
JUNE1985 VOL.8 NO.2

a quarterly bulletin

of the IEEE computer society
technical committee

Database

Engineering
Contents

Letter from the Editor 1

Varieties of Concurrency Control in IMS/VS Fast Path

D. Gawlick, D. Kinkade 3

The Transaction Monitoring Facility (TMF)
P. He/land 11

The TABS Project
A. Spector 19

Atomic Data Types
W. Weih/ 26

Improving Availability and Performance of Distributed Database Systems
A. Chan, S. Sarin 34

Concurrency and Recovery in Data Base Systems
C. Mohan 42

Performance Analysis of Synchronization and Recovery Schemes

T. Harder, P. Peinl, A. Reuter 50

The Performance of Concurrency Control and Recovery Algorithms for

Transaction-Oriented Database Systems
R. Agrawal, M. Carey 58

Distributed Computing Research at Princeton

R. Alonso, D. Barbara, R. Cordon, H. Garcia-Mo/ma, J. Kent, F. Pitte/li 68

LAMBDA: A Distributed Database System for Local Area Networks

J. Chang 76

What Good are Concurrent Search Structure Algorithms for Databases Anyway?
D. Shasha 84

Reducing the Cost of Recovery from Transaction Failure

N. Gritfeth 91

Achieving High Availability in Partitioned Database Systems
D. Skeen 99

Special Issue on Concurrency and Recovery

Chairperson, Technical Committee

on Database Engineering

Prof. Gio Wiederhold

Medicine and Computer Science

Stanford University
Stanford, CA 94305

(415) 497-0685

ARPANET: Wiederhold@SRI-AI

Editor-in-Chief,
Database Engineering

Dr. David Reiner

Computer Corporation of America

Four Cambridge Center

Cambridge, MA 02142

(617) 492-8860

ARPANET: Reiner@CCA

UUCP: decvax!cca!reiner

Database Engineering Bulletin is a quarterly publication of

the IEEE Computer Society Technical Committee on Database

Engineering. Its scope of interest includes: data structures

and models, access strategies, access control techniques,
database architecture, database machines, intelligent front

ends, mass storage tor very large databases, distributed

database systems and techniques, database software design
and implementation, database utilities, database security
and related areas.

Contribution to the Bulletin is hereby solicited. News items,

letters, technical papers, book reviews, meeting previews,

summaries, case studies, etc., should be sent to the Editor.

All letters to the Editor will be considered for publication
unless accompanied by a request to the contrary. Technical

papers are unrefereed.

Opinions expressed in contributions are those of the indi

vidual author rather than the official position of the TC on

Database Engineering, the IEEE Computer Society, or orga

nizations with which the author may be affiliated.

Associate Editors,
Database Engineering

Dr. Haran Boral

Microelectronics and Computer
Technology Corporation (MCC)

9430 Research Blvd.

Austin, TX 78759

(512) 834-3469

Prof. Fred Lochovsky
Department of Computer Science

University of Toronto

Toronto, Ontario

Canada M5S1A1

(416) 978-7441

Dr. C. Mohan

IBM Research Laboratory
K55-281

5600 Cottle Road

San Jose, CA 95193

(408) 256-6251

Prof. Yannis Vassiliou

Graduate School of

Business Administration

New York University
90 Trinity Place

New York, NY

(212) 598-7536

Memoership in the Database Engineering Technical Com

mittee is open to individuals who demonstrate willingness to

actively participate in the various activities of the TC. A

member of the IEEE Computer Society may join the TC as a

full member. A non-member of the Computer Society may

join as a participating member, with approval from at least

one officer of the TC. Both full members and participating
members of the TC are entitled to receive the quarterly
bulletin of the TC free of charge, until further notice.

Letter’ from the Editor

This issue of Database Engineering is devoted to Concurrency and Recovery. Thirteen papers authored by
academic and industrial researchers give an overview of research results and implementation experiences
relating to transaction management in centralized and distributed data base management systems. The

papers cover the entire spectrum of commercial products, research prototypes, and unimplemented ideas.

The widespread adoption of the data base approach to managing data created an important requirement
- the support for concurrent access to data and for recovery from different types of failures. While this

requirement was recognized many years ago in the case of the mainframe data base systems, only now are

the designers and implementors of the workstation/personal computer data base management systems

beginning to realize it. Even in the case of the mainframe systems, the increasing demand for higher
throughput has necessitated reductions in the overheads due to concurrency control and recovery mechanisms.

As the data base users have become more sophisticated they are starting to demand support for different

kinds of objects and specialized operations on such objects. The transaction concept is gaining popularity
in non-data base applications also. The papers of this issue reflect these trends.

The first two papers deal with commercial products: IBM’s IMS/Fast Path and Tandem’s Transaction

Monitoring Facility (TMF). The next four papers discuss transaction management aspects of research

prototypes still under implementation. The featured prototypes are Carnegie-Mellon University’s TABS,
Massachusetts Institute of Technology’s ARGUS, Computer Corporation of America’s DDM, and highly
available and real-time data base systems, and IBM San Jose Research Laboratory’s R. Performance

evaluation results relating to implemented and unimplemented concurrency control and recovery algorithms
are discussed in the next three papers. The final set of papers present a number of novel research ideas.

I wish to thank all the authors for their contributions. I was pleasantly surprised at the overwhelming
response to my invitations. I had to be strict about the page limit. One set of authors alone were permitted
to exceed the 8-page limit since their results were in fact to have been presented in two separate papers,
but to provide more cohesion the results were presented in a single paper.

C. Mohan

May 1985

—1—

—2—

VARIETIES OF CONCURRENCY CONTROL

IN IMS/VS FAST PATH

Dieter Gawlick

Amdahl Corporation
1250 E. Arques Avenue, Sunnyvale, CA 94088-3470

David Kinkade

Tandem Computers, Inc.

19333 ValIco Parkway, Cupertino, CA 95014

Abstract

Fast Path supports a variety of methods of concurrency control for a variety of different uses of
data. This arose naturally out of efforts to meet the typical needs of large on-line transaction

processing businesses. The elements of “optimistic locking” apply to one type of data, and

“group commit” applies to all types of data. Fast Path development experience supports the

idea that the use of a variety of methods of concurrency control~ by a single transaction is rea

sonable and is not as difficult as might be expected, at least when there is fast access to shared

me mnory.

1. Introduction

IBM introduced the Fast Path feature of IMS/VS in 1976, to support performance-critical
on-line transaction processing.

Originally, Fast Path transactions shared the communication network and the system journal
with standard IMS transactions, but little else was shared. Fast Path transactions could not

access standard IMS/VS data bases and standard IMS/VS transactions could not access Fast

Path data bases. Now Fast Path is integrated into IMS/VS, and a single transaction can

access both kinds of data bases with consistency and atomicity across all of them. This

integration in itself meant that the different methods of concurrency control common to Fast

Path and to standard IMS/VS had to be supported within a single environment. In addition

to this variety, Fast Path itself has always supported a variety of methods of concurrency con

trol, although this was less apparent in 1976 than it is today, because the methods were

simpler then.

Fast Path supports three kinds of data, each with its own methods of concurrency control.

Two of these methods were novel when developed:

• Very active data items (“hot spots”) are supported by Main Storage Data Bases (MSDBs).
Very active data can include branch summaries, total cash on hand, accounting informa

tion (the number of transactions of a particular type processed), or any other kinds of

information likely to cause bottlenecks because of locking conflicts between simultaneous

transactions. AlsO, MSDBs are uséful for terthinal-relatédd~.ta, data lIkely to be accessed

by a high percentage of all transactions from a particular terminal.

• Less frequently accessed data is stored in the main portions of Data Entry Data Bases

(DEDBs). The main portion of a DEDB is hierarchical, with randomized (hashed) access

to the roots. The significant improvement over standard IMS/VS hierarchical random

ized data bases is in data availability, not in concurrency control. Because the amount of

—3—

data is very large, access conflicts are rare and straightforward methods of concurrency

control are adequate.

• Application journal data (application historical data) is also supported by DEDBs, in spe

cial “sequential dependent” portions of DEDBs. The implementation of sequential

dependents avoids a bottleneck that could otherwise result from simultaneous transac

tions adding records at the end of an application journal.

Some Fast Path innovations (such as group commit and the elimination of “before” images
from the system journal) are general, not for the benefit of particular types of data. Still, we

will start by considering the special handling for highly active data “hot spots” and for appli
cation journal data.

2. Main-Storage Data Bases (MSDBs)

What innovations help with “hot spots”? Consider, for example, an ultra-hot spot: a counter

updated by every transaction. To achieve a high transaction rate, we want a transaction to

be able to access the counter without waiting for any other transaction. We also want to

guarantee the integrity of the counter, consistency with other parts of the data base, etcetera.

If we are to have high performance (> 100 transactions per second), then there are three

things we cannot afford to do:

a. We cannot afford to lock the record and keep other transactions from accessing it until

our transaction in complete.

b. We cannot afford to read the record from disk and write the record to disk.

c. We cannot afford to wait for the previous transaction’s update log records to he written

to disk (this is not unique to MSDBs, and is handled by group commit, to be described

later).

To avoid the bottleneck that would occur from all transactions needing exclusive control of

the counter, we must be a little tricky. In our example, the transaction wants to add I to the

counter. The transaction doesn’t care about the old or new values of the counter, except that

the old value of the counter must be less than the maximum value the counter can hold.

Accordingly, the transaction program does not “read” and “write” the counter value.

Instead, it uses two new operations:

a) VERIFY counter < (marimum counter value)
b) CHANGE counter + 1

The VERIFY operation checks a field and makes sure the field is <, <==, =, >==, or > a

specified value. Multiple VERIFY operations can be used to specify upper and lower limits.

The CHANGE operation updates a field by adding or subtracting a specified value, or by set

ting a field to a specified value. It could have been extended to include multiplication and

division if these had seemed useful.

Fast Path does VERIFY tests both at the time of the VERIFY operation and again during
commit time. The first test gives the application program a chance to do something different

if the value is already out of range. The second test, the ~treall test, is performed as part of a

high-speed replay of the VERIFYs and CHANGEs for this transaction. During commit pro

cessing the data is locked, but only for a few instructions.

—4—

CHANGE operations are performed oniy during commit processing.

Besides VERIFY and CHANGE operations, Fast Path also allows the more usual operations
(reading and writing records) against MSDB data. This is a complication for the developers,
but not relevant to this paper.

The VERIFY and CHANGE operations implemented for MSDBs, publicly introduced in 1976.
contain the essential elements of !?optimistic locking,?? although the term was then unknown.
This is readily apparent if you consider the use of ??VERWY =

3. Data-Entry Data Bases (DEDBs)

DEDBs are for large data bases. Except for sequential dependents, we are willing to wait for
data to be read from disk (Fast Path doesn’t even use buffer look-aside, except within a tran

saction). We are willing to write each updated record to disk (multiple read-write heads can

be assumed), and we are willing for one transaction to wait for the other if both transactions

want to access the same record.

Since many readers of this paper will be unfamiliar with Fast Path, it seems reasonable to

mention the innovations that improved availability, even though this is not relevant to the
main topic of the paper. It will at least make you aware of DEDB ??~\1~EASn Originally there

were two big availability improvements over standard IMS/VS:

1. Fast Path allows you to divide a DEDB into up to 240 different partitions called
UAREAsJ? Each AREA, is a separate file, and can be taken off-line while leaving the rest

of the data base on-line. The internal data structures are such that pointers never point
from one AREA to another. (The use of multiple AREAS also allows the construction of

very large databases. The limit is 960 gigabytes.)

2. Since Fast Path has no way of telling which transactions will access which AREAs, it
lets a transaction try to access data in an unavailable AREA. Fast Path introduced a

new IMS/VS status code to tell the application program that the data is unavailable
and let the application program take alternate action. Until Fast Path, IMS/VS refused
to run a transaction that might try to access unavailable data.

In 1984 another data availability enhancement was provided: data replication, the ability to

have from 0 to 7 copies of an AREA. Zero copies, of course, amounts to having the AREA
off-line. The data replication facilities allow a new copy to be added and brought into use or

allow a copy to be removed and taken away for safe storage without interrupting access to the
AREA.

4. DEDB Sequential Dependents

Sequential dependents allow the construction of an application Journal. They are to contain
historical information. For example, ~ root record with your account number as its key may
show how much money you currently have in your account, but your bank must also keep a

history of how much money you used to have, and what happened to change your account
balance. The bank would like to be able to get this information without having to scan

through all updates to all accounts. At other times the bank would like to be able to scan all

—5—

the updates for a particular period of time very rapidly; this is typically part of a daily batch

run.

These considerations lead to the following strategy:

1.. Sequential dependents, once written, can neither be modified nor individually deleted.

They are eventually discarded as obsolete.

2. Sequential dependents are stored in chronological order according to time of commit

processing (time of completion of the transaction).

3. To support retrieval of sequential dependents related to some particular thing (such as

your bank account), without having to scan a lot of unrelated data, sequential depen
dents are chained in LIFO order from a chain anchor in the root record. This is very

efficient; it can be done without accessing previously written sequential dependents.

There are many ways this strategy could have been implemented. The method actually
chosen imposes many restrictions. At the time, these restrictions were appropriate, since the

general strategy had not yet been tested by use. Here are the rules:

1. A sequential dependent segment (record) must be added to the DEDB as a child of one

and only one non-sequential DEDB segment. Only one sequential-dependent segment

type is allowed, and this segment type must be a child of the root segment.

2. Once inserted, sequential dependent segments can be retrieved as children of their root

segment. Retrieved this way, they are presented in LIFO order. For example, the root

segment for your bank account would point to the most recent update for your account,

the most recent update record would point to the update before that, and so on.

3. Sequential dependents can also be scanned sequentially, for high-speed bulk processing.
In this case, all the sequential dependents for a chosen period of time are presented in

chronological order by commit time.

4. Sequential dependent segments are stored in a portion of disk storage reserved for this

purpose at the end of each DEDB AREA. This portion of disk storage is used and

reused as a large circular buffer.

5. There is no facility for deleting individual sequential dependents. Instead, there is a

pointer to the oldest sequential dependent not yet deleted. When this pointer is moved

forward, all previous records are logically deleted, and the space they occupied is made

available for reuse. Because the space is circularly reused, the most significant bits of all

pointers are a “cycle” counter: the first use of the disk storage is cycle 1, the. second use

is cycle 2, etcetera. Accordingly, a later record always has a larger pointer.

For sequential dependents, the “hot spot” is not a data item; it is the next piece of unused

space. To handle this “hot spot,” a Sequential Dependent insertion goes through three stages:

1. When the application program tells Fast Path to add a new sequential dependent, the

data provided is NOT assigned a location on disk; this would not be a good idea because

other transactions could insert sequential dependents and complete before this transac

tion completes. Instead, the data provided is placed in a holding area, the same as for

MSDB VERIFY or CHANGE data. Also, the added data is chained LIFO from the

main-storage copy of the record it is a child of. The pointer from the root is

—6—

recognizable as a main-storage pointer (not a disk pointer) by the fact that its most

significant bits (the “cycle” number) are 0.

2. During commit processing, Fast Path allocates the available space to the sequential

dependents. After allocating the space, Fast Path revisits the root and all sequential

dependents added by this transaction, converting main-storage pointers into disk

storage pointers to the newly allocated locations. Also, Fast Path copies the data to the

current buffer being filled with sequential dependents for this DEDB AREA.

3. The buffer the sequential dependents are copied to at commit time isn’t written to disk

until after the buffer is filled and all the commit records for all the transactions that

added data to the buffer have been written to the system journal. This delay is not a

problem; nobody has to wait for the buffer to be written to disk unless there is a shor

tage of buffers.

5. Resource Control

The design of Fast Path distinguishes between contention control (making sure this transac

tion and another transaction aren’t incorrectly accessing the same data) and contention reso

lution (deadlock detection). Contention control is constantly needed. Accordingly, it is han

dled within Fast Path, using a variety of efficient mechanisms. Contention resolution is

needed only when a conflict has actually occurred, and is much more expensive. It uses the

IMS/VS Resource Lock Manager (IRLM). This is necessary because a deadlock could involve

both Fast Path and standard IMS/VS (non-Fast Path) resources.

An historical note: Since the first release of Fast Path did not allow a single transaction to

access data from both Fast Path and IMS/VS data bases, a common contention resolution

mechanism was not required, and Fast Path originally had its own deadlock detection. At

that time, contention control and contention resolution were not separated the way they are

now.

Contention control in Fast Path is optimized towards processing simple cases with a minimum

of CPU time. To do this, Fast Path uses hashing in the following way:

1. Fast Path creates a large number of hash anchors for each data base or DEDB AREA

(file). The number of hash anchors is large compared to the number of resources likely
to be in use at one time.

2. When a transaction requests a particular resource (requests a lock), one of the hash

anchors is selected as a pseudorandom function of the resource name, in such a way that

a single resource always hashes to the same hash anchor. The hash anchor is used to

anchor a chain of all lock requests for resources that hash to the anchor point.

Since the number of hash anchors is normally much larger than the number of resources in

use, most requests encounter unused hash anchors. Therefore, since there can be no resource

conflIct without a hash anchor conflict, the resource can usually be locked quickly. If we

ignore the CPU time needed to create the resource information, such a lock/unlock pair typi

cally costs about 20 instructions.

lithe hash anchor is already in use, then there must be a check to see whether or not there is

actually a conflict. These checks have to be made in such a way that only one process is

—7—

checking and/or manipulating the chain off one anchor. This requires additional synchroniza

tion, but it still costs less than 100 instructions unless a conflict is found to actually exist.

If a conflict is found to actually exist, then a request must be forwarded to the contention

resolution mechanism (the IRLM).

Fast Path could do some deadlock detection. Flowever, neither Fast Path nor standard

IMS/VS could detect all the deadlocks without information from the other, since cycles might
involve both kinds of resources. With a full resource control system available, the natural

choice is to use it for all deadlock detection. However, there are two challenging technical

problems:

1. To avoid consuming an excessive amount of CPU time, Fast Path must avoid unneces

sary interactions with the common resource manager (IRLM).

The common resource manager should only know about those resources that are

involved in a conflict. However, a conflict is only recognized when a resource is

requested for the second time. Therefore, at the time a conflict is detected, two requests

have to be sent to the common resource manager: the request for the current owner,

which has to be granted; and a request for the competitor. This leads to the second

problem.

2. When a conflict does arise, Fast Path must share all relevant information with the com

mon resource manager.

The difficulty is related to the fact that resources have to be obtained on behalf of other

processes. That is, the IRLM has to give the lock to the current owner, not to the pro

cess that detected the conflict. Fast Path’s solution to this problem depends on the

details of IRLM, and is too complicated to describe here.

With all the difficulties to be solved in the case of actual conflict resolution, 2,000 instructions

is a reasonable number for the cost of conflict resolution using the IRLM.

Although actual results depend on the characteristics of the data bases and application pro

grams, in a typical case 98% of the requests might encounter unused hash anchors, and 98%

of the other requests might be instances of two different resources hashing to the same hash

anchor. Doing the arithmetic, we see that contention resolution is needed only 0.04% of the

time, and a typical Fast Path lock/unlock pair winds up still costing only about 20 instruc

tions. Again, this is not counting the instructions required to create the resource information.

For Fast Path, the type of resource information (the name, owner, chain fields, etc.) depends

on the type of data, but creating the resource information typically takes about 30 instruc

tions. Locking should not be charged with all this cost, since the resource information is also

used for other purposes, including buffer look-aside within a transaction and group commit.

The logic just described works only as long as no data bases are shared between different Fast

Path systems. If DEDBs are shared between systems, then all locking has to be done by the

common resource manager (IRLM), and locking becomes much more expensive.

The lock granularity in Fast Path varies depending on the data base structure and the use of

the data.

—8-~

• Record granularity is always used for MSDBs.

• Page granularity is used for on-line non-sequential-dependent processing and sequential-

dependent retrieval.

• AREA granularity is used for sequential-dependent insertion.

• Page clusters (named “Units of Work”) are used for on-line utilities.

6. Commit Processing

Fast Path commit processing satisfies the following needs:

• To work together with standard IMS/VS data base handling, and to make a common

GO/NOGO (commit/abort) decision.

• To do system journaling in a way that minimizes the amount of system journal data and

that allows asynchronous checkpoints of data bases.

• To minimize the amount of time that critical resources such as MSDB records and/or
application journal tails are held.

The commit process is structured in the following way:

1. Do phase one processing for standard IMS/VS data bases.

2. Get all locks that are required to do phase one of Fast Path. These locks represent the

MSDB records that have to be verified and/or modified and the journal tails of DEDB

AREAS for which inserts are pending. Locks are acquired in a specific order, minimizing
the potential for deadlocks.

3. Journal Fast Path data base modifications. This includes building after images and

copying them to the next available space in the system journal’s main storage buffers; it

does NOT include waiting for system journal records to be written to external media.

All the Fast Path data base updates for a single transaction are grouped together. The

use of after images allows easy implementation of asynchronous checkpoints.

4. Do phase two of commit processing. This includes updating MSDBs and DEDB applica
tion journal tails, and unlocking the resources related to MSDBs and application jour
nals.

5. Do phase two processing for standard IMS/VS data bases.

Even after all these steps, the results of the transaction cannot yet be externalized (data base

changes cannot yet go to DASD and the response cannot go to the terminal) until after the

system journal records have been written. In step three, Fast~Path does not wait for system

journal records to be written; this is to reduce the time between step two and step four, when

critical resources are held. This technique reduces the period for which critical resources are

held to the millisecond range, allowing extremely high concurrency for these resources.

Even after step five, Fast Path does not force the system journal records out to external

media. In this way, Fast Path attempts to minimize CPU time and disk/tape space for the

system journal. The system journal records will eventually be forced out by a buffer

—9—

becoming full, a time-limit expiring, or standard IMS/VS processing. Since resource owner

ship is recorded on an operating-system region (job) basis, Fast Path switches resource owner

ship to a dummy region. This lets the region start work on a new transaction.

When a system journal buffer is physically written out, it is likely to contain commit records

for more than one transaction. Accordingly, a group of transactions all become committed at

one time. This was named ??Group Commit?? long after the development of IMS/VS Fast

Path.

7. Acknowledgments

We thank and acknowledge the work of the following people: Keith Huff, Wally limura, Cliff

Mellow, Tom Rankin, and Gerhard Schweikert, who all contributed greatly to the Fast Path

implementation and design; ~Jim Cray. who helped clarify and improve the design; Don Flyde

and George Vogel, who managed the project.

8. Bibliography

Although this paper is based on personal experience and private discussions, the following

literature would be helpful to anyone interested in further exploration of these ideas:

Anon., et al., A Measure of Transaction Processing Power, Tandem Technical Report 85.1,

also (a shorter version) in: Datamation, April, 1985.

Galtieri, C. A., Architecture for a Consistent Decentralized System, IBM Research Report

RJ2846, 1980.

Gawlick, D., Processing “Hot Spots” in High Performance Systems, Proceedings of COMP

CON ‘85, 1985.

IBM Corp., IMS/VS Version 1 Data Base Administration Guide, Form No. SH2O-9025-9,

1984.

IBM Corp., IMS/VS Version 1 Application Programming, Form No. SH2O-9026-9, 1984.

Lampson, B., Hints for Computer System Design, in: Operating Systems Review, Volume

17, Number 5, Proceedings of the Ninth ACM Symposium on Operating Systems

Principles, pp. 33-48, 1983.

Reuter, A., Concurrency on High- Traffic Data Elements, in: Proceedings of the ACM Sym

posium on Principles of Database Systems (SIGACT, SIGMOD), pp. 83-92, 1982.

Strickland, J., Uhrowczik, P., and Watts, V., IMS/VS: Am Evolving System, in: JIBM

Systems Journal, Vol. 21, No. 4, 1982.

— 10 —

Transaction Monitoring Facility (TMF)

Pat Helland

Tandem Computers Incorporated
19333 Vailco Parkway
Cupertino, CA 95014

(408) 725—6000

ABSTRACT

Tandem’s Transaction Monitoring Facility (TMF) is a fully functional

log—based recovery and concurrency manager. In use at customer sites

since 1981, TMF runs in a distributed environment which supports
modular expandability. This paper outlines the existing facility, as

well as recent and current research and development. This research

has concentrated on the areas of high transaction rates and high
availability.

I. The Current Product

TMF as a concurrency or recovery mechanism is mainly unusual in

two respects:

—— It is a distributed system.

-- It is part of the underlying operating system. As such,
TMF can provide protection for any disc file.

A. Environment

A Tandem node consists of two to sixteen processors, each with

an independant memory, interconnected by dual 13 megabit—per-
second interprocessor busses. This, combined with the

message-based GUARDIAN operating system Bart781, provides an

environment that may be expanded modularly. Up to 255 of

these nodes may be connected in a long-haul network. The

network automatically provides route-through, reroute in the

event of a link failure, and best-path selection. Groups of

two to fourteen of these 255 nodes may be connected via FOX,
Tandem’s high—speed fiber-optics Local Area Network. Messages
between nodes, via FOX, typically take ten percent longer than

messages between processors in the same node.

B. Intra-Node TMF

TMF is a log—based recovery manager that Uses the “Write Ahead

Log” protocol Gray 781.

Each disc volume (one physical disc and an optional mirror) is

controlled by its own process, called a disc process. The

disc process actually runs as two processes (a “process pair”
Bart78]) in the two processors physically connected to the

— 11 —

disc controller. In addition to servicing record—level

requests, its responsibilities include the generation of

logical before and after images of the record—level requests
and the maintenance of the B-trees for keyed access. Locks

are maintained by each disc process.

At commit time, a two-phased protocol is used to coordinate

the flushing of the disc processes’ log buffers and the

writing of the commit record to the log. This consists of the

following steps:

1) Each processor is notified that the transaction is

about to commit. The processor notifies each disc

process running in it that has worked on the

transaction. Each disc process sends its log buffer

to the log. When all disc processes in the processor
have sent their logs, the processor notifies a

preselected coordinator processor that it has flushed.

2) When all processors have flushed, the coordinator

processor writes the commit record to disc. All

processors are notified that the transaction has

completed. Each processor notifies any concerned disc

processes, which release any locks held on the

transaction’s behalf.

TMF uses the log to provide transaction BACKOUT to cope with

failures of the application process. Node failures are dealt

with by AUTOROLLBACK, which uses the log to undo uncommitted

transactions and redo recently committed transactions.

AUTOROLLBACK can also be used to recover from di~sruptions of

service to a single disc volume. In the event of a media

failure, ROLLFORWARD uses the current log, tape archives of

the old log, and an old copy of the database (called ONLINE

DUMP) to reconstruct a consistent, up-to—date database.

Transaction protection may be provided for any disc file using
TMF. When a process has performed a BEGINTRANSACTION, any

request messages it issues automatically include a TRANSID

that identifies the process’s current transaction. By
designating a file as an AUDITED file, all updates must be

performed using a TRANSID and the file may be recovered to a

consistent transaction boundary.

C. Inter-Node (Network) TMF

When a request that is marked with a transaction identifier

leaves one node for another node, the two nodes establish the

transaction as a network transaction. This logic is

centralized into one process at each of the nodes. At

transaction commit, a standard two-phased commit protocol is

superimposed onto the intra-node (local) commit.

— 12 —

II. Performance Improvements

As the power and speed of Tandem processors has increased, a

strong trend has emerged to use the machine for larger
applications. The modular expandability that is inherent in the

Tandem architecture supports this trend. Customers want and need

a system that they can easily expand by purchasing additional

hardware. This upward growth must have a very high ceiling to

support very large systems. Requirements for 100 transactions

per second are common today with growth to 1000 transactions per
second expected in the near future.

Transaction loads exceeding 100 transactions per second can be

expected to require multiple nodes and transactions spanning
nodes inherently consume more resources than ones local to a

single node. These transactions must be coordinated across

different nodes and their outcome recorded in more than one log.
By minimizing this additional expense, it should be possible to

construct a system that executes a thousand transactions per
second with 20 to 30% of these transactions spanning two or more

nodes.

Achieving this goal will require work in a number of different

areas:

A. DP2

A major step towards these performance goals has been

accomplished with the 1985 release of Tandem’s new disc

process, known as DP2. A number of changes in strategy have

been incorporated that offer significant performance gains.

1. New Logging Strategy

Under the original Tandem disc process, Dpi, each process

that participates in a transaction performs a separate
I/O to the log. While this I/O might carry the log
records for more than one transaction, the log records

generated by different disc processes go to different

places on disc. In addition, a completely separate log
is maintained for commit and abort records.

Typically, under DP2, all log records are sent to one

disc process on which the log resides. The log records

are buffered until a commit or abort record is added to

the log buffer and the buffer is written to disc. This

allows the TMF log to be written, typically, with no more

than one I/O per transactiOn.

2. Buffered Cache

DP2 supports buffered cache for database pages.

Previously, DPi would write through to disc whenever an

update was performed.

- 13 -

3. Overlapped Cpu and I/O

DPi is a single—threaded process which waits while a

physical I/O is in progress. DP2 performs computation on

behalf of one request while waiting for a physical I/O

against another.

4. Less expensive Checkpointing

Since a Tandem disc process runs as a “process pair” in

two processors, the primary disc process must inform its

backup disc process of its state periodically (called

checkpointing). This is necessary because the backup
disc process is expected to assume active duties should

the primary disc process’s processor fail.

Under DPi, the primary disc process checkpoints enough
information to the backup disc process that the backup
can always carry forward any partially-completed
operation if the primary disc process fails.

DP2, on the other hand, does not try this approach.
Should the backup notice the failure of its primary’s
processor, the backup aborts any transactions in which

the primary has participated. This provides DP2 with the

ability to serve a write request without telling the

backup disc process about it, providing a significant
reduction in checkpointing Borr84]. For Debit-Credit

transactions, half as many checkpoint messages are sent

moving one fifth as many bytes.

B. Intra-Node TMF Performance

This area is concerned with the overhead of beginning and

ending a transaction, including the coordination of moving
log records to disc, writing commit records, and coordinating
the release of record locks after a transaction’s commitment.

1. Performance Impact of Adding Processors

Because the work of a transaction takes place in

different processors on the node, all the processors must

know of the existence of the transaction. When the

transaction is to be committed, all the processors must

ensure that all log records buffered in them are sent to

the log before the commit record is sent.

This requirement of the architecture presents an inherent

problem -- the addition of a processor imposes an added

burden on the existing processors. This threatens the

ability to expand performance linearly with the linear

addition of hardware. It is important to note that this

added burden is functionally dependent on the product of

the transaction rate and the number of processors. To

— 14 —

achieve linear performance expandability, the transaction
rate should increase as the number of processors in the
node increases. But the cost of informing all processors
about the transaction is dependant on the number of

processors in the’ node. The total cost of telling all

processors about all transactions is proportional to the

product of the number of transactions and the number of

processors. This cost is N—squared in terms of the
number of processors.

Now that DP2’s new strategies have reduced the cost of a

transaction dramatically, the number of transactions that
can be handled by a processor has increased. As the

transaction rate increases, the penalty of adding a

processor becomes more noticeable.

By introducing buffers (boxcars) for the messages sent

between processors, the work for several transactions can

be done with one message. The cost then drops low enough
to be acceptable at 100 transactions per second on 16

processors. Notice that this does not remove the N-

squared nature of the algorithm. It simply lowers the
fixed cost of this function to a level at which the non

linearity is acceptable up to its ceiling of 16

processors.

2. Buffering of Commit Records

Currently, separate buffers are maintained in each

processor to hold commit records. The processor
containing the process that began the transaction buffers
the commit record. Using 16 buffers with 100
transactions per second would mean an average arrival
rate of 6.25 commit records per second into each buffer.
To wait for two or three records in the buffer would

impose an unacceptable delay in response time. This

means that the buffering (box cars) is ineffective.

By directing all commit records to one buffer, it becomes
reasonable to write an average of 10 records every .1

second.

C. Inter-Node (Network) Performance

Two major changes are being investigated to enhance the

performance of transactions that span 2 or more nodes
(network transactions). The first involves the mechanism by
which the state of a transaction is recorded on disc. The

second uses a different two-phased commit protocol to reduce

the number of disc I/Os necessary to commit a transaction.

— 15 —

1. Recording the State on Disc

Currently, a file is used in which a section is dedicated

to each active network transaction. •To record a change
in a transaction’s state (e.g., the transaction has

entered PHASE-i), the disc must seek to the dedicated

location in the file and update the section. This

approach ensures that an I/O must occur to change the

state of a transaction. Any other transactions changing
state at the same time will almost certainly use a

different part of the disc.

By using the log to hold records indicating changes in

the transaction’s state, we can use buffering (box cars)
to amortize the cost. If the records indicating changes
in the network transaction’s state share the same buffer

with the local transaction’s commit records, the benefits

are increased even more.

2. Reducing Network Changes of State

In the normal “Two Phased Commit Protocol” Gray78] used

by TMF, the home node of the transaction must notify the

remote node or nodes of the outcome of the transaction

once the remote nodes enter Phase—One of commit. Since

the home node must fulfill this obligation even if it

crashes, it MUST record on disc which nodes are remote

nodes for the transaction before asking them to enter

Phase-One.

By using a different protocol known as the “Presumed

Abort Protocol” MoLi83], this requirement can be

removed. The presumed-abort protocol simply changes the

rules so that if the home node fails or communication is

lost, the remote node will ask the home node about the

outcome of the transaction. If the home node has no

record of the transaction, the remote node may presume
that the transaction has aborted.

The change to the presumed abort protocol will mean that

one record on the remote node (Phase-One) and one record

on the home node (commit) must be written before the user

can be told that the transaction has been committed.

This saves one record write on the home node (the one

before Phase-One).

With the FOX communication line, the messages from node to

node are very inexpensive. By changing to the presumed-abort
protocol and writing records to the log (with buffering), the

cost of a network transaction should be reduced dramatically.

— 16 —

III. Mew Features

In addition to improving performance, Tandem is investigating a

number of features directed toward large distributed databases
with a special emphasis on high availability.

A. Replicated Databases

Many customers could use the ability to have their database

replicated at different nodes. This implies that any updates
are automatically made to enough copies of the database to

guarantee that a subsequent read of the data item will show
the change. To be of significant use, this mechanism must be

invisible to the user and available even if a subset of the

nodes are available. This would employ both Gifford’s

algorithm {Giff79] and some form of time—staged delivery to

reconcile unavailable nodes once they become available.

B. Database Migration

Suppose two nodes A and B were available in a network.
Database migration would consist of instructing the system to

take the database that resides on node A (or some part of it)
and copy that database to node B. As the database is being
copied, the TMF log is shipped to B as it is created (or
slightly later). Node B would process the log as it arrives,
and decide whether the updates in the log affect the part of
the database that it has received so far. If the updates are

to the part that node B has received, the partial database is

updated to match.

Eventually, the entire database is copied from A to B. If

updates to the database on A are momentarily suspended, B is
allowed to catch up, and B’s copy designated as the official

version, the migration is complete.

Customers requiring 24—hour-a—day access to their database

seriously need this mechanism. Any computer must have some

planned down time occasionally. It may be once a year to

install some new software, or once every 5 years to paint the

computer room.

C. Contingency Site

When a customer’s business ~depends on its database, it is

imperative that the database be accessible. This must be true

even in the face of fires, bombs, floods, or other calamities.
Such customers can survive a few minutes outage, but must

promptly regain service. The effects of transactions up
through shortly before the failure must be available.

— 17 —

In the previous section on database migration, there was a

point at which node A contained the official version of the
database and node B contained a copy that lagged momentarily
behind. This state could be the stable mode of operation. B

would function as a contingency site.

When B detected the loss of A, it would need to examine the

log that it had received so far. Any transactions that did
not have a commit record in the part of the log received by B

would be aborted and their updates undone. At this point, B

would start functioning as the official database. When A is
available again, database migration is employed to bring it
online.

S unun a r y

TMF is a fully featured distributed recovery and concurrency mechanism

presently in use at many customer sites. The challenges of very high
transaction rates, coupled with continuous availability, provide the
incentive to further enhance TMF in novel ways.

References

Bart78] Bartlett, J. F., “A ‘NonStop’ Operating System”, Eleventh
Hawaii International Conference on System Sciences,
1978.

Bart8l} Bartlett, J. F., “A NonStop Kernel”, Proceedings of Eighth
Symposium on Operating System Principles, ACM, 1981.

Borr8l] Borr, A. J., “Transaction Monitoring in ENCOMPASS:
Reliable Distributed Transaction Processing”, Proc.

Seventh International Conference on Very Large Data

Bases, September 1981.

Borr84] Borr, A. J., “Robustness to Crash in a Distributed
Database: A Non Shared-Memory Multi-Processor

Approach”, Proc. Tenth International Conference on Very
Large Data Bases, August 1984.

Giff79] Gifford, D. K., “Weighted Voting for Replicated Data”, ACM

Operating Systems Review, Vol 13, No 5, December 1979,
pp 150/162.

{Gray78] Gray, J. N., “Notes on Data Base Operating Systems”, IBM

Research Report RJ 2188, February 1978.

MoLi83J Mohan, C., and Lindsay, B. G., “Efficient Commit Protocols
for the Tree of Processes Model of Distributed

Transactions”, Proc. Second ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing, Montreal,
Canada, August 1983.

—18—

The TABS Projectl

Alfred Z. Spector

Department of Computer Science

Carnegie-Mellon University

Pittsburgh, PA 15213

Abstract

To simplify the construction of reliable, distributed programs, the TABS Project is performing
research in the construction and use of general purpose, distributed transaction facilities. As part of

this work, it has constructed a prototype and data objects that are built on it. The goals of the work

are to show that a distributed transaction facility can simplify programming some types of distributed

applications and that its performance can be satisfactory.

1. Introduction

The fundamental hypothesis of the TABS Project is that a general purpose, distributed transaction

facility is useful in simplifying the construction of distributed applications and that such a facility can

be implemented efficiently. We define a general purpose distributed transaction facility as a service

that supports not only such standard abstractions as processes and inter-process communication,

but also the execution of transactions and the implementation of data objects that can be called from

within them. Unlike a database system’s transaction facility that has been specialized to support only

a particular database model, a general purpose transaction facility is integrated into an operating

system arid supports a collection of data types in a uniform way.

There are many references in the literature as to why transactions simplify the synchronization and

recovery of collections of operations on shared, long-lived data objects. Gray succinctly discusses

the benefits of transactions Gray 80]. A general purpose distributed transaction facility provides

additional benefits. One is that arbitrary user-defined operations can be used within transactions.

The facility can support local or remoLe objects such as the tables and B-Trees frequently found in

database systems. but it can also support other types of objects, such as I/O objects and queue-like

objects. Another is that the facility may operate with better performance, because it has been

implemented within the operating system, possibly using specialized hardware. A final advantage is

that a common transaction facility should simplify the composition of activities that are implemented

in different subsystems, such as a relational database system and a hierarchical file system.

1This work was supported by the IBM Corporation, and the Defense Advanced Research Projects Agency, ARPA Order No.

3597, monitored by the Air Force Avionics Laboratory under Contract F33615-81-K-1539.

— 19 --

However, the challenges in constructing distributed transaction facilities are manifold. For

example, the algorithms for synchronizing and recovering typical database abstractions may not be

efficient enough for other types of abstract objects Schwarz and Spector 84, Weihl and Liskov 83].

Providing efficient-enough support for the fine grain operations that might be used in some

applications is difficult. Defining the system interface is not clear; for example, there is a question of

whether synchronization should be done explicitly by the implementor of a type, or automatically by

the system. The complexity of the facility itself makes it difficult to determine how the system should

be organized; there are many ways the facility’s process management, inter-process communication,

virtual memory management, recovery, transaction management, synchronization, and naming

components can interact.

The TABS Project at Carnegie-Mellon has been considering questions such as these. The Project

began in September 1982, and we have been considering the basic algorithms for using and

implementing transaction facilities. For example, new recovery algorithms and a novel replication

algorithm for directory objects are described in recent technical reports Schwarz 84, Bloch et al. 84].

In addition, we have built a prototype distributed transaction processing facility, called the TABS

Prototype Spector et al. 84, Spector et al. 85], with two goals:

• The first goal is to learn how well various applications and data objects are supported by

the TABS primitives. We have implemented queues, arrays, a recoverable display

package, a B-Tree package, and a bank record type suitable for simulating

Eli Anonymous et al. 85]. We are working on replicated objects that permit access

despite the failures of one or more processing nodes.

• The second goal is to measure the performance of the facility and to use the resulting

performance metrics as a base from which to predict how well general purpose

transaction facilities could perform. Because of the certain artifacts of the present

implementation, we do not expect its performance to be outstanding, but we can show

conclusively why transaction facilities with high performance can be produced.

The TABS prototype is functioning well and is described after a very brief survey of related work.

The last section presents the status of our work and our initial conclusions.

2. Related Work

Previous work on abstract objects and their implementation on distributed systems has influenced

TABS. The class construct of Simula, the client/server model as described by Watson Watson 81],

and work on message passing and remote procedure calls, such as described by Rashid and

Robertson Rashid and Robertson 81] and Birrell and Nelson Birrell and Nelson 84] have had major

influences on us. In TABS, objects are implemented within server processes, and operations on

objects are invoked via a location transparent message passing facility. Remote procedure calls are

used to reduce the programming effort of message packing, unpacking, and dispatching. Type.

specific locking, write ahead log-based recovery, and the tree-structured variant of the two-phase

— 20 —

commit protocol are the bases of the transaction-specific components of TABS Korth 83, Schwarz

and Spector 84, Harder and Reuter 83, Schwarz 84, Lindsay et al. 79J.

Related systems work includes the R distributed database management system and the Argus
programming language Lindsay et al. 84, Liskov et al. 83]. R~ logically contains a transaction facility
similar to that of TABS, though it is primarily intended to support relational database servers, and is

organized quite differently. Internally, Argus contains many facilities that are analogous to those of

TABS and R, but it has the more ambitious goal of making those facilities very easy to use.

3. TABS Prototype
The TABS Prototype is implemented in Pascal on a collection of networked Perq workstations Perq

Systems Corporation 84] running a modified version of the Accent operating system kernel Rashid
and Robertson 81]. At each node, there is one instance of the TABS system facilities and one or more

user-programmed data servers and/or applications that access the facilities of TABS. (See Figure
3.1)

Recovery

Manager

— Recoverable

Processes

Accent Kernel

Figure 3~1: The Basic Components of a TABS Node

Appi icat ion Appi ication

Object

Object

9!~ect 1
Data Server Data Server

— ,

Transaction

Manager

Communi cation

Manager

Name

Server

— TARS

System
Components

— 21 —

Each data server may encapsulate one or more objects of multiple types. Data objects are stored in

the virtual memory of data servers and operations are performed via request and response messages

directed to it. As mentioned, data servers use a write-ahead log-based recovery mechanism, which is

implemented with the cooperation of the Recovery Manager and Accent kernel.

TABS provides various libraries to support transaction initiation and commitment, synchronization

(performed via type-specific locking), recovery, lightweight processes in the data servers, and

naming. Example routines from the TABS libraries are listed in Table 3-1

Routine Purpose

ReadPermanentData(DiskAddress) Startup
returns (VirtualAddress, DataSize)

RecoverServer Startup

Acceptflequests(DispatchFunction) Startup

LockObject(ObjectlD, LockMode) Locking

IsO bjectLocked(ObjectlD) Locking
returns (Boolean)

PinObject(ObjectlO) Pinning

UnPinObject(ObjectlD) Pinning

PinAndBufferOldValueObject(ObjectlD) Pinning, Logging

BufferNewValueAndLog_Object(ObjectlD) Logging, Pinning

BeginTransaction(TransactionlD) Transaction Management
ret u rns(NewT ransac tion ID)

EndTransaction(TransactionlD) Transaction Management
retu rns(Boolean)

Abo rtTransaction(TransactionlD) Transaction Management

TransactionisA borted(TransactionlD) Transaction Management

(exception]

Signln(Name, Type, Port, ObjectiD) Naming

LookUp(Name, NodeName, RoqucstNum bor0fPortlDs, MaxWait) Naming

returns(ArrayOfPortlDPairs, ReturnNumberOfPortlDs)

Table 3-1: Partial Listing of TABS Library Interface

This table includes about one-halt of the routines provided in the TABS Library. Most of the routines are used by data servers

for the purposes of initialization, synchronization, and recovery. Others are used to initiate, commit, and abort transactions.

The remainder are used for naming.

With the exception of the coroutine facility and locking, which are implemented entirely with data

— 22 —

servers, most of the functions in TABS are implemented by four component processes that run on a

specially modified version of the Accent kernel (see Figure 3-1). A single TABS component process is

assigned to each of the functions of name management, network communication, recovery and log

management, and transaction commit supervision.

The functions of the TABS System components and the modifications to the kernel are summarized

below:

• The Accent kernel provides heavyweight processes with 32-bit virtual address

spaces Rashid 83]. Processes communicate via messages addressed to ports. The

TABS project has modified the kernel to permit data servers to use virtual memory to

store permanent, failure atomic objects and to provide the Recovery Manager with

special control over the paging of these recoverable data. The enhancements are

necessary to implement our logging protocols.

• The Recovery Manager has two principal functions. During normal operation, the

Recovery Manager acts as a log manager, accepting logging requests from data servers

and the Transaction Manager and writing the log when required. During recovery from

node failure, or during transaction abort, the Recovery Manager drives the Transaction

Manag& and data servers back to a transaction-consistent state.

• The Communication Manager is the only process that has access to the network. It sends

inter-node datagrams on behalf of the local Transaction Manager in order to implement
the distributed commit protocol, and it maintains a session for every communication link

between a local process and a remote data server.

• The Transaction Manager coordinates initiation, commit and abort of local and

distributed transactions.

• The Name Server maps object names into a set of possible locations.

Recent papers describe the implementation of TABS in more detail Spector et al. 84, Spector et al.

85].

4. Discussion

TABS began to operate in the Fall of 1984, but only recently could it support use by non.

implementors. As of March 1985, all the necessary facilities to support data servers with read/write

locking and value logging were operational. A compatible, operation (or transition) logging algorithm

that can be used in conjunction with the value logging algorithm has been fully implemented and

tested, but the libraries do not yet contain the necessary code to interface to it. We are also presently

working on the design of type.specific locking packages.

We have executed a variety of benchmarks on the prototype to gauge its performance. Typical

performance numbers are 72 milliseconds for local read-only transactions that page-fault the data

page and 244 milliseconds for local write transactions that modify an already resident data page. We

— 23 —

project that slightly changing the paging system and integrating the Recovery Manager and the

Transaction Manager into the kernel would improve these times to about 72 and 151 milliseconds,

respectively. With faster hardware, more disks, and a more efficient message passing

implementation, we believe the performance would be excellent Spector et al. 85].

Our performance evaluation shows that the current implementation of TABS has major

inefficiencies due to the division of the TABS system components into separate processes. Also, the

TABS physical log I/O, message passing, and paging facilities need re-implementation or tuning.

Future work on TABS should address these issues and look into programming and debugging

support for data servers. We have neglected these latter issues. Once we have complete support for

operation logging, a comparison of the relative merits of our two logging algorithms is needed.

Overall, our experience with programming data servers has made us conclude that the TABS

Prototype will make some applications easier to program, and that at least some applications need the

flexibility that TABS provides. Our performance analysis shows that a system based on the ideas of

the prototype should be quite efficient. Certainly, additional research is required to determine more

carefully the correct function and implementation of general purpose distributed transaction facilities,

but our experience with TABS prototype has led us to believe they are a good idea.

Acknowledgments

Acknowledgments to Joshua Bloch, Jacob Butcher, Dean S. Daniels, Daniel J. Duchamp, Jeffrey

L. Eppinger, Charles E. Fineman, Sherri Menees, Peter M. Schwarz who have contributed to the TABS

Project in many ways, and to Ruth McKillop for assistance with this paper.

References

Anonymous et al. 85)

Anonymous et al.

A Measure of Transaction Processing Power.

Technical Report TR 85.1 Tandem Corporation, January, 1985.

Submitted for Publication.

Birrell and Nelson 84)
Andrew D. Birrell, Bruce J. Nelson.

!mplementing Remote Procedure Cafis.

ACM Transactions on Computer Systems 2(1):38-59, 1984.

Bloch et al. 84] Joshua J. Bloch, Dean S Daniels, Alfred Z. Spector.

Weighted Voting for Directories: A Comprehensive Study.

Carnegie-Mellon Report CMU-CS-84- 114, Carnegie-Mellon University, April, 1984.

Gray 801 James N. Gray.

A Transaction Model.

IBM Research Report RJ2895, IBM Research Laboratory, San Jose, CA, August, 1980.

Harder and Reuter 83)
Theo Harder and Andreas Reuter.

Principles of Transaction-Oriented Database Recovery.

ACM Computing Surveys 15(4):287-318, December, 1983.

— 24 —

Korth 83] Henry F. Korth.

Locking Primitives in a Database System.
Journal of the ACM 30(1), January, 1983.

Lindsay et al. 79] Bruce G. Lindsay et al.

Notes on Distributed Databases.

IBM Research Report RJ2571, IBM Research Laboratory, San Jose, CA, July, 1979.

Also appears in Droften and Poote(editors), Distributed Databases, Cambridge University Press, 1980.

Lindsay et al. 84] Bruce G. Lindsay, Laura M. Haas, C. Mohan, Paul F. Wilms, and Robert A. Yost.

Computation and Communication in R: A Distributed Database Manager.
ACM Transactions on Computer Systems 2(1):24.38, February, 1984.

Liskov et al. 831 B. Liskov, M. Herlihy. P. Johnson, G. Leavent, R. Scheitler, W. Weihi.

Preliminary Argus Reference Manual.

Programming Methodology Group Memo 39, Massachusetts Institute of Technology Laboratory for

Computer Science, October, 1983.

Perq Systems Corporation 841

Perq System Overview

March 1984 edition, Perq Systems Corporation, Pittsburgh, Pennsylvania, 1984.

Rashid 83] Richard F. Rashid.

Accent Kernel lnteiiace Manual.

November, 1983.

Rashid and Robertson 81]
RichardRashimJ, George Robertson.

Accent: A Communication Oriented Network Operating System Kernel.

In Proceedings of the Eighth Symposium on Operating System Principles. ACM, 1981.

Schwarz-841 Peter M. Schwarz.

Transactions on Typed Objects.

PhD thesis, Carnegie-Mellon University, December, 1984.

Available as CMU Report CMU-CS-84-166.

Schwarz and Spector 84]
Peter M. Schwarz, Alfred Z. Spector.

Synchronizing Shared Abstract Types.

.4CM Transactions on Computer Systems 2(3):223-250, July, 1984.

Also available as Carnegie-Mellon Report CMU~CS-~3- 163, November 1983.

Spector et at. 84] Alfred Z. Spector, Jacob Butcher, Dean S. Daniels, Daniel J. Duchamp, Jeffrey L. Eppinger, Charles

E. Fineman, Abdelsalam Heddaya, Peter M. Schwarz.

Support for Distributed Transactions in the TABS Prototype.
In Proceedings of (he Fourth Symposium on Reliability in Distributed Software and Database Systems, pages

186-206. October, 1984.

Also available as Carnegie-Mellon Report CMU-CS-84-132, July 1984. To appear in Transactions On

Software Engineering.

Spector et al. 85] Alfred Z. Spector, Dean S. Daniels, Daniel J. Duchamp, Jeffrey L. Eppinger, Randy Pausch.

Distributed Transactions for Reliable Systems.

CMU Report CMLI-CS-85-117, Carnegie-Mellon University, April, 1985.

Submitted for Publication.

Watson 81] R.W. Watson.

Distributed system architecture model.

In B.W. Lampson (editors), Distributed Systems - Architecture and Implementation: An Advanced Course,

chapter 2, pages 10-43. Springer-Verlag, 1981.

Weihl and Liskov 83]
W. Weihl, 8. Liskov.

Specification and Implementation of Resilient, Atomic Data Types.
In Symposium on Programming Language Issues in Software Systems. June, 1983.

— 25 —

Atomic Data Types

William E. Weihl1
MIT Laboratory for Computer Science

545 Technology Square

Cambridge, MA 02139

(617) 253-6030

Arpanet: weihl@mit-xx

Abstract

Atomic data types can be used to build transaction systems that exhibit high levels of concurrency,

and at the same time have the modularity properties that normally accrue from using data

abstractions. In this paper we summarize our work on atomic data types, focusing on three issUes:

what makes a type atomic, how to specify an atomic type, and how to implement an atomic type.

1 Introduction

There are many applications in which the manipulation and preservation of long-lived, on-line data

is of primary importance. Examples of such applications include banking systems, airline reservation

systems, office automation systems, database systems, and various components of operating

systems. A major issue in such systems is preserving the consistency of on-line data in the presence

of concurrency and hardware failures. In addition, such systems often have strong performance,

reliability, and availability requirements. The goal of our research is to develop systematic techniques
for structuring and maintaining programs For such applications. Our focus is on distribuLed systems,

although many of the problems that we are studying arise as well in centralized systems. Our work is

being done in conjunction with the Argus project at MIT LISK83a,LISK83b].

Recent research, in both database systems (e.g., IESWA76, GRAY78, GRAY81I) and distributed

systems (e.g., LISK83a, REED78, SPEC84]), indicates that one effective way of structuring systems to

cope with concurrency and failures is to make the activities that use and manipulate data atomic.

Atomic activities are often referred to as actions or transactions; they were first identified in work on

databases. Atomic activities are characterized informally by two properties: serializability and

recoverability. Serializability means that the concurrent execution of a group of activities is

equivalent to some serial execution of the same activities. Recoverability means that each activity

appears to be all-or-nothing: either it executes successfully to completion (in which case we say that

it commits), or it has no effect on data shared with other activities (in which case we say that it

aborts).

Atomicity simplifies the problem of maintaining consistency by decreasing the number of cases that

need to be considered. Since aborted activities have rio effect, and every concurrent execution is

equivalent to some serial execution, consistency is ensured as long as every possible serial execution

of committed activities maintains consistency. Even though activities execute concurrently,

concurrency can be ignored when checking for consistency. In general, atomicity simplifies

1Support for this research Was provided in part by a graduate fellowship from the Hertz Foundation, in part by the Advanced

Research Projects Agency of the Department of Defense, monitored by the Office of Naval Research under contract

N00014-75-C-0661. and in part by the National Science Foundation under grant MCS79-23769.

- 26 -

reasoning about the correctness of a system, since one can reason about the partial correctness of

an individual activity (e.g., whether it preserves consistency) without considering the other activities

that might be present in the system.

We have been exploring an approach in which atomicity is achieved through the shared data

objects, which must be implemented in such a way that the activities using them appear to be atomic.

Objects that provide appropriate synchronization and recovery are called atomic objects; atomicity is

guaranteed only when all objects shared by activities are atomic objects. By encapsulating the

synchronization and recovery needed to support atomicity in the implementations of the shared

objects, we can enhance modularity. In addition, by using information about the specifications of the

shared objects, we can increase concurrency among activities. For example, it the specifications of

the types imply that two operations commute, we can allow activities to execute the operations

concurrently, even if both operations update the same object. Other researchers have also

recognized the potential performance gains of using information about the specifications of objects in

this way; numerous examples can be found in ALLC83, REUT82, SCHW84, WEIH84, WEIH85a].

Atomic objects are encapsulated within atomic abstract data types. An abstract data type consists

of a set of objects and a set of primitive operations; the primitive operations are the only means of

accessing and manipulating the objects LISK74]. In addition, the operations of an atomic type

ensure serializability and recoverability of activities using objects of the type.

We have been studying the following three questions about atomic types:

• What is an atomic type? We need a precise characterization of the behavior of atomic

types. For example, we need to know how much concurrency can be allowed by an

atomic type.

- How do we specify an atomic type? What aspects of the type’s behavior must appear in

the specification of an atomic type, and how should the specification be structured?

• How do we implement an atomic type? What problems must be solved in implementing an

atomic type, and what kinds of programming language constructs make this task simpler?

In the next three sections of this paper we summarize our work to date on these questions. We begin
in Section 2 by discussing our specification method for atomic types. Then, in Section 3, we discuss

what it means for a type to be atomic. Next, in Section 4, we discuss issues involved in implementing
atomic types. Finally, in Section 5, we summarize our results and discuss directions for further

research.

2 Specification Method

A type’s specification serves as a kind of contract between the implernentor of the type and its

users: the implementor guarantees that the type’s behavior will obey the specification, and the users

rely on this guarantee. Most importantly, however, the only assumptions that the users of a type can

make about the type’s behavior are those given in the type’s specification. Thus, the implementor of a

type has complete freedom in making implementation decisions, as long as the implementation
satisfies the specification.

In writing specifications for atomic types, we have found it helpful to pin down the behavior of the

operations, initially assuming no concurrency and no failures, and to deal with concurrency and

— 27 —

failures later. In other words, we imagine that the objects exist in an environment in which all

activities are executed sequentially, and in which activities never abort. We call this specification of a

type’s operations the serial specification of the type. The serial specifications of atomic types are

particularly useful in reasoning about an activity that uses atomic objects. The atomicity of activities

means that they are “interference-free,” so we can reason about the partial correctness of an

individual activity without considering the other activities that might be sharing objects with it

BEST81]. This reasoning process is essentially the same as for sequential programs; the only
information required about objects is how they behave in a sequential environment. The serial

specification of an atomic type describes the assumptions that a single activity can make about the

behavior of the type’s objects, and serves to define the correct serial executions involving objects (f

the type.

As we illustrate in Section 3 below, many different protocols can be used to ensure atomicily.

However, if different types use different protocols, atomicity can be violated. To be able to ensure

that the protocols used by different types are compatible, the specification of an atomic type must

include some information about how the type manages concurrency and failures. We use the

behavioral specification of a type to describe the concurrent executions permitted by the type. In

Section 3, we discuss constraints on the behavioral specifications of the types in a system that ensure

that the types cooperate to guarantee atomicity.

A specification of an atomic type should probably include other requirements, perhaps related to

performance. For example, for a system designer to be able to make statements about the level of

concurrency among activities in a system, the specification of each type shared by the activities must

include requirements on the amount of concurrency that must be provided by an implementation of

the type. Similarly, a type’s specification should include information about how implementations of

the type are permitted to deal with deadlocks. The form and content of such additional requirements

are the subject of future research.

3 Defining Atomicity
Our goal in defining atomicity for types is to ensure that, if all objects shared by activities are atomic,

then the activities are serializable and recoverable — i.e., atomic. Atomicity of activities is a global

property, because it is a property of all of the activities in a system. However, atomicity for a type’s

objects must be a local property: it deals only with the events (invocations and returns of operations

and commits and abort of activities) involving individual objects of the type. Such locality is essential

if atomic types are to be specified and implemented independently of each other and of the activities

that use them.

In WEIH84] we explored three local properties of types, each of which suffices to ensure that

activities are atomic. In addition, each of the three properties is optimal: no strictly weaker local

property suffices to ensure atomicity of activities. In other words, these properties define precise
limits on the concurrency that can be permitted by an atomic type. The three properties characterize

respectively the behavior of three classes of protocols: protocols like two-phase locking (e.g., see

ESWA76, MOSS81]), in which the serialization order of activities is determined by the order in which

they access objects; multi-version timestamp-based protocols (e.g., see REED78]), in which the

serialization order of activities is determined by a total order based on when activities begin, rather

than on the order in which they access objects; and hybrid protocols (e.g., see BERN8la, CHAN82,

DUBO82, WEIH85b]), which use a combination of these techniques. We use the terms dynamic

atomicity, static atomicity, and hybrid atomicity to denote the three properties.

— 28 —

The existence of several distinct definitions of atomicity for types indicates that there are many

different ‘kinds” of atomic types, not all of which are compatible. For example, atomicity of activities

is ensured if all types shared by activities are dynamic atomic; however, atomicity is not guaranteed ii

static atomic types and dynamic atomic types are used in the sa~me system. As a result, a system

designer must choose which kind of atomic type to use in a given system.

In the remainder of this section we sketch the definition of dynamic atomicity. Our approach is

informal, and is intended only to convey some intuition to the reader. More precise definitions of all

three local atomicity properties that we have studied can be found in WEIH84].

Dynamic atomicity characterizes the behavior of objects implemented with protocols which

determine the serialization order of activities dynamically based on the order in which the activities

access the objects. The essence of such protocols is the notion of delay: if the steps executed by

one committed activity conflict with the steps executed by another committed activity, then one of the

activities must be delayed until the other has committed. However, an implementation of dynamic

atomicity need not actually delay activities to achieve this effect. All that is necessary is that the

overall effect for committed activities be as if conflicts were resolved by delays. Indeed, an optimistic

protocol, which resolves conflicts by aborting some activities when they try to commit, could be used

to implement dynamic atomicity.

Typical definitions of atomicity in the literature state that two activities conflict if an operation

executed by one does not commute with an operation executed by the other. For example, if one

activity reads an object written by another (or vice versa), then the two activities conflict. We have

found that straightforward generalizations of these definitions do not lead to an optimal local

atomicity property. Since we are interested in understanding the limits on concurrency that are

needed locally to ensure global atomicity, we have taken a slightly different approach. Rather than

focusing on the conflicts between operations executed by activities, we look at the possible orders in

which the committed activities can be serialized i.e., the orders in which the activities can be

executed serially so that they execute exactly the same steps. The existence of a conflict between

two activities typically implies a constraint on the orders in which the activities can be serialized. For

example, if one activity reads a value written by another, the first activity must be serialized after the

second. This emphasis on the possible serialization orders leads to a more basic and more general
definition of atomicity.

An important feature of our framework is that the question of whether an execution is serializable in

a given order is resolved by looking at the serial specifications of the objects involved in the

execution. In other words, whether activities are serializable depends only on their expectations

about the objects as defined by the serial specifications, and not on some pre-defined model of

execution (e.g., that all operations are reads or writes). In defining atomicity, we ignore what happens

inside the implementation of an object, and focus on what is observable at the interface between the

objects in a system and the activities that use them. Since the serial specification of each type defines

what is acceptable in a serial execution, we define serializability in terms of it.

Our intuition about delays and conflicts can be restated as follows: if two activities a and b are

concurrent (neither is delayed until the other has committed), then they must be serializable in both

possible orders (a followed by b and b followed by a); if one is delayed until the other has committed,

then they must be serializable in the order in which they commit. These ideas are captured more

precisely in the following definitions.

— 29 —

First, we need to define the notion of delay. We do this as follows: given an execution h, define the

binary relation precedes(h) on activities to contain all pairs <a, b> such that some operation invoked

by b in h terminates after a commits in h.2 The relation precedes(h) captures our intuitive notion of

delay: if b is delayed until alter a commits in an execution h, then <a,b> will be in precedes(h).

Now, if two committed activities are concurrent (i.e., unrelated by precedes), dynamic atornicity

requires them to be serializable in both possible orders. In general, dynamic atomicity requires all

executions h permitted by an object to satisfy the following property: the committed activities in h

must be serializable in all total orders consistent with precedes(h). As noted in WEIH84J, natural

restrictions on executions guarantee that the “precedes” relation is a partial order, ensuring that

there are total orders consistent with it.

We have shown WEIH83, WEIH84] that if all objects in a system are dynamic atomic, then the

activities in the system are atomic. The proof hinges on the fact that objects never “disagree” about

the “precedes” relation: there is always at least one total order that is consistent with all of the local

“precedes” relations. Thus, ii each object ensures serializability in all total orders consistent with its

local “precedes” relation, then the objects will agree on at least one (global) serialization order. This

means that dynamic atomicity satisfies our goals for a local atomicity property. As mentioned earlier,

we have also shown WEIH84] that dynamic atomicity is an optimal local atomicity property: no

strictly weaker (i.e., more permissive) local property of objects suffices to ensure global atomicity.
This shows that dynamic atomicity defines a precise limit on the amount of concurrency that can be

permitted by an atomic type.

4 Implementation Issues

Many issues are raised by the problem of implementing atomic types. Among those that we have

studied are: concurrency control protocols that use information about the specifications of types to

permit more concurrency, structuring techniques for implementations of atomic types, and linguistic

support for atomic types. Each of these is discussed below.

4.1 Protocols

The local atomicity properties described above define precise limits on the amount of concurrency

that can be permitted by an implementation of an atomic type, but they do not indicate exactly how to

implement an atomic type. An important problem is the design of general and efficient protocols that

use information about the specifications of types to achieve some or all of the concurrency permitted

by a given local atomicity property. We have focused most of our efforts to date on dynamic

atomicity, in part because it characterizes the behavior of known two-phase locking protocols, which

are probably the most widely used concurrency control protocols, and in part because it has been

adopted as the standard local property for atomic types in Argus LISK83a, LlSK83bJ.

Two phase locking protocols (e.g., see ESWA76, BERN81b, KORT81, SCHW84, WEIH84]) give

relatively simple and efficient implementations of dynamic atomicity. However, dynamic atomicity is

more general than two-phase locking, in the sense that it permits more concurrency than can be

achieved by an implementation based on known two-phase locking protocols. These protocols have

2Note that there is a distinction between an activity completing by committing or aborting, and an operation terminating by

returning information. An activity may execute any number of operations before completing. In addition, it is possible for b to

commit after a in h, yet for all of b’s operations to terminate before a commits; in this case the pair <a,b> is not in precedes(h).

— 30 —

two structural limitations that prevent them from achieving all of the concurrency allowed by dynamic

atomicity. First, they are conflict-based: synchronization is based on a pair-wise comparison of

operations executed by concurrent activities. In contrast, dynamic atomicity depends on the

sequences of operations executed by activities. Second, the protocols are history-independent:

synchronization is independent of past history, in particular the operations executed by committed

activities. In contrast, dynamic atomicity depends on the entire execution. A more detailed

discussion of these limitations, and example implementations that achieve a level of concurrency that

cannot be achieved by a locking implementation, can be found in WEII-184J.

4.2 Implementation Structure an~1 Linguistic Support
A basic question that must be addressed for the potential benefits of atomic types to be realized is

how to implement an atomic type. One implementation problem, discussed above, is the design of

concurrency control. and recovery protocols. Another problem of equal importance is how to

structure the implementation of an atomic type. Given a particular structure for implementations, we

can then consider the design of programming language constructs that support the chosen structure.

We have explored two different structures for implementations of atomic types. One is the structure

supported by the constructs in Argus WEIH85AI. In Argus, the programmer relies on the system to

update the representation of an object as activities that used the object commit and abort. In

addition, the names of the activities executing operations are not available to the user program. This

approach can be characterized as implicit in that much of the management of synchronization state

(e.g., locks) and recovery information is handled by the underlying system. An alternative that we

explored in WEIH84] is to permit user code to use the names of activities, and for the programmer to

supply code that is run when activities complete to update the representations of objects. This

approach is more explicit in that the programmer can manage synchronization and recovery directly.
The main conclusion that we have drawn from analyzing these two approaches is that the Argus

approach has relatively limited expressive power, particularly with respect to the efficiency of

blocking activities when a conflict occurs and then unbiocking them when the conflict is resolved.

The alternative that we have explored can express certain structures more conveniently and more

efficiently, but the resulting programs are sometimes more complicated. We note, however, that

neither approach leads to simple implementations that are easy to understand.

5 Conclusions
We have been studying an organization for distributed systems based on the use of atomic activities

and data abstractions. Atomicity provides two benefits: it allows us to specify an abstract data type in

essentially the same way as we would specify a type in a sequential system, and it permits us to

reason about the partial correctness of an individual activity while ignoring concurrency and failures.

Data abstractions, as in sequential systems, are important for modularity. The implementation of an

atomic type can be verified independently of which actions use objects of the type and of other types

shared by those actions. In addition, our emphasis on abstraction permits us to achieve high

performance without sacrificing atomicity. In particular, atomicity is only important at the abstract

level;~ it is not necessary that activities~ appear atomic wheftviewed ~at the level of the representations
of the shared atomic objects. The specification of a type determines the limits on the concurrency

among activities that can be permitted by an implementation; as illustrated earlier, significantly more

concurrency is permitted by the specification of many types than can be achieved, for example, by

treating the operations as reads and writes.

The modularity properties resulting from this organization are especially useful if a system performs

— 31 —

poorly because of internal concurrency limitations. In such a case, it may be possible to identify
certain shared objects as bottlenecks, and to substitute more concurrent (albeit more complex)

implementations for the types defining those objects. Thus, it may be possible to trade simplicity for

concurrency systematically.

As we mentioned earlier, this work is being performed in conjunction with the Argus project at MIT.

Argus is a programming language and system designed to support the implementation of distributed

systems. As discussed above, it contains constructs that support the implementation of user-defined

atomic types, as well as other constructs that help manage other problems of distribution and

reliability. Argus is currently running on a collection of DEC VAX-11/750 machines connected by a

network. We are beginning to build apptications so that we can evaluate both the language and the

overall approach to structuring distributed systems. We also hope to use Argus as a base for

experimenting with other ways of structuring implementations of atomic types, such as the explicit

approach discussed earlier.

6 Acknowledgements
I am indebted to all the members of the Programming Methodology Group at MIT for their many

contributions to my work on atomic types, and for their combined efforts on Argus. In addition, I

would like to thank Gary Leavens, Barbara Liskov, and Brian Oki for their helpful comments on drafts

of this paper.

7 References

ALLC83] Allchin, J., and McKendry, M. Synchronization and recovery of actions. In Proceedings
of the Second Annual ACM Symposium on Principles of Distributed Computing, pages

31-44. Montreal, Canada, August, 1983.

BERN81a} Bernstein, P., and Goodman, N. Concurrency control in distributed database systems.

ACM Computing Surveys 13(2): 185-221, June, 1981.

BERN81b] Bernstein, P., Goodman, N., and Lai, M.-Y. Two part proof schema for database

concurrency control. In Proceedings of the Fifth Berkeley Workshop on Distributed

Data Management and Computer Networks, pages 71 -84. February, 1981.

BEST81] Best. E., and Randell, B. A formal model of atomicity in asynchronous systems. Acta

Informatica 16: 93-124, 1981.

CHAN82J Chan, A., et a!. The implementation of an integrated concurrency control and recovery

scheme. Tecnnical Report CCA-82-O1, Computer Corporation of America, March, 1982.

DUBQ82} DuBourdieu, D. Implementation of distributed transactions. In Proceedings of the Sixth

Berkeley Workshop on Distributed Data Management and Computer Networks, pages

81-94. 1982.

ESWA76] Eswaran, K., et a!. The notions of consistency and predicate locks in a database system.

CACM 19(11): 624-633, November, 1976.

GRAY78] Gray, J. Notes on Database Operating Systems. In Lecture Notes in Computer Science,

Volume 60: Operating Systems — An Advanced Course. Springer-Verlag, 1978.

GRAY81] Gray, J. The transaction concept: virtues and limitations. In Proceedings of the 1981

VLDR Conference, pages 144-154. IEEE, 1981.

— 32 —

KQRT81J Korth, H. Locking protocols: general lock classes and deadlock freedom. PhD thesis,
Princeton UnIversity, 1981.

L1SK74J Liskov, B., and Zilles, S. Programming with abstract data types. In Sigplan Notices,
Volume 9: Proceedings of the ACM SIOPLAN Conference on Very High Level

Languages, pages 50-59. ACM, 1974.

LISK83a] Liskov, B., and Scheifler, R. Guardians and actions: linguistic support for robust,
distributed programs. ACM Transactions on Programming Languages and Systems
5(3): 381 -404, July, 1983.

LISKB3bI Liskov, B., et a!. Preliminary Argus reference manual. Programming Methodology
Group Memo 39, MIT Laboratory for Computer Science, October, 1983.

MOSS81] Moss, J. Nested transactions: an approach to reliable distributed computing. PhD

thesis, Massachusetts Institute of Technology, 1981. Available as Technical Report
MIT/LCS/TR-26o.

REED78] Reed, D. Naming and synchronization in a decentralized computer system. PhD thesis,
Massachusetts Institute of Technology, 1978. Available as Technical Report
MIT/LCS/TR -205.

REUT82] Router, A. Concurrency on high-traffic data elements. In Proceedings of the

Symposium on Principles of Database Systems, pages 83-92. ACM, Los Angeles, CA,
March, 1982.

SCHW84J Schwarz, P., and Spector, A. Synchronizing shared abstract types. ACM Transactions

on Computer Systems 2(3), August, 1984.

SPEC84] Spector, A., et a!. Support for distributed transactions in the TABS prototype. Technical

Report CMU-CS-84- 132, Carnegie-Mellon University, July, 1984.

WEIH83] Weihi, W. Data-dependent concurrency control and recovery. In Proceedings of the

Second Annual ACM Symposium on Principles of Distributed Computing, pages 63.75.

Montreal, Canada, August, 1983.

WEIH84] Weihi, W. Specification and implementation of atomic data types. PhD thesis,
Massachusetts Institute of Technology, 1984. Available as Technical Report
MIT/LCS/TR-31 4.

WEIH85aJ Weihi, W., and Liskov, B. Implementation of resilient, atomic data types. ACM

Transactions on Programming Languages and Systems, April, 1985.

WEIH85b] Weihi, W. Distributed version management for read~only actions. In Proceedings of the

Fourth Annual ACM Symposium on Principles of Distributed Computing, August, 1985,
to appear.

— 33 —

Improving Availability and Performance of
Distributed Database Systems

Arvola Chan and Suni]. Sarin

Computer Corporation of America
1~ Cambridge Center
Cambridge MA O21~l2

(617J 492—8860

Abstract

This paper surveys three ongoing projects at Computer Corporation of
America aimed at improving the availability and performance of database
systems through innovations in transaction management~ techniques.

1. Introduction

Concurrency control, replicated data handling, and recovery management
all have major impact on the availability and performance of a database
system, especially in a distributed envirorinent. This paper surveys three
ongoing projects at CCA aimed at improving the availability and performance
of database systems through innovations in each of these areas. The first
project, sponsored by DARPA and NAVELEX, involves the develojmient of a

prototype homogeneous distributed database system for a geographically
dispersed envirorinent. This system is designed to support transparent data
replication in order to provide high availability in the face of site
failures. However, it is not equipped to handle network partition situa
tions. The problem of achieving high availability in the presence of

arbitrary communication failures, including network partitions is addressed
in our second project. Sponsored by DARPA and the Air frorce Systems
Command, this latter project is aimed at designing and prototyping transac
tion management algorithms for applications which require continued opera
tion and which can trade some loss of data integrity for high availability.
Our third project, currently supported by internal R&D funds, is aimed at

addressing the real time (or near real time) requirements of defense
mission-critical applications.

2. Homogeneous Distributed Databases

LDMJDDM is a database system under developnent at CCA for operation
within the Ada programming environment (CHAN8I, CHAN83a, CHAN85bJ. This
system has been built from the ground up, starting with a local data manager
(LDM) which can operate both stand alone and as a component of a distributed
system. LDM incorporates a semantically rich data model and has been ape-.
cially engineered to support operations of the distributed data manager
(DDM). Applications and end users of DDM are shielded from almost all
complexities that may arise from data allocation and site failures. The

following is a brief summary of LDM/DDM innovations in the area of transac
tion management. As of this writing, the implementation of LDM is complete.
The implementation of DDM is well underway and is expected to be completed
by the end of the year. All of the DDM features described in the following
discussions have been implemented and have undergone some preliminary test
ing.

~peeding j~.p lead—only Transactions

Moat database systems maintain before images of data objects in order
to support transaction and system recovery. In LDM/DDM these old versions
of’ data objects are exploited to improve the achievable degree of

concurrency among transactions, through the distinction of read—only
transactions from update transactions. Concurrent access to the same

Portions of this research were supported by the Defense Advanced Research

Projects Agency of the Department of’ Defense (DARPA), the Naval Electronics
Systems Command (NAVELEX) and the Liz’ Force Systems Command at Rome Air’

Develo~mient Center (RADâ) under contracts N00039—82—C—0226 and F30602—814—
C—0112. The views and conclusions contained in this document are those of
the authors and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of DARPA, NAVELEX, RADC, or

the U.S. Government.

— 34 —

logical data object is facilitated by requiring that update transactions
create new versions rather than overwrite old versions, and that appropriate
versions are read by read-only transactions. The salient features of the
multi—version scheme implemented in LDM (CHANB2) include:

1. Conflicts between read—only transactions and update transactions are
completely eliminated.

2. Read—only transactions never have to be aborted because of the unavai
lability of appropriate object versions.

3. Garbage collection of old object versions can be carried out effi
ciently.

The scheme calls for each object version (page) in the physical
database to be labeled with the identifier of its creating transaction and
the use of’ a single common pool of pages, called the version pool, for stor
ing the old versions of pages potentially needed by in—progress transac
tions. Each read—only transaction is required to obtain a Completed
Transaction List (CTh) at the time of its initiation. The CTh is a compact
representation of the identities of all update transactions that have
completed execution (either committed or aborted) at a given time. Read—
only transactions set no locks and therefore do not conflict with update
transactions. They see a consistent snapshot of the database by reading the
latest version of each needed data object that has been created by a

transaction that is on its associated CTh. The efficacy of this multi—
version scheme in an envirorinent where long read—only transactions are

present with update transactions has been demonstrated in a simulation study
CARE~4]. An efficient extension for operation within a distributed
envirormient is described in CHAN85a]. The extension requires a minor
modification to the protocol used for achieving atomic commitment of
transactions. Certain transaction completion information (potential
transaction dependency information), in the form of differential CTLs, must
be propagated during the execution of the commit algorithm. Such dependency
information is piggybacked on messages already needed for achieving atomic
conunitment such that no additional messages are introduced.

Speeding J1.~ Update Transactions

Database fragments in DDM are collected into groups which form the
units for replication (CHAN83b]. Let X be a fragment group that is to be
replica ted n times, at sites Si

...,
Sn. Two kinds of’ fragment grou

copies are distinguished. The £BA can designate k (less than or equal to n
of these as~ sites for the fragment group. The remaining (n—k) sites
are treated as~ sites. Regular sites are used for storing copies to
be used during normal transaction processing backup sites are used to
improve resiliency in the presence of site failures. In general each
replicated copy of the fragment group X can be in one of three states:
online, offline or fa1.l~d Online copies are accessible, up-to—date, and
updated synchronously. Offline copies are accessible, normally out—of—date,
and are updated only in a background fashion. Failed copies are of course
inaccessible. Where possible the system will maintain k online copies of
fragment group X, preferrafly at the k regular sites. As sites fail and
recover, the system will automatically bring of fline copies online and vice
versa, in order to maintain the desired degree of resiliency and availabil
ity. By limiting the number of online copies at any one time, response to
update transactions can be improved. At the same time, resilency against
total failures SKE~3] can be assured by specifying an adequate number of
regular and backup copies. In the unlikely event that a total failure does

occur, DDM is designed to provide automatic recovery without bimian lnterven—
tion.-

Site Status Monitoring

Data replication is used in DDM to improve data availability, so that
retrievals and updates (in particular) can be performed even when some sites
in the system are not operational. The correct implementation of
distributed updates over replicated copies of data in DDM requires that site
status be monitored constantly. Dt*4 employs the available copies approach
BERN811] to replicated data handling (i.e., the policy of requiring read

- 35 -

operations to read a single copy, and update operations to update all avail
able copies). However, there is one subtlety in the implementation of two—
phase locking under this policy, as employed in DDM. Consider a database
that contains logical data items X and Y and copies Xa Xb, Ye Yd. Ti is a
transaction that reads X and writes Y; T2 is a transaction that reads Y and
writes X. The following execution (which obeys the above specified policy)
is incorrect because the multiple copies do not behave like a single logical
data item.

R(T1, Xa) ——> d fails ——> W(Tl, Ye)

R(T2, Yd) ——> a fails ——> W(T2, Yb)

Part of the problem arises from the fact that the site coordinating Ti
learns of site d’s failure before that of site a; whereas the site
coordinating T2 learns of the two sites’ failures in an opposite order. A

reliability algorithm that eliminates the incorrect behavior is discussed in
(G00D83]. DDM implements a more optimized version of the algorithm that
makes use of the site status monitoring protocol proposed in (WALTB2] for
detecting site railures, and a primary site mechanism for propagating site
failure information. (There are well—defined rules for succession to

primacy if the ourrent primary site fails.)

Incremental Site Recovery

When a failed site recovers, it is necessary to bring it up—to-date
before it can participate in new transaction processing. This is especially
the case when data is replicated and when updates continue in the presence
of site failures. In early distributed systems that support data replica
tion, such as SDD—1, site recovery is an all—or—none process. To be cull
recovered, a site in SDD—1 (HA?*fO] Is required to process all, messages tha
have been buffered for it since its failure. In (ATTA82), a more incremen
tal approach is suggested. Essentially, the portion of a database that is
stored at a site is subdivided into units for recovery. A site can

prioritize the recovery of different units and bring them up—to-date one at
a time. A unit that is up-to-date can be used immediately to process new

transactions independently of the recovery of other units.

Instead of ~spoolingN all messages destined for a site that is not
operational. (HAt1}~O], the recovery algorithm in (ATTA82] reads an up-to-date
copy of a recovery unit from another site. A more practical implementation
scheme using a differential file approach is employed in DDM. A roll—
forward log is maintained at the site of each up-to—date copy, so that only
updates that have not been applied to the out—of—date copy need to be
transmitted to the remote recovering site. The scheme also allows each
operational. site to keep track of when a cohort site (i.e., another replica
tion site) fails, so as to determine which portion of the recovery log for a

specific recovery unit needs to be sent. In contrast to a local database
system, portions of a recovery log must be stored on disk to permit easy
access. Portions that will not be needed for rolling forward currently
out—of—date copies can be archived to tape. The site for each up-to-date
copy maintains sufficient information in its log to determine what portion
of the log can be migrated, so archival can be done independently at each
up-to-date site without synchronization.

3. Partition Tolerant Distributed Databases

In a separate project, we are developing techniques for ensuring avai
lability of a distributed database in the face of network partitions and
other failures. In many applications such as banking inventory control,
and transportation scheduling, continued servicing oF database queries and
updates is of extreme importance even when a site is disconnected fran all.
other sites; the application would rather suffer some loss of integrity than
lose the business and goodwill of its custccers. Concurrency control
techniques that guarantee serializability even in the face of network parti
tions are too conservative and do not provide sufficiently high availabil—
~ty e.g. on~,y allowing a majority group of sites to continue operation
LGItF79 TI~OM79J or severely restricting the kinds of transactions that can
be perlormed by each group of sites SR:EE8U. Increased availability can

only be achieved by relaxing transaction serializability and integrit
requirements, allowing the database to be updated in both (or all) sides o

— 36 —

the partition and reconciling inconsistencies after the fact.

Most existing approaches to this problem DAVI8~1, PARK83, GARC83J)
assume “discrete” network partitions and reconnections: It is necessary for
sites to agree on an “uplist” of accessible sites and possibly switch
operating “modes” on each partition or reconnection, and further partitionsand reconnections that may occur while switching modes (especially duringthe “merge phase” after a reconnection) introduce complications that arehard to deal with. If site failures cannot be distinguished from network
partitions (and it has not been convincingly established that they can),then every site failure or recovery must be treated as a “partition” or“reconnection” that requires a change of mode. The approach we are taking(which was Originally postulated in BLAIJ83)) is for a site to operate in asingle “mode” regardless of which and how many other sites it cancommunicate with. Each site is in effect a1wa~s “partitioned” from the restof the system and Continuously reconciles its database copy as it receivesnotification o1 database updates from other sites. Site failures and network partitions require no special treatment, because they manifest than—
selves only as very long communication delays.

For simplicity we assume a

r~enlicated distributed database.(This is an assumption that we vii re ax at a later date, allowing partialreplication in order to accommodate sites with limited storage capacity.)In addition to a copy of the application database, each site maintains ahistory of all database updates it has received so far. Updates issued byusers and application programs “commit” without any inter—site synchronization. Sites are informed of updates only after the fact with the systemensuring that every site eventually sees every update. h any given time, asite presents its users and application programs with the “best” possibleview of’ the database that it can, reflecting those updates that it hasreceived so far. Different sites may receive updates in different orders;to ensure eventual mutual consistency of the database copies, ttmestam~ areused to determine a unique order in which updates should be reflected in thedatabase.

Each site runs three software modules; the interaction

the application database and the update history is shown in Figure 3.1. TheInterface module interacts with users and application programs, querying thedatabase and accepting updates which are appended to the history.
The Distributor module handles inter—sIte communication and ensuresthat all sites eventually see~alT ~~dates. Updates issued by a site’sInterface module are sent to all other sites using a reliable broadcastprotocol based on AwER8II). Updates received from other sites are appendedto the local copy of the history.

The Checker reads updates from the history and installs their effectsinto the application database. Updates from different sites will not alwaysbe received in timestamp order, but the Checker must ensure that the effecton the database is as if the updates were processed in timestamp order. The

)ISTRTh~

of these with

other
sites

Figure 1. Site Architecture

— 37 —

Checker uses a techn.ique called .k~g Transiormation to integrate newly—
received updates with any higher—timestamped updates that have already been

processed. Conceptually, each higher—timestamped update is rolled back so

that the database state now. reflects only those updates with timestamps
smaller than the newly—received ones; then, the newly—received updates and
the updates which were rolled back are executed in timestamp order. The
database state now reflects all received updates executed in timestamp
order. Log transformation exploits semantic properties of the updates in
order to achieve the same effect more efficiently, i.e., with less rollin
back and redoing of updates. Updates with non—intersecting read— an

write—sets always commute; the same result is obtained regardless of the
order of execution, and it is therefore unnecessary to rollback and redo
such updates. Updates to the same data item in general do conflict, but

again there are many special cases where rollback and redo can be avoided.
“Increment” type updates (e.g., deposits to and withdrawals from a bank

account) also commute, and can be applied in any order. Or, if an update
overwrites (i.e., completely replaces) the value of a data item, an

earlier—tlmestamped update to the same data item can be discarded. Log
transformation was first introduced in BL.AU83] for the discrete partition
scenario; it has since been refined and adapted for the continuous operation
model and is described in BLAU85). We are currently implementing log
transformation in a prototype distributed system that uses Ingres as the
local DBMS at each site.

Because database updates are committed without inter—site synchroniza
tion, the application may need to comPensate for non-serializable execution.
For example, users at two sites may withdraw money from the same bank

account, each believing that there is still money remaining in the account,
but the total amount withdrawn may be such that the resulting account bal
ance is negative. In this case, the bank might assess a service charge on

the overdrawn account and send the customer a letter demanding payment.
Compensation is handled by application programs, running in the Interface

module, that are tri~~ered ESWA76) on the occurrence of exception condi
tions (such as negative account balances), perhaps after some specified
delay. Triggered programs may perform actions on the external world (print
a letter or notify an authorized user to investigate the problem) and/or
issue further database updates which are processed by the Distributor and
Checker as already described.

Meanwhile, we are continuing research into making the system
architecture more usable. This primarily involves designing inter—site
communication protocols at both the system and application levels. We have

developed protocols for: initialization of the distributed system; orderly
system shutdown; dynamically adding new sites; removing sites that are

malfunctioning or permanently dead; and determining when old updates are no

longer needed for log transformation and can be discarded from the update
histories. We are also beginning to develop methods for supporting: partial
replication of both the application database and the update history; and

schema update, which requires some extra mechanism in our system because a

site may receive an update to a new field, say, before receiving the schema

update that created the field.

At the application level, we are exploring probabilistic ways of

combining the integrity advantages of traditional atomic transactions with

the availability advantages of our architecture. One promising technique is

for a site wishing to update the database to synchronize (using a message
similar to a lock request) with as many sites as it can within a reasonable

time interval, before issuing the update. Then, if all sites are up and

communicating, almost all interactions will be serializable and the need to

compensate after the fact will be minimized. When there are communication

delays or partitions, interactions will not in general be serializable, but
mutual consistency will never be compromised because of the underlying lo
transformation mechanism. This mixed approach has the advantage tha

compensation is invoked only when necessitated by failures and partitions,
not when all sites are up and communicating normally. It also allows the

application to trade integrity for availability, e.g., by adjusting the
rameter that determines how long a site should wait for responses to a

lock request” or by making permissible updates at a site (e.g. ,
the

maximum amount that can be withdrawn from an account) be some function of
how many sites are in communication with the given site. Such probabilistic
synchronization among sites will also be useful in minimizing problems

— 38 —

introduced by our architecture such as “over—compensation” (on noticing an

exception condition two or more sites concurrently perform compensating
actions) and “oscillation” (a site noticing an exception issues a compensat
ing action, but on receipt of another update realizes that the exception has
been fixed and tries to compensate for the earlier compensating action).

In summary our approach to maintaining database availability in the
face of’ networ~c partitions is to commit database updates without inter—site
synchronization and to use timestamp ordering to ensure eventual mutual

consistency of sites’ database copies. The cost of the increased availabil

ity is that integrity of the database may suffer, and the burden is on the

application to perform appropriate compensating actions. For many applica
tions, this may be a viable alternative to currently popular approaches that
enforce strict serializability but limit availability. In addition appli
cations need not give up all of the integrity advantages of atomic Lransac—
tions; they may use similar concurrency control techniques in a probabilis
tic manner to find an appropriate balance between availability and

integrity. In the long run, a language and code generation tools will be
needed to make it convenient for application designers to use the proposed
techniques; this will be the subject of future research.

1~. Real Time Databases

The LDM/DDM prototype described in Section 2 has been designed to meet

many of the requirements of distributed defense applications. Being imple
mented in Ada, the LDM/DDM technolo~r has a good prospect for commercializa
tion because of the recent DoD mandate that all mission—critical computer
systems use Ada as the implementation language and because of the increas

ing data requirements of such systems. b~ the other hand, LDM/DDM is
designed to operate within the envirorinent of a geographically distributed
point—to-point network with disk residency of the database. Owing to
communication delays in the underlying long—haul network and access latency
in the storage devices, LDMJDDM may not provide a level of response adequate
for many mission-critical applications that have stringent response require
ments. Our current, internal R&D effort aims to develop real time (or near

real time) distributed database management capabilities that will provide
the orders of magnitude in performance improvement demanded by many mission
critical applications. There are two key challenges. First, the DBMS will
have to be aware of the deadlines of time critical transactions and organize
its workload to meet these requirements. Second, the DBMS must support much
higher transaction throughput rates than current systems. We expect to
experiment with various concurrency and performance enhancing techniques in
the context of LDM/DDM because of its modular architecture. In the long
run, we expect the highly reusable and adaptable components of LDM/DDM to
facilitate the construction of’ custcmiized database systems.

One avenue for improving performance is to exploit the characteristics
of alternative operating envirorinents. Specifically, we hope to develo
alternate system architectures in the context of multi—processor and boa
area network envirorznents that will minimize the communication and synchron—
ization costs. It has been observed that many transaction management algo
rithms originally developed for use in a point—to—point communications net
work can be greatly simplified in the context of a reliable broadcast net
work ECHAN8~). We also plan to investigate the impact of the availability
of large quantities of main memory whereby significant portions of the
database can be cached. One technique that can be used to further optimize
LDM/DDM’s multi—version mechanism is the notion of’ a database cache/safe
system (ELHA8II). This latter scheme exploits the availability of’ large main
memory to cache portions of the database and to avoid ever writing uncommit
ted updates back to the database proper. Commit processing is greatly
expedited by eliminating the need to force write before images.
Furthermore, after-images are-only force written to a sequentiaI~ safe~which
is used for recovering the cache in case of system failures. Committed
updates are written back to the database proper as part of the cache

replacement routine such that hot spots can be updated many times without
being force written. When used with LDM/DDM’s multi—version mechanism, the
older versions of’ a data object can be kept in the cache, greatly speedin
up the processing of long read—only transactions. When cache replacemen
requires replacing a. version pool page, it will often be the case that the
particular old version is no longer needed for recovery or reading purposes
and does not need to be written back. Even if still potentially needed, the

— 39 —

writing of a number of consecutive version pool pages can be batched, thus
avoiding random accesses.

A second optimization strategy we will take is to trade flexibility for
performance. Real time applications tend to be stable (i.e. ad hoc
transaction are most likely to be absent). If the data, periodici~y, and
response time requirements of all types of transactions are known a priori,
much preanalysis in the areas of access path optimization and concurrency
control can be performed offline, greatly reducing the overhead that will
have to be incurred at run time. Furthermore, the database applications and
the E~MS can be loaded into a single program image significantly reducing
the process switching costs. A specific technique tfat may potentially be
combined with the LDM’s multi—version mechanism is the notion of hierarchi
cal database decomposition based on preanalysis of transactions (HSU83].
The transaction analysis decomposes the database into hierarchically related
data partitions such that transactions that write into one partition will
only read from ~he same data partition or from higher level partitions. The

concurrency control technique enables read access to higher level data
partitions to proceed without ever having to wait. The original scheme
presented in H3U83) requires that transactions within the same class be
synchronized via initiation timestamps. Our preliminary investigations sug
gest that the scheme may be adapted to work with LDM’s locking based
concurrency control algorithm.

Finally, we plan to exploit characteristics of the application environ
ment in order to simplify the system design. Much of our investigations
will focus on transaction management. We will determine if the transaction
serializability criterion can be relaxed in order to improve parallelism.
We will also examine if the database can be structured in such a way that
will facilitate pipelining, thereby reducing the lengths of critical sec

tions (e.g., through the use of non-two—phase locking protocols). Likewise,
we will consider if reliability mechanisms can be simplified. For example,
if the database is highly volatile, it may be possible to relax the transac
tion persistence requirement in order to eliminate the logging overhead.
Instead it may be sufficient to take periodic checkpoints and roll back to
the iaLest checkpoint in case of error. In order to identify the simplifi—
cations that become possible, we need a more thorough understanding of the

specific application requirements. For this purpose, we plan to study a

number of representative real time applications, such as computer aided
manufacturing, process control, aircraft and missile tracking, military tac
tical situation monitoring, and real time data acquisition, so as to
characterize their requirements.

5. References

ATTAB2] Attar, R. P.A. Bernstein N. Goodman “Site Initialization, Reco

very anã Back—up in a ~istributed f)at.abase System,” Proceedi~n~s
.21 ..tjie berkeley WiotkshoD on Distributed Data Management .an~ Coin—

puter Networks 19~i2.
AWER81I] Awerbuch B., S. Even, “Efficient and Reliable Broadcast is

Achievable in an Eventually Connected Network,” Proc~edin~s ~ th~
Symposium .~ Pr1nci~les ~ Distrlbuted ComDuting 19~.

IBERN8I4] Bernstein, P.A. N. Goodman, “An Algorithm for Concurrency Control
and Recovery In Replicated Distributed Databases “~~J1 Transac
tions ~n Database Systems Vol. 9, No. 1~, December f9WL

BLAU83] Blaustein, B.T., II. Garcia—Molina, D.R. Ries, R.M. Chilenskas,
C.W. Kaufman, ~‘Maintain.ing Replicated Databases Even in the Pres
ence of Network Partitions,” IEEE Electronics ~an~ Aeroso~ce
Conference (Proceedings Washington, D.C September 19d3.

BLAU85] Blaustein, B.T. C.W. Kaufman ~Updating Replicated Data during
Communications tailures,” VLD~ Conference 1roceedin~s 1985.

CAR~ZJ~] Carey, M.J., W.A. Muhanna, “The Performance of ~1ulti—version
Concurrency Control Algorithms,” Computer Sciences Technical

Report #550, University of Wisconsin at Madison August 198zL.
CHAN81] Chan, A. S. Fox W.T. Lin, D. Ries “The hesign. of an Ada

Compatible Local Database Manager (LDM),” Technical Report CCA—
81-09 Computer Corporation of America, Cambridge, Massachusetts,
Noveni~er 1981.

CHAN82] Chan, A. S. Fox, W.T. Lin, A. Non, D. Ries, “The Implementation
of an Integrated Concurrency Control and Recovery Scheme,” .AQ~i
SIGHOD çonference Proceedings 1982.

— 40 —

CHANB3a] Chan, A., U. Dayal, S. Fox N. Goodman, D. Ries, D. Skeen, “Over
view of an Ada Compati~ie Distributed Database Manager,” AQI~
~IGMOD Con’er~nce Prc>ce~ding~ 1983.

CHAN83b) Chan1 A., U. Daya.l S. Fox D. Ries, “Supporting a Semantic Data
Model in a Distributed Da6base System,” VLDB Conference Proceed—
irigs 1983.

CHAN81~] Chang, ~J.M., “Simplifying Distributed Database Systems Design by
Using a Broadcast Network,” ~AQ~J SIGMOD Conference Proceedings
198g.

CHAN85a] Chan, A. B. Gray, “Implementing Distributed Read—only Transac
tions,” IEEE Transactiozis .~ Software Engineering Vol. SE-li, No.
1 February 1955.

CHAN85b) Cf3an A., S. Danberg, S. Fox T. Landers, A. Non, J.M. Smith, “A
Datatase Management Capability for Ada,” AQZ~] A~
Sjrmno~ium Prçceeding~ 1985.

(DAVI84] Davidson, S.B. “Optimism and Consistency in Partitioned
Distributed Database Systems,” .AQN Transactions ~ Database
Systems Vol. 9, No. 3, September 19B~l.

aHA81~] flhardt K., R. Bayer “A batabase Cache for High Performance and
Fast Restart in Database Systems “ A~Z~J Transactions ~ Database
~vstems Vol. 9 No. ii, December 19~~4.

(ESWA76] Eswaran, K. P. &Aspects of a Trigger Subsystem in an Integrated
Database System,” Proceedings .~ ~tJl~ International Conference ~
~of~tware ~ngineering 1 976.

GARC83] Garcia—Molina IL, T. Allen, B. Blaustein R.M. Chilenskas, D. R.
Ries, “Data—l’atch: Integrating Inconsistent Copies of a Database
after a Partition,” ~‘roqeeding~ .Q~f ..tjie SymDos~um .Q~ Reliability .in
P4$nibutcd 1Software ~ Database Sy~tems 1953.

(GIFF79) Gifford D.K. “Weighted Voting for Replicated Data “ Proceedings
of .the hymnoslum on Operating Systems PrinciDle~ 1~79.

G00D83) ‘CToódian, N., D. Sk~en, A. Chan U. bayal, S. Fox, b. Ries, “A
Recovery Algorithm for a Distributed Database System,” Proceeding~
.~.r ..the AQfl SIGACT—SIGMOD SvnlDosium ~ PrinciDles QI Database
~vstems 1983.

HAMt.~O] Hammer, M., D.W. Shipinan, “Reliability Mechanisms for SDD—1: A
System for Distributed Databases “ AQ1~ Transactions ~ Database
~vstepis Vol. 5, No. J, December 19~O.

HSU83] Hsu M., S.E. Madnick, “Hierarchical Database Decomposition — A
Tec~inique for Database Concurrency Control,”?~f
j~cJ~ SIGACT—SIGMOD Symnosium ~ PrinciDies .~ Database Systems
1953.

PARK83) Parker D.S., G.J. Popek G. Rudisin A. Stoughton B.J. Walker,
E. Walton J.M. Chow, b. Edwards, ~. Kiser, C. idine “Detection
of Mutual inconsistency in Distributed Systems “~JEEE kransactions
~ Software Engineering Vol. SE-9 No. 3, May f 953.

SKE~3] Skeen D. “Determining the Last i~rocess to Fail,” Prpceedings ~
.th~ ~ SIGACT—SIGMOD Svinvosium ~ Princinles .Q.t’ Database Systems
1983.

SKE~1~J Skeen, D., D. Wright, “Increasing Availability in Partitioned
Database Systems,” Proceedings .~ th~ .AQ~ SIGACT—SIGMOD SvmDosiurn
~ Principles ~ ~)atabase Systems 195’L

THOM79) Thomas R. H., “A Majority Consensus Approach to ConcurrencyControl for Multiple Copy Databases,” .A~ lransactions ~ Database
~vstems Vol. ~ No. 2, June 1979.

(WALT82) Walter B. “A *obust and Efficient Protocol for Checking the
Availability of Remote Sites,” Proceedings .~f .the ~erkeIey
Workshop ~n Distributed Data Management .~ Conwuter Networks
1982.

— 41 —

Concurrency and Recovery in Data Base Systems

C. Mohan

IBM Research Laboratory
K55/281

San Jose, CA 95193

mohan IBHä1CSne±-relay

Introduction

This paper summarizes the work that the author and his colleagues have done on commit

coordination, deadlock management, and concurrency control in data base systems.
Some of (he discussion relates to (he design decisions of (he R* distributed data base

system implemented at the IBM San Jose Research Laboratory LHMW8’f, LMHDL8’+]. The

rest of it relates to the author’s and his colleagues’ work on non—two—phase locking
protocols performed mostly at the University of Texas at Austin. Due to space limi—
tations the descriptions are of a brief nature and the reader is assumed to be

knowledgeable in the areas of concurrency and recovery.

Here, we suggest that complicated protocols developed for dealing with rare kinds of

failures during commit coordination are not worth the costs that they impose on the

processing of distributed transactions during normal times (i.e., when no failures

occur). (Multi—level) Hierarchical commit protocols are also suggested to be more

natural than the conventional two—level (one coordinator and a set of subordinates)
protocols, given that the distributed query processing algorithm finds it more natural

and easily manageable to decompose the distributed query for execution by a multi—level

tree of processes, as opposed to a two—level tree.

As far as global deadlock management is concerned, we suggest that if distributed

detection of global deadlocks is to be performed then, in the event of a global
deadlock, it makes sense to choose as the victim a transaction which is local to the

site of detection of that deadlock (in preference to, say, the “youngest” transaction
which may be a nonlocal transaction), assuming that such a local transaction exists.

The R’ related work described here was done jointly with B. Lindsay and R. Obermarck.

Commit Protocols and Recovery in R*

Several commit protocols have been proposed in the literature, and some have been

implemented Borr8l, HaShBO, Lamp8O, LSGGLBO, MoSF83, SkeeBll. These are variations
of what has come to be known as the two—phase (2P) commit protocol. These protocols
differ in the number of messages sent, the time for completion of the commit processing,
the level of parallelism permitted during the commit processing, the number of state

transitions that the protocols go through, the time required for recovery once a site
becomes operational after a failure, the number of log records written, and (he number
of those log records that are synchronously (i.e., force) written to stable storage.
In general, these numbers are expressed as a function of the number of sites or

processes involved in the execution of the distributed transaction.

Some of the desirable characteristics in a commit protocol are: (1) Guaranteed trans
action atomicity always, (2) ability to “forget” outcome of commit processing after a

short amount of time, (3) minimal overhead in terms of log writes and message sending,

— 42 —

C’) optimized performance in the no—failure case, and (5) exploitation of completely
or partially read—only transactions.

We concentrated on the performance aspects of commit protocols, especially the log
ging and communication performance during no—failure situations. We have been careful
in describing when and what ‘type of log records are written EMoLIB3]. The discussions
of commit protocols in the literature are very vague, if there is any mention at all,
about this crucial (for correctness and performance) aspect of the protocols. We also
wanted to take advantage of the read—only property of the complete transaction or

some of its processes. In such instances, one could benefit from the fact that for
such processes of the transaction it does not matter whether the transaction commits
or aborts and hence. they could be excluded from the second phase of the commit

protocol. This means that the (read) locks acquired by such processes should be
released during the first phase. No a priori assumptions are made about the read—only
nature of the transaction. Such information is discovered only during the first phase
of the commit protocol.

Keeping in mind these goals, extensions were made to the conventional two—phase (2P)
commit protocol, which works for the case of a single coordinator and a set of
subordinates, to a more general, multi—level tree of processes (LHMW8~] and two
variants, the Presumed Abort (PA) and the Presumed Commit (PC) protocols were de

veloped MoLi83]. In this more general hierarchical model, ‘the root process which
is connected to the user/application acts only as a coordinator, the leaf processes
act only as subordinates, and the non—leaf, non—root processes act as both coordinators
(for their child processes) and subordinates (for their parents). The root process
initiates the execution of the commit protocol, by sending prepare messages in parallel
to its subordinates, when ‘the user issues the commit transaction command. A non-root,
non—leaf process after receiving a prepare message propagates it to its subordinates
and only after receiving their votes does it send its combined (i.e., subtree) vote to
its coordinator. The type of the subtree vote is determined by the types of the votes
of the subordinates and the type of the vote of the subtree’s root process. If any
vote is a no vote then the subtree vote is a no vote also (In this case, the process,
after sending the subtree vote to its coordinator, sends abort messages to all ‘those
subordinates that voted yes). If none of the votes is a no vote and at least one of the
votes is a yes vote then the subtree vote is a yes vote; otherwise, it is a read-only vote.
A process voting yes force writes a prepare record in the log before sending the vote.
The writing of this record by a DBM forces out to stable storage the UNDO/REDO log
information which allows the actions of the process to be subsequently committed or

aborted. This record also includes a list of the locks held by the process. Compli
cations arise in R’ due to the fact that more than one process of a transaction may
be executing in the same DBM. Since these processes will be sharing some data, to
avoid some inconsistencies the processes of a single transaction are made to access

some components of the DBM serially (see LHMW8’+]).

PA requires acknowledgements (ACK5) from subordinates for only commit messages
while PC requires them for only abort messages. This means that in PA all processes
that receive commit messages have to force write their commit records before acknowl
edging such messages. In PC, only the root process needs to force write the commit
record. Both protocols exclude from the second phase those subordinates that vote
read-only. In PC, every non—leaf process force writes a collecting record, which
contains the list of subordinates, before sending the prepare messages to the latter.
In PA, there is no need for such a log write. In both PA and PC, the list of subordinates,
if any, that voted yes is included in the prepare record written by the non—root
prOcOsses (if the need arises to write that record). In PA alone this kind of information
is also included in the commit record written by the root process. In all cases the
list of subordinates is needed by the recovery process to know from whom ACKs may
have to be demanded while restarting after a site failure. Note that a read—only
process does not write any log records in PA.

— 43 —

In summary, note that as far as 2P is concerned, all transactions appear to be

completely update transactions and that under all circumstances PA is better than 2P.

PA performs better than PC in the case of (completely) read—only transactions (saving
the coordinator 2 log writes, including a synchronous one) and in the case of those

partially read—only transactions in which only the coordinator does any updates

(saving the coordinator a synchronous—write). In both of these cases, PA and PC

require the same number of messages to be sent. In the case of a transaction with

only one update subordinate, PA and PC are equal in terms of log writes, but PA

requires an extra message (ACK sent by the update subordinate). For a transaction

with n > 1 update subordinates, both PA and PC require the same number of records to

be written, but PA will force n-i times when PC will not. These correspond to the

forcing of the commit records by the subordinates. In addition, PA will send n extra

messages (ACKs). PA and PC can coexist in the same system and each transaction could

independently choose to use either one of the two protocols. In fact, in R*, both

protocols were implemented. More details about PA and PC can be found in MoLiB3].

In cases where the transaction manager (TM) and the data base manager (DBM) at a

given site make use of the same file for inserting log information of all the trans

actions at that site, we wanted to benefit from the fact that the log records inserted

during the execution of the commit protocol by the TM and the DBM would be in a

certain order, thereby avoiding some synchronous log writes (Currently, in R’, the

TM and the DBMs use different log files, but the commit protocols have been designed
and implemented to take advantage of the situation when the DBMs and the TM use the

same log). For example, a DBM need not force write its prepare record since the

subsequent force write of the TM prepare record will force to disk the former. In

addition to explicitly avoiding some of the synchronous writes, one can also benefit

from the batching effect of more log records being written into a single file. Whenever

a log page in the virtual memory buffers fills up we write it out immediately to stable

storage.

Given that we have these efficient commit protocols and the fact that remote updates

are going to be infrequent, the time spent executing the commit protocol is going to

be much less compared to the total time spent executing the whole transaction. Fur

thermore, site and link failures cannot be frequent events in a well designed and

managed distributed system. So the probability of the failure of a coordinator hap

pening after it sent prepare messages, thereby blocking the subordinates that vote

yes in the in—doubt state until its recovery, is going to be very low.

We have extended, but not implemented, PA and PC to reduce the probability of blocking

by allowing a prepared process that encounters a coordinator failure to enquire its

peers about the transaction outcome. The extensions require an additional phase in

the protocols and result in more messages and/or synchronous log writes even during
normal times. To some extent the results of Coop82] support our conclusion that

blockingcommitprotocolsarenotundesirable. The designersofTandem’sTransaction
Monitoring Facility (TMF) also plan to implement the PA protocol He1185]. To handle

the rare situation in which a blocked process holds up too many other transactions

from gaining access to its locked data, we have provided an interface which allows

the operator to find out the identities of the in—doubt processes and to forcibly
commit or abort them. Of course, the misuse of this facility could lead to inconsis

tencies caused by parts of a transaction being committed while the rest of the trans

action is aborted. In cases where a link failure is the cause of blocking, the operator
at the blocked site could use the telephone to find out the coordinator site’s decision

and force the same decision at his site.

If we assume that processes of a transaction communicate with each other using virtual

circuits, as in R* (LHMW84], and that new subordinate processes may be created even

at the time of receipt of a prepare message by a process, br example to install

updates at the sites of replicated copies, then it seems reasonable to use the tree

— 44 —

structure to send the commit protocol related messages also (i.e., not flatten the

multi—level tree into a two—level tree just for the purposes of the commit protocol).
This approach avoids the need to set up any new communication channels just for use

by the commit protocol. Furthermore, there is no need to make one process in each

site become responsible for dealing with commit related messages for different trans

actions (as in ENCOMPASS Borr8l]).

Just as the R’ DBMs take checkpoints periodically to throw away from the data base

shadow versions of the modified pages and to force out to disk data and log buffers,
the R* TM also takes its own checkpoints. The TM’s checkpoint records contain the

list of active processes that are currently executing the commit protocol and those

processes that are in recovery (i.e., processes in the in—doubt state or waiting to

receive ACKs from subordinates). TM checkpoints are taken without quiescing completely
all TM activity (This is in contrast with what happens in the DBMs). During site

restart recovery, the last TM checkpoint record is read by a recovery process and a

transaction table is initialized with its contents. Then the TM log is scanned forward

and, as necessary, new entries are added to the transaction table or existing entries

are modified/deleted. Unlike in the case of the DBM log, there is no need to examine

at any time the portion of the TM log before the last checkpoint. The time of the next

TM checkpoint depends on the number of transactions initiated since the last checkpoint,
the amount of log consumed since the last checkpoint, and the amount of space still

available in the circular log file on disk.

Deadlock Management in R*

Assuming that we have chosen to do deadlock detection instead of deadlock avoidance/

prevention it is only natural, for reliability reasons, to use a distributed algorithm
for global deadlock detection.1 Depending on whether or not Ci) the wait—for information

transmission among different sites is synchronized and (ii) the nodes of the wait—for

graph are transactions (as is the case in R~) or individual processes of a transaction,
false deadlocks might be detected. Since we do not expect these types of false

deadlocks to occur frequently, we treat every detected deadlock as a true deadlock.

In R*, there is one deadlock detector (DD) at each site. The DD5 at different sites

operate asynchronously. The frequencies at which local and global deadlock detection

searches are initiated can vary from site to site. Each OD wakes up periodically and

looks for deadlocks after gathering the wait—for information from the local DBMs. If

the DD is looking for multi—site deadlocks also during that detection phase then any

information about Potential Global (i.e., multi—site) Deadlock Cycles (PGDCs) received

earlier from other sites is combined with the local information. No information

gathered/generated during a DO detection phase is retained for use during a subsequent
detection phase of the same DD. Information received from a remote DD is consumed

during at most one deadlock detection phase of the recipient. This is important to

make sure that false information sent by a remote DD, which during many subsequent
deadlock detection phases does not have anything to send, is not consumed repeatedly
by a DD, resulting in the repeated detection of, possibly, false deadlocks. If, due to

the different deadlock detection frequencies of the different DOs, information is

received from multiple phases of a remote DD before it is consumed by the recipient
then only the remote DD’s last phase’s information is retained for consumption by the

recipient. This is because the latest information is the best information.

The result-of analyzing the wait—forHnformationcOuld be the discovery of some

local/global deadlocks and some PGDCs. Each PGDC is a list of transactions (Note:

I We refer the reader to other papers for discussions concerning deadlock detection versus other approaches (AgCa85, OberS2 1.

- 45 -

not processes) in which each transaction, except the last one, is on a lock wait on

the next transaction in the list. In addition, the first transaction is known to be

expected to send response data to its cohort at another site and the last transaction

is known to be waiting to receive response data from its cohort at another site. This

PGOC is sent to the site on which the last transaction is waiting if the first trans—

action’s name is lexicographically less than the last transaction’s name. Thus, on

the average, only half the sites involved in a global deadlock send information about

the cycle in the direction of the cycle. In general, in this algorithm only one site

will detect a given global deadlock.

Once a deadlock is detected the interesting question is how to choose a victim. While

one could use detailed cost measures for transactions and choose as the victim the

transaction with the least cost, the problem is that such a transaction might not be

in execution at the site where the deadlock is detected. Then, the problem would be

in identifying the site which has to be informed about the victim so that the latter

could be aborted. Even if information about the locations of execution of every

transaction in the wait—for graph were to be sent around with the latter or if we pass

along the cycle the identity of the victim, still, there would be a delay and cost

involved in informing remote sites about the nonlocal victim choice. This delay would

cause an increase in the response times of the other transactions that are part of

the deadlock cycle. Hence, in order to expedite the breaking of the cycle, one can

choose as the victim a transaction that is executing locally, assuming that the wait—for

information transmission protocol guarantees the existence of such a local transaction.

The latter is the characteristic of the deadlock detection protocol of R* BeOb8l,
Ober82] and hence we choose a local victim. If more than one local transaction could

be chosen as the victim then an appropriate cost measure (e.g. elapsed time since

transaction began execution) is used to make the choice. If one or more transactions

are involved in more than one deadlock, no effort is made to choose as the victim a

transaction that resolves the maximum possible number -of deadlocks.

Even though the general impression might be that our data base systems release all

locks of a transaction only at the end of the transaction, in fact, some locks (e.g.,
short duration page—level locks when data is being locked at the tuple—level) are

released long before all the locks are acquired. This means that when a transaction

is aborting it would have to reacquire those locks to perform its undo actions. Since

a transaction could get into a deadlock any time it is requesting locks, if we are not

careful we could have a situation in which we have a deadlock involving only aborting
transactions. It would be quite messy to resolve such a deadlock. To avoid this

situation, we permit, at any time, only one aborting transaction to be actively reac

quiring locks in a given BBM. While the above mentioned potential problem had to be

dealt with even in System R, it is somewhat complicated in R*. We have to ensure that

in a global deadlock cycle there is at least one local transaction that is not already
aborting for being chosen as the victim.

This reliable, distributed algorithm for detecting global deadlocks is operational now

in R~.

Workstation Data Bases

Now that the R* implementation has reached a mature state, providing support for

snapshots Adib8O, AdLi8O], migration of tables, distributed deadlock detection, dis

tributed query compilation and processing LMHDL84-], and crash recovery, we are

currently involved in building a data base system for use on workstations like the

IBM PC. The ultimate aim of this effort is to have an R* like system running on a

network of mainframes and workstations. In order to be able to benefit from our

experiences with the implementations of System R and R*, we are designing the new

— 46 —

system (WSDB) from scratch. In the areas of logging and recovery, WSDB will most
likely do write—ahead logging (WAL) and in—place updating of data on disk to avoid the
overhead of page pointer maintenance. We are exploring improving (he performance
of the currently known WAL protocols, extending them for record level locking, in
venting new ones, avoiding writing compensation log records during rollback of trans
actions, and providing support for partial rollbacks of transactions.

Other Work

This section discusses the non_R* related work that the author and his colleagues
have done at IBM and the University of Texas at Austin.

In MoSFB3], we have introduced the classes of omission and commission faults and
studied the advantages of making use of Byzantine Agreement (BA) protocols in con
junction with the R* commit protocols. Our work was done in the context of the HighlyAvailable Systems project and hence we were concerned about Byzantine types of
failures also. This was the first serious attempt to apply the BA protocols for
realistic situations. In the modified versions of the commit protocols, the identities
of all the processes in the subtree are piggybacked onto the messages carrying the
votes. If the root’s decision is commit then that decision is broadcast using a BA
protocol. In contrast, an abort decision is propagated implicitly via timeouts. While
the protocols could tolerate Byzantine types of failures during the second phase, we
did not find any significant performance advantages in using (he BA protocols in the
second phase. In (M0SF83], we have briefly outlined an approach for using the BA
protocols for protecting the transaction from Byzantine types of failures during its
complete execution.

In HaMo83], we have presented a distributed algorithm for detecting global deadlocks
in systems where all interprocess communication is via messages and there is no
memory sharing (Note that the R* model is different). This algorithm combines the
features of the algorithms of ChMi82, Ober82]. It has the nice property (h~t it
detects only true deadlocks. A comparative study of many distributed data base
prototype systems and algorithms can be found in Moha89.a, Moha8’i.b]. The features
considered include support for replicated data, and strategies for concurrency control
and deadlock management. An annotated bibliography is also included in (Moha8’ib].

Non—two—phase protocols are intended to be used when data is organized in the form
of a directed acyclic graph, where each vertex of the graph is a data item (SiKe62].
These protocols force the transactions to acquire locks on those items in some
constrained ways. The edges of (he graph could model logical or physical relationships.
Our work on locking protocols has concentrated on extending previous work on two—
phase and non—two—phase locking protocols to achieve a higher degree of concurrencyand at the same time deal effectively with the deadlock problem (MohaBl]. We intro
duced a new lock mode, called INV, with properties fundamentally different from lock
modes previously studied and showed how this leads to increased concurrency in some
existing very general non—two—phase protocols operating on directed acyclic graphsM0FS82a, MoFS8’i~] and in a new non—two—phase protocol developed by us M0FS82b].
The impact of the extensions on deadlock—freedom were studied and simple conditions
for resolving deadlocks were given. The INV mode does not grant any access privileges
(read/write) to the holder of the lock on the associated data item. It is used solelyfor concurrency control- pur~poses... T~hrough~the~introduction of the INV mode, which
is compatible with the X (exclusive) mode but not the S (shared) mode, a new principle
of the theory of data base concurrency control was enunciated. This principle involves
the separation of the effects of commutativity (which relates to serializability) and
compatibility (which relates to deadlock—freedom) of data manipulation operations.

— 47 —

Thus we depart from the traditional approaches to concurrency control which do not

make this separation.

We have also performed a systematic study of the consequences of allowing lock

conversions (from X to S and S to X) in protocols, and shown how this leads to

increased concurrency and affects deadlock-freedom (MFKS85, MoFSB2b]. In EKeMS82],
we have introduced an efficient method for dealing with deadlocks in an existing
protocol using partial rollbacks. In addition to extending existing protocols and

proposing new ones, we have also extended the existing theory of locking protocols
EFuKS8]., VaPK7~) by including lock conversions and the INV mode in the directed

hypergraph model of locking protocols (Moha8l]. In so doing, we have obtained very

general results concerning serializability and deadlock—freedom properties of all

protocols satisfying a natural closure property.

While many of us have been working on non—two—phase locking protocols for many years

now (see the references listed in the papers mentioned here), no serious effort has

been made to make these protocols resilient to failures. The data base design problem
has also not been addressed. In spite of the belief that these protocols are useful

for managing concurrent access to ordinary data and that the protocols provide
increased concurrency compared to two-phase locking, so far, to our knowledge, none

of these protocols have been implemented. It is only in the context of index structures

that some similar protocols have been found to be useful (see ShasB5] and the

references listed there).

References

Adib8O Adiba, M. Derived Relations: A Unified Mechanism for Views, Snapshots and Distributed Data, Proc. 7th

International Conference on Very Large Data Bases, Cannes, France, September 1981. Also IBM Research

Report RJ2881, July 1980.

AdLi8O Adiba, M., Lindsay, B. Database Snapshots, Proc. 6th International Conference on Very Large Data Bases,
Montreal, October 1980.

AgCaBS Agrawal, R., Carey, M. The Performance ofConcurrency Control and Recovery Algorithmsfor Transaction-

Oriented Database Systems, Database Engineering, Vol. 8, No. 2, 1985.

BeOb8l Been, C., Obei-rnarck, R. A Resource Class Independent Deadlock Detection Algorithm, Proc. 7th Inter

national Conference on Very Large Data Bases, Cannes, France, September 1981.

Borr8l Borr, A. Transaction Monitoring in ENCOMPASS: Reliable Distributed Transaction Processing, Proc.

International Conference on Very Large Data Bases, September 1981.

ChMi82 Chandy, M., Misra, J. A Distributed Algorithm for Detecting Resource Deadlocks in Distributed Systems,
Proc. ACM SIGACT/SIGOPS Symposium on Principles of Distributed Computing, Ottawa, Canada, Au

gust 1982.

CoopB2 Cooper, E. Analysis of Distributed Commit Protocols, Proc. SIGMOD Int’l Conf. on Management ofData,
June 1982.

FuKS81 Fusseil, D., Kedem, Z., Silberschatz, A. A Theory of Correct Protocols for Database Systems, Proc. 7th

International Conference on Very Large Data Bases, Cannes, September 1981.

HaMo83 Haas, L., Mohan, C. A Distributed Deadlock Detection Algorithm for a Resource-Based System, IBM

Research Report RJ3765, January 1983.

HaShSO Hammer, M., Shipman, D. Reliability Mechanismsfor SDD-1: A Systemfor Distributed Databases, ACM
Transactions on Data Base Systems, Vol. 5, No. 4, December 1980.

He1185 Helland, P. The Transaction Monitoring Facility (TMF), Database Engineering, Vol. 8, No. 2, 1985.

KeMS82 Kedem, Z., Mohan, C., Silberschatz, A. An Efficient Deadlock Removal Schemefor Non- Two-Phase Lock

ing Protocols, Proc. Eighth International Conference on Very Large Data Bases, Mexico City, September
1982.

Lamp8O Lampson, B. ‘Atomic Transactions’, Chapter 11 in Distributed Systems-Architecture and Implementation,
B. Lampson (Ed.), Lecture Notes in Computer Science Vol. 100, Springer Veraig, 1980.

LHMWS4 Lindsay, B., Haas, L., Mohan, C., Wilms, P.. Yost, R. Computation and Communication in R*: A Distributed

Database Manager, ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984.

— 48 —

LMHDLS4 Lohman, G., Mohan, C., Uaas, L., Daniels, D., Lindsay, B., Selinger, P., Wilms, P. Query Processing in
R, To Appear as a Chapter in Query Processing in Database Systems, W. Kim, D. Reiner, and D. Batory
(Eds.), Springer-Verlag, 1984. Also IBM Research Report RJ4272, April 1984.

LSGGL8O Lindsay, B., Selinger, P., Galtieri, C., Gray, J., Lone, R., Putzolu, F., Traiger, I., Wade, B. ~Notes on
Distributed Databases~, IBM Research Report RJ2571, July 1979.

MFKS85 Mohan, C., Fussell, D., Kedem, Z., Silberschatz, A. Lock Conversion in Non-Two-Phase Locking Protocols,
IEEE Transactions on Software Engineering, Vol SE-il, No 1, January 1985. Also IBM Research Report
RJ3947.

MoFS82a Mohan, C., Fussell, D., Silberschat.z, A. Compatibility and Commutativity in Non-Two-Phase Locking
Protocols, Proc. ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, Los Angeles,
March 1982.

MoFS82b Mohan, C., FusseD, D., Silberschatz, A. A Biased Non-Two-Phase Locking Protocol, Proc. Second Inter
national Conference on Databases: Improving Usability and Responsiveness, Jerusalem, June 1982.

MoFS84 Mohan, C., FusseD, D., Silberschatz, A. Compatibility and Commutativity ofLock Modes, Information and
Control, Volume 61, Number 1, April 1984. Also IBM Research Report RJ3948.

MohaR 1 Mohan, C. Strategiesfor Enhancing Concurrency and Managing Deadlocks in Data Base Locking Protocols,
PhD Thesis, University of Texas at Austin, December 1981.

MohaS4a Mohan, C. Recent and Future Trends in Distributed Data Base Management, Proc. NYU Symposium on
New Directions for Data Base Systems, New York, May 1984. Also IBM Research Report RJ4240, 1984.

MohaS4b Mohan, C. Tutorial: Recent Advances in Distributed Data Base Management, ISBN 0-8186-0571-5, IEEE
Catalog Number EH0218-8, IEEE Computer Society Press, 1984.

MoLi83 Mohan, C., Lindsay, B. Efficient Commit Protocolsfor the Tree ofProcesses Model of Distributed Trans
actions, Proc. 2nd ACM SIGACT/SIGOPS Symposium on Principles of Distributed Computing, Montreal,
Canada, August 1983. Also IBM Research Report RJ3881, June 1983.

MoSF83 Mohan, C., Strong, R., Finkelstein, S. Method for Distributed Transaction Commit and Recovery Using
Byzantine Agreement Within Clusters of Processors, Proc. 2nd ACM SIGACT/SIGOPS Symposium on

Principles ofDistributed Computing, Montreal, Canada, August 1983. Also IBM Research Report RJ3882,
June 1983.

Ober82 Obermarck, R. Distributed Deadlock Detection Algorithm, ACM Transactions on Database Systems, Vol.
7, No.2, June 1982.

Shas85 Shasha, D. What Good are Concurrent Search Structure Algorithms for Databases Anyway?, Database
Engineering, Vol. 8, No. 2, 1985.

SiKe82 Silberschatz, A., Kedem, Z. A Family of Locking Protocols for Database Systems that are Modeled by
Directed Graphs, IEEE Transactions on Software Engineering, November 1982.

Skee8l Skeen, D. Nonblocking Commit Protocols, Proc. ACM/SIGMOD International Conference on Manage
ment of Data, Ann Arbor, Michigan, 1981, pp. 133-142.

YaPK79 Yannakakis, M., Papadimitniou, C., Kung, H.T. Locking Policies: Safety and Freedom from Deadlocks,
Proc. 20th IEEE Symposium on Foundations of Computer Science, October 1979.

- 49 -

Perfori~nce Analysis of Synchronization and Recovery Schei~ies

T. B~.rder, P. Peinl, A. Reuter*

PB Informatik

University Kaiseralautern

P.O. Box 3049
D—6750 Kaiserslautern

West Germany

1. Introduction

Seven years ago our group “Data Management Systems” at the University Kaisers—

lautern (formerly at TH Darmstadt) started a performance measurement project to

evaluate the DBMS tJDS} in cooperation with the system’s designers. We identifed

very soon the critical functions and performance—determining bottlenecks of that

system: locking and logging/recovery. After having studied the special locking
problem for TJDS, we investigated in subsequent projects a broader range of

concurrency control methods (extended locking protocols, versions, optimistic
variants, etc.) for different system structures, e.g. centralized DBMS, DB/DC—
system, DB—sharing. In addition, various recovery schemes based on both collecting
redundant information (logging) and mapping support by the DBMS (shadows) were

designed and evaluated with respect to their performance relevant behavior.

To determine the performance of the algorithms, we soon abandoned the idea of pure

analytic modelling, especially in the area of CC. Starting mostly with discrete

event simulation we refined our models to use trace driven simulation. The

simulation results then served for the validation of analytic models in areas

where they could be applied appropriately.
We describe here the main aspects of our work performed during the last two years,

our current research and our future plans in the area of synchronization and

recovery.

2. &ipirical Co~irison of Concurrency Control Schemes

Research into CC—performance in our group is largely based on trace driven

evaluation, as opposed to analytic models or random number driven simulation. The

trace input, called “object reference strings” (OHS), is obtained from real DB—

applications of different types and sizes. These are medium—sized scientific data

bases with a workload of long update transactions, bill—of—material applications,
and order entry databases with their typical load of short interactive updates and

inquiries. The ORSs we have been using until now have been recorded with only one

DBMS, the CODASYI,-like liDS, but currently we are preparing for getting the same

type of data from IMS and ENCOMPASS.

2.1 Methods

The contents of an OHS can be briefly described as follows: There is a beginning—
of—transaction (BOT)—record for each transaction, describing the type and the

origin of that transaction. Each call to the DBMSs lock request handler is

written to the ORS, describing the type of request, the lock mode and the

identifier of the object to be locked/unlocked. In lIDS, all lockable objects are

pages. Each end—of—transaction (EOT), whether successful or not, is also

recorded. All OHS—entries are time—stamped, and the sequence of recording is the

temporal sequence of the corresponding events in the original DBMS—execution. For

investigating the performance of different CC—schemes, the algorithms are

explicitly coded and their behavior under load situations as reflected in the ORSs
is analyzed by driving the CC—components with the real lock requests. The basic

scenario is shown in Fig. 1 (quoted from PEDIB3]).
For driving a lock—subsystem in a DBMS—like environment, there has to be a

scheduler for transaction initialization and resource multiplexing. Depending on

the type and speed of underlying hardware we assume, the level of multiprogramming
has to be changed on behalf of the scheduler. ~ch OHS would have been recorded at

a fixed level of multiprogramming in its original application. Hence, there must

* Current address: Institut für Informatik, University of Stuttgart, Azen—

bergstral3e 12, D—7000 Stuttgart 1, West Germany
— 50 —

i ze: para11e~ i sm=n

I

Pig. 1: Block diagram of the CC—evaluation environment

a way of making the same load look as though it was recorded at an arbitrary level
of parallelism. This is achieved by the string converter, which upon
initialization can display the ORS with any number of transactions executing
concurrently. The string converter is also able to dynamically decrease the level
of multiprogramming under thrashing conditions. Transactions that have to be
rolled back because of deadlock or validation failure can be returned to the input
ORS to be restarted at a later point in time.
This approach to performance analysis of CC-schemes and recovery algorithms is
almost unique, because all other results available on this topic are based on
either analytic models PRAN83, GRAY81, MORR84, REUT83, TAY84bJ or on discrete
event simulation CARES3, KIES83, RIES77, RIES79J. The problem with analytic
models is that in order to keep the formulae tractable, a large number of
simplifications have to be applied. Some of these simplifications are questionable
from the beginning; e.g. expressing conflict probabilities by a simple term or

some sort of distribution function does most likely not reflect the behavior of a
real system. A second effect results from the accumulative impact of multiple
simplificatjons. In REU~L83] it is shown that this effect can dastically change
the qualitative characteristics of the desired results, which means that it is
hard to tell how “real” the phenomena predicted by analy-tic models are. The most
elaborate models are developed in TAY84a], and some attention is paid to the
above—mentioned problems.
Simulation basically suffers from the same difficulties. Although tractability is
not an issue, the expressive power of classical simulation systems requires very
simple—minded modeling of the database, its object structure, and the transaction
reference patterns. Since concurrency control problems do arise only under very
specific conditions, the question again is: How real are the results obtained by
simulation, i.e. how realistic was the database and transaction model?
The survey presented in TAY84c] reflects some of these problems, in that the
c~o~perison ~of results from different studies either turns out to~ be -impossible, or
reveals contradictory predictions.
We belive that trace driven evaluation allows for a much higher degree of realism
than both analytic models and standard simulation techniques because it does not
require any idealizations or assumptions that cannot be validated. With these
techniques, important phenomena like high traffic locks, hot spots and the
influence of lock request patterns cannot be modeled adequately. The drawback is
that results based on traces do not yield “general” results, as e.g. analytic
models do; they are confined to the given type of application. But since they are

very close to a real systems behavior, they are extremely helpful in validating
analytic models. If a modeYs prediction cannot be supported by trace driven
evaluation, something must be wrong with the model.

get next ref.

interface between

scheduler and string
converter

valuation parameters:
type of synchronization
protocol s

degree of parallelism n

— 51 —

2.2 Studies Based on Traces

We investigated the performance impact of CC in centralized DBMS using two

increasingly detailed simulation models. Three variants of locking protocols
(standard shared/exclusive and two improved protocols using an additional

temporary copy and two versions of an object BAY~O] to allow for one concurrent

writer) were related to two schemes of optimistic CC (0CC), which differ in their

scope of validation (backward oriented (BOCC) validates against committed

transactions, while forward oriented (P0CC) validates against all active ones with

considerable degrees of freedom on how to proceed in case of conflict HARD84aJ).
Yet all the protocols are suited for page level synchronization, as required by
the ORSs and seems promising in the centralized case from the performance
perspective. In the first stage PEIN83] the model consisted of a rudimentary
transaction scheduler and the respective CC—modules, being functionally arid

implementationally roughly equivalent to their counterparts in a real DBMS (Fig.
1). The transaction scheduler dispatches references of as many transactions as

specified by the prescribed level of multiprogramming (we examined 1—32) in a

round—robin fashion to the CC—module and thereby gathers statistics about the

simulation (frequency and cause of deadlock/invalidation, blocking situations,
etc.). Performance of the algorithms was rated by the so called effective

parallelism, which is roughly equivalent to the total throughput.
Some of the more important observations of this first attempt are the following.
In almost all cases the optimistic approach (to be more specific P0CC, since BOCC

produced unacceptable results) came out modestly to considerably better than the

locking approaches, though 0CC achieved this with a higher percentage of

reexecutions of failed transactions. The novel locking protocols, as expected,
outperformed the standard algorithm, but to a much lower degree than anticipated.
Furthermore, they did not obtain the performance of 0CC. The study revealed lock

conversions (shared to exclusive) to be the most common cause for deadlocks using
empirical ORSs. Moreover, special precautions had to be taken to limit the amount

of work needed to reexecute aborted transactions and guarantee the execution of

long batch transactions~. Considerable performance improvements were achieved on

the one hand by not immediately restarting failed transactions and on the other

hand by employing a load balancing scheme, which actually lowered the degree of

parallelism temporarily to facilitate the execution of critical transactions.

However, though the model yielded various valuable insights regarding the dynamic
behavior of CC—mechanisms using empirical data, the selected performance measure

also exhibits certain weaknesses that prohibit a final judgement on the CC—

algorithms. Firstly, the simulation clock (which the effective parallelism is

based on) is advanced by references and therefore only roughly related to physical
time and secondly, none of the I/O related activities within the DBMS were covered

by the first model. Thus, there was no possibility to obtain exact throughput arid

response time figures. This reasoning gave rise to the development of a

considerably more sophisticated and realistic DBMS model, which is currently being
evaluated.

For each request, a real DBMS, besides checking for correct synchronization, has

to make the required page available in the system buffer. To take into account the

delay due to this kind of I/O processing, it was decided to incorporate a buffer

manager component and a representation of the DB on external storage media into

the refined model. So the DB can be partitioned among several disks, the hardware

characteristics of which may be set as parameters in addition to the size of the

system buffer. Buffer management in an environment with versions and transaction

specific temporary copies, as required by some of the CC—algorithms examined,
introduces a considerable amount of algorithmic complexity. This complexity is

additionally compounded, when several page types specific to our C0DASYL-~DBMS are

treated separately. We ruled out the propagation of updates before EOT, since

that would have required rather complex recovery algorithms. With that —STEAL

policy (in terminolo~r of HARL83}) applied in the refined model, all that has to

be done is the writing to disk out of the after images at EOT (—~)RCE), while the

transaction is suspended from scheduling.
The transaction scheduler, as in the preliminary model, tries to keep active a

number of transactions up to the predefined multiprogramming level, assigning each

one an equal share of the CPU by processing references in round—robin fashion. In

the refined model, different types of reference consume different amounts of CPU

— 52 —

time. Moreover, transactions can acquire the CPU only when not waiting for I/O
completion. Thus, transaction execution times and other performance measures are

directly related to physical time. Since the preliminary study clearly revealed

that load balancing and restart policy can strongly influence overall systems
performance, in the refined model the restart time of aborted transactions can be

effectively controlled by several parameters. In addition there is more

flexibility in controlling load balancing. All the CC algorithms listed for the

first model are currently being evaluated using the available ORSs with

multiprogramming level and buffer size as the primary parameters. Additionally,
several restart and load balancing policies are being tested. Besides using
throughput and response time as the key performance measures, the different

constituents of the simulation model gather comprehensive statistics of their

dynamic behavior. Only the more important statistics are briefly listed in the

following. The device manager records device utilization and access distributions,
buffer manager utilization and I/O traffic. The synchronization modules yield
statistics about blocking durations and blocking events, number of deadlocks and

their causes, validation overhead, conflicts and their causes, etc. The

transaction scheduler computes the average number of nonbiocked transactions,
restarted transactions and the number and tyje of references pertaining to each

transaction execution. We will come up by mid—1985 with a detailed study of the

numerical results of the simulation efforts employing the refined model.

DE—sharing describes the situation where a centralized database is used by a

number of DBMSs running on a system of closely or loosely coupled processors. The

essential design goal of DB—sharing systems is the approximately linear increase

of throughput (by n) of typically simple and short transactions thereby nearly
preserving the response times gained in the case of one processor. In addition, a

substantial improvement of system availability is required.
The general structure of a DB—sharing system together with its main functional

components is sketched in Fig. 2 (quoted romREU’185}). Synchronization and load

control play the critical role for the systems performance goals. Therefore, our

modelling efforts were focussed on these functions by reflecting them very

accurately in the simulation model. The workload description (ORS) permitted a

precise evaluation of synchronization related aspects like conflict frequency,
waiting times, deadlocks, etc. Some form of load control using transaction types,
locality of reference, etc. was necessary to gain reasonable results.

Fig. 2: DR-Sharing: system structure and functional components

We have currently implemented an IRLM—like (IMS Resource lock Manager) locking
protocol which supports a two—processor DR-sharing. It is essentially a token—ring
approach where the ThLM attached to a processor can only decide upon global lock

requests in its master phase when it posesses the token (buck). A copy of the

global hash table (GilT) summarizing the current lock state of the entire system is

used by each IRLM to grant as many as pessible locks locally thereby minimizing
the waiting times for synchronization requests. Details can be found in RE~fl851.

— 53 —

In our simulation we tailored the CC—protocol to the needs of a CODA~YL-system by
introducing a special locking hierarchy arid to the particularities of liDS by
distinguishing various page types and by controlling to some degree the locality
of DB—processing HAR]~5].
The results were satisfactory as far as throughput improvement is considered (1.6
— 1.8). Response times, however, increased often by a factor of 2 and more

compared to the case of one processor. They are critically dependent on the length
of the master phase which determines the average (synchronous) wait time for a

global lock request. Reducing the master phase, on the other hand, provokes
increasing communication costs (frequency of buck exchange). Transaction

parallelism suffers from too short master phases since only a limited number of

transactions can be serviced within such a period.
Based on the same techniques, we are now starting to investigate different classes

of synchronization algorithms for shared database systems. The IRLM—like approach
described above is not extendible to more than two nodes, so better protocols are

sought for the general n—processor database sharing. There is an initial

investigation of algorithms derived from distributed DBMS synchronization
mechanisms REUT85], which we will use as a framework for our performance
analyses. It classifies algorithms w.r.t. the following criteria: centralized vs.

distributed control; snychronous/asynchronous/optiniistic protocols; software vs.

hardware implementations. Since in shared DBNSs there is an extremely critical

throughput/response time tradeoff due to interprocessor communication and the

level of multiprogramming, these evaluations must comprise a detailed mapping of

events onto a simulated physical clock which is the same for all nodes in the

shared system. Hence, we will have to combine our trace driven approach for the

protocol part with standard simulation techniques for modelling a CPU, a

communication subsystem, an I/O—subsystem, etc. First results pertaining to a

centralized, hierarchical locking scheme are expected by mid—1985.

2.3 studies based on randoini nu~ibers

Another area of research is the integration of a DBMS into a general purpose

operating system. In particular, the cooperation between application and DBMS

processes as well as the synchronization of multiple DBMS processes and their

influence on throughput and response time are investigated. The first problem
essentially concerns the number of process switches and their inherent overhead

which accompanies each DML—request. The second problem occurs when multiple DBMS

processes called servers are used. Since now more than one preemptible server is

accessing the global system tables (GST) like system buffer L(SB), lock tables,
etc. high traffic access to these resources has to be synchronized. For

performance reasons, a direct protocol between the servers has to be applied
(using compare—and—swap—like instructions). Since the GST—elements are typically
hot spot data, there happens to be a lot of lock contention. When a server holding
a high traffic lock is preempted due to page wait or time slice runout, there is

the danger of establishing a convoy in front of the resource {BLAS79].
The process structures for the multiple DBMS servers are shown in Pig. 3. n

application processes can cooperate during each DML—call with one of m servers

F ~ ~‘°~ I

~I~-- i~

API
... APn L~!~1~L: ~

L~
__________ — __________

GST CST

__-

-_~ji~ iii

Fig. 3: Multiple DBMS servers: process structure and communication model

— 54 —

(n > m). Data exchange is direct via DAI. Global resources (GSP, SB) are in shared

virtual memory segments. The various processes can be executed by k tightly
coupled processors (k 4). In order to save process switches, the communication

AP DBMS is performed using a common server queue from which a free server

fetches the next AP request.
Our first simulation study reported in HARD84b] was restricted to one processor

(k=1) and used a very simple workload model. The AP model consisted of a cyclic
process which requested in each cycle a DML—service with a random number of

logical page references and physical page fetches. The DBMS server model was

fairly detailed providing 4 different latches (hot spot elements) per page access.

This event driven simulation model was entirely based on random numbers, that is,
DML generation, lock request, page fetch, length of DM1 request, etc. were all

handled by random number generators with suitable bounds.

The experimental results have shown that in a well balanced system the average
number of process switches per DM1 can be reduced from 2 to close to 1. The

formation of convoys or waiting times due to critical preemption turned out to be

no severe problem. However, process switching overhead in general (synchronous
I/o) consumed a huge share of the CPU~ resources (about 50%).
We reformulated our simulation model for the multi—processor case using again the

simplistic AP model and random numbers in each decision situation. The goal of

this study was the evaluation of hot spot data accessed by different processors.
In this situation other locking protocols may ‘be used (spin lock as opposed to

suspend lock in the one—processor case). Furthermore, a throughput and response
time prediction should be achieved for the k—processor case with given MIPS—rates.

We felt that our modelling efforts and the obtained experimental results were not

accurate enough for this problem description.
For this situation, it seems to be important to have the notion of a transaction

in the workload model. The execution models for BOT and EOT (Begin/End of TA)
within the server are quite different from normal DM1 execution. Read and write

statements should also be treated differently to gain greater accuracy in the

simulation model.

Therefore, we are currently designing — in a third approach — a simulation model

for the n/m/k—case where the workload model is derived from ORSs (described in

2.1). A server has incorporated four different execution models (BOT, EOT, read,
write). The length of a DM1 statement (page references) is determined by the OHS.

According to these references, simulation of lock and buffer management — as

essential system components — can be precisely performed. Critical sections

protected by latches should also be described by parameters like length, frequency
of access, and location within the server model to adapt to the actual needs of

simulating a particular system.

3. 1~pirica1 Comparison of Recovery $ch~mies

Before investigating the performance of CC—schemes, a major research topic in our

group was DB—recovery. We started by devising some novel recovery algorithms
~REUT8O, HARD79] and then tried to identify basic concepts for classifying and

describing the implementational techniques for DB—recovery. The result of this

line of investigation has been published in HARI83], from where Pig. 4 is quoted.
It shows the classification tree for all conceivable logging and recovery schemes,
based on four key concepts: propagation, buffer replacement, commit processing,
and checkpointing. Details can be found in H.ARD83]. In this paper it is argued
that the classification criteria have not been established arbitrarily; they
rather allow for a fairly precise characterization of performance and other

properties of alL ~algorithms ~belonging to~ the~ same class. This ~was~ supported by
some very detailed performance analyses of ten different recovery schemes.

Comparison is based on a fairly simplistic performance measure, namely number of

I/O—operations for logging and recovery purposes between two subsequent system
crashes, and the results are derived from analytic (mean value) models. For three

algorithms we used the trace driven evaluation as a validation method, but

investigating all algorithms with this technique was impossible. It turned out

that coding all the logging— and recovery components of a given algorithm was much

more expensive than coding a, say, r,x—lock manager — even though we did not

employ a real—time scale. For the 3 algorithms chosen, the trace driven results

supported the model prediction, and a description of this project can be found in

— 55 —

P,ops9at~n
— ATOMIC ATOMIC Stratsgy

/\
STEAL -.STEAL STEAL —STEAL RepI.cameflt

/\ /\ /\ /\
FORCE —FORCE FORCE -FORCE FORCE —FORCE FORCE —FORCE Proce~n9

I A\ I /\ I /\ I I
TOC TCC ACC fuzzy TOC TCC fuzzy TOC TCC ACC TOC ICC Scheme

~ ~ 7

U’ Eiample
Li, s-r

0
0

C

-j

Fig. 4: Classification scheme for recovery techniques

REUT84}. The most important conclusion to be drawn from these studies is that

“advanced” recovery algorithms that aim at reducing the work to be done after

crash recovery have to pay a penalty during normal operation that makes them less

efficient than the “classical” write—ahead—log—schemes. In particular, it could be

shown that

— indirect page mapping (e.g. shadow pages) does not pay;

— page oriented logging schemes are overly expensive;
— forcing modified pages at EOT means high overhead with large buffers.

On the other hand, page oriented schemes have two important virtues: First, they

are simple and independent of storage structures; and second, a page log can be

used even if the corresponding DB page is corrupted — which cannot be done with an

entry log. There is a proposal to optimize page logging by using chained I/O and

an appropriate log file format; this so—called DB—cache is described in F111A84}.
To compare this approach with an optimized entry logging technique, we are

currently conducting a trace driven evaluation of both. The results, which will be

published by mid—1985, show that even with a number of tricky optimizations page

logging is inferior to entry logging and imposes a much lower limit on total

system throughput.

4. Futwu,e Research

As already mentioned our research is now concentrating on synchronization and

recovery aspects in DB—sharing systems. In these systems, sophisticated mechanisms

for load balancing with a tight coupling to the synchronization algorithm have to

be integrated, too. Furthermore, we are looking into other types of multi

processor architectures with particular emphasis on

— CC arid new transaction concepts for non—standard applications (CAD, office,

etc.)
— low level CC aspects concerning asynchronous actions (access path maintenance,

replica management, etc.)
— fault tolerance improvement and recovery on single components.

5. Literatire

BAY.FBO Bayer, R., Heller, H., Reiser, A.: Parallelism arid Recovery in Database

Systems, ACM TODS, Vol. 5, No. 2, June 1980, pp. 130—156.

BLA~79 HLasgen, N. et al.: The Convoy Phenomenon, ACM Operating Systems Review,

Vol. 13, No. 2, 1979, pp. 20—25.

CAREB3 Carey, N.: Modeling and Evaluation of Database Concurrency Control

Algorithms, UCB/ERL 83/56, PhD Dissertation, University of California,

Berkeley, Sept. 1983.

EIEA84 Elhard, K., Bayer, R.: A Database Cache for High Performance and Fast Re—

— 56 —

start in Database Systems, ACM TODS, Vol. 9, No. 4, Dec. 1984, pp. 503—

525.

FRAN83 Pranaszek, P., Robinson, J.T.: Limitations of Concurrency in Transaction

Processing, Report No. RC 10151, IBM Research, Yorktown Heights, Aug.
1983.

GRAY81 Gray, J., Homan, P., Korth, H., Obermarck, R.: A Straw Man Analysis of the

Probability of Waiting and Deadlock in a Database System, Report No. RJ

3066, IBM Research, San Jose, Feb. 1981.

HARD79 J~rder, T., Reuter, A.: Optimization of Logging and Recovery in a Database

System, Data Base Architecture, Proc. IFIP TC—2 Working Conf., June 1979,
Venice, Bracchi, G. and Nijssen, G.M. (eds.), North Holland Pubi. Comp.,
1979, pp. 151—168.

HARI~3 Harder, P., Reuter, A.: Principles of Transaction Oriented Database Re

covery, ACM Computing Surveys, Vol. 15, No. 4, Dec. 1983, pp. 287—317.

HARL84a Harder, T.: Observations on Optimistic Concurrency Control Schemes,
Information Systems, Vol. 9, No. 2, 1984, pp. 111—120.

HARD84b Harder, T., Peinl, P.: Evaluating Multiple Server DBMS in General Purpose
Operating System Environments, Proc. 10th Tnt. Conf. on VLDB, August 1984,

Singapore, pp. 129—140.

HARI~5 Harder, P., Rahm, E.: Quantitative Analyse eines Synchronisations—
algorithmus fur DB—Sharing, Interner Bericht 127/85, FB Informatik, Uni

Kaiserslautern, Feb. 1985 (in German).
KIE~3 Kiessling, W., Landherr, G.: A Quantitative Comparison of Lockprotocols

for Centralized Databases, Proc. 9th Tnt. Conf. on VLDB, Florence, NOv.

1983, pp. 120—131.

MOR~4 Morris, R.J.T., Wong, W.S.: Performance Analysis of Locking and Optimistic
Concurrency Control Algorithms, AT~2 Bell Laboratories Report, 1984.

PEI~3 Peiril, P., Reuter, A.: Empirical Comparison of Database Concurrency
Control Schemes, Proc. 9th Tnt. Conf. on VLDB, Florence, Nov. 1983, pp.

97—108.
EJTSO Reuter, A.: A fast Transaction Oriented Logging Scheme for UNDO-Recovery,

IEEE Transactions on Software Engineering, Vol. SE-6, July 1980, pp. 348—

356.
RE1J183 Reuter, A.: An Analytic Model of Transaction Interference in Database

Systems, Research Report 88/83, University of Kaiserslautern, 1983.
REU~84 Reuter, A.: Performance Analysis of Recovery Techniques, ACM TODS, Vol. 9,

No. 4, Dec. 1984, pp. 526—559.
EJ~5 Reuter, A., Shoens, K.: Synchronization in a Data Sharing Environment, LBM

Research Report, San Jose, Calif. (in preparation).
RIES’77 Ries, D.R., Stonebraker, M.: Effects of Locking Granularity in a Database

Management System, ACM Trans. on Database Systems 2, Sept. 1977, pp. 233—
246.

RIFB79 es, D.R., Stonebraker, M.: Locking Granularity Revisited. ACM Trans. on

Database Systems 4, June 1979, 210—227.

TAY84a Tay, Y.C.: A Mean Value Performance Model For Locking Databases, Ph.D.

Thesis, Harvard University, 1984.
TAY84h Tay, Y.C., Goodman, N., and Sun, R.: Choice and Performance in Locking

for Databases, Proc. mt. Conf. on Very Large Databases, Singapore, Aug.
1984, pp. 119—128.

TAY84c Tay, Y.C., Goodman, N., Sun, R.: Performance Evaluation of Locking in

Databases: A Survey, Res. Report TR—17—84, Aiken Comp. laboratory, Harvard

University, 1984.
TIES UDS, Universal Data Base Management System, UDS—V4 Reference Manual

Package, Siemens AG, Munich, West Germany.

— 57 —

The Performance of Concurrency Control and Recovery Algorithms
for Transaction-Oriented Database Systems

Rakesh Agrawal Michael J. Carey’

AT&T Bell Laboratories Computer Sciences Department

600 Mountain Avenue University of Wisconsin

Murray Hill, New Jersey 07974 Madison, Wisconsin 53706

I. INTRODUCTION

Research in the area of transaction management for database systems has led to the development of a

number of concurrency control and recovery algorithms, many of which are surveyed in Bern8l, Bern82,

Verh78, Haer83]. Given the ever-growing number of concurrency control and recovery algorithm proposals,

the database system designer is faced with a difficult decision: Which algorithm should be chosen? We have

been addressing this question in our research, and this paper summarizes our efforts towards arriving at a satis

factory answer.

The organization of the paper is as follows. In Section 2, we describe the structure and characteristics of a

simulator that has been used for a number of our concurrency control performance studies. This simulator cap

tures all the main elements of a database environment, including both users (i.e., terminals, the source of tran

sactions) and physical resources for storing and processing the data (i.e., disks and CPUs) in addition to the

usual model components (workload and database characteristics). Section 3 contains the results of a recent study

in which we addressed assumptions made in past performance studies (by us and others) and their implications,

showing how differences in certain assumptions explain apparently contradictory performance results from past

studies and how more realistic assumptions could have altered the conclusions of some of the earlier studies. In

Section 4, we present the results of an earlier study which compared the performance of a number of alternative

concurrency control algorithms. Section 5 describes the results of a performance and storage efficiency com

parison of several multi-version concurrency control algorithms. Section 6 summarizes the results of an evalua

tion of a nuniber of alternative deadlock resolution strategies. In Section 7, we present several parallel recovery

algorithms and the results of a study of their performance. Finally, in Section 8, we discuss the results of a

study of several integrated concurrency control and recovery algorithms. Section 9 points out some directions

for future research in this area.

2. A SIMULATION MODEL

Our simulator for studying the performance of concurrency control algorithms is based on the closed

queuing model of a single-site database system shown in Figure 1 Care83b, Care84a]. Underlying this logical

model are two physical resources, the CPU and the I/O (i.e., disk) resources. The physical queuing model is

depicted in Figure 2. Table 1 describes the simulation parameters for the model. The model actually supports

workloads with two classes of transactions, and each class has its own set of values for the second group of

parameters in Table 1. A class probability parameter determines the mix of transaction classes in the workload.

3. CONCURRENCY CONTROL MODELS — ASSUMPTIONS AND IMPLICATIONS

One~of~our most recent studies of-concurrencytontrol~algorithm~performance tAgra85c] focused on~criti

cally examining the assumptions of previous studies and on understanding their apparently contradictory results.

For example, several of our own studies have suggested that algorithms that use blocking to resolve conflicts are

Research partuatty supported by Nationat Science Foundation Grant Number DCR-~4O2~1l, an IBM FatuIty Devetopmem Award,

and the Wisconsin Alunin i Research Foundation.

— 58 —

TERMINALS

Figure 1: Logical Queuing Model.

TERMINALS

Figure 2: Physical Queuing Model.

Parameter Meaning

db_ size

gra,Lsize

number of objects in the database

number of objects in a concurrency control granule

1rwL~size

iran~disi

(raiL !vpe

wrile_prob
iflL!hiiiLIi,iu’

mean transaction size

transaction size distribution (fixed, uniform, exponential)
type of transaction (random or sequential accesses)
Pr (write X I read X) for transactions

mean intra-transaction think time (optional)

nunL/erms

inpi

exL !hink_ (line

res!arLdelav

number of terminals

multiprogramming level

mean time between transactions (per terminal)
mean transaction restart delay (optional)

obj_io

obj_cpu

slarlup_lo

.~!ar1up_cpu

cc_cpu

F?UIlLcpus

nurn_disks

I/O time for accessing an object
CPU time for accessing an object
I/O time for transaction initiation

CPU time for transaction initiation

CPU time for a basic concurrency control operation
number of CPUs

number of disks

Table 1: Simulation Parameters.

— 59 —

preferable to those that use restarts Agra83a, Care84a], whereas there have been other studies that basically

came to the opposite conclusion Fran83, Tay84a, Tay84b]. The assumptions about system resources that

underlie these studies are quite different — our previous studies assumed a database system with highly utilized

resources, whereas the studies in Fran83, Tay84a, Tay84b] assumed what we refer to as infiniie resources,

where transactions progress at a rate independent of the number of concurrent transactions (i.e., all in parallel).

In this study, we selected three algorithms to examine: The first algorithm studied was a blocking algo

rithm, basic two-phase locking with deadlock detection Grayl9]. The second algorithm studied was an

i,n,nediaie-resiorl locking algorithm, in which transactions restart immediately (instead of waiting) in the event of

a lock conflict Tay84a, Tay84h]. Restarted transactions are delayed for one average response lime before being

resubmitted. The last algorithm studied was the opiiinisiic algorithm of Kung and Robinson Kung8l], where

transactions are allowed to execute freely and are validated (and restarted if necessary) only after they have

reached their commit points. These algorithms were chosen because they represent extremes with respect to

when conflicts are detected and how a detected conflict is resolved.

We first examined the performance of the three strategies in the case of very low conflicts. As expected,

all three algorithms performed basically alike for both infinite and finite resource levels under low conflicts. We

then investigated the perforniance of the algorithms under a higher level of conflicts, first for infinite resources,

then for a varied finite number of CPUs and disks, and finally for an interactive type of workload. Table 2 gives

the parameters used for most of these experiments.

Figures 3 through 8 show the throughput results obtained for some of the experiments that we ran. As

shown in Figure 3, the optimistic algorithm performed the best for the infinite resource case. The blocking

algorithm outperformed the immediate-restart algorithm in terms of maximum throughput, but immediate-restart

beat blocking at high multiprogramming levels. The performance of blocking increased to a point, then began to

decrease due to excessive blocking. These results concur well with those reported in Ba1t82, Fran83, Tay84a,

Tay84b] under similar assumptions. Figure 4 shows the results obtained for the same workload when the

system’s resources consist of 1 CPU and 2 disks. As shown, the blocking strategy performed best in this case1,

followed by immediate-restart, then followed by the optimistic algorithm, which agrees well with the results of

Agra83a, Agra83b, Care83b, Care84a]. Figures 5 and 6 show the results obtained with 10 CPU’s and 20

disks, and with 25 CPU’s and 50 disks. As is evident, blocking won in the former case, and optimistic per

formed best in the latter case. In the (10,20) case, the maximum levels of useful disk utilization for the algo

rithms were in the 45-55% range, and they were in the range of about 25-35% in the (25,50) case. (The disks

were the bottleneck for this set of parameters.) Useful utilization is the fraction of a resource used to process

requests for transactions that eventually committed (as opposed to being restarted); we found the useful utilization

Parameter Value

db_siz.e 1000 pages

iran_ size 8 page mean readset size

irandisi uniform on 4 to 12 pages

type random access pattern

wrile_prob 0.25

nu,n.Jerrns 200 terminals

mpl 5, 10, 25, 50, 75, 100, and 200 transactions

exL!hinL titHe 1 second

obj_io 35 milliseconds

obj_cpu 15 milliseconds

Table 2: Simulation Parameter Settings.

The act that immediate—restart beat blocking at the h~ghesl lew) 01 iiiiiliiprogiaiiiit)iiig in th~ limited resource case is a ~id~—etThct ot

its restart delay~ blocking won l~w the same mtultiprograntnliflg level when it was given a restart delay lAgia~5cl.

— 60 —

— blocking 0 — immediate-restart — optimistic

6

T

h

r

4

0

U

a

h2

p

U

50 100 ISO

Multiprogrammrng Level

Figure 4: Throughput (1 CPU, 2 Disks).

50

I

h40

030

50 00 50

Multipeogramming Level

Figure 6: Throughput (25 CPUs, 50 Disks).

T

3
h

0

2

U

a

h

p

U

90

I

h

C

60

0

16

h

r

0

U

a

Ii

p2

U

U

50 100

M ultiprogramming Level

ISO 200

Figure 3: Throughput (Inflnite Resources).

r~I~

200

132

h

C

24

0

U

lb

h

pg

U

S

20

II

ID

50 100 ISO 200

Mulliprogramming Level

Figure 5: Throughput (10 CPUs, 20 Disks).

200

50 IOU ISO 200

Muluprogramming Level

Figure 7: Throughput (1 Sec. Thinking).

50 00

Muliiprogramming Level

ISO 200

Figure 8: Throughput (10 Sec. Thinking).

— 61 —

and throughput curves to be highly correlated (almost exactly the same shape) in all cases. Finally, Figures 7

and 8 show the results for two interactive workloads, one with a 1-second think time between the read and write

phases of transactions (and a 3-second external think time), and the other with a 10-second internal think time

(and a 21-second external think time). As shown, the first case yielded results similar to the finite resource case,

and the results of the latter test were closer to those of the infinite resource case. The maximum useful disk util

izations in the 1-second case were in the 70-90% range, and they were in the 25-55% range in the latter case.

The main conclusion from this study is that results which appeared to be contradictory are in fact not,

being instead due to differences in their underlying resource-related assumptions. For higher resource utiliza

tions, blocking is the conflict-resolution tactic of choice, and for low resource utilizations, restarting is preferable
from a performance standpoint. (Such low resource utilizations can be due either to a multiplicity of CPU and

disk resources or to an interactive workload with transactions that have long think periods during their execu

tion.) This study also illustrates the fact that capturing the system resources is a necessity for a database perfor
mance model if one wishes to study algorithms for real database systems.

4. A STUDY OF ALTERNATIVE CONCURRENCY CONTROL ALGORITHMS

In one of our earlier studies Care83h, Care84a], we considered the problem of choosing among seven dif

ferent algorithms — four locking algorithms, two timestamp algorithms, and an optimistic algorithm. The lock

ing algorithms considered were variants of both preclaimed and dynamic locking Gray79], the timestamp-based

algorithms were basic timestamp ordering with and without the “Thomas write rule” Bern8l], and the optimis
tic algorithm was the serial validation scheme of Kung8l]. Experiments were run for a number of different

transaction sizes and mixes, assuming several different concurrency control costs and multiprogramming levels,
all while varying the granularity of the database to vary the level of conflicts. These experiments were performed
for a high resource utilization case.

All algorithms were found to perform equally well when conflicts were rare. When conflicts were more

frequent, the algorithms that minimized the number of transaction restarts were generally found to he superior.
In situations where several algorithms restarted about the same number of transactions, those that restarted tran

sactions which had done less work tended to perform the best. Preclainied locking consistently outperformed the

other alternatives in this study2, and dynamic two-phase locking also did quite well. The optimistic and times-

tamp algorithms generally performed much worse than the other algorithms under high conflict levels because

they wasted the most resources through restarts.

The study in Care83b] also considered the performance of hierarchical and multiversion concurrency con

trol algorithms. The results for hierarchical versions of locking, basic timestamp ordering, and serial validation

(see Care83aJ for algorithm details) were that, unless concurrency control overhead is a significant fraction of

the overhead for reading and processing data objects, hierarchical algorithms are of little use under high
resource utilization. The next section presents recent results for multiple version algorithms that supercede those

of Care83bJ.

5. MULTIVERSION CONCURRENCY CONTROL ALGORITHMS

In Care84b]. we studied the performance of three multiversion concurrency control algorithms — Reed’s

multiversion timestamp ordering algorithm Reed83], the CCA version pool algorithm, which uses locking
Chan82], and a niultiversion variant of serial validation Care8S]. In two experiments, a mix of small update
transactions and large read-only transactions were used as the workload; the size of read-only transactions and

the retative~fraction o the iwo transaction types were varied. Iii these eKperiments, the paranT~ter settings were

such that virtually all conflicts were between readers and updaters (not between two upclaters). All the multiver

sion algorithms were found to perform equally well in this situation, and they all outperformed their single ver

sion counterparts. The performance gains due to multiple versions were particularly pronounced for the times-

tamp and optimistic algorithms, as these algorithms performed worse than locking in the absence of multiple ver

sions. In the last experiment, a workload that focused on updater-updater conflicts was tested, and the relative

— VVe a~stur1)etI that the obiects to he accessed are acctiraielv known at trarlsaclioit Staittip time — this us lot the ca_se in general—purpose
database systems, hut may be possible in sonic applications.

— 62 —

performance of the multiversion algorithms was found to be the same as that of their single version counterparts.

All of these experiments were run assuming a high resource utilization situation.

We found that although the multiversion locking algorithm did not provide a remarkable increase in overall

throughput as compared to single-version locking, it did offer a rather nice form of improvement — it traded a

slight increase in the average response lime for large read-only transactions, due to occasionally following ver

sion chains, for a huge decrease in the average response time for small update transactions. We also looked at

the storage characteristics of the algorithms, and all three were similar — the size of the version pool increased

with the size of read-only transactions, but its average size never exceeded 10-15% of the total database size in

our experiments (even for the largest read-only transaction sizes). We also found that most read requests, more

than 95% of them, could he satisfied in a single disk access, and nearly 85% of all transactions executed without

needing niore than one access for any read request. The cost of reading old versions was found to only slightly

impact performance, and its impact was outweighed by the benefits of having multiple versions around to reduce

the amount of blocking and restarts.

6. ALTERNATIVE DEADLOCK RESOLUTION STRATEGIES

Given that locking is the concurrency control algorithm of choice over a fairly wide variety of database

workloads and system configurations (as described in Section 3), we recently studied the performance of a variety

of deadlock resolution strategies Agra85d}. Among those studied were the following alternatives:

Deadlock Deieci’ion. Strategies based on deadlock detection require that a waits-for graph Gray 791 be explicitly

built and maintained. We studied both conhinuous deieciion and periodic deieciion. We also considered a number

of deadlock victim selection criteria, including picking the most recent blocker, a random transaction, the one

with the fewest locks, the youngest one, and the one that has used the least amount of resources.

Deadlock I’reveniion. In deadlock prevention, deadlocks are prevented by never allowing blocked states that can

lead to circular waiting. We considered the following set of deadlock prevention algorithms: Wound-wail

Rose78], where an older transaction can preempt a younger one; waib-die Rose78], where a younger transac

tion restarts itself when it conflicts with an older one; immediate-restart Tay84a]. which we described in Sec

tiOn 3; running priorily Fran83}, where a running transaction preempts any blocked transactions that it conflicts

with (i.e., running transactions get priority), and hitneoul, where a blocked transaction times Out after waiting

longer than some threshold time period.

We investigated the performance of the various deadlock detection and prevention algorithms for two of

Section 3’s parameter settings, the resource-bound case (1 CPU and 2 disks, non-interactive), and the interactive

case with a 10-second internal think time for transactions.3 A major conclusion of the study is that the choice of

the best deadlock resolution strategy depends on the system’s operating region. In a low conflict situation, the

perforniance of all deadlock resolution strategies is basically identical. In a higher-conflict situation where

resources are fairly heavily utilized, continuous deadlock detection was found to be the best deadlock resolution

strategy, and in this situation it is best to choose a victim selection criterion that minimizes transaction restarts

and hence wastes little in the way of resources. The fewest locks criterion was found to provide the best perfor

mance of those examined. In the interactive case, however, due to low resource utilizations and to long think

times during which locks are held, it was found that an algorithm like wound-wait, which balances blocking and

restarts, provides the best performance. A deadlock resolution strategy such as immediate-restart, which

exclusively relies on transaction restarts, was found to perform relatively poorly in both situations. Continuous

deadlock detection consistently outperformed periodic deadlock detection due to higher blocking and restart ratios

for periodic detection. Finally, our study also highlighted the difficulty in choosing an appropriate timeout inter

val for the timeout strategy; even with an adaptive timeout interval, the timeout strategy was never the strategy of

choice.

The interactive case was chosen to represent a low resource iutul;sation situation — ii is relatively inexpensive to simulate, and its

results witi also hold l~r other low utili,.ation cases.

— 63 —

7. PARALLEL RECOVERY ALGORITHMS

In {Agra8SbJ, we presented parallel recovery algorithms based on three basic recovery algorithms, logging

Gray79], shadows Lori77], and differential files Seve7ô], and we evaluated their performance. Although our

algorithms were designed in the context of multiprocessor-cache database machines Dewi8l], they may easily be

adapted for use in any high performance database management system. Our database machine architecture con

sists of query processors that process transactions asynchronously, a shared disk cache, and an interconnection

device. A processor, designated the back-end controller, coordinates the activities of the query processors and

manages the cache. We assume in all of our algorithms that the hack-end controller also executes a page-level

locking scheduler.

7.1. Parallel Logging

The basic idea of parallel logging is to make the collection of recovery data more efficient by allowing log

ging to occur in parallel at more than one log processor. When a query processor updates a page, it creates a

log fragment for the page, selects a log processor, and sends it the log fragment. The log processors assemble

log fragments into log pages and write them to the log disks. The back-end controller enforces the write-ahead

log protocol Gray79]. Details of the algorithm are given in Agra85a], where it is also shown how recovery

from failures may be performed without first merging logs from multiple Jog disks into one physical log, and

how system checkpointing can he performed without totally quiescing the system.

7.2. Shadows

The major cost of the shadow algorithm is the cost of indirection through the page table to access data

pages Gray8l, Agra83a]. The indirection penalty may he reduced by keeping page tables on one or more

page-table disks (which are different from data disks) and using separate page-table processors for them. Alter

natively, the indirection may be avoided altogether by maintaining separate shadow and current copies of data

pages only while the updating transaction is active. On transaction completion, the shadow copy is overwritten

with the current copy.

7.3. Differential Files

In the model proposed in Ston8l], each data file R is considered a view, R = (B U A) - D, where B is the

read-only base portion of R, and additions and deletions to R are appended to the A and D files (respectively).
The major cost overhead of this approach consists of two components Agra83a] — the I/O cost of reading extra

pages from the differential files, and the extra CPU processing cost (for example, a simple retrieval is converted

into set-union and set-difference operations). While the number of differential file pages which must be read to

process a query depends on the frequency of update operations and the frequency with which differential files are

merged with the base file, the parallelism inherent in a database machine architecture may be exploited to allevi

ate the CPU overhead. In Agra83bJ, parallel algorithms were presented for operations on differential files.

7.4. Performance Evaluation Results

The simulator used to evaluate the performance of these parallel recovery algorithms is described in

Agra83b, Agra84]. The details of the performance experiments and a sensitivity analysis of the results can be

found in Agra83b, Agra85b].

The differential-file algorithm degraded the throughput of the database machine even when ‘the size of the

differential-fHes-was assumed~to be only 10% of~the~base4iIesize~ This degradation in throughput was due to the

extra disk I/Os for accessing the differential file pages and the extra CPU cycles required for the set-difference

operation, and the degradation was found to increase nonlinearly with an increase in the size of the differential

files. Since I/O bandwidth is the factor limiting the throughput of the hare database machine Agra84], these

extra disk accesses had a negative impact. The extra processing requirement is not a problem as long as the

query processors do not become the bottleneck. However, when the size of the differential files was larger than

10%, the query processors became saturated.

In the case of the “thru page-table” shadow algorithm, it was found that reading and updating the page

table entries could be overlapped with the processing of data pages for random transactions by using more than

— 64 —

one page-table processor; there was virtually no degradation in performance. For sequential transactions, when

it was assumed that logically adjacent pages could be kept physically clustered, the performance of the “thru

page-table” shadow algorithm was very good. In practice, this assumption is difficult to justify, in which case

the algorithm performed very poorly due to relatively large seek times. The overwriting algorithm maintains the

correspondence between physical and logical sequentiality, hut it performed worse than the “thru page-table”
shadow algorithm due to extra accesses to the data disks — whereas accesses to the page-table disk in the “thru

page-table” shadow algorithm may be overlapped with the processing of data pages, the overwriting algorithm is

not amenable to such overlapping.

Overall, parallel logging emerged as the recovery algorithm of choice, as the collection of recovery data

could he completely overlapped with the processing of data pages. The bandwidth of the communications

medium between the query processors and the log processor had no significant effect on the performance of

parallel logging. In particular, the performance of logging did not degrade when log pages were routed through
the disk cache; hence, a dedicated interconnection for sending log pages between the query processors and the

log processor was found to be unnecessary.

8. INTEGRATED CONCURRENCY CONTROL AND RECOVERY ALGORITHMS

In Agra83a, Agra83b], we argued that concurrency control and recovery algorithms are intimately

related, and we presented six integrated algorithms that perform the tasks of both concurrency control and

recovery: log + locking, log + optimistic, shadow + locking, shadow + optimistic, differential file + locking, and dif

ferential file+ optimistic. The granularity of objects for concurrency control purposes was assumed to be a page.

We first explored how the interaction of concurrency control and recovery in the integrated algorithms influences

data sharing, update strategies, commit processing, and overall performance Agra83b]. The performance of

these integrated algorithms was then evaluated using a combination of simulation and analytical models. Perfor

niance was evaluated assuming a resource-limited situation. Buffer availability was considered as well as CPU

and disk overhead. Our evaluation indicated that log+ locking had the best overall performance. if there are

only large sequential transactions, the shadow+Jocking algorithm is also a possible alternative, in an environ

ment with medium and large size transactions, differential file+ locking is a viable alternative to the log+ locking

algorithm.

The operation of “making local copies globally available” at transaction commit time was found to be very

expensive in the log +optimistic algorithm, resulting in its inferior performance as compared to log+ locking. In

the log+optimistic algorithm, the log records required for recovery are used as the local copies of updated

objects required for validation. Thus, to make the updates of a transaction globally available at commit lime, all

log pages that were flushed to disk due to buffer size constraints have to he re-read. Worse yet, so do all data

pages that are to be updated and that could not be kept in memory due to buffer limitations, in addition, optimis
tic concurrency control induces more transaction restarts than locking with deadlock detection. Also, nonserial

izahility is detected after a transaction has run to completion with optimistic concurrency control, wasting the

entire transaction’s processing, whereas deadlock detection is performed whenever a request blocks with locking.
Thus, with the optimistic approach, not only are there more transaction restarts, but each restart is also more

expensive. These were the main factors responsible for the poor performance of the optimistic combinations as

compared to their locking counterparts.

We found that it was more expensive to do transaction undo with log+ locking as compared to

shadow+locking or differential file+locking. However, the logging combination puts a smaller burden on a

successful transaction. Since most transactions succeed rather than abort, Jog+ locking emerged as the better

algorithm. The major disadvantage of the shadow combination is the cost of indirection through the page table.

The disadvantage of the differential file combination is the overhead of reading differential file pages plus the

extra CPU overhead for processing a query.

9. FUTURE WORK

We have described the results of a number of our recent studies of concurrency control and recovery algo
rithm performance. While we (and, of course, others) have now taken a fairly exhaustive look at the perfor
mance of these algorithms for centralized database systems, several interesting problems remain to be addressed.

— 65 —

First, there have been a fair number of studies of distributed concurrency control algorithms, but work remains

to be done. In particular, resource issues brought out in Agra85c] indicate that future studies must be based on

realistic models of the system resources. Only then can the issue of restarts versus blocking (and its associated

deadlock detection message overhead) be resolved satisfactorily for the distributed case. Second, most studies

with which we are familiar have been based on either analytical or simulation models. It would be very interest

ing to see results obtained from studies that stress the concurrency control and recovery mechanisms of actual

database systems (or of prototype systems which allow these algorithms to he varied). Such studies would cer

tainly shed light on the validity of the models and results of the performance studies performed to date. Finally,

concurrency control and recovery algorithms are being proposed for new application areas such as expert data

base systems (e.g., Prolog-based database systems), CAD database systems, and transaction-based programming
systems for distributed applications. To our knowledge, the performance of alternative algorithms for these and

similar emerging areas has yet to be addressed.

REFERENCES

Agra83a] R. Agrawal and D. J. DeWitt, Inteçrated Concurrency Control and Recovery Mechanisms. Design
and Performance Evaluation, Computer Sciences Tech. Rep. #497, Univ. of Wisconsin, Madison,

March 1983. An expanded version is available as AT&T Bell Laboratories Research Report, Sept.
1984.

Agra83b] R. Agrawal, Concurremy Control and Recovery in Multiprocessor Database Machines: Design and

Pei-formancc’ Evaluation, Ph.D. Thesis, Computer Sciences Dept., Univ. of Wisconsin, Sept.
1983.

Agra84] R. Agrawal and D. J. DeWitt, “Whither Hundreds of Processors in a Database Machine”, Proc.

Int’l Workshop on High-Level Computer Architecture ‘84, May 1984, 6.21-6.32.

Agra85a] R. Agrawal, “A Parallel Logging Algorithm for Multiprocessor Database Machines”, Proc. 4th

lot ‘I Workshop on Database Machines, March 1985.

Agra85b] R. Agrawal and D. J. DeWitt, “Recovery Architectures for Multiprocessor Database Machines”,

Proc. ACM-SIGMOD /985 Int’l Cool: on Management of Data, May 1985, to appear.

Agra85c] R. Agrawal, M. J. Carey and M. Livny, “Models for Studying Concurrency Control Performance:

Alternatives and Implications”, Proc. ACM-SIGMOD 1985 Int’l Conf on Management of Data, May
1985, to appear.

Agra85d] R. Agrawal, M. J. Carey and L. McVoy, The Performance of Alternative Strategies for Dealing wi/h

Deadlocks in Database Management Systems, Computer Sciences Tech. Rep. #590, Univ. of

Wisconsin, Madison, March 1985.

Ba1t82] R. Baiter, P. Berard and P. Decitre, “Why the Control of Concurrency Level in Distributed Sys
tems is More Fundamental than Deadlock Management”, I’roc. ACM SIGACT-SIGOI’S Synip. on

I’rinciples of Distributed Computing, Aug. 1982, 183-193.

Bern8lJ P. Bernstein and N. Goodman, “Concurrency Control in Distributed Database Systems”, ACM

Computing Surveys 13, 2 (June 1981), 185-221.

Bern82] P. Bernstein and N. Goodman, “A Sophisticate’s Introduction to Distributed Database Con

currency Control”,? I’roc. 8th Ii,i’/ on. on Very Lai~’ Data Bases, Sept. 1982.

Care83a] M. J. Carey, “Granularity Hierarchies in Concurrency Control”, I’roc. Second ACM SIGACJ

SIGMOD Symp. on Principles of Database Systems, Atlanta, Georgia, March 1983.

LCare83b} M. J. Carey, Modeling and Evaluation of Database Concurrency Control Algorithms, Ph.D. Thesis,

Computer Science Division (EECS). Univ. of California, Berkeley, Sept. 1983.

Care84a] M. J. Carey and M. R. Stonebraker, “The Performance of Concurrency Control Algorithms for

Database Management Systems”, l’roc. /0th Int’l Con/i’rence on Very Large Data Bases, Singapore,

August 1984.

— 66 —

Care84b] M. J. Carey and W. Muhanna, The Performance of Multiversion Concurrency Control Algorithms

(with W. Muhanna), Technical Report #550, Computer Sciences Department, Univ. of Wiscon

sin, Madison, August 1984.

Care85] M. J. Carey, “Improving the Performance of an Optimistic Concurrency Control Algorithm

through Timestamps and Versions”, IEEE Trans. on Software Eng., to appear.

Chan82] A. Chan, S. Fox, W. Lin, A. Non, and D. Ries, “The Implementation of an Integrated Con

currency Control and Recovery Scheme”, Proc. ACM-SIGMOD Int’l Conf on Management of Data,

1982.

Dewi8l] D. J. DeWitt and P. Hawthorn, “A Performance Evaluation of Database Machine Architectures”,

/‘roc. 7,/i In! ‘I Conf on V’rv Large Data Bases, Sept. 1981.

Fran83] P. Franaszek and J. Robinson, Limitations of Concurrency in Transaction Processing, Report No.

RC1O151, IBM Thomas J. Watson Research Center, August 1983.

Grayl9] J. N. Gray, “Notes On Database Operating Systems”, in Operating Systems: An Advanced Course,

Springer-Verlag, 1979.

Gray8l] J. N. Gray, P. R. McJones, B. G. Lindsay, M. W. Blasgen, R. A. Lone, T. G. Price, F. Putzolu

and I. L. Traiger, “The Recovery Manager of the System R Database Manager”, ACM Computing

Surveys 13, 2 (June 1981), 223-242.

Haer83] T. Haerder and A. Reuter, “Principles of Transaction-Oriented Database Recovery”, ACM Com

puting Surveys 15, 4 (Dec. 1983), 287-3 18.

Kung8l] H. T. Kung, and J. Robinson, “On Optimistic Methods for Concurrency Control”, ACM Trans.

on Database Syst. 6, 2 (June 1981).

Lor177] R. A. Lone, “Physical Integrity in a Large Segmented Database”, ACM Trans. Database Svst. 2, 1

(March 1977), 91-104.

Reed83] D. Reed, “Implementing Atomic Actions on Decentralized Data”, ACM Trans. on Computer Svsi.

1, 1 (February 1983).

Seve76J D. Severence and G. Lohman, “Differential Files: Their Application to the Maintenance of Large

Databases”, ACM Trans. on Database Svst. 1, 3 (Sept. 1976).

Ston8l] M. R. Stonebraker, “Hypothetical Data Bases as View”, Proc. ACM-SIGMOD /98/ Int’l Conf. on

Management of Data, May 1981, 224-229.

Tay84a] Y. C. Tay, A Mean Value PerJbrmance Model for Locking in Databases, Ph.D. Thesis, Coniputer

Science Department, Harvard Univ., February 1984.

Tay84bJ Y. C. Tay and R. Sun, “Choice and Performance in Locking for Databases”, Proc. /0th Int’l

C’onf on Vc’,y Large Data Bases, Singapore, August 1984.

Verh78] J. M. Verhofstadt, “Recovery Techniques for Database Systems”, ACM Computing Surveys 10, 2

(June 1978), 167-195.

— 67

DISTRIBUTED COMPUTING RESEARCH AT

PRINCETON

Rafael Alonao, Daniel Barbara, Ricardo Cordon

Hector Garcia-Motina, Jack Kent, Frank PitteUi

Department of Electrical Engineering and Computer Science

Princeton University
Princeton, N.J. 08544

(609) 452-4633

Net address: hector%princeton@csnet-relay

1. Introduction

In this note we briefly summarize our current research in the area of distributed comput

jug. In general terms, our emphasis is on studying mechanisms for reliable distributed data

management, focusing on their performance. Our work can be roughly divided into seven

categories: use of semantic knowledge, network partitions, recovery algorithms, vote assign

ments, experimental evaluation of crash recovery mechanisms, data replication, and load balanc

ing and query optimization.

Due to space limitations, we concentrate on describing our own work and we do not survey

the work of other researchers in the field. For survey information and references, we refer

readers to some of our reports.

2. Semantic Knowledge

In a distributed database, concurrency control mechanisms may introduce unacceptable

delays in transactions, mainly due to the relatively large communication times. These same

mechanisms may cause transactions to block during a network partition. Both of these prob
lems are undesirable, especially in applications where data availability is critical.

Many of these problems can be avoided if the application is known and understood. For

example, consider an airline reservation application, where reservation for flights are being
made. A transaction T1 needs to reserve a seat on a flight F. The data for flight F is held by a

computer X, so T1 executes actions at X. Then, T1 may have to execute actions at other com

puters in order to reserve other seats. Now, suppose that a second transaction T2 wishes to

reserve a seat on F. With conventional mechanisms, T2 cannot commit until the fate of T1 is

known. In other words, the user who submitted T2 must wait until T1 completes its actions,

and in a distributed environment this can take a significant amount of time. However, since we

know the application, we can tell that if T1 left sufficient seats for F in X, then ~‘2 does not

have to wait for the outcome of T1. Therefore, ~‘2 does not have to be delayed and may actu

ally finish before T1 does.

What we have done in this example is to exploit the application semantics in order to

improve performance. Actually, the reliability has also been improved. For instance, suppose

This work has been supported by NSF Grants ECS-8303146 and ECS-8351616, Naval Electronic

Systems Command contract N00039-84-C0485, and from grants from IBM and NCR corporations.

— 68 —

that a network partition causes T1 to block (i.e., to be delayed until repair time). Now T2 is

not forced to block. That is, in spite of the failure and the suspension of T1, the reservations

data for F is still available to transactions like ~‘2~

Ideas such as the one presented in this example have been used for years, in an ad hoc

fashion, in commercial applications where the semantics are relatively simple, e.g., in banking,
airline reservations, and inventory control. (See for example the description of IMS Fast Path

in Date8lI.) In Garc83bl we formalized this approach and developed a general transaction pro

cessing mechanism which lets system administrators enter certain types of semantic knowledge.
This knowledge is used by the system to schedule transactions more efficiently and to reduce

some of the delays associated with failures. With this mechanism, the semantic knowledge is

given to the system in a structured and organized fashion, and does not have to be embedded in

the application code as is currently done.

The proposed mechanism has higher overhead than a conventional one and may induce

higher delays in transactions that cannot be interleaved with others, so it may not be advanta

geous in all situations. To better understand the conditions under which using semantic

knowledge does pay off, we implemented a detailed event-driven simulator Cord84a]. With it

we identified the “probability of saved conflict” as the most important parameter in deciding
whether a semantic based mechanism is advantageous. This is the probability that an object
requested by a transaction is locked by another transaction that allows interleaving with it. We

discovered that under very general conditions, this probability must be greater than 0.01 before

semantic knowledge pays off. Thus, a system administrator can estimate the probability of

saved conflict for an application (as discussed in Cord84a]) and make a preliminary decision as

to what mechanism is best. Of course, the number 0.01 is not an exact threshold, but it can be

used to discriminate in applications where this parameter is clearly above or below the value.

Our simulation results also indicated that semantic knowledge can improve performance
when long lived transactions (LLTs) are present. These transactions have a long duration or

access many objects (or both), and are common in certain applications. We have started to

investigate mechanisms for processing LLTs, and some of our preliminary observations can be

found in Garc83dJ. In this report we also discuss how the database schema and the transac

tions themselves can be designed in order to improve the performance of the system.

We have also started to develop tools for analyzing transactions and checking if they can

be interleaved with others. So far, we have considered transactions that consist of arithmetic

actions (e.g., A .— A + B — 30), set actions (e.g., S ~— S U {x}), simple conditional statements,
and abort statements. For these, we have developed procedures for automatically checking
compatibility of transactions Cord84b]. These procedures are also useful because they tell us

how transactions should be written in the first place to achieve compatibility. We are currently
working on generalizing our results; however, as soon as we leave the relatively simple transac

tions, checking compatibility appears to be substantially more difficult.

3. Partitions in Distributed Database Systems

In a distributed database, a network partition occurs when the system is split into groups

of isolated nodes. In order to preserve data consistency, most systems will allow transactions to

be run in at most a single group. This means that users at the other nodes will not be able to

access the data, even though they may have a copy of it.

In some applications data availability is paramount and halting transactions at some nodes

may not be acceptable. Typically, in these applications either partitions are relatively common

or they occur at critical moments when access to the data is imperative. Several strategies that

provide this higher availability have recently been suggested. They allow more than a single

group to process transactions, and the resulting schedule may even be non-serializable (but

— 69 —

acceptable for the application). In order to better understand the available options, we have

surveyed them and compiled our findings in Davi84J.

The approach we have focused on for database partitions is called Data-patch Garc83c].
Here each group can update the database during the partition, and then application knowledge
is used at repair time to integrate the divergent copies. We are currently modifying Data-patch
so that it operates in a more dynamic environment. The goal is to have highly autonomous

nodes and to eliminate the need for “clean” integration phases. Under the original Data-patch,
when a partition was repaired, the nodes in the newly formed group had to cooperate with each

other to arrive at a single integrated database. Any failures during this integration period could

cause serious problems. With the new approach, nodes will continuously broadcast copies of

their local updates. Each node will then integrate the remote updates with its local view of the

database, on a continuous basis.

There are two fairly independent problems to be attacked here. One is the reliable distri

bution of the update messages. Although there has been some work on reliable broadcasts

Awer84, Chan84J, we feel that there are still many open questions. Specifically, we are

interested in eventually implementing the protocol on the ARPANET, and in this case the net

work switches cannot be programmed by the users. Thus, the reliable broadcast protocol must

run on the hosts, and managing the broadcast from them, and not the switches, is a challenging
task. In Garc84b] we discuss the difficulties involved, and we suggest various algorithms for the

broadcast.

A second problem is the integration of the possibly conflicting updates when they arrive.

The basic philosophy will be that each node is autonomous. If a node can communicate with

others, then it will try to ensure that the database copies do not diverge. Yet, if a network par

tition occurs and isolates the node, it will continue to process and update its data as best it can.

When communications are restored (even if partially or temporarily), an attempt will be made

to merge the databases into a single one. The resulting execution schedule may not, and prob

ably will not, be equivalent to a serial schedule. However, the resulting data will satisfy con

sistency constraints specific to the application that is running. A more complete discussion of

this philosophy and its implications is given in Garc83c] and Davi84].
Our preliminary studies show that very often the data can be divided in one of two classes:

image and derived. Image data is associated with a physical object; updates to it must

emanate from that physical object. Derived data can be entirely computed from the image
data. For example, consider a car rental system. If a reservation cannot be modified or can

celled without first notifying the customer, then we would call this image data. If car assign
ments can be computed from the reservations and car availability data (both image data), then

it would be derived data. It is easier to manage image and derived data in a partitioned system

than it is other types of data because the physical objects control updates. In our example, only
nodes that can contact a customer will be able to change his reservation, and thus, the types of

conflicts that can arrise will be relatively simple. This classification also helps to divide the sys

tem in layers, where each layer uses the facilities of the previous one. The lowest layer is the

distributor, in charge of reliably distributing each update to the nodes. The next level will

implement the image database. The next will implement the derived database.

The system we will build will not be able to handle applications with data that is not

either image or derived. However, we suspect that these applications may not be well well

suited to a very high availability environment.

— 70 —

4. Recovery Algorithms

A recovery algorithm tries to ensure the continuation of a task after a failure occurs in the

distributed computing system. The algorithms that have been proposed so far vary mainly in

the types of failures they can cope with. We have concentrated on the so-called Byzantine

Agreement (BA) recovery algorithms. The core of these algorithms is a protocol that enables a

set of processors, some of which may fail in arbitrary ways, to agree on a common “value.” One

of the reasons why we became interested in these algorithms is that there has been considerable

controversy regarding their use in practice. On the one hand, the developers of the algorithms
cited multiple applications for the protocols, but on the other hand “practitioners” complained
about the intolerable high message overhead.

In our work we studied when and how BA protocols can be used in general-purpose data

base processing Garc84a]. We approached this from a practitioners point of view, and

identified the pragmatic implications of BA. In summary, we discovered that some of the appli
cations may have been overstated, but that there was one very important application. It arises

in a fully redundant system where data and transaction processing is replicated. In this case,

BA must be used to distribute the transactions from the input nodes to the processing nodes.

In Garc84a] we also sketch how such a fully redundant general-purpose database system

could operate using BA. The idea is similar to the 8tate machine approach Lamp84a, Schn82l
and hardware modular redundancy Sch183, Siew82], but we focus on the database and transac

tion processing issues that arise. Our study also exposed some challenging implementation ques

tions, and thus, this type of system forms the basis for one of the systems we are implementing.

5. Vote Assignments

A number of distributed algorithms require that at most one connected group of nodes be

active at a time, and this is achieved by assigning each node a number of voteB. The group that

has a majority of the total number of votes knows that no other group can have a majority,
and can thus be active. (It is also possible that no group has a majority and is active.)

The way these votes are dispersed among the nodes can affect in a critical fashion the relia

bility of the system. To illustrate what we mean, consider a system with nodes A, B, C, and D.

Suppose that we assign each node a single vote. This means that, for example, nodes A, B, and

C could operate as a group (3 is a majority of 4), but A and B by themselves could not.

Next, consider a different distribution where A gets two votes and the rest of the nodes get

one vote. Call this distribution Q and the previous one P. It turns out that ~ is superior to P

because any group of nodes that can operate under P can operate under Q, but not vice-versa.

For example, A and B can form a group under Q (3 is a majority of 5) but not under P. Thus,
if the system splits into group A, B and group C, D, there will be one active group under Q but

no active group if P is used. So clearly, no system designer should ever use distribution P, even

though it seems a very “natural” choice.

We have developed a theory for enumerating and comparing vote assignments Garc83a].
In it the notion of “assignment Q is superior to P” is formalized. Vote assignments can also be

represented by coterie8, i.e., by an explicit list of the sets of nodes that can be active. For

example, the assignment Q can be described by

{A,B),{A, C) ,{A,D),{B, C,D).

However, we have shown that coteries are more powerful than vote assignments, that is, there

are valid coteries that cannot be represented by votes. We have also shown that for 5 or less

nodes, the number of choices (votes or coteries) is surprisingly small (12 choices for 4 nodes; 131

for 5 nodes). Thus, searching for the optimal assignment is possible in these cases.

— 71 —

We have also studied the assignment optimization problem in detail Barb84a,b,c,dJ. We

defined two deterministic metrics for comparing assignments or coteries (node and edge vulnera

bility). We developed heuristics for evaluating these metrics in large systems, as well as heuris

tics for selecting a good assignment (useful when exhaustive enumeration of assignments is not

feasible). We also investigated the impact the network topology has on the assignments, and

obtained several theoretical results that simplify the task of choosing an assignment for a given
network. We also studied a probabilistic metric (the steady state probability of being operative)
and for special topologies we found the conditions for which distributing the votes among the

nodes in the system pays off. Although open questions still remain, we feel that we have gained

a good understanding of the properties of vote assignments and coteries, and that we now have

techniques for selecting them in a practical environment.

8. The Database Crash Recovery Testbed

Many of the distributed mechanisms we are interested in require a reliable database store

at one or more nodes. Thus, as a first step in our implementation effort we decided to build

such a facility. However, it soon became apparent that this was not a trivial task, mainly
because we did not know which of the many crash recovery strategies available we should

implement. Several of the strategies have already been implemented (mainly in industry), but

we were unsuccessful in our search for explicit performance numbers. Furthermore, all the sys

tems we know of implement a single strategy, so even if we had found numbers we would have

faced the tricky task of comparing results from entirely different systems running with different

operating systems and hardware. In addition, many implemented systems are hybrids between

different strategies (e.g., System R has both shadowed files and logging), so identifying the

strengths of each philosophy is complicated.

Crash recovery strategies have been compared in various simulation and analysis papers.

Although they were useful to us for understanding the main issues and tradeoffs, we felt that

many implementation questions were still unanswered. For example, how much CPU overhead

does a mechanism have? How does one go about selecting a block size for the database or the

log? For what types of transactions does each mechanism perform best, and by how much?

Since these questions seemed interesting in their own right, we decided to implement two

divergent strategies for crash recovery, and to perform experiments to evaluate and understand

them fully. One of the strategies is undo-redo logging; the other is shadow paging. The

mechanisms were implemented on a VAX 11/750 running Berkeley Unix 4.1. We have already
run a few hundred hours of experiments. The details of the system and our preliminary results

are given in Kent84J. Some very brief and selected highlights follow:

• There is no single best strategy. For instance, logging is superior when updates are short

and they access random database locations. Shadowing may be superior if updates modify
contiguous pages.

• The CPU overhead of the mechanisms is comparable, although logging usually has slightly
less. The CPU overhead of the two phase locking concurrency control algorithm we used

wasverylow. -

• The disk scheduler and controller have a strong influence on the overall performance.
Some of our results even contradict what simulation and analytical models predict because

the latter ignore such implementation “details.”

• Contrary to what we expected, implementing shadowing was about as difficult as imple
menting logging. Shadowing mechanisms in the literature appear simpler because they do

not consider updates by concurrent transactions.

— 72 —

Some of the trends observable in our results could have been predicted via simple analytic
models (e.g., logging is better for random database probes). Others, however, can only be

observed in a real implementation. But even for the ones that could have been predicted, our

experiments have provided some firm comparison data points, again, something that simulators

and analysis cannot do.

7. Replicated Data

The use of replicated data in a network becomes attractive due to the improved access

time possible for read-only transactions. Furthermore, there is increased availability to the

users in the case of a network partition. However, update transactions suffer a performance

penalty since changes to all copies of the data must be synchronized. We are exploring the

tradeoffs involved in deciding whether to replicate a given file, or more generally, determining
the number and the location of the copies.

We are building the software required to support file replication, in order to measure its

performance under a variety of conditions. These measurements, coupled with information

about the performance of the networking software in our experimental systems, will be used to

drive a simulation program which will help us analyze the cost-performance of file replication.

We are also exploring other techniques that, like replication, speed up the performance of

read-only queries but that may pay a lower cost for concurrency control. For example, caching
and pre-fetching are possible design alternatives for decreasing the data access time in a distri

buted system. We are trying to quantify the performance implications of such mechanisms as

compared to data replication under a variety of conditions. We are also studying the benefits of

using snapshots and “hints” in distributed systems. That is, in some cases, the semantics of a

query may be such that the use of slightly out of date or stale data may be acceptable to the

user, and snapshots may be used. Or there may be higher level protocols that detect incorrect

information, making the use of hints appropriate. For example, the users of a name-server nor

mally consider the addresses provided by that service as only having a high probability of being
correct. Since they must use an application level protocol to ensure that they have contacted

the correct object anyway, a name server may make good use of stale data.

8. Load Balancing and Query Optimization

Query optimization in a distributed database system is usually carried out by considering a

variety of query plans and estimating the actual costs of executing each of them. In a typical

optimizer, those costs consist of a weighted sum of the estimated amount of I/O, computation
and message sending required by the plans. However, existing systems usually neglect to con

sider the effects of the system load on the performance of the plans. In Alon85~ we consider the

implications of using load balancing to improve the query optimization process.

The goal of that work was to show that the performance of optimizers could be improved

substantially by incorporating load balancing techniques into currently existing optimizers. We

studied two different systems, R* Will82] and distributed INGRES Ston77J, using a variety of

tools (simulation and experimentation on a running system) and load metrics (number of active

jobs and CPU utilization).

For both R* and distributed INGRES we were able to show that the gains due to load

balancing could indeed be large under moderate load imbalances, and for systems that were

never saturated. For example, in the R* experiment it was shown that for a typical join the

gains were from about 10 to 30 percent, in a system that never became very loaded (always less

than 90 percent CPU utilization). For both systems, the implementation approaches suggested
involved minimal changes to the system. In the case of INGRES, the cost function was

extended so that, instead of examining only transmission costs in order to make the fragment

— 73 —

replicate decision, the load average measurement gathered by UNIX systems was also con

sidered. For R~, one of the two implementations described was to construct alternative plans
and choose among them based on load information. The other approach was to invalidate plans
at run-time if the load in the systems involved was not within a “normal” range. Finally, in all

cases the load metrics used were readily available in the systems studied. Since the statistics

used are normally gathered by the operating systems, implementing load balancing does not

involve additional overhead for data acquisition, but only for communication among the systems
involved. In a high bandwidth broadcast local area network such as the Ethernet, this com

munication overhead should be negligible unless an extraordinarily large number of hosts are

involved in the load balancing scheme.

The results described in Alon85J show that load balancing strategies are quite attractive

for distributed database systems. Furthermore, designers would do well to focus on runtime

issues such as the system loads, even at the expense of further work on compile time optimiza
tion. The effect of the former has been shown here to be significant, while any new gains due to

further refinements in the techniques currently employed for query compilation may be quite

marginal.

9. References

A1on85] R. Alonso, “Query Optimization in Distributed Database Systems Through Load

Balancing,” Ph.D. Thesis, U.C. Berkeley, to appear in 1985.

Awer84] B. Awerbuch, “Efficient and Reliable Broadcast is Achievable in an Eventually Con

nected Network,” Proceedings Third Principles of Distributed Computing Systems

Symposium, August 1984.

Barb84aJ D. Barbara and H. Garcia-Molina, “Optimizing the Reliability Provided by Voting
Mechanisms,” Proceedings Fourth International Conference on Distributed Comput
ing Sy8tema, May 1984, pp. 340-346.

Barb84b] D. Barbara and H. Garcia-Molina, “The Vulnerability of Voting Mechanisms,” Proc.

Fourth Symposium on Reliability in Distributed Software and Database Systems,
October 1984.

Barb84cJ D. Barbara and H. Garcia-Molina, “The Vulnerability of Vote Assignments,” Techni

cal Report 321, Department of Electrical Engineering and Computer Science, Prince

ton University, July 1984.

Barb84dI D. Barbara and H. Garcia-Molina “Evaluating Vote Assignments with a Probabilistic

Metric,” to appear Proceedings FTCS 15, June 1985.

Chau84) J. Chang and N. Maxemchuck, “Reliable Broadcast Protocols,” ACM Transactions

on Computer Systems, Vol. 2, Num. 3, August 1984, pp. 251-273.

Cord84aI R. Cordon and H. Garcia-Molina, “The Performance of a Concurrency Control

Mechanism that Exploits Semantic Knowledge,” to appear Proceedings Fifth Inter

national Conference on Distributed Computing Systems, May 1985.

Cord84b] R. Cordon and H. Garcia-Molina, “Checking for Semantic Transaction Compatibil
ity;”w~tkii~gpa~er;Novembeir984.

-

Date8lJ C. Date, An Introduction to Database Systems, Vol. 1, Addison Wesley, 1981.

Davi84J S. Davidson, H. Garcia-Molina, and D. Skeen, “Consistency in a Partitioned Net

work: A Survey,” Technical Report 320, Department of Electrical Engineering and

Computer Science, Princeton University, August 1984.

- 74 -

Garc83aJ H. Garcia-Molina and D. Barbara, “How to Assign Votes in a Distributed System,”
Technical Report 311, Department of Electrical Engineering and Computer Science,
Princeton University, March 1983.

Garc83bJ H. Garcia-Molina, Using Semantic Knowledge for Transaction Processing in a Distri

buted Database, ACM Tranaactiona of Databaac Syotema, Vol. 8, Num. 2, June 1983,

pp. 186-213.

Garc83cJ H. Garcia-Molina, T. Allen, B. Blaustein, M. Chilenskas, and D. Ries, “Data-patch:
Integrating Inconsistent Copies of a Database after a Partition”, Proc. Third Sympo
alum on Reliability in Distributed Software and Database Systems, October 1983.

Garc83dJ H. Garcia-Molina, and R. Cordon, “Coping with Long Lived Transactions,” working
paper, December 1983.

Garc84a] H. Garcia-Molina, F. Pittelli, and S. Davidson, “Is Byzantine Agreement Useful in a

Distributed Database!” Proceedings Third SIGA CT-SIGMOD Sympo8ium on Princi

plea of Database Systems, April 1984, pp. 61-69.

Garc84bl H. Garcia-Molina, B. Blaustein, C. Kaufman, N. Lynch, 0. Shmueli, “A Reliable

Message Distributor for a Distributed Database,” CCA Technical Report, September
1984.

Kent84] J. Kent and H. Garcia-Molina, “Performance Evaluation of Database Recovery
Mechanisms,” Proceedings Fourth Symposium on Principles of Datbase Systems,
March 1985.

Lamp84aJ Lamport, L., Using Time Instead of Timeout for Fault-Tolerant Distributed Systems,
ACM Transactions on Programming Languages and Systems, Vol. 6, Num. 2, April
1984, pp. 254-280.

Sch1831 Schlichting, R.D., and Schneider, F.B., Fail-Stop Processors: An Approach to Design
ing Fault-Tolerant Computing Systems, ACM Transactions on Computer Systems,
Vol. 1, Num. 3, August 1983, pp. 222-238.

Schn82J Schneider, F., Comparison of the Fail-Stop Processor and State Machine Approaches
to Fault-Tolerance, Technical Report TR 82-533, Department of Computer Science,
Cornell University, November 1982.

Siew82J Siewiorek D. P., and Swarz, R. S., The Theory and Practice of Reliable System
Design, Digital Press, 1982.

Skee82aI D. Skeen, “A Quorum-Based Commit Protocol”, Proceedings Sixth Berkeley
Workshop on Distributed Data Management and Computer Networks, February 1982,

pp. 69-80.

Ston77l M. Stonebraker and E. Neuhold, “A Distributed Database Version of INGRES,”
Proceedings 1977 Berkeley Workshop on Distributed Data Management and Com

puter Networks, 1977.

Will82] R. Williams et al, “R*: An Overview of the Architecture,” Proceeding., of the Inter

national Conference on Databases, Israel, June 1982.

— 75 —

LAMBDA: A Distributed Database System for Local Area Networks

Jo-Mei Chang

AT&T Bell Laboratories

Murray Hill, New Jersey 07974

ABSTRACT

LAMBDA, a Local Area Network Multiaccess/Broadcast Database System, is an experimental system, designed
at AT&T Bell Labs, Murray Hill, for studying distributed database issues in a local area network. It provides high
data availability through replicated data. In this paper, we give an overview of the LAMBDA design and

demonstrate how LAMBDA simplifies the design of a distributed database system by exploiting the features in local

area networks. In particular, LAMBDA employs a novel architecture to relegate most of the complexity arising
from communication/site failure to the network level, where it is handled efficiently by one network protocol.

The features provided in LAMBDA are: (1) high data availability — one logical view is provided for all

replicated data copies: as long as one replicated copy is operational, the logical data is available for reading and

writing, (2) automatic recovery from site failure, (3) uninterrupted transaction processing during site recovery.

1. Introduction

In a broadcast network, either a local area network with broadcast feature or a satellite network, messages can

be sent to a group of sites by using one broadcast message. In contrast to a point-to-point network where messages

must be sent individually to each site, the broadcast network provides an economic way of communicating among a

group of sites. Furthermore, for certain types of broadcast networks, such as Ethernet METC76], there exists a

unique sequence among the messages transmitted in the network: when messages are not lost, if broadcast message

ml is received at one site before a message m2, ml is received at all sites before m2. In contrast to a point-to-point
network, where messages from different sources can arrive at a site in reverse order in which they were sent, this

type of broadcast network provides a more synchronized communication environment BANI79]. The nature of

distributed protocols in a broadcast network environment therefore needs to be reexamined.

A common task in a distributed database system is to send the same information to many or all the sites

participating in a given database transaction, for example, transaction update information. Reaching agreement is

another frequent task in a distributed system. Transaction commitment, where sites must unanimously decide to

commit or abort a transaction, is the best known example of this. Agreement also lies at the heart of many update

protocols for replicated copies: here each process must agree on whether a given copy is operational or not. In all

the above, an efficient broadcast facility simplies the task while reducing its cost.

One major source of complexity in designing distributed database systems is due to communication failures and

site failures. Consequently, database protocols, such as fault-tolerant commit protocols, are carefully designed to

guard against these failures. Fault-tolerant protocols tend to be much more complex than their non-tolerant

counterparts; in addition, fault-tolerant protocols, performing similar functions, must be introduced in several

modules in a typical database system. It is not surprising then that fault-tolerance is a major source of complexity in

a distributed database system and is a significant factor in system performance.

Unfortunately, due to the unreliable communication medium, the broadcast network cannot be fully utilized by
the application programs: broadcast messages may not arrive at all intended recipients or may be lost altogether.
The cost and complexity of fault-tolerance suggests that the first step toward both exploiting broadcast networks and

simplifying distributed database design is to provide i reliable broadcast communication environment that detects

failures. Once the underlying communication network is made reliable and made to detect site failures, the

responsibility of the disthbuted database can be reduced and the system simplified. This is the approach taken in the

LAMBDA database system CHAN83a].

The author’s current address is Sun 1~1icmsystems, mc, 2550 Garcia Aye, Mountain View, CA 94303. 415-960-7241, sun jmc.

-. 76 -

LAMBDA, a Local Area Network Multiaccess/Broadcast Database System, is an experimental research vehicle

designed at AT&T Bell Laboratories, Murray Hill, to study the distributed database issues in a local area network.

It aims at providing high data availability through replicated data.

In this paper we first describe the features of the reliable broadcast environment provided in LAMBDA, and

then discuss how this environment can simplify the design of crash recovely, concurrency control, and transaction

commit in a distributed database system. The remainder of the paper is structured as follows. In Section 2, we

describe a reliable broadcast network environment — LAMBDA NET — and the network interface to database

processes. Section 3 discusses database transaction commit, concurrency control and crash recovery issues. Section

4 gives our conclusion.

2. A Reliable Broadcast Network

A number of local area networks provide a broadcast feature METC76]: broadcast/multicast messages can be

received by all sites in the broadcast group. However, some intended receivers may lose broadcast messages

because of transmission errors or buffer overflows. For this type of local network, a reliable broadcast environment,

called LAMBDA NET, can be established by using a reliable broadcast protocol CHAN83b] between the

application program and the broadcast network.

2.1 Services Provided by LAMBDA NET

A system is k-resilient if it can continue normal operations in the presence of k or fewer failures. Under the

assumption that site failures are benign — that is, sites do not lie about their state — LAMBDA NET employs a strong

notion of k-resiliency: it always continues message processing when k or fewer site failures occur and can detect

when it is safe to continue processing when more than k failures occur. The system often continues processing in

the presence of many more than k failures.

LAMBDA NET provides the following features:

Atomic broadcast: Ensuring two very strong properties:

(1) failure atomicity (all-or-nothing property) — if a message is received by an application program at one site,

it will be received by application programs at all operational sites; and

(2) message synchronization — if message m~ is received at one site before m~, it is received at all operational
sites before m~.

System wide logical clock: Each broadcast message is timestamped with a unique incrementally increasing
timestamp. A message with a larger timestanip can not influence the issuing of a message with a smaller

timestamp.

Failure detection: When failures or recoveries are detected, a site status message is broadcast. (This message

looks like any other broadcast message, although it is implemented differently.) Whenever a site is declared

not operational, it will not (successfully) broadcast any messages until a site status message announcing its

recovery is sent. Therefore, LAMBDA NET never delivers an obsolete message from a failed site.

Network partitioning announcement: Whenever more than a majority of sites have failed, a network partitioning
is announced. This ensures that application programs are aware of the possibility of network partitioning and

take precautionary measures, e.g., to block processing completely or to be willing to back out when the

communication link is repaired.

When a broadcast message is first received by a site, it is considered uncommitted and can not be read by an

application process. It remains uncommitted until the network can guarantee the two atomic broadcast properties

given above. The message is then placed in a message queue for the intended process and is thereby commUted.

The above features apply only to committed messages. Property (I) under atomic broadcast can now be more

rigorously stated: if any site commits the message, then all operational sites commit the message. Message

sequencing is another important aspect of atomic broadcasts, simplifying the design of several database protocols.
This is especially true when failures and recoveries are synchronized with normal messages. The above features are

defined with respect to a broadcast group, which &s a static set of Sites. LAMBDA NET allows any number of

broadcast groups; each one sequences its messages, maintains its own clock, and detects failures. Activities from

77 —

different groups are not coordinated. A site may belong to any number of broadcast groups.

LAMBDA NET is implemented on top of an Ethernet. The overhead in LAMBDA NET is surprisingly low: it

requires only one acknowledgement per broadcast message (instead of one acknowledgement per site per broadcast

message). It also requires only limited storage for retransmission messages: for a broadcast group with N sites, the

reliable broadcast protocol can operate with only N-i messages and acknowledgements retained. Note that the

above overhead is independent of k, the resiliency parameter. Extra resiliency in LAMBDA NET is obtained by

introducing message delays rather than transmitting extra messages. Detailed descriptions and analysis of this

protocol can be found in CHAN83b] and MA)CE84].

2.2 A Database Interface

In the LAMBDA distributed database system, all sites participating in database operations are treated as one

large broadcast group. Consequently, the entire database system sees a total ordering over all broadcast messages

and has access to an unique global logical clock. A message is usually addressed to only a subset of these sites, a

broadcast subgroup. Since there is only one relevant broadcast group, we will let the term “group” refer to the

broadcast subgroup.

Transparent to database processes and lying between them and LAMBDA NET is a message filter. At each site,

the filter process: (1) removes messages not addressed to a process at the site, (2) dispatches messages, in sequence,

to the intended database processes, (3) forwards site status messages, in sequence, to database processes. Note that

each process receives all messages, including site status messages, in increasing timestamp order.

A simplified failure assumption has been used: process failures result only from site failures. This assumes that

processes do not die individually because of errors or user actions. If processes within a site can fail independently,

mechanisms can be added to monitor process status, e.g., the message filter process can be devised to monitor

critical database processes and to announce detected failures.

The network interface to database processes consists of a number of broadcast primitives and, of course,

routines for standard point-to-point communication, the latter not providing message synchronization. The principal

broadcast primitives are

I. the atomic broadcast, denoted Brdcst(MSG,Group~).

Group1 is the broadcast subgroup that should receive message MSG. Brdcsz is a function returning the

subset of Group~ that is defined by LAMBDA NET to be operational when MSG is sent.

2. a broadcast-all protocol, denoted Brdcst_All(MSG,Group~).

In the broadcast-all protocol, a coordinator broadcasts one request to a broadcast group and expects

responses from each of the recipients of the request. A response here will either be a reply sent by the

recipient or a failure notification sent by LAMBDA NET.

3. a broadcast-select protocol, denoted BrdcstSelect(MSG,Group1,M).

In a broadcast-select protocol, the coordinator broadcasts one request and solicits only M non-null

responses. Often M is one. The protocol returns the set of M responses or returns ERROR if it becomes clear

that the request cannot be satisfied. A null response indicates that the recipient can not respond to the request

in a meaningful way. Null responses are often used by processes recovering from a recent failure and is

necessary to prevent delaying the coordinator unnecessarily.

3. DistributedDaiabasè DesiEn Issues

Atomic broadcast and failure detection are major primitives provided by LAMBDA NET. These are convenient

and powerful primitives for distributed systems, and we now demonstrate this by showing how the LAMBDA NET

environment simplifies the problems of transaction commit, concurrency control, and crash recovery.

For transaction processing, we assume the TM-DM model of BERN81]. A transaction manager (TM) and a

database manager (DM) reside at each site. The transaction managers supervise user queries and translates them

into commands for database managers. Each transaction is executed by a single TM. A database manager

maintains that part of the database stored at its site. A DM may be concurrently processing transactions from

-~ 78 —

several TMs.

3.1 Transaction Commit

At the end of processing a transaction, a commit protocol is invoked to either commit or abort the transaction at

all participating DMs. The most used protocol is the two-phase commit. Briefly, it is GRAY7S]:

Phase 1: The coordinating TM sends the “prewrite” message to all DMs updating their databases. Each DM

prepares to write into the permanent database its changes, acquiring any needed locks and logging

recovery data. Each DM responds with “accept” or “reject.”

Phase 2: If all DMs accept, then the TM sends “comniit” to all DMs; otherwise, it sends abort.”

The major weakness of this protocol is that it is not resilient to coordinator failures: if the coordinator and all

DMs that know the decision (i.e., commit or abort) fail, then the protocol is blocked and the transaction can not be

completed until some processes recover. Four-phase {HAMM8O] and three-phase SKEES 1] nonblocking commit

protocols are known, but these are more expensive, by 50 to 100 percent, in time and messages, and much harder to

implement. They do have the feature that the transaction can always be correctly completed, without waiting on

failed processes, ilk or fewer failures occur (where k is the resiliency parameter).

COORDINATING TM:

Phase I: Msgs := Brdcst_All(”Prewrite” Group~);

Phase II: if all Msgs = “accept”
then Brdcst(”Commit” Group~);
else Brdcst(”Abort” Group~);

PARTICIPATING DMs:

Phase I: wait for either a prewrite from TM or a failure notice;
if “prewrite” is received

then prepare to commit;

respond to TM with either “accept” or “reject”;
else abort the transaction;

Phase II: wait for either a Commit, Abort, or TM failure notice;
if “commit” received

then commit the transaction;

else abort the transaction;

Figure 1. A nonbiocking 2-phase commit protocol using LAMBDA NET.

Using the LAMBDA NET environment, the simple two-phase commit protocol of Figure 1 provides the same

nonblocking property. Let’s examine why this protocol works, concentrating first on the second phase. The atomic

broadcast feature ensures that if any DM receives a commit message, all operational DMs must receive the message.

Clearly the strong all-or-nothing property of atomic broadcast is necessary here. Phase II requires not only the all-

or-nothing property but also the message synchronization property, especially, the synchronization of failure notices

with other messages that LAMBDA NET provides. If any slave receives a failure notice before a commit message,

it is guaranteed that all slaves will receive the failure notice before the commit message. A slave can thus safely
decide to abort the transaction.

It is not surprising that atomic broadcast greatly simplifies nonblocking commit protocols: the last two phases of

the three-phase commit protocol is essentially implementing atomic broadcast at the database process level

SKEE83]. However, in the case of LAMBDA NET, the atomic broadcast is implemented at the network level,

where it is cheaper and its complexity can be hidden from application programmers.

— 79 —

3.2 Replicated Databases

Consider now a database system supporting replicated data. For each logical data item X, there exists a number

of physical copies Xi,X2, ,Xm, where m�1. For our purposes, the unit of replication is not important.
Replication complicates concurrency control and adds a new problem, that of maintaining consistency among

copies.

3.2.1 Consistency among Copies. Transaction managers and other software components at a comparable level of

the system normally deal with logical data items. Requests to logical item X must be mapped into requests to

appropriate copies of X. Similarly, responses from copies of X must be mapped back into a single response. These

mappings must preserve the intuitive notion of correctness: the multiple copies of X should behave as if they were a

single copy BERN83].

A popular scheme for maintaining one-copy behavior, which has been proposed for ADAPLEX G00D83],
distributed-INGRES STON79], and LAMBDA, is what we will call the active group method. To read X, a

transaction manager reads from any operational copy of X. To write X, a transaction manager writes all

operational copies of X. By operational copies, we mean copies that include the most recent updates, in contrast to

failed or recovering copies. This method yields high read and write availability: as long as one copy is operational,
the logical item is available for both reading and writing.

Implementing the active group method requires transaction managers to have consistent copy status information.

Consider what may happen if two transactions T1 and T~ have inconsistent views of operational copies. Suppose T1

considers X as having two operational copies Xi and X2, and T~ considers X as having only one operational copy

X2. T and I~ can simultaneously read and write X: T1 reads from Xi and T3 writes to X2. Because the copy status

information is itself dynamically changing and replicated, the active group method is difficult to implement in a

general network environment.

Consider now implementing the active group approach in the LAMBDA NET environment. The problem of

maintaining a consistent view of operational copy status among transaction managers is partially solved by using
site status information. Since all processes receive the site status messages in the same sequence, all processes

agree on the set of operational sites that have a copy of X. Processes can therefore use the broadcast primitives of

LAMBDA NET to reach all operational copies. A broadcast will also reach non-operational copies, such as

recovering copies, that reside at operational sites; but these copies can ignore the request or, if a response is

required, return a null response.

Figure 2 describes in detail the read-one/write-all protocols used in the LAMBDA database system. A two

phase locking protocol GRAY78] is used to ensure correct execution of concurrent transactions. Depending on the

lock status, a read or write request on operational data is answered either “yes” or “no”. A recovering copy always
returns a null response. (Due to the underlying failure detection facility, a slow response, due to a transaction

waiting for a lock, can be differentiated from a failed site).

Let Ciroupx represent the set of sites that have a copy of X. For a read operation on X, the transaction manager

can arbitrarily select an operational site, send its request, and hope that the site has an operational copy.

Alternatively, a transaction manager can use a broadcast-select protocol to broadcast the request to Groupx and wait

for the first response from an operational copy of X. For a write operation on X, a transaction manager uses a

broadcast-all protocol to send the request to Groupx. It will receive the set of responses from all operational sites in

Groupx, from which it can determine the operational copies (they return non-null responses) and verify that all were

able to perform the request.

3.2.2 Concurrency Control. A problem aiiscs wh~ii the active group approach is used with -two-phase locking.

Normally locks are held only at the copies that were actually accessed. Hence, if transaction T reads X, it locks

only the one copy actually read. This single read lock prevents any other transaction from writing X since to write

all operational copies must be locked. If however the copy locked by T fails, then this is no longer true. Lacking
locks at any operational copy of X, T has effectively lost its lock on the logical data item X.

Whenever a transaction loses a lock on a logical item before it completes, that transaction has, in effect, violated

the two-phase locking constraint. It is easy to construct examples where losing locks in this way leads to

nonserializable executions BERN83]. Note that problems can only arise with lost read locks, not write locks:

- 80 —

Read One protocol:

send(”read X”) to an arbitrary operational site in Groupx;
if (response = “null”) {

V

Res := Brdcst_Select(”read X”, Groupx, 1);

if(Res = “yes”)
read is successful;

else read is unsuccessful;

}
else if (response = “yes”)

read is successful;

else if (response = “no”)
read is unsuccessful;

Write All protocol:

Msgs := Brdcst Al1(write X request, Groupx);
if (“no”e Msgs)

write is unsuccessful;

else if (“yes”E Msgs)
write is successful;

else 1* all-Msgs = “null” or “failed” */

write is unsuccessful;

Figure 2. Protocols for read and write operations.

losing all write locks for an item means that all copies are non-operational and, hence, the item is inaccessible.

A correct two-phase locking strategy to go with active groups is to check all read locks at commit time. If a

transaction owns a read lock from a site that has failed since the read lock is granted, the transaction must be

aborted. This check is easily performed in LAMBDA NET using the site status information provided. Note that the

correctness of this scheme relies on failure notices arriving in the same order at all sites. BERN83] proves a similar

scheme correct.

Although failures pose no problems regarding write locks, recoveries do. If transaction T writes X, it locks all

operational copies. This prevents any other transaction from reading (or writing) X since to read (or write) one (or

all) operational copy must be locked. If however a copy of X changes its status from recovering to operational, then

this is no longer true. This copy is now available for reading and can grant a read lock on the logical item X to a

different transaction. Lacking a lock at an operational copy, T has not effectively write-locked the logical data item

X. T has to be aborted, unless the recovering copy happens to carry the correct lock. A correct recovery strategy

for the active group approach is to require a recovering copy to inherit write locks from other operational copies of

X before it becomes operational.

So far, we have discussed only one type of concurrency control mechanisnt two-phase locking. The LAMBDA

NET environment can be used to simplify other types of concurrency control mechanisms as well, e.g., timestamp

concurrency control {BERN8O]. The timestamps provided by the LAMBDA NET can be used directly as

timestamps for transactions. As pointed Out in CHAN83c], if the SDD-I concurrency control algorithm is used in

the LAMBDA NET environment, a number of deficiencies such as the requirement for “send null” and “null write”

messages can be eliminated.

3.3 Crash Recovery

When data is replicated, upon recovery, the simplest method is to copy the entire data from an operational copy.

However, this method is very expensive. Popular and much cheaper schemes use logs for recovery. For each

physical copy X1, a log file, log(Xi), records the sequence of updates (prewrite and commit messages, as described

in the commit protocol) that have been applied to X1. To recover, a recovering copy must identify the set of missing

updates in the log of an operational copy of X and apply these updates.

— 81

Generally, log-based recovery is very messy because log files at different sites may record updates in different

orders. This can happen because each DM may be concurrently processing several transactions and updates from

different transactions may be executed in a different sequence at each site. The consequence of this is that it is

difficult for a site to concisely identify the updates it is missing. To illustrate the problem, consider the following

sequence of updates recorded in two log files log(Xi) and log(X2), ignoring momentarily the I mark.

log(Xi) = { ..., Prewrite~, Commit~, Commiti, ...}

log(X2) = { ...,
Commiti, I Prewrite~, Commit~, ..}

In these log files, updates from transactions T~ and T3 are recorded in different orders. Now consider what happens

if X~ fails at the I mark. The last log record appearing in log(X2) is Commiti. Upon recovery, how does X2 request

the updates that it missed? If X2 requests only what is in Iog(Xi) after Comniitj, the last update that X2 has

processed, then X2 would miss both Prewrite~ and Write~ messages. Unless it is possible to bound how many

transactions can be executed out of sequence at the failed site, X2 has to send X1 its entire commit history in order to

identify the set of missing updates. (The latter approach has been proposed by several systems.)

We now show that in LAMBDA, the starting point of the missing updates can be bounded. Since each message

in LAMBDA NET is timestamped, the set of missing updates in X2 can be identified using timestamp information

rather than according to the ordering in Xz’s log. Furthermore, site status messages clearly define the duration that a

site fails. Let t1 be the timestamp of the site status message announcing site 2’s failure, where site 2 holds X2. Let t~

be the timestamp of the site status message announcing site 2’s recovery. X2 clearly has missed all the updates with

timestamps between t1 and t~. (X2 may also have missed some updates before tj because site 2 actually fails

sometimes before its failure is announced and because unprocessed messages may be lost when 2 fails, This

problem, although subtle, can still be solved by using the timestamp information. Please refer to CHAN83a] for a

detailed solution.)

Another difficulty in performing log-based recovery in a general network environment is to determine when to

change a copy’s status from recovering to operational. A recovering copy is required to obtain the most recent

updates before it becomes operational. Once operational, it must continue to receive all updates on the logical data

item X. Since messages can arrive out of order — a message from site B can arrive at site C before an earlier

message from site A arrives — the above recovery synchronization is very difficult to achieve. Note that, in general,

failure synchronization performed in a general network only requires that failure messages are synchronized among

the other failure messages. Recovery synchronization actually requires that recovery status changes be

synchronized with respect to other messages, such as update messages, as well. One way of simplifying the

problem is to not allow transactions to commit during the recovery period, as suggested in GOOD83]. This

increases recovery costs considerably: nonnal transaction execution is interrupted every time a copy recovers from

failure. Other solutions execute complex protocols among the recovering copy, the copy that provides the log

records, and the transaction managers of the on-going transactions to reach agreement on the copy status change.

LAMBDA provides recovery synchronization by exploiting the total ordering existing among all messages.

Once site 2 recovers from failure, the active group method includes Xz as one of the copies to receive updates on X.

That is, X~ receives all updates on X timestamped after t~. Updates timestaniped before t~ can be obtained from

log(Xi). X2 therefore obtains all updates that it missed. Once X2 completes applying these updates, it changes its

copy status to operational. The only externally visible effect of the copy status change is in the vote that X2 sends

back. (X2 can now vote “yes” or “no” instead of “pass”.) Switching from recovering to operational does not

interrupt any normal transaction processing. In fact, transaction managers of on-going transactions will not even

-~ realize ~that-this~copy status ~has ehanged~ -Log-based recovery therefore is considerably simplified in the LAMBDA

NET environment.

4. Conclusion

Atomic broadcast and failure detection are two powerful primitives in designing distributed database systems.

Atomic broadcast forms the basis of many database protocols such as transaction commit protocols, election

protocols, and the “include” protocol G00D83]. Failure detection is required by many fault-tolerant protocols,

where all sites must have consistent view of failure status. In LAMBDA NET, the atomic broadcast and failure

82 —

detection are provided as network primitives. Performing these functions at the network level not only simplifies
database protocols but also better utilizes the broadcast network.

In this paper, we have shown that atomic broadcast and the failure detection facility simplify transaction

commitment, concurrency control, and crash recovery in a distributed database system. The resulting distributed

database system not only is simpler but runs more efficiently than a distributed database system in a point to point

network.

5. Refrrences

BANI79] J-S. Banino, C. Kaiser and H. Ziminermann, “Synchronization for Distributed Systems using a Single
Broadcast Channel”, Proceedings of the 1st International Conference on Distributed Computing Systems,

Huntsville, Oct 1979.

BERN8O] P. A. Berstein, et. a!, “Concurrency Control in a System for Distributed Databases (SDD-1)”, ACM

Transaction on Database Systems, March 1980.

BERN81} P. A. Bernstein and N. Goodman, “Concurrency Contml in Distributed Database Systems”, ACM

Computing Surveys, June 1981.

UBERN83] P. A. Bernstein and N. Goodman, “The Failure and Recovery Problem for Replicated Databases”, ACM

Symposium on Principles of Distributed Computing, August 1983.

CHAN83a] J. M. Chang “Simplifying Distributed Database Systems Design by Using a Broadcast Network”,

Proceedings of the ACM SIGMOD Int’l Conference on Management of Data, June 1984.

CHAN83b] J. M. Chang and N. F. Maxemchuk, “Reliable Broadcast Protocols”, ACM Transactions on Computer

Systems, August 1984.

CHAN83c] A. Chan, U. Dayal, S. Fox, D. Ries and J. Smith, “On Concurrency Control and Replicated Data

Handling in Real-Time Distributed Database Management Systems”, CCA position paper, Dec 1983.

GOOD83} N. Goodman, D. Skeen, A. Chan, U. Dayal, S. Fox and D. Ries, “A Recovery Algorithm for a

Distributed Database System”, ACM Symposium on Principles of Database Systems, March 1983.

GRAY78] J. N. Gray, “Notes on Database Operating System” In Operating Systems: An advanced Course,

Springer-Verlag, 1978, pp. 393-481.

HAMM8O] M. Hammer and D. Shipman, “Reliability Mechanisms for SDD-1: A System for Distributed

Databases”, ACM Transactions on Database Systems, Dec 1980.

MAXE84] N. F. Maxemchuk and J. M. Chang, “Analysis of the Messages Transmitted in a Broadcast Protocol”,

Proceedings of the Int’l Computer Conference
,
Amsterdam, May 1984.

METC76] R. M. Metcalf, D. R. Boggs, “Ethernet: Distributed Packet Switching for Local Computer Networks”,

Comm. of ACM July 1976.

SKEE8 1] D. Skeen, “Nonblocking Commit Protocol”, Proceedings of the ACM SIGMOD Int’l Conference on

Management of Data, April 1981.

SKEE83] D. Skeen, “Atomic Broadcasts”, paper in preparation.

STON79] M. Stonebraker, “Concurrency Control and Consistency of Multiple copies of Data of Distributed

INGRES”, IEEE Trans. Software Eng. May 1979.

— 83

What good are concurrent search structure algorithms
for databases anyway?

Dennis Shasha,

Courant Institute,
New York University

New York, New York 10012

shasha@nyu-csd2.arpa

1. Abstract

We discuss a strategy for designing concurrent search structure algorithms which make
those algorithms fit well with standard database concurrency control and reco~ery techniques.
The goal is to minimize the number of nodes that must be write-locked until transaction
commit time. The strategy consists in isolating restructuring operations (such as B tree splits)
into separate transactions. The strategy can be applied profitably to many search structure

algorithms. We present an example on a B+ tree.

2. The Setting and the Problem

A dictionary is an abstract data type supporting the actions member, insert, delete, and

update on a set consisting of key-value pairs. For example, the key may be the name of an

employee and the value may be a pointer to a tuple of the employee relation. A search’
structure is a data structure used to implement a dictionary. Examples include B trees, hash

structures, and unordered lists. Concurrent algorithms on search structures try to allow many
transactions to access a search structure at the same time. These algorithms use locks on the
nodes of the search structure when it is necessary to synchronize concurrent transactions for
correctness purposes. Much work continues to be directed towards the goal of minimizing
the number and reducing the exclusivity’ of the locks (see Good8S] for a fairly complete
listing and a brief survey).

This article looks at another problem: how to combine a concurrent search structure

algorithm with the general concurrency control and recovery subsystems of a database

management system. It may seem surprising that this should be a problem at all. Intuitively,
the concurrent search structure algorithm should be a subroutine of the general concurrency
control algorithm. While this is possible in principle, combining these two algorithms naively
may result in low concurrency due to the recovery algorithm.

2.1. An Example of the Problem

How did recovery get into this? Consider a transaction T that issues an insert(x) and

‘For example, suppose the rules are that (1) any number of transactions may hold read locks on the same

node; and (2) if one transaction holds a write lock, then no other transactions may hold any lock on the node.
Then reducing the exclusivity means substituting read locks for write locks whenever possible.

— 84

n

BEFORE SPLIT

AFTER SPLIT

AND ADD x

TO n”.

Figure 1 -

The split changes n and n’ and creates n”, but does not change
the global contents of the structure. Adding x to n” does.

In a naive approach, the recovery subsystem would hold write

locks on n, n’, and n”. This is recovery overlock.

Inourapproach, the split isaseparatetransaction so the

recovery subsytem only holds a lock on n”, the node into which

the item x is added.

n

— 85 —

several other dictionary actions. Suppose the insert causes a split2 in a B+ tree Come79], as

shown in figure 1. If the transaction is ever aborted, then the split would be undone in most
practical recovery schemes changing three nodes (collapsing n’ and n” into one node and

changing n to recover the before split configuration in figure 1).
&it this is actually unnecessary, since all that has to happen is that x should be

removed from one node (n” in figure 1). Removing x alone would require changing one

node instead of three. Also, other transactions would still be able to navigate the. structure

properly. The reader might object that removing x alone might leave one node (n”) a little

sparse, but this entails only a minor Guib78] performance penalty.
So what? Transactions are seldom aborted and failures are (we hope) also rare, so why

should the number of nodes that must be undone matter? The reason is that most recovery
subsystems hold write locks on all nodes that might be undone. The write locks ensure that
no other transaction can read uncommitted changes Bern83, Haer83]. If three nodes must
be write-locked instead of one, concurrency may decrease a lot. (Holding a write lock on n

in figure 1 is particularly bad since n has many children.) We call this problem the recovery
overt ck problem.

3. Two possible solutions

Ideally, the recovery subsystem would hold locks only on the nodes that hold (or could
hold, in the case of a delete) the key-value pairs that have been updated. In the case of

figure 1, this node would be n”. The recovery overlock problem appears when the recovery
subsystem holds locks on other nodes as well. Recovery overlock is a potential problem for
all concurrent algorithms on search structures, since those algorithms are only concerned with

maximizing the concurrency when there is one insert or delete per transaction. There are at
least two remedies to the recovery overlock problem.

3.1. Two-scheduler approach

The first remedy would be to change the concurrency control and recovery algorithms to

operate at a semantic level. That is, data item concurrency control would lock keys whereas
the search structure concurrency control would lock nodes. The recovery algorithm in turn
would undo updates to key-value pairs by issuing reverse updates (e.g. to reverse insert(x),
issue delete(x)). Figure 2 is a schematic of the scheduler architecture.

In our example above, the item lock manager would hold locks on x and any other data
items accessed by the transaction. The dictionary actions themselves would only hold node
locks as long as required by the concurrent search structure algorithm. (That is, if a

transaction issues insert(x), then waits, then issues another dictionary action, it will hold no

node locks during the waiting period.) The concurrent search structure algorithm could abort
a given dictionary action without aborting the entire transaction.

This is an elegant approach in that it completely divorces search structure concurrency
control (concerned with nodes) from data item concurrency control (concerned with keys and
values). We discuss this approach in detail in ShasS4, chapters 5 and 6]. The approach has
several disadvantages however. It uses two schedulers. Each modifying dictiona~ action
requires an inverse action Haer83]. As it happens, the inverse action of a dictionary action
is one or more other dictionary actions, but this requirement ~stilI makes undoing.- more
complicated than simply replaring changed nodes by the before-images of those nodes.

2 All the reader has to know about splits is that they move the data from one node into two nodes,
readjusting the parent of the two nodes appropriately. Altogether three nodes are affected.

— 86 —

n n

n

Half-split done by nested

top level action of insert.

Then insert adds x to fl”.

Later, a maintenance
transaction completes
the split.

Figure 3 - Mixed nested and

asynchronous restructuring.

nil

nIl

— 87 —

user

item

struC

tu re

Figure 2 - Two-level architecture to remedy recovery overlock.

Item lock manager used by standard concurrency control

algorithm such as two phase locking.

Node lock manager used by concurrent search structure

algorithm.

.

— 88 —

3.2. hoIsted restructuring approach

The second remedy would be to alter the architecture of the search structure algorithm
itself to “fool” the recovery subsystem into locking only the nodes with updated key-value
pairs. That is, we isolate restructuring operations as separate transactions. (For search

structures, restructuring operations are operations that may change nodes or edges, but do not

change the set of key-value pairs contained in the entire structure. Splits are examples of

restructuring operations.) Thus, when an insert discovers that it must split a node, the split
becomes a separate transaction. This has two implications:
1) if the split has to be aborted, only the changes caused by the split itself are undone; and

2) if the split completes but the insert is undone, the split is not undone.

This strategy may be implemented either by having separate maintenance transactions

do all restructuring Manb82,Shas84], or by making each restructuring operation a special
subtransaction within a transaction. The Argus langauge Lisk82,Moss8I,Weih82] allows

such special subiransactions, calling them “nested top-level actions.”

In the example of figure 1, the insert(x), upon discovering that a split is necessary,

might issue the split as a nested top level action. Then the insert would add x to the node

n”. The recovery subsystem would hold n” write-locked until the transaction issuing the

insert committed. If the transaction were aborted, the recovery subsystem would replace n”
by its image before add(x,n”), but would not undo the split.

Sometimes we may want to use both special subtransactions and separate maintenance

transactions for restructuring. For example, in an algorithm in the spirit of Lehm8l] that we

Lani85] are designing, splits occur in two stages (figure 3). In the first stage, the insert

issues a special subtransaction to create a new node n”, to move appropriate data from n’ to

n”, and to add a forward pointer from n’ to n”. The forward pointer ensures that other

dictionary actions can reach the data in n”. The insert then calls on a maintenance process to

complete the split. This two-stage approach avoids deadlock and has the property that

neither the insert nor the maintenance transaction ever locks more than one node.

4. Condualon

The recovery overlock problem arises when the recovery subsystem holds more locks

than necessary. This occurs when the recovery subsystem holds locks on nodes in order to

undo restructuring operations (such as splits and merges). The problem may occur no matter

how concurrent the search structure algorithm is by itself. We present two solutions to this

problem -- one based on undoing dictionary actions by issuing their inverses and the second

based on isolating restructuring operations as separate transactions. We think the second

solution is more practical.

We can generalize the notion of restructuring operation to any operation on a data

structure underlying an abstract data type that leaves the abstract data type state unchanged.
For example, an operation that moves a part of the waits-for Bern8l] directed graph used by
distributed deadlock detection from one processor to another is a restructuring operation.
We apply this generalized notion of restructuring to the transaction processing component of

Ultrabase Shas85], a database machine project based on the New York University
ultracomputer Gott83].

— 89 —

REFERENCES

BernSl] P. A. Bernstein and N. Goodman, “Concurrency Control in Distributed

Database Systems,” ACM Computing Surveys 13, 2, pp. 185-221, June 1981.

Bern83] P. A. Bernstein, N. Goodman, and V. Hadzilacos, “Recovery Algorithms for

Database Systems,” Proc. IFIP Congress 1983, Paris, France.

(Come79] R. Corner, “The Ubiquitous B-tree,” ACM Computing Surveys, vol. 11, pp.
121-138, 1979.

Good8S] N. Goodman and D. Shasha, “Semantically-based Concurrency Control for

Search Structures,” Proc. ACM Symposium on Principles of Database Systems, pp. 8-19,
March 1985.

Gott83] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and

M. Snir, “The NYU Ultracomputer -- Designing an MIMD Shared Memory Parallel

Computer,” IEEE Transactions on Computers, vol. C-32, no. 2, pp. 175-189, February 1983.

Gu1b781 L. I. Guibas and R. Sedgewick, “A Dichromatic Framework for Balanced

Trees,” Proc. 19th Annual Symposium of Foundations of Computer Science, pp. 8-21, 1978.

Haer83] 1. Haerder and A. Reuter, “Principles of Transaction-Oriented Database

Recovery,” ACM Computing Surveys, vol. 15, no. 4, pp. 12-83, December 1983.

Lani85] V. Lanin and D. Shasha, “A Highly Concurrent, Deadlock-Free B tree

algorithm,” in preparation.

Lehm8l] P. L. Lehman and S. B. Yao “Efficient locking for concurrent operations on

B-trees,” ACM Trans. on Database Systems, vol. 6, no. 4, pp. 650-670, December 1981.

Lisk82] B. Liskov and R. Scheifler, “Guardians and actions: linguistic support for

robust, distributed programs,” Proc. of the ninth ACM Symposium on Principles of

Programming Languages, pp. 7-19, January 1982.

Manb82] U. Manber and R. E. Lather, “Concurrency control in a dynamic search

structure,” Proc. ACM Symposium on Principles of Database Systems, pp. 268-282, 1982.

MossSl] J. E. B. Moss, “Nested transactions: an approach to reliable distributed

computing,” MIT/LCS/TR-260, Massachusetts Institute of Technology.

Shas84J D. Shasha, “Concurrent Algorithms for Search Structures,” TR-12-84, Harvard

University Center for Research in Computing Technology, June 1984.

Shas8S] D. Shasha and P. Spirakis, “Join ProcessIng in a Symmetric Parallel

Environment,” Courant Institute, New York University, TR # 158, April 1985.

WeihS2] W. Weilil and B. Liskov, “Specification and Implementation of Resilient,
Atomic Data Types,” Computation Structures Group Memo 223, MIT, December 1982.

- 90 -

Reducing the Cost of Recovery from Transaction Failure

Nancy D. Griffeth

School of Information and Computer Science

Georgia Institute of Technology

Atlanta, GA 30332

(404) 894—2589

nancy@gatech

Abstract. Some algorithms are presented for reducing the cost of recovery

from transaction failure. The cost is reduced primarily by reducing the

cost of preparing for recovery. This cost is likely to predominate, since

failure will often be infrequent, while preparations f or recovery must go

on while the system is operating normally. Performance evaluations of

some of these algorithms are also described.

1. ln..tjtoductj.ort

The cost of preparing for and performing recovery is a major cost of

maintaining a database system. This cost has several parts. One part
arises from scheduling operations when the system is up so that tran

sactions can be recovered after it has gone down. A second part arises

from creating the log. A third part arises from transaction commitment,

which must guarantee that all changes to data are written to stable

storage. And the fourth part, the cost of the recovery itself, arises

after a failure has occurred.

An ongoing project at Georgia Tech has been investigating the

principles that govern correct recovery from failure. We have chosen to

concentrate on preparation for recovery (i.e., scheduling, logging, and

commitment) rather than on recovery after failure. This is because most

of the impact of recovery processing is felt during normal operation, when

the transaction system is preparing for recovery, rather than during
failure recovery. It is an especially frustrating fact that, although the

preparatory work is necessary, we actually hope that it will prove to have

been unnecessary. To date in this investigation, we have focussed on

transaction failure in order to solve a simple version of the problems
involved in general failure. Future work will also address processor and

media failures.

We have identified some novel methods of recovery scheduling, log

ging, and rollback. The performance of some of these new methods has been

shown by both analytic and simulation studies to be much better than that

of some commonly—used recovery procedures. Section II of this paper

describes five algorithms for scheduling transactions for recoverability.

Section III describes the performance studies that have been carried out

on the scheduling algorithms. Section IV describes algorithms for logging
transaction undo operations and for performing aborts and undos.

This material is based partly on work supported by the National Science

Foundation under grant number MCS—8200854 and partly on work supported by
the Army Institute for Research in Management Information and Computer

Systems under grant number DAAK7O—79—D—0087.

— 91 —

TI. Schedu)Jitg I’ ~sactLoi’t~ ~ox. Re.c.ovabLL(,t~j

Transactions are supposed to simulate “atomic” actions, that is,

actions which occur indivisibly. To simulate an atomic action with an ac

tion which actually takes place in several steps, we must make sure that

no other action sees any partial results of the action. We must also make

sure that all of its steps are actually completed, or, if this proves im

possible, that none of its effects are installed permanently in the

database.

We prevent transactions from viewing partial results of other tran

sactions by requiring that any interleaving of steps of different tran

sactions is serializable. This means that if transaction 1 writes A and B

and transaction 2 also accesses them, then 2 dos NOT see the value of A

written by 1 together with an earlier value of B. Another way of looking
at it is that 2 appears to have begun after 1 completed (or vice—versa).

Serializability has been addressed at length elsewhere and will not be

discussed further here (see BERN81 for a comprehensive discussion of al

gorithms for enforcing serializability and PAPA79 for the relevant

theory).

We also require that all steps of a transaction must be completed
before its effects can be made permanent. We say that a transaction has

been committed when its effects have been made permanent in the database.

Before we commit a transaction which has completed all of its steps, it

must satisfy a second condition. The second condition requires

recoverability, that is, no transaction is allowed to commit before all of

the transactions whose effects it has seen have committed. If we do not

have recoverability, then it is possible for an incomplete transaction to

have a permanent effect on the database via another transaction which has

seen its effects. For a more detailed discussion of recoverability, see

also HADZ83

In this work, the individual transactions steps are read and write

operations. A transaction which reads a data value depends on the last

transaction that wrote it. A data value is dirty if it was written by a

transaction which has not yet committed. Any transaction which reads such

a value is reading dirty data. A transaction may also request a commit

when it has completed. An abort operation may also appear in the

schedule, introduced by the transaction itself or by the scheduler. (Some
authors work with a more general class of operations, with dependency ap

propriately defined for such classes. See ALLCB3,KORT83,SCHW84 .)

There are two simple, well—known ways to schedule transactions for

recoverability. One of these blocks any transaction which tries to read

or over—write dirty data. This is the pessimistic recovery protocol. The

other maintains uncommitted versions of the data locally and does not

block reads and writes, but allows only committed versions to be seen b~

any read. This is the deferred write recovery protocol.

Three other schedu-ling protocol~s have been- developed which guarantee

“recoverable” execution of transactions in a distributed database system.
These protocols are described in detail in GRAI-184b

.
The protocols are:

(i) the optimistic protocol, which blocks a transaction from committing

until all transactions on which it depends have been committed. Reads and

— 92 —

writes are allowed to execute as soon as they are requested. A dependency

graph is maintained, in which dependencies of one transaction on another

are recorded as they develop. When a transaction requests a commit, it is

blocked if it depends on an uncommitted transaction. When a transaction

commits, all dependencies on it are removed from the dependency graph, so

that some other transactions may be allowed to commit. When a transaction

requests an abort, all transactions which depend on it are aborted.

(These other transactions must actually be aborted first, as discussed in

secion IV).

(2) the pessimistic protocol, which blocks reads and over—writes of dirty
data. The reads and writes are enqueued on the data item until its last

writer has committed. Then a sequence of reads may be dequeued, and after

they have completed, one write can be dequeued. A waits—for graph must be

maintained to break deadlocks. One of the deadlocked transactions must be

selected as a victim and aborted. The effect of a commit or an abort is

to turn dirty data into clean data, so that the enqueued reads and writes

can be dequeued, as described above.

(3) the realistic protocol, which blocks only reads of dirty data. Mul

tiple versions of writes are maintained. A read is enqueued on the most

recent write version when it arrives and is dequeued when that version has

committed. If the transaction that wrote the version should abort, then

the read will refer to the most recent version preceding the one it had

been waiting on. It may be enqueued again if that version has not been

committed. When a transaction commits, all reads which have teen waiting
on versions written by that transaction are dequeued. When a transaction

aborts, all reads which have been waiting on versions written by that

transaction are moved back to the most recent previous write version. A

waits—for graph must also be maintained for the realistic protocol, unless

it is known that in all transactions, all read operations precede all

writes. In this case no deadlocks can occur.

(4) the paranoid protocol, which aborts any transaction which tries to

read or over—write dirty data. For this protocol, it is necessary only to

keep track of dirty data. When a read or write is requested, it executes

unless the data is dirty. If the data is dirty, the transaction aborts.

When a transaction commits or aborts, the data it has written becomes

clean. There is also a “realistic” version of this protocol, in which

over—writing dirty data is allowed. A queue of uncommitted writes must be

maintained in case one or more of the writing transactions aborts.

(5) the deferred write protocol, similar to that used in optimistic conc

urrency control KUNG81
, postpones all writes until a transaction

requests a commit. If this protocol is used, serializability can only be

enforced by checking for it at commit point.

A number of questions were raised about these protocols. First, does

the recovery protocol introduce aborts of transactions that would other

wise have committed? Second, what is the effect of a recovery protocol on

the meaning of the schedule? In other words, suppose that a schedule is

correct, in that the interleaving of reads and writes gives a meaningful
result (this would usually mean serializable). Will the recovery protocol
change the meaning of the schedule so that we can no longer be sure that

it is correct? Third, if we know that serializability is the condition

for a schedule to be correct, then what is the effect of the recovery

— 93 —

protocol on the serializability of the schedule (whether it changes the

meaning or not)?

Introduction of Aborts. The paranoid protocol introduces aborts to

enforce recoverability. We would expect the largest number of transaction

aborts from this protocol. The pessimistic and realistic protocols in

troduce them only to break deadlocks. It is interesting to note that if

all reads are known to precede all writes in transactions, then no dead

lock can occur using the realistic protocol and no aborts will be introd

uced. Finally, the optimistic protocol cascades aborts. One result of

the performance studies described below was that aborts rarely cascaded.

Crude analysis indicated that this was at least in part because all reads

did precede all writes in the transactions used in the simulations. In

this case, the probability of the first cascaded abort is small and the

probability of the second is infinitesimal.

Meaning—preservation. The most obvious change to the meaning of

operations comes with the deferred write protocol. Since this protocol

postpones writes while letting reads proceed, the value which would have

been read may not yet be available when the read is executed. The pes

simistic and realistic protocols may also change the meaning of a read

operation. This happens when the write on which a blocked read waits is

rolled back because the transaction requesting the write has been aborted.

The read must then access the previous value of the data rather than the

one it was waiting on. The paranoid protocol changes the meaning of a

read as a result of a slightly different sequence of events. Suppose that

transaction A writes a value in record 1 which would be read by transac

tion B in the original schedule. Suppose also that A must be aborted by
the paranoid protocol because, after writing record 1, it tries to read

dirty data. Then the the meaning of B’s read has been changed. In this

case also, the read will access the previously written data value. The

optimistic protocol does not rearrange operations in any way and will

abort a transaction rather than change the meaning of any of its

operations. Thus the meanings of the operations will be preserved.

Preservation of Serializability. Although general serializability is

preserved only by the optimistic protocol, there is a very important sub

class of the class of serializable schedules for which these protocols are

much better behaved. The class of DSR schedules PAPA79 is preserved by
the optimistic, pessimistic, paranoid, and realistic protocols. Only
deferred writes fails to preserve this class. Since this is the largest
known class of schedules which is recognizable in polynomial time, and

since all practical schedulers recognize only schedules in this class, we

view DSR as the most important class to be preserved. It would seen to be

a serious failing of the deferred write protocol that it does not preserve

DSR.

Ill. Pe.Jt~oAn~anc.e StwW4
~

A queuing network model of the execution of database transactions has

been developed and validated against simulation. The most interesting
feature of this model is that it can be used even when transactions (i.e.,
the customers) must hold multiple resources simultaneously. As discussed

in GRIF84
,

the only assumptions necessary to use this analysis are (1)

— 94 —

that the number of locks held and the waiting time of a blocked transac

tion can be closely approximated b~ their means and (2) that the service

rate increases linearly with the number of transactions. The result gives

a close approximation to the steady state of the system, where the state

is a vector nl,...,nk,bl,...,bk ,
ni is the number of transactions exec

uting their ith operation, and bi is the number of transactions blocked

before their ith operation. From the steady state, we can compute all of

the interesting measures such as throughput, number of blocked tran

sactions, number of locks held, space required for queues or versions, and

so forth.

A simulation study of the scheduling protocols has been carried out

with somewhat surprising results. In comparing the realistic and

optimistic protocols we found that although in many cases the throughput
for the optimistic protocol is slightly higher, it suffers more per

formance degradation on an unreliable, low—capacity system. The pes

simistic protocol had surprisingly poor performance. Although its

throughput was quite good when there are a small number of writes compared
to the number of reads, it was normally in a dead heat with the paranoid

protocol. When there are many write operations, the pessimistic protocol
is nearly an order of magnitude worse than the realistic protocol. Hence

if we were to rank protocols in order of throughput, we would have to say

that the realistic protocol edges out the optimistic protocol for first

place, while the pessimistic and paranoid protocols are in a dead heat for

a distant last place. We might expect that we would pay for the

throughput of the realistic protocol With the extra space for multiple
versions of written data values. In comparison With the pessimistic

protocol, this is not so: the queues of blocked writes, in the pes

simistic protocol, will require about the same amount of space as the mul

tiple versions in the realistic protocol.

IV. U4Ajtg &mant~c Krtou~edge~ .to Re.duc.e. Log S~z~ and PJ~oce.4oi.Ag.

A database can be viewed naturally in terms of its “levels of abs

traction”. In a relational database, the relations would occupy the

highest level. These would be implemented at the next level by files

(containing sequences of tuples) and indexes. Files and indexes would

then be implemented by disk pa9es. How to use knowledge of these levels

of abstraction to reduce log size and processing is described in the next

few paragraphs.

The central idea is suggested b~ a trick which can be applied to

dynamic structures such as B—trees. Suppose that a transaction adds a

record to an indexed relation. It must first add the record to the rela

tion and then add the record key to the index. Suppose also that the

transaction continues operating on the database while other concurrently

executing transactions cause changes to the index structure. For example,
the other transactions might split or coalesce nodes of the B—tree. At

some point in the execution, it may become necessary to abort the initial

transaction. One might think that, as a consequence, it would also be

necessary to roll back every action that changed the B—tree structure

after the initial transaction added the record key to the index. In this

way, the B—tree structure would be restored to its state at the time the

key was added.

— 95 —

Because this is such a cumbersome process, concurrent operations on

the B—tree would usually be prohibited. Of course, it is not really

necessary to be this conservative. The trick mentioned above works as

follows. We can simply delete the key from the B—tree to rollback the

operation that added the key. After all, we do not really care about the

structure of the B—tree. All we really care about is the set of keys it

contains.

In GRAHB4a
,
the ideas used in the B—tree trick have been formalized

and can be applied in the general case. We assume multiple levels of abs

traction. At each level of abstraction we define abstract actions which

are implemented by state—dependent sequences of concrete actions. The

concrete actions at one level are the abstract actions at the next lower

level (except of course at the lowest level). In the B—tree example, the

highest—level abstract actions would be the operations on relations: add

a tuple, delete a tuple, query the relation. These would be implemented

by concrete actions which operate on files and indexes: add a record to a

file, add a key to an index, and so on. The file and index operations are

then the abstract actions at the next lower level. They are implemented

by page operations, which are the lowest—level concrete actions.

We assume that with every action, we are supplied a collection of

state—dependent undo actions. The addition of a key to an index illus

trates why multiple state—dependent undo actions must be available. If

the key was already in the index, then nothing needs to be done to undo

the add action. An identity action should be supplied as the undo for

this case. If the key was not already in the index, then it must be

removed to undo the add action. A delete action is supplied as the undo

for this case.

If actions A and B, both at the same level of abstraction, do not

conflict With each other, then it is possible to roll back action A

without first rolling back a later action B. For recovery purposes,

actions A and B conflict if undo(A), for the prior state of A, does not

commute With B. (This definition is slightly different from the defini

tion of conflict for the purpose of serializability, where actions A and B

conflict if they do not commute.) To undo an action, we must first undo

all later actions which conflict with it.

The situation is complicated somewhat if we must consider the

concrete level as well. When an abstract action must be rolled back

before it has finished executing, that is, before completion of the

sequence of concrete actions which implement it, then we cannot undo it at

the abstract level but we can abort it. To abort it, we recursively abort

incomplete concrete actions and roll back complete concrete actions in

reverse order to their order of execution. (The concrete actions at the

lowest level must be atomic to halt this recursion.) An abstract action

depends on an earlier abstract action if it has a child (i.e., a concrete

action implementing it) which conflicts with a child of the earlier abs

tract action. We must not abort an action before we abort every action

which depends on -it. This guarantees that no action ~is undone before any

later conflicting action has been undone. We formalize this intuition

about the correctness of an abort in the following definition. A schedule

is revokable if every undo action is the child of an abort action and no

action is aborted before every dependent action has been aborted. This

definition is symmetric to the definition of recoverability, that no ac—

— 96 —

tion can commit until every action on which it depends has committed.

Using the above algorithm for rolling back has very nice implications
for the size of the log. Once an abstract action has been completed, we

can record its state—dependent undo and throw away the undo actions for

the concrete actions implementing it. Thus the size of the log could be

reduced considerably.

The above definitions require conflicting actions and dependent
actions to be ordered. It is possible to interleave the concrete actions

for some collection of abstract actions in such a way that no reasonable

order can be defined on the abstract actions. Such interleavings would be

undesirable. The existence of the required order on the abstract actions

can be guaranteed by a modified form of serializability. First, let us

say that actions A and B conflict if either A or undo(A) does not commute

with B. Next, let us say that a schedule of concrete actions implementing
a schedule of abstract actions is serializable if the schedule can be

transformed to a serial schedule by swapping non—conflicting actions.

(This is a version of conflict—preserving serializability.) We require

serializability at each level of abstraction. That is, if we treat the

abstract actions as transactions and consider the schedule of concrete

actions implementing them, this schedule is serializable.

We would like to know that, at the top level of abstraction, the

resulting state is exactly what we would get from a serial schedule of the

lowest—level concrete actions. It follows from a result of BEER83 that

this is guaranteed by the level—by—level form of serializability.

Furthermore, this type of serializability provides an ordering on the abs

tract actions, as required for recovery. Finally, a result in GRAH84a

establishes that the abstract state resulting from a history of operations
which is level—by—level serializable, recoverable, and revokable will be

the same as the abstract state resulting from the history after all

aborted operations have been deleted. And from the above—cited result in

BEER83
,

it follows that the abstract state will be the same as that

resulting from a serial execution of the actions which were not aborted.

V. Swrnnaity citd Fwutheit ~I)OJt!z.

This paper has described several ways to reduce the overhead of

recovery processing from transaction failure during normal operation of a

transaction system. We are continuing to look at this issue. We intend

to extend the methods to include system and media failure. Other problems
we are addressing include: the interaction of the serializer with the

recovery scheduler, techniques for optimizing the choice of a recovery

scheduler, adaptive scheduling, and the use of levels of abstraction to

reduce the overhead of checkpointing and redo processing.

bbog~aphy

ALLC83 Alichin, James E. An A’tchtea..twte ~O~’i. Re.LLab.ee. V~4t~bwted
Sy4~te.rn4, Ph. D. dissertation, Georgia Tech Technical Report GIT—ICS—82

23, 1983.

— 97 —

BEER83 Been, C., P.A. Bernstein, N. Goodman, N. Y. Lai, and D.

Shasha. “A Concurrency Control Theory for Nested Transactions”,

P.’toc.e~e.dJJtg4 ~ the. 1983 ACM SIGACT/SIGOPS Sgmpo4A.~am on P~nc..~p!~e.4 o~
Vtjt~.Lbwte~d Cornpu..tijtg, August 1983.

BERN81 Bernstein, P. A., and N. Goodman. “Concurrency Control in Dis—

tributed Database Systems”, Compufi.ng Swtve.g4 vol. 13, no. 2 (June

1981), pp. 185—222.

GRAH84a Graham, Marc H., Nancy D. Griffeth, and J. Eliot B. Moss.

“Recovery of Actions and Subactions in a Nested Transaction System”,

Georgia Tech Technical Report GIT—ICS—84/12, March 1984.

GRAH84b Graham, Marc H., Nancy D. Griffeth, and Barbara Smith-Thomas.

Reliable Scheduling of Transactions on Unreliable systems, P~’toc.e.e.dA)tg4 o~
the. ACM-S1GACT/.S1GMOV Syrnpo4~Lum on P~ c~p~ee.4 o~ Vct.aba4e~ S~,c&tein4, April
1984.

GRIFB4 Griffeth, Nancy D. and John A. Miller. “Performance Modeling of

Database Recovery Protocols”, Pxoc,ee.dJj’Lg4 o6 the. IEEE SfJmpo&üui~ on

Re.Lb~Uty Afi V~L4tn.Lbwte.d So~wa.JLe. and Vataba4e. S~f4.tern4, Oct 15-17 1984;

also, to appear in IEEE Ttt4actqon4 on So1~twajte. EngA..neei~.btg, June 1985.

HADZ83 Hadzilacos, Vassos. “An Operational Model of Database System

Reliability”, P~’tOCee.diyLg4 o~ the. 1983 SIGACT/SIGOP.S Sympo4i.~am on

Ptc.,~p/~e.4 o~ VJ~t_n...Lbu..ted Computing, August 1983.

KORT83 Korth, H. F. “Locking primitives in a Database System”, JOUJTJLOI

o~ the. ACM, vol. 30 no. 1, January 1983.

KUNG81 Kung, H. T., and J. T. Robinson. “On Optimistic Methods for

Concurrency Control”, ACM Txait4ac.~tLon4 on Va.taba4e. Sg4tem4, Vol. 6 No.

2, June 1981.

PAPA79 Papadimitriou, Cristos H. “The Serializability of Concurrent

Database Updates”, JowtnaL o6 the. ACM, vol. 26 no. 4, 1979.

SCHW84 Schwartz, Peter N., and Alfred Z. Spector. “Synchronizing Shared

Abstract Types”, ACM TJtait4actLon4 on Compu.te.it Sg4te.m4, vol. 2 no. 3,

August 1984.

— 98 —

Achieving High Availability in Partitioned Database Systems

Dale Skeen

IBM Research

San Jose, Ca4f’ornia

Introduction

As factories and businesses become more au

tomated, they are increasing their reliance on com

puters to store data that is critical to their day to

day operations. Since their operations can be

crippled or halted entirely if their data bases are

not accessible, their requirements for availability
are increasing dramatically. Clearly any failures

or scheduled downtime of the computers storing
critical data must be minimized.

One solution for increasing data availability is

to replicate critical data on several processors.
This solution is gaining in popularity due to re

cent hardware trends that are making loosely-
coupled networks of small and medium sized

computers an economical alternative to large cen
tralized mainframes. By having multiple proces

sors and storage systems with independent failure

modes, it is possible to confine and localize the

effects of system component failures. Through
replication, it is possible, in theory, to provide
arbitrarily high availability of important data.

However, the realization of higher availability
is problematic. As the number of components
increase, so does the likelihood that one or more

components will be down due to failures or re

quired maintenance. Moreover, loosely-coupled
systems introduce system failure modes that are

either impossible or occur with negligible fre

quency in closely-coupled architectures. Perhaps

the most disruptive of these failure modes are

partition failures, communication failures that

fragment the network into isolated subnetworks,
called partitions. Unless detected and recognized
by all affected processors, such failures provide
the opportunity for independent, uncoordinated

updates to be applied to different replicas of the

data, thereby compromising data integrity.

Traditional algorithms for ensuring data integ
rity during partition failures are based on restrict

ing read/write access to the data on a per data

record basis EAGE83,ELAB85,GIFF79,
THOM79]. These algorithms, which we will call

voting algorithms, enforce the constraint that a

data record can not be read in one partition and

written in another partition. Although attractive

for their simplicity and generality, such algorithms
have a number of weaknesses.

One weakness of voting algorithms is that they
can not easily account for correlated data accesses,

e.g., where a group of records are normally ac

cessed together. Clearly, if a record is only ac

cessed in conjunction with other data records of

a group, it should be made accessible within a

partition only if some of the other members of

the group are accessible.

Another weakness of these algorithms is that

they are overly restrictive, as illustrated by the

following example. Consider a bank customer

having a checking account and a saving account

at different branches of the same bank. Assume

The work described herein was performed in collaboration with D. Wright, while the author and he were at Cornell University,
Ithaca, New York. Most of the results appear in FSKEE84I.

— 99 —

that it is the policy of the bank to allow a cus

toiner to overdraw his checking account as long

as the overdraft is covered by funds in his saving
account. If the branches are partitioned, no voting
scheme would allow a checking withdrawal (which

requires reading the balance of both accounts) to

occur in one partition and allow a savings deposit
to occur in the other partition. Clearly, executing
these transactions in parallel in different partitions
violates neither the banks policy nor the standard

notion of correctness for replicated data.

The above example illustrates well a key point:
in general, it is more important to provide high

availability of the operations frequently performed
on the data, than it is to provide the capability

of reading and writing individual data records.

Certainly this is true for the bank customer, who

cares little that his checking account record is read

and write accessible in a partition, but cares a

great deal that a debit transaction is not executable

on his account. The most significant weakness of

most voting algorithms is that they can not op

timize the availability of high-level data opera

tions.

Emphasizing high-level data operations is in

accordance with recent programming methodol

ogy trends. For many applications, the database

can be viewed as a repository for abstract objects,
where each object is defined by its abstract state

(that is physically represented in one or more data

records) and by a set of operations that can access

and change the abstract state. High availability
of an object in this context means high availability
of the operations defined on the object.

This paper discusses one approach, termed

class conflict analysis, to the problem of maximiz

ing the availability of desired data operations in

the presence of communication failures. The basic

idea is that each processor identifies its most im

portant data operations and assigns a preference
to each one. In the event of a partition failure,

the processors in a subnetwork combine their

preferences and make executable a subset of the

most preferred operations, a subset whose execu

tion is guaranteed to preserve data integrity.

To make the approach as general as possible,
we make only a few assumptions about the da

tabase system. The principal ones are: (1) the

data base is a set of records, (2) all operations on

the data are executed atomically, i.e., all operations

are transactions, and (3) operations can be char

acterized by their potenlial readsets and writesets.

No particular data model is assumed. Our ap

proach accommodates nicely object-based sys

tems, but does not require them. In fact, the

operations~ whose availability is maximized could

simply be the most frequently executed transac

tions.

The proposed approach is considered to be a

syntactic approach, since in checking correctness,

it makes no assumptions about the state of the

database or about the semantics of the operations

performed on the data. For applications where

state information or properties of the data oper

ations can be used, our approach provides a basis

on which such information can be added.

Background

A database is a set of logical data objects that

support the basic operations read and write. The

granularity of these objects is unimportant; they

could be records, files, relations, etc. The state of

the database is an assignment of values to the

logical data objects. The value of each logical

object x is stored in one or more physical data

objects, which are referred to as the copies of x.

(The database is nonreplicated if each logical ob

ject is implemented by exactly one physical object;

otherwise, it is replicated.) For brevity, logical
data objects are subsequently called data objects

or, more simply, objects.

Transactions issue read and write operations
on logical data objects, which are mapped by the

database system to corresponding operations on

physical copies. The set of objects read by a

transaction is called its readset. Similarly, the set

of objects written is called its writeset. A trans

action is assumed to be correct: when executed

in isolation, it transforms a correct database state

into a new correct database state.

- ipo -

The correctness criteria for a replicated database

system is an intuitive one: the concurrent execution

of a set of transactions on replicated data must be

equivalent to some serial execution of the same

transactions on nonreplicated data. (Two execu

tions are equivalent if every transaction reads the

same values in both executions and the final da

tabase states are the same.) This property is

known as one-copy serializability BERN83]

Transactions interact with one another indi

rectly by reading and writing the same data ob

jects. Two operations on the same object are said

to conflict if at least one of them is a write. Con

flicting operations are significant because their or

der of exe~ution determines the final database

state.

For nonreplicated databases, the order of exe

cution of two conflicting operations prescribes a

simple order dependency between the transactions

executing them, a dependency that constrains the

execution order of the transactions in any equiv
alent serial execution. For example, if transaction

T1 executes operation 01 before transaction T2
executes operation 02 and the operations conflict,
then T1 must execute before T2 in any equivalent
serial execution. To show that an execution on

a nonreplicated database is serializable, one must

show that all order dependencies implied by con

ificting operations can be preserved in some serial

execution. An easy way to do this is through the

use of a serialization graph, a directed graph where
the transactions are represented by nodes and or

der dependencies by directed edges. A fundamental

theorem in serializability theory states that an ex

ecution is serializable if the corresponding serial

ization graph is acydic ESWA76,PAPA79]

Determining whether an execution on a repli
cated database is serializable turns out to be sig
nificantly more difficult. In such a database, con

flicting operations can be executed in parallel by
operating on disjoint sets of an object’s copies.
Moreover, depending on how writes and reads on

logical objects are implemented, it may be possible
to read a copy containing a stale (i.e. old) value

of the data object. Note that neither the parallel
execution of conflicting operations nor the reading

of old data values necessarily implies that trans

action execution will be nonserializable (consider
the banking example of the introduction where

parallel conflicting operations on the savings ac

count were allowed). However, such activity, if

unrestricted, normally does result in

nonserializable executions. An example based on

the banking example is given in Figure 1.

When conflicting operations are executed in

parallel on a replicated database, the order depen
dencies introduced between the corresponding
transactions are no longer the simple dependencies
illustrated previously. In fact, each pair of con

ificting operations introduces a system of depen
dencies. This complicates both the modeling of

executions and the• verification of serializability,
as evidenced by the serializability graph model

introduced by Bernstein and Goodman BERN83]

However, if it is assumed that a transaction’s

readset contains its writeset, then a much simpler
graph model can be used to represent transaction

execution in a replicated database. In particular,
all conflicts can be modeled by simple order de

pendencies (like those in the nonreplicated case).
Such a graph model was used by Davidson

IDAVI84I to verify the serializability of transaction
execution in a partitioned database system.

Partially because of the complexities involved

in managing replicated data and partially because

PARTITION 1 PARTITION 2

\if CH+SA>$200
then CH:CH-200

CHecI~ing:-$ 100
SAvings: $200

Figure 1. The execution of a checking withdrawal and

a saving withdrawal resulting in the violation of the in

tegrity constraint: CH + SA ~ = 0. The anomaly is due

to the concurrent execution of conflicting operations in

separate partitions.

CHecking: $100

SAvings: $200
CHecking: $100

SAvings: $200

if CH+SA>$200
then SA:SA-200

CHecking: $100

SAvings: $ 0

— 101 —

of the uncertainties concerning the nature and

extent of a partition failure, most voting protocols
have been extremely conservative in the level of

availability provided during a partition failure. In

fact, the cornerstone of their correctness is that

they do not allow conflicting data operations to

be executed in different partitions.

In the next section, we described a less conser

vative protocol that does not prohibit conflicting
operations in different partitions. It uses the as

sumption that readsets contain writesets to sim

plify the modeling and the analysis of transaction

execution.2 In particular, only simple order de

pendencies are considered.

Class Conflict Analysis

Class conflict analysis consists of three distinct

steps--transaction classification, conflict analysis,
and conflict resolution--which are described in the

next three sections. It is assumed that a correct

concurrency control protocol serializes transaction

execution within each individual partition. (This,
of course, does not imply that transaction execu

tion will be serializable across partitions.)

Transaction Clas4flcation

Prior to a communication partitioning the pro

cessors must agree to a classification of the trans

actions. The criteria used to classify transactions

depends on the way applications (and human us

ers) view the data and on the system availability

goals. If a data object is viewed as an instance

of some abstract data type, then each operation
defined on the abstract type can be considered a

class. For example, a ‘checking withdrawal is a

well defined operation on an object oftype ‘check

ing account.’ Even in systems where the data

records are normally not viewed as instances of

abstract types, the applications using the data may

interact with the system using a small number of

‘canned’ transactions, and these become natural

candidates for classes. In systems lacking any

high-level knowledge on how~data is used, aclass~

may simpiy be all transactions satisfying a certain

input/output specification, e.g., the class contain

ing all transactions reading and writing a subset

ofitems a, b, and c. In such a system, performance
monitoring can be employed to reveal sets of data

items that are frequently accessed as a group.

Classes are characterized by their readset and

writesets. The readset (respectively, writeset) of

a class is the union of the readsets (respectively,
writesets) of all of its member transactions. Two

classes are said to conflict if one’s readset intersects

the other’s writeset. A conflict between a pair of

classes indicates the potential for a pair of trans

actions belonging to these classes to issue con

flicting data operations and, as a result, for the

existence of an order dependency between the

transactions. (Since transactions are required nei

ther to read all objects in the readsets of their

classes nor to write all objects in the writesets of

their classes, transactions from conflicting classes

may not issue conflicting operations and, there

fore, may not have an order dependency.)

Each processor assigns to each class a prefer
ence, a nonnegative number that reflects the pro

cessor’s need to execute that class when a partition
occurs. The higher a class’s preference, the more

likely the processor will be able to execute trans

actions from the class during a partition failure.

Preferences may be based on execution frequen
cies, administrative priorities, etc. The method of

assigning preferences is not important to the rest

of the discussion.

Prior to a partition failure, each processor must

make its preferences known to all other processors.

Conflict Analysis

Let us now discuss the processing that takes

place in an arbitrary partition when a partitioning
occurs. It is important to remember that the pro

cessing described occurs in all partitions indepen
dëntly~ and in parallèL

2 The assumption is used only for the purpose of modeling transaction executions, it is not enforced in actual executions.

— 102 —

Immediately after a partitioning is detected,
each processor executes a protocol to determine

the other processors within its communication

partition. The members of the partition then

combine their individual preferences to calculate

partition-wide preferences for all classes. The

partition-wide preferences are used to determine

a set of classes from which processors can execute

transactions.

Individual preferences can be combined to form

partition-wide preferences in any number of ways.
Ifthe individual preferences are based on execution

frequencies, then the partition-wide preferences
could be assigned the sums of the individual pref
erences. If, on the other hand, individual prefer
ences are assigned by administrative policy, then

partition-wide preferences could be set to the

maximum of the individual preferences. The only
requirement for combining preferences is that the

inclusion of an additional processor in a partition
can never decrease the computed partition-wide
preferences.

Based on their knowledge of the network to

pology and on the cause of the partitioning, the

members of a partition must estimate the mem

berships of all other partitions. To avoid confu

sion, the partition performing the estimates will

be called the home partition and the estimated

partitions will be called the estimated foreign par
tition.c, or the foreign partitions, for short. For

availability reasons the estimates should be as

precise as possible; for correctness reasons the

estimates can be high but not low. In the absence

of any conclusive evidence on the membership of

other partitions, the home partition can simply
assume that there exists a single foreign partition,
which contains all other processors. In addition

to estimating partition membership, partition-
wide class preferences must also be estimated us

ing the prespecifled processor preferences.

Once the computation of preferences (actual
and estimated) is complete, the classes with pref
erences exceeding a small prespecifled minimum

are considered for possible execution. In general,
not all of the prospective classes can be executed

in parallel if one-copy serializability is to be en-

sured. Consequently, the conflicts between pro

spective classes must be analyzed, and sets of

classes that can lead to non-serializable executions

identified. The preferences, both estimated and

actual, are the basis for deciding which partitions
will be allowed to execute transactions from which

classes.

The analysis uses a graph model that is similar

to the one used in serializability theory, the major
difference being that serializability graphs give all

actual order dependencies between conflicting
transactions; whereas, class conflict graphs give
all potential order dependencies between conflict

ing classes. Defined below is a simplified version

of the model presented in SKEE84].

A node in a class conflict graph represents the

occurrence of a given class in a given partition.
Edges are drawn between occurrences of conflict

ing classes according to the rules given below.

L~et C1 and C1 be classes such that readset(C1) and

writeset(C1) intersect.

1. If C1 and C1 are in the same partition, then

a pair of edges pointing in opposite directions

connects them.

2. if C1 and C1 are in different partitions, then

a directed edge extends from C1 to C1.

An edge between two conflicting classes indicates

the possibility of an order dependency between

transactions from those classes, with the direction

of the edge indicating the direction of the order

dependency. if two conflicting classes belong to

the same partition, then the concurrency control

algorithm will resolve conflicts between transac

tions from those classes. In doing so, the algorithm
is free to choose which of the two conflicting
transactions to execute first. Hence, the edge pair
in rule 1 signifies that either order dependency is

possible between transactions in the adjacent
classes.

Between classes in different partitions the sit

uation is quite different. The direction of an order

dependency between two transactions is deter

mined by the fact that the values produced in one

— 103 —

partition are not available for reading in another.

Consider the case of executing transaction 1’~ from
class C1 and transaction T3 from C1 (and assume

that the transactions read the entire readset and

writeset for their respective classes). Since T1 can

not read the updates of T1, the resulting database

state3 is the same as the serial execution of T1
followed by T3. Clearly, there is an order depen
dency from T1 to T~ and, therefore, in the conflict

graph there is an edge from class C1 to class C3.

Figure 2 contains a class conflict graph depicting
four classes: the checking withdrawal (class C~)
used in previous examples; a class for computing
and adding an interest payment to a savings ac

coUnt (Cs); a class for modifying the current in

terest rate (C1); and a class that reads the current

interest rate and the current checking balance (Cr).

In identifying class conflicts that could lead to

nonserializable executions, cycles play a key role.

However, not all cycles are bad. Among class

PARTITION 1

Cj:

Cr:

Cw:

PARTITION 2

Figure 2. A class conflict graph for the banking example
with four classes and three logical data objects—interest
rate (I), checking balance (c), and sayings balance (s).
The readset of the class appears on the top half of the

box and the writeset of the class in the bottom half.

occurrences in the same partition, cycles are both

common, since in this case all edges are paired,
and harmless, since the concurrency control algo
rithm operating in the partition will prevent
nonserializable executions.

On the other hand, cycles spanning two or

more partitions are not harmless, since there is

no global mechanism that can prevent them from

occurring in an execution. Hence, multipartition
cycles indicate the potentialfor nonserializable ex

ecutions. In the example above, if transactions

from classes C1, Cr, and C~ execute--in that

order--in partition 1 and a transaction from C5
executes in partition 2, the result is nonserializable.

execution.) Note that not all executions of these

transaction are nonserializable; in fact, any other

order of execution of the transactions in partition
1 is serializable.

Conflict Resolution

Whenever the initial class conflict graph con

tains multipartition cycles, further constraints on

transaction processing must be imposed. Of

course, to satisfy our availability goals, the min

imum constraints are desired. The process of

finding an appropriate set of constraints is called

conflict resolution.

The most obvious resolution technique is to

prohibit certain transaction classes from executing
in certain partitions. In the graph model, this is

represented by deleting the nodes corresponding
to the appropriate class instances. Deletion of

class nodes must continue until the class conflict

graph is rendered multipartition acydic. In the

above example, exactly one class--the one with

lowest preference--must be deleted to render the

graph multipartition acycic.

The interesting optimization problem imposed
by our availability goals is to find the set of classes

with smallest summed preferences that render the

conflict graph multipartition acydic. Unfortu

nately, this optimization problem is an instance

of the feedback vertex set problem, a well known

3 Recall that the database state is defined to be the values of the logical objects, not the physical replicas.

— 104 —

NP-complete problem. This, of course, does not

rule out the existence of good heuristics.

In practice, the NP-completeness result for our

optimization problem is not the major complica
tion in finding a good class deletion algorithm;
rather, the major complication is that the prefer
ences ascribed to classes in foreign partitions are

only estimates, which may not bear any semblance

to their actual preferences. Not only may opti
mal~ solutions based on estimates be suboptimal
with respect to actual preferences, but, more im

portant, they may be incorrect. (Deleting a class

in a foreign partition is an unenforceable assump
tion that the foreign partition will not execute

transactions from that class, if two partitions es

timate different preferences for each other, then

they will compute different sets to be deleted.)
Whenever there exists uncertainty about the net

work topology after a partition failure, resolution

algorithms tolerating inaccurate estimates are re

quired.

There exist several easily implemented heuris

tics for ensuring that a solution to the class dele

tion problem tolerates errors in preference esti

mation. The simplest heuristic breaks all estimated

cycles by deleting class instances from only the

home partition. Given that home partition can

not underestimate the number of actual cycles,
the scheme .is obviously correct, since it requires
no action on the part of foreign partitions. A

significant weakness of this heuristic is that a cycle
spanning k partitions will be broken k times (once
in each partition), irrespective of the how good
the estimates are.

A less naive heuristic divides the responsibility
of breaking multipartition cycles evenly between

the partitions. It uses the rule that the home

partition assumes responsibility for breaking a

multipartition cycle if the least preferred class in

the cycle is in the home partition; otherwise, a

foreign partition must break the cycle.4 (The
home partition, however, assumes nothing about

how a foreign partition breaks a cycle.) Given

that the home partition can not underestimate

the preferences of classes in foreign partitions, it

is assured that at least one partition will assume

responsibility for breaking each cycle. For the

cycles that the home partition must break, any

algorithm can be used.

Although class deletion is the most intuitive

conflict resolution technique, it often restricts

transaction execution more than necessary. A less

restrictive resolution technique, called edge dele

tion, guarantees serializable executions by restrict

ing the order of execution of transactions within

an individual partition.

Consider again the four classes illustrated in

Figure 2. The only way a nonserializable execution

can occur is if an interest transaction (of class C1)
executes and then a transaction of class Cr exe

cutes. Therefore serializability can be preserved if

the system disallows the execution of Cr transac

tions after the first interest transaction has been

executed (but Cr transactions can execute up until

the time the first interest transaction is executed).
Note that the same effect can be achieved if Cr
transactions are allowed to execute after interest

transactions have executed, but are required to

read the original (unmodified) version of the in

terest rate (data object i).

The resolution technique of edge deletion,
though less restrictive than class deletion, is also

less general. It can not be used to break all

multipartition cycles; in particular, it can not

break a cycle where each class is from a different

partition (prohibiting a certain order of transaction

execution in this case is meaningless). Nonethe

less, edge deletion is an attractive technique, and

the theory underlying it is rich and involved, en
compassing both standard concurrency control

theory and multiversion concurrency control the

ory. For more details, the reader is referred to

ISKEE84].

4 The assignment of responsibility can be performed in 0(n4) steps, where n is the number of class instances, even though the
number nf cycles may be exponential in n.

— 105 —

Conclusions

We have discussed a method of increasing data

availability in a partitioned database system by
first classifying the transactions and high-level op
erations that manipulate the database and then

preanalyzing potential class conflicts that could

lead to data integrity violations. The analysis is

syntactical: only knowledge about the classes’

readsets and writesets is used. In contrast to pop

ular approaches, the method emphasizes the avail

ability of high-level data operations, rather than

the availability of individual data records.

An obvious extension to this work is to enrich

the analysis by including either database state in

formation or database semantics. Along the same

lines, the analysis could be enriched by viewing
the database as a repository for objects of declared

abstract types, and by making use of type-specific
information. Type-specific information has al

ready been applied to standard concurrency con

trol theory SCHW85] and to voting algorithms
HERL85]. Given the popularity of programming
methodologies based on abstract types, this is a

particularly promising avenue of investigation.

Bibliography

BERN83] Bernstein, P.A. and Goodman, N.,
The Failure and Recovery Problem

for Replicated Databases, Proc.

ACM Symp. on Principles ofDistrib
uted Systems (Montreal Canada, Au

gust 1983) pp. 114-122.

DAVI84I Davidson, S.,Optimism and Consis

tency in Partitioned Distributed Da

tabase Systems, ACM Trans. on Da

tabase Systems 9 (September 1984)

pp. 456-482.

EAGE83] Eager, D.L. and Sevcik,

K.C.,Achieving Robustness in Dis

tributed Database Systems., ACM

Trans. on Database Systems 8 (Sep.
tember1983)~pp. 354-381.

LELAB85] El Abbadi, A., Skeen, D., and

Cristian, F.,An Efficient, Fault-

Tolerant Protocol for Replicated
Data Management, Proc. ACM

Symp. on Principles ofDatabase Sys
tems (Portland, Oregon, March

1985) pp. 215-229.

ESWA76] Eswaran, K.P., Gray, J.N., Lone,
R.A., and Traiger, I.L.,The Notions

of Consistency and Predicate Locks

in a Database System, Commun.

ACM 19 (November 1976) pp.

624-633.

GIFF79) Gifford, D.K.,Weighted Voting for

Replicated Data., Proc. 7th Sympo
siwn on Operating System Principles
(Asiomar, Calif., December 1979)
pp. 150-162.

HERL8S] Herlihy, M.,Using Type Information

to Enhance the Availability of Par

titioned Data, CMU tech, report

(Pittsburgh, Penn., April 1985).

PAPA79j Papadimitriou, C.,The Serializability
of Concurrent Database Updates.,
JournalAssoc. Comp. Mach. 26 (Oc
tober 1979) pp. 631-653.

SKEE84J Skeen, D. and Wright, D.D.,Increas

ing Availability in Partitioned Data

base Systems, Proc. 1984 ACM

SIGACT-SIGMOD Syrnp. on Prin

ciples of Database Systems (March
1984).

SCHW85J Schwarz, P. and Spector, A.,Syn
chronization of Shared Abstract

Types, ACM Trans. on Computer
Systems 2 (August 1984) pp.

223-250.

THOM79J Thomas, R.H.,A Majority Consen

sus Approach to Concurrency Con
trol for Multiple Copy Databases,
ACM Trans. Database Syst. 4 (June
1979) pp. 180-209.

— 106 —

IEEE COMPUTER SOCIETY

TECHNICAL COMMITTEE APPLICATION

Please complete the form on the reverse to apply for member or correspondent in a Technical Committee. Upon
completion, please return this form to the following address:

DEFINITIONS:

IEEE COMPUTER SOCIETY

1109 Spring Street, Suite 300

Silver Spring, Maryland 20910

We look font’ard to having ~‘ou with us!

TC MEMBER—Actively participates in TC activities; receives newsletters and all TC communications. Active partici
pation means that you do or are willing to do something for the TC such as review papers, help organize workshops,
conferences, etc., participate in standards development, help with TC operations, etc.

TC CORRESPONDENT—Does not participate actively in TC activities; receives newsletters and other TC communica
tions.

TECHNICAL COMMITTEE CODES:

Computational Medicine (01)

Computer Architecture (02)

Computer Communications (03)

Computer Elements (04)

Computer Graphics (05)

Computer Languages (06)

Computer Packaging (07)

Computers in Education (08)

Computing and the Handicapped (09)
Data Base Engineering (10)

Design Automation (11)
Distributed Processing (12)
Fault-Tolerant Computing (13)
Mass Storage Systems & Technology (14)
Mathematical Foundations of Computing (15)
Microprocessors & Microcomputers (16)

Microprogramming (17)

Multiple-Valued Logic (18)
Oceanic Engineering & Technology (19)
Office Automation (20)

Operating Systems (21)

Optical Processing (22)
Pattern Analysis & Machine Intelligence (23)
Personal Computing (24)
Real Time Systems (25)
Robotics (26)

Security and Privacy (27)
Simulation (28)
Software Engineering (29)
Test Technology (30)
VLSI (31)

107

IEEE COMPUTER SOCIETY

TECHNICAL COMMITTEE APPLICATION

INSTRUCTIONS: PLEASE PRINT IN INK OR TYPE (ONE CHARACTER PER BOX. INFORMATION WRITTEN OUTSIDE OF BOXES WILL

NOT BE RECORDED). BECAUSE OF PACKAGE DELIVERY SERVICES, STREET ADDRESSES ARE PREFERRED RATHER

THAN, OR IN ADDITION TO, POST OFFICE BOX NUMBERS. INTERNATIONAL MEMBERS ARE REQUESTED TO MAKE

BEST USE OF AVAILABLE SPACE FOR LONG ADDRESSES.

I I liii 111111111 1111111111 1111111 III
LAST NAME FIRST NAME INITIAL OR/MR/MRS/MS/MISS/PROF ETC

HJIIIIII11IIIIJIIIiIiIIliJ~
COMPANY/UNIVERSITY/AGENCY NAME DEPARTMENT/MAIL STOP/BUILDING/P 0. BOX/APARTMENT/ETC

DATE:

I I I I I CHECK ONE:

MONTH DAY YEAR LI NEW APPLICATION

(till i 11tH II IIH I II 11tH I It I DINFORMATIONUPDATE
CITY STATE ZIP CODE

lIllilIlIIIilIIIiiiIIIIlIliIIillIIlliiIL
ELECTRONIC MAIL NETWORK ELECTRONIC MAIL ADDRESS (Mailbox)

2

111111 11111 I I I LI I lillilli
TELEX NUMBER (Optional)

Conference Organizing Committee 5

Workshop Organizing Committee 5

Conference/Workshop Session Chairman 5

Help with Newsletter 5

Write Survey/Technical Papers 5

Review Papers 5

Standards Development 5

Educational Activities 5

Help with TC Operations 5

Other (Specify):
Technical Interests/Specialties:

4 3 2 ~1

4 3 2 1

4 3 2 1

4 3 2 1

4 3 2 1

4 3 2 1

4 3 2 1

4 3 2 1

4 3 2 1

IEEE COMPUTER SOCIETY

STREET ADDRESS IOR POST OFFICE BOXI

I I I I I I I I I II I II I I I II I I I I II I I

COUNTRY

I I I I I I I I I I I I I I lii I
OFFICE PHONE HOME PHONE (Optional)

IEEE MEMBER/AFFILIATE NO.

PLEASE INDICATE YOUR TC ACTIVITY INTERESTS (Please circle):

HIGH INTEREST

I am a Computer Society Member

YES NO

CHECK ONE: IC CODE: I II
(from reverse)

TC MEMBER

LI TC CORRESPONDENT

FOR OFFICE USE ONLY

Approved (TC Chair/designate) Date

Key Entered Date

Returned to TC Chair/Designate Date

NO INTEREST

0

0

0

0

0

0

0

0

0

MVL NL 284

Tutorial: Recent Advances in Distributed Data Base Management

by C. Mohan

This tutorial assumes prior exposure to centralized data base

management concepts and therefore is intended for systems designers
and implementors, managers, data base administrators, students,

researchers, and other technical personnel.
CONTENTS: Introduction; Distributed Data Base Systems Overview; Distributed

Query Processing; Distributed Transaction Management; Distributed Algorithm
Analysis; Annotated Bibliography.
CJ571 (ISBN 0-8186.0571-5): December 1984, 350 pp.,

list price $36.00/member price $24.00

Tutorial: Distributed Database Management

by J.A Larson and 5. Rahimi

This tutorial provides a written description of the basic components of

distributed database management systems and examines how those

components relate to each other.

CONTENTS: Introduction: Transforming Database Commands; Semantic Integrity
Conabaints; Decomposing Requests; Concurrency and Replication Control;
Distributed Execution Monitor; Communications Subsystem; Design of Distributed

D6MSs; Case Stuthes; Glossary.

CJS75 (ISBN 0-8186-0575-8): January 1985,678 pp.,
list price $36.00/member price $24.00

Tutorial: Software Quality Assurance: A Practical Approach

by T.S. Chow

This tutorial provides the reader with a comprehensive view of software

quality issues—the various components of a software quality assurance

plan and how they are implemented. Intended for managers and

engineers who are interested in understanding software quality and in

familiarizing themselves with the latest advances.

CONTENTS: Introduction; Software Quality: Delinitions, Measurements. and

Applies; Managenal Issues: Planning. Organization, and Control; Managerial
Issues: Standards, Practices, and Conventions; Technical Issues: Requirements,

Design, arid Programming; Technical Issues: Testing and Validation; Software

Tools; Implementation of Software Quality Assurance Programs; Subject Index.

CJ569 (ISBN 0-8186-0569-3): January 1985, 506 pp.,

list price $36.O0lmember prIce $27.00

Tutorial: Computer Communications: Architectures, Protocols, and

Standards

by William Stallings
This tutorial presents the motivations for, and design priciples of, a

communications architecture. It also includes a broad overview of

communication protocàls while exploring the following general

categories: principles, services and mechanism, and standards.

CONTENTS: Communications Architecture; Physical and Data Link Protocols;
Network Access Protocols; Intemetworlcing; Transport and Session Proposals;
Presentation and Application Protocols; Glossary; Bibliography.

CJ604 (ISBN 0-8186-0604-5): March 1985, 496 pp.,

list price $39.00/member price $24.00

Tutorial: Local Network Equipment

by Harvey A Freeman and Kenneth J. Thurber

This tutorial is offered as a means of learning more about the products
and systems that are being used today or will be used in the near

future. The articles describe the various companies’ experiences in

building their products, in supporting the many applications for local

networks, and in dealing with ~he theoretical issues of local networks in

practical terms. The Text assumes that the reader has some knowledge
of the theory, terms, and issues involved.

CONTENTS: Introduction; Local Area Networics; High-Speed Local Networks;

Digital Switthes and Computeflzed Branch Exchanges; The Network Interface;

Performance; Internetworking; VIII Design Issues.

CJ605 (ISBN 0-8186-0605-3): March 1985, 380 pp.,

list price $36.00/member price $24.00

2

-

lUlQ~S

C~IPU1tR comImIuNIcATloris,
~sL~,w,d,

Tutorial: Computer Text Recognition and Error Correction

by Sargur N. Snhari

Designed for computer researchers interested in developing flexible

techniques for text processing and computer vision, this tutorial is

concerned with transferring a degree of intelligence to text processing
systems. In particular, the ability to automatically detect and correct

spelling and typographical errors and to interpret digitized video images
of print and script whose iconic representations (visual symbols) are

ambiguous.
CONTENTS: Introduction; Text Interpretation: Visual Processing, Contextual

Post-Processing Based on n-Gram Statistics, Lexicon-Based Methods; Text Error

Correction: String Edit Distance Computation, Principles of Practical Programs,
Systems Programming Applications; Dictionary Organization.

CJ579 (ISBN 0.8186.0579.0): December 1984, 363 pp.,
list price $36.00/member price $24.00

109

MICROCOMPUTERS

Selected Reprints on Microprocessors and Microcomputers (3rd
Edition)

by J. T. Cain

This is the latest collection of selected papers from Computer Magazine
and IEEE Micro Magazine, which reviews the fundamentals and

snapshots the growing status of the “microprocessor revolution.” It

carefully focuses on the historical perspectives, 16-32 bit

microprocessors, architecture novel/proposed, peripheral processors,

bus structures, software, and applications. The microprocessor
revolution will continue into the foreseeable future, and after reading the

papers in this collection, you will gain an appreciation of the field and

establish a foundation for future work and study.
CJ585 (ISBN 0-8186-0585-5): June 1964, 342 pp.,

list price $20.00/member price $15.00

Tutorial: Microcomputer Networks

by Harvey A. Freeman and Kenneth J. Thurber

This tutorial describes the interconnection of microcomputers into

networks. It is the first tutorial exclusively devoted to systems or

networks of microcomputers. Commercial user, research laboratories,

educational institutions, and the military have all been attracted to the

network approach. The 31 reprinted papers are the best currently
available in the field. Five sections cover: the origins of microcomputer

networks, techniques and issues relating to interconnecting networks,

network operating systems, descriptions of currently available

commercial microcomputer networks, and case studies of networks and

approaches.
CJ395 (ISBN 0-8186-0395-X): December 1981, 288 pp.,

list price $27.00/member price $20.00

ii COMPUTERS IN
~ BUSINESS

Tutorial: Office Automation Systems

by Kenneth J. Thurber

This tutorial explores the frontiers of office automation. It examines

current technologies being proposed for office automation functions and

the state-of-the art in these technologies. It concludes with a

hypothetical office system design, which attempts to structure the

functions of an office in a hierarchical fashion. Primarily intended for

managers, system analysts, programmers, and other technical

personnel who are interested in the future of office automation, local

networks, office equipment, and distributed systems.
CJ339 (ISBN 0-8186-0339-9): December 1980, 210 pp.,

list price $20.00/member price $15.00

Tutorial: Business & Computers

by Harold J. Podeil and Madeline Weiss

Designed as a primer for students and individuals who want to learn

about the possible use of computers in business or in other areas, this

book of readings provides the necessary background information in data

processing and in systems for beginners facing the need to understand

basic concepts of computer systems, their applications, and computer

system design. Divided into five sections: Issues in Information Systems
Development, Technology Trends, Data Base.Cohsiderations, Privacy
and Security Issues, and Application, this text would be useful as an

--

adjunct tö~cölIë~ lnCompuiér Science rinciples.
CJ334 (ISBN 0-8186-0334-8): April 1981, 472 pp:,

list prIce $20.00/member price $1 5.00

Tutorial: End User Facilities in the 1980’s

by James A. Larson

This tutorial categorizes end users—the people who use computers to

perform their jobs. Easy and efficient techniques for man~rnachine

communications are presented. End user tools for accessing, analyzing,
and disseminating computerized data are described.

CJ.449 (ISBN 0-8186-0449-2): November 1982, 525 pp.,

list price $30.00/member price $24.00

I~ COMPUTER

r\ COURSE GUIDELINES

The 1983 IEEE Computer Society Model Program in Computer
Science and Engineering

This document is designed to be used by the computer science and

engineering departments of universities and colleges (graduate and

undergraduate) as valuable guidelines for the academic programs. It

provides schools with an overview, a standard of comparison, an

interpretation of Accreditdation Board for Engineering and Technology
(ABET), a set of standards, a definition of CSE aspects, and provides

9uidance to academic administrators.

CJ932 (ISBN 0-8186-0932-X): January 1984, 165 pp.,

list price $20.00/member price $10.00

Recommendations and Guidelines for Associated Degree
Programs in Computer Systems Technology
CJ926: July 1982, 18 pp.,

list price $6.00/member price $4.50

•iiu
~ DATABASE
&RI SYSTEMS

Tutorial: Data Base Management in the 80’s

by James A. Larson and Harvey A. Freeman

This tutorial addresses the kinds of data base management systems
(DBMS) that will be available through this decade. Interfaces available to

various classes of users are described, including self-contained query

languages and graphical displays. Techniques available to data base

administrators to design both logical and practical DBMS architectures

are reviewed, as are data base computers and other hardware

specifically designed to accelerate database management functions.

CJ369 (ISBN 0-8186-0369-0): September 1981, 472 pp.,

list price $27.00/member price $20.00

Database Engineering, Volume 2

Binding the four 1983 issues of the quarterly newsletter of the Technical

Committee on Database Engineering, this book featured articles

covering such topics as: database systems being marketed by major
vendors in Japan, commercial transaction-processing systems, various

approaches to automating office systems, and expert systems. Includes

37 papers.

CJ553 (ISBN 0-8186-0553-7): February 1984, 274 pp.,

list price $20.00/member price $15.00

INFORMATION
~TAPROCESSING~

Tutorial: Context-Directed Pattern Recognition and Machine

Intelligence Techniques for Information Processing

by Yoh-Han Pao and George W. Ernst

A high-technology information industry is evoMng in ~. powerful
information processing methodologies are required to support hardware

systems. This tutorial addresses the growing evidence that indicates that

the combined use of pattern recognition and artificial intelligence

methodologies tends to result in techniques that are far more powerful
than would have been available otherwise. Contains 41 reprints.
CJ423 (ISBN 0-8186-0423-9): February 1982, 580 pp.,
list price $36.00/member price $24.00

110

PUBLICATIONS ORDER FORM

IEEE Computer Society Order Department
P.O. Box 80452

Woridway Postal Center

Los Angeles, CA 90080 U.S.A.

Discounts Ord.rs end Shipping Policies

Member discounts apply on th~ FIRST COPY OF A MULTIPLE-

COPY ORDER (for the same title) ONLY) Addrtionel copies are

sold at list price.

Priority shipping in U.S. or Canada, ADD $5.00 PER BOOK

ORDERED. Airmail service to Mexico and Foreign countries.

ADD $15.00 PER BOOK ORDERED.

Requests for refunds/returns honored for 60 days from date of

shipment (90 days for overseas).

ALL PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE.

ALL BOOKS SUBJECT TO AVAILABILITY ON DATE OF

PAYMENT.

ALL FOREIGN/OVERSEAS ORDERS MUST BE PREPAID.

Minimum credit card charges (excluding postage and handling).
$15.00.

Service charge for checks returned or expired credit cards,

$10.00.

PAYMENTS MUST BE MADE IN U.S. FUNDS ONLY.

DRAWN ON A U.S. BANK. UNESCO coupons, International

money orders, travelers checks are accepted. PLEASE 00 NOT

SEND CASH.

PUBLICATIONS ORDER FORM

Return with remittance to:

IEEE Computer Society Order Department
P.O. Box 80452

Woridway Postal Center

Los Angeles, CA 90080 U.S.A.

Discounts, Orders, and Shipping Policies:

Member discounts apply on the FIRST COPY OF A MULTIPLE-

COPY ORDER (for the same title) ONLY! Additional copies are

sold at list price.

Priority shipping in U.S. or Canada, ADD $5.00 PER BOOK

ORDERED. Airmail service to Mexico and Foreign countries.

ADD $15.00 PER BOOK ORDERED.

Requests for refunds/returns honored for 60 days from date of

shipment (90 days for overseasl.

ALL PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE.

ALL BOOKS SUBJECT TO AVAILABILITY ON DATE OF

PAYMENT.

ALL FOREIGN/OVERSEAS ORDERS MUST BE PREPAID.

Minimum credit card charges (excluding postage and handling),
$15.00.

Service charge for checks returned or expired credit cards,

$10.00.

PAYMENTS MUST BE MADE IN U.S. FUNDS ONLY.
DRAWN ON A U.S. BANK. UNESCO coupons, International

money orders, travelers checks are accepted. PLEASE 00 NOT

SEND CASH.

PLEASE SHIP TO:

iii 111111111111111 un Iliuuuu
NAME

iii IllillililI liii I nut iii:
AFFILIATION Icompany or attention of)

luIu(TuiuEIIuIHhuuInuIulIuuli:
ADDRESS (Line .

HIIIH 11111111 lIlt inuuniiuiiu:
ADDRESS (Line - 21

1ltIIii(iIillitilllliIllltiIlL
CITY/STATE/ZIP CODE

((1111111 11111111 I 111(11111111
COUNTRY

-

F I I (111(1 (required for discount) (111111111
IEEE/COMPUTER SOCIETY MEMBER NUMBER PHONETELEX NUMBER

ItIuuIuuuIulIlIuIlIul
PURCHASE ORDER NUMBER AUTHORIZED SIGNATURE

OTY TITLE/DESCRIPTION AMOUNT

ORDER HANDLING CHARGES (based on the $ value

of your order—not including sales tax and postage)

For orders totaling: Add:

$ 1.00 to $ 10.00 S 3.00 handling charge
S 10.01 to $ 25.00 S 4.00 handling charge
$ 25.01 to $ 50.00 S 5.00 handling charge
S 50.01.10 $100.00 $ 7.00 handling charge
$100.01 to $200.00 $10.00 handling charge

over 5200.00 $15.00 handling charge

If your selection is no longer SUB TOTAL S

in print, will you accept CALIFORNIA RESIDENTS ADD 6% SALES TAX S

microfiche at the same price? HANDLING CHARGE (BASED ON SUBTOTAL! S

~ Yes D No OPTIONAL PRIORITY SHIPPING CHARGE $

TOTAL $

METHOD OF PAYMENT (CHECK ONEI

0 CHECK ENCL. U VISA 0 MASTERCARD 0 AMERICAN EXPRESS

1111111111111 I I I 11111
CHARGE CARD NUMBER EXPIRATION

DATE

SIGNATURE cJ

PLEASE SHIP TO:
—

11111111 III! 111111 I liii 1111111
NAME

11111 11111111111 III I 1111111111
AFFILIATION Icompany or attention oil

11111111 11111111111 I III 1111111
ADDRESS ILine 1)

11111 11111111111 III I 1111111111
ADDRESS (Line . 2)

IIIHII1IIIIIIIIIH I IlIlillIll
CITY/STATE/ZIP-CODE

IIIIIII1I1I1I11IIII I IIIIII1III~
COUNTRY

111111111 (required for discount)

IEEE/COMPUTER SOCIETY MEMBER NUMBER

1111111 I I I
PHONETELEX NUMBER

Iliii IIIIHIIIIHIIII
PURCHASE ORDER NUMBER AUTHORIZED SIGNATURE

DIV TITLE/DESCRIPTION AMOUNT

ORDER HANDLING CHARGES (based on the S value

of your order—not including sales tax and postage)

For orders totaling: Add:

S 1.00 to S 10.00 $ 3.00 handling charge
S 10.0110 $ 25.00 S 4.00 handling charge
S 25.01 to $ 50.00 $ 5.00 handling charge
S 50.01 to $100.00 $ 7.00 handling charge
$100.01 to 5200.00 $10.00 handling charge

over $200.00 $15.00 handling charge

____lr~~I1~’
l-~-J L.2~j LW

II your selection is no longer SUB TOTAL S

in print, Will you accept CALIFORNIA RESIDENTS ADD 5% SALES TAX S

microfiche at the same price? HANDLING CHARGE (BASED ON SUB-TOTALI $

U Yes U No OPTIONAL PRIORITY SHIPPING CHARGE S

TOTAL $

METHOD OF PAYMENT CHECK ONE(

U CHECK ENCL. 0 VISA 0 MASTERCARD 0 AMERICAN EXPRESS

I I I I I I I II III I I I II I II I I
CHARGE CARD NUMBER EXPIRATION

DATE

Ill
SIGNATURE

cJ

Committee

Honorary Chairman:

C. V. Ramamoorthy
University of California, Berkeley, CA 94720

General Chairman:

P. Bruce Berra

Syracuse University, Syracuse, NY 13210

(315) 423-4445

Program Chairman:

Gio Wiederhold

Dept. of Computer Science

Stanford University, Stanford, CA 94305

(415) 497-0685

Program Co-Chairpersons:
Iris Kameny, SEX, Santa Monica, CA 90406

Ming T. (Mike) Liu, Ohio State Univ., Columbus, OH 43210

Richard L. Shuey, Schenectady, NY 12309

Joseph Urban, Univ. S.W Louisiana, Lafayette, LA 70504

Benjamin W. Wah, Purdue Univ. W Lafayette, IN 47907

Tutorials:

Peter Ng, Univ. of Missouri, Columbia, MO

Treasurers:

Lily Chow, IEEE, Silver Spring, MD 20910

Aldo Castillo, TRW, Redondo Park, CA 90278

Local Arrangements:
Walter Bond, Cal State Univ. Dominquez Hills, CA 90747

(213) 516-3580/3398

Publicity:
Mas Tsuchiya, TRW Colorado Springs, CO 80916

(303) 570-8376

For further information write to:

Second Data Engineering Conference

do IEEE Computer Society
1109 Spring Street, Suite 300

Silver Spring, MD 20910

(301) 589-8142

TWX: 7108250437 IEEE COMPSO

SCOPE

The Second

International Conference on

Data Engineering
Bonaventure Hotel

Los Angeles, California, USA

February 4-6, 1986

Sponsored by the ~ IEEE Computer Society

Data Engineering is concerned with the role of data and

knowledge about data in the design, development, manage

ment, and utilization of information systems. As such, it en

compasses traditional aspects of databases, knowledge bases,

and data management in general. The purpose of this confer

ence is to continue to provide a forum for the sharing of

experience, practice, and theory of automated data and knowl

edge management from an engineering point-of-view. The

effectiveness and productivity of future information systems

will depend critically on improvements in their design, organi

zation, and management.

We are actively soliciting industrial contributions. We be

lieve that it is critically important to share practical experience.
We look forward to reports of experiments, evaluation, and

problems in achieving the objectives of information systems.

Papers which are identified as such will be processed, sched

uled, and published in a distinct track.

TOPICS OF INTEREST

We also are planning a special workshop track:

Performance models and measurement of relational database

systems

and solicit papers which report or evaluate such findings.

Awards, Student Papers, and Subsequent Publication:

An award will be given for the best paper at the conference.

Up to three awards of $500 each to help defray travel costs will

be given for outstanding papers authored by students.

Outstanding papers will be considered for publication in the IEEE

Computer Magazine, the Transactions on Computers, and the Trans

actions on Software Engineering. For more information, contact

the General Chairman.

Paper submission:

Four copies of papers should be mailed before July 1, 1985 to:

Second Data Engineering Conference

IEEE Computer Society
1109 Spring Street, Suite 300

Silver Spring, MD 20910

(301) 589-8142

Conference Timetable:

Manuscripts due: July 1, 1985

Acceptance letters sent: October 1, 1985

Camera-ready copy due: November 15, 1985

Tutorials: February 3, 1986

Conference: February 4-6, 1986

~IEEE COMPUTER SOCIETY THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.

IEEE

CALL FOR PAPERS

DATA

ENGINEERING

Committee Members

• Logical and physical data

base design
• Data management

methodologies
• Distribution of data and

information

I.L. Baer

Bharat Bhargava
Olin Bray
Richard Braegger
Alfonso cardenas

John carlis

Nick cercone

Peter P. chen

lohn Steve Davis

Christoph F. tick

Ramez ElMasri

Robert tpstein
Michael Evangelist
Domenico Ferrari

King-Sun Fu

Hector Garcia-Molina

Georges Gardarin

Sakti P. Ghosh

Yang-chang Hong
Lee Hollaar

Sushil jaiodia
Arthur Keller

charles Kellogg

Roger King

Virginia P. Kobler

Henryk Ian Komorowski

Robert R. Korthage

Tosiyasu L. Kunii

Winfried Lamersdorf

james A. Larson

Matt LaSaine

Victor Li

Witold Litwin

• Performance Evaluation

• Design of knowledge-
based systems

• Architectures for data- and

knowledge-based systems
• Data engineering tools

Jane W.S. Liu

Raymond A. Liuzzi

Yuen Wah Eva Ma

Mamoru Maekawa

Gordon Mccalla

Toshimi Minoura

N.M. Morfuni

laime Murow

Sham Navathe

G.M. Nijssen
Ole Oren

Peter Rathmann

Z. Meral Ozsoyoglu
c. Parent

Domenico Sacca

Giovanni Maria Sacco

Sharon Salveter

C. Schlageter
Edgar Sibley
Peter M. Stocker

Stanley Y.W. Su

Denji Tajima

Marjorie Templeton
A.M. Tjoa
Y. Udagawa
Susan 0. Urban

P. Valduriez

R.P. VanDeRiet

Ouri Wolfson

Harry K.T. Wong
Helen Wood

David Y.Y. Yun

See you in Los Angeles!=

cJ

IEEE COMPUTER SOCIETY

Administrative Office

P.O. Box 639

Silver Spring, Maryland
20901

Non- profit

Organization
U.S. Postage

Paid

Silver Spring, MD
Permil No. 1398

	40979_DataEngineering_June1985_Vol 8_No2.pdf

