
MARCH 1985 VOL. 8 NO. 1

a quarterly bulletin

of the IEEE computer society
technical committee

Database

Engineering
Contents

Letter from the Editor 1

Benchmarking Database Systems: Past Efforts and Future Directions 2

D.J. DeWitt

Tips on Benchmarking Data Base Systems 10

M. Stonebraker

Variations on a Benchmark 19

P. Hawthorn

Benchmarking Database Systems in Mu’tiple Backend Configurations 29

S. Demurjian and D.K. Hsiao

Transaction Acceleration 40
T. Chou and J. Gray

Transaction Oriented Performance Analysis of Database Machines 53
M. Eich

Special Issue on DBMS Performance



Chairperson, Technical Committee

on Database Engineering

Prof. Gio Wiederhold

Medicine and Computer Science

Stanford University
Stanford, CA 94305

(415) 497-0685
ARPANET: Wiederhold@ SRI-Al

Editor-in-Chief,
Database Engineering

Dr. David Reiner

Computer Corporation of America

Four Cambridge Center

Cambridge, MA 02142

(617) 492-8860
ARPANET: Reiner@CCA

UUCP: decvax!cca!reiner

Database Engineering Bulletin is a quarterly publication of

the IEEE Computer Society Technical Committee on Database

Engineering. Its scope of interest includes: data structures

and models, access strategies, access control techniques,
database architecture, database machines, intelligent front

ends, mass storage for very large databases, distributed

database systems and techniques, database software design
and implementation, database utilities, database security
and related areas.

Contribution to the Bulletin is hereby solicited. News items,

letters, technical papers, book reviews, meeting previews,
summaries, case studies, etc., should be sent to the Editor.

All letters to the Editor will be considered for publication
unless accompanied by a request to the contrary. Technical

papers are unretereed.

Opinior~s expressed in contributions are those of the indi

vidual author rather than the official position of the TC on

Database Engineering, the IEEE Computer Society, or orga

nizations with which the author may be affiliated.

Associate Editors,
Database Engineering

Dr. Haran Boral

Microelectronics and Computer
Technology Corporation (MCC)

9430 Research Blvd.

Austin, TX 78759

(512) 834-3469

Prof. Fred Lochovsky
Department of Computer Science

University of Toronto

Toronto, Ontario

Canada M5S1A1

(416) 978-7441

Dr. C. Mohan

IBM Research Laboratory
K55-281

5600 Cottle Road

San Jose, CA 95193

(408) 256-6251

Prof. Yannis Vassiliou

Graduate School of

Business Administration

New York University
90 Trinity Place

New York, NY

(212) 598-7536

Memoership in the Database Engineering Technical Com

mittee is open to individuals who demonstrate willingness to

actively participate in the various activities of the TC. A

member of the IEEE Computer Society may join the IC as a

full member. A non-member of the Computer Society may
join as a participating member, with approval from at least

one officer of the TC. Both full members and participating
members of the TC are entitled to receive the quarterly
bulletin of the TC free of charge, until further notice.



Letter from the Editor

The proliferation of Relational Database Management
Systems offerings in the marketplace in the past few years
has forced users of such systems to seek for means to

evaluate their performance. For obvious reasons, and

despite its many shortcomings, the technique of benchmark—

ing has become the basis for all such evaluations. A

number of such benchmarks have been developed and others

are most likely under development (for examples see refer

ences in the papers).

For this issue of DBE we asked several of the “known”

researchers in the area of performance evaluation of DBMS5

to submit papers that summarize their present work in the

area. The result is a collection of six papers. Roughly
speaking, three general themes are addressed in the

papers: a reflection on past work leading to a list of

“lessons learned” (the papers by Dewitt and Stonebraker),
further use of the existing benchmarks to examine the per
formance of systems (papers by Hawthorn and Demurjian &

Hsiao) and, discussions of new metrics and techniques for

evaluating the performance of DBMSs (papers by DeWitt,
Chou & Gray, and Eich).

Several other papers were submitted to this issue but

were not included because they dealt with the evaluation

of the performance of some specific component of a DBMS

(such as scheduler in a distributed system or the con

currency control mechanism). I was hoping that we’d be

able to have a paper detailing the results of the “Great

French Database Machine Competition” (which pits five or

six database machines against one another using the

Wisconsin benchmark (see Dewitt’s paper in this issue)),
but unfortunately the results are still not available due

to the rescheduling of the “contest” date.

I wish to thank the contributors to this issue for

their excellent papers and for keeping to themselves any

gripes about the unrealistic deadlines I set.

Haran Boral

February 1985

Upcoming Issues

6/85 Concurrency Control and Recovery in DBMS’s (Mohan)
9/85 Natural Languages and Databases (Vassiliou)

12/85 Object Oriented Systems and DBMS’s (Lochovsky)

—1—



Benchmarking Database Systems:
Past Efforts and Future Directions

David J. DeWitt

Computer Sciences Department

University of Wisconsin

1. Introduction

During the past two years we have developed a strategy for benchmarking database management sys

tems and achines81TT83, BORA84]. At the present time our set of single user benchmarks BJTF83]
has been used by over 30 vendors and customers of relational products. For better or worse, it has emerged
as the standard set of single user benchmarks. To date, this benchmark has been applied to Unify, Oracle.

INGRES, SOLIDS. RDB. to the 1DM 500 and DIRECT database machines. and a number of other unan

nounced software and hardware products.

In Section 2. we review our present single user and multiuser benchmarking methodology. Section 3

contains a number of open research areas that we are currently exploring. Our conclusions are presented in

Section 4.

Those of you who were hoping for a new set of numbers will he disappointed with this paper. While

we had çhoped to do exactly that, we have not yet succeeded in getting a copy of. or access to. each of the key

products. While certain vendors have been quite helpful, others have remained reluctant to cooperate. Evi

dently. bad numbers translate into poor profits. Based on the number of requests we receive each month for

updated numbers, there is clearly a market for this information. Perhaps what is needed is an EPA Testing
Lab or Consumers Union for benchmark numbers.

Overview of the Wisconsin Benchmark Methodology

In this section. we present an overview of the methodology that we have developed for benchmarking
rilational database systems and machines. First we describe the synthetic database thai is used as the basis of

our all tests. Second. our strategy for constructing a single user benchmark is presented. Finally, we

describe our approach for multiuser tests of a database system. For more details the reader is encouraged to

examine BITT83] and BORA84].

2.1. Synthetic Database Design

A key component of our benchmarkiiig methodology is a synthetic database. Such databases BITT83]
and BODG83]) can be easily generated by programs and have a number of advantages over “real” databases.

First, a synthetic database makes ii quite simple to specify a wide range of retrieval and/or update queries and

to control the sizes of the relations resulting from these queries. With a “real” database, getting a selection

query that retrieves precisely 10% or 50% of the tupies in a relation is difficult and sometimes impossible.
Furthermore, specifying such a query requires one to either know a good deal about the semantics of the

data in the database base or execute a bunch of trial queries. A second advantage of a synthetic database is

that the distribution of attribute values is under the control of the program generating the database. With

“real” data, one has to deal with very large amounts of data before ii can be safely assumed that the data

values are randomly distributed, in addition, while we have, to date. only experimented with uniform distri

butions of attribute values, experimenting with non-uniform distributions would be straightforward.

The benchmark database is designed so that a naive user can quickly understand the structure of the

relations and the distribution of each attribute value. The attributes of each relation have distributions of

values that can be used for partitioning aggregates, controlling selectivity factors in selections and joins, and

varying the number of duplicate tuples created by a projection. It is also straightforward to build an index

(primary or secondary) on some of the attributes, and to reorganize a relation so that it is clustered with

respect to an index.

—2—



There are four “basic” relations in the database. We refer to them as “thoustup”, “twothoustup”,

“fivethoustup”. and “tenthoustup” as they contain, respectively, contain 1000, 2000, 5000, and 10000

tuples. A fragment of the thoustup relation is shown in Figure 1. All the tuples are 182 bytes long. Thus,

the four relations occupy approximately 4 megabytes of disk storage. However, in order to build queries that

operate on more than one operand relation, we often generate two or more relations of the same size. The

attributes are either integer numbers (between 0 and 9999), or character strings (of length 52 characters).

The first attribute (“uniquel “) is always an integer number that assumes unique values throughout the rela

tion. We have made the simplest possible choice for the values of “unique 1”. For example, for the thoustup

relation, uniquel assumes the values 0, 1.
...

999. For the relations with 10,000 tuples, the values of

“uniquel” are 0,1 9999. The second attribute “unique2” has the same range of values as “unique]
Thus both “unique]” and “unique2” are key attributes. However, while we have used a random number

generator to scramble the values of “unique]” and “unique2”. the attribute “unique2” is often used as a Sort

key. When relations are sorted. they are sorted with respect to this attribute. When we need to build a

clustered index, again it is an index on “unique2”.

A Fragment of the Thoustup Relation

(some attributes have also been omitted)

uniguel unigue2 two ten hundred thousand

378 0 1 3 13 615

816 1 0 4 4 695

673 2 0 6 26 962

910 3 0 2 52 313

180 4 0 0 20 74

879 5 I 9 29 447

557 6 1 7 47 847

916 7 0 4 54 249

73 8 0 6 26 455

101 9 0 2 62 657

Figure 1

As an example of how this database can he used. we ma~ execute the following INGRES query to

observe the effect of a primary index on a selection that retrieves 10% of the twothoustup relation:

range of i is twothoustup
retrieve (tall) where t.unique2 < 200

After the “unique]
‘ and “unique2” attributes come a set of integer-valued attributes that assume non-unique

values. -The main purpose of these attributes is to provide a systematic way of modeling a wide range of

selectivity factors. Each attribute is named after the range of values the attribute assumes. That is, the

“two”, “ten”. “twenty’, “hundred” “tenthous” attributes assume, respectively, values in the ranges

(0.1). (0.1 9). (0.1 19). (0,1 99) (0,1 9999). For instance, each relation has a “hun

dred” attribute which has a uniform distributiOn of the values 0 through 99. ~epending on the number of

tuples in a relation, the attribute can be used to control the percentage of tuples that will be duplicates in a

projection or the percentage of tuples that will be selected in a selection or join query. For example, in the

twothoustup relation, the “hundred” attribute can be used for projecting into a single attribute relation where

95% of the tuples are eliminated as duplicates (since only 100 values are distinct among the 2000 attribute

values). The INGRES statement for this query would be:

range of t is twothoustup
retrieve (t.hundred)

The same “hundred” attribute can be used for creating 100 partitions in aggregate function queries. For

—3—



example. we may query for the minimum of an attribute that assumes values randomly distributed between 0

and 4999 (“fivethous”), with the relation partitioned into 100 partitions:

range of t is twothoustup
retrieve (minvalue = min(t.fivethous by t.hundred))

2.2. Single User Methodology

Once a synthetic database has been constructed and loaded, the next step is to run a set of queries
which measure the cost of executing each of the standard relational database operations. Our set of queries
includes the following tests:

(1) Selection queries with different selectivity factors.

(2) Projection with different percentages of duplicate tuples.

(3) Queries involving single and multiple joins

(4) Simple aggregates and aggregate functions.

(5) Single tuple updates: append. delete. modif~.

Three variations of each query are generaily run: first, without any applicable index, second. with a primary

(clustered) index onthe appropriate attribute, and, finally, with a secondary (non-clustered) index.

Some partial results from the single user tests of the 1DM 500 database machine (with a database

accelerator) are shown in Table 1. It should be clear from these numbers that our set of single user bench

marks is. itself, capable of generating a wide range of loads on a database system.

We consider conducting single user benchmarks to he a crucial first step in an~’ benchmarking effort.

First. in a number of cases the single user benchmarks have uncovered various performance anomalies. If a

particular system does not provide satisfactory performance for a type of query e.g. ad-hoc joins on large
relations) which constitutes a high percentage of the queries to he executed h~ the target application, there is

no point in performing multiuser benchmarks on such a system. Second. single user benchmarks provide
information on the resources required by different queries. As will be described below, we use these results

in developing a multi-user benchmark for a particular system.

One might have noticed that. ~or the most part. our single user methodology evaluates the performance
of each operator individuall~. Only in the case of join queries do we consider more than one operator at a

time. There are a couple of good reasons for doing this. First, we can isolate the cost of each operator. If

instead we considered onh complex queries (e.g. queries with both joins and selections), it becomes difficult,
if not impossible. to understand the results. The other moti~’ation for considering each operation in isolation

is use the results to predict the performance of a system for a particular application by weighting the response

time of e~ich operator according to its frequency of use in the target application. If one just tested complex

queries, such an extrapolation would he impossible.-

This is not to say that testing complex. single user queries is not important. In conducting benchmark

tests it is quite important to insure that the query optimizer works properly. For example. specifying the join
operations before the selection operations in a query enables one to test whether the query optimizer has any

intelligence at all. We found thai several of the systems we tested were not even smart enough to reorder the

operations in a query to do selections first.

2.3. Multiuser Methodology

Three key factors affect the performance of a database system in a multiuser environment: the mul

tiprogramming level, the mix of queries running concurrently. and the degree to which these queries access

the same portion of the database. This last factor, which we term “degree of data sharing” can have two dif

ferent effects on performance. If all the concurrently executing queries are retrieval queries, then a high-
degree of data sharing should increase throughput due to buffer pool hits. On the other hand, a high degree
of data sharing will result in a reduction of throughput when updating transactions are run concurrently with

retrieval transactions (as the result of conflicts for access to shared data pages).

—4—



Table 1

Query Query Response Time CPU Usage # of Disk

(seconds) (seconds) Operations

1 Select I tuple from 10.000 0.7 0.18 2-3

using a clustered index

2 Select 100 tuples from 10.000 1.5 0.56 1]

using a clustered index

3 Select 100 tuples from 10.000 3.3 0.90 91

using a non-clustered index

.4 Select 1000 tuples from 10.000 8.7 5.90 104

using a clustered index

5 Select 1000 tuples from 10.000 23.7 8.67 696

using a non-clustered index

6 Mm Scalar aggregate operation 21 .2 9.83 1.011

on 10.000 tuple relation

7 Mm Aggregate function on 10.000 38.2 35.62 1 .008

tuple relation (100 partitions)

8 Join 10.000 tuples with 1.000 27.6 18.96 206

tuples using a clustered index

on ioin attribute of 10.000

tuple relation

9 Select 1000 tuples from 10.000 23.4 18.88 207

using a clustered index followed

b~ a join with a 10,000 tuple
relation using a clustered index

10 Select 1 .000 tuples from 10,000 34.8 107.21 306

Select 1 .000 tuples from 10,000

Join two 1 .000 tuple relations to

form a I ,000 tuple relation which

is then joined with another 1 .000

tuple relation
-

The hardest part of developing a methodology for multiuser benchmarks is devising a small set of

representative queries to test. We found by partitioning the consumption of CPU and I/O resources into

‘low” and “high” levels, that we were able to reduce the number of queries needed to test a system to four

basic query types:

—5—



Type I - low CPU utilization, low disk utilization

Type II - low CPU utilization, high disk utilization

Type III - high CPU utilization, low disk utilization

Type IV - high CPU utilization, high disk utilization

For the Briiton-Lee database machine, we selected queries 1, 3, 8. 7 from Table I as being representa

tive of Types I. II. III. and IV respectively. In BORA84], we show that ihese four query types are sufficient

to achieve a throughput difference of three orders of magnitude. Figure 2 provides an illustration of how data

sharing and multiprogramming level affect system throughput for Query type II.

Q
U

E

R

F

S

S

E

C

0

N

D

.6

1.4

12

1.0

06

0.4

02

0.0

3. Future Research Directions

12345678910111213141516

MULTIPROGRAMMING LEVEL

Figure 2

In this section we outline what we think are some important areas to explore in developing a more com

plete methodology for benchmarking database systems. We have divided this list into two categories: those

that deal with single user tests and those dealing with multiuser issues.

3.1. Single User Research issues

One pressing issue to explore is to examine under what conditions (if any) can results from single user

benchmarks be extrapolated to predict the performance of more complex queries associated with a particular
application. The first step in answering this question would be to take application specific queries and

transform them into “equivalent” queries on the synthetic database. After being run, one would look to see

whether one could have predicted the execution time by combining (in some way) the execution times of the

100% Data Shar~ntz

,

50% Data Sharint~

0% Data Sharint~

—6—



component operations. Another approach to looking at this problem would be to compare the performance of

the “real” application queries on the “real” database with the results obtained by combining numbers from

synthetic tests on the “real” database.

A second, unexplored area is the impact of non-uniform distributions of attribute values. That is, if

you are retrieving 10% of the tuples in a relation does it make any difference whether the attribute values of

those tuples are uniformly distributed or not? It seems fairly obvious that if no indices are involved then it

should not make any difference. Differences in performance may, however, occur if an index is being used.

Our gut feeling is that there would not be any difference if a self-balancing index mechanism were used1

(e.g. a B-tree) but that there might he a difference if a poorly organized ISAM structure were being used.

One would obviously want to examine the impact on the other relational operations.

A third single user project would be to examine the effect of tuple size on performance. To date, all of

our tests have used 182 byte tuples. in FBODG83]. a number of tests using varying luple sizes were con

ducted on the 1DM 500. As one might expect. these results indicate that when one keeps the number of

tuples produced by a query constant and increases the tuple width, the response time increases in pretty much

a linear fashion. The degree of the increase should depend on the extent to which the system is I/O bound.

If I/O can always he overlapped with the CPU. then the degree of the increase should be proportional to the

cost (in CPU time) of initiating an 1/0 operation relative to the cost (in CPU time) of processing the page.

While the increase in response time in a single user mode might he relativel~ small, throughput in a mul

tiuser environment would always he more directly affected. A interesting variation would he to keep the

volume of data accessed from disk fixed, while varying the selectivity factor and the tuple size.

Another single user project is to further refine the ability of the benchmark to isolate the “faulty” coni

ponents of a database system. For example. when testing SQL/DS on a 4341. we once saw a particular

query run in a couple of minutes. After we did some vendor-suggested physical database reorganization (ie.

how relations and their indices were laid Out Ofl disk). the same query took 9 hours. Had we never seen the

2 minute time. we would have tended to suspect either a hug or a poor join algorithm. As it turned out, the

database reorganization caused the query optimizer to change its mind about what join algorithm to use.

What seems to be needed is a benchmarking methodology that can check out the components of the system

independently of one another. This “isolation” strategy would make it possible to evaluate and test the com

ponents individually.

3.2. Multiuser Experiments

A number of challenging multiuser research projects are also possible. The first is to simplify the

present multiuser methodology. The results published in IBORA84I required well over 100 hours of stand

alone time on both an 1DM 500 and a host processor. While the resulis obtained are interesting, it is simply
not clear that all four query types are needed to stress a database system adequately. Since the principal goal
of the multiuser benchmarks is to explore the behavior of a system under load, it might instead be sufficient

to run a very large number of simple queries simultaneously. This is the approach suggested in ANON85].
While pushing both CPU and I/O utilization levels to 100% is the goal of the multiuser tests, there may be

cases when pushing each one as separately as possible to 100% yields more information about the behavior of

the system. One potential drawback that we see with this approach is that by using simple debit/credit queries
as the basis of such a benchmark. one may miss testing the ability of the buffer manager to properly handle

complicated access patterns.

An extension to this effort would be to develop a~~portable multiuser benchmark~ While the methodol

ogy described above can itself be applied to any relational database system or machine, the type of a particu
lar query may vary from system to system depending on the algorithms used on each system. One motivation

for using a simple/debit credit transaction as the basis for the multiuser benchmark described in IANON85]
was to insure portability across systems. While this is an appropriate benchmark for transaction processing
systems. it may not be an acceptable benchmark for more sophisticated relational database systems.

Unless one or more leaf pages had a number of overflow pages that were not physically clustered near the leaf page. In this

case, the extra seeks might result in a slight (litierence in performance.



Techniques for throughly testing the concurrency control and recovery mechanisms of a database sys

tem also need to be developed. In BORA84], one experiment was conducted in which transactions that

updated a single tuple were run concurrently with transactions that retrieved a single tuple. With a multipro

gramming level of 16 and a database consisting of 10,000 tuples, conflicts between transactions were very

infrequent even though the updating transactions modified an attribute on which a primary index existed. To

thoroughly evaluate a concurrency control mechanism two tests need to be developed. First is a method of

generating a range of conflicts between concurrently executing transactions. One possibility would be to run

a single bulk-update transaction concurrently with a number of read-only transactions. By varying the per

centage of the database updated. one should be able to vary the number of conflicts generated. An alterna

tive approach would be to reduce the size of the relation to just a few tuples and continue to use transactions

that do single tuple updates.

For database systems that use locking for concurrency control. a way of testing the deadlock resolution

mechanism is also needed. The following approach looks promising. Consider two types of transactions:

one which uses a clustered index to access tuples which are then updated by modifying a non-indexed attri

bute. The second type uses a non-clustered index to access the tuples to be modified. When transactions of

the first type are run concurrently. no-deadlocks should occur as data pages will be accessed once and in

“ke~” order. The conflict rate between transactions will depend on the multiprogramming level, the size of

the relation, and the number of data pages accessed by each of the queries. When transactions of the second

type are run concurrently, deadlocks will occur as datà~ pages will accessed in random order and, possibly.

multiple times. By varying the number of data pages accessed. one will be able to control both the conflict

rate and the deadlock rate. By comparing the thro~ighput of the first case with that of the second, one should

be able to access how well a system handles deadlocks.

With regard to recovery, measuring two aspects looks appealing. The first project would be to meas

ure the cost of gathering recovery information. One should be able to do this by simply turning the recovery

manager off. Determining this cost as a function of the percentage and size of the updating transactions

would be interesting. A second project would he to determine the cost of transac~ion aborts on system

throughput by varying the rate at which updating transactions simply exit instead of committing.

3.3. Other Projects

Given the results (ie. response time. Cpu utilization, and disk utilization figures) of a set of single user

benchmarks. it would he nice to be able to dispense with most of the multiuser benchmarks and instead use

an analytical model to predict the multiuser behavior of a database system. Recently we have been examining
internal measurements from our multiuser benchmarks on the 1DM 500 in an attempt to determine exactly
what details need to be captured by such a model. Preliminary results indicate that building such a model

may be complicated as the multiuser characteristics of the buffer ~manager seems to have a significant effect

on the throughput of the system. Life becomes even more complicated if one wants to predict multiuser

behavior with updating transactions. It may be that models of concurrency control and recovery mechanisms

could be adapted to help in this case.

So far we have only addressed single site database systems. Mechanisms for testing distributed database

systems will obviously be needed in the future. While some of the single site techniques should be applicable
to distributed systems, it seems apparent that a new set of techniques will needed for these systems.

4. Conclusions

In this paper we have surveyed our earlier work on database system performance evaluation. While

our single user and multiuser techniques have become widely used, these tools are just the first of a number

of tools that are needed. While the present tools help determine overall system performance, they are not

adequate for isolating exactly which components are “faulty”. In addition, they do not do an adequate job of

stressing the concurrency control and recovery components of a system.

—8—



5. Acknowledgments

A number of the ideas in this paper have been stolen from others. Unfortunately. I cannot remember

who made exactly what suggestions as some number came during presentations of the various benchmarking

papers. Mike Carey and Mike Ubell are certainly two of the contributors. Dma Bitton, Haran Boral. and

Carolyn Turbyfihl deserve recognition for the key roles they played in developing the current benchmarking
tools.

6. References

ANON85] Anon Et. Al, “A Measure of Transaction Processing Power.” to appear. Datamation. Feb 15.

1985.

BOGD83] Bogdanowicz, R., Crocker. M.. Hsiao. D.. Ryder, C.. Stone. V.. and P. Strawser. “Experi
ments in Benchmarking Relational Database Machines,” Database Machines. Springer-Verlag,
1983.

FBITT83] Bition. D.. DeWitt. D. J.. and C. Turbvfill. “Benchmarking Database Systems: A Systematic

Approach.” Computer Sciences Department Technièal Report #526. Computer Sciences Depart
ment. University of Wisconsin. December 1983. This is a revised and expanded version of the

paper that appeared under the same title in the Proceedings of the 1983 Very Large Database

Conference. October. 1983.

BORA84} Boral H. and D. J. DeWitt. “A Methodology for Database System Performance Evaluation.”

Proceedings of the 1984 SIGMOD Conference. Boston. MA.. June 1984.

IDM500} 1DM 500 Reference Manual. Britton-Lee Inc.. Los Gatos. California.

(STRA83] Strawser. Paula. “A Methodology for Benchmarking Relational Database Machines.” Ph.D.

Dissertation. Ohio State University, December 1983.

—9—



TIPS Ct~ BE~CHW~RKING D~A BASE SYSTEMS

by

Michael Stonebraker

Relational Technology, Inc.

2855 Telegraph Ave.

Berkeley, CA

ABSfl~ACT

This paper contains a cxllection of suggestions to persons considering
benchmark evaluation of data base systems (DBMS) and surtinarizes my

experience with benchmarking studies over the past several years. These

suggestions include coinnents on published benchmark scripts, issues to

consider, and pitfalls to avoid.

L.. INT1~)DUC~I~~

Many potential DBMS users benchmark the coiwnercial offerings of vendors of

data base systems, and base their purchasing decision in part on the

results of such benchmarks. Since the available products differ widely in

performance and ease of use, this tactic is often a useful one. Benchmarks

should measure query/update performance, as well as ease of application
develcçment. When planning and conducting a benchmark, one must make

decisions regarding the choice of what to benchmark (the benchmark

script), the person who does the benchmark, the person who tunes the

benchmark for performance, and how to evaluate the result. This paper
sumarizes my thoughts on these questions.

2. TYPE C~’ BENCHMARK

The first issue is whether to do a single—user benchmark (in which a

collection of conunands are timed as if they were submitted sequentially by
a single user) or to perform a multi—user benchmark. Of course, a

multi—user benchmark is much harder to construct and often much harder to

evaluate than a single—user one.

SUGGF.STION 1: Perform a multi—user benchmark unless you truly have a

single—user environment.

A multi—user benchmark tests two features of data base systems which are

not evaluated by a single user benchmark. First, the concurrency control

facilities of the various vendors differ widely in function and

performance. Locking is the concurrency control mechani~n used to guarantee
data consistency during reads and updates by multiple users simultaneously.
Differences include the locking granularity used by the vendor for read

c~erations (e.g. records, pages, relations, whole data base), the locking
granularity for updates, the locking granularity for schema modifications

(e.g. adding or dropping an index), how deadlock detection and resolution
is accomplished, and whether there is support for multiple lock

granular ities and lock escalation. (On amnands which touch many records,
it is more efficient to lock larger objects. Hence when the discovery is

made that a data—intensive catinand is being processed, it is beneficial to

—10—



exchange any ~naller locks that have already been set for a single larger
enclosing lock.)

For example, if a vendor chooses to lock a whole relation when tuples in

that relation are modified, then updates are effectively single—threaded
because locks must be held to the end of a transaction. As a result of a

single-user benchmark, a potential user will not be made aware of iiiportant
shortcomings such as this one.

Another problem with single-user benchmarks concerns system performance. In

many data base systems, there is a considerable difference between

performance in single-user and multi—user environments. This results from

buffer management issues (such as read—ahead and write—behind tactics) and

consumption of system resources.

A data base system which expects to be used in a multi—user environment

will often not be concerned with optimizing read-ahead and write—behind for

a single user. Such a system would not attempt to read pages from the disk

in advance of their being requested by a user (read—ahead), nor would it

attempt to queue write requests for a user (write—behind). Rather, it would

be more concerned with optimization of concurrency control, crash recovery,
and increasing the average number of transactions per second that can be

run in a multi—user environment. Such a system, when run in a single-user
environment, will either be in page—wait status (waiting for an I/O
operation to complete) or it will be executing code on behalf of that user.

No CPU activity will be overlapped with I/O activity in a single-user
environment. Moreover, it can excute the concurrent coninarx5s of two users

in about the same amount of time as the conuiand of a single user. This

results from overlapping the CPU activity of one user with the I/O activity
of the second. Hence, a single user benchmark will often understate the

amount of work that can be accomplished in a multi—user environment, and a

user will not get an accurate picture of resource consumption.

3. THE BENCHM~PK SCPIPr

One next has to face the issue of what cxxrinands to put in the benchmark.

There are four choices:

1) use a canned benchmark such as the one in BOR~L84]
2) have a vendor choose the benchmark

3) create an artificial benchmark

4) use a real application

SU(~ESTIC*~ 2: Use a real application if possible.

The best choice for a benchmark script, is a real application from your
environment. We discuss the drawbacks of the other options first, and then

cc~iinent on the benefits of a real application.

The first option is to use a canned benchmark. The one in BORAL84J (the
Wisconsin benchmark) is widely suggested as a reasonable candidate;
however, it suffers from two flaws:

1) It has no floating point operations.

Data base systems differ widely in their support for floating point

—11-.-



operations. Sane systems simulate floating point operations in software

using decimal numbers as a storage mechanism. Others use the available

floating—point hardware to support a built—in floating point data type. The

latter option is dramatically faster than the former, and one will not be

made aware of this difference fran the Wisconsin benchmark.

2) It has no copy operations or schema ncdifications.

Many installations spend a considerable alTount of time loading and

unloading data sets and building arid changing schexnas. One will get no

information on the performance of such functions fran the Wisconsin script.
Moreover, one will not be made aware of any concurrency control

deficiencies in schema nodifications (such as the choice by some vendors to

lock the whole data base on schema changes) fran the Wisconsin test suite.

A second general benchmark has been suggested by Jim Gray and is in draft

state GRAY84]. This script is appropriate only for production transaction

processing systems and includes the well known TP1 banking transaction. TP1

contains three update coninands and one append corrrnarid each affecting a

single record. These coninands simulate the action of a bank teller cashing
a check for a custaner. TP1 is largely a test of the concurrency control

and crash recovery facilities of a data base system and its overhead on

single record interactions. This script is reasonable for sane production
transaction processing applications, but will rot be helpful in any
environment which contains decision support functions.

It ~xuld be great to have a single (or even a small number) of general

purpose scripts (the whetstones of data base management), arid I applaud the

initial efforts in this direction by the above authors. However, the above

carrnents point out the difficulty of creating a general purpose benchmark

that will test all of the aspects of a data base system that many potential
clients ~uld want to test. Hence choosing a canned script may not be a

suitable option at the current time.

The problem with allowing the vendor to choose the benchmark (option 2) is

that almost all data base systems excel at sane collection of corrmands.

Most vendors have had enough benchmarking experience to recognize this set

of interactions and can easily choose a winning benchmark. Therefore, this

option is only desirable if you have already selected a vendor’ s data base

system.

The third way to construct a benchmark script is to choose an artificial

benchmark. Unfortunately, this benchmark is arbitrary, arid a losing vendor

will con~lain that it is biased and suggest changes. In all probability,
the vendor will complain to you, to your boss, arid to your boss’ boss.

Hence, you will have to mediate cDmplaints of unfairness and perhaps
dynamically adjust the composition of the script.

A script fran a real application is free fran any possible criticism

concerning arbitrariness; noreover, it will provide a good indication of

how one’ s problems will run on a particular vendor’ s system. The only
consideration is that the benchmark nuist be relatively simple if the

vendors will be required to program it. If the benchmark requires several

person—weeks to code, one will guarantee that only the very large vendors

can afford to execute the test. But why rot do it yourself to test the

product’s ease of use, documentation ocmpleteness, arid vendor technical

—12—



support?

zL RI~ING THE BE~CH~RK

The next issue concerns who will run the benchmark. There are three

choices:

1) the vendor can run the benchmark on his machine

2) the vendor can run the benchmark on your machine

3) one can run his own benchmark

SUGFSSTION 3: If at all possible, run the benchmark yourself.

There are a multitude of reasons for choosing this option. First, if the

benchmark is run on the ‘s machine, the results may rot be

reproducible in your environment. There are many innocuous reasons for this

behavior; disk drives differ in speed, configurations are different, etc.

Moreover, a vendor may be teiipted to use his latest “about to be

Beta—tested” version of his system. This system may not be available to you

for several months.

Another disadvantage of this approach is that a vendor can subtly change
the benchmark to improve its performance. For example, most systems will

execute retrieval operations faster if the output is rot sorted and

duplicate records are not removed. In addition, all systems go faster if

the output is thrown away rather than printed or delivered to an

a~1ication program. If one’ s benchmark is not precise on all these points,
a vendor is free to choose the option which executes fastest in his

environment.

In addition, some vendors have systems which generate a query processing
plan for complex queries by examining the clauses in the query

qualification from left to right. Hence, performance will differ

dramatically depending on the order of the clauses in a cxuplex

qualification and query performance will be data dependent. If the vendor

runs the benchmark, he is at liberty to rearrange the qualifications to

improve performance. A client does not find out about such shortcx~mLngs
with vendor run benchmarks. Ideally, you want to select a system in which

the performance does not depend on the expertise of the person writing the

queries.

The second option is to ask each vendor to run the benchmark at your site.

Most vendors will respond by having their local technical sales support
person do the benchmark, or by sending in a special “swat team”.

The problem with a swat team is that such specialists disa~ear when the

benchmark is over, and their tactics are rot necessarily ones that you will

have the expertise (or desire) to use. The following are tactics which I

have seen swat teams use:

1) divide a relation into 26 physical data sets, one for each letter of the

alphabet. This vendor had a concurrency control scheme which locked whole

relations on update. With this scheme multiple concurrent updates could be

processed as long as they specified different first letters for an

indicated key. Of course, this precludes the possibility of performing

aggregates on this relation; unfortunately there were none in the benchmark

—13--



to preclude the use of this tactic.

2) rewrite queries to take advantage of formats the optimizer can use. For

example, the query language SQL has two ways of expressing joins, as nested

queries

select sname

fran supplier
where s41 in

(select s#
from supplier_parts
where p# = 2)

and as flat queries

select supplier . snanie

where supplier.s# = supplier_parts.s# and

supplier_parts.piI = 2

In some vendor products, the query optimizer can not optimize the nested

query format, so vendors will rewrite those queries as flat queries when

measuring performance - even though these same vendors ~nphasize their

nested query feature.

Of course, if a vendor chooses to have his local sales support people
perform the benchmark, they may well use similar tactics. Hence, a user

should always be on the lookout for the use of such programming stunts and

disallcM them. The one advantage to using local support people rather than

a swat team is that a user can evaluate the competency of the people who

will assist him after the sale.

The best option is to run one’s c~n benchmark. In follc~.iing this course of

action, the user obtains a great deal more information on a vendor’ s

product than with either of the previous options. In particular, one can

test the ease of installation of the system, test the reliability of the

software, and discover the quality of the system &cumentation. Moreover,
one discovers ha~i easy it is to write applications on the system. For

exanple, one client elected to test two systems by having two different

employees program arid run the benchmark on the two data base packages being
compared. One product required one-third of the programming time of the

second because of subtle restrictions in one programming language
interface. Such valuable information results only from internally run

benchmarks. Lastly, one can ascertain the responsiveness of the technical

support fran each organization involved in the benchmark. It appears that

various vendors differ widely in ha~i much energy they invest in ensuring
that users get helpful, accurate, and prompt answers to their problems.

5. WHO TUNES THE BE~~CHMARK

Among the tuning options:

1) no tuning
2) user tunes the benchmark with no assistance

3) user tunes the benchmark with vendor assistance

4) vendor tunes the benchmark

—14—



SUGGESTI(1’I 4: choose option 3 if possible.

One client executed a benchmark between two systems with no tuning of

storage structures whatsoever. The reasoning was to simulate the behavior

of a naive user who might not consider performance tradeoffs. The problem
with this approach is that several orders of magnitude in performance
differentiate optimized and uroptiniized storage structures. The default

storage structures of any particular system (e.g. heap, keyed on the first

field, etc.) may or may not work well for any particular script. Hence,

performance of any particular system is effectively a random variable. This

is no way to evaluate DBMS performancet

The second option is for the user to tune his own benchmark, and this is

certainly preferable to no tuning at all. In sophisticated environments

where query processing tactics are well understood, this approach will

probably lead to an optimized benchmark. Moreover, it will give the user a

feel for the optimization parameters of any particular system. However, in

shops that are new to relational data base technology, the algorithms used

by a query optimizer may not be well understood. In this case, advice from

the vendor will help in choosing good storage structures. Even in

sophisticated shops, it is probably wise to have the vendor check a schema

for performance oversights. A useful way to accomplish this function is to

give the vendor a copy of your script and test data. After he has

implemented the benchmark on his system, you can ask him for performance
suggestions. This option also provides a way of evaluating the quality of

training guides, classes, and technical support.

The final option is to have the vendor tune the benchmark for you. This

approach is an invitation to the swat team tactics dicussed above. Avoid

this approach if possible.

6. ES1ALUATIC~ OF THE RESULTS

There are three considerations to think through when evaluating the results

of any benchmark studies.

6.1 Future Versus Present Performance

Every vendor is “about to come out with” his next system which is “2—10

times faster” than his current system. It “fixes all known performance
problems” and can be benchmarked “in a little while”. In general, one has

to decide whether to run a benchmark on:

1) a production system
2) a Beta—test system
3) a system still in developnent

Moreover, one has to decide whether to delay the benchmark under pressure
fran a vendor who has a next system “almost ready”

My advise is to simply realize that this issue is bound to arise and to

think through in advance how to deal with it. Also, one should realize that

all relational systems are becoming progressively faster. A purchase
decision will usually result in a coim~itment to a particular vendor for at

least a couple of years. During this time, any system under consideration

will get faster. Hence, one should consider both:

—15—


	40979_DataEngineering_Mar1985_Vol 8_No1.pdf

