAM AT ADMISSION CONTAINS TWO OR MORE OF THE FOLLOWING:

(1) CHEST OR ABDOMINAL PAIN

(2) DYSPNEA OR RESPIRATORY DISTRESS

(3) BALES IN LUNG(S)
(4) COUGH

(5) RIB OR STERNAL RETRACFION

More complex queries involving time relationships in the narrative were also written in SQL.

E.g. Determine whether a bacterial culture is from the first csf (cerebrospinal fluid) sample taken from
the patient LYMA83]. Time information, represented as a partially ordered graph, is stored by the

time program (Module 5 of the processor) in a matrix of time relationships. Its transitive closure,

equivalent to a graph of all of the time relationships derivable automatically from the document, is

stored as a database table. This. table contains the time ordering of any two events mentioned in the

text, if the ordering is computable. For example, the above query accesses this table to determine

that a mentioned csf test does not occur after another csf test.

Recent Models

The second relational implementation used Boeing’s RIM version 5.0 on a VAX 750 running
VMS 4.1. RIM was chosen because it can handle less complex queries readily and is easy to use. In

this design, we flattened the format trees to facilitate a simpler mapping into flat relational tables.

Whereas this mapping ignored much of the linguistic structure (all connectives and the nesting of

modifiers), it facilitated the implementation of simple queries and generation of tables for display.
Each node type in each format was used to define a relation in the database. Queries, such as List all

signs or symptoms which show change and possible negation were readily implemented by intersecting
relations.

Our most recent relational implementation uses the full linguistic structure of the format trees.

Until a sufficiently powerful relational DBMS was available to us, we mapped the formats into rela

tional tables of our own design CH1851. These were designed in such a way as to facilitate further

mapping to a DBMS. We coded (in Pill) a small number of queries to demonstrate the feasibility of

using such a relational DBMS. These queries utilize the linguistic relations occurring among indivi

dually formatted medical events, and also the discourse relationships between sentences.

One pre-programmed query retrieved all possible drug side effects from the Progress Notes for

a selected patient (Table 1). The algorithm for establishing such complex data interconnections in

the formatted medical narrative was developed under the close supervision of a medical consultant.

The general philosophy of the retrieval was to emphasize recall over precision; i.e., to retrieve all

possible side effecs for medicaLpersonnel to check, rather than risk missing some CII 85]! ~It was

possible to develop such an algorithm because information formatting preserves the semantic rela

tionships among terms carried in the original text.

Evaluating the format modifiers is critical to the success of these retrievals and a substantial

part of the query program is devoted to this evaluation.

For example, to analyze change modifiers, the query program calls on a change evaluation

module whenever a CHANGE modifier is encountered. This module attempts to evaluate changes in

— 52 —

Table 1

TABLE OF POSSIBLE SIDE EFFECTS

• Indicetel quelIf lid by concessive

DATE DRUG EFFECT RELATION TEXT ID

02/14/80 NAPROSYN RASH ON HIPI7 2. I. I

02/14/80 NAPROSYN RASH HIPI7 2. 1. I

02/14/80 NAPROSYN RASH HIPI7 2. I. I

02/14/80 PLAQUENIL SYMPTOMS HIP17 2. I. 3

04110180 GOLD STOMATITIS WITH HIPI7 3. I. 2

04/10/80 GOLD RASH HIP17 3. I. 2

04/10/80 NAPROXEN RASH ON HIP17 3. 1. 3

04/10/80 NAPROXEN RASH HIP17 3. 1. 3

06/11/80 PENICILLAMINE PAIN ON I11P17 5. 1. 1’

06/11/80 PENICILLAMINE ANOSMIA HIP17 5.1.1’

06/11/80 PENICILLAMINE DYSGEUSIA HIPI7 5.1.1’

06/11/80 PENICILLAMINE SIDE EFFECT OF ASP17 5. 1. I

08/14/80 ZiNC TARLET 0YSGEUSI~ DESPITE HIPI7 7. 1. 2

08/14/80 PENICILLAMINE DYSGEUSIA SECONDARY TO ASP17 7. i. 1
.-

patient state as GOOD, BAD, or UNCHANGED, (the default is UNDETERMINED), by comparing
change direction with the patient state. e.g., increased pain is BAD, whereas increased mobility is

GOOD.

To analyze NEGation modifiers, the program marks the node on which the modifier appears as

“negated” (e.g., no fever is a negated SIGN/SYMPTOM). MODAL modifiers reflect the fuzziness

of the statement of many findings in the sense of ZADE75] (e.g., possible drug reaction). The pro

gram marks the node on which such modifiers appear as “fuzzy”, though it does not assign a numeri

cal value to the degree of uncertainty suggested by the modal. Modifiers that assert factuaiity (e.g.,
there is, evidence of) cause the program to mark the associated node as “factual”.

Sentences containing a special type of English connective (“conces~ves”) such as except,

although, but are handled in a special manner. The component assertions under a concessive are not

complete without considering the other components. (see Fig. 6 for the structure of HIP17 5.1.1, no

change on penicillamine except dysgeusia, anosmia and upper GI pain). Formats from such sentences

are entered into all tables with a
““ flagging the sentence code, an indication to the user to look at

the sentence as a whole. E.g. in the above example, the format for no change on penicillamine is

entered into the database flagged with ““, as are the formats for dysgeusia, anosmia, and upper GI

pain. The concessive flags are carried into accompanying retrievals. Thus, dysgeusia, anosmia, and

upper Gi pain are entered into the Possible Side Effects Table (Table 1) as possible side effects of

penicillamine, flagged with ““ to ensure that the context will be examined by the user.

To check the narrative for possible side effect indications which cross sentence boundaries, the

query program will, given a sentence that mentions administration of a medication and contains no

patient state information, check the next sentence for sign-symptom or diagnosis information that is

not coupled to another medication. We do not look down more than two sentences, because the pro

bability of a correct retrieval becomes too low in this case.

There are a number of cases concerning the type of linguistic connective and the distance

between sentences over which a relation can be reliably computed, which are still under investiga
tion.

5. CONCLUSION

Although the technique of information formatting is still very new, we believe that in its appli
cation to clinical narrative it offers one solution to the “primary dilemma in the use of a computer-
based medical record system...” namely, “how to reconcile the physician’s custom of recording free-

form narrative on a blank page with the computer’s need for structure and a pre-defined vocabulary”
BARN84]. In a busy ambulatory clinic using narrative records, tasks that can not now be done

— 53 —

without enormous expenditure of time and effort could be facilitated by having available a database

derived from the narrative records. Such tasks include extracting and summarizing sign/symptom
information, or drug dosage and response data; identifying possible side effects of medications; and

highlighting or flagging data items for attention in subsequent visits. In chronic disease, such as

rheumatoid arthritis, the data accumulated for a single patient may stretch over decades, resulting in

a voluminous patient record. The combination of narrative processing (information formatting) with

database management techniques could provide a kind of “index” to the contents of a patient’s medi

cal record and permit selective review of features of the disease process and its treatment over long

periods of time.

While it is too soon to speak of other areas of application besides the clinical sublanguage, it

should be noted that the modular design of the language processor encapsulates the areas which have

to be changed for a new sublanguage and retains in tact both the English processing and the mechan

isms for applying sublanguage constraints. In one instance the system has been found to be portable
to another domain MARS85].

Work of the kind reported here must still be considered experimental, if not pure research.

The language processor must be made more “robust” and the entire area of providing a suitable

front end for the database of processed narrative is yet to be carefully considered. It is a hopeful
sign to us, in view of the magnitude of the enterprise we are embarked on, that these are now the

problems before us.

6. REFERENCES

BARN84]
Barnett, GO. (1984). The Application of Computer-Based Medical-Record Systems in Ambu

latory Practice. New England I. ofMedicine 310:25, (1984), 1643-1650.

CH183]
Chi, E.C., Sager, N., Tick, L.J., and Lyman, M. (1983). Relational Database Modeling of

Free-Text Medical Narrative. Medical Informarics 8:3 (1983), 209-223. (Special Issue: New

Methods for the Analysis of Clinical Data.) Taylor & Francis Ltd., London.

CH185]
Chi, E.C., Lyman, M., MD, Sager, N., Friedman, C., and Macleod, C. (1985). A Database of

Computer-Structured Narrative: Methods of Computing Complex Relations. Proceedings of the

Ninth Annual Symposium on Computer Applications in Medical Care (SCAMC9), Baltimore, MD,
November 1985, in press.

FRIE83]
Friedman, C., Sager, N., Chi, E.C., Marsh, E., Christenson, C., and Lyman, M.S., MD

(1983). Computer Structuring of Free-Text Patient Data. Proceedings of the 7th Annual Sympo
sium on Computer Applications in Medical Care (SCAMC7) (R. Dayhoff, ed.), 692-695. IEEE

Computer Society, Silver Spring, MD.

FRIE84]
Friedman, C. (1984). Sublanguage Text Processing -- Application to Medical Narrative. In

Sublanguage: Description and Processing (R. Grishman and R. Kittredge, eds.). Lawrence Erl

baum, in press.

I1~R~8]
~-

Harris, Z.S. (1968). Mathematical Structures of Language, Wiley-Interscience, New York.
-

HIRS81]
Hirschman, L. (1981). Retrieving Time Information from Natural Language Texts. Information
Retrieval Research (R.N. Oddy, S.E. Robertson, CJ. Van Rijsbergen and P. Williams, eds.),
Butterworths, London, 154-171.

— 54 —

}11RS82]
Hirschman, L., and Sager, N. (1982). Automatic Information Formatting of a Medical Sub

language. Sublanguage: Studies of Language in Restricted Semantic Domains (R. Kittredge and

S. Lehrberger, eds.). Series on Foundation of Communication (R. Posner, ed.), Walter de

Gruyter, Berlin, pp. 27-80.

K1TT82]
Kittredge, R., and Lehrberger, 1. (1982). Sublanguage: Studies of Language in Restricted

Semantic Domains, Walter de Gruyter, Berlin.

KORE63]
Korein, I., Woodbury, M.A., Tick, J.L., Cady, Li)., Goodgold, AL., and Randt, C.T.

(1963). Computer Processing of Medical Data by Variable-Field-Length Format. JAMA 186

(1963), 132-138.

LYMA83]
Lyman, M., Chi, E.C., Sager, N.,. Tick, L.J., and Story, GA. (1983).. Automated Case

Review of Acute Bacterial Meningitis of Childhood. In Proceedings of MEDINFO 83, Amster

dam, August 1983.

MARS85]
Marsh, E., and Friedman, C. (1985). Transporting the Linguistic String Project System from a

Medical to a Navy Domain. Assoc. for Computing Machinery, in press.

SAGE78J
Sager, N. (1978). Natural Language Information Formatting: The Automatic Conversion of

Texts to a Structured Data Base. In Advances in Computers 17 (M.C. Yovits, ed.), 89-162.

Academic Press, NY.

SAGE8O}
Sager, N., Tick, L., Story, G., and Hlrschman, L. (1980). A CODASYL-type Schema for

Natural Language Medical Records. Proceedings of the Fourth Annual Symposium on Computer
Applications in Medical Care 2 (J.T. O’Neill, ed.), 1027-1033. IEEE Computer Society, Los

Angeles, CA.

SAGE81]
Sager, N. (1981). Natural Language Information Processing: A Computer Grammar of English
and Its Applications. Addison-Wesley, Reading, Mass.

ZADE75I
Zadeh, L.A. (.1975). The Concept of a Linguistic Variable and Its Application to Appropriate
Reasoning -. 1, Information Sciences 8 (1975), 199-249.

— 55 —

Alternatives to the Use of Natural Language in

Interfacing to Databases

Zenon W. Pylyshyn

Centre For Cognitive Science

University of Western Ontario

London, Ontario, Canada N6A 5C2

Despite it attractions, the use of Natural Language (NL) as Input to database systems presents

a number of problems -- especially In the present state of technology, and possibly In general.

Several of these are discussed and some alternative types of interface are sketched -- including
the use of expert-systems to train users on both the form and contents of a database, to help

them formulate queries, and to help organize the retrieval process. The use of “unintelligent”

interfaces, such as menu systems and other hybrid alternatives, is also briefly discussed.

1. Introduction

Natural language has generally been viewed as potentially one of the most

important technological advances from the perspective of enhancing access to databases,

especially for such nonspecialist or casual users as office workers, managers and

consumers. Nonetheless, natural language interfaces have certain limitations. In the

first place there is the problem of overcoming the sorts of technical limitations that have

already been alluded to in the introductory survey PYLY85I. There are also a number

of other arguments that have been made against the reliance on natural language as an

interface to databases. Some of these will be reviewed below. But a very general

problem Is that the keyboard Itself has turned out to be a more substantial obstacle to

the widespread acceptance of natural language input than had generally been

anticipated HART83].

One practical problem is that natural language appears to be most suitable for

users falling within a rather narrow range of experience and sophistication. It is not, as

some might have expeCted’, useful to someone totally new to the use of the database,

since such a person has no idea what to ask for nor what limits there are to the way a

question can be put (the query system obviously cannot be treated the way one might

approach a human librarian or other “information person”). On the other hand, It is

also not suitable for someone who has had considerabie experience using the database,

since such a person would generally prefer to get the information by a more direct route

than by having to type a long natural language question.

There are other problems with natural language systems. Even if many of their

technical limitations were overcome in certain narrow domains, and even if the keyboard

problem- were -alleviated (say, by~deveIopments -in- speech~recognition~, queries~ and~

searches for specified information would nevertheless stiil frequently fail. Surprisingly,

experiments in libraries have shown that when one examines the cases in which users

believe that a search was successful, one finds that a full 67% of these cases failed to

find relevant books BATE77]. This inability to correctly locate relevant material is due

to the user’s lack of familiarity with the contents and the organIzational structure of the

— 56 —

database (in this case the library catalogue). Since the users don’t know how data is

classified or otherwise structured, they do not know what parameters to specify -- i.e.

what questions to ask. What may be needed In such cases Is not a facility for expressing

what one wants in one’s own terms, but rather some help in learning the structure of

the information (as well as, perhaps, more natural ways of structuring the informatIon),
and some natural way of exploring the database to get an idea of the kinds of

Information in it and how it is arranged -- I.e. a facility for easier browsing. Natural

language systems are generally not suitable for browsing or for cases where the user Is

not thoroughly familiar with either the content or the organization of the database in

question.

In order to deal with the case of complex databases that are unfamiliar to users, or

indeed with the general problem of providing aids for exploring databases, we can go

even further in either of the two directions discussed earlier: (a) We can make the

Interface more Intelligent by Incorporating knowledge of the database contents In the

interface, together with some reasoning capability, so that the interface itself can guide

the user the way an intelligent assistant might, or (b) we can go further in the direction

of viewing the interface as a simple and convenient tool, with all the control residing in

the user. The first alternative takes us towards expert-system advisors, while the second

takes us towards menus and their variants.

2. Expert Systems as a Database Interface

Expert systems have received more attention in the public scrutiny of artificial

intelligence than any other development in that field. Because so much has been written

about expert systems and about the successes they have achieved in a large number of

areas, from medical diagnosis and prospecting to design and crisis management, we will

not attempt to go over this ground here (see, however, HAYE83], and WEIS84]). Our

discussion of this topic will be confined to a sketch of some of the ways in which expert

systems might play a role in interfacing users with databases. There are a number of

different ways in which an expert system might play such a role.

• Query and Search Optimization. Frequently a complex

computational process must intervene between the formulation of a query (in
whatever form) and the retrieval of an answer -- especially when the

database Is large and homogeneous. Retrieval can involve extremely complex

searches of the database, covering a variety of different criteria and requiring

time-consuming set-intersection procedures. Quite often, however, various

domain-specific heuristics could be used to improve the efficiency of these

searches, if such “control information” were somehow brought to bear on the

retrieval problem. In such cases, expert systems could be of help, for

example, to recast the Internal form of the query so as to lead to a more

efficient search, or for optimizing the process of answering a sequence of

queries by storing intermediate results and making meaningful connections.

JARK83I, KELL77J, and KELL82] provide examples of such uses of expert

systems in enhancing retrieval from databases.

• Inferring fact8 not expticitly 8tored. In this case the expert system

might have the requisite knowledge to answer a question which is not

— 57 —

explicitly retrievable from the database by logically inferring that there is a

different question that produces the same answer and is retrievable. Take,

for example, the query to list all students who have programming skills

equivalent to that provided by course CS2O, whether or not they have taken

that course. Such information would very likely not be explicitly encoded.

Yet it is derivable from other facts, such as that certain other courses (e.g.

all computer science honours courses) have that very skill as their

prerequisite. In general, if the expert system has a collection of general facts

about the database in the form “all Xs are Ys” or “no Xs are Ws” then it is

in a position to answer database queries that might not be directly

retrievable, or perhaps only answerable by exhaustive enumeration of cases.

• Databa8e Advi8or. A large number of the expert systems that have been

designed actually play the role of advisors (say for diagnosis or programming

or financial plannIng). Thus it is natural to”expect that they could serve in a

similar capacity in the case of database retrieval. In this case it would be

playing a role analogous to that played by a librarian in providing advice on

how to go about locating some piece of information. A librarian’s role is

particularly valuable if the user knows very little about the organization of

the library or if the Information sought is not clearly defined (e.g. “I would

like some information that could help me in deciding on a career”). What is

required for a database advisor is an expert system that contains “meta

knowledge” or knowledge about what kinds of topics are covered in the

database and how they are organized, cross-classified and accessed. It also

could involve knowledge of what is called the “data model” underlying the

database design, as well as the retrieval procedures embodied in the database

system or query language. Such a “meta-database” expert system could help

users formulate their query, could advise them on possible ambiguities or

unanticipated consequences of some particular way of querying the database,

could explain why some particular query produced certain unsatisfactory

results and suggest alternative approaches. In addition, it could serve as an

instructional tool to tutor the novice user on the nature and structure of the

database or on the use of some particular artificial query language for

obtaining Information. This type of interface can be designed to contain a

substantial component that is independent of the particular database in

question. Such an interface, which has been referred to as a User-Agent in

contrast with a device-dependent Front-End, (see I-IAYE8O]) has great

potential.

An example of the use of artificial intelligent techniques, along with findings from

empirical studies in Cognitive Science, Is a system called RABBIT, developed by

T0U82] at the Xerox Palo Alto Research Center. RABBIT is an intelligent database

assistant that ~he1ps~users ~form~ulate ~a query ~by~-1nteract4ng~ with ~them~-~dur4ng~ the~

construction of a description of the target item(s). The system infers a perspective for

the query from the (partial) description provided and from an examination of the

database itself. A perspective is a way of viewing objects that highlights certain of their

attributes. From this the system retrieves a best-match instance and displays its

perspective-relevant attributes. The user can then criticize the Instance and use its

— 58 —

description as a guide in reformulating the next Iteration of the query. For example, the

user can point to a descriptor in the query or in the Instance that was retrieved and

specify that certain of its attributes be treated as necessary or as prohibited. In

addition, the user can ask for alternatives or specializations of a given descriptor to be

used instead. The RABBIT system makes use of a variety of artificial intelligence

techniques (e.g. it uses a knowledge representation system called KL-ONE), together

with results of psychological studies of human memory (it is motivated by a theoretical

hypothesis called “retrieval by instantiation” or “retrieval by reformulation”, see

WILL81] in order to help resolve many common difficulties faced by users of database

query systems.

3. “Unintelligent” Interfaces: The Computer as a Tool

Earlier we suggested that there are two basic approaches in making large

unfamiliar databases more accessible to users. Above we described an approach based

on providing the user with an Interface that knows a lot about the database -- an

“intelligent” interface. If we go to the other extreme, that of providing the user with an

interface that has a minimum of autonomous knowledge and inference ability, there are

a number of different alternative strategies that might be employed. In all cases our

ultimate goal Is the same as the one we had when we considered building expert systems;

to provide a facility for those users who are not very familiar with the database in

question. This time, however, we do not endow the interface with the ability to reason

and to perform as a flexible actIve Intelligent assistant. Instead, all the intelligence goes

Into the initial design: It Is “frozen” into the structure of the tool, which remains under

control of the user. There are several classes of approach one can take, each of which

can help the user browse through the database.

1. The content and structure of the Information in the database can be made

more visible to the user in the course of interactions with the database. One

obvious way of doing this Is by providing the user with part of the

Information and relying on recognition ability to select a search path, as

opposed to requiring the user to generate the entire query expression. The

paradigm example of the use of this technique is, of course, the use of

menus. Below, we will sketch some of the problems associated with the use

of menus, and we will describe a major effort at building menu-based

systems that has achieved considerable success with large practical databases.

2. The range of queries that can be addressed to a database on each query cycle

can be explicitly limited In a natural way. It would not do, of course, to

have a query system which looks as though it can deal with a wide range of

queries but merely rejects most of them. Indeed this was traditionally one of

the fatal shortcomings of quasi-natural language query systems. It is far

better to have a system which is Intrinsically limited by design in such a way

that the user knows that only certain clearly delimited queries can be

formulated. Menu systems have this quality, as do various key word systems

and their extensions in simple artificial query languages. We will discuss

these alternatives briefly later.

— 59 —

3. FInally, it is sometimes possible to greatly enhance the access to databases

without using exotic computational techniques if one understands better the

nature and source of limitation in existing key word and menu systems and

the types of information and data structures for which they are most

suitable. There is even some reason to believe that varying a few design

parameters can dramatically affect the usefulness of these systems --

parameters such as the response time, the frame or menu contents, the choice

of key words, or the mechanics of making selections (e.g. by allowing

selections to be made by using a pointing device instead of requiring typing).

Furthermore, It is sometimes possible to combine the virtues of one or more

constrained systems to produce a design that is very effective is certain

contexts. We shall examine several of these ideas below.

4. Menu Systems

4.1. Natural Language Menu Systems
Before considering the case for menu systems in general, we examine one special

case, since in certain circumstances it provides some of the advantages of a natural

language query system. That is the natural language menu-driven system. Unlike the

natural language query system described earlier, where the user Interacts with the

language system in sentential units, the menu driven system incrementally generate

parts of the query sentence, and provides a set of phrasal continuations at several stages

of the sentence generation. At each stage the user simply selects, from options presented

on a partitioned screen, an appropriate phrasal continuation in an incremental

construction of a sentence expressing his desired query. The system increments, the

partial parse and again presents a set of (usually different) continuations appropriate to

the new parse in the context of the structure and content of the database. The process

continues until the user’s query is complete, at which point a response to the query is

generated. Because this work TENN83] is described elsewhere in this volume it will not

be described In detail here. Suffice it to point out that as long as the particular phrasal

continuations provided by the system are well matched to the user’s conceptualization of

the intended query, a menu driven system has some obvious advantages over a complete

natural language system.

There Is, first, the obvious advantage that it is computationally a dramatically

simpler system. Users can build them for their own applications in a matter of hours

rather than months. The computational resources required to run the system are orders

of magnitude less and most systems implemented have been for modest personal

computers. Because of their simplicity they tend to be robust and free of bugs. Several

different menu systems can be built for the same database, thereby allowing

customization for indivlduaLneeds,~as welLascontrolling access~privi1eges. ~Menus canbe~.

treated as data objects in their own right and can be “granted” to different classes of

users.

Although the problem of “coverage” is still a real problem for the system design,

as It is for the natural systems discussed earlier, the problem of density of coverage is

not. With menu driven incremental sentence generation it is trivially impossible to

— 60 —

generate a non-sentence of the sub-language. The issue of ambiguity is less clear.

Ambiguity can certainly be minimized by careful crafting of permissible phrasal

continuations. On the other hand there Is always a great deal of syntactic ambiguity In

natural language systems which native speakers are not aware of because they

unconsciously fllter out the unintended readings using knowledge of the world. The

extent to which problem can be dealt with bringing in semantics or without elaborating
the phrasal continuation menus to the point where they become unacceptable large, is

very much a function of the sub-language domain. As the complexity of the application

Increases there comes a point at which the number of continuations, and hence the

complexity of the menu, becomes self defeating. Furthermore, it appears that there is

evidence that limited systems such as ones based on menu driven natural language

queries do have a variety of other limitations HEND83].

4.2. Practical Large Scale Menu Systems
Menu systems have two disadvantages as normally implemented. First, they are

slow. In menu selection, according to some rough estimates provided by ROBE81I, a

user can select about one out of ten alternatives every five seconds (I.e. a channel

capacity of about 1 bit per second). On the other hand a skilled typist can type about

one word per second (I.e. a channel capacity of about 10 bits per second) -- about an

order of magnitude faster. The second disadvantage is the forced Interposition of

explanatory text and options which further compounds the speed problem. Other

disadvantages arise when the material does not lend itself well to a hierarchical

taxonomy. In that case the user may take a wrong path and miss the target entirely. If

the material is not naturally hierarchical, on the other hand, the user can become

hopelessly lost in a maze of connections -- a phenomenon also shared by other sequential

search methods.

Most of the menu systems one sees are for rather small systems. It Is of some

Interest, therefore, to examine briefly the experience of designing and using a large

practical menu-based access system in which some effort was made to overcome at least

the obvious difficulty with menu systems and to extend them with some additional

features. One of the most sophisticated of the large practical scale menu systems is

called ZOG. It was developed at Carnegie-Mellon University as an experiment in user

Interfaces, and has been used for a wide range of large-scale practical applications

ROBE81].

ZOG is viewed by its designers as a clear case of the evolution of user Interfaces In

the direction of tools, as opposed to the intelligent agents discussed in the preceding

section. It is designed to overcome the two main difficulties with menu systems

identified above (viz., speed, and the forced interposition of a large amount of text and

options). The idea is to overcome these limitations by (a) designing the system to have

very fast response time (in the order of 0.5 seconds, or even less, to restore part of the

speed Imbalance between selecting and typing), and (b) to have a very large well

designed network of small frames which are tailored to permit alternative “short cut”

sequences for more experienced users. The design principles behind ZOG are that it

should have a rapid response, that making selections should be physically simple, that

the database should consist of a large practical-sized network that is hierarchically

organized, that individual frames should be simple and easy to modify, that the system

— 61 —

should be transparent and usable with a wide variety of databases and programs, and

that it should allow active operations (such as running programs or text editing) as well

as operations for moving through a tree.

Evidence of the viability of the design is the practical success of the system in a

wide range of large applications. These Include a library browsing system; document

preparation system; an information system containing facts about the Carnegie-Mellon

computer science department, its academic regulations and available software; a

computer program development system; a project management system; a data

management system for a large expert system application, and a shipboard operations

management system for a nuclear powered aircraft carrier (USS Carl Vinson).

4.3. Other considerations in constrained interfaces

The one alternative retrieval scheme in relatively wide use that we have not

discussed is the use of key words. The use of key words represents a constrained

retrieval system, in the sense discussed earlier. Although the number of words in a

naturai language may be large (upwards of 50,000) it is still tractable. Indeed it is easy

to construct a table lookup algorithm for this number of words even on a

microcomputer. What is much more difficult is arranging for a query system to respond

to this number of subtle distinctions in a meaningful way. Simply retrieving records or

pages that contain the key word is clearly unsatisfactory since the inventory of words

contained in such records is usually a very poor indicator of the content of these records.

Words are highly ambiguous in their meaning and the same meaning can in general be

conveyed in myriad ways using quite different words. There are cases in which key

words can be relatively effective, however, and the recognition of such cases can be

improved by research on people’s choice of descriptors for different subject areas (see,
for example, the work of LAND83]).

As we mentioned above, one of the advantages of menu systems is that over a

period of time they allow the user to develop an idea of the structure and content of the

database. Thus it would be useful if at that point they provided a vehicle for a

transition to other forms of retrieval in order to short-circuit some of the long paths

normally necessary in menu explorations. The ZOG system does provide a number of

ways of getting around frames without going through the options provided (these
involve use of the global selection pads, such as a global search facility). Another

alternative might be to allow the use of key words at certain points in the menu-based

exploration, with provision for returning to the point of departure from the menu. The

only documented case of using such a scheme is one investigated by CI-1A082], who

reports that a hybrid scheme is superior to a strict tree structure, with subjects

accessing fewer pages and committIng fewer errors. As Chao herself points out,

however, It is not clear what would happen if either (or both) the size of the database or

of the index list were to be expanded significantly, say to the size of the databases used

with ttie ZOG systen.
~

~ ~ ~

Constrained interfaces of different sorts have been used ever since databases were

first invented. In fact the most common types of access schemes for databases continue

to be such things as menus, key words, and various formal query languages. Each of

these has some advantages and some drawbacks. In some cases, and for certain types of

applications, these limitations may not be serious. In other cases a combination of

— 62 —

limited methods, or purely mechanical improvements in the layout of the screen or the

speed of response, or simply a graduated tutorial introduction to the use of the interface,

can more than make up for the minor inconveniences involved. There is even evidence

that explicitly hiding certain features from users at first (the obvious metaphor here is

the use of “training wheels” to teach bicycling skill) improves their ability to learn to

use a computer tool -- presumably by not discouraging or frightening them at the start.

Thus there is room for imaginative exploration of interface design, even where the

designs are not very general or the interfaces very “intelligent” in the sense of

Incorporating knowledge of the user. Clearly, what Is needed is a systematic

investigation of the effects of various aspects of these limited systems in different

settings.

REFERENCES

BATE77] Bates, M.J. “Factors Affecting Subject Catalog Search Success”, Journal of the

American Society for information Science, 161-169, May, 1977.

C1-1A082] Chao, G. The Use of Keywords In Videotex Systems”, for the Department of

Communications, Ottawa, Canada, Contract Serial No. 0ER82-05055 and

OER81-05064, 1982.

I-LARTS3I Hart, P.E., “Directions for Al In the Eighties, SIGART Newsletter - ACM, 79: 11-16,

January, 1983. HAYE8O]
Hayes, P., BalI, E. and Reddy, R. “Computers with Natural Communication Skills,”

Computer Science Research Review: 1979-80, Carnegie-Mellon University, 1980.

HAYE83] Hayes-Roth, R., Waterman, D., and Lenat, D. Building Expert Systems, Addison-

Wesley, 1983.

fHEND83J 1-lendler, J.A., and Michaelis, P.R. “The Effects of Limited Grammar on Interactive

Natural Language”, CII! ‘83 Proceedings, 190-192, December, 1983.

JARKS3] Jarke, M. and Vassiiioiis, Y. “Coupling Expert Systems with Database Management

Systems”, Proceeding of the N}’U Symposium on Artificial intelligence Applications
to Business, New York, 1983.

KELL82] Kellegg, C. “Knowledge Management: A Practical Amalgam of Knowledge and Data

Base Technology”, Proc. AAAAI-8~?, 1982.

KELL77J Kellogg, C., Klahr, P., and Travis, L. “Deductive Methods for very Large Databases”,

Proc. Fifth !JCAI, M.I.T., 1977.

~LAND831 Landauer, T.K., Galotti, K.M., and Hartwell, S.1f. “Natural Command Names and

initial Learning: A Study of Text Editing Terms”, Comm. ACM, 26:7, 1983.

PYLY85] Pylyshyn, Z. W., and Kittredge, R. I. Databases and Natural Language Processing.

Database Engineering, 1985 (this issue).

tROBE81J Robertson, G., McCracken, D., and Newell, A. “The ZOG Approach to Man-Machine

Communication”, international Journal of Man-Machine Studies, 14, 461-488, 1981.

TENN83J Tennant, lI.R.. Ross KM. and Thompson, C.W. “Usable Natural Language interfaces

Through Menu Based Natural Language Understanding”, CFii’83 Proceedings, 154-160,

December, 1983.

ITOU82] Tou, F.N., Williams, M.D., Pikes, R.E., Henderson, D.A., and Malone, T.W. “Rabbit:

An Intelligent Database Assistant”, Proceedings of the National Conference on

Artificial intelligence, 314-3 18. Menlo Park, CA: AAAJ, 1982.

(WE1SS4] Weiss, S.M., and Kulikowski, C.A. A Practical Guide to Designing Expert Systems,
Totawa, N.J.: Rowman and Allanheld, 1984.

— 63 —

MENU-BASED NATURAL LANGUAGE INTERFACES TO DATABASES

Craig W. Thompson

Texas Instruments, Inc.

P0 Box 226015, MS 238

Dallas, Texas 75265

ABSTRACT. “Menu-based natural language”, as implemented in the NLMenu system,
provides useful near-term solutions to a number of problems that affect

conventional natural language interfaces to databases. This article overviews

our research on menu-based natural language, describing 1) the basic NLMenu

approach, 2) advantages of the approach including ease-of-use for end-users

and low cost for interface desgners, and 3) applications of the approach for

database updates, requests for business graphs and map displays, and mixed

dbms and keyword-based information retrieval queries.

1. Menu—Based Natural Language

In a “menu-based natural language” interface TENN83a, TENN83b), a user is

presented with an arrangement of menu panes containing lexical items. Figure
1 shows a sample NLMenu interface to a database of Austin restaurants where

the user has phrased the query:

EX Find restaurants whose distance from UT in miles is less than 0.5

The user constructs a sentence (query or command) by selecting a sequence of

words or phrases from active windows (those shown with white backgrounds). A

semantically constrained grammar provides the look-ahead control structure

that activates and highlights those menus containing legal completions of the

sentence. This control structure enforces that only understandable sentences

can be formed. An implemented system called the NLMenu system has been

designed to explore this approach. NLMenu was first developed on Lisp
Machines (LMI CADRs and LAMBDAs, Symbolics 3600s, and TI Explorers) and then

ported to TI PCs, where the system is called NaturalLink and is implemented in

C.

For ease-of-use, NLMenu interfaces have advantages over both conventional

formal database query languages and also conventional natural language
interfaces. Conventional query languages require that a user understand and

remember the query language syntax and semantics and also the names and

relationships of the domain entities and attributes. In NLMenu, this sort of

information is available directly in the menus, and natural language provides
an immediately understandable control structure for asking even fairly
comp-leated queries. The -advantage o-f~NLMenu over eonventi~ona-l-~ ~na-tur-~a~l

language interfaces is that the user is guided to use just the subset of

natural language that the system “understands”. Users of conventional natural

language systems often have trouble phrasing their queries, either

overshooting or undershooting the capabilities of the interface TENN8O].
Trying to stay within the covered lexicon, syntax and semantics can become a

frustrating end in itself. Because of the guided approach employed, NLMenu

grammars do not have to cover al I paraphrases of a sentence and so can be

— 64

Figure 1: An NLMenu Interface to a Restaurant Database

NLMENU Interface Austin Restaurants

Cor~rnands Nouns IE~<perts Modifiers

Find Draw (specific map locations> -. whose map location Is
-

Delete kisert (specific restaurant names) -. whose name Is

(specific addressses> - .-.~ whose address Is
Attributes

(specific telephone ntm~wers) : ~ tele~~ Is
distance from ~ in

(specific kinds of food) whose kind of food Is

(specific reviews) whose review is
address

(specific qualities of foods) whose quality of food is
telephone (specific prices) whose price Is

kind of foød
(specific credit cardss) whose credit cards are

review (specific number> whose distance from Ut in miles is
quality of food with a minimum slice size of

price -

withgridon
credit cards

Co~par isons
° ; with horizontal gild

between -

with vertica! rid
greater than with (n> divisions

less than

greater than or equal to

less than or equal to

equal to

E’=v~t EI’i Ci—r~r~i~rrJ:,

Restart Refresh Rubout Exit System
Save Input Retrieve Input Delete Inputs Play Input
Show Input Show Parse Tree Execute Save Output

Find restaurants whose distance from ut in miles is less than H.5

Mor~ Above

NAME: Sari lliq’JEl LOCAT I ON: 2330 14. North Loop
TELEPHONE: 459—41 21 LII STANCE_FROM_UT: 0.

r.i ND—OF—Foot’: ME~I CAN

F:EVJ E1.J:
. . . piari.~ f a’.jor iteE. ‘:‘r th~ r~ier~u.

. .
fr ieridly SerViCE’. —— Te~:as Ilorithly

~—LOC:: 2500. V—LOC: 2500. OLIALIT,—OF—FUOLI: GOOD

PRI CE: MOt~EF:FiT E CF:Et’I T —CARDS: DC, MC, V I CON:

NFITIE: Coririari’E. LOCAl ION: Se~eral locations

I ELEPHOFIE : 4Th—I 951 LII STANI::E_FF:I:IIluT : 0. F.I t1t1—OF—FLIOLI: Fl 2ZA

REVIEI.J: Chic.aqc’ ~tL1le IJEEp cJlsr p1~Ea. .
are iF~ipressive .

JensEn’ Rust in Guide

—LIII ~L1M —LflC :~uu I’LIALI T i —OF—FOIL GOOD

PRI CE: 1iOL’EF:ATE CF:ELII I —CRRLIS: RE, MC, V I CUI4: 7

NAME: Foothills of Austin LOC:AT I OH: Hyatt Pe9ericy Hotel

TELEPHONE: 477—1 234 DISTANCE_FROM_UT: 0.

l~I lID—OF—FOOD: CONT I NENTFIL

REVI E1.J:
. . .

qc’c’d place for c:Oflt iniental cui~ir~e. —— Jensen’ Rij~.t in hIjiiJE

:-:—L0C: 2500. 1 —LIIC~ 2500. c’UFIL IT —OF—FtIIjI: GOOD

PRICE: E:-:PEUE.1 VE c:REDI 1—CARDS: RE, MC, V I CI:1N:

3. tuples retnie..’ed

Hi ~‘erI’J LI i~p lay 11 in,doi,i Rust in Restaurants

Mor~ ~‘~ioii~

I__Cl ~ H CC t ‘:‘

and draw a map of ti~rn

and

or

— 65

considerably smaller, small enough to fit comfortably on a personal computer.

Other advantages of NLMenu in:clude no spelling or syntax errors and building a

sentence by “recognizing” it instead of “creating” it. Finally, the NLMenu

guided approach provides a straightforward way of managing the changing part

of the lexicon that corresponds to stored database values. Interaction

experts THOM84c], like the “<specific restaurant names>” expert in the

“Experts” window of Figure 1, provide field-specific pop-up menus where help
in specifying database values can be located. Neither conventional natural

language interfaces nor conventional query languages provide the user with

support for specifying valid database values during query or command

composition.

2. Building NLMenu Interfaces

A variety of menu-based interfaces have been built manually, interfacing
to such diverse target systems as the Dow Jones News and Retrieval Service,
the MS/DOS operating system on the TI PC, a guided version of SQL, and a

simple expert system. In addition, a grammar writer’s workbench has been

constructed which aids an interface designer in building interfaces: finding

dangling references in grammars and undefined lexical entries, checking rule

syntax, generating sample strings from the grammar, and so on THDM85a].

In the case of interfaces to relational databases, we have constructed an

interface generator that can automatically generate usable natural language
interfaces for querying a collection of tables THOM83].

The interface generator takes two inputs. The first is a

domain-dependent specification called a “domain spec” which lists, for a given

interface, data dictionary information including the tables to be covered, the

access rights for each table, a categorization of the attributes of tables in

terms of non-numeric, numeric and coded fields, table keys, and a

specification of supported join paths. End users supply this argument either

by providing a source file spec or by using a menu-based interaction with the

target system’s data dictionary. The second argument is a domain-independent

generic grammar and lexicon targeted on a particular database query language.
End-users do not generally modify this argument. The generic grammar and

lexicon consist of rule templates, and the domain spec is used to instantiate

the templates to generate context free grammar rules and actual lexical

entries. For instance, a grammar rule template like:

(rel)-mod --> whose-<rel>—<attr>—is <rel>-<attr>-expert
where ((rel> <attr)) is an element of non-numeric-attributes

is instantiated with the domain spec category non-numeric-attributes:

non-numeric-attributes =

~((restaurant~name)(restaurant address) (restaurant telephone)
(restaurant kind of food)(restaurant review)
(restaurant quality_of_food) (restaurant credit_cards))

resulting in seven instantiated semantic grammar rules, provding seven ways

to post-modify restaurants, one for each of the seven ((ret) <attr>) pairs in

non-numeric-attributes. For instance, when rel = restaurant and attr = name,

the following instantiated grammar rule results from the substitution:

— 66 —

restaurant-mod —-) whose-restaurant-name-is restaurant-name-expert

Thus a domain-independent generic grammar is merged with a domain spec to

produce a semantically constrained grammar.

The separation of the domain-dependent and domain-independent portions of

an interface makes it possible for trained but linguistically naive end—users

to build their own interfaces. It took only about thirty minutes to build the

Austin Restaurant interface. Unlike conventional portable natural language
interfaces like Intellect HARR83), learn CROS82], and Ask TB&F83], the

generated interfaces are immediately usable. Conventional interfaces require
a long empirical tuning phase in which a habitable application-dependent
sublanguage is discovered, often requiring that a trained interface designer
spend over a man-month of time to build a reasonably useful interface to a

specific application. In addition to being portable across applications, the

NLMenu interface generator is portable across target database management

systems. It takes only a few days for a trained grammar writer to revise a

generic grammar so that translations refer to a new target database.

Currently implemented target translations include SQL, Ingres Quel, Prolog,
and an Explorer Lisp Machine relational table management system called RTMS.

The interface generator described above binds the semantics to the generic

grammar at interface creation time, bul Iding a semantic grammar. Recently, we

have developed a dynamic constraint lookahead parser in Prolog which shifts

this binding to execution time, making it possible to change the interface

description on the fly.

3. Extending the Applicability of Natural Language Interfaces

Initially, the NLMenu interface generator was limited to allowing users

to only retrieve data into tables. One of our development goals has been to

extend the interface generator so that, in a domain independent manner,

extended sorts of functionality can be requested using a broadened menu-based

natural language sublanguage.

The first area we examined involved using menu-based natural language to

specify database updates. For several reasons, few natural language interface

efforts have permitted users to request database updates. First, updates,
unlike retrievals, may affect the state of the database in ways that the user

did not intend and may be hard to retract. Second, underlying database

management systems have differing update policies with respect to updating
views, tolerating null values, and supporting transactions. It may be hard

for a natural language interface to hide these differing policies. In

THOM84b), it is argued that the update policies of a target database can be

reflected in the .NLMenu guided approach to guarantee that:

o only updatable views and tables can be updated

o required key information must be specified and non-key information is

optional

o CODASYL-like cascaded deletion semantics can be accommodated and complex
objects that span several relations can be inserted according to entity
and referential integrity constraints

— 67 —

o operationally-defined transactions for an application can be specified

o integrity constraints and protection constraints can be specified.

Conventonal natural language interfaces, in contrast, provide no way to limit

the user to the idiosyncratic update policies available in a given target
database management system.

The second area has involved extending the coverage of NLMenu database

interfaces to include some graphics THOM85b]. First, we added some spatial
database queries to NLMenu so that a user could ask:

EX Find restaurants whose location is <specific map locations> and

whose type of food is Mexican or Chinese and draw a map of them

During query specification, when the user selects the “<specific map

locations)” expert item, a map is displayed, showing icons of restaurants on a

street map of Austin, allowing the user to use the mouse to rubber band a

selected area. When the query is evaluated, the same map is displayed showing
icons of just the restaurants selected in the query, allowing the user to zoom

and to mouse restaurants and see their attributes. Some distance queries were

added as well including the one shown in Figure 1. Later, we added several

sorts of business graphs allowing the user to build queries like:

EX Draw a histogram by distance from UT in miles for restaurants

whose credit cards are American Express or MasterCard

To add the graphics queries, new constructions were added to the generic
grammar and new categories were added to the domain spec to allow units to be

specified for dimensional attributes and to allow map backgrounds and graphics
icon generators to be associated with relations. Most recently, we have added

geographic information system queries like:

EX Draw a map of Texas showing interstate highways which pass through Dallas

where an operator like CRAPHICS-INTERSECTP is the theta-join predicate between

a CITY and a HIGHWAY relation over the city-polyline and highway-polyline
attributes, and the join predicate and related phrase (“which pass through”)
are added to the join-path category of the domain spec.

The third area we have examined has involved augmenting RTMS so that

information retrieval-like boolean queries on attributes can be specified as

part of a relational query THOM86]. Extending the NLMenu interface generator
to allow the user to ask mixed database and information retrieval queries
involved only specifying which fields were to be treated as information

retrieval fields so that the user could then ask queries like the following,
(where “?“ and “(w)” are DIALOC-like pattern designators for wild-card and

adjacency):
-

-

EX Find courses that are taught by professors whose rank is teaching
assistant and whose course description involves information(w)retrieval
or database? or data(w)base?

— 68 —

The extensions to the basic NLMenu interface grammars mentioned above

were domain-independent. Thus1 when new interfaces are created, they
immediately inherit the extended capabilities described. The ability to

create NLMenu interfaces easily opens a need for managing interfaces. To this

end, we have explored operations on interfaces including CREATE, MODIFY,
DESTROY, GRANT, REVOKE, arid COMBINE. Granting and revoking database

interfaces is interesting because the capability reflects the idea that an

application view usually consists of a set of entities and capabilities and

can be granted all at once instead of piecemeal as in SQL. Combining
interfaces that originally targetted on different database management systems
is interesting because the resulting NLMenu interface makes the problem of

querying the different databases transparent to the user.

4. Interface Design Considerations

An experienced NLMenu interface designer learns that there are some

interesting and non-obvious design decisions that affect the usability of

NLMenu interface designs ~THOM84a]. Only two are mentioned here. The “big
menu” problem is inherited from menus and occurs whenever too many menu items

populate a menu to allow a user to locate desired items or distinguish between

related items. Partial solutions to the problem include breaking menus apart

functionally, grouping items within a menu hierarchically, allowing menus to

scroll, providing help associated with each menu item, and allowing user

typein to search menus. The “weak bridge” problem is inherited from grammars

and occurs when a construction is introduced with a word or phrase which does

not provide enough context for the user to recognize it as the start of the

construction. The solutions here are to re-phrase such constructions where

possible or to train the user to recognize the weak bridge. Our experience
indicates that, while the “big menu” problem and problems of complicated
grammars may eventually limit NLMenu’s use for some applications, applications
as big as fourteen tables and seventy attributes can be accommodated in a

single interface Ster85] and that bigger interfaces can be partitioned into

smaller ones.

5. Conclusions

Menu—based natural language is a useful interface technology with several

advantages over conventional natural language interface technology. While we

have explored several aspects of the approach, several directions appear

before us, among them the tradeoff between cooperative response and query

optimization, human factors experiments into ease-of—use and

ease-of-interface-creation, and applicability of NLMenu to expert systems.

References

CROS82J Crosz, Barbara, Doug Appelt, Alex Archbold, Bob Moore, Cary Hendrix,
Jerry Hobbs, Paul Martin, Jane Robinson, Daniel Sagalowicz, and Paul Martin.

“TEAM: A Transportable Natural Language System”, Technical Note 263, SRI

International International, Menlo Park, April, 1982.

— 69 —

HARR83) Harris, Larry. “Artificial Intelligence Corporation”, In:

Sondheimer, Norman (ed), Tutorial on Natural Language Interfaces, Conference

on Applied Natural Language Processing, Santa Monica, 1983.

STER8SJ Stern, Rob, Bruce Anderson, and Craig Thompson, “A Menu-Based

Natural Language Interface to a Large Database”, NAECON: National Aerospace
and Electronics Conference, Dayton, Ohio, May 20-24, 1985.

TB&F83) Thompson, Bozena H and Fred B Thompson. “Introducing ASK, A Simple

Knowledgeable System”, Conference on Applied Natural Language Processing,
Santa Monica, 1983.

TENN8O) Tennant, Harry R. “Evaluation of Natural Language Processors”, Phd

Dissertation, Department of Computer Science, University of Illinois, Urbana,

Illinois, November, 1980.

TENN83a) Tennant, Harry R, Kenneth N Ross, Richard M Saenz, Craig W Thompson,
and James R Miller. “Menu-Based Natural Language Understanding”, Proceedings
of the 21st ACL, MIT, June, 1983.

TENN83b) Tennant, Harry R, Kenneth M Ross, and Craig W Thompson. “Usable

Natural Language Interfaces Through Menu-Based Natural Language

Understanding”, Proceedings of the Conference on Human Factors in Computing

Systems, Boston, Mass, December, 1983.

THOM83] Thompson, Craig W, Harry R Tennant, Kenneth N Ross, and Richard M

Saenz. “Building Usable Menu-Based Natural Language Interfaces to Databases”,

Proceedings of the 9th VLDB Conference, Florence, Italy, October, 1983.

THOM84a] Thompson, Craig. “Constraints on the Design of ‘Menu-Based Natural

Language’ Interfaces”, AI/CSL Technical Report ~ 84-03, March, 1984.

THOM84b] Thompson, Craig. “Beyond Retrieval: Updating a Database using
Menu-Based Natural Language Understanding”, Proceedings of the 1984 Conference

on Intelligent Systems and Machines, Oakland University, Rochester, MI, April

24-25, 1984.

THOM84cJ Thompson, Craig. “Recognizing Values in Queries and Commands in a

Natural Language Interface to Databases”. First Conference on Al

Applications, Denver, December 5-7, 1984.

THOM85a] Thompson, Craig, John Kolts, and Kenneth Ross. “A Toolkit for

Building Menu-Based Natural Language Interfaces”, 1985 ACM Annual Conference,

Denver, Colorado, October 14-16, 1985.

THOM85b] Thompson, Craig and Steve Martin. “Asking Spatial and Graphical

Queries Using a Menu-Based Natural Language Interface”, 1985 ACM Annual

Confer~ence, Denver, Colorado, Uctober l4~-l6, 1985.
-

THOM86] Thompson, Craig and Steve Martin. “Using Menu-Based Natural

Language to Query an Integrated Database Management and Information Retrieval

System”, submitted to: The Second Internatonal Conference on Data

Engineering, Los Angeles, Febuary 4-6, 1986.

— 70 —

CALL FOR PAPERS

International Conference on

DATABASE THEORY

Rome, September 8-10, 1986

The Conference is intended to provide a European forum for the

international research community working on theoretical issues related to

database systems. It will be held in downtown Rome, in the main building of

CNR (the Italian Research Council), and will be lointly organized by
Istituto dl Analisi del Sistemi ed Informatica (IASI-CNR), Consorzio per la

Ricerca e le Applicazioni in Informatica (CRAI) and Dipartimento di

Informatica e Sistemistica, Universita’ di Roma “La Sapienza’.

TOPICS

Major themes to be covered are (this is not meant to be an exclusive

list): relational theory, logic and databases, conceptual models, knowledge
representation and databases, deductive databases, theory of distributed

databases and concurrency control, analysis and design of data structures,
database interfaces, query processing.

PAPERS

Intended authors should submit six copies of a full draft paper before

March 15, 1986, to the Chairman of the Program Committee:

Glorgio Ausiello

Dipartimento di Iriformatica e Sistemistica

Universita’ di Roma “La Sapienza”
Via Eudossiana 18

00184 Roma Italy

Authors will be notified of the program committee decision on their papers

by June 1, 1986. Final versions will be due July 15, 1986. Proceedings will

be available at the Conference in the form of preprints, and will be

published in hardcover book a few months later.

PROGRAM COMMIrr~

S.Abiteboul (France); G.Auslello (Italy), chairman; F.Bancilhon (France,
USA); A.D’Atri (Italy); ~J.Lipskit (Poland, France); M.Moscarini (Italy);
J.Mylopoulos (Canada); J-M.Nlcolas (France, West Germany); J.Nievergelt
(Switzerland); C.H.Papadimitrlou (Greece, USA); J.Paredaens (Belgium);
D.Sacca’ (Italy); N.Spyratos (France); J.D.Ullman (USA); M.Y.Vardi (USA).

ORGANIZING COMMIrr~

P.Atzenl (IASI-CNR), chairman; G.Ausiello (Universita’ di Roma);
M.Moscarini (IASI-CNR); D.Sacca’ (CRAI).

STUDENT AkIARD

A 500$ prize for the best paper authored solely by students will be

awarded to commemorate our friend and colleague Witold Lipski (1949-1985),
who had accepted to be a member of the Program Committee. Those who wish to

be considered for the prize are invited to formally state their student

condition in a letter accompanying the paper.

— 71 —

PROGRAMME COMMITTEE

Chairman

Prof. Dines Bjerner.
Department of Computing Science.
Technicef University of Denmark, 343,
DK 2800 Lyngby, Denmark.

Tetes: 37704 ddc dk

Tetephone: + 452872622 or + 45-2-86t 566.

Past Chairman
Prof. Denro C. Toichritzis,
Institute of Computer Science,
Cretan Research Center,
P.O. Boa 527, Heraklio Crete. Greece.

IvIes: 262389 CCI OR.

Telephone: +30-8f-221t71 or 225976.

Theoretical Computer Science
Ptof. Vadim Kotom,
Computing Confer of the Siberian Drvrson
of I he USSR Academy ot Sciences.

Novosibirsh, 630090 U S.S.R.

Telephone: USSR (383) 2655652.

Programming Science and Methodology
Prof. Dr. Ugo Montanan,
Diparfimenfo di Informatica,
UnrmersitS di Proa, Corso Italia 40.
I-56t00 Puna, Italy
Teten: 50037r cnsce i

Telephone + 39-50-26362 01

+ 39-50-40864:

Sottware Engineering
Dr. Bálint DOmlIhi,
SZKI,
Institute for Co-ordination of

Computer Techniques,
1, Donati u. 35-45,
HrOfS Budapest. Hungary,
Teleu 22538t szkr li

Telephone. + 36-t-86b-632.

Mr. Horot HUnke,
Comminnion of the

Eutopean Communities,
Information Technologies and

Telecommunications Tash Force.
Rue de Ia Loi 200,
B-t049 Brunellen, Belgium.
Teten 2l877comeub

Telephone: + 32-2-235-7666.

Computer Engineering
Prof. Dr Ryoichi Mon.
Institute of Information

Sciences and Elect ronicu,
Toukuba University,
Ibarakiken 305. Japan.
Telen: 3652580 untuhu

Artiticiet Intetiigeece
Dr. Hernd Gallaire, Director,
European Computer-Industry Research

Centre GrnrbH, Arabellautruone t 7.

D-8000 Mbnchen bf,
Federal Republic of Germany.
Telen: 52169f0 ecrc d

Telephone: + 49899269Sf 00.

intormetion Systems
Prof. Dr. Antonio L. Furtudo,
Pontilicia Univeroidade CatOlica do

Rio de Janeiro,
Departamento dv Informal ica,
Rua Marqubu dv SSo Vicente 225,

ChP, 22453 Rio de Janniro, Braoil.

‘Teleo: /02113t04b

Telephone: + 55-2t-2744449

Distributed Systems
Prol. A. Danthine,
Syotèmeu yr Automat ique,
Inst d’électricitk Montetrorv B 28,
UnivernitO dv Liege au SarI Tilman,
8-4000 Liege, Belgium
Teleu: 4t797 uuuntg b

Telephone: + 32-4t-56269f.

Computer integrated Msnutecturtng
)CtM-CADtCAM)
Dr. J. Vlielotra,
A. T. 8 T. en Phillips Telecommunicatie,
P.O. Boo ff66, NL-r200 BD Hilneroum,
The Nethmrlandu,
Telen. 43403

Telephone: + 31-35-892880.

New iniormetics Appiicstione

Prot.Artthony.l.Wvsuerman.

Medical Information Science.
University of California, San Francioco,
San Francisco, Calitornia 94t43, U.S.A.

Telen: 1 64 967 mug sndo sIn ide

Telephone: + t -4 t 5-6662951.

tntonnettcs in a Deeeioping Wortd

Prot. R. Naraurmhan,
Tata Institute 01 Fundamental Research,
Homi Bhabha Road, Colaba,
Bombay. 400 005, India.

Tvleu: ft 3009 lifr in

Telephone: India (22) 2t9f ft.

Editor

Mr. Hann-Jdrgen Kugler.
Unineruity of Dublin, Trinity College,
Department 01 Computer Science,
Dublin 2, Ireland.

Teten: 25442 lcd vi

Telephone: + 353-1-772941.

Organining Committee Liaison

Prof. John 0. Byrne.
University of Dublin, Trinity College.
Department of Computer Science,
Dublin 2. Ireland.
Telee: 25442 lcd vi

Telephone: + 353-1-772941.

10th
WORLD
COMPUTER
annnnrno

IFIP CONGRESS ‘86

Dublin Ireland 1-5 September 1986 t~UflUflCOO

Congress SeCretariat Telephone: 01-688244.
IFIP Congress 86 Telex: 31098

44 Northumberland Road Telgrams:
Dublin, Ireland. Congrex, Dublin

Please reply to:

You should plan to subrrit a paper to the IFIP World

Computer Conervms’86 — Septenrber 1—5, 1906 in Dublin.

The nrotto of the Congremu, coined ba the program

conmerittee chairnran is

INFORfIATICS, A NEW AWARENESS

Awareness has to do with effective transfer of ideas

anion 9

— edp professionals
— application stiuteors designers
— computation scientists and engineers
— pot rca ruuhers and planners

Jofocraatioo Susteas (which includes data bases) Is one

of the 10 areas of the Congress, having been described

an follows:

“This area is concerned with the creation, rise and

saintenancc of infornation systens in general.

Organisations show a growing need for information to

per forur all k i nds of t ash u, rang i ng from rout inc

execution to decision mahing. Certain applications

require specific solutions. This is a source of

motivation for research in this area, and for

interaction with other areas. Examples include

distributed, personal, engineering, temporal and

inferential dat,, bases, as welt as office automation

and decision support systems.

ttenrs for presentation include:

— Analysis and design of information systems.
— Theories and models for information, data and

funct ions.

— Educatidn and training in information systems.
— Data base technology: hardware and software.

— Data administration.

There has been considerable technical progress in the

area, yet the interaction between research and practice
is far from sat isfactora. Advanced techniques and

methods arc not w i delu used or even known In mnny

organisat ions throuuhornt thu wortd. Research workers

often ignore what are the rca] problems faced by

practitioners.

Accordmnala, new results wilt he presented whenever
possrbte in the context of the problems they aim to
solve and writ be compared with other re]ated efforts.
Tutorials and dimcussions wilt give ample opportunity
for crrticai evaluation of the state of the art and
identification of useful lines of future research.”

Several hr alrtm rcputcri remear clrer a have airs-ada aareed
to coltaborate, presenting papers and participating in

panels.

The deadline for submiorjon is November 1st, 1985. If

you plan to submit a paper, please write to me at once

rndrcatrng rts tentative title. I wilt send you a copy
of tire call for papers.

I hope to see you in Dublin 1

A. U. Furtado

pflCes0~~

lal(e adVaflt~eo
t1~eSe

Ottered bV ttie

Computer
9ocietV

p~aCt%6e techntcat
~e

sIUfl~ ~ t~e~d ~n

~ntbew

1965 62:0 pp.
18.00*

~ pflG~
520.0°

1985~
Conte~8~~0e on

COU~P~OV

6overinQ
att aspects

0ces~°~

October
~

New

0ctob ,~240*
564.60 .~ 536.00
~72.

SO~t

~n 06-

~ofl5•
based

1985 C• :0OP~j15*
- prICO
~ pflC

postUm ofl
FoundOt~0~S

1985tEEE portlaI~d.
s cofl~”~
~er sctet1c~

451% lnterfl3ti0l~
Conterefice

On EfltiW

ma

tapraQmat~s
~ ~tedge~~~n

,t-teld

~

522.0°

i
Aflfl~ 5

poStUfl’ on
comPut~

in
Baltm0~

fl

Care
~e held d to be

sub~ecS areas 9essot~alS
healttt C

5

priCe
539.60*

price
~44.00

1985

m Was~
cjevelOP

and ma”

needs.
1985 6•300PP••

price
519.80*

er price
$22.00

i985
elpt~ta’~ ~

UCtO~
components.

problems
ot testtflQ

a devtces and

~. 900 pP-.

.pnceS~o
at

ce on

second Cont~°”
n
DeCet~~

me

proceedmn9S florida
tern5 and tt will

ised S~1Srrtpact ot emerg
and trends tfl

avat15~e

theme tutUre t

eXPt 1985. 3375*
in9~

er price
537.50

~

•
p~ceedit~

t%rS~ Inte ~b0~~t
Conjere~

m OeCe~

mg ~stems
Systems ~~nal tOPIC5-

.600 Pp.,

529.70*
.533.00

COMPU~R SOC%E~
8’
IEEE

.

• Tutorial: Modern Design and Analysis of Discrete-

Event Computer Simulations

by Edward J. Dudewicz and Zaven A. Karian

The objective of this tutorial is to provide a working under

standing of the design, implementation, and analysis of

computer simulations. The emphasis is on methods for appli
cation rather than on theory, and the goal is for the reader

to be able to properly apply and interpret the design and

analysis aspects covered in his/her own simulation studies

of systems.
CONTENTS: Introduction; Random Number Generation and Test

ing of Random Number Generators; Sampling from Univariate and

Multivariate Distributions; Efficient Design Techniques for the

Choice and Reduction of Simulation Run Time; Fitting Distributions

to Simulation Input/Output Data; Computer Sorting Methods and

Their Use in Simulation; Applications of Simulations; Appendix—
Review of Statistical Concepts and Modeling.
C0597 (ISBN 0-8186-0597-9): August 1985, c. 500 pp.,

PRE-PUBLICATION list price $40.50/member price $32.40*
Est. post publication list price $45.00/member price $36.00

• Tutorial: Digital Image Processing and Analysis:
Volume 2: Digital Image Analysis
by Rama Chellappa and Alexander A. Sawchuk

While Volume 1 (of this two volume set) deals with process

ing of images, Volume 2 deals with the analysis of images.
CONTENTS: Feature Extraction and Boundary Analysis; Region
Analysis; Image Sequence Analysis; Multiresolution Image Analysis.

C0666 (ISBN 0-8186-0666-5): October 1985, c. 780 pp.,

PRE-PUBLICATION list price $59.40/member price $32.95*
Est. post publication list price $66.00/member price $36.00

NOW AVAILABLE!

Tutorial: Digital Image Processing and Analysis:
Volume 1: Digital Image Processing
publication list price $66.00/member price $36.00

Order the 2 volume set and receive a substantial

25% discount!

PRE-PUBLICATION list price $99.00/member price $54.00*

Est. post publication list price $1 32.00/member price $72.00

• Tutorial: Robotics (2nd Edition)

by C.S. George Lee, R.C. Gonzalez, and K.S. Fu

The latest edition of this popular tutorial giv~s an even

better and more up to date summarization of the fundamental

concepts and theories of robotics. Like the first edition, it

includes concepts and theories at a mathematical level that

requires a good background in vectors, matrices, kinematics,

and dynamics of rigid bodies.

CONTENTS: Introduction; Robot Arm Kinematics; Robot Arm

Dynamics; Planning of Manipulator Trajectories; Servo Control for

Manipulators; Force Sensing and Control; Robot Vision System;

Robot Programming Languages; Machine Intelligence and Robot

Planning.
CO658 (ISBN 0-8186-0658-4): September 1985, c. 630 pp.,

PRE-PUBLICATION list price $40.95/member price $26.95*

Est. post publication list price $45.00/member price $29.00

offered by the

IEEE Computer Society

• Tutorial: Human Factors in Software Development
(2nd Edition)
by Bill Curtis

In this latest edition, many new articles have been added,
which will provide greater depth and appreciation for the

impact of cognitive science on software engineering. This

collection includes articles drawn from the following areas

of psychological research on programming: cognitive ergo
nomics, cognitive psychology, and psycholinguistics. The

areas covered range from language design, to team organi
zation, to programmer selection.

CONTENTS: Introduction; Cognitive Models of Programming

Knowledge; Learning to Program; Problem Solving and Design;

Specification Formats; Programming Language Characteristics;

Fault Diagnosis; Methodology; Epilogue: Future Directions in

Programming.

C0577 (ISBN 0-8186-0577-4): October 1985, c. 780 pp.,

PRE-PUBLICATION list price $43.95/member price $28.95*

Est. post publication list price $48.00/member price $32.00

• Tutorial: VLSI Testing and Validation Techniques
by Hassan Reghbati
This tutorial explores new computer-aided design and test

tools that are continually being developed to cope with the

ever increasing problems of VLSI complexity.
CONTENTS: An Introduction to Testing and VLSI Design; VLSI

Design Validation; Failures, Fault Models, and Testing; Testable

Design and Built-in Self-Test.

CQ668 (ISBN 0-8186-0668-1): August 1985, c. 450 pp.,

PRE-PUBLICATION list price $35.1 0/member price $26.1 0*

Est. post publication list price $39.00/member price $29.00

• Tutorial: Integrated Services Digital Networks

by William Stallings
The objective of this tutorial text is to provide a compre

hensive introduction to the ISDN, dictated by concerns of

breadth more than depth. The key concepts explored are:

underlying technology, architecture, standards, and services.

CONTENTS: Overview; Standards and Regulations; Transmission

Structure; User Access; Integrated Digital Network; Glossary; List

of Acronyms; Annotated Bibliography.
CQ625 (ISBN 0-8186-0625-8): August 1985, c. 400 pp.,

PRE-PUBLICATION list price $32.40/member price $24.30*
Est. post publication list price $36.00/member price $27.00

Orders for books to be published will be given priority ful

fillment as soon as the title becomes available.

o 0
°

*NOTE: Take advantage of this spe?~ial tutorial pre-publica
tion price.
0 0

IEEE COMPUTER SOCIETY

+ THE INSTITUTE OF ELECTRICAL

~
AND ELECTRONICS ENGINEERS, INC.

IEEE

Announcing the first
DAT* ØASE MA~AGEMES~T

IN THE i~80s

IEEE Computer Society series

DATABASE SYSTEMS

~ These five books contain essential

information on Database Systems,
Order this unique package now, and for

a limited time only, receive

a savings of over 30%.

The reader of this tutorial can expect to learn what reliability is, what

reliability techniques are used in the different areas of distributed system

software, and how reliability techniques can be better applied across all

areas of distributed systems software especially in the distributed operat

ing system area.

CONTENTS: Overview of Reliability (hardware and software): Overview of Gen

eral Distributed Computer Systems Research; The Communication Subnet; Logi
cal IPC and Distributed Programming Languages; Distributed Control; Structuring
Distributed Systems for Reliability; Summary Collection of Software Reliability
Techniques; Database Areas; Case Studies of Reliable Systems.

ISBN 0-8186-0570-7: luly 1985, 400 pp., list price $36.00

Database Engineering, Vo’ume 3

This book binds together the four 1984 issues of the quarterly newsletter

of the Technical Committee on Database Engineering. The issues feature

such topics as: user interfaces, workstations and special purpose hard

ware, CAD/CAM systems, optical disks, spatial data management,

comprehensive design environments now under development, early
prototyping, and modeling transactions.

CONTENTS: A summarization of working group discussions at the second In

ternational Workshop on Statistical Databases; Engineering Data Management;
Multimedia Data Management; Database Design Aids.

ISBN 0-8186-0672-X: February 1985, 262 pp., list price $32.00

Distributed Database Management
by l.A. Larson and S. Rahimi

This tutorial provides a thorough written description of the basic compo

nents of distributed database management systems, describes how each

of these component works, and examines how these components relate

to each other.

CONTENTS: Introduction; Transforming Database Commands; Semantic Integ
rity Constraints; Decomposing Requests; Concurrency and Replication Control;
Distributed Execution Monitor; Communications Subsystem; Design of Distrib

uted DBMS5; Case Studies; Glossary.

ISBN 0-8186-0575-8: January 1985, 678 pp.. list price $36.00

IEEE Computer Society Books—

putting today’s computer professionals
in touch with tomorrow’s technologies.

Recent Advances in Distributed Data Base Management
by C. Mohan

By reading this text completely, the reader will be able to acquire a good
understanding of the issues involved in DDBM. This tutorial assumes prior

exposure to centralized data base management concepts and therefore is

intended for systems designers and implementors, managers, data base

administrators, students, researchers, and other technical personnel.
CONTENTS: Introduction; Distributed Data Base Systems Overview; Distrib

uted Query Processing; Distributed Transaction Management; Distributed Al

gorithm Analysis; Annotated Bibliography.

ISBN 0-8186-0571-5: December 1984, 350 pp., list price $36.00

Data Base Management in the 1980’s

by James A. Larson and Harvey A. Freeman

This tutorial addresses the kinds of data base management systems (DBMS)
that will be available through this decade. Interfaces available to various

classes of users are described, including self-contained query languages
and graphical displays. Techniques available to data base administrators

to design both logical and practical DBMS architectures are reviewed, as

are data base computers and other hardware specifically designed to ac

celerate database management functions.

CONTENTS: Introduction; Tools for Data Base Access; Coupling A Program
ming Language to a Data Base; Data Base Design; Data Base Management
System Design; Hardware Aids.

ISBN 0-8186-0369-0: September 1981, 472 pp., list price $27.00

TO ORDER: Return this form with remittance to:

IEEE Computer Society Order Department
P.O. Box 80452

Worldway Postal Center

Los Angeles, CA 90080 USA

Re~iabIe Distributed System Software

by John A. Stankovic

— —

I
II

I

I

I

I

I

I

I

I

O YES, please send set(s) of order #DDS14, the Database

Series at this limited time offer of $117.00 ($50.00 off the list price)
plus $10.00 shipping charge.
California residents please add 6% sales tax.

Foreign orders must be prepaid.

Sorry, no substitutes or returns.

O check enclosed 0 V15a 0 MasterCard 0 American

Express

rare1 nn flyn rlatn

signature

I

I

city State Zip

country I
phone/telex no. I
purchase order no. I

Ca

I
TIlE INSTTTIJTE OF ELECTRICAL I~IEEE COMPUTER SOCIETY AND ELECT~CS ENOSISERS ~IC.

IEEE J
— —~~

PUBLICATIONS ORDER FORM

Return with remittance to:

IEEE Computer Society Order Department
P.O. Box 80452

Woridway Postal Center
Los Angeles, CA 90080 U.S.A.

DIscounts Orders and Shipping Policies

Member discounts apply on the FIRST COPY OF A MULTIPLE.
COPY ORDER (for the same titlel ONLY! Additional copies are
sold at list price.

Priority shipping in U.S. or Canada. ADD $5.00 PER BOOK
ORDERED. Airmail service to Mexico and Foreign countries
ADD $16.00 PER BOOK ORDERED.

Requests for refunds/returns honored for 60 days from date of
shipment (90 days for overseasl.

ALL PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE.

ALL BOOKS SUBJECT TO AVAILABILITY ON DATE OF
PAYMENT.

ALL FOREIGN/OVERSEAS ORDERS MUST BE PREPAtD.

Minimum credit card charges (excluding postage and ftandlingl,
$15.00.

Service charge for checks returned or expired credit cards,
$10.00.

PAYMENTS MUST BE MADE IN U.S. FUNDS ONLY,
DRAWN ON A U.S. BANK. UNESCO coupons. International
money Orders, travelers checks are accepted. PLEASE DO NOT
SEND CASH.

PLEASE SHIP TO:

liii 111111 I I I III
NAME

H HI liii I I I 1.

HI I IIIIIIiIi II
AFFILIATION

II I I I 11111 I II P
(company or attention ofl

II1IIIIIIIIIIIII
ADDRESS (Line 1)

II Ilililli III P

II1H Ill I I 1111111111111111111 UADDRESS 21

HIll IlillIl I HI H 1II(IH Hi 1CITY/STATE/ZIP.CODE

1111111 I 1111111 I I
COUNTRY

I_ I I 111111 Irequired for discountl

IEEE/COMPUTER

H 1111111111 H

LI I I I I I I I 1
PHONE,TELEX NUMBER

11

SOCIETY MEMBER NUMBER

11111111111111 III
PURCHASE

I I

OTY

ORDER

O~ER

NUMBER

TITLE/DESCRIPTION

AUTHORIZED

~

SIGNATURE

AMOUNT

ORDER HANDLING CHARGES (based on the $ value
of your order—not including sates tax and postage)

For orders totaling: Add:

$ 1.00 to $ 10.00 $ 3.00 handling charge
$ 10.01 to $ 25.00 $ 4.00 handling charge
$ 25.01 to $ 50.00 $ 5.00 handling charge
$ 50.01 to $100.00 $ 7.00 handling charge
$100.01 to $200.00 $10.00 handling charge

over $200.00 $15.00 handling charge

L~ ~

If your selection is no longer SUB TOTAL $
______________in print, will ‘jOU accept CALIFORNIA RESIDENTS ADD 6% SALES TAX $

microfiche at the same price’ HANDLING CHARGE (BASED ON SUB-TOTALI S
____________0 Yes 0 No OPTIONAL PRIORITY SHIPPING CHARGE $
—

TOTAL $
—METHOD OF PAYMENT CHECK ONE!

0 CHECK ENCL. 0 VISA 0 MASTERCARD 0 AMERICAN EXPRESS

Eli I I I I I I I I II I I H I I I Fl
CHARGE CARD NUMBER EXPIRATION

DATE

SIGNATURE
C

IEEE COMPUTER SOCIETY

Administrative Office

1730 Massachusetts Ave., N.W.

Washington, D.C. 20036—1903

U.S.A.

Non-profit

Organization
U.S. Postage

Paid

Silver Spring, MD
Permit No. 1398

	40979_DataEngineering_Sept1985_Vol 8_No3.pdf

