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Letter from the Editor

This issue of Database Engineering is on “Object-oriented Systems”. Object-oriented systems are

receiving wide attention these days in the areas of office systems, data base systems, programming

languages, and artificial intelligence. Each of these areas has something to contribute to the design and

implementation of an object-oriented system. The term “object”, for the purposes of this issue, is

interpreted fairly loosely. However, certain aspects of an object-oriented system appear to be common

across the papers presented in this issue. These are:

• abstraction of data;

• inheritance of properties;

• persistency of data;

• encapsulation of data and operations;

• automatic triggering of operations.

We start the issue by looking at some applications of object-oriented systems. The first paper Object
Species by Dennis Tsichritzis uses analogies from the animal world to illustrate what types of objects

might be useful to end users. The next two papers, Task Management for an Intelligent Interface by
Bruce Croft and An Object-Based Approach to Modelling Office Work by Carson Woo and Fred

Lochovsky, discuss two different approaches to using objects for supporting tasks in offices.

The next six papers describe systems for defining, storing, managing, and using objects. We will refer

to such systems as Object Management Systems (OMS). The paper by Stan Zdonik Object Management
Systems for Design Environments defines what an OMS is and describes Encore, an OMS being developed
at Brown University. The next paper by Matts Ahlsen et al. OPAL: An Object-Based System for

Application Development presents an OMS being developed at the University of Stockholm. An Object-
Oriented Protocol for Managing Data by Stephen Weiser describes the evolution of an OMS developed at

the University of Toronto. The paper by Oscar Nierstrasz Hybrid: A Unified Object-Oriented System
details the design of an OMS being developed at the University of Geneva. The design of this system is

also an evolution of the system described by Stephen Weiser. David Maier et al. in the paper Object-
Oriented Database Development at Servio Logic discuss the development of GemStone, a commercially
available OMS that marries the Smalltalk-80 programming language with an advanced data base

management system. In Some Aspects of Stored Operations in an Object-Oriented Database, Nigel
Derrett et al. describe the IRIS OMS being developed at Hewlett-Packard with particular emphasis on

data abstraction facilities and operations.

Finally, the last two papers discuss more specific aspects of an object-oriented environment. Gul

Agha in A Message-Passing Paradigm for Object Management describes the Actor model of computation

emphasizing the concurrency issues and how they are resolved in the model. Dennis McLeod and Surjatini

Widjojo in their paper Object Management and Sharing in Autonomous, Distributed Data/Knowledge
Bases conclude the issue by outlining issues that need to be addressed when dealing with distributed

aspects of object management and in particular communication and sharing of information among objects.

I would like to thank all the authors for accepting my invitation to contribute to this issue. I have

enjoyed working with them and learning about their research and development efforts in object-oriented

systems. I hope that the reader will find this issue both informative and stimulating.

Fred Lochovsky

December, 1985.

Toronto, Canada



Object Species

D. Tsichritzis

Université de Cenéve

ABSTRACT

This paper outlines a framework for end-user-oriented objects. We are interested in the specification
and implementation of complex objects which have a simple external behaviour. Users can visualize the

external behaviour through analogies. We plan to use this environment in the context of Office

Information Systems in general and sophisticated Message Systems in particular.

1. INTRODUCTION

This paper discusses a conceptual framework for end-user-oriented objects which can be useful within

an Office Information System. Our objects will be based on a particular object-oriented environment

NIER83, NIER85a, N1ER85b]. However, given suitable facilities, our conceptual model can be

implemented on top of different object-oriented systems. The objects that we will use in this paper are

related to Smalltalk objects GOLD83, GOLDS4}, Actors REWI77, THER83], monitors HOAR74] and

abstract data types GUTT77].

We will explain the concepts by using analogies from the animal world. The analogies serve two

purposes. First, they provide a user model for the behaviour of the system LEES5J. Second, they
illustrate the design choices and the implementation difficulties. We hope that the reader will not be

distracted by the analogies and lose sight of the technical nature of our discussion.

We start by defining the two most essential concepts in our object world light and matter. Light

corresponds to information and emanates from the users. Matter corresponds to data and is the encoding
of information within the system. The interplay of light and matter according to the rules of creation

produces life. The interplay of user information and system data according to the rules of the application

produces knowledge. Life is perceived in terms of living objects. Knowledge in our environment is

encapsulated as objects which will be called KNOwledge acquisition, dissemination and manipulation

objects, in short kno’s TSIC85].

Kno’s contain data (matter) and rules (soul). Kno’s interact with users directly, or through other

defined kno’s. Kno’s can be alive or dead. They are alive if they can participate in events orchestrated by

an object manager. When they are dead both their data and rules become part of the (local) data base

(mother earth). Kno’s can move around between environments. An environment is a collection of kno’s

under the jurisdiction of an object manager. The object manager controls events between kno’s and it

Author’s address: Université de Genève, Centre d’Informatique, 24, rue General Dufour, CH 1211 Genéve 4, Switzerland

(22/20.93.33).
UUCP: decvax]rncvax!cernvaxicui!dt.
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oversees the birth and death of kno’s. Object managers play, in essence, the role of god.

To summarize, we can fantasize about and represent our world, the objeetworid, as a galaxy of stars.

Each star is under the jurisdiction of its object manager (the local god). Each star consists of matter, the

local data base, and kno’s, its living objects. Objects can move from star to star. They behave according
to their own rules and the local conditions. The general terms under which they live are enforced by the

object manager.

2. OBJECT SPECIFICATION

We are interested in defining objects which can be potentially useful to users. The objects are defined

in terms of an object specification language NIER85b]. We expect these objects to be defined by

application programmers using the object specification language, and then made available to users. We

do not require, therefore, that they be simple, or easy to define. We expect them, however, to be easy to

describe to users, possibly by using physical analogs. We also expect them to have wide use.

A user-oriented Kno consists of: a head; a body; and a behaviour. The head contains the kno’s

identifier and information on acquaintances and past history. Detailed contents of the head are not visible

outside a kno. The head’s contents are needed mainly by the object manager for housekeeping purposes.

The body of a kno consists of a set of named relations using a set of named attributes. The kno can

also have other local variables used in its rules. The body is the part of its data structures which are

visible outside the kno. We expect that the attributes of a kno’s body conform to a universally known set

of domains. In this way the basic properties of such attributes are known across kno’s. One way to

achieve this requirement is to assume that a kno is always an instance of a given kno class. In this case

the body types of allowable kno classes are known and understood by other kno’s and eventually users.

The behaviour of a kno consists of a set of rules. These rules govern how the kno reacts to stimulus

from the outside world. Some of the rules are visible from the outside world, in the sense described

above, while others are invisible, in the sense that they do not affect directly other Kno’s, users, or the

data base. These invisible (internal) rules, while not affecting the Kno’s external behaviour, are important
for its operation.

Rules have the form:

<cause> => <effect>

and are indivisible. They operate potentially in parallel, but in a serializable fashion. Rules are

performed when the <cause>-part is satisfied completely. They perform what is prescribed in the

<effect>-part.

The <cause>-part is the conjunction of a number of clauses. Each clause is an instance of the

following types:

1. <user clause>

This is like an oracle coming from outside the object world. It implies the desire of a user to perform
the rule represented by the behaviour, provided the other <cause>-clauses are also satisfied

concurrently.

2. <object clause>

A specified object, an acquaintance, has to perform a corresponding rule at the same time. The

corresponding rules are fired together in one event provided all their c1aji~sesare satisfied.

3. <data base clause>

A Boolean condition of data base selections is specified in terms of the data base available in the kno’s

environment (local data base). This feature enables the deposition of values in the data base by kno’s

to be used later to invoke rules of other kno’s.
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4. <body clause>

A Boolean condition of selections and comparisons is specified between attributes of the kno’s body
and local data base attributes. This feature allows sequencing of rules by modifying internal variables

used in the <cause>-parts of other rules.

The <effect>-part of a rule is a series of actions which are performed in order. The rule is not

complete (and it should be rolled back) unless all the actions are performed. The actions can be of the

following types:

1. <body action>

Results in the evaluation of an expression, and the assignment of its result to one of the kno’s body
attributes. Using this feature, a leno can obtain information from the local data base.

2. <data base action>

An assignment of an expression of body attributes and local data base attributes to the local data

base. With this feature a kno can deposit information to the local data base.

3. <object action>

This action allows the triggering of a rule in an acquaintance, including the possibility of exporting
some body values to another kno. This action presupposes that the other kno is available and willing
to operate its corresponding rule. If not the action rule cannot be performed.

4. <user action>

This action comes as an alarm to the user. It also presupposes that the user is there to receive it, or

else the rule is not performed.

3. EXISTENTIAL RULES

There are a number of rules which are special. We will call them existential rules because they affect

crucially the existence of objects. Their <cause>-parts are the same as any other rule. We would

actually expect them to be triggered by simple body or local data base flags to make their firing
conditions very clear. Their actions are very important to other objects, other environments, and

themselves. We will enumerate the actions of special existential rules.

1. <move action>

The object performing this rule is moved to another environment as specified. The object is removed

from the environment of its current object manager. The move has ramifications in terms of disabling
rules waiting to fire and has to be handled carefully.

2. <die action>

The object commits suicide by firing this rule. In essence, it is like a move to nowhere. The body of

the object falls back as part of the local data base. We would expect a data base type corresponding
to each object class. The rules are also stored (but they need be stored only once for each object

class).

3. <export action>

The object exports by copying a rule or a part of its body to another object. We require that the

other object fires a corresponding rule with an import action. Exporting-importing are parts of an

event. The importing object stores the imports in a special place. Imported rules and bodies do not

augment the existing rules and bodies. Imported bodies and rules can only be read and passed over to

children objects. The importing object does r~ot change class.
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4. <grow action>

A subset of an object’s rules and body are copied in a new, subservient object. The new object does

not operate independently but behaves like a limb of the original object. Limbs cannot grow other

limbs. Only head8 can grow limbs. In this way there is centralized control of all the limbs. Limbs

however, can move to other environments. Each time a limb moves the head is automatically
notified.

5. <spawn action>

A subset of an object’s rules and body are copied into a new and independent object. Imported bodies

and rules can also take part in the formation of the new object. This is really the way that an object
can endow its offspring with more rules than it has. An existing object can not become more

“intelligent” in terms of rules. It can, however, gather rules and pass them to its children. Before an

offspring is born we need to check for rule consistency (genetically doomed offspring cannot be born).

4. KNO SPECIES

Using the rules outlined in the previous sections, we can specify many different kinds of kno’s. Some

of them may even be odd or demonstrate unsocial behaviour. It is important to identify and obtain

classes of useful kno’s and eventually even categories of similar classes. We started with an analogy
between kno’s and living objects in the real world. To continue the analogy, we will establish

correspondences between categories of useful kno’s and categories of living objects. Most categories of

living objects are defined in terms of the way they breed, what they eat, and how they move. We will see

that kno’s fall into categories in a similar way.

A plant limo is a kno which has many restrictions on its use of existential rules.

1. A plant kno cannot move (i.e., its rules cannot have a <move action> to another environment). A

plant kno can have limbs, but its limbs remain local.

2. A plant kno interacts with users, the data base and other kinds of kno’s, but not with other plant
kno’s. In this way, the plant kno’s “grow” independently.

There are many examples of useful plant kno’s. Views in data bases are examples of plant kno’s.

They provide a way of selecting and transforming data for a particular use. A knowledge base is another

example of a plant kno. Rules of inference are defined based on the data of a data base. The rules give a

way of interpreting the data and making some deductions. Note that the information and constraints

inside different plant kno’s may be different. In that way, plant kno’s can provide different opinions based

on the same information. Consistency is not enforced across kno’s, but only within them.

Any kno which moves will be called an animal kno. There are obviously many different cases. We

will distinguish them by the way they breed, move, and eat.

An animal kno can be simple or may have a head and limbs. An animal kno may have limbs residing
in different environments. The coordination of such limbs may become a problem, especially if the

communication facilities are unreliable or intermittent.

A simple animal kno without limbs can perform move actions in which case it will hop to another

environment. An animal kno with limbs moves in a far more complex manner. Each limb can move

independently. We expect, however, the moves to be serialized and controlled by the head. An

intetesting case is an animal kno which keeps its head stationary but grows and moves its limbs. In this

way it can grow objects in different environments while the control remains centralized. An example of

such kno’s are intelligent messages as in I-mail EHOGG85I.

An animal kno can produce children by using a <spawn action> in its rules. If the child kno inherits

a subset of the rules of the parent, it is not that interesting. The interesting case arises with the export of

rules from one kno to another. The second kno can then produce a child which is augmented by the

—5—



imported rules. In this way, many animal kno’s can participate in the birth of a new animal kno. Each

one deposits rules in one “mother” kno which then spawns a child with a combination of all the rules

deposited.

Animal kno’s can “eat” by importing data and rules. They can import from the data base, from other

kno’s and from the users. If they import information from plant kno’s rather than the data base, they can

get them preselected and possibly transformed rather than as raw data from the data base. Animal kno’s

importing from plants are like herbivores. They “eat” plants. Animal kno’s can import from other

animal kno’s either by copying or by copying and then destroying. In the latter case, they operate as

predators. Predator kno’s can be very important for population control. For instance, if we want to

destroy a free roaming kno we can do so by releasing a predator kno to chase it. In this way we decide its

destruction dynamically~ Additionally, we may want to destroy a kno of which we have lost track. In

this case, only a predator kno can find it and destroy it SH00821.

There are many simple cases of extremely useful animal kno’s. A carrier kno is a simple kno which

moves around and can carry a message. It is destroyed when the message is delivered or deposited. A bee

kno is a simple kno which can hop around among plant kno’s transmitting information from one to

another. A shepherd kno is a kno which can trigger move actions in other kno’s and influence them to

assemble in the same environment. One of the most interesting kno’s is an actor kno whose rules allow it

to interpret imported rules. In this way it can act out any rules EIIEWI77]. A universal actor kno is a kno

which can act as any other kno if it is provided with the appropriate specification.

We expect kno’s to be prepackaged, that is prespecified and ready to use. A user can then specify
some parameters on its behaviour and give it life through an object manager. Hopefully, the analogy with

the real world can help the user visualize immediately the behaviour of the kno he is using.

5. IMPLEMENTATION

We are embarking on an implementation of the framework discussed in this paper. The

implementation consists of four distinct aspects closely coordinated. First, we are implementing a new

object-oriented system as outlined in a companion paper in this issue NJERS5c]. Second, we are working
on the specification of many “useful” kno’s using our object-oriented specification language. Third, we are

trying to put together an appropriate user interface for visualization and external manipulation of such

kno’s. Finally, we are implementing a sophisticated message system where both messages and user roles

are objects with kno behaviour.

The purpose of the project is to explore interesting ways for object birth, growth, death, inheritance,
and cooperation. We are interested in exploring the possibility of specifying very complex kno’s while

retaining some control on kno population behaviour.

8. EVOLUTION

To complete our analogy, we will end with a parallel between world and kno evolution. As mentioned

in the first section, at the beginning there were users and light (information). Then there was matter

(data) which was the equivalent of light, but in more concrete form. Programming languages, including

object-oriented systems, give us the tools to construct any living cell (program). The problem is always to

combine the primitive cells to achieve an overall purpose.

In traditional programming environments, the cells are put together in a very careful way to construct

a rather unwieldy animal which resembles a dinosaur. We call it an application system. As dinosaurs,

application systems are all powerful and they do well a particular job. However, they are difficult to deal

with and the users are like pygmies running around them with bows and arrows. Every now and then the

pygmies get sick and tired and they kill the dinosaur. However, another one sooner or later takes its

place.
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This form of life was particularly successful until now, but we see emerging a new environment for the

following reasons. First, we cannot easily distribute dinosaurs in little pieces. Second, users are getting
sophisticated. They shoot down dinosaurs at a very fast pace. Third, the environment of a system’s

operation changes very rapidly and dinosaurs adapt with great difficulty.

What we need is animals which are smaller, adapt quickly, move freely, and are dispensable. In terms

of our conceptual framework, we need kno’s which move around, can import data and rules from their

environment, and can multiply rapidly. In such an environment, new problems become important. The

problem is not how to design a dinosaur from non-existing or shaky specifications. Rather, the emphasis
is on how to control the object population, how to make objects adapt in foreign environments, how to

make them cooperate with each other, and how to relate them to users. There is no such thing as the

perfect kno, or perfect animal for that matter. The perfection lies in the harmony between kno’s or

animals. This harmony is obtained through a reasonable cooperation between imperfect objects, and

imperfect users, in a fast changing environment.
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Task Management for an Intelligent Interface

W. Bruce Croft

University of Massachusetts

ABSTRACT

An intelligent interface assists users in the execution of their tasks. To do this, the system must be

able to represent tasks and the objects that are manipulated. The intelligent interface described in this

paper uses an object management system to manage object and task instantiations and the relationships
between them. The object management system is viewed as an implementation of a data model that

emphasizes the modeling of operations.

1. INTRODUCTION

In interactive computing environments, the users play a dominant role in determining the operation of

the system by selecting the services or tools that are required for their tasks. A task is simply a sequence

of activities, some of which are performed on the computer, which taken together accomplish users’ goals.
Examples of this type of environment are office information systems, software development environments

and CAD/CAM systems. In such systems, the interaction with the user is typically viewed as an

unpredictable series of tool invocations, rather than as the execution of tasks which are at a higher level

of abstraction. The lack of knowledge of user tasks severely limits the role of the system during the

interaction. To address this limitation, we define an intelligent interface as a subsystem that provides a

means of describing and supporting the typical interactions users have with the computing environment.

The primary function of the intelligent interface is to provide a wide range of assistance to users in the

execution of their tasks.

The characterization of a user’s interaction with a system presents a number of problems that cannot

be addressed with conventional programming languages. The following features of task description are

particularly important:

1. Tasks involve user actions as well as executable code. Often they are nondeterministic.

2. Tasks must be able to be specified by users with widely varying computer experience.

3. Task descriptions are often incomplete. The description of a task must be able to change as the user’s

understanding of the task changes.

4. Task descriptions represent only typical actions involved in carrying out a task. Exceptions to these

typical patterns are very common.

This research was supported in part by the Rome Air Development Center and by Digital Equipment Corporation.

Author’s address: Computer and Information Science Department, University of Massachusetts, Amherst, MA 01003 (413/545-0463).
CSNET: croft@uma.ss.
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The POISE system CROF84] was designed to address the problems of task definition and support. In

this system, tasks are specified as underconstrained plans COHE82, Ch. 15]. A task is described in terms

of subtasks, associated objects, local variables, the preconditions for the task and the effect of carrying out

the task. It is underconstrained in the sense that the exact ordering of subtasks is often not specified or

only partially specified. The primitive tasks in a task hierarchy are either the operations provided by the

tools or application programs. No further breakdown of these operations is necessary to execute them. Not

all of the lowest-level tasks in a task hierarchy need be primitive tasks; they may currently only be

specified at an abstract level or they may correspond to actions that occur outside the system (e.g.,
making a telephone call).

As the user specifies more details about a task, or as the system karns more about a task, the task

descriptions are further constrained by the addition of rules that affect the ordering of subtasks or the

relationships of objects or variables used by subtasks. New subtasks representing more detailed actions

may be added. Examples of these added constraints are

• a rule specifying when step A must come before step B

• a rule specifying that the object used in step B is the same as the object in step D.

In this way, the system builds up detailed plans for tasks that are initially specified at a higher level of

abstraction by the users.

The system uses the task descriptions to predict user actions (as well as automating aspects of the

task). When an exception to the predicted action occurs, the system is alerted to the fact that its task

description is inadequate and it can then take appropriate action. The emphasis on acquiring knowledge
through exceptions is also found in Borgida’s work BORG85]. Many types of exceptions can occur

including, for example, different orderings of subtasks, missing subtasks, subtasks activated with

preconditions not satisfied, and object constraint violations.

TASK SUPPORT OBJECT

INTERFACE •Planner MANAGEMENT SYSTEM

USERS <--> HANDLER •Recognizer <--> •Object descriptions
•Exception- •Task descriptions
handler sinstantiations

•Specifier

\ /
TOOLS

•Application

Programs

Fig. 1. The POISE system.

The basic architecture of the system incorporating task definition and support is shown in Figure 1.

The interface handler is responsible for presenting to the users an integrated view of the tasks, tools, and

objects that are available. Users can invoke tasks or manipulate objects directly with the tools. The task

support moduk “understands” the user actions and choices, records them, and takes appropriate actions.

This module has four major components. The planner executes plans (task descriptions). This includes

predicting user actions and propagating constraints from one task step to another. The recognizer is used

to recognize plans that the user is following without having been specifically invoked. This includes the

recognition of exceptions. Recognition of plans in ambiguous situations requires sophisticated control and

backtracking mechanisms CARV84]. The exception handler is used to update task descriptions in response

to specific user actions. The specifier provides the means for users to specify tasks. This specification is

done through a graphical interface and requires the user to describe tasks in terms of subtasks,

relationships between subtasks, and objects that are manipulated.

The object management system provides facilities for describing objects and tasks and for managing

—9—



their instantiations. Tools can be viewed as a special class of application program that manipulates the

objects stored in the object management system. For example, in an office system, the tools would include

an editor, a forms package, a spreadsheet, and a mail facility. In this paper, we shall describe how the

object management system can be considered to be an implementation of an extended data model.

TASK: Purchasing

REQUISITION

Fill-out-requisition

/ \
Receive-purchase-request > > Complete-purchase

I \ / I
I Fill-out-order-form I
I I I
I I I

REQUEST ORDER FORM PAYMENT FORM

Fig. 2. An example task.

A simple example of the operation of this system in the office environment is given by the purchasing
task shown in Figure 2. This shows the task at the highest level of abstraction. The description of the

purchasing task, its subtasks and the associated objects (such as the order form) reside in the object

management system. The task description contains a constraint that a request for a purchase must occur

before an order form or a requisition can be filled out. It also specifies that either one of those steps must

occur before completing the purchase. The other form of constraint relates the contents of the request,

the order form and the payment form. At this level of abstraction, the task description will look very

similar to an ICN specification ~ELLI821. Some of the steps in the task description will be specified at a

greater level of detail. For example, the “Fill-out-order-form” subtask may contain a detailed description
of how this step is accomplished. Other steps, such as “Fill-out-requisition”, may be only partially

specified. It is the responsibility of the task support module to monitor the user’s interactions with the

system, recognize when a requisition is being used and to gather information that will further specify this

step. Once the purchasing task has been specified by the user, it is presented by the interface handler as

one of the “tools” available to the user. When a particular purchase is required, the user would invoke

this task and the system would create instantiations of the purchasing task and related objects such as the

order form.

2. DATA MODELS AND EXTENSIONS

Data models provide a means of defining the structure of objects in a particular environment,

constraints on those objects, and operations that may be performed on them ETSIC82]. Much of the

research in this area has concentrated on the static aspect of object description, rather than the dynamic

aspect. To support the intelligent interface, however, we are forced to look at the task descriptions and

ask how they are related to application programs, transactions and the data manipulation languages

provided in conventional database systems. We define an extended data model as consisting of a means

to describe objects, a means of describing operations and a means of describing the connections between

objects and operations. Constraints are specified as part of both the object and operation definitions.

Object definitions are accomplished using a data model such as that described in Gibbs GIBB84],
which allows non-first normal form objects, generalization hierarchies and constraints defined using

domain specifications and trigger procedures. For example, in an office application, an order form that
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contains a variable number of ordered items may be defined as a specialization of a general form object.
The order form may inherit a constraint from the general form object that the form number should be

between 1 and 99999. A specific constraint, that the total field should be the sum of the costs of the items,
could also be defined.

The operations that can be defined include tasks, application programs, tools and transactions. The

primitive operations, which are provided in the data manipulation language in database systems, are

predefined and apply to all objects. These operations include creating, updating, deleting and retrieving
objects. A containment hierarchy of operations, as shown in Figure 3, results from the observation that

operations higher in the hierarchy are described in terms of operations that are lower in the hierarchy.

Tasks

Application Programs
Tools

Transactions

Primitive Operations

Fig. 3. Operation hierarchy.

A distinction can be drawn between atomic and non-atomic operations. The primitive operations and

transactions are atomic in the sense that they are indivisible from the user’s point of view. On the other

hand, the steps involved in tasks and application programs can be visible to the users and may require
user input. Task concurrency and constraint checking thus cannot be handled in the same manner as

transactions. Delaying constraint checking until the end of a task, for example, is not possible because the

intermediate states are visible to the users. The fact that tasks can be suspended indefinitely also requires
that locking does not occur as it would for a transaction. These points lead to the conclusion that

transactions can only be defined for the very low level operations from the user’s point of view. The

maintenance and checking of task instantiations in order to provide a consistent view of the system’s

operation to the user is entirely the responsibility of the task support module. For example, the task

support module can assist the user in “undoing” the steps of a task and can check constraints whenever

new information becomes available.

The main advantages of introducing task, application program, and tool operations into the data

model are that the connections between user-level operations and objects can be made explicit and a

common framework is provided for describing and managing the static and dynamic aspects of a system.
Generalization hierarchies of operations, multiple instantiations of operations, and inheritance of

operations through specialization of object types can all be described. For example, it is possible to

describe a “Fill-out-form” task that is connected with a general form object. We could then describe a

“Fill-out-order-form” task as a specialization of the more general task that includes more steps and

constraints. An order form, which is a specialization of the general form object, would have a connection

to the “Fill-out-order-form” task but would also inherit operations connected to the the general form, such

as “Get-form-number”.
~

In contrast to the Smalltalk view GOLD83], where objects are defined through the operations that

are attached to the object, our view is that the operations and the structure of the objects are both of

interest and have separate descriptions, but are tightly connected (a kind of “marriage of equals”). An

alternative description of the extended data model, which is more object-oriented in nature, would view

tasks and objects as two subclasses of a more general object class. Operations that are attached directly to
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objects are atomic whereas task “objects” describe user-level operations that typically are non-atomic and

manipulate a number of other objects. The extended data model is closely related to the model described

by Stemple and Sheard STEM82, SHEA85I.

The description of the operations vary according to the operation type. Task descriptions were

mentioned in the last section. The programming languages and data manipulation languages used to

describe application programs and transactions in conventional database systems are the major part of the

description of these operations, but other information is needed. From the point of view of the intelligent
interface, the most important information about these operations is the name, the functionality, and the

input/output characteristics. That is, given a task step, the POISE system has to know what lower-level

operations can carry out that step, how these operations can be invoked, and what information is

required.

As mentioned previously, the description of operations involves a definition of constraints. These

constraints, either explicitly defined in task descriptions, or implicit in the application program code,
define allowable transitions of the object instantiations and the operation instantiations. It has been

recognized that static and transition constraints are not independent and that redundant specifications are

not uncommon SHEA85]. POISE is designed to use either form of a constraint during planning and

recognition. For example, a task description constraint may specify that if an order amount is less than

$500, the step “Fill-out-order-form” is appropriate, otherwise “Fill-out-requisition” should be used. In the

description of objects, the same constraint could be specified by allowing only values less than $500 in the

amount field of the order form. By allowing users to specify this constraint in either way, POISE simplifies
the task description process.

3. OTHER MANAGEMENT ISSUES

A number of other problems arise in the management of the object and operation instantiations for

the intelligent interface. One of these is that in this type of system it is essential to know which people or

more accurately, “agents”, can carry out tasks. The description of agents and the “roles” that they take

has been the subject of previous research ELLI82]. In the system described in this paper, agents would

be represented as a class of objects with connections to both tasks and other objects.

During the process of planning and recognition, the intelligent interface must keep track of

assumptions that are made in order to backtrack should a mistake be made or if the users change their

actions. Part of this record keeping involves version histories of the objects fZDONS4]. However, in the

intelligent interface, histories of operation instantiations are also required. This situation is further

complicated by the fact that there may be multiple interpretations of a single user action, only one of

which may turn out to be valid. The process of planning also requires the propagation of constraints into

“predicted” versions of the objects. The interpretations in this system are similar to contexts used in some

systems developed for artificial intelligence research BARRS2, p. 35].

By representing operations and objects in a single framework, the management problem is

considerably simplified. A task instantiation can have a set of object instantiations associated with it.

These object instantiations can be either “base” objects or “constraint” objects. Base objects record the

state of the objects as seen by the users. Constraint objects are used as placeholders for propagating
constraints and making predictions. The definition of a constraint object is a “relaxed” version of the base

object definition. For example, a particular field in a base object may be specified as containing an

integer in the range 1 to 100. The constraint object version of the field has to be able to hold values such

as “20<x<60” to allow for symbolic propagation of constraints.

The object management system is partially implemented using a frame-based language EWRIGS3]. At

this level, both the operations and objects are represented as frames. Facilities such as generalization
hierarchies and triggers are typically supported in these languages. The slots of the frames can hold any

type of information, including code, and can therefore be used for the complex datatypes and constraints

used in the extended data model. The planner and recognizer have previously been implemented as

independent modules and are currently being reimplemented to take advantage of the object management
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system.
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An Object-Based Approach to Modelling Office Work
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University of Toronto

ABSTRACT

Building office systems to support office work is often very difficult and time consuming. Some

researchers argue that this is due to the lack of appropriate programming tools, and they believe that

“objects” are a natural primitive for programming many office applications. However, object systems

developed so far still lack the appropriate tools to program non-procedural office work. We believe that by

putting the right facilities into objects we can have very powerful, yet uniform, tools for describing
different types of office work. In this paper, we describe such a model and use an example to show how it

can be used to support office work.

1. INTRODUCTION

Office activities involve both data and procedures. It has long been recognized that information (i.e.,
data) is a corporate resource. The need for companies to handle greater amounts of information has led to

the use of technologies such as data base management systems to manage their data. However, office

procedures are also a corporate resource (i.e., how you do something is as important as the information

you need to do it). Currently, this knowledge of office procedures resides entirely with the office worker

and is best known to the person who performs the tasks. As the size and scope of an organization increase,
there is a need to manage this knowledge of office procedures in the way we handle information using the

computer.

In constructing a model to represent office procedures, we must be able to take into account the

following characteristics of office work:

Office activities are parallel, distributed and interactive. Offices and their activities are

distributed both in space and time. They involve the continuous coordination of parallel activities in

many locations jHAMtVISO, 11EW184, Z15M781. Rarely are problems solved, or goals realized, except by the

interaction of several persons in a back-and-forth exchange of work, ideas and commitment. Therefore,
communication is vital in office work.

Domain knowledge is open-ended. For both new office tasks as well as existing ones, situations will

arise for which there is no a priori domain knowledge 1F1KE80, LOCH83J. Under this situation, the office

worker, who is in charge of a particular task, will have to handle it using some common sense knowledge

This research was supported in part by the Natural Sciences and Engineering Research Council of Canada under grant A3356.

Authors’ address: Department of Computer Science, University of Toronto, Toronto, Ontario, Canada, M5S 1A4 (416/978-6086).
CSNET: carson.torontoOcsnet-relay.

- 14 -




	40979_DataEngineering_Dec1985_Vol 8_No4.pdf

