
DECEMBER 1985 VOL. 8 NO. 4

a quarterly bulletin

of the IEEE computer society
technical cornmittee

Database

Engineering
Contents

Letter from the Editor 1

Object Species 2

D. Tsichr!tzis

Task Management for an Intelligent Interface 8

W. B. Croft

An Object-Based Approach to Modelling Office Work 14

C. C. Woo, F H. Lochovsky

Object Management Systems tor Design Environments 23

S. Zdonik

OPAL: An Object-Based System for Application Development 31

M. Ahisen, A. Bjornerstedt, C. Hulten

An Object-Oriented Protocol for Managing Data 41

S. P. Weiser

Hybrid: A Unified Object-Oriented System 49

0. M. Nierstrasz

Object-Oriented Database Development at Servio Logic 58

a Maier, A. Otis, A. Purdy

Some Aspects of Operations in an Object-Oriented Database 66

N. Derrett, W. Kent, P. Lyngbaek

A Message-Passing Paradigm for Object Management 75

G. Agha

Object Management and Sharing in Autonomous, Distributed Data/Knowledge Bases 83

0. McLeod, S. Widjojo

Calls for Papers 90

Special Issue on Object-Oriented Systems

Chairperson, Technical Committee

on Database Engineering

Prof. Gio Wiederhold

Medicine and Computer Science

Stanford University
Stanford, CA 94305

(41 5) 497-0685

ARPANET: Wiederhold@SRI-AI

Editor-in-Chief,
Database Engineering

Dr. David Reiner

Computer Corporation of America

Four Cambridge Center

Cambridge, MA 02142

(617) 492-8860

ARPANET: Reiner~CCA

UUCP: decvax!cca!reiner

Database Engineering Bulletin is a quarterly publication of

the IEEE Computer Society Technical Committee on Database

Engineering. Its scope of interest includes: data structures

and models, access strategies, access control techniques,
database architecture, database machines, intelligent front

ends, mass storage for very large databases, distributed

database systems and techniques, database software design
and implementation, database utilities, database security
and related areas.

Contribution to the Bulletin is hereby solicited. News items,

letters, technical papers, book reviews, meeting previews,

summaries, case studies, etc., should be sent to the Editor.

All letters to the Editor will be considered for publication
unless accompanied by a request to the contrary. Technical

papers are unrefereed.

Opinions expressed in contributions are those of the indi

vidual author rather than the official position of the TC on

Database Engineering, the IEEE Computer Society, or orga

nizations with which the author may be affiliated.

Associate Editors,
Database Engineering

Dr. Haran Boral

Microelectronics and Computer

Technology Corporation (MCC)
9430 Research Blvd.

Austin, TX 78759

(51 2) 834-3469

Prof. Fred Lochovsky
Department of Computer Science

University of Toronto

Toronto, Ontario

Canada M5S1A1

(41 6) 978-7441

Dr. C. Mohan

IBM Research Laboratory
K55-281

5600 Cottle Road

San Jose, CA 95193

(408) 256-6251

Prof. Yannis Vassiliou

Graduate School of

Business Administration

New York University
90 Trinity Place

New York, NY

(212) 598-7536

Memoership in the Database Engineering Technical Com

mittee is open to individuals who demonstrate willingness to

actively participate in the various activities of the TC. A

member of the IEEE Computer Society may join the IC as a

full member. A non-member of the Computer Society may

join as a participating member, with approval from at least

one officer of the TC. Both full members and participating
members of the TC are entitled to receive the quarterly
bulletin of the IC free of charge, until further notice.

Letter from the Editor

This issue of Database Engineering is on “Object-oriented Systems”. Object-oriented systems are

receiving wide attention these days in the areas of office systems, data base systems, programming

languages, and artificial intelligence. Each of these areas has something to contribute to the design and

implementation of an object-oriented system. The term “object”, for the purposes of this issue, is

interpreted fairly loosely. However, certain aspects of an object-oriented system appear to be common

across the papers presented in this issue. These are:

• abstraction of data;

• inheritance of properties;

• persistency of data;

• encapsulation of data and operations;

• automatic triggering of operations.

We start the issue by looking at some applications of object-oriented systems. The first paper Object
Species by Dennis Tsichritzis uses analogies from the animal world to illustrate what types of objects

might be useful to end users. The next two papers, Task Management for an Intelligent Interface by
Bruce Croft and An Object-Based Approach to Modelling Office Work by Carson Woo and Fred

Lochovsky, discuss two different approaches to using objects for supporting tasks in offices.

The next six papers describe systems for defining, storing, managing, and using objects. We will refer

to such systems as Object Management Systems (OMS). The paper by Stan Zdonik Object Management
Systems for Design Environments defines what an OMS is and describes Encore, an OMS being developed
at Brown University. The next paper by Matts Ahlsen et al. OPAL: An Object-Based System for

Application Development presents an OMS being developed at the University of Stockholm. An Object-
Oriented Protocol for Managing Data by Stephen Weiser describes the evolution of an OMS developed at

the University of Toronto. The paper by Oscar Nierstrasz Hybrid: A Unified Object-Oriented System
details the design of an OMS being developed at the University of Geneva. The design of this system is

also an evolution of the system described by Stephen Weiser. David Maier et al. in the paper Object-
Oriented Database Development at Servio Logic discuss the development of GemStone, a commercially
available OMS that marries the Smalltalk-80 programming language with an advanced data base

management system. In Some Aspects of Stored Operations in an Object-Oriented Database, Nigel
Derrett et al. describe the IRIS OMS being developed at Hewlett-Packard with particular emphasis on

data abstraction facilities and operations.

Finally, the last two papers discuss more specific aspects of an object-oriented environment. Gul

Agha in A Message-Passing Paradigm for Object Management describes the Actor model of computation

emphasizing the concurrency issues and how they are resolved in the model. Dennis McLeod and Surjatini

Widjojo in their paper Object Management and Sharing in Autonomous, Distributed Data/Knowledge
Bases conclude the issue by outlining issues that need to be addressed when dealing with distributed

aspects of object management and in particular communication and sharing of information among objects.

I would like to thank all the authors for accepting my invitation to contribute to this issue. I have

enjoyed working with them and learning about their research and development efforts in object-oriented

systems. I hope that the reader will find this issue both informative and stimulating.

Fred Lochovsky

December, 1985.

Toronto, Canada

Object Species

D. Tsichritzis

Université de Cenéve

ABSTRACT

This paper outlines a framework for end-user-oriented objects. We are interested in the specification
and implementation of complex objects which have a simple external behaviour. Users can visualize the

external behaviour through analogies. We plan to use this environment in the context of Office

Information Systems in general and sophisticated Message Systems in particular.

1. INTRODUCTION

This paper discusses a conceptual framework for end-user-oriented objects which can be useful within

an Office Information System. Our objects will be based on a particular object-oriented environment

NIER83, NIER85a, N1ER85b]. However, given suitable facilities, our conceptual model can be

implemented on top of different object-oriented systems. The objects that we will use in this paper are

related to Smalltalk objects GOLD83, GOLDS4}, Actors REWI77, THER83], monitors HOAR74] and

abstract data types GUTT77].

We will explain the concepts by using analogies from the animal world. The analogies serve two

purposes. First, they provide a user model for the behaviour of the system LEES5J. Second, they
illustrate the design choices and the implementation difficulties. We hope that the reader will not be

distracted by the analogies and lose sight of the technical nature of our discussion.

We start by defining the two most essential concepts in our object world light and matter. Light

corresponds to information and emanates from the users. Matter corresponds to data and is the encoding
of information within the system. The interplay of light and matter according to the rules of creation

produces life. The interplay of user information and system data according to the rules of the application

produces knowledge. Life is perceived in terms of living objects. Knowledge in our environment is

encapsulated as objects which will be called KNOwledge acquisition, dissemination and manipulation

objects, in short kno’s TSIC85].

Kno’s contain data (matter) and rules (soul). Kno’s interact with users directly, or through other

defined kno’s. Kno’s can be alive or dead. They are alive if they can participate in events orchestrated by

an object manager. When they are dead both their data and rules become part of the (local) data base

(mother earth). Kno’s can move around between environments. An environment is a collection of kno’s

under the jurisdiction of an object manager. The object manager controls events between kno’s and it

Author’s address: Université de Genève, Centre d’Informatique, 24, rue General Dufour, CH 1211 Genéve 4, Switzerland

(22/20.93.33).
UUCP: decvax]rncvax!cernvaxicui!dt.

—2—

oversees the birth and death of kno’s. Object managers play, in essence, the role of god.

To summarize, we can fantasize about and represent our world, the objeetworid, as a galaxy of stars.

Each star is under the jurisdiction of its object manager (the local god). Each star consists of matter, the

local data base, and kno’s, its living objects. Objects can move from star to star. They behave according
to their own rules and the local conditions. The general terms under which they live are enforced by the

object manager.

2. OBJECT SPECIFICATION

We are interested in defining objects which can be potentially useful to users. The objects are defined

in terms of an object specification language NIER85b]. We expect these objects to be defined by

application programmers using the object specification language, and then made available to users. We

do not require, therefore, that they be simple, or easy to define. We expect them, however, to be easy to

describe to users, possibly by using physical analogs. We also expect them to have wide use.

A user-oriented Kno consists of: a head; a body; and a behaviour. The head contains the kno’s

identifier and information on acquaintances and past history. Detailed contents of the head are not visible

outside a kno. The head’s contents are needed mainly by the object manager for housekeeping purposes.

The body of a kno consists of a set of named relations using a set of named attributes. The kno can

also have other local variables used in its rules. The body is the part of its data structures which are

visible outside the kno. We expect that the attributes of a kno’s body conform to a universally known set

of domains. In this way the basic properties of such attributes are known across kno’s. One way to

achieve this requirement is to assume that a kno is always an instance of a given kno class. In this case

the body types of allowable kno classes are known and understood by other kno’s and eventually users.

The behaviour of a kno consists of a set of rules. These rules govern how the kno reacts to stimulus

from the outside world. Some of the rules are visible from the outside world, in the sense described

above, while others are invisible, in the sense that they do not affect directly other Kno’s, users, or the

data base. These invisible (internal) rules, while not affecting the Kno’s external behaviour, are important
for its operation.

Rules have the form:

<cause> => <effect>

and are indivisible. They operate potentially in parallel, but in a serializable fashion. Rules are

performed when the <cause>-part is satisfied completely. They perform what is prescribed in the

<effect>-part.

The <cause>-part is the conjunction of a number of clauses. Each clause is an instance of the

following types:

1. <user clause>

This is like an oracle coming from outside the object world. It implies the desire of a user to perform
the rule represented by the behaviour, provided the other <cause>-clauses are also satisfied

concurrently.

2. <object clause>

A specified object, an acquaintance, has to perform a corresponding rule at the same time. The

corresponding rules are fired together in one event provided all their c1aji~sesare satisfied.

3. <data base clause>

A Boolean condition of data base selections is specified in terms of the data base available in the kno’s

environment (local data base). This feature enables the deposition of values in the data base by kno’s

to be used later to invoke rules of other kno’s.

—3—

4. <body clause>

A Boolean condition of selections and comparisons is specified between attributes of the kno’s body
and local data base attributes. This feature allows sequencing of rules by modifying internal variables

used in the <cause>-parts of other rules.

The <effect>-part of a rule is a series of actions which are performed in order. The rule is not

complete (and it should be rolled back) unless all the actions are performed. The actions can be of the

following types:

1. <body action>

Results in the evaluation of an expression, and the assignment of its result to one of the kno’s body
attributes. Using this feature, a leno can obtain information from the local data base.

2. <data base action>

An assignment of an expression of body attributes and local data base attributes to the local data

base. With this feature a kno can deposit information to the local data base.

3. <object action>

This action allows the triggering of a rule in an acquaintance, including the possibility of exporting
some body values to another kno. This action presupposes that the other kno is available and willing
to operate its corresponding rule. If not the action rule cannot be performed.

4. <user action>

This action comes as an alarm to the user. It also presupposes that the user is there to receive it, or

else the rule is not performed.

3. EXISTENTIAL RULES

There are a number of rules which are special. We will call them existential rules because they affect

crucially the existence of objects. Their <cause>-parts are the same as any other rule. We would

actually expect them to be triggered by simple body or local data base flags to make their firing
conditions very clear. Their actions are very important to other objects, other environments, and

themselves. We will enumerate the actions of special existential rules.

1. <move action>

The object performing this rule is moved to another environment as specified. The object is removed

from the environment of its current object manager. The move has ramifications in terms of disabling
rules waiting to fire and has to be handled carefully.

2. <die action>

The object commits suicide by firing this rule. In essence, it is like a move to nowhere. The body of

the object falls back as part of the local data base. We would expect a data base type corresponding
to each object class. The rules are also stored (but they need be stored only once for each object

class).

3. <export action>

The object exports by copying a rule or a part of its body to another object. We require that the

other object fires a corresponding rule with an import action. Exporting-importing are parts of an

event. The importing object stores the imports in a special place. Imported rules and bodies do not

augment the existing rules and bodies. Imported bodies and rules can only be read and passed over to

children objects. The importing object does r~ot change class.

—4—

4. <grow action>

A subset of an object’s rules and body are copied in a new, subservient object. The new object does

not operate independently but behaves like a limb of the original object. Limbs cannot grow other

limbs. Only head8 can grow limbs. In this way there is centralized control of all the limbs. Limbs

however, can move to other environments. Each time a limb moves the head is automatically
notified.

5. <spawn action>

A subset of an object’s rules and body are copied into a new and independent object. Imported bodies

and rules can also take part in the formation of the new object. This is really the way that an object
can endow its offspring with more rules than it has. An existing object can not become more

“intelligent” in terms of rules. It can, however, gather rules and pass them to its children. Before an

offspring is born we need to check for rule consistency (genetically doomed offspring cannot be born).

4. KNO SPECIES

Using the rules outlined in the previous sections, we can specify many different kinds of kno’s. Some

of them may even be odd or demonstrate unsocial behaviour. It is important to identify and obtain

classes of useful kno’s and eventually even categories of similar classes. We started with an analogy
between kno’s and living objects in the real world. To continue the analogy, we will establish

correspondences between categories of useful kno’s and categories of living objects. Most categories of

living objects are defined in terms of the way they breed, what they eat, and how they move. We will see

that kno’s fall into categories in a similar way.

A plant limo is a kno which has many restrictions on its use of existential rules.

1. A plant kno cannot move (i.e., its rules cannot have a <move action> to another environment). A

plant kno can have limbs, but its limbs remain local.

2. A plant kno interacts with users, the data base and other kinds of kno’s, but not with other plant
kno’s. In this way, the plant kno’s “grow” independently.

There are many examples of useful plant kno’s. Views in data bases are examples of plant kno’s.

They provide a way of selecting and transforming data for a particular use. A knowledge base is another

example of a plant kno. Rules of inference are defined based on the data of a data base. The rules give a

way of interpreting the data and making some deductions. Note that the information and constraints

inside different plant kno’s may be different. In that way, plant kno’s can provide different opinions based

on the same information. Consistency is not enforced across kno’s, but only within them.

Any kno which moves will be called an animal kno. There are obviously many different cases. We

will distinguish them by the way they breed, move, and eat.

An animal kno can be simple or may have a head and limbs. An animal kno may have limbs residing
in different environments. The coordination of such limbs may become a problem, especially if the

communication facilities are unreliable or intermittent.

A simple animal kno without limbs can perform move actions in which case it will hop to another

environment. An animal kno with limbs moves in a far more complex manner. Each limb can move

independently. We expect, however, the moves to be serialized and controlled by the head. An

intetesting case is an animal kno which keeps its head stationary but grows and moves its limbs. In this

way it can grow objects in different environments while the control remains centralized. An example of

such kno’s are intelligent messages as in I-mail EHOGG85I.

An animal kno can produce children by using a <spawn action> in its rules. If the child kno inherits

a subset of the rules of the parent, it is not that interesting. The interesting case arises with the export of

rules from one kno to another. The second kno can then produce a child which is augmented by the

—5—

imported rules. In this way, many animal kno’s can participate in the birth of a new animal kno. Each

one deposits rules in one “mother” kno which then spawns a child with a combination of all the rules

deposited.

Animal kno’s can “eat” by importing data and rules. They can import from the data base, from other

kno’s and from the users. If they import information from plant kno’s rather than the data base, they can

get them preselected and possibly transformed rather than as raw data from the data base. Animal kno’s

importing from plants are like herbivores. They “eat” plants. Animal kno’s can import from other

animal kno’s either by copying or by copying and then destroying. In the latter case, they operate as

predators. Predator kno’s can be very important for population control. For instance, if we want to

destroy a free roaming kno we can do so by releasing a predator kno to chase it. In this way we decide its

destruction dynamically~ Additionally, we may want to destroy a kno of which we have lost track. In

this case, only a predator kno can find it and destroy it SH00821.

There are many simple cases of extremely useful animal kno’s. A carrier kno is a simple kno which

moves around and can carry a message. It is destroyed when the message is delivered or deposited. A bee

kno is a simple kno which can hop around among plant kno’s transmitting information from one to

another. A shepherd kno is a kno which can trigger move actions in other kno’s and influence them to

assemble in the same environment. One of the most interesting kno’s is an actor kno whose rules allow it

to interpret imported rules. In this way it can act out any rules EIIEWI77]. A universal actor kno is a kno

which can act as any other kno if it is provided with the appropriate specification.

We expect kno’s to be prepackaged, that is prespecified and ready to use. A user can then specify
some parameters on its behaviour and give it life through an object manager. Hopefully, the analogy with

the real world can help the user visualize immediately the behaviour of the kno he is using.

5. IMPLEMENTATION

We are embarking on an implementation of the framework discussed in this paper. The

implementation consists of four distinct aspects closely coordinated. First, we are implementing a new

object-oriented system as outlined in a companion paper in this issue NJERS5c]. Second, we are working
on the specification of many “useful” kno’s using our object-oriented specification language. Third, we are

trying to put together an appropriate user interface for visualization and external manipulation of such

kno’s. Finally, we are implementing a sophisticated message system where both messages and user roles

are objects with kno behaviour.

The purpose of the project is to explore interesting ways for object birth, growth, death, inheritance,
and cooperation. We are interested in exploring the possibility of specifying very complex kno’s while

retaining some control on kno population behaviour.

8. EVOLUTION

To complete our analogy, we will end with a parallel between world and kno evolution. As mentioned

in the first section, at the beginning there were users and light (information). Then there was matter

(data) which was the equivalent of light, but in more concrete form. Programming languages, including

object-oriented systems, give us the tools to construct any living cell (program). The problem is always to

combine the primitive cells to achieve an overall purpose.

In traditional programming environments, the cells are put together in a very careful way to construct

a rather unwieldy animal which resembles a dinosaur. We call it an application system. As dinosaurs,

application systems are all powerful and they do well a particular job. However, they are difficult to deal

with and the users are like pygmies running around them with bows and arrows. Every now and then the

pygmies get sick and tired and they kill the dinosaur. However, another one sooner or later takes its

place.

—6—

This form of life was particularly successful until now, but we see emerging a new environment for the

following reasons. First, we cannot easily distribute dinosaurs in little pieces. Second, users are getting
sophisticated. They shoot down dinosaurs at a very fast pace. Third, the environment of a system’s

operation changes very rapidly and dinosaurs adapt with great difficulty.

What we need is animals which are smaller, adapt quickly, move freely, and are dispensable. In terms

of our conceptual framework, we need kno’s which move around, can import data and rules from their

environment, and can multiply rapidly. In such an environment, new problems become important. The

problem is not how to design a dinosaur from non-existing or shaky specifications. Rather, the emphasis
is on how to control the object population, how to make objects adapt in foreign environments, how to

make them cooperate with each other, and how to relate them to users. There is no such thing as the

perfect kno, or perfect animal for that matter. The perfection lies in the harmony between kno’s or

animals. This harmony is obtained through a reasonable cooperation between imperfect objects, and

imperfect users, in a fast changing environment.

REFERENCES

GOLD84I Goldberg, A., Smalltalk 80: The Interactive Programming Environment, Addison-Wesley,
Reading, MA, 1984.

GOLD83} Goldberg, A. and Robson, D., Smalltalk 80: The Language and Its Implementation,
Addison-Wesley, Reading, MA, 1983.

GUTT77] Guttag, J., “Abstract data types and the development of data structures”, Comm. ACM

20(6), 1977, pp. 396-404.

HIEWI77] Hewitt, C., “Viewing control structures as patterns of passing messages”, Artificial
Intelligence 8(3), 1977, pp. 323-364.

HOAR74] Hoare, C.A.R., “Monitors: an operating system structuring concept”, Comm. ACM

17(10), 1974, pp. 549-557.

jHOGG85) Hogg, J., “Intelligent message systems”, in Office Automation: Concepts and Tools,
Tsichritzis, D.C., ed., Springer-Verlag, Berlin, 1985, pp. 113-134.

LEE85I Lee, A. and Lochovsky, F.H., “User interface design”, in Office Automation: Concepts and

Tools, Tsichritzis, D.C., ed., Springer-Verlag, Berlin, 1985, pp. 3-20.

(NIER85aI Nierstrasz, O.M., “An object-oriented system”, in Office Automation: Concepts and Tools,
Tsichritzis, D.C., ed., Springer-Verlag, Berlin, 1985, pp. 167-190.

NIER85c} Nierstrasz, O.M., “Hybrid: a unified object-oriented system,” IEEE Database Engineering
8(4), 1985.

~N1ER83] Nierstrasz, O.M., Mooney, J., and Twaites, K.J., “Using objects to implement office

procedures”, Proc. Canadian Information Processing Society Conf., 1983, pp. 65-73.

NIER85b] Nierstrasz, O.M. and Tsichritzis, D.C., “An object-oriented environment for 015

applications”, Proc. 11th mt. Conf. on Very Large Data Bases, 1985, pp. 335-345.

jSHOC82] Shoch, J. and Hupp, J., “The worm programs—early experience with a distributed

computation”, Comm. ACM 25(3), 1982, pp. 172-180.

THER83I Therault, D.C., Issues in the Design and Implementation of Act2, M.Sc. Thesis, Tech.

Rep. 728, The Artificial Intelligence Lab., MIT, Cambridge, MA, 1983.

T51C851 Tsichritzis, D.C., “Objectworld”, in Office Automation: Concepts and Tools, Tsichritzis,

D.C., ed., Springer-Verlag, Berlin, 1985, pp. 379-398.

—7—

Task Management for an Intelligent Interface

W. Bruce Croft

University of Massachusetts

ABSTRACT

An intelligent interface assists users in the execution of their tasks. To do this, the system must be

able to represent tasks and the objects that are manipulated. The intelligent interface described in this

paper uses an object management system to manage object and task instantiations and the relationships
between them. The object management system is viewed as an implementation of a data model that

emphasizes the modeling of operations.

1. INTRODUCTION

In interactive computing environments, the users play a dominant role in determining the operation of

the system by selecting the services or tools that are required for their tasks. A task is simply a sequence

of activities, some of which are performed on the computer, which taken together accomplish users’ goals.
Examples of this type of environment are office information systems, software development environments

and CAD/CAM systems. In such systems, the interaction with the user is typically viewed as an

unpredictable series of tool invocations, rather than as the execution of tasks which are at a higher level

of abstraction. The lack of knowledge of user tasks severely limits the role of the system during the

interaction. To address this limitation, we define an intelligent interface as a subsystem that provides a

means of describing and supporting the typical interactions users have with the computing environment.

The primary function of the intelligent interface is to provide a wide range of assistance to users in the

execution of their tasks.

The characterization of a user’s interaction with a system presents a number of problems that cannot

be addressed with conventional programming languages. The following features of task description are

particularly important:

1. Tasks involve user actions as well as executable code. Often they are nondeterministic.

2. Tasks must be able to be specified by users with widely varying computer experience.

3. Task descriptions are often incomplete. The description of a task must be able to change as the user’s

understanding of the task changes.

4. Task descriptions represent only typical actions involved in carrying out a task. Exceptions to these

typical patterns are very common.

This research was supported in part by the Rome Air Development Center and by Digital Equipment Corporation.

Author’s address: Computer and Information Science Department, University of Massachusetts, Amherst, MA 01003 (413/545-0463).
CSNET: croft@uma.ss.

—8—

The POISE system CROF84] was designed to address the problems of task definition and support. In

this system, tasks are specified as underconstrained plans COHE82, Ch. 15]. A task is described in terms

of subtasks, associated objects, local variables, the preconditions for the task and the effect of carrying out

the task. It is underconstrained in the sense that the exact ordering of subtasks is often not specified or

only partially specified. The primitive tasks in a task hierarchy are either the operations provided by the

tools or application programs. No further breakdown of these operations is necessary to execute them. Not

all of the lowest-level tasks in a task hierarchy need be primitive tasks; they may currently only be

specified at an abstract level or they may correspond to actions that occur outside the system (e.g.,
making a telephone call).

As the user specifies more details about a task, or as the system karns more about a task, the task

descriptions are further constrained by the addition of rules that affect the ordering of subtasks or the

relationships of objects or variables used by subtasks. New subtasks representing more detailed actions

may be added. Examples of these added constraints are

• a rule specifying when step A must come before step B

• a rule specifying that the object used in step B is the same as the object in step D.

In this way, the system builds up detailed plans for tasks that are initially specified at a higher level of

abstraction by the users.

The system uses the task descriptions to predict user actions (as well as automating aspects of the

task). When an exception to the predicted action occurs, the system is alerted to the fact that its task

description is inadequate and it can then take appropriate action. The emphasis on acquiring knowledge
through exceptions is also found in Borgida’s work BORG85]. Many types of exceptions can occur

including, for example, different orderings of subtasks, missing subtasks, subtasks activated with

preconditions not satisfied, and object constraint violations.

TASK SUPPORT OBJECT

INTERFACE •Planner MANAGEMENT SYSTEM

USERS <--> HANDLER •Recognizer <--> •Object descriptions
•Exception- •Task descriptions
handler sinstantiations

•Specifier

\ /
TOOLS

•Application

Programs

Fig. 1. The POISE system.

The basic architecture of the system incorporating task definition and support is shown in Figure 1.

The interface handler is responsible for presenting to the users an integrated view of the tasks, tools, and

objects that are available. Users can invoke tasks or manipulate objects directly with the tools. The task

support moduk “understands” the user actions and choices, records them, and takes appropriate actions.

This module has four major components. The planner executes plans (task descriptions). This includes

predicting user actions and propagating constraints from one task step to another. The recognizer is used

to recognize plans that the user is following without having been specifically invoked. This includes the

recognition of exceptions. Recognition of plans in ambiguous situations requires sophisticated control and

backtracking mechanisms CARV84]. The exception handler is used to update task descriptions in response

to specific user actions. The specifier provides the means for users to specify tasks. This specification is

done through a graphical interface and requires the user to describe tasks in terms of subtasks,

relationships between subtasks, and objects that are manipulated.

The object management system provides facilities for describing objects and tasks and for managing

—9—

their instantiations. Tools can be viewed as a special class of application program that manipulates the

objects stored in the object management system. For example, in an office system, the tools would include

an editor, a forms package, a spreadsheet, and a mail facility. In this paper, we shall describe how the

object management system can be considered to be an implementation of an extended data model.

TASK: Purchasing

REQUISITION

Fill-out-requisition

/ \
Receive-purchase-request > > Complete-purchase

I \ / I
I Fill-out-order-form I
I I I
I I I

REQUEST ORDER FORM PAYMENT FORM

Fig. 2. An example task.

A simple example of the operation of this system in the office environment is given by the purchasing
task shown in Figure 2. This shows the task at the highest level of abstraction. The description of the

purchasing task, its subtasks and the associated objects (such as the order form) reside in the object

management system. The task description contains a constraint that a request for a purchase must occur

before an order form or a requisition can be filled out. It also specifies that either one of those steps must

occur before completing the purchase. The other form of constraint relates the contents of the request,

the order form and the payment form. At this level of abstraction, the task description will look very

similar to an ICN specification ~ELLI821. Some of the steps in the task description will be specified at a

greater level of detail. For example, the “Fill-out-order-form” subtask may contain a detailed description
of how this step is accomplished. Other steps, such as “Fill-out-requisition”, may be only partially

specified. It is the responsibility of the task support module to monitor the user’s interactions with the

system, recognize when a requisition is being used and to gather information that will further specify this

step. Once the purchasing task has been specified by the user, it is presented by the interface handler as

one of the “tools” available to the user. When a particular purchase is required, the user would invoke

this task and the system would create instantiations of the purchasing task and related objects such as the

order form.

2. DATA MODELS AND EXTENSIONS

Data models provide a means of defining the structure of objects in a particular environment,

constraints on those objects, and operations that may be performed on them ETSIC82]. Much of the

research in this area has concentrated on the static aspect of object description, rather than the dynamic

aspect. To support the intelligent interface, however, we are forced to look at the task descriptions and

ask how they are related to application programs, transactions and the data manipulation languages

provided in conventional database systems. We define an extended data model as consisting of a means

to describe objects, a means of describing operations and a means of describing the connections between

objects and operations. Constraints are specified as part of both the object and operation definitions.

Object definitions are accomplished using a data model such as that described in Gibbs GIBB84],
which allows non-first normal form objects, generalization hierarchies and constraints defined using

domain specifications and trigger procedures. For example, in an office application, an order form that

— 10 —

contains a variable number of ordered items may be defined as a specialization of a general form object.
The order form may inherit a constraint from the general form object that the form number should be

between 1 and 99999. A specific constraint, that the total field should be the sum of the costs of the items,
could also be defined.

The operations that can be defined include tasks, application programs, tools and transactions. The

primitive operations, which are provided in the data manipulation language in database systems, are

predefined and apply to all objects. These operations include creating, updating, deleting and retrieving
objects. A containment hierarchy of operations, as shown in Figure 3, results from the observation that

operations higher in the hierarchy are described in terms of operations that are lower in the hierarchy.

Tasks

Application Programs
Tools

Transactions

Primitive Operations

Fig. 3. Operation hierarchy.

A distinction can be drawn between atomic and non-atomic operations. The primitive operations and

transactions are atomic in the sense that they are indivisible from the user’s point of view. On the other

hand, the steps involved in tasks and application programs can be visible to the users and may require
user input. Task concurrency and constraint checking thus cannot be handled in the same manner as

transactions. Delaying constraint checking until the end of a task, for example, is not possible because the

intermediate states are visible to the users. The fact that tasks can be suspended indefinitely also requires
that locking does not occur as it would for a transaction. These points lead to the conclusion that

transactions can only be defined for the very low level operations from the user’s point of view. The

maintenance and checking of task instantiations in order to provide a consistent view of the system’s

operation to the user is entirely the responsibility of the task support module. For example, the task

support module can assist the user in “undoing” the steps of a task and can check constraints whenever

new information becomes available.

The main advantages of introducing task, application program, and tool operations into the data

model are that the connections between user-level operations and objects can be made explicit and a

common framework is provided for describing and managing the static and dynamic aspects of a system.
Generalization hierarchies of operations, multiple instantiations of operations, and inheritance of

operations through specialization of object types can all be described. For example, it is possible to

describe a “Fill-out-form” task that is connected with a general form object. We could then describe a

“Fill-out-order-form” task as a specialization of the more general task that includes more steps and

constraints. An order form, which is a specialization of the general form object, would have a connection

to the “Fill-out-order-form” task but would also inherit operations connected to the the general form, such

as “Get-form-number”.
~

In contrast to the Smalltalk view GOLD83], where objects are defined through the operations that

are attached to the object, our view is that the operations and the structure of the objects are both of

interest and have separate descriptions, but are tightly connected (a kind of “marriage of equals”). An

alternative description of the extended data model, which is more object-oriented in nature, would view

tasks and objects as two subclasses of a more general object class. Operations that are attached directly to

— 11 —

objects are atomic whereas task “objects” describe user-level operations that typically are non-atomic and

manipulate a number of other objects. The extended data model is closely related to the model described

by Stemple and Sheard STEM82, SHEA85I.

The description of the operations vary according to the operation type. Task descriptions were

mentioned in the last section. The programming languages and data manipulation languages used to

describe application programs and transactions in conventional database systems are the major part of the

description of these operations, but other information is needed. From the point of view of the intelligent
interface, the most important information about these operations is the name, the functionality, and the

input/output characteristics. That is, given a task step, the POISE system has to know what lower-level

operations can carry out that step, how these operations can be invoked, and what information is

required.

As mentioned previously, the description of operations involves a definition of constraints. These

constraints, either explicitly defined in task descriptions, or implicit in the application program code,
define allowable transitions of the object instantiations and the operation instantiations. It has been

recognized that static and transition constraints are not independent and that redundant specifications are

not uncommon SHEA85]. POISE is designed to use either form of a constraint during planning and

recognition. For example, a task description constraint may specify that if an order amount is less than

$500, the step “Fill-out-order-form” is appropriate, otherwise “Fill-out-requisition” should be used. In the

description of objects, the same constraint could be specified by allowing only values less than $500 in the

amount field of the order form. By allowing users to specify this constraint in either way, POISE simplifies
the task description process.

3. OTHER MANAGEMENT ISSUES

A number of other problems arise in the management of the object and operation instantiations for

the intelligent interface. One of these is that in this type of system it is essential to know which people or

more accurately, “agents”, can carry out tasks. The description of agents and the “roles” that they take

has been the subject of previous research ELLI82]. In the system described in this paper, agents would

be represented as a class of objects with connections to both tasks and other objects.

During the process of planning and recognition, the intelligent interface must keep track of

assumptions that are made in order to backtrack should a mistake be made or if the users change their

actions. Part of this record keeping involves version histories of the objects fZDONS4]. However, in the

intelligent interface, histories of operation instantiations are also required. This situation is further

complicated by the fact that there may be multiple interpretations of a single user action, only one of

which may turn out to be valid. The process of planning also requires the propagation of constraints into

“predicted” versions of the objects. The interpretations in this system are similar to contexts used in some

systems developed for artificial intelligence research BARRS2, p. 35].

By representing operations and objects in a single framework, the management problem is

considerably simplified. A task instantiation can have a set of object instantiations associated with it.

These object instantiations can be either “base” objects or “constraint” objects. Base objects record the

state of the objects as seen by the users. Constraint objects are used as placeholders for propagating
constraints and making predictions. The definition of a constraint object is a “relaxed” version of the base

object definition. For example, a particular field in a base object may be specified as containing an

integer in the range 1 to 100. The constraint object version of the field has to be able to hold values such

as “20<x<60” to allow for symbolic propagation of constraints.

The object management system is partially implemented using a frame-based language EWRIGS3]. At

this level, both the operations and objects are represented as frames. Facilities such as generalization
hierarchies and triggers are typically supported in these languages. The slots of the frames can hold any

type of information, including code, and can therefore be used for the complex datatypes and constraints

used in the extended data model. The planner and recognizer have previously been implemented as

independent modules and are currently being reimplemented to take advantage of the object management

— 12 —

system.

ACKNOWLEDGMENTS

The author benefited from many discussions with David Stemple. POISE was designed jointly with Victor

Lesser.

REFERENCES

BARRS2J Barr, A. and Feigenbaum, E.A, eds., The Handbook of Artificial Intelligence, Vol. ~,
William Kaufmann, Los Altos, CA, 1982.

80RG85] Borgida, A. and Williamson, K., “Accommodating exceptions in databases and refining
the schema by learning from them”, Proc. 11th mt. Conj on Very Large Data Bases,
1985, pp. 72-81.

CARV84] Carver, N.F., Lesser, V.R., and McCue, D.L., “Focusing in plan recognition”, Proc.

.AAAI Conj, 1984, pp. 42-48.

COHE82I Cohen, P. and Feigenbaum, E.A., eds., The Handbook of Artificial Intelligence, Vol. 8,
William Kaufmann, Los Altos, CA, 1982.

CROF84j Croft, W.B. and Lefkowitz, L.S., “Task support in an office system”, ACM Trans. on

Office Information Systems 2(3), 1984, pp. 197-212.

ELLI82J Ellis, C.A. and Bernal, M., “Officetalk-D: an experimental office information system”,
Proc. ACM SIGOA Conf. on Office Information Systems, 1982, pp. 131-140.

~GIBB841 Gibbs, S., An Object-Oriented Office Data Model, Ph.D. Thesis, Dept. of Comp. Sc.,
Univ. of Toronto, Toronto, Canada, 1984.

GOLD83] Goldberg, A. and Robson, D., Smalltalk-80: The Language and Its Implementation,
Addison-Wesley, Reading, MA, 1983.

SHEA85I Sheard, T., Proving the Consistency of Database Transactions, Ph.D. Thesis, Comp. and

Inf. Sc. Dept., Univ. of Massachusetts, Amherst, MA, 1985.

STEM82J Stemple, D., Generalized Type Specifications for Database Systems, Tech. Rep. 82-15,

Comp. and Inf. Sc. Dept., Univ. of Massachusetts, Amherst, MA, 1982.

TSIC82I Tsichritzis, D.C. and Lochovsky, F.H., Data Models, Prentice-Hall, Englewood Cliffs, NJ,
1982.

WRIG83} Wright, M. and Fox, M.S., SRL 1.5 User Manual. Intelligent Systems Lab., Robotics

Inst., Carnegie-Mellon Univ., Pittsburgh, PA, 1983.

ZDON84I Zdonick, S., “Object management system concepts”, Proc. ACM SIGOA Conf. on Office

Information Systems, 1984, pp. 13-19.

—13—

An Object-Based Approach to Modelling Office Work

a C. Woo

F. H. Lochovslcy

University of Toronto

ABSTRACT

Building office systems to support office work is often very difficult and time consuming. Some

researchers argue that this is due to the lack of appropriate programming tools, and they believe that

“objects” are a natural primitive for programming many office applications. However, object systems

developed so far still lack the appropriate tools to program non-procedural office work. We believe that by

putting the right facilities into objects we can have very powerful, yet uniform, tools for describing
different types of office work. In this paper, we describe such a model and use an example to show how it

can be used to support office work.

1. INTRODUCTION

Office activities involve both data and procedures. It has long been recognized that information (i.e.,
data) is a corporate resource. The need for companies to handle greater amounts of information has led to

the use of technologies such as data base management systems to manage their data. However, office

procedures are also a corporate resource (i.e., how you do something is as important as the information

you need to do it). Currently, this knowledge of office procedures resides entirely with the office worker

and is best known to the person who performs the tasks. As the size and scope of an organization increase,
there is a need to manage this knowledge of office procedures in the way we handle information using the

computer.

In constructing a model to represent office procedures, we must be able to take into account the

following characteristics of office work:

Office activities are parallel, distributed and interactive. Offices and their activities are

distributed both in space and time. They involve the continuous coordination of parallel activities in

many locations jHAMtVISO, 11EW184, Z15M781. Rarely are problems solved, or goals realized, except by the

interaction of several persons in a back-and-forth exchange of work, ideas and commitment. Therefore,
communication is vital in office work.

Domain knowledge is open-ended. For both new office tasks as well as existing ones, situations will

arise for which there is no a priori domain knowledge 1F1KE80, LOCH83J. Under this situation, the office

worker, who is in charge of a particular task, will have to handle it using some common sense knowledge

This research was supported in part by the Natural Sciences and Engineering Research Council of Canada under grant A3356.

Authors’ address: Department of Computer Science, University of Toronto, Toronto, Ontario, Canada, M5S 1A4 (416/978-6086).
CSNET: carson.torontoOcsnet-relay.

- 14 -

about the world.

There is a wide range of types of office work. Many researchers GORR71, LOCHS3, PANKS4I
have recognized that office work falls on a continuous spectrum, with one end of the spectrum

representing structured office work and the other end of the spectrum representing unstructured office

work. Structured (also known as type I) office work is that of a routine nature for which a prescribed step

by step solution is known. Unstructured (also known as type 11) office work is novel and nonrepetitive,
and must be solved with creativity, initiative, and originality. For this type of office work, we cannot

build systems to replace existing office workers. Rather, we should build systems to support them in

defining their goals and strategies FIKE80, BARB83, LOCHS3}.

In finding a representation for supporting office work, we have concluded that by putting the right
facilities into “objects” we can model the office characteristics mentioned above very nicely. Another

major advantage of using “objects” is that other researchers have found them useful to model office data,
office procedures, and office communication (e.g., models in GJBB84, HOGG84, TWAJ84, TSICS5}). In

our approach, we merely extend the object world to handle more complicated office work and thus provide
a uniform representation to model the office. In this paper, we will describe what we mean by objects in

office work and discuss how we can use them to support office work.

2. OVERVIEW OF THE MODEL

We use objects in our model to describe some meaningful entities in the office that can be used to

perform office work. Some examples of objects are office workers, office procedures, and file cabinets.

Objects have their own data, rules, and behaviour. We will define an object type in office work to consist

of TWAI84]:

<object type> : <super class> { The format for a rule is as follows:

acquaintances
variable declarations <rule name> (parameters) {
ALPHA rule acquaintances

rule1 variable declarations

preconditions
actions

} (a value returned to the caller)
rule~
OMEGA rule

}

“Acquaintances” is a list of other object types that can communicate with this object type. Variables are

used to provide storage and data structures for the object type. The instances of an object type have the

same set of acquaintances and rules, but different values for variables. There are two special rules, called

ALPHA and OMEGA, which are used to create and delete an instance of the object type respectively.

There are five different classes of object types in our model: office role objects, data objects, task

objects, agent objects and task monitor objects. Each one of them plays a distinct role in our model. The

relationships among them are shown in Figure 1.

Office role object

An office role is the set of actions and responsibiliZ~e~ associated with a particular office function

WOOs’l]: An office worker performs office work in our model by playing the correct office role. An office

worker can be associated with more than one office role and vice versa. “Chief Programmer”, “Director of

CSRI”, and “Secretary” are all examples of office roles. The notion of an office worker playing an office

role provides logical independence in specifying the capabilities of office workers with respect to system

resources and facilities.

Since office workers play an important role in our office work model, they are represented as office role

— 15 —

Offic~
Role

Object
‘l’

—> means supervises the execution of the objects pointed to.

p means allowed to access the information in the objects pointed to.

— + means allowed to pass control to the object pointed to.

Fig. 1. Objects used in our model.

objects. There is a special rule in an office role object called the jo-rule which allows office workers to

communicate with other object types in the system {TWAJ84J.

Data objects

Data objects store inactive information. They serve the same purpose as file cabinets in a traditional

office. However, they are more “intelligent” than file cabinets. The rules in data object types are used to

trigger events when certain conditions become true. For example, on the tenth day of each month, if the

manager of a sales division has not placed his last month’s sales figures in the “sales” data object, a

reminder can be sent to him by a rule in the “sales” data object.

Task objects

We use task objects to model office procedures. This is done by modelling a task done by an office

worker as a task object. If this task is not routine enough to be expressed procedurally, a task monitor

object will be attached to it so that problem solving can be done with the help of consultation rules and

the user. Otherwise, the task object should be able to perform the task by itself. Communication among

task objects is done using a message passing mechanism. Enough information is given to each task object

such that it is possible for them to coordinate themselves to accomplish a particular task.

In some applications, the sequence of executing the task objects is known or partially known. This is

handled in our model by ALPHA and OMEGA rules. As an example, let us consider the task in Figure 2

which requires five task objects. The arrows in the figure are used to indicate the execution sequence for

~1

Task Monitor

Object (at a

lower level)

— 16 —

the task objects. In this example, an instance of o6j~ is created by one of the following: (1) a user, (2) a

task object instance in another workstation, or (3) an instance of a data object type which has rules to

trigger events. When obj~ finishes its job, its OMEGA rule will wake up task objects 0619 and o6j~ at the

same time and pass them relevant data. 0654 can be awakened by both 0659 and o6j~. However, obj will

go back to sleep if one of 0659 or o65~ has not finished its job yet. This is handled by the ALPHA rules in

o654. 0615 is the last task object to be awakened in this example before the task is done.

In more complicated situations, the OMEGA rule can provide alternatives if the task objects it wakes

up fail to accomplish their jobs. However, situations might arise for which all of the given alternatives fail

to accomplish their jobs. Furthermore, it is also possible that the OMEGA rule contains no information

about what task objects to awaken. Under these situations, the task monitor object will take over and

control the execution of the task objects. Again, the task monitor object handles the execution with the

help of the user and the consultation rules.

Task monitor object

The organization of an office is normally partitioned into logical workstations. These logical
workstations form the structure (either a hierarchy or network) of the company. In our model, a task

monitor object corresponds to a logical workstation in an office. Objects such as task objects and data

objects are therefore associated with a task monitor object. The dotted arrow in Figure 1 shows how task

monitor objects are connected together.

The function of a task monitor object is to control the execution of task objects and agent objects,
and the use of consultation rules (see Figure 3) within its jurisdiction. It contains an agenda which is used

to record the execution history of tasks. This agenda is useful for debugging conflicting rules specified in

the task objects and/or consultation rules.

There are three different communication methods used in our model. If a task object knows exactly
which other task object it wants to talk to (i.e., routine and procedural office work), it will use the

message passing mechanism to communicate with that task object. However, in some situations, a task

object might want to talk to another, unknown task object (i.e., non-routine or special case office work).
In this case, if the two task objects reside within the same task monitor object, the workspace serves as

the message dissemination medium. Otherwise, an agent object is used to set up the communication (see
below).

The workspace is thus the temporary storage of the task monitor object. It differs from variables in an

object type in two ways. First, variables can be added or deleted from the workspace easily during
execution. Second, a variable in the workspace can contain multiple values, unless it is explicitly declared

to be unique.

Consultation rules are a special set of rules in the task monitor object. They are only used to assist

the task monitor object. They do not perform any office work such as computation or communicating

with other objects. Most of these rules are one of the following types:

1. Control rules (e.g., selection criteria when more than one task object is awakened and they cannot be

executed concurrently).

Fig. 2. A task that requires 5 task objects.

— 17 —

while goal not achieved do

if no task objects trigger then

if no consultation rules can give advice then

if no agent objects trigger then

notify user

user performs some action

else

communicate with foreign objects

update workspace
end if

else

update workspace
end if

else

if more than one task objects trigger and

some consultation rules can give advice then

put some task objects to sleep
end if

perform task

update workspace
end if

end while

Fig. 3. The control flow of task monitor object.

2. Default rules which include equivalent information, simple implicit knowledge, common sense

knowledge and so on. Some examples are:

• (miscellaneous expenses) = (other expenses)
• taken CSC364 ==> knows about “NP-Complete”
• December 25th is a holiday.

3. Reduction rules (e.g., to compute Y, we must first compute X1, ..., Xj.

Agent objects

An agent object is a representative sent by a task monitor object to communicate with an object (call
it X) located in another task monitor object. Hence the name “agent”. Tf Xis a data object, then an agent

object can also be viewed as a tool to perform distributed queries. If X is a task object, then an agent

object is used to join up necessary information (i.e., information required to accomplish a task) in different

workspaces of two or more task monitor objects. Finally, if X is a user, then an agent object is similar to

Imail HOGG84}.

Due to the uncertainty of what X is and/or where it is located, possible locations of the information

can be given to the agent object before it starts its journey. The agent object will visit locations with a

higher certainty factor first. When visiting a particular location, if the information is not found, the agent

object can modify its possible-locations list based on the information available at the visiting location. If

the agent object successfully brings back the information requested, it will be placed in the workspace to

be shared by all task objects associated with the sender task monitor object. On the other hand, if the

agent object fails to bring back the required information after some pre-set time limit or after visiting all

possible locations, it will return to the sender task monitor object and put a failure message in the

workspace. An agent object will die by “committing suicide” after it has completed its function.

— 18 —

3. AN EXAMPLE

We use the following example to demonstrate how our model can be used to model office work:

The XXX Computer Company has several research laboratories located in different
geographical locations. Each lab has its own Human Resource Department that is

responsible for screening, evaluating, and hiring personnel at the lab. A research assistant

currently working in lab A wishes to transfer to lab B.

Figure 4 shows the task monitor objects (TMO) used to handle this particular application. The dotted

arrows are used to show the passing of control to the object pointed to.

Apply_Job_TMO InitiaLMatch_TMO
~

Detail_Match_1O1_TMO

/_ —

Task Objects: / Task Objects: —
Task Objects:

fill_applic ationjorm / job_i 01 ~ objective_requirements
send_acknowledgement / job_10~ education_requirements
initial_match — —

—
—

Consultation Rules: Consultation Rules:

Consultation_Rules: rulelOl rulel 01-1

rulsOOl

Agent Objects:

get_grad_courses

confirm_ability

Fig. 4. Task monitor objects used in the example.

The functions of task objects such as fill_applicationjorm and send_acknowledgement in

Apply_Job_TMO are self-evident.

Task objects in Initial_Match_TMO are unfilled positions in the lab. The responsibility of

lnitial_Match_TMO is to try to assign an unfilled position to the applicant without worrying about the

detailed job requirements. For example, to qualify for job_lOl, the applicant must hold a master degree
in Electrical Engineering or Computer Science, and be interested in working in lab B as a system

programmer. Consultation rules are very useful in this monitor. For example, if the applicant qualifies for

more than one unfilled position, a consultation rule can inform the task monitor object to pick the oldest

unfilled position.

The task monitor object Detail_Match_1O1_TMO is associated with the manager who has

requested such an employee to work f6r him. t should have all the detailed requirements for the unfilled

position. Task objects in this monitor are used to compute results that would lead to a decision (i.e.,
interview or reject the applicant). The consultation rules, on the other hand, provide information that

would help the computations. These facilities will be illustrated in the rest of this section using the

example in Figure 5.

When the task object job_iOl invokes the task monitor object Detail_Match_1O1_TMO, all

— 19 —

position = “system programmer”
objectiveOK

location = “toronto”

dere —“ t

educationOK~
g e — mas er

department = “CSC or EE”

matched

gradCourse = “operating systems”

courseOK
~

gradCourse = “computer software”

gradGourse = “compilers”

experience = “design software”

experienceOK ability = “communicate”

ability = “Research”

Fig. 5. Requirements of an unfilled position decomposed into a hierarchy of sub-requirements.

information about the applicant will be put into the workspace of Detail_Mateh_1O1_TMO (see Figure

6(a)). For the purpose of illustration, we have simplified the application form into four form fields:

position, location, degree, and department. The goal of this task monitor object is to find a value for the

variable “matched”. The “?“ sign in the figure means the variable does not have a value yet. Since the

information in the workspace is not sufficient to compute “matched”, no task objects will trigger.

However, it is clear from Figure 5 that if we know the value for the variables “objectiveOK”,

“educationOK”, “courseOK”, and “experienceOK”, we can compute “matched”. Hence, a consultation

rule (say ruleiOl-1) puts this information into the workspace (see Figure 6(b)). Now, since the value for

the variables “position” and “location” are available in the workspace, the task object

objective_requirements triggers and fills in the value for “objectiveOK”. Note that a task object can only
fill in a value for an existing variable, it cannot create a new variable. Using similar information (see
Figure 5), we can also compute the value for “educationOK”. The result is shown in Figure 6(c).

Due to the open-ended nature of job requirements, the application form cannot capture all the

required information to compute “matched”. For example, the application form provides no information

about graduate courses taken by the applicant. Yet the manager has imposed some requirements related

to graduate courses taken. As a result, neither task objects nor consultation rules can carry out the

computation in Figure 6(d). In this case, the task monitor object permits the triggered agent object

get_grad_courses to perform its job. After get_grad_courses returns, information about graduate courses is

put into the workspace as shown in Figure 6(e). Note that “computer software” is not the same as

“software engineering”. Therefore, none of the task objects, agent objects, nor consultation rules can

continue the computation at this stage, and the user is informed. One possible action the user can take is

to create a new consultation rule: “computer software is the same as software engineering”, and use it to

get to the result in Figure 6(f). Now there is enough information to provide a value for “courseOK”.

Similarly, to compute “experienceOK”, the agent object confirm_ability can be sent to people who have

supervised this applicant before to gather his work abilities. Finally, knowing the value for the variables

“objectiveOK”, “educationOK”, “courseOK”, and “experienceOK”, we can compute “matched” and

return the result to the caller task object (i.e., job_i 01).

— 20 —

(goal) matched =?

position = “system programmer”
location = “toronto”

degree = “master”

department = “CSC or EE”

Figure 6(a).

(goal) matched =?

position = “system programmer”
location = “toronto”

degree = “master”

department = “CSC or EE”

(new) objectiveOK = true

(new) educationOK = true

courseOK =?

experienceOK =

Figure 6(c).

(goal) matched =?

position = “system programmer”
location = “toronto”

degree = “master”

department = “CSC or EE”

objectiveOK = true

educationOK = true

courseOK =?

experienceOK = ?

(new) gradCourse = “operating systems”

(new) gradCourse = “software engineering”
(new) gradCourse = “compilers”

Figure 6(e).

(goal) matched = ?

position = “system programmer”
location = “toronto”

degree = “master”

department = “CSC or EE”

(new) objectiveOK =

(new) educationOK =?

(new) courseOK ==?

(new) experienceOK =?

Figure 6(b).

(goal) matched =?

position = “system programmer”
location “toronto”

degree = “master”

department = “CSC or EE”

objectiveOK = true

educationOK = true

courseOK = ?

experienceOK = ?

(new) gradCourse ?

Figure 6(d).

(goal) matched =?

position = “system programmer”
location = “toronto”

degree = “master”

department “CSC or EE”

objectiveOK = true

educationOK = true

courseOK ==?

experienceOK =

gradCourse = “operating systems”
gradCourse = “software engineering”
gradCourse = “compilers”

(new) gradCourse “computer software”

Figure 6(f).

Fig. 6. Various stages of the workspace in Detail_Match_1O1_TMO.

4. CONCLUSIONS

We have briefly outlined a model that can be used to support office work. We believe that the notion

of “objects” is very useful in describing office work. We have demonstrated this through an office

example. Future research includes looking into the expressive power of the consultation rules.

Implementation is another area to be investigated. Finally, we would like to explore the usefulness of this

model in real offices.

— 21 —

REFERENCES

BARB83I Barber, G.R., “Supporting organizational problem solving with a workstation”, ACM
Trans. on Office Information System 1(1), 1983, pp. 45-67.

FJXE8OJ Fikes, R.E. and Henderson, D.A., “On supporting the use of procedures in office work”,
Proc. 1.st Annual AAAI Conf., 1980, pp. 202-207.

fGIBB84J Gibbs, S.J., An Object-Oriented Office Data Model, Ph.D. Thesis, Dept. of Comp. Sc.,
Univ. of Toronto, Toronto, Canada, 1984.

GORR71] Gorry, G.A. and Scott Morton, M.S., “A framework for management information

systems”, Sloan Management Review 13(1), 1971, pp. 55-70.

HAMM8O] Hammer, M. and Sirbu, M., “What is office automation?”, Proc. 1980 Office Automation

Conf., 1980, pp. 37-49.

HEWI84] Hewitt, C. and de Jong, P., “Open systems”, In On Conceptual Modelling: Perspectives
from Artificial Intelligence, Databases and Programming Languages, Brodie, M.L.,
Mylopoulos, J., and Schmidt, J.W., eds., Springer-Verlag, New York, 1984, pp. 147-164.

HOGG84] Hogg, J. and Gamvroulas, S., “An active mail system”, Proc. ACM SIGMOD Conf., 1984,
pp. 215-222.

LOCH83] Lochovsky, F.H., “A knowledge-based approach to supporting office work”, IEEE

Database Engineering 19(3), 1983, pp. 43-51.

~PANK84J Panko, R.R., “38 offices: analyzing needs in individual offices”, ACM Trans. on Office
Information Systems 2(3), 1984, pp. 226-234.

TSIC85] Tsichritzis, D.C., “Objectworld”, in Office Automation: Concepts and Tools, Tsichritzis,
D.C., ed., Springer-Verlag, Berlin, 1985, pp. 379-398.

TWAI84] Twaites, K.J., An Object-based Programming Environment for Office Information
Systems, M.Sc. Thesis, Dept. of Comp. Sc., Univ. of Toronto, 1984.

WO0841 Woo, C.C. and Lochovsky, F.H., “Authorizations in a computer-based office information

system”, Proc. IEEE 1st Office Automation Conf., 1984, pp. 81-90.

ZISM78] Zisman, M.D., “Use of production systems to model asynchronous, concurrent processes”,
in Pattern Directed Inference Systems, Waterman, D. and Hayes-Roth, F., eds., Academic

Press, New York, 1978, pp. 53-68.

— 22 —

Object Management Systems for Design Environments

Stanley Zdonik

Brown University

ABSTRACT

Object management systems can be distinguished from their more conventional counterparts (i.e.,
DBMS’s) by their ability to deal with arbitrary object types in an environment that is constantly

changing. They are particularly suited for environments such as office information systems, electrical

CAD, and programming environments. All of these environments deal with the process of design.

This paper discusses the design of a particular object management system named ENCORE. It is

based on the object-oriented paradigm and incorporates several other special-purpose facilities that are

essential to the support of a design environment.

We describe a particular experimental approach to the construction of programming environments

that is currently under investigation. We also mention the design of an interface for this style of database

that has been developed at Brown.

1. INTRODUCTION

In the 1970’s the field of database management developed out of a need to integrate and carefully

manage the data that supported all of the applications within an organization. Database management

systems (DBMS) were a technical response to this need. In the 1980’s, workstations and workstation

applications are becoming more wide-spread. There is a similar need to integrate these applications, but

the database management tools from the 1970’s are not particularly well-suited to a large class of

workstation applications.

We envision the spread of a new generation of DBMS that addresses these needs. In order to

distinguish these new tools from their predecessors, we will use the term object management system

(OMS). It should be noted that an object management system is a natural evolution of conventional

database technology. It starts from the same basic philosophical underpinnings and moves in the

direction of a broader application base.

One of the principal distinguishing capabilities of an OMS is its ability to deal with objects of

arbitrary type. A conventional DBMS is in general limited to objects which are a parameterizationof the

type record. The term type has been used in many different ways in the computer science literature. We

take it to mean a template that defines the operations that may be performed on the instances of that

type and the properties that instances of that type may possess. This is similar to the definition used by

Author’s address: Department of Computer Science, Brown University, Providence, RI 02912 (401/863-2364).
CSNET: sbz.brownOcsnet-relay.

— 23 —

CLU 1L1SK77] and Smailtalk 00LD83].

We define an object management system as a shared storage facility for objects of arbitrary types. It

must, therefore, support the definition of types within the framework bf the OMS. These type definitions

must also be sharable.
-

Another cornerstone of an OMS is its ability to deal with change. We expect an OMS to be able to

support applications in which evolution is the norm. An OMS should be able to deal with change at all

levels of description. It should be able to handle the evolution of individual objects as well as the

evolution of the types that define these objects.

The OMS should be powerful enough to capture knowledge about these dynamic environments and

respond to change in intelligent ways. We expect that the system can help applications developers deal

with the complexities that are introduced by continual change. For example, it can keep track of what

changes have occurred, manage the execution of concurrent, unreliable transactions, automatically
produce any side-effects that are required by a particular change, and maintain the integrity of the object
store as a whole.

2. THE DATA MODEL

ENCORE (Extensible and Natural Common Object Resource) is an OMS that is being developed at

Brown University. Currently, a basic prototype has been implemented to which we are adding additional

functionality and tuning for increased performance. The ENCORE data model is described in this section.

It is a high-level semantic model that is in the same spirit as several previous systems CHEN76,
HANIVIS1, MYLOSO, SMIT77 ,TSIC82, ZDON84].

In ENCORE, a type has a set of explicitly-defined operations and properties, may inherit additional

operations and properties from its supertypes, and has an associated class to which objects of the type

automatically belong. A type T is introduced in the data definition language by a specification of the

following form:

Define Type T

Supertypes: <list of supertypes>
Associated Class: <class-name>

Operations:
<list of operations>

Properties:
<list of properties>

The inheritance mechanism is similar to that of Smalltalk, but ENCORE allows multiple inheritance.

The idea of a class that contains all declared instances of the type provides a feature not available for

Smalltalk objects that is useful in performing retrieval on objects of any type. ENCORE endows objects
with many of the attributes possessed by objects in Smalltalk-like languages and provides objects with

additional explicitly-specified behaviors like version history as well as implicitly-specified behaviors like

persistence and class membership. It is these additional attributes, orthogonally possessed by all objects,
that differentiate object-oriented database languages from object-oriented programming languages.

The most general object type in ENCORE is type Entity. All other types are either directly or

indirectly subtypes of type Entity. All instances of type Entity are by definition persistent. That is to say,

any entity is automatically retained in a permanent store that is separate from the address space of the

process that created it. It is placed in the proper classes which provide access paths to this object for

future references.

The following definition of the type File has a supertype “Entity”, an associated class “Files”, three

operations, and one property.

— 24 —

Define Type File

Supertypes: Entity
Associated Class: Files

Operations:
FiLECreate-file ~ returns (F : File)
FILEOpen (F File) returns (F : File)
FILECIose (F : File) returns (F : File)

Properties:
Filename: String

The list of operations contains for each operation a specification of the types of its arguments and its

return value. The list of properties follows, and for each property, its name followed by a colon and a

description of the set of legal values for that property is given. The Filename property can have any string
as a legal value.

A type T determines the operations that can be performed on instances of T. Each instance has an

internal state that is represented by an object of some other type. This representation object is not visible

outside of the type manager code (i.e., the code that supports the operations of the type). For example, an

object of type set might be represented by an array. At any point in time, a set S will be represented by
an array containing all members of S. It is not appropriate to include this information in the schema,
since the schema specifies oniy the external behavior of the type and the representation should not be

externally visible.

Our database system supports a separate notion of class. A class is a set of objects, as opposed to a

type which is a description of the semantics of objects of that type. Every type T has an associated class
C that holds all current instances of T (i.e., C = {x type-of (x) = T}). For example, the header lines in
the above file example indicate that the type File has an associated class named Files. Each time a new

file object is created, it is automatically added to this class. Classes are related to each other with the

subset-of property. It is possible to define additional classes to be subsets of existing classes by means of

set selection operations (i.e., based on a predicate).

Also, a type T specifies the properties that instances of T can have. A property is an object that
relates two database objects. For example, a source program S is related to its object code 0 by means of

a property that might be called compiled-version-of. A property can be thought of as a function that maps
the object that possesses the property to the object or set of objects that are the values of the property.
We, therefore, have compiled-version-of (S) = 0.

Types are objects, and as such, they can have the behavior of objects in general. This includes the

ability to have properties. A type object has several properties including properties-of and operations-of.
Properties-of has as a value the set of all the property types that can be associated with an object of the

given type. Similarly, the property operations-of of a type T expresses the set of operations that can

legally be applied to instances of T.

For example, in the definition of type File given above, the type File object has two properties
properties-of and operations-of that it gets from being an instance of type Type. The properties-of
property has as a value the set {Filename} and the operations-of property has as a value the set {create,
open, close}. The schema definition that was given above is simply syntactic sugar for the proper

operations to set up this structure.

Another important example of a property of a type is the is-a property. If we say that a type S is

related to a type T by means of the is-a property (i.e., is-a (5) = T), then all ~instances of type S are also
instances of type T. All of the semantics (i.e., all properties and operations) defined for type T must also

pertain to type S. An instance of type S will have all operations and properties defined on T as well as

any additional ones defined on S. We call this behavior inheritance. A file directory (similar to that used

in UNIX) might be defined as follows:

— 25 —

Define Type Directory

Supertypes: File

Associated Class: Directories

Operations:
DIRECTORYenter-file (D : Directory, F : File)

returns (D : Directory)

Here, the Directory type inherits all the properties and operations from the type File since File is defined

to be a supertype. A type can have multiple supertypes and can, thereby, inherit properties and

operations from several types. We call this multiple inheritance.

We treat properties as objects. It is, therefore, possible to have properties of properties. This is very

useful for precise modeling of real world situations. Consider the property compiles-into that relates a

source code module to its object code counterpart. If we wanted to express the fact that the compilation
produced one warning message, we might very naturally wish to attach this fact to the property itself. It’s

not really a property of either the source module or the object module, but, rather, of the act of

compiling. Perhaps, with a different compiler this message would not have occurred. We can define this as

follows:

Define Type Source-Code-Module

Properties:
Compiles-into: Object-Code-Module

Define Type Compiles-into

Supertypes: Property
Associated Class: Compiles-into-properties

Properties

Warning-Messages: Set of String

Operations

Set-Property-Value (C : Compiles-into, 0 : Object-Code-Module)
Get-Property-Value (C : Compiles-into)

returns 0 : Object-Code-Module)

We also view operations as objects. This leads to several interesting effects. First, much as with

properties, it becomes possible to assert things about operations. Second, in an object-oriented approach
to system building, a new application is constructed by building new higher level types out of previously
defined types. All code is associated with the operations of some type. Since the operations are also

objects, all new applications are automatically subsumed by the database. The code (i.e., operation

objects) persists by the general object storage mechanisms. Third, it is possible to use some of the more

advanced features of the system like version control to manage the operations of an evolving application.

The structure of the basic data model is represented in Figure 1 using its own notion of type to

describe itself. The basic types in the system are related to each other by means of the is-a property type.

All boxes in this picture are instances of the type type (including the type type itself). The root of the

system is the type entity of which all objects in the system are instances. To say that an object is an

entity, is to say that it is a part of our database.

Notice that all entities are broken down into four basic subtypes, operation which describes the active

elements in the system, property which describes a type of entity that is used to relate objects, type which

describes those things that can be dynamically instantiated, and aggregate which describes those things

that group entities together. Notice that the type class is a subtype of aggregate since classes are

homogeneous collections of entities.

— 26 —

Entity

¶

Type Property Operation

-

4
Class

Fig. 1. The basic type hierarchy.

3. VERSION CONTROL

Any design environment is characterized by the evolution of objects over time. A programming
environment is no exception. Programs change throughout all phases of the software life-cycle. A version

control system is very important for a software library. We have a version control mechanism built into

our database management system at the level of the model. Applications builders can describe to the

system the behavior that they desire for new versions of an object.

A new object type T can be specified to be a subtype of the type History-Bearing-Entity. T then

inherits the semantics of our version mechanism. History-Bearing-Entity defines the operations and

properties needed for version control. All history-bearing-objects participate in version sets. That is, when
a change is made to an object, it causes a new version to be added as the latest version of its version set.

These changes are installed when the transaction that created them commits. Old versions cannot be

changed; they can only have new versions inserted into their associated version set. Version sets are

partially ordered. If one adds a new version v2 to an object x that already has a new version vi, then vi

and v2 are said to be alternatives. Inserting an alternative into a version set has the effect of starting a

new branch in the partial order.

As we stated earlier in this section, a type may be defined to be a subtype of several other types
including the type History-Bearing-Entity. This new type inherits the properties previous-version,
succeeding-version, and member-of-version-set. The first two of these properties express the partial order

of version sequence, and the third relates each of the individual versions to its containing version set.

Thus version control need not be an inherent built-in property of all entities but merely a set of

programmer-defined attributes transmitted to subtypes through the inheritance mechanism. Moreover

several different forms of version control can easily coexist in the database, although we provide one such

mechanism in the base-level system.

4. TRANSACTIONS

-

There are several things that distinguish transactions in this context from that of the more traditional

notion of a transaction. Normally, a transaction is an atomic, recoverable piece of work. All integrity
constraints are true before and after a transaction executes.

We are looking into ways to relax this requirement on integrity. A more appropriate notion for a

design environment is one in which there is a set of constraints that are guaranteed to be true before a

transaction executes (a pre-condition) and a set of constraints that must be true after a transaction

Aggregate I

— 27 —

executes (a post-condition). The pre-condition need not be the same as the post-condition. For example,
when one writes a paper, he often writes down the section headings first to act like an outline. These

sections are then slowly filled in as the paper begins to materialize. The constraint which says that all

sections must have bodies should not be checked all of the time. Instead, it should only be checked, when

the paper is sent out for review. In this case, we would like the additional constraint to join the post-
condition of the transaction that sets the status attribute to reviewable. We call this behavior partial
consistency.

In order to deal with partial consistency, a powerful language is needed to express integrity
constraints and when they should be enforced. A type definition carries with it a set of constraints that

pertain to objects of that type. The applicability of each constraint is governed by a predicate that is

based on the current state of the object and its environment. We are designing a language for describing
these relationships.

5. PROGRAMMING ENVIRONMENTS

We are interested in applying our database ideas in real design environments. A prime example is

that of a programming environment. Here, our view is that the database contains all objects that are used

during the software life-cycle. It provides the glue that ties together all of the disparate tools and objects
that are created or used during system development.

We are involved in two projects to test these ideas. First, we are using ENCORE as a platform for

the construction of the GARDEN system, a descendent of the visual programming environment, PECAN

REISS4]. GARDEN provides users with multiple views of a program. All program pieces such as

variables, expressions, and statements are objects that will be managed by the ENCORE OMS.

The second project involves the design of a general approach toward software environment

construction ZDON85]. This approach is based on a databased programming language, a type of language
that integrates object-oriented database facilities with an object-oriented programming language.

In integrating databases and programming languages into a single programming system we may start

from either a programming language or a database perspective.

1. Programming language perspective: Programming languages subsume databases.

Augment conventional programming languages with persistent data structures and database operators

{ATKIS4I. Programs may access and manipulate databases as external resources, but are not

themselves a part of the database.

2. Database perspective: Databases subsume programming languages.
The database contains all objects including application programs, system programs, libraries, and

environments. It provides general-purpose operations for specifying, creating, manipulating,

transforming, and retrieving objects. -

These two perspectives may be combined by including database facilities in the programming

language subsumed by the database. In this case program modules in the database may be manipulated
as database entities and may in turn create and manipulate programmer-defined database objects. If the

database language supported by the programming language is the same as that in which programs are

subsumed, then the programming language also subsumes the database and the two approaches are

simultaneously realized. We shall refer to a system that realizes this, symbiotic relation between databases

and programming languages as a “databased” programming language. A databased programming

language is essentially a language with a database facility sufficiently powerful to describe its own

environment.

Databased programming languages are similar in concept to programming languages that can simply

specify their own interpreters, such as LISP. However, databased languages are more ambitious in aiming

to describe not just their interpreters but the complete multi-language program development environment

in which they are embedded. They need not have only primitives for interpreting program structures,

— 28 —

such as list processing primitives, but also primitives for describing, storing, and retrieving persistent
database entities.

6. USER INTERFACES

As a part of this overall effort, we are also investigating the use of graphical interfaces to a database

of the kind that we have been describing. We feel that generalized facilities for visually accessing an

OMS will enhance the use of these systems. This also adds another dimension to the overall “visual

programming” effort at Brown. Several other projects (CATT8O, FOGG84, HERO8O, KINGS4, MCDO75I
have looked at the visual dimension to database access, but not in the context of an object-based model

or in a system that integrates several database functions.

We have built a prototype system that provides visual access to a database that is in the same spirit
as ENCORE. It does not as yet encompass all of the mechanism that we provide, but it is an important
first step in this direction.

The system is called ISIS {GOLD85} and runs on an Apollo Domain 300 workstation. It allows users

to define and extend schemas, to browse the database at both the type and the instance level, and to

formulate queries using only a high-resolution graphics display and a mouse.

We are currently extending this facility to include a graphical way of dealing with version histories.

This system has a notion of an interactive transaction, the boundaries of which the user can define. This

kind of transaction would be useful during an editing session with the database. The user periodically
presses the End Transaction key which has the effect of committing all changes that were made since the

last End Transaction. This amounts to adding visible new versions to all of the respective version sets.

It will then be possible to view objects (as well as types) in the database and see graphical
representations of the fact that versions of these objects exist. One can point to a version V in the history,
in which case V is extracted from the sequence and the state of all objects in the database is rolled back

to a state that is consistent with V.

7. CONCLUSIONS

We have briefly described our approach to building software engineering environments. It is based on

an object-oriented database system that has been tightly coupled with a programming language. The

database provides the common linguistic base that ties together all of the many objects that occur as a

part of a large programming effort. In order to apply database techniques to this class of problems, we will

need to make some progress in developing the next generation of data manager. We call systems that take

an object-oriented approach to this problem object management systems.

We see many challenges for future research within this area. For example, we are exploring issues

related to dynamic references and naming schemes for long-lived objects, specification methods for

describing object lifetimes, the packaging of system facilities (e.g., version control, persistence) such that

they can be easily inherited, a query language for an object-oriented database, and better ways to manage

change to an evolving type-hierarchy.

REFERENCES

ATKIS4I Atkinson, M.P., Bailey, P., Cockshott, W.P., Chisholm, K.J., and Morrison, R., “Progress
with persistent programming”, in Databases—Role and Structure, Stoker, P.M., Gray,

P.M.D., and Atkinson, M.P., eds., Cambridge Univ. Press, Cambridge, UK, 1984.

— 29 —

~CATT80] Cattéll, R.G.G., “An entity-based database user interface”, Proc. ACM SIGMOD Conf.,
1980, pp. 144-150.

CHEN76} Chen, P.P.S., “The entity-relationship model: towards a unified view of data”, ACM

Trans. on Database Systems 1(1), 1976, pp. 9-36.

FOGG84} Fogg, D., “Lessons from ‘living in a database’ graphical query interface”, Proc. ACM

SIGMOD Con!., 1984, pp. 100-106.

1G0LD85J Goldman, K., Goldman, S., Kanellakis, P., and Zdonik, S., “ISIS: interface for a semantic

information system”, Proc. ACM SIGMOD Conf, 1985, pp. 328-342.

GOLD83} Goldberg, A. and Robson, D, SmaIltalk-80: The Language and Its Implementation,

Addison-Wesley, Reading, MA, 1983.

IIERO8O} Herot, C.F., “Spatial management of data”, ACM Trans. on Database Systems 5(4), 1980,

pp. 493-514.

HAMM81J Hammer, M. and McLeod, D., “Database description with SDM: a semantic database

model”, ACM Trans. on Database Systems 8(3), 1981, pp. 351-387.

KING84] King, R., “Sembase: a semantic DBMS”, Proc. IEEE .1st mt. Workshop on Expert
Database Systems, 1984.

LISK77] Liskov, B., Snyder, A., Atkinson, R., and Schaffert, C., “Abstraction mechanisms in

CLU”, Comm. ACM 20(8), 1977, pp. 564-576.

MYLO8OI Mylopoulos, J., Bernstein, P.A., and Wong, H.K.T., “A language facility for designing
database-intensive applications”, ACM Trans. on Database Systems 5(2), 1980, pp. 185-

207.

MCDO75] McDonald, N. and Stonebraker, M.R., “CUPID—the friendly query language”, Proc.

ACM Pacific Conf., 1975, pp. 127-131.

REIS84] Reiss, S., Graphical Program Development with PECAN Program Development System,
Tech. Rep. CS-84-04, Dept. of Comp. Sc., Brown Univ., Providence, RI, 1984.

SMIT77] Smith, J.M. and Smith, D.C.P., “Database abstractions: aggregation”, Comm. ACM

20(6), 1977, pp. 405-413..

~TSIC82] Tsichritzis, D.C. and Lochovsky, F.H., Data Models, Prentice-Hall, Englewood Cliffs, NJ,
1982.

ZDON84I Zdonik, S.B., “Object mangement system concepts”, Proc. ACM SIGOA Conf. on Office

Information Systems, 1984, pp. 13-19.

ZDON85I Zdonik, S.B. and Wegner, P., A Database Approach to Languages, Libraries, and

Environments, Tech. Rep. CS-85-10, Dept. of Comp. Sc., Brown Univ., Providence, RI,
1985.

— 30 —

OPAL: An Object-Based System for Application Development

Matts Ahisen

Anders Bjornerstedt
Christer Hulten

University of Stockholm

ABSTRACT

Design and implementation of information systems in which requirements on flexibility, system

evolution and high-level task support are emphasized, require suitable design and run-time support.

Office systems are one class of systems where this need is apparent today. This paper gives a brief

overview of OPAL, a combined run time and application development system, currently being designed at

the University of Stockholm. The paper describes the environment which OPAL is intended for, the

overall architecture and the basic system concepts including the Object-based model. This is followed by

a short tliscussion of how this model can be used for application development. The paper ends with a

summary and status of the OPAL project.

1. INTRODUCTION

1.1. Objectives for OPAL

OPAL is a combined run time and application development system’. Its purpose is to provide

support for information management needs in organizations. It is aimed at supporting administrative

tasks, which may be either the unstructured or loosely structured kind, common in creative work, or the

more structured and routine kind, commonly associated with clerical work. On a very high level, the

functions of OPAL are to provide communication, storage, retrieval and generation of information for

office workers. These functions are provided in a way which gives:

• Flexibility in the evolution of office tasks.

• Adaptation to local requirements.

• A uniform user interface.

• Autonomy to different units of the organization.

This work is supported by the National Swedish Board for Technical Development (STU).
Authors’ address: SYSLAB, Department of Information Processing & Computer Science, University of Stockholm, Stockholm,

Sweden.

USENET: decvax!mcvax!enea!suadb!ch.

1. The OPAL system described here should not be confused with another, very similar system, which unfortunately has been given

the same name COPE84J.

— 31 —

• Security of information.

• Reliability and robustness.

OPAL is an Object-based system, meaning that it builds on some central concepts common to the

class of Object-based/oriented systems jAHLS84, GOLD83, ZDON84, NIER85, BYRD82, BIRT73,

COPES4I. The development aspect includes a programming environment with language concepts for

object management. Tbe programming language is used both for defining different kinds of object types,
and as an interactive command language 5N0D83]. This allows for programming both by end-users for

personal customization, and designers for more “hard wired” or basic tasks. The “objects” in OPAL may

represent programs (sequences of instructions), data or both. The target applications generated with

OPAL are entirely built of object structures stored in a database. A user interacts with OPAL through a

customizable interface. The user interface will not be further elaborated in this paper.

1.2. The Intended Environment

We see OPAL as a general development tool well suited for, but not specifically geared at “Office

Systems”. An OPAL application is typically interactive, multi-user, and decentralized. Applications
basically consist of a set of activities (operations) to be performed, together with some constraints on the

order in which they are performed, (c.f. Information Control Nets ELLI8OI). There is also a need for

information sharing and gradual development of applications.

The tasks to be supported range from well-structured applications which may be fully automated, to

more loosely structured applications which are difficult, impossible, or otherwise unsuitable to (fully)
automate. The latter can be characterized by a high degree of interaction, meaning that the initiative or

control over decision points in the application lies with the user. In many situations the system can know

what can be done, even if it has not been designed to decide what should be done. OPAL provides for the

automation of routine tasks, and as far as possible, assists the user in handling the less structured tasks

BROV85, CROF84]. The mechanisms for handling exceptions have been designed to cater to the

unforeseen events typical of office routines.

For the more loosely structured tasks the information needs of users cannot be predicted. For this

reason facilities for “ad hoc” operations (querying, browsing) are provided.

Tasks will need to be activated both on the basis of explicit demands from objects, and on the basis

of expected conditions on objects. For the later kind of invocation OPAL has a trigger mechanism

ZLOOS2, NIER85].

Another characteristic of this environment is that it often requires objects with a complex (data)
structure, built out of sophisticated data types. The Object model of OPAL includes a variety of data

types and facilities for composing “nested” data structures.

Most applications will typically involve several users operating on a common set of data. An activity,
or transaction, could extend over a longer period of time than what is usually the case in a database

system. Each step in the transaction may involve different users, and users may be assigned to steps

dynamically. Due to the possibly long duration of transactions, the interactive nature of the processing
done, and the number of users involved, restarts from scratch after failures may be unacceptable. This

problem is also found in engineering design applications K1M84}. OPAL transaction management works

in terms of nested transactions MOSSS1, REED78]. This makes it possible to backout a subtransaction

without aborting the whole transaction. It also has advantages in making applications more modular in

the aspect of concurrency. A new application can incorporate an old one as a subtransaction without the

need of redesigning the old transaction.

OPAL as a system will usually be decentralized in the sense of control and distributed in the physical

sense. By decentralized we mean that the execution of an application (task) may be controlled by several,

more or less autonomous, authorities. To handle concurrency and reliability and in general to keep

applications consistent over both hardware and administrative (control) boundaries, we have adopted the

— 32 —

architecture of atomic object8 0K183, WEIHS5a, WEIH85b]. All objects in OPAL are instances of one or

more types. These types define operations (or functions) which may be invoked in the context of the

object. The only way of manipulating an object (i.e., its data structure) is through the use of one of the

available operations defined for an object. Thus the objects in OPAL are a form of abstract data types

LISK77]. Furthermore, the invocation of an operation may correspond to a subtransaction. A

transaction is an operation which is serializable, with respect to concurrent operations, and recoverable. It

either completes (once), or fails without altering the state of the objects involved.

In many applications access to past states of the system is useful. For this and other reasons OPAL

uses version management to keep track of the evolution of objects. The possibility to access previous
versions of objects adds a “temporal dimension” to the system which may be used by both the system and

applications. Changes to existing applications and additions of new ones will be a frequent re4uirement in

officç systems. Because object types are maintained as objects and thus subject to version management,
there is a means of reducing the problem of keeping the applications consistent in the face of changes on

the type level. This is of particular relevance in a decentralized (or distributed) system (explained further

below).

2. THE SYSTEM ARCHITECTURE OF OPAL

We can characterize OPAL as a decentralized system in terms of a network, where each node

corresponds to an autonomous authority in an organization, and edges correspond to communication paths
between nodes (see Figure 1). The function of a node is to provide an information processing environment

for an organizational unit requiring authority over processing and data. It is of course application
dependent to decide what should be regarded as an “autonomous” unit in an organization. If a unit was

completely autonomous, then it would not be part of the organization. On the other hand one can usually
identify units which have quite different means of control or different information needs. If an

organization can be divided into relatively autonomous units, it can be provided with an OPAL system
which is similarly divided with respect to control.

Fig. 1. An OPAL system with four nodes connected by logical communication paths. A node may have a

gateway (GW) for external communication.

Authentication of users and protection of data is handled within a node. A node (and the “authority”
behind it) is responsible for the data and~ operation within the node, but not outside it. >From the point
of view of protection and authority, an OPAL node regards other nodes as practically “different systems”.
What unites a set of OPAL nodes into a system is the adoption of:

• a common identification scheme for all objects.

• a common representation form for all objects.

— 33 —

• a communications protocol between nodes.

• application dependent knowledge the nodes have of each other.

Communication between nodes should then not be any problem for application designers. Nodes

which are to cooperate in some applications must have a certain degree of “trust” of each other. The

important point here is that this “trust” is not built into the OPAL system. Rather, the degrees of

freedom in the communication of a node with other nodes is specified in that node, and may be altered by

something like “negotiations” between the nodes HEWIS4].

A node does not necessarily correspond to a physical machine host. Nodes are distinct in terms of

control and not necessarily in terms of physical location. Several nodes may be implemented on the same

host.

The OPAL node interfaces with the authority it belongs to in terms of a set of users. To affect the

operation of a node, a user must logon to the node. On each node there is a supervisor process called the

monitor which administers user authentication and functions as a clearinghouse OPPE83] in the

communication with the environment of the node. The environment consists of communication paths to

other nodes and a number of devices through which users communicate with the node (see Figure 1). For

a user to be able to logon to a node, there must exist an associated client object at that node. A client is

an entity internal to an OPAL node, which mediates between the OPAL node and the user. A user can

be represented by clients at more than one node. A node may in fact be aware of this (e.g., for the

purpose of routing mail). However, authorization in a node is tied to clients and not to users. A client

object is permanently tied to one node (i.e., it cannot be moved between nodes). Different nodes may

recognize a user as such and the fact that the user corresponds to certain clients on other nodes.

An OPAL node is a centralized environment. The monitor is the overall controlling entity. Every
node also has a component which we call the information base of the node. The function of the

information base is to provide reliable storage and retrieval of objects. The information base provides
what is called a single level store for applications executing on a node. The meaning of this is that there

is no explicit distinction between different levels of memory. There- is only a single address space for

objects. The information base provides for the mapping between different levels of storage and caching of

accessed objects.

In the following we discuss OPAL in terms of a single node.

3. THE OBJECT MODEL

OPAL can be characterized as an object-based system. This means that we built the system on a

model which includes a few, fundamental concepts which are made explicit in the system. The most

important of these are AIILS84I:

• Modularity

• Encapsulation

• Instantiation

• Property Inheritance

Modularity refers to the ability of keeping logically related things together; an important structuring
criterion. Encapsulation, or information hiding, is a means for limiting the visibility of details in modules

(i.e., details not relevant for their abstract properties) which enables safe implementations. Instantiation

allows us to discriminate between types and instances of objects. Property Inheritance is a convenient

way of structuring type descriptions so as to allow specialization. We do not claim that these concepts

alone “define” an object-based system, but we see them as fundamental.

— 34 —

3.1. Packets, Types and Instances

In OPAL, any “object” which may have an independent existence is represented by a Packet.

We distinguish between packet types and packet instances. Every packet is an instance of one or

more packet types. The packet type according to which an instance is created is called the base type of

the packet. A packet type defines the structure and behavior of a packet in terms of a data structure and

operations defined on this data structure. The data structure of a packet represents the internal state of

the packet, and is implemented by a set of attribute values. Each attribute is declared on some data type.
A data type is similar to a packet type in that it defines a data structure and a set of operations.
However a data type is not a packet type, it is a “second class” object type. The difference is that

instances of a packet type are packets, while the instances of a data type (data type values) are not

packets. Among other things, packets are the units of protection, locking and recovery in OPAL. Data

type values are used for representing the state of packets and all packet states are disjoint. Thus, a data

type value cannot be a part of more than one packet. However packets can reference other packets by
using values of the packet reference data type. A packet may thus be shared by several other packets by
reference, and the reference data type provides the “bridge” between packet types and data types. The

reference data type is a parameterized data type because packet references are always qualified to some

packet type (i.e., strong typing is used in packet references).

The state of a packet can only be changed by a packet operation. Thus, a packet has a strict

operational (functional) interface. In packet operations, parameters and results (data type values) are

passed by value to ensure encapsulation of attributes. However, local operations in the implementation of

a packet type may pass data type values by reference.

An operation on a packet is invoked from another packet by a call using a reference to the packet in

question.

Packet types are maintained as packets in OPAL (i.e., they are also packet instances of some (meta)
packet type). Data types (note: definitions, not data type values!) may also be maintained as packets.
This makes it possible t? share and reuse old data types when defining new packet- or data- types.

A (packet- or data-) type definition consists of a specification and an implementation. The

specification part declares public and private operations. Public operations are operations available for

external invocation. Private operations are only available for use in the implementation. The

implementation defines all operations and data structures of the type.

3.2. Property Inheritance

The set of instances that belong to a packet type is called a class. A packet may belong to several

classes. In fact this is usually the case since a packet is not only an instance of its base type, but also an

instance of supertypes of the base type.

The Property Inheritance mechanism allows a type to inherit the specification of another type (see
Figure 2). The new type will be a specialization (a subtype) of the inherited one (the supertype) since it

will introduce additional operations and data structures. Both public and private operations declared in

the specification of a supertype are available for use in the implementation of a subtype. The public
operations of a supertype also logically become public operations in the subtype. Matching of operation
names is performed bottom up in the inheritance chain, and left to right in the inheritance prefix order

(depth first). If a subtype introduces an operation which overrides (by name) an operation in one of its

supertypes this just means that instances of the subtype will h~ve alternative operations~with. the same
-

name.~ Which operation will be used depends on the type qualification of the reference used. There is no

selectivity in the inheritance of operations, the complete specification of a type is always inherited. A

type may have several supertypes as well as several subtypes.

— 35 —

(Fleta) Packet Type

Packet

Types

Packet

Instances

Fig. 2. Instantiation (thin lines) and Property Inheritance (bold lines).

3.3. Active Packets

Thus far we have only considered packets as “passive” objects with operations invoked from other

packets in a procedure call-oriented way. A packet type may contain, in its implementation a sequence of

instructions called a statement body. Instances of the type can be executed according to this sequence. A

packet instance will always be in a certain state of execution (i.e., unexecuted, executing, suspended, or

terminated). Packets may be executed by other packets, or by the monitor of the node as a result of

trigger conditions. The execution of a packet generates a new process. A data type does not have a

statement body and hence data type values may not be executed.

A packets’ statement body may contain an “interact” statement, which when executed will set the

packet in interactive mode. This will give some user access to the packet scratchpad, which is a special
attribute present in every packet instance. The purpose of the scratchpad is to provide an interactive

“work space” in which a user can dynamically create data structures1 and execute operations.

3.4. Packet references

All packets are designated a packet identifier (Pid) when created, which is unique over all nodes in an

OPAL system. A reference to a packet (an instance of the reference data type) is basically implemented
by a pair of pids (type-pid, instance-pid) containing the pids of a packet type and some instance of this

type which is to be accessed. Protection of packets is thus achieved by a capability approach2 LEVY84,
JONE76I. The type-pid of a reference to a packet need not be the pid of the base type. The type-pid
could be the pid of any supertype of the base type or the pid of a view packet. A view packet is similar

to a type packet except that it does not define any attributes, only operations. A view packet is

associated with another type or view packet, called its domain type. While a sub-type adds capabilities

(operations) to the ones inherited from the supertype, a view can only alter the capabilities with respect to

its domain type, and in a technical sense only weaken them. To implement a new set of public

operations, the implementation section of a view may only use the public operations of the domain type

to operate on instances3. Thus, anything accomplished with an instance by using a reference with a type

pid that of a view, could always be accomplished with a reference to the same instance, but with a type

pid that of the domain type of the view. Even if the operations defined in a view could perform more

elaborate computations than the operations of the domain type, they are still never more “powerful”. A

view packet may also include a class subset condition, which may reduce the set of instances that can be

1. These data structures are only accessible in the scratchpad and have a different status from the attributes implementing a packet.

Thus, there is no violation of the normal operation interface to packets.

2. Higher level authorization is achieved in OPAL by adding a kind of authorization list mechanism to the low level capability

oriented access control.

3. Property inheritance between views is possible but outside the scope of this paper.

— 36 —

operated upon from the view, as compared with the class of the domain type.

3.5. Aggregates of Packets

Packet references are used to build aggregates of packets. In fact the whole information base of a

node is one large and complex aggregate of packets. OPAL has several data types, based on the reference

data type, for managing packet references. An example is the folio data type, which is an ordered

collection of (optionally) named references. Folio’s are used to implement various kinds of naming
contexts, much like file directories in traditional operating systems, but more general.

3.6. Packet Versions and Nested Transactions

Every packet operation which alters the state of a packet (i.e., is not a read only operation) generates

a new version of the packet. Furthermore, an operation may label the version it generates as being of any

of a number of application defined version categories. Associated with every version category is a

specification of the number (of the latest), or the maximum age, of versions which are to be retained.

A version generating operation is a subtransaction in a nested transaction. When the operation is

finished, the subtransaction commits and the version becomes visible to the supertransaction. This

continues all the way up to the top transaction which is endless and associated with all executing packets
in a node. If an operation does not label the version it generates, then the version will be discarded as

soon as a new version of the packet is committed in a supertransaction. A time stamping technique is

used to prevent interference between transactions REED78].

Version management is used as the basis for concurrency and recovery PAPAS4), for higher level

application needs ZDON84, AHLS84], and to provide for flexible and smooth evolution of types

IAHLSS3]. For instance, read-only transactions on a packet can usually proceed without delay, even if

there is currently a write transaction on the same packet, since the read operation is simply provided with

the latest visible version of the packet in the enveloping transaction. It will always be possible to

technically abort a subtransaction, since the previous version is kept at least until the subtransaction

commits. The use of version categories makes it possible to easily keep track of different aspects of the

evolution of a packet.

4. APPLICATION DEVELOPMENT

4.1. The Packet Language

The model concepts described in the previous section are manipulated using PAL (the PAcket

Language) 1A1ThS85J, which is a high-level programming and command language. The specification and

implementation of the packets in an application are written in PAL by the designer. When a user

executes a packet in the interactive mode, PAL statements can be used as a command language. The

details of the language are however outside the scope of this paper.

4.2. Designing Packets

A designer works with OPAL using a number of design functions. As such, the designer is a “user”

from OPAL’s perspective. The packets which the designer operates on are in principle the various

descriptive padkets (packet type packets, view packets, data type definition packets, etc.), and the

functions used are packet operations on these.

New packet types are constructed by specialization of existing types. In general, there will be a set of

“system defined” packet types holding various generic definitions common to all packets or useful in a

large class of them. As a simple example, to create a new packet type of which the instances should

— 37 —

represent the staff of programmers employed in a company, the existing packet type Employee is

specialized by inheritance to a new type Programmer (see Figure 3).

employee
PACKET TYPE programmer

PUBLIC

<public operations>
PRWATE

<private operations>
IMPLEMENTATION

<data structures>

<bodies of public and private ops>

<hidden operations not subject to inheritance>

<statement body>
END programmer

OPAL has “data dictionary”-like facilities which provide information about existing types and how

these are related. The designer may create instances of a new packet type or of a new version of an old

packet type in order to try out the design, before making it visible by a (top level) commit. If a packet is

to be moved between nodes, then there must exist a copy or proper packet type versions at both nodes.

Fig. 3. Inheritance graph (DAG). The new packet type PROGRAMMER is a specialization of

EMPLOYEE. The EMPLOYEE type multiply inherits the types FORM and EMPLOYEE.

4.3. Incremental Development

It is important to allow applications to undergo changes in a smooth way (i.e., we should provide

support in the development system which assists the designer in modifying existing applications). The

inheritance and view facilities provide this to a certain extent, since new types can be built on the basis of

existing ones and alternative operational interfaces can be provided to the instances of existing types

through Views. Some changes to applications can be managed in this way, but it may also be desirable to

make changes to the structure of existing packet types and Views. This kind of change may cause

problems since the packets in an application are kept in the database of a node for long periods of time,

and other applications and users are dependent on them. If a packet type is updated, this would require

restructuring of the instances, which may be difficult to perform due to the nature of the tasks in the

system.

Versions of packet types and views may be categorized and retained to reflect the changes made. A

version of a type packet may have associated mapping functions so as to enable instances of earlier

versions to be processed according to the new version, and conversely, to allow instances of a new version

to be processed according to an earlier one. If complete compatibility between versions is achieved, a type

change can be made transparent to the dependent applications if desirable, but this may not always be

— 38 —

possible due to the nature of the changes A11L583].

Applications may be modified by generating successive versions of the corresponding type packets,

allowing processing to continue according to the old versions, while testing the new ones. Once the

designer decides to “commit” a new version, it will become the current version. Any new instances will be

created according to the current version. The old version is left intact.

5. SUMMARY AND STATUS

The aim of the OPAL system is to provide development and run-time support for administrative

applications. The system is characterized by the use of concepts commonly adopted in object-

based/object-oriented systems. The primary structuring facility in OPAL is the Packet, which is used to

represent both “programs” and “data”. Packet Types as well as Packet instances are maintained in a

database residing on each node in an OPAL system. Packet types may be specialized using Property
Inheritance, and Views may be defined on packet types so as to allow alternative interfaces to instances of

types. Version management is used to handle updates to packet types and packet instances.

Project status: A first draft of the functional specification of OPAL has been completed, in which the

basic requirements of the system are outlined. Detailed design of the major system components is

currently in progress.

REFERENCES

AHLS83] Ahlsen, M., Bjornerstedt, A., Britts, S., Hulten, C., and Soderlund, L., “Making type

changes transparent”, Proc. of IEEE Workshop on Languages for Automation, 1983. (Also
available as Syslab Report No. 22.)

AHLS84I Ahlsen, M., Bjornerstedt, A., Britts, S., Hulten, C., and Soderlund, L., “An architecture

for object management in OIS”, ACM Trans. on Office Information Systems 2(3), 1984,

pp. 173-196.

AHLS85) Ahlsen, M., Bjornerstedt, A., Britts, S., Hulten, C., and Soderlund, L., PAL Specification,
SYSLAB Working Paper 96, SYSLAB, Univ. of Stockholm, Stockholm, Sweden, 1985 (in
preparation).

BIRT73} Birtwistle, G.M., Dahl, O-J., Myhrhaug, B., and Nygaard, K., Simula Begin, Auerbach,

Philadelphia, PA, 1973.

BROV85I Broverman, C.A. and Croft, W.B., “A knowledge-based approach to data management for

intelligent user interfaces”, Proc. 11th mt. Conf. on Very Large Data Bases, 1985, pp. 96-

104.

IBYRD82) Byrd, R.J., Smith, S.E., and de Jong, S.P., “An actor based programming system”, Proc.

ACM SICOA Conf. on Office Information Systems, 1982, pp. 67-78.

COPE84] Copeland, G. and Maier, D., “Making Smalltalk a database system”, Proc. ACM

SIGMOD Conf., 1984, pp. 316-325.

CROF84] Croft, W.B. and Lefkowitz, L.S., “Task support in an office system”, ACM Trans. on

Office Information Systems 2(3), 1984, pp. 197-212.

ELLI8O] Ellis, C.A. and Nutt, G.J., “Office information systems and computer science”, AG’M

Computing Surveys 12(1), 1980, pp. 27-60.

GOLD83] Goldberg, A. and Robson, D., Smalltalk-80: The Language and Its Implementation,

Addison-Wesley, Reading, MA, 1983.

— 39 —

~HiEWI84] Hewitt, C. and de Jong, P., “Open systems”, in On Conceptual Modelling: Perspectives
from Artificial Intelligence, Databases and Programming Languages, Brodie, M.L.,
Mylopoulos, J., and Schmidt, J.W., eds., Springer Verlag, Berlin, 1984, pp. 147-164.

JONE76] Jones, A.K. and Liskov, B.H., “A language extension for controlling access to shared

data”, IEEE Trans. on Software Engineering SE-2(4), 1976, pp. 277-285.

K1M841 Kim, W., Lone, R., McNabb, D., and Plouffe, W., “A transaction mechanism for

engineering design databases”, Proc. 10th mt. Con!. on Very Large Data Bases, 1984, pp.

355-362.

LEVY84] Levy, H.M., Capability-Based Computer Systems, Digital Press, 1984.

L15K77] Liskov, B., Snyder, A., Atkinson, R., and Schaffert, C., “Abstraction mechanisms in

CLU”, Comm. ACM 20(8), 1977, pp. 564-576.

IvIOSS81I Moss, J.E., Nested Transactions: An Approach to Reliable Distributed Computing, Tech.

Rep. MIT/LCS/TR-260, Lab. for Comp. Sc., MIT, Cambridge, MA, 1981.

NIER85] Nierstrasz, 0. and Tsichnitzis, D., “An object-oriented environment for OIS applications”,
Proc. 11th mt. Conf. on Very Large Data Bases, 1985, pp. 335-345.

0K183J Oki, B.M., Reliable Object Storage to Support Atomic Actions, Tech. Rep.
MIT/LCS/TR-308, Lab. for Comp. Sc., MIT, Cambridge, MA, 1983.

OPPE83I Oppen, D.C. and Dalal, Y.K., “The clearinghouse: a decentralized agent for locating
named objects in a distributed environment”, ACM Trans. on Office Information Systems
1(3) 1983, pp. 230-253.

{PAPA84I Papadimitniou, C.H. and Kanellakis, P.C., “On concurrency control by multiple
versions”, ACM Trans. on Database Systems 9(1), 1984, pp. 89-99.

REED78) Reed, D.P., Naming and Synchronization in a Decentralized Computer System, Tech. Rep.
MIT/LCS/TR-205, Lab. for Comp. Sc., MIT, Cambridge, MA, 1978.

SNOD83j Snodgrass, R., “An object-oriented command language”, IEEE Trans. on Software
Engineering SE-9(1), 1983, pp. 1-7.

EWEIH85a] Weihi, W. and Liskov, B., “Implementation of resilient, atomic data types”, ACM Trans.

on Programming Languages and Systems 7(2), 1985, pp. 244-269.

WE1B85b~ Weihi, W., “Atomic data types”, IEEE Database Engineering 8(2), 1985, pp. 26-33.

ZDON84I Zdonik, S.B., “Object management system concepts”, Proc. ACM SIGOA Conf. on Office

Information Systems, 1984, pp. 13-19.

EZLOO82J Zloof, M.M., “Office-by-example: a business language that unifies data and word

processing and electronic mail”, IBM Systems Journal 21(3), 1982, pp. 272-304.

— 40 —

An Object-Oriented Protocol for Managing Data

Stephen P. Weiser

University of Toronto

ABSTRACT

Many researchers believe that object-oriented languages are well suited for some of the programming
tasks associated with the building of an office information system (015). To lend support to this thesis,
we shall concentrate our attention on an object-oriented programming environment, named Os, which has

been effectively employed to capture certain aspects of OISs more simply and naturally than with

conventional languages. After pointing out some of the limitations of Os, we introduce additional facilities

into it which further enhance its capabilities, especially with respect to the management of office data.

1. INTRODUCTION

One of the means of evaluating the utility of a programming language is to measure the effort

associated with the programming of particular applications. It has been argued that by this standard,
object-oriented languages are appropriate for the implementation of OISs {NIER85J. A straightforward

way to defend such a proposition is to demonstrate that essential characteristics of OISs can be captured
more readily by the object protocol of a given object-oriented language than by the constructs associated

with conventional programming languages.

This was the impetus for developing 0; a prototype object-oriented programming environment

implemented at the University of Toronto NIERS3, MOONS4, TWAIS4). While Os bears comparison to

general purpose systems such as Smalltalk, it is distinguished by features which reflect its intended use as

a tool for building OISs. These features in turn reflect the designers view of what an OIS is. This requires
some elaboration.

In the office place of today, an 015 has come to refer to an aggregation of software often including
word processing, graphics, electronic mail, database management and spreadsheets. In the more

sophisticated of these systems, such as Lotus 1-2-3 and Symphony, a certain level of integration is

achieved by allowing data flow among the constituent programs.

Research in 015 is directed towards more than just the development of integrated software tools with

increased functionality and ease of use. These tools assist the office worker in performing his tasks.

However, they are passive in that they do not initiate or control the processing of office tasks LOCRS3,

This research was supported in part by the Natural Sciences and Engineering Research Council of Canada under grants 01359 and

01360.

Author’s address: Computer Systems Research Institute, University of Toronto, Toronto, Ontario, Canada, MSS 1A4 (416/978-

6610).
CSNET: weiser.torontoOcsnet-relay.

— 41 —

W00851. To increase office productivity, an OIS should be able to capture, manage, and perform office

activities LOCH84].

Office activities have been described in the literature HAMM8O, MORG8O, SIRB81J as being event-

driven and semi-structured. They exhibit a high level of parallelism requiring synchronization and

coordination. They alternate between active and suspended states which are distributed in time and

space. They frequently involve the manipulation of highly structured documents which possess certain

constraints and functional capabilities not generally associated with databases NIER85j. The focus of

attention in Os is the automation of these office activities.

It has been shown elsewhere NIERS5] that Os accomplishes what it set out to do. In this paper, we

try to indicate some of what Os doesn’t do, or at least, doesn’t do well. Our attention is focussed on the

representation and handling of office data, which is achieved in a cursory manner in Os. We present an

enhanced implementation of Os and illustrate its effectiveness.

2. OZ

For those not familiar with Os, we offer a brief overview. Os objects are entities composed of

contents (data) and behaviour (program). The contents of an object are composed of an aggregate of

instance variables. These variables have values of type string, integer or pointer (these are unique object
instance id values). The behaviour of an object consists of a set of rules.

Os object instances are organized into classes. The members of a class have the same behaviour but

are distinguished by the values of their contents. Classes are organized as nodes in an m-ary tree

structure, and inherit instance variable definitions and rules from parent nodes.

A class definition for employee objects could take the form:

employee : person{ /* class - employee, superclass - person ‘7

/ * instance variables */
emp-no : integer; /* employee number */
s-visor: supervisor; /~ pointer to an employee’s supervisor object */
status : string; /~ current status ~/

/* rules */

}

An employee object might inherit such instance variables as name, birth-date, address, phone-no,... from

the person superclass as well as the rules governing the manipulation of these variables.

Os objects communicate by passing messages which attempt to invoke rules. An Os message specifies
the id (all Os objects have unique system generated ids) and class of the sender as well as the class, rule

name, rule parameters, and (optionally) the id of the receiver. If this id is not specified, the message finds
its way to an instance of the receiver’s class that allows for the formation of an event (events are discussed

shortly). An invoked rule may return a value to the sender.

Rules may be invoked by rules within the same object or within other objects. Rules consist of

conditions and actions. The conditions must all be true before the actions of a given rule can be

performed. Conditions can specify the acceptable classes of objects invoking the rule (these classes are

referred to as the rule’s acquaintances), the state of the object (the value set of its variables) containing
the rule, and the state of other objects. Actions correspond to “program” components. Associated with

each object class are two rules which have all the characteristics of other rules in addition to the following

special functions. The alpha rule when invoked will cause an object instance to be created. The omega rule

— 42 —

/~ get a supervisor rule */
getrsuper() {

/~ only administrator can invoke rule */
administrator;

/~ supervisor object temporary variable ‘7
5 supervisor;

/ * supervisor must be available */
s.available = “yes”;

/~ assign supervisor ~/
s-visor :=

/~ get a supervisor’s name rule */
get-super-name(emp-num) {

administrator;
/* employee no.

emp-num integer;
/~ temporary variable */
name : string;
/* looking for employee with */
/* employee number emp-num ~/
emp-no = emp-num;

/ * get name from supervisor ~/
name s-visor.give-nameQ;

/~ return name

}(name)

If no acquaintances are specified in the conditions of a rule, the rule will be invoked when its

conditions become true. This gives Oz objects a kind of autonomy not found in other object-based
systems ~NIER85j. Another feature of Oz that is somewhat unique is the way in which it forms events.

Even when the conditions of a rule are true, its state changing actions will not be performed wiiless all the

conditions oftits invokiflg acquaintáhce (if it has one) ai~ true. This requirement is applied recursively to

each acquaintance. As each rule may have many conditions, each of which may invoke rules in other

objects, an m-ary tree of associated objects is formed (potentially). Only when the conditions in all these

rules are true will all the state changing actions be performed simultaneously. This is the fundamental

unit of change of state in the object universe (rather than the firing of individual rules). Thus Oz offers a

will cause an object instance to be destroyed. These rules are necessarily the first and last rules invoked in
the lifetime of an Oz object.

The Oz code fragments below illustrate how the state of other objects is ascertained. The get-super
rule finds an unspecified available member of the supervisor class. The get-super-name finds the name of
the specified supervisor.

employee person {
emp-no integer;
s-visor supervisor;

supervisor person{

/~ instance variable - availability */
availability : string;

/* availability rule */
availableQ{

/* only an employee can invoke rule ‘7
-

employee;
/~ return availability */
}(availability)

name rule */
give-name() {
}(name)

— 43 —

powerful event-driven model of computation NIER85I.

3. ENHANCEMENTS TO OZ

The ability to model real world structures naturally is a hallmark of object-oriented systems GfflB84}.
Naturally in this context implies a simple mapping from user conception to object representation. Oz

however, offers only a primitive method of representing office structures.

The contents of an Oz object resemble database relations. The correspondence of object class to

relation, object contents to tuple, and attributes to instance variables is immediately apparent. Both the

relational model and the Oz object model require that attributes and instance variables, respectively, have

simple data values. It should be clear that the encoding problems associated with relational models are all

present in Oz. These problems can be illustrated with an example.

Consider a university which must keep information on its students which includes the courses they
have taken and the marks received. A student record can be represented as:

student(stu- no, stu-name, (course, grade),... ,(course, grade))

A consistent first normal form (1NF) relational schema is:

student(stu-no, stu-name)
grades(stu-no, course, grade)

We note the following:

1. The loss of the “object” nature of the student record (its information content has been distributed

into two relations).

2. The “flattening” of a set-valued field into multiple tuples.

3. The introduction of an attribute that is artificial in the sense that it doesn’t reflect an attribute of the

entity under consideration but only establishes tuple relationships (the stu-no in the grades relation).

Not only does this encoding require a translation effort by the programmer, but it also increases the

operational complexity associated with record manipulation. Record creation and deletion are no longer
associated with a single record but rather with two relations and multiple tuples. Queries and updates are

similarly affected. There is an existence dependency relationship of grades on student (a set of grades
must be associated with an existing student, though the converse is not true). The relational

representation does not reflect this dependency, whereas it is intrinsic to the structure of a student record.

In general, increased encoding requires an increase in integrity constraints MAIE84].

With Oz, the analogous problems are more critical. Not only would the data associated with a student

record be distributed in two object classes, but the operations associated with this data would be as well.

It has been shown that this kind of distribution of operations leads to enormous increases in Oz

programming effort (WEIS85}.

In response to these considerations Oz has been modified in the following manner. Objects are

allowed to aggregate not only any number of simple types (string, integer, pointer) but other objects as

well, each of which in turn may do the same. Simple types and objects may have set occurrences. An Oz

student object might now have the syntax:

— 44 —

student {
stu-no : mt

stu-name: string

grades {
course : String
grade : mt

parent-names: string*

The ‘~‘ indicates a set occurrence. Repeating groups (such as grades), which occur commonly in office data,
are directly representable as contained objects. In general, Os now allows for the hierarchical

representation of data within objects. This is significant in that a very common office structure—the

electronic document-—is hierarchical in nature.

For purposes of clarity, we shall refer to those objects contained within an object class contents

definition as contained objects (i.e., grades is a contained object). The hierarchical structure of an object’s
contents may be thought of as a tree; the root corresponding to the object itself, the intermediate nodes

to contained objects and set occurrences of simple type, and the leaf nodes to simple type variables. A set

of operations must be provided that allow the manipulation of the data contained in this tree. The current

version of Os provides a primitive set of operations that allows for traversal of this tree along with node

creation, deletion, and updates. Future versions of Oz will provide more sophisticated operations

WEIS85]. (These operations are not detailed here as they are the familiar ones associated with

hierarchical databases.)

Contained objects may be defined in terms of existing object class definitions. The contained object
thus defined inherits the contents structure and rules of the named object class. (The “existence

restriction” on object classes removes the possibility of either direct or indirect recursions in object
definitions.) Contained objects which inherit class definitions may not have set occurrences and may not

be themselves contained within other contained objects. Without these restrictions, the interpretation of

inherited rules becomes extremely complex {WEIS85J. Note that by this mechanism, we are providing Oz

with multiple inheritance capabilities. Ambiguous rule names are resolved by choosing the first rule

encountered in a breath-first search of the class inheritance network.

Text is introduced as a simple data type. This is a step in the direction of representing all common

office data types (textual, graphical, audio, etc.) in a uniform manner within Os objects and providing a

set of operations to manipulate them.

While object containment offers a method of “building” object structures out of other objects, it is

not suitable for modelling object relationships. Relationship here has the specialized meaning of one

object being able to communicate directly with some other particular object. In Os, this can only be

accomplished by possession of that object’s unique Id. Pointer types hold such ids in Os. In our enhanced

version of Oz, pointer types can be sets. However, the restriction that all the ids of a set of pointers

belong to objects of the same class is enforced. In this way we can partition classes of objects on various

criteria. For example, suppose that we have a class of employee objects and a class of department objects.
Pointer sets in the department objects would relate all the employees in each department to the

appropriate department object. Thus a department object has direct communication privileges with its

employee objects. In the original version of Os, such relationship were not possible. Operations involving
the employees of a given department would involve a search of all employee class objects to find the

desired ones. This would represent a substantial processing time overhead when the number of objects in

the class was great. In addition, if the relationship between departments and employees was other than

l:N (i.e., if employees could be in more than one department), a new class would be needed whose

purpose would only be to establish the N:M department to employee relationship. The enhanced version

of Oz eliminates the need for such artificial constructs.

Methods are being investigated for enforcing 1:1 and l:N relationships between object classes in Oz,

though these have not yet been implemented.

— 45 —

A more sophisticated notion of object state has been introduced into Oz. Objects exist in either a

passive or active state. A passive object is one that has been stripped of its rules and whose data contents

have been stored as a contained object in a special database object associated with each class. Passive

objects are not considered in events (as they have no rules to invoke). Active objects have both contents

and rules. An old office memo kept in a file and a currently circulating memo correspond to passive and

active objects respectively.

In a very large object universe, it is likely that only a small percentage of objects need be active at

any give time, the rest residing as passive objects in their database object containers. Thus database

objects may hold vast numbers of objects associated with a class. A set of passive objects may correspond
to different versions of the same conceptual object, such as a form at various times in its history. Such a

set of passive objects are distinguished from all other objects by possession of the same object Id. The

objects of this set are distinguished from one another by a time-stamp (ids and time-stamps are provided
for all passive and active objects by the system). Database objects in Oz have been implemented in such

a way as to provide a rich set of querying capabilities on their contents. The contents structure of an Oz

object is represented by a set of relational tuples generated by an algorithm similar to the one found in

GIBB84j. A standard relational DBMS can then be used to manage these tuples. Database object rules

can be “built” rather easily in terms of the relational operators associated with the DBMS.

By replacing each of the simple type values (integer, string, text and pointer) in an object’s contents

by a vector, a set of time-stamped versions of a particular conceptual object can be represented with a

great saving of space. Each element of the vector is an ordered pair consisting of a data value and the

time of its last update. The elements of the vector are ordered by increasing time. This is the method in

which version sets are implemented in Oz, although this fact is transparent at the object level; database

objects “see themselves” as containing only distinct passive objects. Note that the underlying relational

DBMS makes it particularly easy to implement these vectors (they correspond to sets of 2-tuples).

A passive object can be created from an active object by invoking the omega-db rule (which replaces
the omega rule in the original version of Oz) associated with an object class. Invocation of this

parameterized rule may result in one of the following:

1. The storage of the contents of the active object as a time-stamped passive object followed by the

destruction of the active object. In addition to their own object ids, all active objects carry the id of

the passive object from which they were created (unless, as explained later, they were not created

from a passive object). Thus active objects are returned to their version sets.

2. The storage of the contents of the active object as a time-stamped passive object without the

destruction of the active object (version retirement).

3. The destruction of the active object without storage as a passive object (object contents will not be

needed at a future time).

The alpha-db rule creates an active object from a passive one by providing the converse capabilities of the

omega-db rule. These are:

1. The creation af an active object using the contents of a specified passive object which is then

destroyed. Specification is provided by passing a passive object id to the alpha-db rule. By default,
the newest member of a version set is used. A selection query on the database object would be the

likely method of obtaining a particular id. For example, an administrator might select a contained

object in the student database object with a particular student number and then invoke the student

class alpha-db rule with the selected id.

2. The creation of an active object from a member of a set of time-stamped passive object versions. The

id as well as the time-stamp which specify the passive object would likely be obtained by selection of

a passive object based on a time-sensitive query. Possible time related selection criteria include oldest

and newest members of a version set as well as closest to a given time.

3. The creation of an active object whose contents are not obtained from a passive object. The objects

contents would be initialized by the alpha-db rule itself (i.e., the actions of the rule would include

— 46 —

instance variable initialization).

Objects created by (3) are newly “born” as opposed to objects in (1) and (2) which are “reincarnations”

TSICS5I. Objects may also “pop” into existence in a passive state. These objects would be created by
subverting normal object protocol. One might wish to initialize an object universe by loading database

objects with passive objects, as opposed to starting a system up with an empty object universe. Many
examples can be found where this is the appropriate method of doing things, though care must be taken

to assure that the active counterparts of these objects will not produce inconsistent or fatal system states

jWEISS5j.

Active object management involves the storage and retrieval of active objects, as events must be

found and executed. Since objects of the same class share the same behaviour, it is only necessary to store

that behaviour once NIERS5I. As objects in a class are distinguished by their contents, the contents of

each object instance must be stored.

The behaviour of a class will usually include inherited rules. As these rules already exist, they can be

referenced rather than copied in the class that inherits them. This elimination of “code” redundancy can

result in substantial space savings because of the multiple inheritance capabilities of Oz.

At any point in time, the set of all active objects can be partitioned on the basis of current

participation in the formation of an event. While those objects participating in event formation must be

in primary memory, those not participating may conveniently reside in secondary memory. This is of

interest, as there will always be some bound on the number of active objects that can exist in primary

memory (we are assuming that primary memory is large enough to hold the objects involved in the

formation of a given event and that secondary memory is sufficiently large to hold the entire object
universe). In the original implementation of Oz, this issue is masked by the reliance on the virtual

memory support of an underlying operating system (UNIX1). There are many reasons why Oz should

provide its own virtual memory support TWAIS4, NIERS5, WEISS5]. Towards this end, the current

version of Oz implements the following active object memory management policy.

A copy of the contents of each active object resides in secondary memory. The location of a particular
object’s contents can be generated by a table lookup based on the object’s unique id. When it is

determined that an object is needed for event formation, its contents are copied into primary memory,

unless a copy of its contents already exist there. If an event occurrence induces changes in the state of this

primary memory copy, the copy in secondary memory is updated to reflect these changes. The primary

memory copy is not deleted until space is needed to bring in other objects for other events (this saves

recopying the object in from secondary memory if it participates in an event in the near future). In this

manner secondary memory remains coherent and as up-to-date as possible NIERS5J. (Even if primary

memory is wiped out by a system crash, a consistent object universe state remains in secondary memory.)
Furthermore, primary memory is well utilized, and the amount of object content copying between

primary and secondary memory is reduced.

4. CONCLUSIONS

We have demonstrated how complex data structures can be represented and manipulated within

objects. This is a significant step in the direction of making Oz an effective programming tool.

By allowing objects to be moved back and forth between passive and active states, we allow the user

to assist the object manager in partitioning the object universe on the basis of object activity. This is an

important consideration since any practical system will have bounds on primary storage space and event

processing time. The object manager~can now consider objects on th~ basis of their “activity level” in

forming events, whereas previously it could not differentiate objects on this basis and was required to

consider them all equivalently.

In addition to this, querying on the passive object contents of the object world equivalent of databases

1. UNIX is a trademark of Bell Labs.

— 47 —

can be performed quite effectively using analogs of the relational calculus WEIS85}.

Other areas of current research on Oz include improvements in the efficiency of the tasks performed
by the object manager: event management, and object storage and retrieval. Design criteria for a

sophisticated user interface for Oz are also being developed.

REFERENCES

~G1BB841 Gibbs, S.J., An Object-Oriented Office Data Mode!, Ph.D. Thesis, Dept. of Comp. Sc.,
Univ. of Toronto, 1984.

HAMfvI8O] Hammer, M. and Sirbu, M., “What is office automation?”, Proc. 1980 Office Automation

Con!., 1980, pp. 37-49.

1L00H831 Lochovsky, F.H., “A knowledge-based approach to supporting office work”, IEEE

Database Engineering 16(3), 1983, pp. 43-51.

LOCH84I Lochovsky, F.H., Tsichritzis, D.C., Mendelzon, A.O., and Christodoulakis, S., “An office

procedure manager”, Working paper, Comp. Systems Res. Inst., Univ. of Toronto,
Toronto, Canada, 1984.

MA1E841 Maier, D. and Price, D., “Data model requirements for engineering applications,” Proc.

IEEE 1st mt. Workshop on Expert Database Systems, 1984, pp. 759-765.

~MOON84J Mooney, J., Oz: An Object-based System for Implementing Office Information Systems,
M.Sc. Thesis, Dept. of Comp. Sc., Univ. of Toronto, Toronto, Canada, 1984.

MORG8O] Morgan, H.L., “Research and practice in office automation”, Proc. IFIP Congr., Inf.
Processing ‘80, 1980, pp. 783-789.

NIER85I Nierstrasz, O.M., “An object-oriented system”, in Office Automation: Concepts and Tools,
Tsichritzis, D.C., ed., Springer-Verlag, Berlin, 1985, pp. 167-190.

~NIER83} Nierstrasz, O.M., Mooney, J., and Twaites, K.J., “Using objects to implement office

procedures”, Proc. CIPS Conf., 1983, pp. 65-73.

SIRB81] Sirbu, M., Schoichet, J., Kunin, J., and Hammer, M., OAM: An Office Analysis

Methodology, Memo OAM-16, Office Automation Group, MIT, Cambridge, MA, 1981.

TSIC85J Tsichritzis, D.C., “Objectworld”, in Office Automation: Concepts and Tools, Tsichritzis,
D.C., ed., Springer-Verlag, Berlin, 1985, pp. 379-398.

TWAI84I Twaites, K.J., An Object-based Programming Environment for Office Information

Systems, M.Sc. Thesis, Dept. of Comp. Sc., Univ. of Toronto, Toronto, Canada, 1984.

WEIS85] Weiser, S.P., Using Object-Oriented Techniques for the Development of Office Information

Systems, M.Sc. Thesis, Dept. of Comp. Sc., Univ. of Toronto, Toronto, Canada, 1985.

W0085] Woo, C. and Lochovsky, F.H., “An object-based approach to modelling office work”,
IEEE Database Engineering 8(4), 1985.

— 48 —

Hybrid: A Unified Object-Oriented System

O.M. Nierstrasz

Research Centre of Crete

ABSTRACT

Hybrid is a data abstraction language that attempts to unify a number of object-oriented concepts

into a single, coherent system. In this paper we give an overview of our object model, describe a number

of the language constructs, and briefly discuss the issue of object management.

1. INTRODUCTION

Hybrid is a programming language that attempts to unify a number of concepts that we consider to be

integral to the “object-oriented” paradigm. These include:

1. data abstraction with classification, aggregation, and specialization

2. atomic events

3. concurrency control a Ia monitors

4. automatic triggering

5. object persistency

6. location-transparent object addressing

Our goal is to present these concepts in a natural, consistent manner in a small, high-level language.
The language should be general-purpose, yet provide the programmer with adequate mechanisms for

controlling low-level issues, such as process-switching, concurrency, and locking granularity, when these

are required. There should be very few assumptions about the data classes and operations supported, so

that the language can be truly extendible.

We intend our system to be useful to those who wish to rapidly develop distributed applications such

as office forms systems TSIC82j, “intelligent mail” systems HOGGS5], and so on. A useful system

should have a rich selection of powerful object classes, such as multimedia documents with version

control, user interface objects with arbitrary key-binding and window management, role objects for

encapsulating security policies, and so on, as outlined in NIERS5bI. Ideally, programming of new

applications would often be a simple matter of putting existing objects together in new ways (much as one

can put together “scripts” of tools in an environment like UNIX’).

Author’s address: Institute of Computer Science, Research Centre of Crete, Box 157, Heraklion, Crete, Greece.

Author’s current address: Universitd de Genève, Centre d’Informatique, 24, rue General Dufour, CH 1211 Genève 4, Switzerland.

UUCP: decvax!mcvax!cernvaxicui!oscar.

1. UNIX is a trademark of Bell Laboratories.

— 49 —

In this paper we present an overview of Hybrid, and a brief discussion of some of the more interesting

language and implementation issues. A draft language definition is nearing completion, and we will be

starting the implementation of an interpreter written in the C programming language KERN78]. Future

generations will be written in Hybrid itself.

2. OVERVIEW

The notion which is most fundamental to the design of Hybrid is that of data abstraction. Simply

taken, it means that the representation of a data object, and the implementation of the operations it

supports should be hidden. The only legitimate interface to the object should be through its operations.

Programming languages that support some form of data abstraction are growing in number quite rapidly,
and are becoming difficult to enumerate. Some of these are: Simula BIRT73), Smalltalk GOLDS3I, CLU

L15K77}, Argus 1L15K831, Zetalisp IwEINS1), C++ jSTROS4J, OOPC (Objective C) COX83J, Galileo

ALBA85J, Modula WIRT83}, Os fNIER85aJ, Taxis MYLOSO}, OPAL A}{LS84J, Smallworld LAFF85}
and BETA KRISS3].

In Hybrid, ultimately everything is an object. The initiative to do things is also encapsulated in

objects, consequently we do not have “objects” and “programs that manipulate objects”, but just objects,
and sometimes these objects attempt to communicate with one another. Naturally, the most active

objects take their orders from the outside world (i.e., users, etc.).

An object is an instance of an object class. An object class is the specification of an abstract data

type. The specification includes a contents portion, which describes the instance variables that distinguish
individual object instances, and a behaviour portion, which describes the code shared by all instances of

the same class.

An integer object, for example, might contain a single instance variable, namely a 32-bit value.

Various instances of this class would each be represented by such a 32-bit value, and all the instances

would share the code implementing the operations that integers support.

Instance variables are names for acquaintances, other objects that can be communicated with. An

object that is properly contained in the contents (i.e., is stored locally) is a dependent, or child. Children

are stored in dependent variables. Other acquaintances are known through reference variables, which

reference more distant objects. Syntactically, there is little difference in the way the two kinds of

variables are used. Internally, however, reference variables store object identifiers, or oids, which the

system uses to keep track of objects.

In the case of integers, the -32-bit values would undoubtedly be dependent variables. A mailbox

object, on the other hand, would probably know the messages it “contains” as external acquaintances.

Any object can thus be seen as an aggregate of its children plus a number of (non-child)
acquaintances. Top-level objects (those with no parents) are called independent objects. The descendents

of an object are its children and, recursively, the children of its descendents. A domain is a collection

containing a single independent object, called the domain parent, and all its descendents. Conceptually it

is most convenient to think of a domain as being a single object, namely the domain parent. For complex

objects, such as documents, however, one may wish to deal with individual components (tables, figures,

paragraphs) as objects in their own right.

Across a network, the universe of objects can be partitioned into a number of object environments,

each of which is a logical node. Each environment has a single object manager that performs the duties of

an operating system- The environments will normally correspond to physical nodes, but this is not a

strict requirement. An object wishing to communicate with an acquaintance in another environment can

do so through an agent, a local representative of that acquaintance. Objects that actually move from one

environment to another leave a local agent behind so that they can be located, if necessary. Oids are

globally unique, so there can never be confusion between a local object, and one that has immigrated.

— 50 —

a. LANGUAGE

An object specification consists of header, contents, and behaviour sections. The header contains the

class name, a list of parameters (optional) and the name of the superclass whose contents and behaviour

are inherited by the class being defined.

The contents portion consists purely of instance variable declarations. These are mapped to the

representation of an object instance. In addition to the dependent and reference variables mentioned

above, we have sequence variables, which are useful for manipulating sequences of references. (Sequences
are a language construct rather than an object class. In order to effectively manipulate a sequence, it

should be assigned to an appropriate class, such as a list, or an array.) In the example below, talktime is a

dependent variable of class date, who is an acquaintance of class mailer, and msgseq is a sequence of

references to messages:

var talktime : date;
ref who : mailer;

seq msgseq : message;

The behaviour section describes the processes that live in an object instance. All processes are part of

some object’s behaviour. This is consistent with the idea that there are no external “programs”
manipulating objects, but only objects talking to each other.

The behaviour of an object consists of a single main procedure (labeled start) and a number of

procedures and operations. The start procedure may split into a number of concurrent blocks. For a

given object, each of these blocks is assigned its own process. Typically most of these processes are idle,
waiting for requests from other objects. An object whose processes are all idle is normally retired to

secondary storage.

Objects communicate by sending messages. A common type of message is a request to perform an

operation. Two other message types are used to return from an operation (with an optional return value),
and to report an exception (error) in the execution of the operation.

Depending on the situation, most message exchanges resemble procedure calls or remote procedure
calls. The difference lies in the possibility of concurrent requests. Normally an object will queue requests

as they come in, but a high-priority request may require immediate attention (especially in the case of

real-time applications). Within a domain, where there is no real concurrency, internal requests can be

handled as straight procedure calls.

The procedures of an object’s behaviour are for that object’s use alone. The interface available to

acquaintances is the set of operations supported by that object. An object announces its readiness to

perform an operation with the accept statement:

accept mit

causes the running process to block, waiting for an acquaintance to call the mit operation. A list of

operations may be given, or the keyword any can be used to state that any operation can be invoked.

The select statement can be used to specify follow-up actions after performing an operation, or, with the

aid of an else clause, to prevent the process from blocking:

select

accept opA;

/~ followup activity for opA */;
or

accept opB;

/~ followup activity for opB */
else

no requests, so do something else ~/
end

— 51 —

When no else clause exists, the select blocks. A select statement resembles Dijkstra’s guarded
commands D15K75]. The accept functions as a guard, resembling the input commands of Hoare’s

communicating sequential processes HOAR7S]. The select accept combination is also used in Ada

ANDR83I.

Automatic triggering of processes is made possible with the while await statement:

while (mbox.empty) await (mbox.insert)

If the boolean expression after the while evaluates to true, then the running process blocks until one of

the operations following the await is performed on the specified object. When notification is received, the

expression is re-evaluated. The while await statement is atomic, in the sense that the system guarantees
that the awaited operations cannot be “lost” in between the evaluation of the condition and the actual

waiting.

The onus is on the programmer to indicate what operations may affect the condition. This is perhaps
a nuisance, but the degree of control has its benefits:

while (x < y) await (x.incr, y.decr

is surely preferable to:

while (x < y) await ((x,y).any)

The while await statement is important for detecting changes to acquaintances without having to

either poii them, or modify their behaviour to perform the necessary notification. It may be used as a

guard for a select.

Operations with alphabetic names are invoked by indicating an object, the operation, and a sequence

of arguments:

mbox.insert(msg);

Operations may also be invoked using non-alphabetic operator names. Operator-overloading is important
if one is to be able to program with objects in a concise, natural manner. The scheme used in Hybrid is

to declare operators explicitly as prefix, postfix, or infix. The precedence rules dictate that prefix

operators always bind more closely than postfix, and postfix more than infix. In addition, there can be

one index operation, which is invoked by using (square) brackets. Together with the “dot” notation for

invoking operations with alphabetic names, the precedence is as follows:

prefix >> { postfix, index, dot } >> infix

An expression such as:

- n].total

would be evaluated as:

- (ynj).total)

regardless of the semantics of the various operations. What remains is to identify operators appearing in

a cascade between two expressions. This can be especially troublesome when an operator has multiple

interpretations as, say, both prefix and infix, or perhaps even postfix as well. The rule used here, in lieu of

disambiguating parentheses, is to start at the end of the cascade, going backwards, assuming prefix

operators up to, but not including, the earliest possible infix. The remaining operators (if any) must be

postfix. So:

would parse as:

(x ++) += (- y)

As an extreme example, suppose “©“ has all three interpretations. Then:

— 52 —

would parse as:

that is, one infix, and the rest prefix.

Object specifications can be parameterized. This is useful for defining objects that are to serve

mainly as “containers” for other objects. The class of the contained object is listed as a parameter in the

header of the specification:

stack (paramclass : paramsuper) : object

Elsewhere in the stack specification, the pararnclass parameter can be used as though it were an actual

class. The only operations that are allowed, however, on paramclass objects, are those inherited from the

class paramsuper. Similarly, instances of stacks cannot assign a class to paramclass that is not a

specialization of pararnsuper. When a variable of class stack is declared, the parameter is given as, for

example:

var jobstack : stack of job;

Although strong-typing is enforced in Hybrid, there are mechanisms for handling objects whose

(precise) class is not known at compile-time. Suppose, for example, that mail messages can serve as

containers for arbitrary objects. A clever mail-handler could unpackage certain kinds of messages

containing objects of known classes. In the specification of the mail-handler, all one knows for certain is

that message contents are of the generic class object. The specific class can be determined at run-time by
using the class statement:

class {
thing : document =>

folder.file(thing);
thing: meeting =>

calendar.enter(thing);
thing: object=>

/* default, if others fail */
}

The file operation requires a document argument, but it is known to be invoked only if thing is verified (at
run-time) to be of that class. Type-checking for the code within the various class cases can be done at

compile-time.

Assignment in Hybrid is performed as follows:

means, “the variable xis now a name for the object 5”. This is different from:

x := 5;

which means, “apply the infix operation := to the object named by x, and send it the argument 5”. In

the first case, a new object is named; in the second, an existing object is modified. When an object is

assigned to a variable, either the object itself is moved, or an oid is created and copied. This depends on

whether the variable is a dependent or a reference variable.

Objects can be assigned several at a time:

(x,y) ÷— circle.centre

Furthermore, a sequence of unspecified length may be passed as an argument to an operation, or as a

return value from an operation. Sequence variables are used to name these objects. If 8 is a sequence

variable, then:

— 53 —

(x,s) #— s

assigns the head of s to z, and the remainder back to a. Generally a more satisfactory solution is to use

the sequence to initialize a list, or some other suitable container class, and then use the list operations to

access the elements of the sequence. Alternatively, one may iterate through a sequence with a for

statement:

forxin(s){
/* do your stuff *1;

}

Sections of code can be made “atomic” by declaring them as an event block. Before entering an

event, the states of the objects used within the event (i.e., its resources) are sampled and saved. If the

event commits, the saved states are discarded. If it aborts, the saved states are restored. During the

event, the intermediate states are not visible to non-participants. Events may be nested, in the fashion

described by Moss in his Ph.D. dissertation M05581]. A parent event, detecting the failure of a child,

may either choose to abort itself, or may attempt some other action.

Events are especially important when negotiating a transaction across a network or updating stable

storage. In either case, interruption of the event, due to a crash, for example, could leave objects in

inconsistent states. Events can be used to make such transactions atomic.

4. OBJECT MANAGEMENT

Objects in Hybrid are persistent. That is, once created, an object continues to exist until it is

explicitly destroyed. In order to maintain a consistent view of objects in a given environment, we

distinguish between stable and volatile storage. Stable storage contains a complete, consistent

representation of all objects in the environment at some point in time. Volatile storage contains “working
copies” of currently active objects. In the event of a crash, the contents of volatile storage (i.e., virtual

memory) is discarded. Stable storage must therefore be updated very carefully, incrementally creating

new, consistent views of the environment. Stable storage can be thought of as the permanent object
database.

Depending on the requirements of the applications, the frequency with which stable storage is updated
can vary. This means that many objects can be created and destroyed in between such updates, so that

these objects are never written to stable storage. Where an atomic event is involved, it is, of course,

important to update stable storage in a fashion that preserves the integrity of the event. For example, an

event that spans several object environments, and several physical nodes, must, if it commits, have its

effects observed reliably at all the nodes. Updating the stable storage of these several environments must

also take place as a single, atomic event. Two-phase locking is typically used to implement this sort of

behaviour MOSS81, VERH78].

The object manager is also responsible for bringing needed objects into memory and resolving object
identifiers to actual memory addresses. Object identifiers can be thought of as capabilities for addressing

objects FABR74]. (Oids are actually capabilities for sending messages (i.e., for performing operations).
One thus distinguishes not merely between, say, read and write operations, but between all of the various

operations supported by an object. This is the same philosophy adopted in the Hydra operating system

WULF74J.)

A hash table is maintained for the objects currently in memory. The first time an active object

attempts to address an acquaintance, the object manager does a lookup to see if the required object is

airQady in memory. 11 not, it must be brought in. That acquaintance is then marked as being “open” for

communication, and the oid is translated into a memory address. As long as the connection stays open,

no further lookups are needed. Connections can be closed when an object becomes inactive (i.e., when

there are no more outstanding messages for it) and all its processes are blocked. Inactive objects may be

retired to stable storage. In fact, objects that have been inactive for only a brief period may quite

- 54 -

reasonably become active again in a short time, so it makes sense only to retire objects that have been

inactive for a while. (This is analogous to paging policies in operating systems.)

Part of the object manager’s task is to keep track of the correspondence between the representations
of instances, and the code that implements their behaviour. Since the latter is shared, care must be taken

when modifications are made to the specification of an object class. In fact, a fair degree of intelligence
should be built into the class meta-class. In particular, some sort of version-control is required to protect

existing object instances when new versions of classes are installed. Furthermore, some degree of

cleverness is needed to handle objects that move from one environment to another, since the class

definitions may not be identical.

The object manager must negotiate concurrent accesses to objects. The problem is somewhat

simplified by insisting that, for any given domain, there is never more than one process active. Domains

are, in this respect, similar to monitors HOAR74}. The arrival of a message (a request for service)
interrupts the domain, which then decides whether it can handle the request immediately or not. Since

the process issuing a request blocks if its request is not handled immediately, there is always a possibility
of deadlock. When an object is participating in an atomic event, it is, strictly speaking, not permitted to

handle any external requests, since the intermediate states of the event must not be visible. If deadlock

occurs between several concurrent events, a “victim” must be chosen, and restarted. There is a

substantial body of literature on this problem, and many schemes exist for handling it BERNS1,
KOHLS1}.

A final issue of interest is that of garbage collection. The approach taken in Hybrid is that objects
themselves are ultimately responsible for their own existence. A request to an object for it to commit

suicide can well be ignored by that object, if it decides that the time is simply not right. Similarly, it is

not up to the object manager to decide when objects are “garbage”. On the other hand, if a passive
object is no longer referenced by any other object (except by system objects, such as the object manager),
then this is probably a good hint that the object has become garbage. The object manager therefore

maintains a reference count for objects, and when that count drops to zero, the object in question is

notified. It may then decide whether to commit suicide, or possibly initiate some other action.

5. CONCLUSIONS

Hybrid is a system for programming with abstract data types. There is a uniform view of all objects,
so we do not distinguish between “objects” and “programs”—instead, every process is an integral part of

the behaviour of an object. An idle object can be activated by sending it a message (i.e., invoking an

operation). Objects can also be automatically triggered into action by having them wait for a

precondition with a while await statement.

Objects are persistent, meaning that the system automatically saves consistent states of the object
environment. Objects that are idle are normally kept in the stable storage object database. They are

brought into memory only when they are activated by a message or a trigger condition.

Objects are referenced by unique object identifiers. The complete object universe consists of many

object environments, each with its own object manager, communicating over a network. To protect the

integrity of objects taking part in inter-node transactions (where failure of some component of the

network is possible), atomic events are available as a programming construct. Events are useful for

preventing inconsistent states of the object environment from being seen by objects contending for the

same resources.

A draft language specification is nearly complete. A prototype implementation written in C will be

starting shortly.

— 55 —

REFERENCES

IA.HLS84I Ahisen, M., Bjornerstedt, A., Britts, S., Hulten, C., and Soderlund, L., “An architecture

for object management in OIS”, ACM Trans. on Office Information Systems 2(3), 1984,

pp. 173-196.

ALBA85} Albano, A., Cardelli, L., and Orsini, R., “Galileo: a strongly-typed, interactive conceptual
language”, ACM Trans. on Database Systems 10(2), 1985, pp. 230-260.

ANDR83I Andrews, G.R. and Schneider, F.B., “Concepts and notations for concurrent

programming”, ACM Computing Surveys 15(1), 1983, pp. 3-43.

BERN81] Bernstein, P.A. and Goodman, N., “Concurrency control in distributed database

systems”, ACM Computing Surveys 13(2), 1981, pp. 185-221.

BIRT73I Birtwistle, G.M., Dahi, O-J., Myhrhaug, B., and Nygaard, K., Simula Begin, Auerbach,
Philadelphia, PA, 1973.

C0X83J Cox, B.J., “The object oriented pre-compiler”, SIUPLAN Notices 18(1), 1983, pp. 15-22.

DLIK75] Dijkstra, E.W., “Guarded commands, nondeterminacy, and formal derivation of

programs”, Comm. ACM 18(8), 1975, pp. 453-457.

FABR74) Fabry, R.S., “Capability-based addressing”, Comm. ACM 17(7), 1974, pp. 403-412.

~GOLD83) Goldberg, A., and Robson, D., Smalltalk 80: The Language and Its Implementation,
Addison-Wesley, Reading, MA, 1983.

HOAR74} Hoare, C.A.R., “Monitors: an operating system structuring concept”, Comm. ACM

17(10), 1974, pp. 549-557.

IH0A~R78] Hoare, C.A.R., “Communicating sequential processes”, Comm. ACM 21(8), 1978, pp.

666-677.

HOGG85I Hogg, J., “Intelligent message systems”, in Office Automation: Concepts and Tools,
Tsichritzis, D.C., ed., Springer-Verlag, Berlin, 1985, pp. 113-134.

KERN78] Kernighan, B.W. and Ritchie, D.M., The C Programming Language, Prentice-Hall,
Englewood Cliffs, NJ, 1978.

KOHL81I Kohier, W.H., “A survey of techniques for synchronization and recovery in decentralized

computer systems”, ACM Computing Surveys 13(2), 1981, pp. 149-183.

KRIS83] Kristensen, B.B., Madsen, O.L., Moller-Pedersen, B., and Nygaard, K., “Abstraction

mechanisms in the BETA programming language”, Proc. 10th ACM Symposium on the

Principles of Programming Languages, 1983, pp. 285-298.

LAFF85} Laff, M.R. and Hailpern, B., SW 2—an object-based programming environment, Tech.

Rep., IBM Thomas J. Watson Res. Ctr., Yorktown Heights, New York, NY, 1985.

LISK77] Liskov, B., Snyder, A., Atkinson, R., and Schaffert, C., “Abstraction mechanisms in

CLU”, Comm. ACM 20(8), 1977, pp. 564-576.

LISK83I Liskov, B. and Scheifler, R., “Guardians and actions: linguistic support for robust,
distributed programs”, ACM Trans. on Programming Languages and Systems 5(3), 1983,

pp. 381-404.

~MOSS811 Moss, J.E.B., Nested Transactions: An Approach to Reliable Distributed Compvting, Ph.D.

- Thesis, MIT/LCS/TR-260, Dept. Ele~Eng. and Càmp Sc., MIT, Cambridge, MA, 1981.

MYLO8O] Mylopoulos, J., Bernstein, P.A., and Wong, H.K.T., “TAXIS: a language facility for

designing database-intensive applications”, ACM Trans. on Database Systems 5(2), 1980,

pp. 185-207.

— 56 —

~N1ER85a1 Nierstrasz, O.M., “An object-oriented system”, in Office Automation: Concepts and Tools,

Tsichritzis, D.C., ed., Springer-Verlag, Berlin, 1985, pp. 167-190.

IN]ER85bI Nierstrasz, O.M. and Tsichritzis, D.C., “An object-oriented environment for OIS

applications”, Proc. 11th mt. Conf on Very Large Data Bases, 1985, pp. 335-345.

STRO84} Stroustrup, B., Data Abstraction in C, Computing Science Tech. Rep. 109, AT&T Bell

Lab., Murray Hill, NJ, 1984.

TSIC82] Tsichritzis, D.C., Rabitti, F., Gibbs, S.J., Nierstrasz, O.M:, and Hogg, J., “A system for

managing structured messages”, IEEE Trans. on Communications Com-30(1), 1982, pp.

66-73.

VERH78] Verhofstad, J.S.M., “Recovery techniques for database systems”, ACM Computing

Surveys 10(2), 1978, pp. 167-195.

WEIN81] Weinreb, D. and Moon, D., The Lisp Machine Manual, Symbolics Inc., 1981.

WIRT83] Wirth, N., Programming in Modula-2, Springer-Verlag, Berlin, 1983.

~WULF74] Wuif, W., Cohen, E., Corwin, W., Jones, A., Levin, R., Pierson, C., and Pollack, F.,
“HYDRA: the kernel of a multiprocessor operating system”, Comm. ACM 17(6), 1974,

pp. 337-345.

— 57 —

Object-Oriented Database Development at Servio Logic

David Maier

Servio Logic Development Corporation
and Oregon Graduate Center

Allen Otis

Alan Purdy

Servio Logic Development Corporation

ABSTRACT

We describe the development of the GemStone object-oriented database system, which supports

objects and messages similar to those in the Smailtalk-SO language. We summarize the functional

requirements of the system. We discuss key decisions made and technical challenges encountered during

the development.

1. INTRODUCTION

This paper reports on the development of an object-oriented database system named “GemStone”.

The goal of our work has been to merge object-oriented programming language technology with database

technology. GemStone combines the powerful data type definition and code inheritance properties of

Smalltalk-80 with permanent data storage, multiple concurrent users, transactions, and secondary indexes.

For the past two years we have been developing a commercial database product running in a

VAX/VMS environment with IBM-PC front-end interfaces. The product is aimed at application

developers desiring flexible data modeling on which to build their next generation of applications. The

system is currently being tested, with first customer shipments planned for the first quarter of 1986.

This paper outlines the requirements that guided our work and gives an overview of key decisions

made during the development of GemStone. We identify major problems encountered during

development, including some which remain as topics for further research.

Authors’ address: Servio Logic Development Corp., 15025 S.W. Koll Parkway #1A, Beaverton, OR 97006 (503/644-4242).
Author’s address: Department of Computer Science and Engineering, Oregon Graduate Center, 19600 N.W. von Neumann Drive,

Beaverton, OR 97006 (503/690-1154).
CSNET: maierOOregon-Grad.

— 58 —

2. GOALS AND REQUIREMENTS

Our overall goal is to provide a tool for the solution of data management and information modeling
problems not easily solved using relational or network systems. Following are more specific requirements
that guided the product development work.

2.1. Data Modeling Requirements

GemStone must provide the following modeling capabilities MAIES4]:

• Allow the application developer to define a data model matching the structure of information in his

problem.

• Support new data types defined by the user, rather than constraining the user to a fixed set of data

types. New types must share the same syntax and semantics as the system-supplied types, for the

purposes of application programming.

• Model the behavior of entities in the real world, not just their structure. For example, GemStone

should facilitate storage of rules and actions as part of the data and allow queries to be stored as data.

The system should facilitate rapid prototyping of solutions to information management problems and

provide for handling of unexpected data values.

• Package behavior with structure to create new data types.

• Provide direct support for variable length data structures. Fields within a record may be variable in

length; in addition a variable number of records may exist in an array or a set.

We distinguish between data types and data structures in defining these requirements. A data type is a

collection of operators—the protocol for operating on a particular structure. Data structures are made up

of atomic values (such as integers, strings, or Booleans) plus constructors (such as record, set, or array).
In conventional systems, there is a one-to-one correspondence between data types and data structures.

Atomic values typically have a fixed set of operations such as arithmetic and comparison. Constructors

also have a fixed set of operations such as “set field”, “get field” for records; or “add record”, “delete

record” for relations. These restrictions limit the data modeling capabilities of such a system. The lack of

nested application of constructors means that certain real-world relationships cannot be modeled directly
with conventional systems. For example, it is not possible to define a relation of relations to model

projects for employees of a department. The inability to add new operations limits the new types that

can be added to a system. For example, an ordered list can be represented with a relation by including an

“order” field, but it is not possible to add list operations, such as “insert after”, to the query language.
Such an operation must be implemented via a sequence of database calls from a general purpose language.

For GemStone to get around the constraint of “data types = data structures”, its data model must

provide the ability to define new operations on a data structure, rather than supplying only a fixed set

associated with each constructor. To get reasonable performance, the collection of constructors must be

rich enough that most data types have direct implementations. In particular, we should be able to

capture many-to-many relationships, collections, and sequences directly. For an easily usable system, we

should be able to nest the structuring operations to arbitrary levels, ant use previously defined data types

as building blocks for other types.

2.2. Data Management Requirements

The following data management functions must be provided:

• multiple concurrent users

• data location transparency

• security, to allow users to keep data private and declare degrees of sharing for public data

59 —

• concurrency transparency (as far as possible) and enforcement of serializability of transactions

• user-selectable replication of data, so that sensitive data can survive a single media failure with no

loss of committed transactions

• implementation of transactions with careful update of data and atomic commit/abort operations to

ensure no loss of committed data on power failure

• schema definitions to support creation of secondary indexes, system maintenance of indexes, and index

transparency

In addition, the object-oriented features of the GemStone require the system to maintain object
identity and manage object storage space.

2.3. User Interface and Environment Requirements

The following user interfaces are required:

• an interactive interface for definition of new data types, and for direct execution of ad-hoc queries in

GemStone’s OPAL language

• a procedural interface to conventional languages, such as C and Pascal, to allow connection of existing
applications to the database, and to allow OPAL code to be mated to user I/O functions

• a windowing package on which to build user interfaces for applications

3. DEVELOPMENT DECISIONS

Several key decisions were made during the transition from research to product development. In this

section we define some terms and then describe some of these decisions.

3.1. Background

Figure 1 presents the elements of GemStone. All data items are objects, either atomic (numbers,
characters, booleans) or structured. All structured objects are divided into slots called instance variables,
each of which has a value that is another objeèt. Structured objects come in three flavors based on the

types of their instance variables. Named instance variables resemble attribute names in a relational tuple.
Indexed instance variables are consecutively numbered starting at 1, much like elements of an array.

Anonymous instance variables are used to form collections where only membership counts, and order is

immaterial, such as bags and sets.

The behavior of an object is described via messages, which are commands sent to an object (by
another object) to update its state or report on the current value of its state. Each message is

implemented by a method, which is a procedure written in OPAL. Classes are the encapsulation
mechanism for bundling behavior with structure to form new types. A group of objects with the same

structure, messages, and methods have that common information factored out and stored in a class-

defining object which all those objects reference. Objects in such a group are called instances of the class.

A class-defining object can restrict the type of object that can be the value of an instance variable in any

of its instances. Further, the classes are organized into a class hierarchy through which structures and

methods are inherited.
-

All objects in the system reside in a disk-based object space which is divided into repositories. A

repository represents a dismountable partition of the object space and is implemented as a direct access

disk file on the underlying operating system. Repositories are further divided into non-overlapping regions
called segments for purposes of authorization and concurrency control. A segment is a chunk of object

storage that is owned by a particular user, who can store objects in it and can grant read or write access

— 60 —

Approximate Equivalences

GemStone Conventional

object record instance, set instance

instance variable field, attribute

instance variable constraint field type, domain

message procedure call

method procedure body

class-defining object record type, relation scheme

class hierarchy database scheme

class instance record instance, tuple

collection class set, relation

Fig. 1. Approximate equivalence of GemStone elements to conventional data base elements.

to other users. Segments expand to accommodate the objects stored in them. While repositories and

segments are partitions of physical storage, their behavior is accessible via OPAL objects that represent
them. Thus we mask the physical implementation of repositories and segments while still allowing control

of them from within OPAL.

3.2. Language

We decided to use an existing object-oriented language, Smalltalk-80 GOLD83], as the basis for the

syntax and semantics of our own language, OPAL. Such a computationally complete and extensible

language meets our data modeling requirements. It also provides one integrated language for data model

definition, data manipulation, and system control. In addition, most of the logic of an application (except
for user interface I/O) can be written directly in this language. The Smalltalk basis also provides an

existing literature and market base which reduces our development and marketing expense. We have

extended Smailtalk in the area of associative access support for queries.

3.3. OPAL Implementation

The OPAL language makes it possible to write a large part of the system in OPAL itself. We used

this feature extensively to get our first prototype running quickly COPE84I. Test results from the first

prototype helped determine which functions of the product needed to be implemented as primitive
operations and which could be written in OPAL and executed interpretively.

We implemented OPAL by writing our own object storage manager, OPAL compiler, and interpreter.
This approach was required to provide a multi-user, disk-based system, as opposed to a single-user,
memory-resident Smalitalk system. We also developed our own class hierarchy and virtual image, which

provide a set of system-supplied data types tailored to database functions.

— 61 —

A

3.4. Data Management

GemStone’s transaction control uses an optimistic approach that gives read-only transactions priority

over read/write transactions when they request a commit. We assume that read-only transactions are

more frequent than read/write transactions. Authorization and concurrency are controlled at the

granularity of segments, since control on individual objects would incur unacceptable performance

penalties.

Repositories may be replicated on the disk for resiliency to media failures. Replication was chosen

over the traditional transaction log file. Replication is more feasible to implement within the other

constraints of our object storage manager.

3.5. GemStone’s Environment

The OPAL language and storage management software runs in the DEC VAX/VMS environment.

The interactive user interfaces include an OPAL class browser, source code workspace, and bulk

loader/dumper. These interfaces constitute the OPAL Programming Environment (OPE). The OPE

operates under the Microsoft Windows environment on IBM-PCs networked to a VAX, as shown in Figure

2. This user interface environment was chosen to provide a cost-effective nieans to offload some of the

screen I/O processing from the VAX, and to allow the use of inexpensive, purchased window management

tools.

4. DESIGN CHALLENGES

Obviously, in designing a system to meet this set of requirements we encountered problems.

Following are summaries of the most challenging problems.

4.1. Indexes and Constraints

Integration of secondary indexes with a Smalltalk-like language is an area of little published research.

We had to decide whether secondary indexes were associated with the class of an object or with instances

of a class. At the source code level, we wanted to have minimal effect on the syntax and semantics of

Smalltalk. In addition, the object storage space supports multiple connectivity; thus we have to provide

the necessary functions at runtime to ensure that indexes are maintained consistent with the data as

updates to the internal states of objects are performed. Associating an index with a class makes it easy to

detect when the state of an object changes. However, unlike a relational system in which all records of a

given type are in a single relation, instances of a single class can be stored in multiple OPAL collections

which might belong to different applications. A given application should not have to bear the cost of

updating indexes for another application. In addition, a user may not have authorization to access all of

the instances of a class. To overcome these problems, we chose to create indexes on collection objects

rather than on classes.

Efficient implementation of indexes required the addition of class constraint semantics to Smalltalk.

We found it necessary to constrain both the class of objects stored as elements in a collection, and the

class of objects stored as instance variable values in those elements. For example, if a collection of

employees is to be indexed by their last name, we must be assured that every Employee object has a

“name” instance variable, and that each “name” in turn has a “lastname” instance variable. The value of

“I~staame”~ must be constrainedto be of a known class. The following excerpt of OPAL code illustrates

specification of these constraints.

— 62 —

IBM - PC

NETWORK SOFTWARE

LAN
VAX

NETWORK SOFTWARE

I

OPAL Execution and

Storage Management

VMS FiLE I/O

DATA

BASE

Fig. 2. GemStone environment.

Object subclass: #PersonName
instVarNames: #(‘firstName’ ‘lastName’)
constraints: #firstName, InvariantString~,

#1 #lastName, InvariantString] J.

Object subclass: #Employee
instVarNames: #(‘name’ ‘taxldNumber’)
constraints: #1 #name, PersonName],

#taxldNumber, Integer]]

Set subclass: #EmployeesSet
instVarNames: #0
constraints: Employee

— 63 —

MS~WINDOWS

OPE other

Application

Procedural interface

I I

4.2. StabJe Storage and Transactions

Storage management in an object-oriented system can be computationally expensive for the functions

of storage allocation, object identity maintenance, garbage collection, and variable-size object

management. The many small objects, and the small number of very large objects, must be handled

efficiently in both storage space and access time. Much of our effort has been devoted to developing

memory management and buffering techniques which provide efficient object management in a disk based

environment. In addition, such features as transactions, access control, and concurrent access further

complicate the problem. In the case of concurrency and access control, individual objects are too fine a

granularity for acceptable performance, so we control these functions at the segment level.

Because repositories of the object space can be dismounted, techniques must be provided to preserve

consistent object identity when information is taken offline and later brought back online (possibly at a

different site or on a different machine). Users must be given meaningful error messages if an object’s

repository is temporarily dismounted.

We are just beginning to accumulate benchmarks on physical access patterns to the object storage

space. More work remains in the area of algorithms for clustering objects to optimize specific queries.

Physical clustering of objects is complicated if the data for an application exhibit multiple connectivity.

Improvements in this area will make GemStone more competitive in a production environment.

4.3. Documentation and Training

Object-oriented programming is still a very new field. Because there is not a large body of

programmers experienced in Smalltalk-like languages, we are planning to offer formal customer training
courses in addition to the normal user manuals.

GemStone does not make complex application domains simpler, but does allow more direct modeling
with less encoding than other data models. It also allows capturing more of the information’s semantics in

the database. A formal object-oriented database design methodology for complex domains does not exist

yet. We plan to offer such assistance in our training material.

5. SUMMARY

GemStone is designed to provide flexible data modeling capabilities for the application developer.
GemStone provides an object-oriented, disk-based storage management system, with a matching object-
oriented language, OPAL. The OPAL language is a descendant of Smalltalk-80 and is the language for

data definition, data manipulation, and computation functions of GemStone.

ACKNOWLEDGEMENTS

The authors’ colleagues at Servio have all played a vital role in the development of GemStone. We

are indebted to their perseverance and dedication to the project.

TRADEMARKS

GemStone and OPAL are trademarks of Servio Logic Development Corporation. Smalitalk-SO is a

trademark of Xerox Corporation. DEC, VAX and VMS are trademarks of Digital Equipment Corp.

Microsoft and Windows are trademarks of Microsoft Corp. IBM-PC is a trademark of IBM Corp.

— 64 —

REFERENCES

GOLD83} Goldberg, A. and Robson, D., Smalltalk-80: The Language and Its Implementation,

Addison-Wesley, Reading, MA, 1983.

C0PE841 Gopeland, G. and Maier, D., “Making Smailtalk a database system”, Proc. ACM

SIGMOD Conf., 1984, pp. 316-325.

FMAIE84I Maier, D. and Price, D., “Data model requirements for engineering applications”, Proc.

IEEE 1st mt. Workshop on Expert Database Systems, 1984, pp. 759-765.

— 65 —

Some Aspects of Operations in an Object-Oriented Database

Nigel Derrett

William Kent

Peter Lyngbaek

Hewlett-Packard Laboratories

ABSTRACT

The concept of data abstraction is a desirable feature of a data model, and is a central feature of a

so-called “object-oriented” data model. This requires that operations on data must be stored in, and

executed by, the database management system. This, in turn, means that the designers of an object-
oriented data model must make some fundamental decisions about the nature of database operations and

how they are to be represented, stored, and executed. We discuss some of the decisions which have been

made in the design and implementation of the Iris data model.

1. INTRODUCTION

In this paper we shall discuss some aspects of database operations in the Iris DBMS prototype, under

development at Hewlett-Packard Laboratories. We shall give a very brief introduction to the Iris data

model, and then go on to discuss some specific aspects of this model. Before we start, however, it seems

appropriate to state what we mean when we say that the Iris data model is “object-oriented”.

The words “object-oriented” seem to have as many meanings as some other well-used phrases such as

“block-structured” and “structured programming”. We do not wish to enter or provoke a debate about

what the words ought to mean, we will merely note that when we say that the Iris data model is “object-
oriented” we mean the following:

• An Iris database is a collection of abstract data types LISK74I, with operations defined on the types,
and with objects which are instances of the types.

• Objects can be accessed and manipulated only by invoking operations defined on their types. Data

structures and details of implementation are hidden.

In other words, for us the two central features of an object-oriented data model are the entity concept
and data abstraction. Both of these features are lacking in, for example, the pure Relational data model

CODD7Oj, although an attempt has been made-to add the entity concept to it CODD79].

Authors’ address: Hewlett-Packard Laboratories, P.O. Box 10151, Palo Alto, CA 94303-0866 (415/857-8729).
CSNET: hplabs!derrett©csnet-relay.

— 66 —

2. AN INTRODUCTION TO THE IRIS DATA MODEL

2.1. Objects

Objects in the data model are atomic items. Objects may serve as arguments to operations, and may

be returned as results of operations. Each object is associated with one or more types; these types act as

constraints, determining which operations the object may serve as an argument to.

A distinction is made between literal objects, such as character-strings and numbers, and non-literal

objects, such as persons and bank-accounts. Literal objects are directly representable, whereas non-literal

objects are representable only by surrogate identifiers. The identity of a non-literal object does not

depend on the values of its properties—indeed, an object can exist without having any property values at

all. The object is referenced internally in the database by its surrogate; it may be referenced from an

application program either in terms of its property values (e.g., the person with name “Jones”) or in terms

of its relationships with other objects (e.g., the manager of the sales department).

2.2. Types

Types are organized in a directed graph structure which supports generalization and specialization

SMIT77}. A given type may have multiple immediate subtypes and multiple immediate supertypes. Any
object which belongs to the type also belongs to all of its supertypes. The type Object is an ancestor

type of all other types, and therefore contains all objects.

An object may have more than one type at any time, and it may gain and lose types during the

course of its existence. Thus, for example, an employee object in a company database might also be a

customer object at some time, and will become a retiree object one day.

2.3. Operations

All Iris operations are functions, that is to say each operation returns a collection of results. (This
collection may be empty.) Therefore we will use the words “function” and “operation” synonymously.

Properties of objects and relationships between objects are expressed in terms of (possibly multi-

valued) functions, which are defined over their types. For example the function Department_of may be

defined on objects of type employee:

Department_of: employee —~ department

Department_of(Smith) will return the department to which Smith is currently assigned.

A function can express properties of several objects. For example, the function

Marriage_date: person X person —~ date

defined on pairs of persons, should return the date on which the persons were married (if any).

Functions may return multiple and complex results. For example, the function

On_Hand: part —~ warehouse X quantity

returns the set of all warehouses in which a particular part is stored, together with their quantities-on-
hand. This set may be empty.

Upper- and lower-bound constraints may be placed on the cardinality of parameters and results of

operations.

An operation which accepts parameters of type t will also accept parameters which belong to subtypes

of t. Thus, for example, an operation defined upon person objects will also apply to employee objects

(assuming here that employee is a subtype of person). This means that subtypes inherit all of the

properties of their supertypes.

— 67 —

2.4. Querying the Database

The database can be queried by the FIND command, which returns all combinations of objects which

satisfy some predicate. The syntax of a query is

FIND variables ‘WHERE (FORSOME variables) predicate

For example, the query

FIND e/employee
WHERE (FORSOME rn/employee, d/department)
d = Department_of(e) AND m = Manager_of(d) AND Salary(e)> Salary(rn)

finds all employees who earn more than their managers. This query could have been formulated more

succinctly as follows:

FIND e/ernployee WHERE Salary(e) > Salary(Manager_of(Departrnent_of(e)))

The effect of the two query formulations is the same.

Predicates in queries may contain function calls, constants, variables, comparison operators, and

logical operators.

Meta-data is modeled as a collection of objects, and queries about the database schema are made just
like queries about user data.

2.5. Updating the Database

Properties of objects can be modified by changing the values of functions. For example:

SET Salary(Srnith) = $30000.00

A multi-valued function can be changed by the ADD and REMOVE commands. For example:

ADD Employeesjn(Sales) = Smith

2.8. Operation Definitions

A new operation is defined in two steps: first by specifying the types and cardinalities of its

parameters and results and then by specifying how it is implemented. The current Iris prototype only
allows the database definer to create operations which are functions without side-effects. Ways of defining
and implementing more complex operations are discussed in the last section of this paper.

There are two ways to specify the implementation of a function in Iris: the graph of the function (i.e.,
the set of all input values and their corresponding results) may be stored explicitly in a database table, or

the function may be derived from other functions. In the second case the implementation of the function

is expressed as a FIND statement. For example, a Supervisorof function may be defined, and its

implementation specified as follows:

DEFINE Supervisor_of: employee —i employee

DERiVE Supervisor_of(e) =
FIND s/employee WHERE s = Manager_of(Departrnent_of(e))

— 68 —

3. SOME ASPECTS OF OBJECTS AND OPERATIONS IN THE IRIS DATA

MODEL

In this section we will discuss briefly some of the decisions which were made during the design of the

Iris data model.

3.1. Active vs. Passive Objects

Any designer of an object-oriented system must decide from the start whether objects are to be

regarded as active or as passive things.

Active objects, such as SIMULATION class objects in Simula EBIRT73], or entities in Beta EKRIS81],
may be thought of as processes, each with its own script of actions waiting to be activated.

Passive objects, such as those in Smailtalk GOLD83I, do not have any ongoing activity associated

with them per Se, but each object has associated with it a sort of “subroutine library” of operations which

can be called by an active process.

The Iris data model provides only passive objects, largely for reasons of simplicity and ease of

implementation. It may be necessary to review this decision later on, if the model is to be extended to

include triggers or active monitors.

3.2. To Whom do the Operations Belong?

Having chosen that database objects are passive, it is still necessary to determine the nature of the

association between objects and the operations which may be applied to them.

One approach would be to say that each object has its own, possibly unique, set of operations

belonging to it. This approach may be contrasted ~with that of Smalitalk, where each object belongs to a

type, and operations are associated with the types. A ~third approach may be seen in Modula-2 WIRT83]
where objects and types have no actions belonging to them at all; objects are merely tokens which can be

passed as parameters to operations.

The difference between these three approaches is a subtle one, but it pervades the whole design of an

object-oriented data model. The Iris data model follows the Modula-2 approach—Iris objects can be

thought of as surrogates. Properties of an object can be accessed and manipulated by passing the object
as a parameter to an operation, but operations do not belong to the objects or to their types. Types are

used as a constraint mechanism to determine whether an object can be passed as a parameter to a

particular operation.

This enables the model to deal gracefully with operations which act upon multiple objects or

multiple types. Consider, for example, the operation assignemployee_to_department(e, d) which

takes an employee object and a department object and makes the employee a member of the department.
Should this operation be associated with the employee ‘type or with the department type?—neither seems

more appropriate than the other. In the Iris data model, such an operation can be thought of as Ire e

floating—it does not belong to any single type or object.

The database designer is allowed to hide implementation details of operations by creating modules. A

module contains declarations of data structures and operations. Objects and operations within the

module may be selectively exported to other modules or to application programs. Objects and operations
which are not explicitly exported are hidden.

— 69 —

3.3. Properties of Objects

Two very common activities in database systems are reading and updating “properties” (attributes) of

objects. Examples of properties are the name and salary of an employee. The designer of a data model

must decide therefore how properties are to be treated, in particular whether accessing properties is

syntactically different from calling functions. In a data model which supports functions, such as the

Functional data model SHIP81], and the Iris data model, there seems to be no good reason to make a

distinction at the application program level between those properties whose values are stored in records on

a disk and those whose values require some computation, since a property may change from one to the

other during the life of a particular database. Therefore the Iris data model treats all properties as

functions. This provides flexibility and a high degree of data independence. The action required to

implement a particular function may be as simple as reading a field on disk or as complex as invoking a

set of rules.

3.4. The GET and SET Commands

In a similar vein, conventional programming languages usually distinguish between functions which

are implemented by storing the graph of the function (vectors and records) and those which are

implemented as the result of a computation (subroutines). The former are typically updatable, whereas

the latter are not. This distinction does not seem appropriate in a database management system where a

combination of stored-graph functions and computed functions is required. The difference between these

two sorts of functions is, of course, significant to the database management system itself, but it should not

be visible to the application program. Relational database management systems deal with this problem
by making computed functions (views) look like stored ones (relations). The Iris model has taken the

opposite approach—all functions look like computed functions.

A function value may be accessed by the GET command and its value may be changed by the SET

command:

c = GET F(a, b)

SET F(a, b) = newval

The word “GET” is omitted in our examples and in Iris queries, since the use of the function name alone

can be interpreted as an implied GET. Thus, each function corresponds to a “load/update pair” of

operations, where either member of the pair may be missing. (In other words, the function may or may

not be gettable, and it may or may not be settable.) It would have been possible to require two operation
names (e.g., Get_F(a, b) and Set_F(a, b, newval)) for the GET and SET operations on F, but this

creates rather a lot of operation names in a database design, and the semantic interdependence of the

pairs of operations is lost.

3.5. Relationships, Symmetry of Access, and Inverses of Functions

One potential weakness of a data model based on functions is that relationships are not supported
well. This is in contrast to the Relational model, which supports relationships well but which supports

functions poorly. The relationship between employees and their departments is reflected in a functional

model by the function Department_of(employee). A desire for symmetry in queries leads us to

introduce the inverse function Employees_in(department). These two functions must be kept

synchronized, since they both reflect the same relationship. The problem becomes much worse if the user

wishes to model a ternary, or n-ary, relationship, such as parts, warehouses, and quantities. Here there

are eight interrelated functions, and the notion of simple inverses does not allow us to specify how they

are interrelated.

Relationships are modeled in the Iris data model as predicate functions, for example:

— 70 —

Storage: part X warehouse X quantity —p boolean

The predicate function evaluates to true if and only if the parameter objects are in the specified
relationship. Functions such as

-

Quantity_in~warehouse: part X warehouse —p quantity

may be defined in terms of these base predicates, and in this way families of related functions may be

defined.

We note that a database designer may wish to group the operations in his or her design in either of

two ways:

1. Grouping according to argument types (the traditional object-oriented approach), giving the sense of

defining the properties of objects.

2. Grouping by relationships (the traditional relational approach), giving the sense of defining families of

semantically-related operations.

Either of these ways of grouping operations together is valid in its context, and the Iris data model does

not insist on one or the other.

3.8. Binding of Variables in Function Calls

The syntax of a function call in Iris distinguishes between two types of parameters—sometimes called

input parameters and result parameters. For example, in the function call

n = Name(p)

the variable p is an input parameter and n is a result parameter. In some traditional programming

languages, there is a rule which says that all input parameters must have values before the function call is

executed, and that result parameters receive a value as a result of the call. An exception to this is Prolog

CLOC81I, and the Iris data model has taken a similar approach. Although there is a syntactic distinction

between input and result parameters in a function call, there is no semantic distinction made between

them. Input and result parameters in a function call may or may not be thought of as having values

before the call, and as becoming bound to values as a result of the call.

For example the queries

FIND p/person WHERE Name(p) = “Jones”

FIND n/string WHERE Name(jones) = n

are both valid Iris queries, one of which has the effect of binding the variable p to the set of all persons

whose name is the string “Jones”, and the other of which binds the variable n to the string which is the

name of the person represented by the variable jones. In fact, a function call in a FIND clause really
acts as a filter, which restricts the combinations of possible objects returned by the FIND.

4. SPECIFYING AND STORING OPERATIONS

How to specify and store operations is the biggest technical difficulty which must be faced by the

designer of an object-oriented database management system. In effect, a programming language is needed

to specify operations, and this language must be implemented as part of the DBMS. Various possible

approaches to this problem have been identified, and several of them are being investigated in the Iris

project.

We must start by making a distinction between the language in which an operation is specified, the

form in which it is stored and implemented, and the language from which it is called. To draw an

analogy with a traditional programming environment, a subroutine might be specified in FORTRAN,

— 71 —

stored and implemented as machine code, and called from a Pascal program as if it were a Pascal

procedure. The same thing can happen with database operations. This means that an object-oriented
database management system must support one or more operation-specification languages, one or more

storage-and-implementation languages, and one or more operation-calling languages, which may or may

not be the same as the specification languages. In this section we will discuss specification languages, and

how operations are stored and implemented.

The first approach is to use a special-purpose database language for specifying operations. The

TAXIS system MYLOSOI uses this approach. An operation written in the database language is compiled
and optimized into some internal form which is stored in the database and later interpreted, in much the

same way that compiled queries are stored and executed in relational database management systems

today. This approach has the advantage that the language can be tailored to the DBMS, but has the

disadvantage that one ends up in the long run designing and implementing yet another programming
language. Furthermore, if the database designer is also the applications programmer, then she must learn

two programming languages—one for specifying operations on database objects, and the other for

specifying operations on programming-language objects.

The second approach is to use an existing programming language and its implementation for defining
and implementing database operations. The advantages are obvious—the database designer does not need

to learn a new language, and the DBMS implementers do not have to write a compiler and/or interpreter
for it. However, few conventional programming languages have the constructs needed to reference and

manipulate sets of data in a database (two exceptions are Pascal/R 50HM77} and Modula/R REIM84]),
and database optimization of operation bodies is not possible without writing a new compiler for the

programming language in question.

If one takes this second approach, one may decide to link the code for each database operation into

the database management system itself, or one may link it to the application program by providing a

subroutine library of database operations. There is a practical problem of dynamic linking if new

operations are to be added to a running database management system, and there is also a potential

problem of reliability and security if users are allowed to link their own subroutines into the DBMS. It

therefore seems preferable to link operations to the application programs, although the code for the

operations may be stored and managed by the DBMS. This is particularly easy when applications are

written in a language like Lisp, where operations can be stored in textual form in the database and loaded

dynamically when needed.

The third approach is to use a small subset of an existing programming language, but to write a

compiler which compiles operation bodies written in this subset into a form which can be interpreted by
the database management system. This internal form can be the same as that used in the first approach.
Additional operators may be added to the language subset if needed, in order to access database objects.
This approach is really the same as the first one, except that existing programming-language constructs

are used instead of inventing new ones.

All three of these approaches are being investigated, and Iris project members are currently

concentrating on the first two: a special-purpose definition language and its compiler, and a way of

specifying operations in an existing programming language (Lisp). It may be hoped that by providing the

database designer with the full power of a programming language when she needs it, it will be possible to

keep the special-purpose database language simple: most operations can be written in the simple language,
but Lisp is available for implementing those which cannot. The database designer pays a cost for using
this full power of Lisp for defining an operation—namely that no global optimization is performed on the

database calls in the operation body, that intermediate results must be shipped from the database to the

application program, and that the operation may not be callable from an application written in a different

programming language.
-

-

-

- 72 -

5. CONCLUSION

Conventional data models, such as the Relational model, do not support well some important
concepts, such as entities, types, constraints, actions, and data independence. In particular, it seems to be

necessary to allow database operations to be specified and stored in the database management system.
Several commercial relational database management systems do, in fact, already provide such stored

operations (as stored queries and views), but in a rather ad-hoc way. The designers of the Iris data model

have tried to reexamine the concept of a database operation, and to integrate it into the data model. In

this paper we have discussed some of the issues which arose during the design of the model.

A prototype implementation of the Iris data model is currently nearing completion.

ACKNOWLEDGEMENTS

Among the persons who have contributed to the Iris project are: Dushan Badal, David Beech, Henry
Cate, Ey-Chih Chow, Timothy Connors, Michael Creech, James Davis, Michael Epstein, Daniel Fishman,
Karen Hall, James Kempf, Brom Mahbod, Robert Marti, Joseph Mohan, Thomas Ryan, Allan Shepherd,
Alan Snyder, and Arun Swami.

The Iris project is a continuation of the 1DM project at Hewlett-Packard Laboratories BEEC83].

REFERENCES

BEEC83I Beech, D. and Feldman, J.S., “The integrated data model: a database perspective”, Proc.

9th mt. Con! on Very Large Data Bases, 1983, pp. 302-308.

fBIRT73] Birtwistle, G.M., Dahi, O-J., Myhrhaug, B., and Nygaard, K., Simula Begin, Auerbach,
Philadelphia, PA, 1973.

CLOC81] Clocksin, W.F. and Mellish, C.S., Programming in Prolog, Springer-Verlag, Berlin, 1981.

CODD7OI Codd, E.F., “A relational model of data for large shared data banks”, Comm. ACM,
13(6), 1970, pp. 377-387.

CODD79I Codd, E.F., “Extending the database relational model to capture more meaning”, ACM
Trans. on Database Systems, 4(4), 1979, pp. 397-434.

~GOLD831 Goldberg, A. and Robson, D., Smalltalk-80: The Language and Its Implementation,
Addison-Wesley, Reading, MA, 1983.

IKRIS81] Kristensen, B.B., Madsen, O.L., Moeller-Pedersen, B., and Nygaard, K., A Survey of the

BETA Programming Language, Norwegian Computing Center, Oslo, Norway, 1981.

LISK74I Liskov, B.H. and Zilles, S.N., “Programming with abstract data types”, SIGPLAN

Notices, 9(4), 1974, pp. 50-59.

MYLO8O] Mylopoulos, J., Bernstein, P.A., and Wong, H.K.T., “A language facility for designing
interactive database-intensive applications”, ACM Trans. on Database Systems, 5(2),
1980, pp. 185-207.

REIM84J Reimer, M., “The implementation of the database programming language Modula/R on

the personal computer Lilith”, Software Practice and Experience, 14(10), 1984, pp. 945-

956.

SCHM77] Schmidt, J.W., “Some high level language constructs for data of type relation”, ACM

Trans. on Database Systems, 2(3), 1977, pp. 247-267.

— 73 —

SHIP81} Shipman, D., “The functional data model and the data language DAPLEX”, ACM Tran8.

on Databa8e Sy8tem8, 6(1), 1981, pp. 140-173.

SM~IT771 Smith, J.M. and Smith, D.C.P., “Database abstractions: aggregation and generalization”,
ACM Tran8. on Databa8e Sy8tem8, 2(2), 1977, pp. 105-133.

WIRT83] Wirth, N., Programming in Modula-2, Springer-Verlag, Berlin, 1983.

- 74 -

A Message-Passing Paradigm for Object Management

GulAgha

Massachusetts Institute of Technology

ABSTRACT

We discuss the actor model which has been proposed as a suitable basis for exploiting large-scale

parallelism. Actor systems use message-passing to realize different control structures; communication is

thus fundamentai to computation in such systems. To organize tasks, allocate resources, and provide

debugging tools, all computation in actor systems can be structured in terms of transactions. Although
actors are a general purpose programming paradigm, several concepts from distributed databases are

relevant to actor systems. Besides transactions, such issues include the notions of consistency,

concurrency control, and deadlock. Actors provide a general means for easily implementing the usual

solutions in these areas. The underlying actor architecture also provides support for distributed

databases.

1. INTRODUCTION

The actor abstraction has been developed to exploit message-passing as a basis for concurrent

computation HEWI77a, HEWI77bI. The actor construct has been formalized by providing a

mathematical definition for the behavior of an actor system IAGHA85bI. Essentially, an actor is a

computational agent which carries out its actions in response to accepting a communication. The kinds of

actions that are carried out are:

o Send communications to itself or to other actors.

• Create more actors.

• Specify the replacement behavior.

In order to send a communication, the sender must specify a mail address, called the target. The mail

system buffers the communication until it can be delivered to the target. However, the order in which the

communications are delivered is nondeterministic (thus permitting the dynamic routing of messages

without substantial overhead). The mail address abstraction provides a mechanism for dynamic

reconfigurability in a system.

A basic difference between actors and the entities used in classical databases is that actors are active

The work described in this paper was supported by a grant from the System Development Foundation.

Author’s address: The Artificial Intelligence Laboratory, NE43-809, Massachusetts Institute of Technology, 545 Technology Sq.,

Cambridge, MA 02139 (617/253-5871 x5875).
CSNET: AghaOMIT-XX.

— 75 —

objects rather than passive data to be externally operated upon by a procedure. Declarative and

procedural information is thus encapsulated in a single actor. Actors are also intrinsically parallel—
different actors carry out their activities concurrently. The only constraint on the concurrency is the

causal data dependencies inherent in the computation.

Actors may be implemented on a variety of architectures. One proposal involves using a network of

multi-processors HEWI8OI. Another feasible implementation would be a fine-grain architecture based on

MIMD machines linked in a hyper-cube of high-dimensionality. In any case, an actor architecture must

support actor creation, real-time garbage collection, load balancing, and migration to maintain locality of

reference. These features mean that a database manager using actors would be free from considerations of

how to optimally distribute the information in the system. The actor model also provides a transaction

oriented view of computation, reconfigurability and extensibility, and freedom from low-level syntactic
deadlock.

One area of research in actors is the development of description systems for knowledge representation.
New techniques developed in description and reasoning are likely to have a profound effect on future

database systems since database systems will need to incorporate reasoning techniques for intelligent
processing of queries. The ability to reason, in turn, requires the. storage of intermediate results so that

computational resources are conserved. The life-time of objects incorporating intermediate results is

likely to be much shorter than that of the usual database records. In actor systems, most actors are

extremely short-lived. Thus techniques developed for the management of actors will have applicability in

intelligent database systems. An actor may be described by specifying:

• its mail address, to which there corresponds a sufficiently large mail queue; and,

• its behavior, which is a function of the communication accepted.

Abstractly, we may picture an actor with a mail queue on which all communications are placed in the

order in which they arrive and an actor machine which points to a particular cell in the mail queue. The

mail queue represents serialization of incoming communications. When an actor machine X,, accepts the

~th communication in a mail queue, it will create a new actor machine, X,,~1, which will carry out the

replacement behavior of the actor. This new actor machine will point to the cell in the mail queue in

which the n +l~ communication is (or will be) placed. The two actor machines X,, and X~ +~
will not

affect each others behavior. This can be pictorially represented as in Figure 1.

An event-based picture for computation in actors uses lifelines which are shown in Figure 2. Each

actor has an order of acceptance of communications which is linear. The events in the life of an actor are

mail

queue

P1. fl

Fig. 1. An abstract representation of transition.

— 76 —

recorded in the order in which they occur: the further down the line, the later in local time. Activations

(causal ordering of events) are indicated by the lines connecting two different actors with the arrow on the

line indicating causal direction. Finally, each lifeline is labeled by the pending communications (i.e., the

communications that have been received but not processed). CLIN81] used collections of life-lines to

provide a fixed-point semantics for actors. The resulting pictures are called the actor event diagrams.

lqfeline

creates actors

Fig. 2. Actor event diagrams. Each vertical line represents the events occurring in the life of an actor.

The arrows represent causal links.

2. TRANSACTIONS

In higher-level actor languages, computation is structured in terms of transactions. Every
communication is either a request or a response. The events between a request and its corresponding

response are considered a transaction. However, note that if the response is a complaint then, in the usual

sense of the term, the transaction has been aborted. The example below shows the implementation of a

bank account in the actor language ActS EAGHA85cJ.

We use the keyword Is—Request to indicate a handler for a request communication. The request

must come with the mail address of the customer to which the reply is to be sent. The customer is used

as the target of the reply. A request also specifies a mail address to which a complaint can be sent should

the request be unsuccessful. From a software point of view, providing independent targets for the

complaint messages is extremely useful because it allows the error-handling to be separated from

successfully completed transactions. Note that the expression in the become command specifies the

replacement behavior.

(define (Account (with Balance b))
(Is-Request (a Balance) do (reply b))
(Is-Request (a Deposit (with Amount = a)) do

(become (Account (with Balance (+b a))))
(reply (a Deposit —Receipt (with Amount a))))

(Is-request (a Withdrawal (with Amount = a)) do

(if’(> a b)
(then do (complain (an Overdraft)))
(else do

(become (Account (with Balance (4 a))))
(reply (a Withdrawal—Receipt (with Amount a)))))))

In a distributed system, it is not always possible to revert transactions without severely constraining

the amount of concurrency in the system. This is because transactions are nested in each other, and sub-

transactions may be shared between different transactions. The only way to guarantee the ability to

— 77—

revert ~py aborted transactions is to record the history of ~ll computations. While it is theoretically
possible to this (by associating an event recorder with each actor), the process is prohibitively expensive.
Allowing complaint handlers permits us t~ tailor the corrective measures to the particular application
domain.

In general, various means of concurrency control can be implemented in actors. In the next section,
we present an example which frequently arises in actor systems and involves concurrency control to

preserve the structure of transactions. The example is taken from AGHA85aj.

3. INSENSITWE ACTORS

When an actor accepts a communication and proceeds to carry out its computations, other

communications it may have received must be buffered until the replacement behavior is computed.

However, the desired replacement for an actor may depend on communication with other actors. For

example, suppose a checking account has overdraft protection from a corresponding savings account.

When a withdrawal request results in an overdraft, the balance in the checking account after processing
the withdrawal would depend on the balance in the savings account. Thus the checking account actor

would have to communicate with the savings account actor, and more significantly the savings account

must communicate with the checking account, before the new balance (and hence the replacement

behavior) is determined. The relevant communication from the savings account can ~ therefore be

buffered until a replacement is specified!

Essentially, the problem is of locking the actor to avoid anomalous interaction between independent
transactions. However, an important characteristic of our solution is that it does not rely on external

control over an actor’s behavior. We deal with the problem simply by defining the concept of an

insensitive actor which processes a type of communication called a become communication. A become

communication tells an actor its replacement behavior. The behavior of an insensitive actor is to buffer

all communications until it receives a communication telling it what to become.

First, consider what we would like the behavior of a checking account to be: if the request it is

processing results in an overdraft, the checking account should request a withdrawal from its savings
account. When a reply to the request is received by the checking account, the account will do the

following,:

• Reply to the customer of the (original) request which resulted in the overdraft; and,

• Process requests it subsequently received with either a zero balance or an unchanged balance.

Using a call expression, where the value of expression is bound to the identifier in the let expression,
we can express (in pseudo-code) the fragment of the code relevant to processing overdrafts as follows:

let r = (call my —savings withdrawal, balance — amount

{ if r = withdrawn

then become checking —acc (0, my —savings)
else become checking —acc (balance , my —savings

reply fr})

To show how a call expression of the above sort can be expressed in terms of our kernel, we give the

code for a bank account actor with overdraft protection. We give the code for illustrative purposes. A

bank account with an overdraft protection is implemented using a system of four actors. Two of these are

the actors corresponding to the checking and savings accounts. - Two-other actors are created to handle

requests to the checking account that result in an overdraft. One of the actors created is simply a buffer

for the requests that come in to the checking account while the checking account is insensitive. The other

actor created, an overdraft process, is a customer which computes the replacement behavior of the

checking account and sends the reply to the customer of the withdrawal request. We assume that the

code for the savings account is almost identical to the code for the checking account and therefore do not

— 78 —

checking-acc saviizgs-acc~

(request)

Fig. 3. Insensitive actors. During the dashed segment the insensitive checking account buffers any

communications it receives.

specify it here. The structure of the computation is illustrated by Figure 3 which gives the actor event

diagram corresponding to a withdrawal request causing an overdraft.

The behavior of the checking account, when it is not processing an overdraft, is given below. When

the checking account accepts a communication which results in an overdraft, it becomes an insensitive

account.

checking—ace (balance, my—8avings) <request>]
if <depo8it request >

then become <checking —ace with updated balance >

send <receipt > to customer

if <show—balance request>
then send balance] to customer

if <withdrawal request > then

if balance � withdrawal —amount

then become <checking —ace with updated balance >

send <receipt> to customer

else let 6 = new buffer
and p = new overdraft —proc

{become new insens —ace (6, p)
send <withdrawal request with customer p > to my —savings }

The behavior of an “insensitive” bank account, called insens-acc, is quite simple to specify. It is

given below. The insensitive account forwards all incoming communications to a buffer unless the

communications is from the overdraft process it has created.’ The buffer can create a list of

communications, until it receives a communication to forward them. It then forwards the buffered

communications and becomes a forwarding actor so that any communications in transit will also get

forwarded appropriately.

1. Due to considerations such as deadlock, one would program an insensitive actor to be somewhat more ‘active.” Good

programming practice in a distributed environment requires that an actor be con~inuous1y avaitable. In particular, it should be

possib’e to query an insensitive actor about its current status.

(re/case)

— 79 —

insens —ace (buffer, proxy) request, sender)
if’ request = become and 8ender proxy

then become <replacement speczf~ed>
else send <communication > to buffer

Finally, we specify the code for a customer to process overdrafts. This customer, called overdraft-

process receives the reply to the withdrawal request sent to the savings account as a result of the

overdraft. The identifier self is bound to the mail address of the actor itself. The response from the

savings account may be a withdrawn, deposited, or complaint message. The identifier proxy in the code of

the insensitive account represents the mail address of the over-draft process. The proxy is used to

authenticate the sender of any become message targeted to the insensitive actor.

overdraft —proc (customer, my —checking , my —savings ,
checking —balance) <savings —response >J

send become, 8elf] to my—checking
send <savings —response >1 to customer

if <savings response is withdrawn >

then become checking —ace (0, my—savings)
else become checking —ace (checking —balance

, my —savings)

4. DEADLOCK

One of the classic problems in concurrent systems which involve resource sharing is that of deadlock.

A deadlock or deadly embrace results in a situation where no further evolution is possible. One strategy is

to limit access to shared resources in order to avoid the possibility, of deadlock. The difficulty with

deadlock avoidance protocols is that the mechanisms for avoiding deadlock have to be tailored using
advance knowledge about how the system might deadlock. Furthermore, the need for centralized control

in such protocols implies a serious bottleneck to the throughput in the system. However, this is the only

sort of solution in systems relying on synchronously communicating sequential processes. In fact in

languages using synchronous communication, deadlock has been defined as a condition where no process is

capable of communicating with another BROO83).

In actor systems, as in concurrent database systems DATE83J, deadlock avoidance is often

unrealistic. The reasons why deadlock avoidance is not feasible in concurrent databases can be

summarized as follows:

• The set of lockable obj~cts is very large—possibly in the millions.

• The set of lockable objects varies dynamically as new objects are continually created.

• The particular objects needed for a transaction must b.e determined dynamically (i.e., the objects can

be known only as the transaction proceeds).

The actor model addresses this problem in two ways. First, there is no syntactic (or low-level)
deadlock possible in any actor system, in the sense of it being impossible to communicate (as in the

Brookes’ definition above). All actors must designate a replacement and that replacement can respond to

any further communications. Thus a deadlock can be broken by a time-out mechanism without

compromising the encapsulation of an actor’s behavior.

An actor is also free and able to figure out a deadlock situation by querying other actors as to their

local states and constructing “wait-for” graphs to detect cycles in the graphs, similar to what has been

suggested for database systems KING73J. We would carry out the process of breaking the deadlock in a

completely distributed fashion. A concern about deadlock detection is the cost of removing deadlocks.

Experience with concurrent databases suggests that deadlocks in large systems occur very infrequently

GRAYSO). The cost of removing deadlocks is thus likely to be much lower than the cost of any attempt

to avoid them.

— 80 —

A system of actors is best thought of as a community 111EW184J. Message-passing viewed in this

manner provides a foundation for reasoning in open, evolving systems. Deadlock detection is one

particular application of using message-passing for reasoning in an actor system: Any actor programmed
to be sufficiently clever can figure out why the resource it needs is unavailable and, without remedial

action, about to stay that way. To solve this sort of a problem, negotiation between independent agents
becomes important. In open and evolving systems, new situations will arise and thus the importance of

this kind of flexibility is enormous. Another consequence of “reasoning” actors is that systems can be

easily programmed to learn.

5. CONCLUSIONS

New technology is providing us with ever increasing computational power. To cope with the added

complexity inherent in larger systems, we need the ability to subdivide the large systems and provide tools

for incremental development. Actor-based architectures provide an ideal means for parallel realization of

open, evolving systems. Many of the principles used in actor languages are related to concepts first

developed for database systems. Research in actors is likely to interact productively with research in

distributed databases.

ACKNOWLEDGEMENTS

The author acknowledges helpful comments from Carl Hewitt, Peter de Jong, Carl Manning and Tom

Reinhardt.

REFERENCES

AGHA85a] Agha, G., “Semantic considerations in the actor paradigm of concurrent computation”, in

Seminar on Concurrency, Springer-Verlag, Berlin, 1985, pp. 151-179.

AGHA85b] Agha, G., Actors: A Model of Concurrent Computation in Distributed Systems, Tech. Rep.
844, The Artificial Intelligence Lab., MIT, Cambridge, MA, 1985.

AGHA85c] Agha, G. and Hewitt, C., “Concurrent programming using actors: exploiting large-scale

parallelism”, Proc. 5th Conf. on Foundations of Software Technology and Theoretical

Computer Science, Springer-Verlag, Berlin, 1985 (forthcoming).

BR0083] Brookes, S.D., A Model for Communicating Sequential Processes, Tech. Rep. GMU-CS

83-149, Comp. Sc. Dept., Carnegie-Mellon Univ., Pittsburgh, PA, 1983.

CLIN81J Clinger, W.D., Foundations of Actor Semantics, Tech. Rep. 633, The Artificial

Intelligence Lab., MIT, Cambridge, MA, 1981.

DATES3I Date, C.J., An Introduction to Database Systems, Addison-Wesley, Reading, MA, 1983.

EGRAY8OI Gray, J., Experience with the System R Lock Manager, Tech. Rep., IBM San Jose Res.

Lab., San Jose, CA, 1980.

FIEWI77a} Hewitt, C.E., “Viewing control structures as patterns of passing messages”, Journal of

Artificial Intelligence 8(3), 1977, pp. 323-364.

HEWI8O} Hewitt, C.E., “Apiary multiprocessor architecture knowledge system”, Proc. of the Joint

SRC/ Univ. of Newcastle upon Tyne Workshop on VLSI Machine Architecture and Very

High Level Languages, Tech. Rep., Univ. of Newcastle upon Tyne Computing Lab., 1980,

pp. 67-69.

— 81 —

HEWI77bI Hewitt, C.E. and Baker, H., “Laws for communicating parallel processes”, Proc. IFIP

Congr., Inf. Proce88ing ‘7Z 1977, PP. 987-992.

HEWI84I Hewitt, C.E. and de Jong, P., “Open systems”, in On Conceptual Modelling: Per8pective8

from Artificial Intelligence, Databa8e8 and Programming Language8, Brodie, M.L.,

Mylopoulos, J., and Schmidt, J.W., eds., Springer-Verlag, Berlin, 1984, pp. 147-164.

KING73I King, P. and Collmeyer, A., “Database sharing: an efficient mechanism for supporting
concurrent processes”, Proc. NCC, 1973, pp. 271-275.

— 82 —

Object Management and Sharing in Autonomous,
Distributed Data/Knowledge Bases

Dennis McLcod

Surjatini Widjojo

University of Southern California

ABSTRACT

This paper describes an experimental distributed object management system. A simple model for

object management is presented, including a set of primitive manipulation and retrieval operations. A

model and mechanism to allow controlled object sharing among multiple data/knowledge bases is

specified. A prototype implementation of this system, currently under development, is reviewed.

1. INTRODUCTION

An important current trend in information management is from a record-based to an object-based
orientation AFSA84, BROD84, KENT79, LYNG84a, TSICS2I. In particular, existing record-oriented

database management systems fulfill many of the requirements of traditional database application
domains, but they fall short of providing facilities well-suited to applications in office information systems

GIBB83, LYNGS4a], design engineering databases AFSA85, BATOS5, EAST8O, KATZS2], and artificial

intelligence systems KERS84]. In an object-oriented system: information units of various modalities,
levels of granularity, and levels of abstraction have individual identity; semantic primitives for object
classification and inter-relation are explicitly part of the system; and objects can be active as well as

passive.

The purpose of the research project described here is to devise and experimentally test concepts,

techniques and mechanisms to support a distributed object management system, termed the Distributed

Personal Knowledge Manager (DPKM). DPKM is an adaptive tool for the non-computer expert; it is

intended to allow end-users to define, manipulate, and evolve collections of information. DPKM handles

various forms of information/knowledge in an integrated manner; this includes symbolic data, meta-data,
derived data (rules), behavioral information (procedures), constraints, and mixed modality information.

An individual DPKM also serves as an access port to other (external) information resources.

This research specifically focuses on the following issues:

This research was supported in part by the Joint Services Electronics Program through the Air Force Office of Scientific Research

under contract F49620-85-C-0071, by the National Science Foundation through its Computer Engineering Program under grant

ECS-8310774, and by the Defense Advanced Research Projects Agency under contract MDAOO3—81-C-0335.

Authors’ address: Computer Science Department and Information Sciences Institute, University of Southern California, Los Angeles,
CA 90089-0782 (213/743-8302).
CSNET: McLeodOUSC-CSE.

— 83 —

• an information model to support the integrated specification of various forms of knowledge IA~F5A85J;

• an end-user interface providing a layered view of knowledge, multi-media information input and

output, and prescriptive user guidance AFSA85, LyMc84b];

• an efficient mechanism for internally organizing and evolving knowledge bases AFSAS5J;

• a multi-level networking/communication mechanism to support inter-DPKM information exchange,

sharing, coordination, and access control (HEIM85, LYNG84a];

• an approach to (rudimentary) machine-initiated, user-assisted acquisition of knowledge IBORG85).

This research is by definition interdisciplinary in that it must draw on concepts and techniques in the

areas of: knowledge representation and engineering; database models, interfaces, and distributed

databases; computer networking and message systems; information security and protection; and applied
machine learning. An experimental prototype implementation of DPKM is under development, based on

an interconnected network of personal workstations and computers (AT&T 3B2s and 3B2Os). It is

intended that the DPKM project will examine applications in a variety of domains, but it will principally
focus on the researcher and design engineer (viz., the VLSI designer) for the purposes of initial

experimental application and testing.

This short paper focuses on two of the essential aspects of the DPKM system: the object model and

manipulation operations of DPKM; and techniques to support communication and sharing of information

objects among DPKM data/knowledge bases.

2. CONTEXTS, OBJECTS AND MAPPINGS

In the approach taken in this research, each data/knowledge base is a logical context (node) in a

logical network. Associated with each context is a collection of information objects and mappings. The

objects model units of potentially shareable information at different levels of abstraction; these are:

symbolic (or atomic) objects, abstract objects, object classifications via enumeration (enumerated sets) or

via selection predicate (predicate sets), constraints on inter-object relationships (generic mappings), and

behavioral objects (procedures). Mappings specify relations among instances of objects. It is significant to

note that information objects classically distinguished in database terms as “schema” and “data” are

treated here within a uniform framework. A primitive set of operations supports the manipulation and

sharing of objects.

In what follows, we first describe the different flavors of objects in our model and the mappings in

more detail. Following this we consider operations on objects in a single context. Next we see how these

operations must be modified or constrained to permit sharing of objects across contexts and introduce

additional operations necessary for this purpose.

3. OBJECTS AND MAPPINGS

The different flavors of objects supported by DPKM can be characterized as follows:

• Symbolic/atomic objects correspond to nondecomposable units of information. Examples of symbolic

objects are the name “Jane Smith” and the phone number “743-5501”. We denote symbolic/atomic
objects by strings in double quotes in this paper. Each symbolic/atomic object can be referenced by

such a string.
-

-

• Abstract objects correspond to things and concepts that are described by their relationships with other

objects. An example abstract object is the person Jane Smith. We denote abstract objects by

mnemonic object-names in boldface. This model would relate Jane Smith to such objects as her

name (“Jane Smith”), her phone number (“743-2747”), her employer (USC-IS!), etc.

• Object sets are used to classify a set of objects which are similar according to some criteria. There are

— 84 —

two different types of sets; the enumerated set and the predicate set. The instances of an object set

are identified either by enumeration (enumerated set) or via a selection predicate (predicate set) that

specifies the instances relative to one or more other set objects. An example object set is Person
whose members include specific abstract objects representing person objects.

• Behavioral objects embody operations/procedures. Predefined primitive behavioral objects are

provided for creating, manipulating, destroying and sharing objects. The user can also define new

behavioral objects and modify existing ones.

• Generic mapping objects specify a mapping template from one object set to another. A mapping
template which describes the general category of mappings consists of a mapping name, an inverse

mapping, the domain and range of the mapping, and simple constraints on inter-object relationships.
An example of a generic mapping object is Presenter of/Talk of which forms the template for the

mapping of Persons to Talks. The mapping can also be constrained (e.g., “unique” and/or “single-
valued”).

Mappings embody binary relationships among objects (functions). A mapping is represented as a 3-

tuple <x,y,z>, where y is a previously defined generic mapping object, x is a member of the domain

object set of y and z is a member of its range object set. An example of a mapping and its inverse would

be (President Reagan, Presenter of, Tax reforms) and (Tax reforms, Talk of, President

Reagan). Mappings also represent “meta” data (e.g., (Talk-of, has-domain, Talks)).

4. OBJECT MANIPULATION OPERATIONS

A collection of primitive operations is provided to support object manipulation and retrieval. For

expository purposes, the operations are described as primitives that are embedded in a host programming
language. It is assumed that the host programming language supports the data types object-id and set of
object-id. Variables of type object-id contain unique, user-specified or system-generated object-identifiers.
An object-reference (abbreviated object-ref) is a handle on (a pointer to) an object. An object-reference
can be a user-specified identifier, system-generated object identifier, or a variable of type object-id holding
an object-identifier. The primitive operations are themselves stored in the database as behavioral objects.

4.1. Operations for a Single Context

A collection of primitive operations for manipulating and retrieving objects within a given context are

described here. The CREATE operation generates a new object of defined flavor. If object-name N is

specified in the parameter of the CREATE operation, the object is assigned the identifier N. The system
will generate a unique object-id for the object created. For example:

CREATE(” abstract”, “John Smith”)
CREATE(” enumerated-set” ,“students”)
CREATE(” generic-mapping”,” has-employer”)
CREATE(” behavioral”, “get-cs-students”)
jane:=CREATE(” abstract”)

The above operations, when executed, will create an abstract object named “John Smith”, an (empty)
enumerated set “students”, a generic-mapping object “has-employer”, a behavioral object “get-cs-
students”, and an abstract object with its system-defined object-id stored in the variable jane. In the last

case, if the variable jane is reassigned a new value, the reference to the abstract object created will be

lost. Note that symbolic/atomic objects are not created. They exist universally and cannot participate in

any database relationships except via a “has-name” relationship with other objects. The DELETE

operation removes a given object from the database. Deletion is allowed only if the object is not

participating in any mapping instance. For instance, the operation DELETE(”John Smith”) would

remove the object John Smith from the database only if it is not related to any other objects in the

database. The operation IS-OBJECT queries for the existence of an object. After the execution of the

— 85 —

A

above CREATE operation, the operation IS-OBJECT(”John Smith”) would return the value true, but, if

the above are the only CREATE operations that have been performed, the operation IS-OBJECT(”Mary”)
would return the value false.

For behavioral objects, we need to be able to relate the object to a procedure and to invoke that

procedure. The operation DEFINE-PROCEDURE-BODY relates behavioral object N to its executable

body P and specifies the expected input and output parameters of the behavioral object when invoked.

For example, DEFINE-PROCEDURE-BODY(get-cs-students, procedure-body, I, 0) relates the

procedure body to the object get-cs-students and defines the input and output parameters to the

procedure. The INVOKE operation invokes the specified behavioral object on a given input and/or
output parameter. In the example given above, INVOKE(get-cs-students, I:students, O:cs-students) will

execute the procedure body associated with the object get-cs-students, which will take as its input the

object set students and the results will be stored in the object set cs-students.

The DEFINE-GENERIC-MAPPING operation creates a generic mapping object and defines its

inverse, domain, range, domain constraint, and range constraint. For example, the operation DEFINE

GENERIC-MAPPING(has-employer, is-employer-of, students, employers, many, many) defines a many to

many mapping has-employer from students to employers and a many to many mapping is-employer-of
from employers to students. Other mapping constraints (e.g., total, onto, etc.) can be similarly defined.

There are two types of object sets in DPKM. The DEFINE-SELECTION-PREDICATE operation
defines the objects that form the members of the object set. If the predicate set object Age has been

created, and Z is a set of integers, DEFINE-SELECTION-PREDICATE(Age, Z>0 and Z<ioO) defines

Age to be all xEZ such that x>0 and x< 100. The semantics of the selection predicate is beyond the

scope of this paper (see AFSA85, AFSA84, LYNG84b]). The DEFINE-ENUMERATED-SET-DOMAIN

operation defines the domain of an object set. For example DEFINE-ENUMERATED-SET-DOMAIN(cs
students, students) defines cs-students to be a subset of students. The ADD-TO-SET operation adds an

object to the set specified. This operation results in an error if the object to be added does not belong to

the domain defined for that set. The REMOVE-FROM-SET operation removes a given object from the

enumerated set object. The operation would result in an error if the object to be removed is not a member

of the enumerated set. The GET-MEMBERS operation returns all the members of the specified object
set.

Relationships among objects are created via the RELATE operation. This operation creates a

mapping from object D to object R via generic mapping M. An inverse mapping is also created, since the

inverse is known when M is defined. Following the above example, RELATE(”John Smith”, “has-

employer”, “USC”) would create the following 3-tuples: <John Smith, has-employer, USC> and

<USC, is-employer-of, John Smith>. Relationships are removed via DETACH. This operation
removes the relationship <D,M,R> and its inverse from the database. For example,

DETACH(” University of Southern California” ,“is-employer-or,” John Smith”) would delete the two 3-

tuples created above.

Queries to the database can be done via the SELECT and CHOOSE operations. The SELECT

operation is used to retrieve objects from the database. It returns a set of objects satisfying a predicate

specified by three parameters, D, M, and R. Each parameter is either a question mark (“?“) or a set of

objects. The question mark denotes the objects in question. The don’t care symbol “*“ is the set

containing all the objects in the database. Selection predicates can also be used in the parameters to add

to the power of SELECT. The CHOOSE operation is similar to the project operation in the relational

data model. It operates on a set of mapping instances and returns a set of domain, generic mapping, or

range objects. For example, to get the set of cs-students employed by USC:

SELECT(CHOOSE (D, SELECT (*, “has-employer”, “USC”), “is-member~of”, “cs-students”)).

Note that selection predicates may be used in the parameters to the above operations. Further, a high

level end-user DPKM interface is being constructed which supports, among other functions, a stepwise

prescriptive approach to predicate formulation.

—86—

5. SHARING AMONG AUTONOMOUS DATA/KNOWLEDGE BASES

A very important current trend is towards an environment consisting of a network of personal

computers, connected also to larger-scale mainframes. In such an environment, support is needed to

manage local (personal) data/knowledge bases and to facilitate sharing and coordination among them.

The structure and content of such collections of data is typically highly dynamic, with the end-user

serving as definer, evolver, and accessor. While a good deal of research has been conducted on techniques
and mechanisms for “distributed databases” CERI84, LIEN7S, ROTH77, STON77], these approaches fail

to support an environment in which multiple autonomous databases coexist, in which only partial data

integration and coordination are appropriate, and in which information sharing patterns are highly
dynamic HEIM85, LYNG84a}. Of particular importance to the focus of this research is our prior work on

logically distributed databases. This prior research has focused on identifying the problems involved in

supporting information sharing among loosely-coupled databases and on the general architecture of a

system to support sharing in such an environment. This research has introduced a specific architecture,
termed “federated databases” HEIM85I, and has examined applications in the office information

environment LYNGS4a]. This initial work has led to the identification and partial realization of the

desired sharing capabilities which are described briefly below.

5.1. Object Sharing Functions

Information objects are distributed and inter-related/coordinated among the contexts of a network.

The objects that reside at a context Cl are said to be owned by Cl, and other objects in the network not

owned by Cl are said to be remote to Cl. Object sharing in a network of such inter-connected contexts

involves a spectrum of capabilities. Examining these from the perspective of a given context (Ci) in the

network, it is possible to identify the following functions that Cl may wish to accomplish:

• Context Cl can access (examine, modify) information objects remote to Cl. Such access, as well as

other kinds of remote functions, is subject to access control constraints, as described below.

• Context Cl can copy or migrate to it (destructively copy) objects remote to Cl.

• Context Cl can copy or migrate objects owned by it to other contexts. This may be used, for

example, to propagate changes Cl has made in objects it owns to other contexts.

• Context Cl can establish, delete, or modify inter-context relationships between objects Cl owns and

remote objects. Note that such inter-context relationships may potentially span many contexts.

• Context Cl can cause remote objects to be activated; this is in effect a remote procedure call on a

behavioral object.

• Context Cl can determine if a local object is equivalent (according to some equivalence criteria) to

remote object(s).

• Context Cl can find (determine the existence and location of) remote objects that satisfy some

selection predicate; this predicate may simply be an object name or it may describe remote object(s)
in terms of their properties.

• Context Cl can specify a constraint, which expresses a predicate that must hold true. A constraint

can involve local and remote objects, and can include a specification of a (behavioral) object that is to

be invoked if the constraint is violated at a time when it should be satisfied.

• Context Cl can selectively permit other contexts to perform the above kinds of functions on its local

objects. It may also be desirable to allow optionally the receiver of an access right to in turn pass that

right to other contexts.

— 87 —

A

5.2. Required Object Sharing Mechanisms

In order to support the above spectrum of object sharing functions, several object sharing mechanisms

must be supported. These mechanisms are described briefly below, with an aim toward indicating our

approach to their realization:

• An inter-context communication mechanism is required to allow messages specifying the sharing
functions described above to be directed from a context Cl to other specific contexts, to a specific set

of contexts, and broadcast to all other contexts. For this purpose, contexts are assigned a context-id,
which is unique with respect to all contexts in the network. A response acknowledging the success or

failure of a requested function along with returned information is provided.

• An object naming technique is required. Within a given context, each object has a unique, internal

(system-generated) object-id. An object can also have one or more user-specified (or system

generated) object-names, which are strings that uniquely identify objects within a given context. The

combination of a context-id and an object-name provides a network-wide unique reference to a

particular object.

• A mechanism for object classification and interrelation is needed; this is provided by a direct

extension of the single context model described above.

• It must be possible to specify the scope of an object. Since objects are inter-connected by what

amounts to a graph of inter-relationships, it is necessary to delimit an object unit as a (potentially
sharable) package.

• It must be possible to determine if two or more objects are (relative) equivalent, with respect to some

criteria. This issue is, of course, an extremely complex one since objects can be equivalent at a given
level of abstraction and not equivalent at another; the presence of behavioral objects further

complicates the problem, with, for example, the notion of versions relating to relative equivalence. A

related issue is that of an object copy. Equivalence of objects can be based upon equal object-names,

upon equivalence of object units, or upon equivalence of behavior. In any case, it is minimally

necessary for users to specify when objects are (relative) equivalent at some level of abstraction.

• A wechanism to support (dynamic) object ownership is required. For example, objects created by a

context Cl are initially owned by Ci; Cl may later transfer ownership of such objects to other

contexts by migrating the objects.

• A mechanism is required to check and enforce inter-context consistency constraints. There is a

spectrum of consistency that is desirable, ranging from ensuring that multiple copies of objects are

identical, to maintaining global constraints among objects. A complex aspect of this problem
concerns the propagation of behavioral effects of constraint violation action.

• A mechanism to support and enforce access control (object security) rights is needed. This

mechanism allows a context to specify which other contexts are to have which kinds of access

privileges to the objects it owns, and checks and enforces distributed activities for appropriate access

rights.

6. CONCLUSIONS AND RESEARCH DIRECTIONS

This paper has presented a simple database model for modelling of objects and relationships in a

logical network of data/knowledge bases. A single context model was described and the desired sharing

capabilities of the model was discussed. A prototype implementation of DPKM is currently being

developed with research emphasis in the areas of: control and coordination of the different modes of

sharing; the prescriptive user interface; access control; and integrity constraints and deduction rules.

— 88 —

REFERENCES

IAFSA84) Afsarmanesh, H. and McLeod, D., “A framework for semantic database models”, Proc.

NYU Symposium on New Directions for Database Systems, New York University, New

York, NY, 1984.

AFSA85] Afsarmanesh, H., Knapp, D., McLeod, D., and Parker, A., “An extensible, object-oriented

approach to databases for VLSI/CAD”, Proc. 11th mt. Conf. on Very Large Data Bases,

1985, pp. 13-24.

AHAD85] Ahad, R. and McLeod, D., An Approach to Semi-Automatic Physical Database Design and

Evolution for Personal Information Systems, Tech. Rep., Comp. Res. Inst., Univ. of

Southern California, Los Angeles, CA, 1985.

jBATO85] Batory, D. and Kim, W., “Modelling concepts for VLSI CAD objects”, ACM Trans. on

Database Systems 10(3), 1985, pp. 322-346.

EB0RG85} Borgida, A. and Williamson, K., “Accommodating exceptions in databases and refining
the schema by learning from them”, Proc. 11th mt. Conf. on Very Large Data Bases,

1985, pp. 72-81.

~BRoD84j Brodie, M.L., Mylopoulos, J., and Schmidt, J.W., eds., On Conceptual Modelling:
Perspectives from Artificial Intelligence, Databases and Programming Languages,
Springer-Verlag, Berlin, 1984.

(CERI84J Ceri, S. and Pelagatti, G., Distributed Databases: Principles and Systems, McGraw-Hill,
New York, 1984.

EAST8OI Eastman, G.M., “System facilities for CAD databases”, Proc. 17th Design Automation

Conf., 1980, pp. 50-56.

G1BB83I Gibbs, S. and Tsichritzis, D., “A data modelling approach for office information systems”,
ACM Trans. on Office Information Systems 1(4), 1983, pp. 299-319.

HE1M85~ Heimbigner, D. and McLeod, D., “A federated architecture for information systems”,
ACM Trans. on Office Information Systems 3(3), 1985, pp. 253-278.

KATZ82I Katz, R., “A database approach for managing VLSI design data”, Proc. 19th Design
Automation Con!., 1982, pp. 274-282.

~KENT791 Kent, W., “Limitations of record-oriented information models”, ACM Trans. on Database

Systems 4(1), 1979, pp. 107-131.

KERS84} Kerschberg, L., ed., Proc. IEEE 1st mt. Workshop on Expert Database Systems, 1984.

LIEN78] Lien, Y.E. and Ying, J.H., “Design of a distributed entity-relationship database system”,
Proc. IEEE mt. Computer Software and Applications Conf., 1978, pp. 277-282.

LYNG84a] Lyngbaek, P. and McLeod, D., “Object sharing in distributed information systems”, ACM

Trans. on Office Information Systems 2(2), 1984, pp. 96-122.

LYNG84b] Lyngbaek, P. and McLeod, D., “A personal data manager”, Proc. 10th mt. Con!. on Very

Large Data Bases, 1984.

ROTH77] Rothnie, J.B., Jr. and Goodman, N., “A survey of research and development in

distributed database management”, Proc. ~nd mt. Conf. on Very Large Data Bases, 1977,

pp. 48-62.

STON77} Stonebraker, M.R. and Neuhold, E., “A distributed database version of INGRES”, Proc.

Berkeley Workshop on Distributed Data Management and Computer Networks, 1977, pp.

19-36.

TSIC82] Tsichritzis, D.C. and Lochovsky, F.H., Data Models, Prentice-Hall, Englewood Cliffs, NJ,

1982.

— 89 —

A

Advance Registration

Fifth Symposium on Reliability in

Distributed Software

and Database Systems
January 13-15, 1986

Los Angeles Mariott Hotel, California

SPONSOR—IEEE Computer Society

Technical Committee on Distributed Processing
and

Technical Committee on Fault-Tolerant Computing
in cooperation with the ACM

and IFIP Working Group 10.4

The theme of this symposium is reliability in distributed systems,

including distributed applications, distributed operating sys

tems, and distributed databases.

TOPICS TO BE COVERED

Reliable Distributed Software Systems
• Protocols for reliable distributed computing
• Techniques for non-stop operations
• Decentralized control

• Software fault tolerance

• Distributed operating systems
• Performance studies of reliability techniques
• Security in distributed applications

• Reliable Database Systems
• integrity and consistency
• Robust concurrency control

• Fault tolerant distributed databases

• Experiences with testbeds and real-world distributed

databases

• Performance studies of reliability techniques
• Security in databases

TUTORIAL

J. K. Gallant, G. Lidor and E. N. Shipley:
The impact of DBMS on distributed systems and Al

Applications

ORGANIZERS

INVITED DISTINGUISHED SPEAKERS:

Jim Gray, Tandem:

Why do computers fail? What can be done about it?

H. Garcia-Molina, Princeton U:

Replicated data management

Ray Strong, IBM:

Problems in fault-tolerant distributed systems
Gerard LeLann, INRIA:

Issues in fault-tolerant real time LAN

ADVANCE REGISTRATION FORM

Send this form and check (payable to Symposium on RDSDS)

to:

IEEE Computer Society
1730 Massachusetts Avenue, ftW.

Washington, D.C. 20036-1903

Symposium Chairman: Herbert Hecht, SoHaR, Inc.

Administrative Chairman: Raif Yanney, TRW

Tutorial Chairman: David Cohen, Teknecon interswitctt

Program Committee:

Algirdas Avizienis, UCLA (Co-Chairman)
Ronald Rutledge, US Dept. of Transportation (Co-Chairman)

Jean-Serge Banino, INRIA, Le Chesnay, France

Bharat Bhargava, Purdue University
FIaviu Cristian, IBM Research, San Jose, CA

Mary C. Chruscicki, IITRI, Rome, NY

Yves Deswarte, LAAS, Toulouse, France

EdwinC.Foudriat, NASA Langley Research Center

David Gelernter, Yale University
Jack Goldberg, SRI international

Per Gunningberg, Uppsala University, Sweden

John P. J. Kelly, ORDAIN, Inc., Torrance, CA

K. f-I. Kim, University of South Florida

Ming T. Liu, Ohio State University
Nancy Lynch, MIT

John F. Meyer, University of Michigan
David W. Mizell, Office of Naval Research

Radu Popescu-Zeletin, Hahn-Meitner Institute, W. Germany
Lorenzo Strigini, IEI-CNR, Pisa, Italy

NomePhone(I

Bus. Phone(

iEEEorACMMernber Yes_______ No_______ Ifyes,MemberNo.

Hotel reservation must be made by December 27, 1985.

Los Angeles Mariott Hotel

5855 West Century Blvd.

Los Angeles, CA 90045

(213) 641-5700

Special conference rate:

Single $80

Double $95

I

Preregistration

Member Nonmember Student

Tutorial $110 $140 $15

Tech program $110 $140 $15

Please circle one of the above catagories.

Name:

.Afteroec.23, 1985

Member Nonmember

$125 $160

$130 $160

— 90 —

Sponsored by

The Government of Luxembourg
Centre for Population, Poverty and Policy Studies

Commission of the European Comeunitiet

Statistical Office CEUROSTAT)

lash Force for Information Technologies

Lawrence Berkeley Laboratory
University of California

Supported by

CR International AIS, Denmark
ESRC Centre in Economic Computing. England

In cooperation with trequested)

International Association for Statistical Coeputing ttAtC)

association of Computing Machinery
Special Interest Group on Management of Data IACM—SIGMSD)

General Chairman

Roger CUBITT

Statistical Office of the European Communities

Workshop programme

The purpose of this timited attendance workshop is to bring together

theoreticians, researchers and practitioners in the fietd of statistical

and scientific database management to discuss current work and problems.

There will be a variety of paper presentations, panel discussions and

tienary sessions, as welt as time for Informal eachange of information.

The sorhshop wiLt be precerded by a one day tutorial programme which

wilt aim to define the contest of the workshop itself.

Topics

Like its predecessors, this workshop seeks to identi’y and address

research and implementation issues fsctuding, but not lioited to, the

fottowing areas:

Applications : — scientific ewperlments, medical data, economic data,

telemetry data, data analysis, statistical use of transaction and

business data, material and substances applications, espert systems

applfed to statistical and scientific data.

User Interfaces : — languages, Software toots interactive requirements.

graphics, use of intelligent workstations.

Storage and access : — data structures, compressicn methods,- security

and privacy, distributed databases, analysis management.

Neta Data : — conceptual models, schema definition, data dictionaries,

self—describing fites, data integrity and quality.

Hardware : — database machines, storage technology, display devices,

dist ributed architecture.

Participation by invitation

The programme committee will invite SO to 100 people to participate in

the workshop on the basis of written proposals for oresenlations.

Presentations will include papers of up to 5000 words and eutended

abstracts tincluding reports on research in progress) of up to

2000 words, ALE contributions should be submitted in English and cyst

include a 100 word abstract. Send five tS) final copies by Ist February

1996 to either

— for the American continent

Prof. Gultekin OZSOMOGLU

Department of Computer Engineering and Science

Case Western Reserve University
CLEVELAND, Ohio 14106

— for all other countries

Dr 8. 1. COOPER

European prtgrannn chairman

ESRC Centre in Economic Computing

the London School p1 Economics and Pslitital Science

Hosghton Street

LONDON WC2A 2AE

Authors will be notified of accec-tancn by 14th hyril 19S6.

Location and Actomaodation

The worushop will be held at the site of the Luxembourg Study Centre

gust outside Luxembourg city. Luuembourg airport is about 20 minutes

away with regular flights to a number of European cities and the U.S.

The cost will be approuimately $200 (12000 Luueebourg Francs) per person

for the workshop including all documentation, meaLs, a worksvor

reception and dinner. the tutorial cost will be aoprsxieacely $o3

13500 Luxembourg Francs) per person including midday meal. A limited

asount of student style acco,ssodation is available via the Centre at

very reasonable rates; this will be allocated on a first come firsE

served basis, additional hotel accommodation will be arranged at a

reduced rate as required.

To: Eoger tltstTl, General Chairman,
Unit for Data Processing Management
EURO) tAt

9.P. tMoy

L1019 LUXEMBOURG

EUcCeb

Please send me registration materials for the Third tnternaticnal Workshop on

Statistical and Scientific Database Management.

Name- Telephone:

Organination-

address

City, State, Post Code,

and Country-

Please indicate all 01 the fotlowing that arply:

— I intend to submit a paper lop to 5450 wards)

— t intend to submit an estended abstr.ct lup to 2040 snrdst

— t would lihe to help organise a oaret discussion

am not sure I can participate but please heep me cnformrd.

Subject of paper or abstrac

PRELIMINARY CALL POR PAPERS AND PARTICIPATION

THIRD INTERNATIONAL WORKSHOP

ON STATISTICAL AND SCIENTIPIC DATABASE MANAGEMENT

22nd — 24th duty 1988, Grand—Dschy of Losesnbourg

Important dates

Supmissisn Deadline

Acceptance Notification

final Version due

Tot or jul

Workshop

1st February 19Sb

11th April 1936

31st May 19f6

2Tst July 19f6

22nd — 24th July 1986,

RESPONSE SLtP

— 91 —

CALL FOR PAPERS
12th International Conference

on

Very Large Data Bases

KYOTO, JAPAN

August 25-28, 1986

THE CONFERENCE

VLDB Conferences are intended to identify and encourage research, development and ap

plications of database systems. The Twelfth VLDB Conference will bring together resear

chers and practitioners to exchange ideas. We are eager for papers on new concepts, new

ideas and new research results having to do with databases and knowledge bases. We not

only solicit, but seek and encourage, papers describing work in which an implemented system

embodies a new concept. All submitted papers will be read by the Program Committee.

TOPICS

Major topics of interest include, but are not limited to:

Data Models

Database Theory
Database Design Methodology and Tools

Distributed Databases

Query Optimization~

Concurrency Control

User Interfaces

Database Hardware

Data Organization
Performance

Security Integration of Logic and Database

Knowledge-Base System

Object-Model Representation

Engineering Databases

Office Information Systems
Multi-media Databases

SPONSORS:

very Large Data Base

Endowment

IFIP

INRIA

Information Processing

Society of Japan

TO SUBMIT YOUR PAPERS

Five copies of double-spaced manuscript in English up

to 5000 words should be submitted by February 1 5,

1986 to one of the Program Committee Chairpersons.

Setsuo Ohsuga

University of Tokyo
4-6-1. Komaba, Meguro-ku
Tokyo 153

Japan

Wesley Chu

Computer Science Dept.
UCLA

Los Angeles, CA 90024

USA

Georges Gardarin

INRIA

Domaine de Voluceau Rocquencourt
B.P. 105-78153 Le Chesnay Cedex

France

IMPORTANT DATES

PAPERS DUE: February 1 5, 1 986

NOTIFICATION OF ACCEPTANCE: April 30, 1986

CAMERA READY COPIES DUE: May 30, 1986

— 92 —

American Coordinator

Adarsh K. Arora

Gould Inc., USA

Program Committee

Adarsh K. Arora

Carlo Bat mi

Mokrane Bouzeghoub
Janis Bubenko

Alejandro Buchmann
AII’onso F. Cardenas

S. Misbah Deen

Barbara Demo

Ramez A. Elmasri

James P. Fry
Antonio Furtado

Igor 1. Nawryszkiewyiz
Hannu Kangassalo
Leslie Hazelton

Peter J.H. King
Isamu Kobayashi
Michel Leonard

10k wang Ling
Fred Lochovsky
Sal March

Bernard Moulin

Erich Neuhold

Antoni Olive

Christine Parent

Alain Pirotte

Colette Rolland

Hirotaka Sakai

Hans J. Schek

Gunter Schlageter
Amilcar Sernadas

Arne Solvberg
John F. Sowa

Kazimierz Subieta

Yves Tabourier

Hubert Tardieu

Remno P. van de Riet

Herbert Weber

USA

Italy
France

Sweden

Mexico

USA

UK

Italy
USA

USA

Brazil

Australia

Finland

USA

UK

Japan

Switzerland

Singapore
Canada

USA

Canada

Austria

Spain

France

Belgium
France

Japan

West Germany
West Germany

Portugal
Norway
USA

Poland

France

France

Netherland

West Germany

CALL FOR 1~APERS

EJ~ The 5th liflenalioiiai Conlerence on

ENTITY-RELATiONSHiP APPROACH

APPROACI-I November 17-19. 1986 Dijon, France

Organized

with the

by Afcet (France)

requested cooperation of ACM and IEEE Computer society

Conference Chairman

Francois Bodart

University of Namur, Belgium
Program’Committee Chairman

Stef~no Spaccapietra

University of Dijon, France

Tutorial Chairman

André Flory

University of Lyon, France

Organizing Committee Chairman

Yves Tabourier

Gamma International, France

Major Theme Ten years of experience in ER modelling

ER Conferences are intended to identify and encourage research, development and

applications of database and information systems based on the use of the

entity-relationship approach. Ten years after Peter Chens original paper in 1005 first

issue, this conference wishes to offer a checkpoint on the usability of the ER approach

for the design process and on its use as an operational tool, as well as an insight into the

theory of the ER model and into development perspectives

Major topics of interest include, but are not limited to:

~ database and information systems design
* data models and data modelling techniques
* data manipulation languages and user interfaces

* database dynamics and integrity
* formal definitions within the ER approach
~ significant applications, experiments and implementations
* multi-media databases

* knowledge-based systems
extensions for special purpose systems (015, engineering DB, CADJCAM,...)

* experiences in training and teaching

Submission of papers:
* five copies of original double-spaced manuscript in English, up to 5000 words, 5hOuld

reach by March20, 1986 the Program Committee Chairman

Prof Stefano Spaccapietra
Université de Bourgogne - UT

6. P 5)0

21014 Dijon Cedex

France

~
a one page document (including name, address and affiliation of authors, title of the

paper, short abstract and keywords~ sriould be sent to the same address by March 1st,

1986, to help in the allocation to referees

* notification of acceptance or rejection will ~e sent to authors by June 20, 1986
* for inclusion in the conference proceedings, the final camera-ready copy must be

received by the Program Committee Chairman by August 20, 1966

For further information: Stefano Spaccapietra, France, tel 80554611

Adarsn K Arora. USA, tel (312) 640-47(2

The conference will be held at the Palais des Congres (Conference Hall) in Dijon. Dijon is
a deligntfui old city, located 300 km South of Paris, from which it may be reached in
1h40 using the TGV, the fastest train in the world. Capital of the Burgundy region, Dijon
is famous for its history, but also for its gastronomy : mustard, gingerbread,
black-currant liqueur, snails,

..

and of course the marvelous red and white Burgundy
wines Also, plan to attend the very famous auction sale of the wines of the Hospices de

Beaune, 3Skm from Dijon, to be held on November 18, 1986

IMPORTANT DATES
PAPERS DUE MARCH 20, 1986

NOTIFICATION OF ACCEPTANCE : JUNE 20. 1986

CAMERA READY

—

COPIES DUE :

93 —

AUGUST 20, 1986

Announcing the first

IEEE Computer Society series

DATABASE SYSTEMS

These five books contain essential

information on Database Systems.
Order this unique package now, and for

a limited time only, receive

a savings of over 30%.

The reader of this tutorial can expect to learn what reliability is, what

reliability techniques are used in the different areas of distributed system

software, and how reliability techniques can be better applied across all

areas of distributed systems software especially in the distributed operat

ing system area.

CONTENTS: Overview of Reliability (hardware and software): Overview of Cen

eral Distributed Computer Systems Research; The Communication Subnet; Logi

cal PC and Distributed Programming Languages; Distributed Control; Structuring
Distributed Systems for Reliability; Summary Collection of Software Reliability

Techniques; Database Areas; Case Studies of Reliable Systems.

ISBN 0-8186-0570-7: July 1985, 400 pp., list price $3600

Database Engineering, Volume 3

This book binds together the four 1984 issues of the quarterly newsletter

of the Technical Committee on Database Engineering. The issues feature

such topics as: user interfaces, workstations and special purpose hard

ware, CAD/CAM systems, optical disks, spatial data management,

comprehensive design environments now under development, early

prototyping, and modeling transactions.

CONTENTS: A summarization of working group discussions at the second In

ternational Workshop on Statistical Databases; Engineering Data Management;

Multimedia Data Management; Database Design Aids.

ISBN 0-8186-0672-X: February 1985, 262 pp. list price $32.00

Distributed Database Management
by l.A. Larson and S. Rahimi

This tutorial provides a thorough written description of the basic compo

nents of distributed database management systems, describes how each

of these component works, and examines how these components relate

to each other.

CONTENTS: Introduction; Transforming Database Commands; Semantic Integ

rity Constraints; Decomposing Requests; Concurrency and Replication Control;

Distributed Execution Monitor; Communications Subsystem; Design of Distrib

uted DBMSs; Case Studies; Glossary.

ISBN 0-8186-0575-8: lanuary 1985, 678 pp., list price $36.00

IEEE Computer Society Books—

putting today’s computer professionals
in touch with tomorrow’s technologies.

Recent Advances in Distnbuted Data Base Management

by C. Mohan

By reading this text completely, the reader will be able to acquire a good
understanding of the issues involved in DDBM. This tutorial assumes prior

exposure to centralized data base management concepts and therefore is

intended for systems designers and implementors, managers, data base

administrators, students, researchers, and other technical personnel.
CONTENTS: Introduction; Distributed Data Base Systems Overview; Distrib

uted Query Processing; Distributed Transaction Management; Distributed Al

gorithm Analysis; Annotated Bibliography.

ISBN 0-8186-0571-5: December 1984, 350 pp., list price $36.00

Data Base Management in the 1980’s

by James A. Larson and Harvey A. Freeman

This tutorial addresses the kinds of data base management systems (DBMS)

that will be available through this decade. Interfaces available to various

classes of users are described, including self-contained query languages

and graphical displays. Techniques available to data base administrators

to design both logical and practical DBMS architectures are reviewed, as

are data base computers and other hardware specifically designed to ac

celerate database management functions.

CONTENTS: Introduction; Tools for Data Base Access; Coupling A Program

ming Language to a Data Base; Data Base Design; Data Base Management

System Design; Hardware Aids.

ISBN 0-8186-0369-0: September 1981, 472 pp., list price $27.00

TO ORDER: Return this form with remittance to:

IEEE Computer Society Order Department
P.O. Box 80452

Worldway Postal Center

Los Angeles, CA 90080 USA

o YES, pléá~e send set(s) of order #DDS14, the Database

Series at this limited time offer of $117.00 ($50.00 off the list price)

plus $10.00 shipping charge.
California residents please add 6% sales tax.

Foreign orders must be prepaid.

Sorry, no substitutes or returns.

o check enclosed 0 Visa 0 MasterCard 0 American

Express

~4~~NAGEMEN1

Reliable Distributed System Software

by John A. Stankovic

I
— —

I

I

I

I

I

I

I

I

name
—

affiliation

address ~

.

-

city state zip

country

I

I

I

I

I

purchase order nn

I

I

card no. exp. date

I

MD ELECr~4ICS ENGiNEERS. iNC.

signature ~IEEE COMPUTER SOCIETY ~
I

IEEE J
— — — — — — — — — — — — ~a u~Ii1~ —

Co

‘4

Administrative Office

r.

IEEE COMPUTER SOCIETY

Non-profit
Organization
U.S. Postage

Paid

Silver Spring, MD
Permit No. 1398

1730 Massachusetts Ave., N.W.

Wsshington, D.C. 20036—1903

U.S.A.

	40979_DataEngineering_Dec1985_Vol 8_No4.pdf

