
JUNE 1984 VOL.7 NO.2

a quarterly bulletin

of the IEEE computer society
technical cornrnittee

on

Database

3

.26

56

61

Contents

I

Changes to the Editorial Staff 1

Letter from the Associate Editor 2

A Selected Bibliography with Keywords
on Engineering Databases

F. Vernadat

CADICAM Database Management 12

M.L. Brodie, B. Blaustein, U. Dayal,
F. Manola, and A. Rosenthal

Database Concepts in the

Vdd System 21

K.-C. Chu and Y.E. Lien

Revision Relations—Maintaining
Revision History Information

M. Haynie and K. GohI

Database Management and Computer-
Assisted VLSI Fabrication 35

-

--~---~ R.H~Katz

Engineering Data Management
Activities Within the IPAD Project 39

H.R. Johnson

ri

A Database System for -.

Engineering Design .~ 48

W. Plouffe, W. Kim, R. Lone,
and D. McNabb

Using a Relational Database Management
System for Computer Aided Design
Data—An Update

M. Stonebraker and A. Guttman

Relational and Entity-Relationship
Model Databases and VLSI Design

M.W. Wilkins and G. Wiederhold

An Extended Relational Database

System for Engineering Data

Management 67

Y. Udagawa and I. Mizoguchi

Integration of Word Processing
and Database Management in

EngineeringEnvironments ~-J-6
-- -

F. Nakamura, A. Kimura,
S. Kanai, and K.Ohmachi

Chairperson, Technical Committee

on Database Engineering

Professor P. Bruce Berra

Dept. of Electrical and

Computer Engineering
111 Link Hall

Syracuse University

Syracuse, New York 13210

(315) 423-2655

Editor-in-Chief,

Database Engineering

Dr. Won Kim

IBM Research

K54-282

5600 Cottle Road

San Jose, Calif. 95193

(408) 256-1507

Database Engineering Bulletin is a quarterly publication
of the l~EE Computer Society Technical Committee on

Database Engineering. Its scope of interest includes: data

structures and models, access strategies, access control

techniques, database architecture, database machines,

intelligent front ends, mass storage for very large data

bases, distributed database systems and techniques,
database software design and implementation, database

utilities, database security and related areas.

Contribution to the Bulletin is hereby solicited. News

items, letters, technical papers, book reviews, meeting
previews, summaries, case studies, etc., should be sent

to the Editor. All letters to the Editor will be considered for

publication unless accompanied by a request to the con

trary. Technical papers are unrefereed.

Opinions expressed in contributions are those of the indi

vidual author rather than the official position of the TC on

Database Engineering, the IEEE Computer Society, or

organizations with which the author may be affiliated.

Associate Editors,

Database Engineering

Prof. Don Batory
T.S. Painter Hall 3.28

University of Texas

Austin, Texas

(512) 471-1593

Prof. Fred Lochovsky
K52-282

IBM Research

5600 Cottle Road

San Jose, California 95193

Dr. David Reirier

computer Corporation of America

4 cambridge Center

Cambridge, Massachusetts 02142

(617) 492-8860

Prof. Randy Katz

Dept. of Electrical Engineering and

Computer Science

University of California

Berkeley, California 94720

(415) 642-8778

Dr. Dan Ries

Computer Corporation of America

4 Cambridge Center

Cambridge, Massachusetts 02142

(617) 492-8860

Membership in the Database Engineering Technical

Committee is open to individuals who demonstrate willing
ness to actively participate in the various activities of the

IC. A member of the IEEE Computer Society may join the

TC as a full member. A non-member of the Computer
Society may join as a participating member, with approval
from at least one officer of the TC. Both a full member and

a participating member of the IC is entitled to receive the

quarterly bulletin of the TC free of charge, until further

notice.

Changes to the Editorial Staff

With this issue, Randy Katz and Don Batory resign as Associate Editors of Data

base Engineering. Also, I resign as Editor-in-Chief. I have asked Dave Reiner

to replace me and guide the publication of the bulletin with a new editorial

board.

I shall cherish the pleasure of having worked with my Co-Editors, Alan

Hevner, Don Batory, Randy Katz, Dan Ries, Fred Lochovsky and Dave Reiner. The

success Database Engineering has enjoyed during the past three years is due

largely to their initiatives, cooperation and hard work. The professional and

personal friendship that has developed between myself and these outstanding col

leagues during the course of shaping and sustaining the direction of the publi
cation more than compensates for all the time and energy I have had to invest

since Nay 1981.

I owe special thanks to Chip Stockton, Director of Publications for the Corn

puter Society, for the extra special way in which he has handled the printing
and distribution of Database Engineering. I would like to also thank Jane Liu,

past chairperson of the TC, and Bruce Berra, the current chairman of the TC, for

their enthusiastic support of the Database Engineering bulletin and attention to

all my enquiries and suggestions concerning the TC activities.

This issue contains two papers from Japan, one by Udagawa and Nizoguchi, and

another by Nakamura, et al, which, due to late arrival, were included after Ran

dy Katz finalized the manuscript. The September issue will be on multi-media

database user interface and is being put together by Dan Ries. Dave Reiner will

finish off 1984 with an issue on database design.

Won Kim

San Jose, Calif.

June 1984

Letter from the Associate Editor:

This issue of Database Engineering Newsletter focuses on Engineering Data Management. The

area has blossomed into a major new thrust of database system research activity since our first

issue on the subject two years ago. A number of groups are actively working on the problem in

universities and industry, and actual systems are now becoming operational.

Vernadat sets the stage by providing a convenient bibliography of the CAD database litera

ture. Many of these references are from outside the traditional literature read by the database

research community, and should prove useful to researchers. Some of the papers are quite old,

testifying that design databases are not a new problem!

Chu & Lien, Johnson, and Plouffe, et. al., describe the status of several large system build

ing efforts. Brodie, et. al., describes an implementation effort just getting underway at Computer

Corporation of America, Inc. Chu & Lien and Plouffe, et. al. deal with electrical CAD, while the

other two papers are conceTned with the engineering data needs of the aerospace industry.

While much interest has been generated for design databases, this is only half of the

engineering task. The papers by Johnson, Brodie, et. al., and Katz place some emphasis on the

flip side of design, namely manufacturing.

The papers by Hay nie & GohI and Stonebraker & Guttman describe efforts to extend the

relational model with more powerful operations and support structures to handle CAD require
ments. Finally, Wilkins & Wiederhold address the performance issues of using a relational data

base for CAD applications.

With this issue, I step down as an associate editor of the Database Engineering Newsletter.

The Newsletter has grown over the last few years to become the primary vehicle for rapid dis

semination of recent results to the database system community. This is primarily due to the

dogged determination of fearless leader, Won Kim, without whom this newsletter could not possi

bly have existed. Thanks and credit for our success go to all the associate editors, past and

present, and our contributing authors. The future editors will have some mightly large shoes to

fill.

Yours truly,

Randy .

Katz

Berkeley, CA

2

A Selected Bibliography with Keywords on Engineering Databases

F. Vernadat

National Research Council of Canada

Ottawa, Canada, K1A 0R8

The use of computers in the wide range of CAD/CAN activities have

introduced database technology in application domains such as mechanical

engineering, civil or architectural design, electronic engineering, chemical

engineering, automative industry, aircraft industry, etc., and in more res

trictive areas of computer graphics such as geometric modelling, image pro

cessing, and pictorial databases. We refer to those database systems as

engineering databases. However, over the years it has become recognized
that engineering databases differ slightly from classical administrative

databases directly issued from database theory. However, people concerned

by the design, implementation, or use of engineering databases must not

neglect the knowledge of the general theory of database which can provide
solutions to numerous problems (storage structures, access methods,

concurrency control mechanisms, distributed systems, ...).

Since more and more attention is given to this domain, it is the pur

pose of the present bibliography to gather together selected major contribu

tions on database theory and on engineering databases for helping interested

people to get a rapid state—of—the—art of the field or to get acquainted
with a specific topic of the field. In order to guide the reader, a few

keywords accompany each reference. (Since all entries not classified in

database theory are supposed to deal with database and CAD, these keywords
have not been indicated).

The following list of references is a digest of an extensive biblio

graphy available from the author (A Commented and Indexed Bibliography on

Data Structuring and Data Management in CAD/CAN. 1970—mid 1983. Res. Rep.

ERB—956, National Research Council, Ottawa, CDN, 1984). The orginal list of

references contains 909 entries and the number of keywords is over 180. The

bibliography includes a keyword index and an author’s index and it contains

a bibliographical survey. Both the references listed below and the referen

ces listed in the report are written according to the Harvard system.

Some abbreviations have been used as keywords. Their meanings are

indicated below:

CAD Computer—Aided Design
CAM Computer—Aided Manufacturing

CIM Computer—Integrated Manufacturing

CODASYL Conference on Data System Languages

DBMS Data Base Management System

DDL Data Definition Language -

NRCC 23170

3

DBMS Data Base Management System
DDL Data Definition Language
DML Data Manipulation Language
E—R model Entity—Relationship Model

IGES Initial Graphics Exchange Specification
IPAD Integrated Programs for Aerospace—Vehicle Design
~1RP Material Requirements Planning
NC Numerical Control

PCB Printed Circuit Board

QL Query Language
VLSI Very Large Scale Integration;

Many references come from the following publications:

— Computer (monthly)
— Computer—Aided Design (monthly)
— Computer—Aided Design (monthly)
— Computer Graphics (quarterly)
— IEEE Computer Graphics and Applications (monthly)

and also from proceedings of regular technical meetings such as:

— the Design Automation Conference (annual)
— CAD Conference and Exhibition in England (bi—annual)
— Autofact Conference (annual)

other sources of information include

— Working Conferences of Work Group WG.5.2 and W.G.5.3 of IFIP

— technical papers available from CASA—SME

4

001. Aggàrwal, S., and V. Rajaraman (1983). Cca~puter—aided design of

logical data base for information systesm. Ccmput. Sci. and Inf.,

13(1), 3—12.

DBMS, automatic prograrrmirlg, logical database design

002. A~p1eton D.S. (1982). Planning a manufanturing data base. Autofa~t

IV ConE. Proc. (Philedeiphia, PA), Nov.

mehan ical engineer ir~g, database planning, manuf~tur ing

003. Armitage, B.S., and P.A.V. Hall (1977). Conceptual schmea for CAD.

Ccm~jt. Aided Des., 9(3), 194—8.

onn~eptua1 sch~a, logical database design

004. Atkinson, M.P. (1980). Data managanent for interactive graphics. In

Ccmiputer Graphics, Infotech State of the Art Report, 8(5).

Infótech, Maidenhead, UK. pp. 3—23.

con~uter graphics, DBMS, requirements, data itodels

005. Atkinson, M.P., and N. Wiseman (1977). Data manag~nent requir~nents
for large scale design and production. AQI SIG~A Newsl., 7(1), 2—16.

design engineering ,DBMs, requirements

006. Bandurski, A.E., and D.K. Jefferson (1975). Enhancmnents to the

DB~tG model for ccmpiter—aided ship design. Proc. N74 Norkshnp on

Data Bases for Interactive Design (WaterloD, Ont.), Sept., 17—25.

ship design, DBMS, a~)ASYL nodel, o~nceptua1 schana, subschse~a

007. Bandurski, A.E., and D.K. Jefferson (1975). Data description for
Lfl

ca~pjter-aided design. Proc. AOl SI(~.1OD Couf. on Managmnent of Data

(San Jcae, CA), May, 193—202.

shifl design, DBMS, OJDASYL n~del, nIL

008. Barc~n, N., E. Bornkessel, N. Cullmann, W.F. Kl~, and L.F.

Magalhaes (1982). An approach to the integration of geanetrical
capabilities into a data base for CAD applications. In J. Encarna—

cao,~ and F.L. KrauSe (Eds.), File Strictures and Data Bases for

CAD. North-Holland, Psmterdam. pp. 231-43.

geatietric nodeling, oDnpiter graphics, data structures

009. BeeL~j, W. (1982). Tha future of integrated CAD/CAM systaus: the

Bating perspective. IEEE Ccznpit. Graphics and Appl., 2(1), 51—6.

airdraft industry, DBMS, coinnunication, CAD/CM

010. Beet~j, W.D. (1983). Data—driven autciuation. Tha heart of integra
tion: a sound data base. IEEE Spectrum, 20(5), 44—8.

airc~raft industry, DBMS, conmunica tion, CAD/CAM, network

011. Bell, F.E. (1983). CAD to CM — Using a shared data base. Autofat

VCOhf. Proc. (Detroit, Ml), Nov.

mechanical engineering, CAD/CAM, EMS, manufaturing

012. Bennett, J. (1982). A database managanent systan for design
engineers. Proc. P04 IEEE 19th Design Automation Conf. (Las Vegas,

NV),~June, 268—73.

electronic engineering, DBMS, relational nodel

013. Bittner, J. (1983). Data independence in CAD/CAM data bases. In E.

A. Warman (Ed.), Canpiter Applications in Production and ~rIginee—
ring. North—Holland, Anoterdan. pp. 573—587.

CAD/CAM, DBMS, data independence, data nodeling, E—R n~xiel, EL, QL

014. Blaser, A. (Ed.) (1980). Data Base Techniques for Pictorial

Applications. Springer—Verlag, Berlin.

pictorial databases, conpiter graphics, DBMS, image processing

015. Blaser, A., and U. Schauer (1977). Aspects of data base systans for

ccapiter—a ided design. Informat ik—Fahber ichte, 11, 78—119.

engineering design, DBMS, requirements ,tutorial

016. Ba, K. (1980). Data base design. In J. Encarnacao (Ed.), Canputer—
Aided Design, !“odelling, Systenm Engineering, CAD-Systeirm. Springer
Verlag, Berlin. pp. 227—61.

logical database, DBMS, data independence, data nodels, tutorial

017. Bray, O.H. (1983). Data base managmnent in CAD/CM. Autofall V

Conf. Proc. (Detroit, MI), Nov.

mechanical engineering, CAD/CAM, DBMS

018. Bichmann, A.P., and A.G. Dale (1979). Evaluation criteria for

logical database design methodologies. Canpi t. Aided Des., 11(3),
121—6.

database theory, logical database design, design methodologies

019. Bichmann, A.P., and T.L. Kunii (1979). Evolutionary drawing
formalization in an engineering database envirorment. PrOC IEEE

CDMPSN 79 3rd Int. Canpiter Software and Applications Corn.

(Chicago, IL), Nov., 732—7.

conpiter graphics, chenical engineering, process plants

020. Burger, W.F. (1983). MLD: a language and data base for sodeling.
In E.A. Warman (Ed.), Canpiter Applications in Production and

Engineering. North—Holland, Mmterdam. pp. 559-571.

matheoatical progranming, EMS, nodeling language, user interaction

021. Challis, M.F. (1982). Typing in data base nodels. In J. Encarnacao,
and F.L. Krause (Eds.), File Strictures and Data Bases for CAD.

North-Hofland, Anmterdan. pp. 265—79.

data modelling, data types, U)L

022. Chang, N.S., and K.S. Fu (1981). Picture query languages for picto
rial data—base systans. Canpiter, 14(11), 23—33.

oDIrp.lter graphics, pictorial databases, relational nodel, QL.

023. Chang, S.K., and K.S. Fu (Eds.) (1980). Pictorial Information

Systess. Springer—verlag, Berlin.

aDnp.Iter graphics, image processing, pictorial databases, DBMS

024. Chang, S.K., and T.L. Kunii (1981). pictorial data—base syst~ns.
Ccnrpiter, 14(11), 13—21.

image processing, DBMS, pictorial databases, relational nodel

025. Cheng Chao Wang, P. (Ed.) (1981). Automation Technology for Manage
ment and Productivity Advancenent Through CAD/CAM and Engineering
Data Handling. Prentice—Hall, Eng1m~od cliffs, NJ.

CAD/CAM, data managmnent, infcrmat ion managmnent, applications

026. ~hnlvy, L., and J. Foisseau (1983). Representation of information

in a design process. In E.D. Warman (Ed.), Canputer Applications in

Production and Engineering CAPE’83. North—Holland, Pnmterdam.

pp. 545—558.

data modeling, semantic integrity, integrity control

076. Km~ano, I., H. Fukushima, and T. Numata (1978). The design of a

database organisation for an electronic equipment DA system. Proc.

A~)1 IEEE 15th Design Automation Conf. (Las Vegas, NV), June, 167—75.

electronic engir~ering, data structures, requirements

077. Kimura, F., Y. Yamaguchi, Y. Sasaki, K.KidD, and M. Hosaka (1982).
Construction and uses of an enginmering data base in design and

manufacturing environments. In J. Encarnacao, and F.L. Krause

(F.sis.), File Strtx~tures and Data Bases for CAD. North—Holland,
Mmterdam. pp. 95-116.

A~/CAM, mechanical engir~ering, DBMS, geometrical modeling

078. Koller, H., and K. Fruhauf (1981). A data base management system
for industrial process control. Ccmp.It. Id., 2, 171—7.

rço~uction control, process control, DBMS, relational model

079. Korenjack, A.J., and A.H. Teger (1975). An integrated CAD data base

system. Proc. ~QI IEEE 12th Design Automation Conf. (Bc~ton, MA),

June, 399—406.

electronic engireering, wniimrcial database, ret~rk model, ?IS

080. Kung-Chao Chu, J.P. Fishburn, P. Honeyman, and Y.E. Lien (1983).
Vtl) — A VLSI design database system. Proc. N)4 IEEE Annu. Meeting
Database Week: Engireering Design Applications (San Jeme, CA),

May, 25—37.

electronic engirmering, VLSI, DBMS, relational model

081. Kunii, T.L., and H.S. Kunii (1979). Architecture of a virtual

graphic database system for interactive CAD. Caiip~t. Aided Des.,

11(3), 132—5.

corrp.Iter graphics, DBMS, interactive system, system architecture

082. Kuriii, T.L., S. Weyl, and J.M. Tmienbaum (1974). A relational data

base schema for describing caiplex pictures with color and texture.

Proc. 2nd Tnt. Joint Conf. on Pattern Recognition (Lyngby,
Copenhagen, DK), Aug., 310—6.

conpiter graphic, pictorial databases, relational model

083. Kutay, A.R., and C.M. Eastman (1983). TranSaction management in

engireering databases. Proc. AOl IEEE Annu. Meeting Database Week:

Engireering Design Applications (San Jeee, CA), May, 73—80.

design engirmering, DBMS, transactions, integrity control

084. Lecroix, M.,and A. Pirotte (1981). Data Structures for CAD object
description. Proc. W14 IEEE 18th Design Automation Conf. (Nashville,
‘Dl), June, 653—9.

electronic engirmering, semantic data modeling, IDL, schema

085. Lafue, G.M.E. (1978). Design data base and data base design. Proc.

CAD 78 3rd Tnt. Conf. and Exhib. on Cailputers in Engireering and

Building Design (Brighton, UK), March, 254—62.

design engirmering, DBMS, relational model, integrity control

086. Lafue, G.M.E. (1979). An approach to autanatic maintenance of

semantic integrity in large design databases. Proc. Nat. Caipit.
Ca-if., AFIPS—48. AFIPS Press, t’~tvale, NJ. pp. 713—6.

design engireering, integrity control, semantic integrity

087. Lafue, G.M.E. (1979). Integrating language and database for CAD

applications. Canpit. Aided Des., 11(3), 127—30.

design engireering, languages, integrity control

-088. Lafue, G.M.E. (1979). An Approach to Automatic Checking of Semantic

Integrity in Design Databases. Ph.D. Dissertation, Schcol of Urban

and Public Affairs, Carnegie-Mellon Univ. (Pittsburgh, PA), Dec.

design engirmering, DBMS, integrity control, Semantic integrity

089. Lafue, G.M.E. (1982). Semantic integrity dependencies and delayed
integrity checking. Proc. 8th mt. Conf. on Very Large Data Bases

(Mexico-City, Mex.), Sept.,292—9.
DBMS, integrity control, semantic integrity

090. Lafue, G.M.E., and T.M. Mitchell (1982). Data Base Management

Systenm and Expert Systeem for CAD. Res. Pep. LLSR-TR-28, Lab, for

Canp.iter Science Research, Rutgers Univ. (Nm~ Brunswick, NJ), May.
DBMS, artificial intelligence, expert systems, integrity control

091. Lee, Y.C., and K.S. Fu (1983). Integration of solid nnxleling and

data base management for CAD/CAM. Proc. AOl IEEE 20th Design
Automation Conf. (Miami Beach, FA), June, 367—73.

CAD/CAM, gealletric modeling, DBMS, relational model, gramars

092. Lee, Y.C., and K.S. Fu (1983). A CSG based DBMS for CAD/CM and its

suppDrting query language. Proc. AOl IEEE Annu. Meeting Database

Week: &igireering Design Applications (San Jose, CA), May, 123—30.

SDlid geanetry, DBMS, relational model, grammars, languages, QL

093. Leesley, M.E., and A.P. Bixhmann (1980). Databases for ccinpiter—
aided process plant design. Ccinpit. and Chem. Eng., 4(2), 79—83.

chemical engineering, DBMS, process plant

094. Leirmmann, K. (1982). GRI~I — A or~thination of interactive

graphics methods and CAD database techniques for functional

modelling. Proc. ra*lics Interface ‘82 (Thronto, Ont.), 153—60.

conpiter graphics, data modeling, IDL, tl4L, interactive systems

095. Leyking, L.W. (1979). Data base consideration for VLSI. Proc.

CALT~~ Conf. on Very Large Scale Integration (VLSI) (California
Institute of Technology, Pasedena, CA), Jan., 275—301.

electronic engineering, VLSI, DBMS, data models, hierarchical model

096. Liewald, N.H., and P.R. Kminicott (1982). Intersystem data transfer

via I~S. IEEE Ccmpit. Graphics and Ap.pl., 2(3), 55—63.

CAD/CAM, systems canminication, I(~S, graphics databases

097. Lillabagen, F.M. (1981). CAD/CAM systems. In J. Ercarnacao, O.F.F.

Torres, and E.A. Warman (Eds.), CAD/CAM as a Basis for the Develo

pment of Technology in Developing Nations. North-Holland,

Asnterdan. pp. 367—414.

CAD/CAM, spec if ica t ions, mechanical engineer ing, DBMS, TU~4AtXD

098. Lillabagen, F.M., and T. Dekkan (1982). Ta.~ards a methodology for

constructing product modelling databases in CAD. In J. Encarnacao,

and F.L. Krause (Fds.), File Strictures and Data Bases for CAD.

North-Holland, Aasterdain. pp. 59—91.

design engineering, DBMS, logical database design, WL, EZIL,

099. Lane, R.A., R. Casajuana, andJ.L. Becerril (1979). GSYSR: A

Relational Database Interface for Graphics. Rem. Rep. P32511,

IBM Res. Lab. (San Jaie, CA), Apr.

conpiter graphics, relational model, interface

100. Lone, R.A. (1982). IsslEs in databases for design applications. In

J. Encarnacao, anf F.L. Krause (Eds.), File Stnixtures and Data

Bases for CAD. North—Holland, Meterdan. pp. 213-29.

design engineering, DBMS, compiter graphics, relational rmjdel

101. Lone, R.A., and W. Plcsjffe (1983). Canpiex objects and their use

in design transactions. Proc. AOl IEEE Annu. Meeting Database Week:

Engineering Design Applications (San Jose, CA), May, 115—21.

design engineering, DBMS, relational mx]el, transactions
, System R

102. Lallam, D., and E.J. PursJ~ (1981). An integrated CAD/CAM system

using a relational data base. Proc. European Conf. on Electronic

Design Automation (Brighton, UK), Sept., 5—8.

e1~tronic engineering, DBMS, relational mjdel, integration, R2B

103. Lir3ham, D. (1983). T~ design database. Canpit. Syst., 3(7), 55—7.

electronic engineering, DBMS, relational nodel, PCB, manufacturing

104. Managaki, M. (1982). Multi—layered database architecture for CAD/
CAM systems. In 3. Encarnacao, and F.L. Krause (Eds.), File Strnc—

tures and Data Bases for CAD. North—Holland, Aseterdam. pp. 281—94.

CAD/CAM, DBMS, system architecture, unplmnantation, integrity

105. Matsuka, H., S. UnD, and T. Sata (1981). Application of advanced

integrated designer’s activity support system. In E.A. Warman (Ed.),
Man—Machine Ccmnunication in CAD/CAM. North-Holland, l4seterdan.

pp. 251—69.

geanetric asdeling, integrated system, DBMS, relational nodel

106. Matsuka, H. (1982),. Data base in CAD system. Inf. Process. Soc.

Jpn. (Jc~-o SI-on), 23(10), 1000—7 (in Japanese).
CAD/CAM, design docunentation, numerical cx)ntrol, process control

107. Melntosh, J.F. (1978). Tba interactive digitizing of polygons and

the processing of polygons in a relational database. Cos~sjt.

Graphics, 12(3), 60—63.

copter graphics, DBMS, relational asdel, interactive system

108. t.tLecd, D., K. Narayanaswamy, and K.V. Bapa Rao (1983). An approach
to information management for CAD/VLSI applications. Proc. AOl IEEE

Annu. Meeting Database Week: Engineering Design Applications (San

Jose, CA), May, 39—50.

electronic engineering, VLSI, E~3MS, semantic data odeling

109. Meder, H.G., and F.P. Palermo (1977). Data base support and

interactive graphics. Proc. 3rd mt. Conf. on Very Large Data Bases

(Tokyo, 3), Oct., 396—402.

oDnpiter graphics, DBMS, relational mailel

110. Miller, R.E., 3. Southall, and S. Wahlstrcnn (1979). Requirements
for management of aerospace engineering data. Canpit. and Striot.,

10, 45—52.

aerospace industry, data management, requirements, IPAI)

111. Nash, D. (1978). Topics in design automation data bases. Proc. AOl

IEEE 15th Design Automation Conf. (Las Vegas, NV), June, 463—74.

design engineering, DBMS, data models, requirements, survey

112. Nash, J.H. (1982). Graphics interaction with database systems.
Proc. CAD 82 5th mt. Couf. and Exhib. a Canpiters in Design
Engineering (Brighton, UK), March, 107—18.

design engineering, DBMS, user interaction, graphics display

113. Neumann, T. (1980). CAD data base reguirements and architectures.

In J. Encarnacao (Ed.), Canpiter—Aided Design, ~4~xle1ling, Systene
Engineering, CAD-System. Springer—Verlag, Berlin. pp. 262—92.

DBMS, data todeling, data consistency, data integrity, tutorial

114. Neumann, T., and C. Hornung (1982). Consistency and transactions in

CAD databases. Proc. 8th mt. Couf. on Very Large Data Bases

(Mexico—City, Mex.), Sept., 181—8.

DBMS, data consistency, integrity control, transactions

115. Neumann, T. (1983). c~ representing the design information in a

canon database. Proc. P04 IEEE P,nnu. Meeting Database Week:

Engineering Design Applications (San Jose, CA), May, 81—7.

CAD/CAM, manufacturing control, DBMS, E-R model, logical database

116. Nude, K., H.H. Yagi, and T. Umeda (1977). An application of data

base management system (DBMS) to process design. Caipit. and

Chem. Eng., 1(1), 33—40.

chemical engineering, DBMS, plant design

117. Nwn, W.A., K.N.NoI-bins, and M.T. Noberts (1982). A design system
approach to data integrity. Proc. P04 IEEE 19th Design Automation

Conf. (Las Vegas, NV), June, 699—705.

electronic engineering, VLSI, data integrity

118. Okiro, N., Y. Kabazu, H. Kubo, and N. Hashinoto (1980). Geometry
data—base for nn.ilti—parts in CAD/CAM systems, TIPS/Q)B. In P. Blake

(Ed.), Advanced Manufacturing Technology. North-Holland, Anmterdan.

pp. 71—86.

CAD/CAM, mechanical engineering, geometric rxxleling

119. Oyake, I., El. Mizuno, and M. Yamagishi (1982). A graphic database

for interactive CAD. Proc. CAD 82 5th mt. Ca-f. and Exhib. on

Canpiters in Design Engineering (Brighton, U1~, March, 133—42.

mechanical engineering, geometric modeling, graphic data

120. Palermo, F.P., and D. Weller (1979). Picture building systems.
Proc. lIES OJM~(D4 Spring 79 (San Francisco, CA), Feb.

copiter graphics, DBMS, relational model, WL, tilL

121. Palerno, F.P., and D. Weller (1980). Sane data base raguirmnents
for pictorial applications. In A.Blaser (Ed.), Data Base Techniques
for Pictorial Applications. Springer—Verlag, Berlin. pp. 555—67.

copiter graphics, DBMS, requirements, relational model, WL, tilL

122. Patnaik, L.M., and N. Ramesh (1982). Implementation of an interac

tive relational graphics database. Capt. and Graphics, 6(3), 93—6.

conp.iter graphics, DBMS, relational nodel, WL, OIL

123. Pelsi, 3. (1982). Simplified data structure for ‘mini—based”

turnkey CAD systems. Proc. P04 IEEE 19th Design Automation Conf.

(Las Vegas, NV), June, 636-42.

design engineering, DBMS, mini—compiters, turnkey systems

124. Phillips, R.J., M.J. Beaunisit, and 0. Richardson (1979). AESOP: an

architectural relational database. Cançut. Aided Des., ll(4),2l7—26.

architectural design, DBMS, relational model, fuzzy relations

125. Phillips, R.J., N.J. Beauncnt, D. Richardson, and 3. Bartley (1981).

Geometry for CAD. Cançtlt. Aided Des., 13(2), 89—97.

architecturaldesign, computer graphics, relational model

126. PriOr, H., and H. Fuchs (1980). Integrated production of manufectu—

ring docLrnentation. Irrl.—Anz., 102(82), 120—7 (in German).

CAD/CAM, mechanical engineering, process planning, NC programs

127. Quinlan, K.M., and J.R. Wcodsork (1982). A spatially—segmented
solids database — Justification and design. Proc. CAD 82 5th mt.

Conf. and Exhib. on Cailpiters in Design Engirmering (Brighton, UK),

March, 126—32.

mechanical engirmel ing, gecisetr ic modeling, ijsplmnentation

128. Rasdarf, W.J., and A.R. Kutay (1982). Maintenance of integrity
during concurrent access in a building design database. Canput.
Aided Des., 14(4), 201—7.

architectural design, DBMS, relational model, integrity control

129. I~)berts, K.A., T.E. Baker, and D.H. Jerome (1981). A vertically
organized calpiter—aided design data base. Proc. ACM IEEE 18th

Design Automation Conf. (Nas~wille, IN), June, 595—602.

electronic engirmering, ~B, DBMS, asimercial databases, schena

130. I~niberg, F.A. (1981). A E~ical Design Met~zxiology for Ccinplex
Databases such as a Manufecturing Operations Database. Ph.D.

Dissertation, Scuthorn Methodist Univ. (Dallas, TX), Sept.

logical database design, methodology, manufecturing

131. l~ussopoulcm, N. (1979). Tcols for designing conceptual schmnata

of databases. Canpit. Aided Des., 11(3), 119—20.

database theory, logical database design, methodology

132. Ruiz-de-Molina, B. (1983). The role of data base managmnent and

sinulation in engineering projects. Autofat V Conf. Proc.

(Detroit, MI), Nov.

CAD/CAM, ELMS, simulation, engineering projects

133. Sanbarn, J.L. (1982). Evolution of the engineering design systam
data base. Pwc. N)4 IEEE 19th Design Automation ConE. (Las Vegas,
NV), June, 214—8.

electronic engineering, data files, database, file structures

134. Scheffer, L. (1979). Database considerations for VlSI design. In W.

M. Van Cleemlxlt (Ed.), Design Automation at Stanford. Stanford

Univ., Canpiter Systenm Lab., Stanford, CA.

electronic engineering, VlSI, hierarchical design, requirmnents

135. Scott, M. (1980). A data base for small conpiters. Prod. Brig.,
27(3), 50—4.

CAM, DBMS, data files, manuf~turing operations

136. Show, G.W. (1980). The use of database techniques in production
control - A practical exariple from the aerospace industry.
Canp,t. mod., 1(4), 245—9.

production control, aerospace industry -

137. Shenoy, R.S., and L.M. Patnaik (1983). Data definition and manipu
lation languages for a CAD database. Ccnipit. Aided Des., 15(3),
131—4.

geanetric modeling, DBMS, relational model, IDL, E14L

138. Sidle, T.W. (1980). Weaknesses of conuercial data base managmnent
systmns in engineering applications. Proc. AC~4 IEEE 17th Design
Automation ConE. (Miuneapolis, MN), June, 57—61.

engineering databases, connurcial databases, DBMS, ctisparision

139. Smolin, R. (1981). ELMS for bill of materials processing. Interface

Age, 6(12), 88—91.

CAM, bill of materials, DBMS

140. SrEok, S. (1979). Ttm database for controlling ~rk—in--progress at

Perkins engines. Database 3., 9(4), 8—15.

CAM, production control, DBMS, process control

141. Sorokin, V.K. (1982). Database organization in canpiter—aided
design systmns. Avtom. and Telmnekh., 43(9), 122—6.

engineering databases, file organization, CAD, design quality

142. Sparr, T.M. (1982). A language for a scientific and engineering
database systea. Proc. PQ4 IEEE 19th Design Automation ConE. (Las

Vegas, MV), June, 865—71.

engineering databases, query language, relational model

143. SExx~namore, J.H. (1982). CAEADS - Caliputer-Aided Engineering and

Architectural Design System. Tech. Rep., US Army, Construction

Engineering Research Ltd. (Champaign, IL), Aøg.
architectural design, gecinetric orx~eling, L~MS, CAEADS

144. Stonebraker, N., B. Rubenstein, and A. Guttman (1983). Afçlication
of abstract data types and abstract indices to CAD data bases.

Proc. AO.1 IEEE Annu. Meeting Database Week: Engineering Design
AWlications (San Jcne, CA), May, 107—13.

DBMS, abstract data types, abstract indices, buxes, wires, polygons

145. Taraman, S.R. (1981). Mechining data bank structure. Tech. Paper
MS81—490, CASA—~4E, Dearb~n, MI.

CAM, mechanical engineering, mechining, file structures

146. Throop, J.W. (1981). A ~nnon data base for metal cotting data.

Tech. Paper MS81—l83, CASA—BME (Dearb3cn, MI), April.
CAM, logical database design, mechining, standardization

147. Ulfsb1, S., S. Meen, and 3. Oian (1982). T(Ft4AIX): a database

managmnent systam for graphics applications. IEEE Ccnçut. Graphics
and Appl., 2(3), 71—9.

CAD/CAM, mechanical engineering, DBMS, network nraiel, (XOASYL

148. Ulfsbj, S., S. Meen, and J. Oian (1982). TCENALO: a DBMS for CAD/
CAM systmns. In 3. Ercarnacao, and F.L. Krause (Eds.), File

Structures and Data Bases for CAD. North—Holland, Ansterd~n.

pp. 335—50.

CAI)/CAM, mechanical engineering, DBMS, network nn~el, (XOASYL

149. Valle, G. (1975). Relational data handling techniques in integrated
circuit mask layout procedures. Proc. AOl IEEE 12th Design Automa

tion Caif. (Bcmton, MA), June, 407—13.

electronic engineering, IC masks, mask layout, relational model

150. Valle, G. (1977). Relational dsta handling techniques in caiiçuter
aided design procedures. In 3.3. Allan (Ed.), CAD Systems.
North-Holland, Amsterdam. pp. 309—25.

design engireering, database, relational model

151. VanCleençut, W.M., and J.G. Lirders (Eds.) (1975). Data Bases for

Interactive Design. University of Waterloo, Waterloo, Q)N.

design engireering, oompiter graphics, data structures, DBMS

152. Vernadat, F. (1983). Critsiunication: a key requirement in ccisputer
integrated manufacturing. Proc. IEEE 2nd Annu. Ptoenix Conf. on

Ccsçuters and Ccemunications (Phoenix, AZ), March, 193—8.

CAD/CAM, CIM, activities, ooimminication, requirements

153. Vernadat, F. (1983). New requireisents for user interaction with

CAD/CM databases. Proc. Graphics Interface ‘83 (Ednuiton, Q3N),

May, 271—9.

CAD/CM, DBMS, user interaction, data types, data models, WL, IlL

154. Vernadat, F. (1983). Manufacturing Databases. Res. Rep. EPB—955,
Div. of Electrical Engireering, National Research Council of

Canada, Ottawa, CDN.

CAD/CAM, DBMS, 103 ice 1 database design, manufacturing applications

155. Waters, M.A. (1978). A Data Base for Efficient VLSI Chocking and

Artwork Generation. Intren. Rep., CI Div. of E—Systess, Irc.

(St. Petersburg, E~), June.

electronic engireering, VLSI, circuit layout

156. Weller, D., and F. Palerino (1979). Database requirements for

graphics. Proc. IEEE (DMRDN Spring 79 (San Francisco, CA),

Feb., 231—7.

oosplter graphics, DBMS, relational model, requirements

157. White, C. (Ed.) (1980). Tfe nature of graphics databases. In

Caupiter Graphics, Infotech State of the Art Report. Infotech,

Maidenhead, UK. pp. 139—70.

oospiter graphics, graphics databases, requirements

158. Wialerhold, C. (1981). Research in knowledge base management

systems. P04 SIG4OD Mewsi., 11(3).
electronic engineering, digital circuits, DBMS

159. Wiederhold, G., A.F. Beetem, and G.A. Short (1982). A database

approach to ccnxsinication in VLSI design. IEEE Trans. Cctpit.
Aided Des., CAD—l(2), 57—63.

electronic engineering, VLSI, oormercial database, DBMS—20

160. Williams, R., and G.M. GicUings (1976). A picture—blilding system.
IEEE Trans. Softhare Eng., SE—2(l), 62—6.

oospiter rtics, ista3e processing, relational model, EL

161. Wilmore, J.A. (1979). T)e design of an efficient data base to

support an interactive LSI layout system. Proc. AOl IEEE 16th

Design Automation Cccf. (San Diego, CA), June, 445—51.

electronic engineering, mask layout, DBMS, interactive system

162. Wcng, C.S., and E.R. Reid (1982). FLAIR — User interface dialog
design tool. Ccsip~t. Graphics, 16(3), 87—98.

conpiter graphics, user interface, DBMS, relational model

163. Wcng, S., and W.A. Bristol (1979). A oompiter—aided design data

base. Proc. P04 IEEE 16th Design Automation Conf. (San Diego, CA),
June, 398—402.

electronic engineering, DBMS, centralized database

164. Wood, C., E.B. Fernandez, and R.C, Susmers (1980). Data base

security: requirements, policies, and rmodels. IBM Syst. 3.,

19(2), 229—52.

database theory, DBMS, data security

165. Yasky, Y. (1981). A Consistent Database for an Integrated CAAD

System: Fundamentals for an Automated Design Assistant. Ph.D.

Dissertation, Dept. Architecture, Carnegie-Mellon Univ.

(Pittsburgh, PA).

architectural design, DBMS, data consistency, data integrity

166. Zdeblick, W.J., 3. Lindberg, and L.J. Hawkins (1981). Machina

bility Data Base for End Mill Application. Tech. Paper MS81-184,
CPSA—94E (Dearborn, MI), April.
CM, process planning, machining

167. Zintl, G. (1981). A DV½SYL CAD data base system. Proc. P04 IEEE

18th Design Automation Conf. (Nasiwille, ‘IN), June, 589—94.

electronic engineering, ret~aork model, (COASYL, IlL

I

CAD/CAM Database Management*

By
Michael L. Brodie, Barbara Blaustein, Umeshwar Dayal,

Frank Manola, Arnon Rosenthal

Computer Corporation of America

1. The CAD/CAM Database Management System

The design and manufacture life cycle of a product involves many distinct

engineering disciplines, each with its own specialized computer systems. Gen

erally these systems have massive data repositories handled by inadequate data

managers that cannot communicate with each other. As a result, there are sig

nificant problems for data management and for the efficient coordination of

hundreds of complex heterogeneous systems.

Data provides a basis for integration and coordination. Design and

manufacturing data consists of all types of product descriptions including

requirements, drawings, parts hierarchies, geometries, analyses, and manufac—

turing processes, as well as administrative data for controlling, monitoring
and planning. Although the same data is frequently used in different forms by

many systems, it seldom is shared or exchanged automatically.

Ideally, a DBMS would be used to integrate current and future CAD/CAM

systems by providing means to store, manipulate, and manage all CAD/CAM data.

However, current database technology does not provide means to solve such

problems as representing engineering data semantics (e.g., parts hierarchies

and geometry), version control, data exchange, distributed processing over

heterogeneous databases, and suitable interfaces.

A CAD/CAM DBMS (CCDBMS) which solves the above problems is being designed

aI3d developed to integrate all CAD/CAM systems. Each system will continue to

operate autonomously, but some measure of global control and access will be

imposed. The components of the CCDBMS architecture fall into three functional

groups. First, a set of user interface components will provide uniform access

to all CCDBMS facilities, including those of the individual CAD/CAM systems.

Second, a Global Data Manager will provide distributed processing for CCDBMS

requests that require access to more than one system within the CCDBMS.

Third, a new DBMS will provide a global view of all data. needed to support

queries against the whole CCDBMS, distributed processing, and version control.

The global view will include an abstract or extract of all data in the CCDBMS

as well as a global dictionary and directory.

*This research is funded by General Dynamics, Data Systems Division.

12

CAD/CAM Database Management

This paper summarizes the research results on which the CCDBMS is based.

Early research results indicated that two approaches to the problem, as we

considered it, were not feasible. First, a centralized database for all

CAD/CAM data would make the integration of current and future CAD/CAM systems

economically infeasible. Second, the problem of determining one or more stan—

dard data representations for all CAD/CAM data is currently intractable due to

mathematical problems with translation between representations and the real

need for specialized representations.

2. Data Model and Languages

The CCDBMS uses the functional data model Daplex Shipman8l]. Charac

teristics that suit it for this application are:

— Like the relational model, it provides high—level set—oriented operations,
and relatively user—friendly query capabilities.

— Again like the relational model, it provides the basis for the construction

of powerful DBMSs Chan8l, Chan83J.
— It supports the interaction of heterogeneous data collections as in Multi—

base Smith8l, Dayal83I.
— Daplex permits a straightforward modelling of “complex objects”, which are

important constructs in design—oriented applications Lorie8l], via

entity—valued functions (attributes).
— Daplex allows explicit declaration of ISA hierarchies, which is an impor

tant semantic construct for this application.

It is interesting to note that Daplex has definitional capabilities simi

lar to those of IDEF—l, which is being used in design and manufacturing appli
cations for conceptual modelling IDEF—l]. IDEF—l models map to Daplex sche—

mas in a straightforward way.

The current conceptual model being developed consists of information

about parts and related documents, such as drawings, specifications, and

change notices (the ISA relationship is useful here). Extensions to this

model also have been investigated for including manufacturing data (e.g. group

technology and planning data) and analysis data such as finite element models,
test cases, and results of analysis programs.

The information about parts in the schema is a generalization of the

usual parts—explosion (or bill—of—materials) structure used in databases in

that particular ~instances of a (next—level) subcomponent part within a

higher—level assembly must be represented. For example, this generalization
is necessary to hold the orientation data that defines the geometric relation

ship of each individual part instance to the assembly.

Extensions to Daplex are currently being investigated in order to meet

the special demands of CAD/CAM applications. Geometric data handling exten—

tions are discussed in Section 4. Another important example is support for

13

CAD/CAM Database Management

computation of transitive closures within the parts hierarchy. Although

Daplex allows explicit looping and if—then testing, traversing a parts—

hierarchy is not much easier in Daplex than it is in other languages. As a

result, it appears desirable to have special syntax to support the particular

problems of querying parts hierarchies and other similar cyclic structures.

We also are investigating special constructs for defining parts hierar

chies. Just as the generalization hierarchies (defined using the ISA con

struct) include special semantics (such as inheritance), so the parts hierar

chy (defined using new constructs) might include its own special semantics

(such as acyclicity). Further extensions also might be justified since the

conceptual schema is extended to deal with additional types of design and

manufacturing data, as well as individual processes that use it.

3. Screen Oriented Interface

A uniform screen oriented interface is being designed to provide access

to all CCDBMS functions including database query and update, data dictionary

operations, definition and execution of distributed transactions, system com

mands, and help facilities. It must be appropriate for thousands of design
and manufacturing engineers whose level of skill and familiarity with computer

systems (such as database systems and query languages) vary widely.

Most CCDBMS functions including query, update, and dictionary commands,

will be available via an interface based on concepts from OBE Zloof82I and

DACOS Kaufman83]. Separate screen interfaces will be provided for special
ized functions such as system commands. The research issues involved the

extension of OBE to support Daplex.

•

The syntax and semantics of OBE had to be extended for data definition,

query, and manipulation. The major extensions, which concern the object and

set orientation of Daplex, involved additional domain and data type capabili
ties. Concepts for values, variables, and operations were added for entity

types, entity subtypes, set types, and some engineering data types. Daplex
constraints such as overlap of type hierarchies and entity uniqueness were

also added. QBEs predicates have been used to integrate operations and

predicates for entities, sets, and geometry. Extensions were made for the

expression and display of queries that involve transitive closure, including
the ability to express queries over any recursively defined structure and to

retrieve the relationships between the nodes in the structure. QBE and OBE

function and program invocation mechanisms have been generalized to permit any

function or program to be invoked. This is particularly important for prede—
fined transactions over the CCDBMS. Mechanisms for arbitrary view definition

and maintenance are now being considered.

Significant extensions have been made to the QBE display syntax. Screens

can contain multiple tables, each representing one entity or a user defined

view. Relationships between tables are displayed via entity and other

14

CAD/CAM Database Management

variables as well as by views. To simplify the potentially complex display,

graphic devices such as scrolling, zooming, windowing, editing, and overlaying
have been introduced. Mechanisms have been integrated for entity and set

valued variables, predicates, and functions. New windows have been introduced

to display queries and errors. As a screen query is entered, the CCDBMS can

automatically display the corresponding Daplex query for tutorial and checking

purposes. Many other features have been added such as specialized displays of

results to hierarchic queries, and search broadening and narrowing.

Future investigations are planned for the definition, update, and brows

ing of local and global schemas, schema mappings, local systems capabilities,
and version control rules. More sophisticated graphical concepts based on

VIEW Barnett82 I are being investigated.

4. Geometric Query Capabilities, Processing, and Representation

Geometric information currently is generated and displayed on worksta

tions. The CCDBMS will store this information centrally and provide access to

parts information via geometric conditions. For example, in considering a

design change, all parts close to the point of change can be found and their

properties (e.g., low melting point) accessed.

The parts hierarchy shows the component parts of each part in the data

base. Queries to a part hierarchy, particularly geometric queries, raise dif

ficult issues in query language behavior and data management, in addition to

issues of computational geometry. Special semantics are used for queries to

part hierarchies to enable the system to return results at the proper level of

detail. For example, a query requesting parts within 4 feet of an airplane
instrument panel normally should not return the parts “airplane” or “cockpit”,
not every bolt in the pilots seat. Instead, “pilotTh seat” could be

returned.

A system of rules addresses these problems by categorized geometric
predicates according to their behavior when going down the parts hierarchy.
The rules prevent unwanted output and speed the search process. The output
limitation rules can be informally expressed as:

— On predicates that easily are satisfied by large (small) parts, return only
the smallest (largest) satisfying parts.

— Return parts at approximately the same level of decomposition.
— Do not decompose unimportant parts.

The geometric predicates supported are “contained” and “intersects”.

Other geometric operators change coordinate systems (parts are stored relative

to their immediate superassembly), define regions relative to a~ part, calcu

late distances, etc.

15

CAD/CAM Database Management

Rather than doing sophisticated geometric calculations, the DBMS works

with approximations to actual shapes. We chose rectangular boxes, since these

permit refinements (sets of boxes), allow useful regions to be defined (e.g.,
the region directly to the left of x), and are easily manipulated. Since the

geometric representation of a part is its containing rectangular box, we some

times obtain false positives.

In our environment, we cannot use an index structure for geometric infor—

mation. The difficulty is that moving a large assembly (e.g., a pump) poten—

tially changes the position of hundreds of parts and could cause hundreds of

database updates. Instead, the search algorithm uses the part hierarchy
itself as the branching structure. The search down a branch terminates when

subparts are reached that cannot satisfy the search predicate or when an

output—limitation rule halts further decomposition.

5. Version Control

A number of issues often are thrown together under the heading “version

control” or “configuration management”. This function is defined as: “The

systematic approach to identifying, controlling, and accounting for the status

of the parts and assemblies required in a product and/or design from the point
of its initial definition throughout its entire life Knox83l (emphasis
added).

There are three main components of version control, each of which imposes
a set of requirements on a CAD/CAM DBMS: 1) Schema definition (discussed

above): recording status and descriptive information about products,

numerically—controlled tool programs, schedules, etc.; 2) Access control res

tricting access of various users to data at various stages in the life of a

product; and 3) Change control monitoring updates, recording change requests
and approvals, and changing data availability as a product moves from one

design or manufacturing stage to another.

An effective CAD/CAM access control system should support four functions:

1) value—based access privileges, 2) definition of access privileges at the

attribute (function) level, 3) linking of some access privileges to particular
pre—defined transactions, and 4) flexibility granting and revoking of

privileges (including privilege to granting and revoking).

Value—based access privileges work together with the schema definition

since database values are used to determine user access to data at a particu
lar time. Attribute—level access privileges are essential to provide the

degree of control required in the CAD/CAM environment. However, supporting
attribute—level access privileges becomes complicated when a schema allows

entity—valued attributes (or functions) needed to capture complicated rela

tionships in CAD/CAM. The CCDBMS can control the kinds of updates allowed by
requiring the use of predefined transactions to update sensitive data. Dif

ferent types of privileges are needed for different products and for different

16

CAD/CAM Database Management

stages within the life of a single product, and different (relatively auto

nomous) groups involved in design and manufacturing may wish to follow dif

ferent access control policies. The CCDBMS must therefore support a closely
controlled system for defining and changing access privileges.

Change control is perhaps the most difficult aspect of version control.

“The basic change control process consists of six major functions: (1) deter

mination of the need for a change, (2) identification and logging of change,
(3) description and documentation of change, (4) evaluation and approval of

change, (5) incorporation of change in hardware, and (6) verification and

documentation of change incorporation” Samaras].

The role of an automated system in supporting change control is chiefly
to monitor various types of changes and, when possible, to initiate appropri
ate actions. CCDBMS support for change control could be partially embedded in

predefined transactions. Conditions to be tested could be encoded in the

appropriate transactions, and if necessary one predefined transaction would

invoke another.

Access and change control share three fundamental components: the abili

ties to activate an access or change control procedure when a particular event

occurs, to evaluate a boolean formula and, based on the evaluation, to invoke

an appropriate action. Because of the great variability in the types of

access privileges and change monitoring needed for different products and at

different stages within the life of a product, the CCDBMS must be able to

store access and change control information (or rules) and to enforce these

rules using general techniques. General techniques developed for rule—based

expert systems may be useful in enforcing these rules.

6. Distributed Processing

The CCDBMS is a heterogeneous distributed DBMS. Its salient capabilities
include: High—level data definition facilities for a tight integration of

part, drawing, and version control information (which currently is scattered

in many different repositories under the control of different DBMSs, file sys

tems, and application systems); global version and access control; efficient

processing of ad hoc global queries over the global view; and centralized

management of global predefined transactions.

The design of the CCDBMS applies and extends MIJLTIBASE Smith8l,
Landers83l technology. As in MULTIBASE, the problems of heterogeneity and

data integration are handled separately by two diferent kinds of software

modules: the former by the Local System Interfaces (LSIs), and the latter by
the Global Data Manager (GDM). The GDM is the key component of the distri

buted processing architecture. It presents a unified view of the heterogene
ous repositories; it accepts, plans, and monitors the execution of user

requests; and it returns results to the user. The role of the LSIs is to

present a uniform interface between the GDM and the heterogeneous host systems

17

CAD/CAM Database Management

by hiding the idiosyncracies of the host systems from the GDM. The GDM can

thus commmunicate with all the sites via a common protocol, expect data

returned from all the sites in a common format, and make consistent assump

tions about the transaction management capabilities of all the sites.

Data in each repository is first described by a Local Schema (LS) in a

common language. Then a logically integrated view, the Global Schema (GS), is

defined over the LSs. Global query processing in the CCDBMS is similar to the

one used in MULTIBASE. (See Dayal8l, Dayal82a, DayalB2b, Dayal83, Gol—

dhirsch84l for details.) Global queries over the CS are input to the GDM

from the user interfaces in an internal form called a query processing

envelope (QPE). The GDM uses the definition of the GS to transform the global

QPE into QPEs over the LSs. It then constructs an efficient global query pro

cessing strategy that consists of local QPEs (each of which represents a query

over a single LS, and is executable at a single site), move steps that specify
data transfer between sites, and a partial order that specifies precedence
constraints on the execution of the local QPEs and move steps. The local QPEs
are shipped to the appropriate LSIs, which translate them into efficient pro

grams in the host DMLs. The results of executing the host programs are for

matted and returned to the GDM, which combines them into a final answer that

is returned to the user.

Unlike MULTIBASE, the CCDBMS must process update transactions in addition

to queries. This raises two sets of issues. First, updates on the GS must be

mapped into equivalent updates on the LSs. But automatic view update mapping
is a notoriously difficult problem. Hence, we initially avoid the problem by
insisting that all global transactions be predefined (i.e., the mapping of

every global transaction into local transactions must be supplied to the GDM

before the global transaction is invoked).

The second set of issues pertains to global transaction management: con

currency control, commitment, and recovery. These problems are more compli
cated here than in “conventional” distributed DBMSs for two reasons. First:

the host systems might not provide a uniform set of capabilities. For simpli
city, we use centralized two—phase locking at the GDM to synchronize global

transactions, centralized deadlock detection at the GDM, and centralized two—

phase commitment with the GDM as coordinator. In addition, we require that

each site be capable of synchronizing purely local transactions, detecting
local deadlocks, and supporting atomic commitment. Capabilities that are

lacking in the host system must be compensated for by the LSI. Second: CAD/CAM

transactions typically are long. Using an entire transaction as the unit of

commitment would result in poor resource utilization. Our solution is to (a)

treat each transaction as though it were composed of several atomically com

mittable units; and (b) use special version control procedures for synchron
izing special groups of predefined transactions (e.g., use approval, release,

and check—out procedures for synchronizing design, redesign, and manufacturing
transactions).

Future extensions will consider the processing of ad hoc global transac

tions, decentralized transaction management, enhanced robustness through rep

lication, and issues of autonomy.

18

CAD/CAM Database Management

7. References

Barnett82] Barnett, J., M. Friedell, and D. Kramlich, “Context—Sensitive,
Graphic Presentation of Information,” Computer Graphics Vol. 16, No. 3,
1982.

Chan8l] Chan, A., S. Fox, K. Lin, D. Ries, “The Design of an Ada Compatible
Local Database Manager”, Technical Report CCA—81—09, Computer Corporation
of America, 1981.

Chan83I Chan, A., U. Dayal, S.Fox, N. Goodman, D. Ries, D. Skeen, “Overview

of an Ada Compatible Distributed Database Manager”, Technical Report

CCA—83—O1, Computer Corporation of America, 1983.

Dayal8l] Dayal, U., et al., “Local Query Optimization in MULTIBASE: A System
for Heterogeneous Distributed Databases,” Technical Report CCA—8l—11,

Computer Corporation of America, September 1981.

Dayal82a] Dayal, U., T. Landers, and L. Yedwab, “Global Query Optimization in

MIJLTIBASE: A System for Heterogeneous Distributed Databases,” Technical

Report CCA—82—O5, Computer Corporation of America, 1982.

Dayal82b] Dayal, U., and N. Goodman, “Query Optimization for CODASYL Database

Systems,” Proceedings ACM SIGMOD Conference June 1982, pp. 138—150.

*

Dayal83] Dayal, U., “Processing Queries over Generalization Hierarchies, in a

Multidatabase System”, Proc. Ninth VLDB Conference, Oct. 1983.

Goldhirsch84] Goldhirsch, D., and L. Yedwab, “A Hybrid Approach for Handling
Generalized Entities in Views,” Computer Corporation of America, January
1984 (submitted for publication).

IDEF—1] Softech, Inc., Integrated Computer—Aided Manufacturing (ICAM) Archi

tecture Part II, Volume 5——Information Modeling Manual (IDEF—1), AFWAL—

TR—81—4O23, Wright—Patterson AFB, Ohio, June 1981 (NTIS AD—B062—458).

Kaufman83] Kaufman, C., J. Barnett, and B. Blaustein, The DACOS Forms Based

Query System,” Journal of Telecommunications Networks Computer Science

Press, Rockville, MD, winter issue, 1984.

Knox83] Knox, Charles S., CAD/CAM Systems: Planning and Implementation Mar

cel Dekker, Inc., New York, 1983.

Landers83] Landers, T., and R.L. Rosenberg, “An Overview of MULTIBASE.” In

H.J. Schneider (ed.), Distributed Databases North—Holland Publishing
Company, 1982.

19

CAD/CAM Database Management

Lorie8l] Lone, R.A., “Issues in Database for Design Applications”, IBM

Research Report RJ3176, IBM Research Lab., San Jose, CA, July 1981.

Samaras] Samaras, T.T., Engineering Graphics Desk Book Prentice—Hall.

Shipman8ll Shipman, D.
,
“The Functional Data Model and the Data Language

Daplex,” ACM Transactions on Database Systems, Vol. 6, No. 1, March

1981.

Smith8l] Smith, J.M., et al., “MIJLTIBASE——Integrating Heterogeneous Distri

buted Database Systems”, Proc. National Computer Conference, Chicago, May
1981.

Zloof82] Zloof, M.M., Office—by—Example: A Business Language that Unifies

Data and Word Processing and Electronic Mail, IBM Systems Journal Vol.

21, No. 3, 1982.

20

Database Concepts in the Vdd System

Kung-Chao Chu

Y. Edmund Lien

AT&T Bell Laboratories

Murray }~l1, New Jersey 07974

ABSTRACT

The VLSI design database (Vdd) system is a set of programs targeted to assist a

circuit designer in layout design, verification, and simulation. As a subsystem in

a package of integrated design aids, it also provides interface to other higher-
level tools. We state the major problems in designing Vdd and outline how

these problems can be solved using existing database techniques. The problems
are: the need to have two distinct representations of a chip - a language
description and a database representation, the desirability to support chip design
in different silicon processing technologies, and the need to treat a design
session as a database transaction. The database techniques used include

database modeling by sthen~as, secondary indexing, swapping of data in and out

of the main storage according to data satiantic~, and atomic transaction

comm~nent.

1. WfRODUCTION

The Vdd system (lu] is part of a design package called Ida, for Integrated design aids, developed
in the research area at AT&T Bell Laboratories. Ida is designed to support individual or a small

team of chip designers in an integrated design environment. Integration, one of today’s industry
bazzwords, means in our context a set of programs that is sufficient to aid the designer in the

entire chip design cycle, nicely packaged with dean interface between programs, and not overly
complicated to intimidate the designer.

At present, ida includes the layout design subsystem Vdd, logic and circuit simulators, routers, and

layout generators. It has been operational for more than a year. A typical design environment to

run Ida is a “personal” work station with color graphi~ in a U~ixt operating system.

The Vdd software assists the designer in design activities ranging from layout editing, layout
programming, design-rule checking, plotting, access to cell libraries, and interface to simulators.

2. DESIGN CONSIDERATIONS IN Vdd

We set out in the beginning three goals that the Vdd software should achieve. First, it has to

support a syntax-oriented layout representation, i.e., a layout description language. We will discuss

the pros and cons of a description language shortly. Second, the Vdd system should be technology
independent as much as feasible, and this independence should be achieved without requiring the

designer to work with primitive geometric components. Since MOS technology is significantly
different from others and is the main force in the silicon industry, we decided that Vdd should

support all varieties of the MOSfamily. Third, Vdd should be complete in its own right for a

layout designer. In other words, a person skillful in chip layout should be able to use Vdd to

design, verify, and simulate a chip and to produce a mask representation ready for chip
fabrication. This goal, if a~.idied in database terms, is the ability to support a design transaction.

t U~1X is a Trad~mrk d AT&T Bell aba~ataies.

21

2.1 The Role of Descriplion Languages

Vising a language to describe a chip is fairly a*umon. The language approach -has been used at

different levels of al~traction. We have seen languages like XYMASK Fowler], cif Mead], i

Johnson], L~. Bose], and PMS and ISP Bell]. For chip layouts, a language offers a a~ndse and

powerful way to describe the components and the interconnection of axnponenls in a chip.
Geometric constraints and electrical connectivity can be easily stated in such a way that “binding”
to real physical mask layers and actual coordinates can be done at the a~pilalion time.

A strong argument for having a powerful layout language in a VLSI design system is to ease the

task of automatic layout generation. Tools that generate layouts from high-level specifications
need a target language. The more flexible the layout language is, the simpler the task of

implementing such a generator.

On the other hand, a layout program can be time and space consuming to translate. A typical 8-bit

microprocessor takes about 3 million characters to describe in the i language and after translation,
it occupies about 5 million bytes of storage in the address space in the U~DC system (Berkeley
version 4.lc). If a minor editing of the top-level cell requires the ~nplete translation of this chip,
it can take at least half an hour on a lightly-loaded vAXI: system. Moreover, the updates have to

be translated into the language description.

A language based design system would also require all tools to have this translator as their front-

end. While many tools only need partial information of a chip, for example, a logic simulation

need not know the detailed mask layout, lack of a means to build an index structure into the chip
description results in a heavy time and space penalty in these tools.

2.2 Technology Independence

As we stated earlier, t~nology independence can be accomplished easily if we require the

designer to deal only with rectangles. The interpretation of the geometric primitives in the context

of VLSI and the composition of these primitives to form electrical primitives such as transistors

and contacts, will then be left with a drcuit extractor.

One alternative is to define a set of electrical primitives at the layout level and to support all these

primitives in every tool. C~ axirse the trick is that these primitives should not be limited to one

particular variety of MOS technology. This approach makes the life of the chip designer easier at

the expense of the lifeof a tool designer.

2.3 Design Transactloits

The layout of a chip is often created in one of the three means: it is generated by another tool, like

a PLA generator, it is created by layout programming using a text editor, or it is created by
interactive graphics editing. The first two describe the end result in a layout language. The last

does not necessarily lead to a layout program.

In fact, the last approach can best be thought of in terms of a database transaction. A design
transaction involves a sequence of layout display, layout changes, and commitment of changes to

the design. The layout information can also be retrieved for the purpose of simulation or

verification. Two most cbvious needs in a design transaction are to provide random access to parts
of a chip and to implement atcnnic transaction commitment.

Once we start to parallel a drcuit design activity and a conventional business database transaction,
we can take advantage of the well understood techniques such as the B-tree data structure and

page shadowing. Katz and Weiss provides a more thorough coverage of the issues concerning
design transaction management Katz].

* VAX is a Trad~mrk cI flgital Equipi~nt Corçoi~~ri~

22

3. DATABASE TECHNOLOGY APPLIED TO VLSI DESIGN

In the rest of this artide, we describe the particular approaches we took in Vdd to resolve the

problems listed above. Qir main contributions are two: We use a relational schema to describe a

silicon processing technology, therefore, tools are made independent of the specifies of a

ethnology. This is essentially the manifestation of data independence in design tools. The other
main idea is to organize a chip database for every chip design. The description of a chip is stored
in several crash-resistant B-trees, which prcMde efficient indexing as well as the capability to

perform atomic transaction commitment.

3.1 Data Model of Processing Technoln~j~

The information about the MOS t~nology family can be represented by a relational database.
Each technology is represented by a database instance. We envision that there will be an expert
who knows the details of a specific technology and can specify them for the general user

a~timunity. This technology administrator will prepare a technology database to match the local

processing capability.

We started out with a generic model of MOS technology. A taxonomy was then developed,
providing a means for the designer to define wires, how wires are grouped to form connections and
transistors. All tools were designed to understand this generic MOS technology, but the specific
details of a technology were left in the technology database.

in designing the schema of the technology database, we follow a few principles. We want to hide

the processing details froni the circuit designer. For instance, one should be able to describe
transistors and connections between transistor terminals without specifying the layers of the
transistors. It is also desirable to treat a combination of related layers as one composite wire.

Qir generic MOS circuit layout model consists of three conceptual object types: a layer type, a

contact type, and a transistor type. For example, a wire type is represented by the following
relation

wire(narne, ,ninwid, color, inner, outer, rim, subslevel, subsrim, .rymask)

A wire instance has a name, a minimum width, and a color representation. A wire is a

composition of at most three layers. The attributes inner, outer, and subslevel refer to the

individual layers. These attributes can have other wire names as values. The attribute rim and

subsrim give the extensions of the outer layer and the substrate layer relative to the inner layer,
respectively. Fmally, the name of the mask in XYMASK is also given.

Likewise, an instance of a contact type must contain information about its component layers, its
substrate if any, their sizes, the locations and names of reference polnts in the contact. Each

instance of a transistor type is assumed to be a four-terminal MOS transistoi~’ with an end-user

definable channel size, reference pc~nts, and four functional parts (a gate, two syeimetiical pieces
for source and drain, and a substrate). The layer names of the four parts are specified by the

technology administrator.

~rnilarly, the details of design rules can be coded in a relation. This allows our design-rule
checker to be independent of the technology.

The information in the technology database is retrieved via the database schema. All tools are then

bound to the specific technology at run time.

VThat we have demonstrated is that it is possible to elevate the level of sophistication of design
tools by permitting certain generic MOS infor nation in the software while leaving other out and

making it updatable by the design community.

By gcing to a set of higher level primitives such as variable-sized transistors, we have to give up
some flexibility found in conventional systems. For now, we can only deal with MOS transistors

with rectangular channel area. More complicated transistor types can be hand]ed as cells.

23

3.2 A Family or Layout Languagei

With the generic MOS model ~.n place, we designed a family of MOS layout languages, each of

theni tailored to a specific technology. For example, two menthers of the family are layout
languages far CMOS and NMOS. They differ in the keywords far the basic components and the

semantics of the wires. In the CMC~ language, the construct of composite wires are used to model

the three-layered complex of N-diffusion, thinax, and P-suI~trate. In the NMOS situation, all

wires have only one layer. Therefore, the language translators for CMOS and NMOS differ in the

way the electrical connectivity is determined. These differences are reflected in the two technology
databases.

The tJNIX tool ~icc was used to generate a translator for all languages in the family. Since all

technologies share the same relational schema, we only need one syntactic spedflcation for all

languages in the family. The translator retrieves information from a technology database and uses

it to perform the necessary compotation such as determining electrical connectivity, determining
sizes of components, and resolving geometric constraints.

3.3 A Database Representation for Chip Design

A chip layout can be spe~ifled as a layout program using a layout language. An alternate

representation is to organize the chip information as a list of components in the chip.

In Vdd, we model the chip information by a set of relations, each of them representing a

component type. There are transistors, wires, contacts, e~erns interns calls, and cells. Calls refer

to the indusions of subcells in a cell.

Each relation stores information about the components; for example, names of transistors,

orientations, sizes, and locations are kept in the transistors relation. Each relation is implemented
as a B-tree. Secondary indexing by attribetes can also be constructed.

The B-tree package is due to Peter Weinberger. He uses the scheme of shadow pages to obtain

atomic updates to a B-tree. In case of a soft disk crash, the contents of a B-tree will not be

corrupted.

3.4 Storage Management

A tool in the Vdd package needs to retrieve information from the design database. Let’s consider

the case of the graphics editor in Vdd. It allo~ the designer to edit a arcuit interactively. The

designer chooses a cell to edit, therefore, the software needs to display the components of the cell.

In addition, the designer may remove, relocate, or add a ~nponent. The Vdd editor also ailo~

the designer to verify the drcuit against the design rules interactively.

The information in the design database is moved into the main memory on a demand basis. As far

as the information contents in the main memory are concerned, a cell can be in one of the three

states: STRIPPED, HALF, and FULL Each cell has its “summary” information stored in the cell

relation. A cell is STRIPPED, if it has only this record in the main memory. Since the record

contains the name of the cell, its bounding box, and status, it is the minimal information to bring
into the main memory. This is particularly useful at the beginning of an editing session.

A HALF cell has all its calls and externs in the main memory. When a cell is added into another

cell as a call, it is necessary to check if the calls run into a recursion. Therefore, all cells directly

orindirectlycalledbytheflrstcellhavetobebroughtintothemainmemOry. &ttheyonlyneed
to be HALF.

A FULL cell has all its components stored in the main memnry. In Vdd, we keep the cell being
edited FULL. The design-rule check of a cell keeps all its sut ells FUlL

When thi~ are getting very large, the amount of main memory usable by a design tool becomes

crucial. Our storage management strategy tends to keep only a few cells in the main memory.

When the main storage runs scarce, Vdd starts to pirge the cells that are not critical from the

main memory. Each cell is timestampped to reflect its currency. This information is used by the

24

design-nile checker to ensure that only updated cells are checked. For example, a cell needs to be

checked only if it or one of its subcells has been changed after the last check.

Timcstanipa and the alility to provide quick access to partial information of a ccii as well as to

swap cell information in and out of the main memory as the need arises allow us to support quick
iterations of layout editing and design-rule checking.

4. CONCLUSIONS

In our effort to integrate VLSI design tools, we have found several useful applications of database

concepts. Modeling the processing technology by a relational schema and retrieving the

information via relational queries makes the tools independent of changes to database oontents. As

the Vdd system evolved, we had the need to augment the t~nology database. These changes were

made without disturbing the existing tools.

The designer is given two options to represent a chip. It can be represented by a layout language
or a design database. Translators are provided to map between the two representations.

The language representation is useful for tools that generate layouts automatically. The database

representation is useful if the designer engages in interactive layout design. In this case, quick
response time, effident storage management, and reliable updates to the chip description can be

achieved by implementing a design session as a database transaction.

Acknowledgement

We would like to thank the other members of the Vdd design team: Jack Fishbarn, Peter

Honeyman, and Paul Rubin. Fishbiirn implemented the interactive design-rule checker and also

bailt several technology databases. Honeyman implemented the interface to Weinberger’s B-tree

package. P.ubin programmed the relational software for the technology database.

REFERENCES

Bell] C. G. Bell and A. Newell, Ca’npzaer Structures: Readings and &les,
McGraw-Jill computer sdence series, McGraw-Jill, New York, 1971.

Bc~e] A. K. Bose, B. R. (lawla, IL K. Gnnmel, “A VLSI Design System,” IFFE

1983 International Symposium on Grctiiis and Systems Proceedings, pp. 734-739,
1983.

C]iu] K-C (lu, J. P. Fishbern, P. Honeyman, Y. E lien, “Vdd - A VLSI Design
Database System,” Proceedings, 1983 AG~4-SIGMOD Database Week, pp. 25-37,

May 1983.

Fowler] B. R Fowler, “XYMASK,” Bell Laboratories Records, Vol. 47, No. 6, pp. 204-

209, July 1969.

Johnson] S. C. Johnson, private conimunication.

Katz] R IL Katz and S. Weiss, ‘1~ransaction Management for Design Databases,”
Technical Report, Computer Selence, University of Wisconsin, 1983.

Mead] C A Mend and L A Conway, Inrrothwtion to VLSI Systems, Addison-Wesley,
Reading, Mass., 1980.

25

Revision Relations

Maintaining Revision History Information

Mark Haynie
Karl GohI

Amdahl Corp.

ABSTRACT

This paper describes the use and implementation of revision rela

tions. Revision relations allow revision history information to be

maintained in a relation. The design presented here has several

advantages over similar ideas in both speed and storage require
ments.

1. INTRODUCTION

The need for revision history information and versioning control in certain

applications is described in HAYN81]. In that paper, the Relational/Network

Hybrid data model describes how several instances of a particular relation

definition can exist as separate entities. Instances of relations all contain

the same type of informatin (say, interconnection information in a computer

system) but the data is divided on functional boundaries (say, the chip level

of that system). This method is fine when storing information about different

chip designs but may not be optimal for keeping track of versions of the same

chip. Revision two of an integrated circuit will, In all probability, look

the same as revision one with a few interconnect changes. Revision relations

are proposed to allow many revisions (versions) of a relation to be stored in

a single physical relation.

Hypothetical relations described in STON81, W0OD831 are unsuitable for this

task in that they are geared primarily for “what if” changes to a database.

They can be used to debug applications on live data without fear of corrupting
the database. Used in this way, one usually works with level one hypothetical
relations (based on actual relations) or, possibly, level two hypothetical
relations (based on a level one hypothetical relation) but, rarely much

further. To use this construct for version control each level 1. .n of a

hypothetical relation set must be applied in order to archive the nth version

of the relation.

Two requirements for revision relations are fast retrieval at any revision

level and that control constructs in the form of extra attributes defined on a

relat’ion be kept at a minimum. The usage pattern of revision relations,
unlike hypothetical relations, is that changes are performed at the highest

26

revision only and queries are performed at any level. This restriction is not

strictly enforced, however. Like hypothetical relations, once a tuple has

been changed at level n, changes at levels < n cannot affect tuples at levels
>= n. A final requirement is the ability to view all revisions as a single
composite relation. This may be important to the app Z tion that wishes to

see the~changes between revisions as opposed to the data at a particular revi—

5 ion.

2. REVISION RELATION STRUCTURE

2.1 COMPONENTS

All revisions of a particular relation are stored in a single relation. All

tuples of a revision relation have two new column definitions, @revin and

@revout. @Revin contains the revision number for each tuple at which it
became effective. @Revout contains the revision number of when the tuple has
been obsoleted. @Revin and @revout are normally invisible to the user:

selecting “all” the columns of a relation in a query will not print these.
Data manipulation operations on revision relations will automatically modify
the @ columns appropriately and queries will use the @ columns to retrieve

only those tuples requested by the user at a certain revision level.

The figure below depicts a personnel database at revision one.

emp

name dept @revin @revout

Diana 16 1 NULL

Mark 16 1 NULL

Each tuple has a @revin of 1 (the revision at which it was added) and a

@revout of NULL (to signify that it is applicable for all further revisions).
If new employees are hired during revision 2 of the database the relation may
look like:

enip

name dept @revin @revout

Diana 16 1 NULL

Mark 16 1 NULL

Ken 16 2 NULL

Hanfei 16 2 NULL

27

2.2 RETRIEVAL

Queries made to the database are qualified with the revision number.

select * (1)

from emp using <1>;

will retrieve only those tuples in effect at the time revision one modifica

tions were made (<Diana,16>, <Mark,16>). The <1> is a symbolic representa

tion of revision number specification. Actual format in our system is

explained later.]

select * (2)

from emp using <2>;

will print the name and dept fields of the emp relation reflecting all modifi

cations up to and including those performed at revision two (<Diana,16>,

<Mark,16>, <Ken,16>, <Hanfei,16>). Retrieval operations on revision relations

are implemented like view expansion on base relations. Expression (2) is actu

ally modified by the system to

select name, dept (3)

from emp

where (@revin < 2) and

((@revout > 2) or

@revout NULL));

2.3 DELETES AND UPDATES

Deletes to revision relations are actually performed by changing the @revout

column. The operation of firing employee Mark

delete emp using <2> (4)

where name = ‘Mark’;

and transferring Diana from department 16 to 12

update emp using <2> (5)

set dept = 12

where name = ‘Diana’;

during the revision two time frame would cause the composite relation to look

like:

28

etup

—

name dept @revin @revout

Diana 16 1 2

Diana 12 2 NULL

Mark 16 1 2

Ken 16 2 NULL

Hanfei 16 2 NULL

Queries on revision one will continue to see the old revision one data,

expression (1) will still retrieve (<Diana,16>, <Mark,16). Expression (2)
will still be modified to (3) but now retrieves (<Diana,12>, <Ken,16>, <Han—

fei,16>).

The ability to view the composite revision relation is possible by turning off

the query modification which normally occurs when a particular revision is

referenced. This allows a user to look at only the changes between revisions

or all data in all revisions. Applications must be aware of the @revin and

@revout columns when using revision relations in this way. To print out all

the tuples (the old values) that were changed at revision two, one may code:

select * (6)
from emp

where @revout = 2;

3. IMPLEMENTATION

Revision relations are drastically different from regular relations and there

fore the four basic database operations select, insert, delete and update must

be enhanced to handle them.

3.1 INTEGRATION WITH THE HYBRID MODEL

The Taco database management system is an implementation of the Hybrid data

model HAYN83b]. In this model, access attributes are the mechanism for

determining which of possibly many relational instances are to be used for a

particular database operation. Access attributes for a relation are stored in

another relation (a “control” relation), whiáh usually contains history infor

mation. The access attribute and control relations constructs are used also

for differentiating between revisions. Further, revision relations are

dynamic relation instances in Taco so many instances of revisioned tables may

exist simultaneously.
-

-

The following database contains information on chip interconnection (net)
information.

29

control

pn rev owner netsaa

123 1 harry @1—1

123 2 harry @1—2

124 1 george @2—1

124 2 george @2—2

@1: nets @2: nets

netno cpname @revin @revout netno cpname I@revin @revout

1 blkl.cpl 1 2 1 blk4.cpl 1 NULL

2 blk2.cp2 1 NULL 2 blk9.cp2 2 NULL

3 blk3.cp3 1 NULL 3 blk8.cpl 2 3

4 blk4.cp4 2 NULL 3 blk8.cpl 2 3

Figure 1. Sample Interconnect Database using Revision Dynamic Relations

3.2 DATA DEFINITION

To define a revision dynamic relation one includes the revision keyword in the

Taco define statement:

define revision table nets(netno(integer), (7)

cpname(char(9)));

An instance of a revision table is created the same way as a dynamic table ——

the create keyword being inserted into the access attribute column.

insert into control(pn, rev, owner, netsaa): (8)

<126, 1, ‘fred’, create>;

The create keyword will create revision one of the instance. Deleting all the

access attributes to a particular revision relation will remove the instance.

The next revision (two in this case) can be created using a built in function.

The insert statement

insert into control(pn, rev, owner, netsaa):
select 126, 2, ‘fred’, nextrev(netsaa) (9)

from control

where <pn,rev> = <126,1>;

will take the access attribute of revision one and make a new access attribute

with the next revision (via the nextrev built in function) by inserting a new

tuple into control. Modification of revision two of the relation will be seen

by revisions two and higher —— revision one will continue to see the old data.

3.3 INSERTION

Taking the example database in fig. 1, any references using the access attri

bute corresponding to <pn,rev> of <123,1> will reference revision one. For

example, data can be entered into revision one using normal data manipulation

30

statements:

insert into nets using (select netsaa

from control (10)
where <pn,rev> = <123,1>)

(<1, ‘blkl.cpl’>, <2, ‘blk2.cp2’>, <3, ‘blk3.cp3’>);

The access attribute used to reference the revision table instance holds the

revision number as well. That number is inserted into the @revin column of

each tuple inserted. The @revout column always is set to null for new tuples.
The statement:

insert into nets using (select netsaa

from control (11)

where <pn,rev> = <123,2>)
<4, ‘blk4.cp4’>;

results in the tuple <4, ‘blk4.cp4’, 2, null> actually being inserted.

3.4 RETRIEVAL

Retrieval of data from revisions is performed by modifying the query to view

only a single revision. The revision number is encoded in the access attri

bute so a query entered as

select *

from nets using (select netsaa (12)
from control

where <pn,rev> <123,2>)
where netno > 3;

is modified to look like:

select *

from nets using lnstance# (13)
where (netno > 3) and

(@revin <= rev# and

(@revout > rev# or @revout NULL));

Where instance# is the dynamic instance number portion of the access attribute

returned by the using clause query and rev# is the revision number of the

access attribute. In our implementation, NULL is represented by a large posi
tive integer when stored in integer columns such as @revout. This means that

the clause (@revout > rev#) will produce a true value when @revout is NULL, so

the clause (@revout = NULL) may be eliminated.

Referencing all revisions of a relation is implemented using a built in func

tion to turn an access attribute of a particular revision into an access

attribute of all revisions.

select * (14)
from nets using (select allrevs(netsaa)

from control

where <pn,rev> <123,1>);

31

The allrevs function simply modifies the rev# portion of the access attribute

to 0. An additional expression in the where clause must check for this case.

The expression (14) is, therefore, modified to be

select *

from nets using instance# (15)
where (netno > 3) and

((@revin <= rev# and @revout > rev#) or

rev# 0);

3.5 DELETION

Deletion of tuples in a revision relation is actually a two step process. The

statement

delete nets using (select netsaa (16)

from control

where <pn,rev> = <123,2>)
where cpname = ‘blk2.cp2’;

will be modified as with queries to select only the tuples in effect at the

time of revision two. Then an update operation rather than a delete operation

is performed to change the @revout column to the value of the revision number

of the access attribute used to access the nets relation. The one exception

to this is when the @revin and @revout columns are the same —— in which case

the tuple is really removed. (When a tuple is added and deleted during the

same revision there is no way to access it since the where clause modification

performed during queries will never select that tuple. Thus, it might as well

be removed from the table.)

3.6 MODIFICATION

An update operation on a revision table translates to an update and an insert.

A statement such as

update nets using (select netsaa (17)

from control

where <pn,rev> <123,2>)
set cpname ‘blkl7.22’

where netno = 1;

first gets modified such that the revision two is acted upon. For each tuple
that is a candidate for modification, the tuple (before modification) is rein

serted into the relation but, with the @revin field set to the current revi

sion (two in this case) and the @revout field set to NULL. The original tuple
is then modified according to the set clause and the @revout column is set to

the current revision number (two in this case). As with deletion, a special
case is made for updates to tuples inserted or updated previously at the same

revision level. A standard update operation with no modification of the

@revin or @revout columns is performed in this case since to do otherwise

would prevent the tuple before modification to be seen by the user. (In

32

standard revision relation retrieval mode, that is. “Allrevs” retrieval mode

could see these changes but is was felt the current solution made better

sense).

4. OBSERVATIONS —— ALL REVISION PROCESSING

For applications operating on the composite relation (“allrevs” mode) certain

guidelines must be followed in order for applications to determine the old and

new tupies of an update set. Following an update of a single tuple in a revi

sion relation we have two tuples stored in the composite relation, the data

before modification (the @revout column indicates the revision number) and the

data after modification (the @revin column contains the same revision level).

In order for querying processes to later match up which new tuples belong with

which old tuples an unchanging primary key must exist for the relation.

In our first set of employee examples above we assume that name is an unchang

ing primary key. However, if changes to the primary key of revision relations

are allowed to occur (if an employee marries and changes his/her name, for

instance) then an additional mechanism is needed to match old and new tuples.
A tuple number column may be added to the relation for this purpose. A tuple

number is unique for each logical tuple in the relation (although in the com

posite relation there may be several tuples with the same tuple number, all at

different revision levels). Taco, however, makes no attempt to maintain these

numbers automatically.

REFERENCES

IIASTR76II Astrahan, M.M., et. al. “System R: Relational Approach to Database

Management.” ACM Trans on Database Systems 1:3, September, 1976,

pp. 189—222.

GOHL83] Gohl, K.W. DA Architecture Anidahl Working Document P/N D3 114668,
1983.

GOHL82] Cohi, K.W. Reducing Storage Requirements for DA, Amdahl Technical

Reference Memorandum, 1982.

GRAY81] Gray, J., et. al., The Recovery Manager of the System R Database Com

puting Surveys 13:2, June 1982.

RAYN8I] Haynie, M.N. “The Relational/Network Hybrid Data Model.” Proc. 18th

Design Automation Conf. 1981, pp. 646—652.

HAYN83a] Haynie, M.N. “The Relational Data Model for Design Automation

33

Databases.” Proc. 20th Design Automation Conf. 1983.

HAYN83b] Haynie, M.N., Taco User’s Guide Amdahl Software Specification P/N
819043—600, 1983

STON81J Stonebraker, M., “Hypothetical Data Bases as Views,” University of

California — Berkeley Memorandum No. UCB/ERL M81/27, 1981.

W00D83] Woodfill, J. and M. Stonebraker, “An Implementation of Hypothetical
Relations,” University of California — Berkeley Memorandum No.

UCB!ERL 1183/2, 1983.

34

Database Management and Computer-Assisted VLSI Fabrication

Randy H. Katz

Computer Science Division

Electrical Engineering and Computer Science Department

University of California, Berkeley

Berkeley, CA 94720

Abstract: We discuss the data management issues for a computerized manufacturing facility.

Berkeley’s new research facility for integrated circuit fabrication, capable of manufacturing VLSI

complexity circuits, is being used as a testbed for computer-assisted manufacturing. Projects
include: applied expert systems for fabrication line diagnosis and repair, automated laboratory

notebook, real time computer-based machinery control, man-machine interaction in the manufac

turing environment, and automatic scheduling of machine use and maintenance times. The

INGRES relational database management system is currently being used for the management of

some of the fabrication line data.

1. IntroductIon

As engineers (software and hardware), we typically think of “design” as the activity that

turns an idea into an engineering prototype. An equally important activity is manufacturing: tak

ing an object’s design specification and reproducibly creating instances of it, usually in large quan
tity.

in this paper, we describe the data management requirements for the integrated circuit

fabrication line. Surprisingly enough, the very machinery that has made the microelectronics

revolution possible has yet to become directly controllable by computer! However, the situation is

beginning to change. The goal is to improve circuit yield, quality, and throughput for VLSI cir

cuits by improving the control of the process and making it more predictable. The first step is

have the plant description available on-line, and to be able to track the state of the line at any

point in time.

The information about a manufacturing facility includes machine descriptions (what they
are and how to use them), machine histories (usage and maintenance), process descriptions (the
set of machine control sequences), inventories, environmental monitoring, and personnel informa

tion. An objective is to understand the correlations of the many variables with circuit yield. The

interrelationships among the data are complex, and lead to a challenging database design prob
lem.

The organization of the paper is as follows. In the next section, we give a more detailed

description of what constitutes the computer-assisted fabrication line. A description of the kinds

of data found in this environment is given in section 3. With the description of the manufactur

ing machinery and processes on-line, more intelligent “adaptive” applications are possible, and

one such application for fault diagnosis is described in section 4. Section 5 briefly describes exten

sions to database systems that should be incorporated in the next generation systems to better

support such applications. Section 6 contains the summary.

2. The Computer-Assisted Fabrication Line

The integrated circuit fabrication line is a marvel of technology. The “tooling” of the

manufacturing process is a collection of masks containing geometric shapes. The masks specify
the patterning of a three dimensional structure on the silicon wafer. Current technology is

approaching one micron feature sizes, with research efforts striving for reproducible submicron
—

r~soluti~n; Special è~uipm~t is~éd fo~bóth mask making and wafer growth and preparation.
The wafers are submitted to a complex sequence of chemical and physical processes to transfer

the specification of the circuit from the masks to the silicon surface. The control of the process

35

completion.

The final step is to attempt to learn from the faults. Newly discovered correlations should

be recognized by the system. This may involve such things as more frequent maintenance or

tighter environmental controls.

5. Impilcations for Next Generation Databases

For forcasting and for discovering correlations among laboratory variables, the data must be

organized for time-series analysis. The notion of time must be embedded in the database system.

Much of the analysis is based on pattern recognition techniques, and support for statistical queries
will be necessary.

Monitors/trigger mechanisms must become adaptive. Triggering conditions can change over

time as new relationships among the variable are discovered. For example, if overdue mainte

nance is correlated with reduced yield, the trigger that schedules maintenance should be changed
to trigger more frequently.

Since the comparison of observed and expected results is frequent, the database should sup

port convenient encodings of the expected results in the form of simulafion8. Thus, some data is

stored in the form of programs that can generate the needed data on demand.

These systems will have to be made highly available. An automated factory is expected to

be kept busy around the clock, and outages of service will not be tolerated. Much of the environ

mental monitoring is related to safety, futher emphasizing the need for twenty-four hour availa

bility.

6. Summary

Engineering databases are more than design databases, they also include manufacturing
data: machine descriptions, inventories, environmental monitoring, process descriptions, and per

sonnel. An accurate description of the process line, the process, and the laboratory environment

in order to control the process line, including the ability to adapt to faults or unexpected condi

tions. The computer-assisted lab line provides an excellent testbed environment for coupling

intelligent systems, such as fault diagnosis, with very large databases. These problems are

currently under study at UC Berkeley and several other universities.

7. References

IOSSH83] Ossher, Ii. L., B. Reid, “Fable: A Programming Language Solution to IC Process Auto

mation Problems,” Proc. Sigplan ‘83 Symp. on Prog. Lang. Issues in Software Systems,
San Francisco, CA, (June 1983). Available as SIGPLAN Notices, V 18, N 6, (June 1983).

38

Engineering Data Management Activities

Within the

IPAD Project

I-I. R. Johnson

Boeing Computer Services

Seattle, Washington

ABSTRACT

This paper summarizes current research and development activity in engineering data

base management systems by the IPAD* Project at The Boeing Company.

1.0 INTRODUCTION

In 1976, NASA awarded The Boeing Company a contract to develop IPAD. The specific
goal of IPAD was to increase productivity in the United States aerospace industry
through the application of computers to manage engineering data. An Industrial

Technical Advisory Board (ITAB) was established to guide the development of

IPAD (1]
.

Members of ITAB represent major manufacturing (aerospace and other) and

computer companies. More recently, IPAO has also received funding from the Navy to

investigate computer-aided manufacturing.

IPAD has considered applying data base management (DBM) technology to all phases of

the product life cycle: design (CAD), manufacturing (CAM), and

operations/maintenance. IPAD has also investigated the application of data base

management technology to the integration of processes within and between all phases
of the life cycle through access to a corrinon data base management facility.

In this connection, IPAD has analyzed engineering design methodologies, identified

requirements for integrated, computer-based systems for managing engineering data,
and developed software to demonstrate these concepts. Results have included

development of the RIM and IPIP data base management systems (DBMSs) and a network

facility for multi-host, intertask communication. See (2] for a comprehensive
discussion of IPAD objectives and products.

An earlier report 3 published in this journal provided brief descriptions of the

RIM and IPIP DBMSs and documented briefly some of the requirements identified for

engineering data base management. Consequently, this paper treats these subjects
in less detail and considers, as well, current activities which make use of RIM and

‘PIP.

These include work on the following:

o Distributed processing (including DBMS file transfer) in a heterogeneous
hardware/software (DBMS) environment.

o Distributed data base management in the same heterogeneous environment.

*IPAD (Integrated Programs for Aerospace-Vehicle Design) development is performed
by The Boeing Company under NASA Contract NAS1-17555. IPAD software and

documentation may be obtained from the IPAD Program Management Office, The Boeing
Company, P.O. Box 24346, Seattle, WA 98124, M/S 73-03.

39

o Further geometry applications utilizing IPIP structure (complex object)
handling capabilities.

o A stand-alone geometry management utility supported by the SQL DBMS which

incorporates structure processing capabilities currently embedded in

‘PIP.

2.0 REQUIREMENTS FOR ENGINEERING DATA MANAGEMENT

Early in the IPAD contract, the engineering design process was analyzed, and a

number of requirements for engineering data management were identified 13,4,5,6].
The following briefly describes just a few of these requirements.

The system must support definition and manipulation of geometry data and provide
for interfacing this data with design drafting and graphic display systems.

Multiple levels and styles of data description are required to provide for

differing data requirements and for data independence to support a variety of users

in a dynamic environment. Specifically, the network and relational data models are

required.

The system must support logical partitioning of a data base into “datasets° which

figure in restricting data access, concurrency control, configuration control

(including versioning), and data archival.

The system must support distribution of engineering data across a heterogeneous
network of computers encompassing multiple DBMSs supporting the data models noted

above.

3.0 THE IPAD/RIM DATA BASE MANAGEMENT SYSTEM

The IPAD/RIM (Relational Information Management) DBMS was developed on the IPAD

Project to explore relational data base concepts prior to the development of IPIPO

RIM has been enhanced by the University of Washington and The Boeing Company in

cooperation with ITAB and the IPAD Project.

A RIM data base may be accessed in read mode by multiple users. Access to the data

base is restricted to a single user when it is opened for update.

RIM supports a single level of data definition. Relations are organized into

schemas. Schema definition may be entered and modified interactively through a

menu interface. Rules on data relationships within and between relations may be

declared. Rules can be used as constraints, although the user may turn rule

checking off and on. RIM supports matrices, vectors, and real data types. It also

supports a tolerance capability which supports qualification by user-specified
approximation of equality.

RIM offers both algebra-level (including join) and calculus-level (excluding join)
data manipulation coninands through an interactive interface, along with facilities

for formatting retrieved data. RIM supports the calculus-level data manipulation
commands for FORTRAN programs via subroutine calls.

RIM is written primarily in FORTRAN 66, but will compile in FORTRAN 77. It is

available on several hosts. More than 300 copies of RIM have been supplied to

40

universities and corporations, RIM is used on a daily basis in many of these

organ 1 zat ions.

OeveloDment of IPAD/RIM has ceased. However, it has served as the basis of

commercial DBMSs (see 7] for example), for mainframes, minis and micros, and has
been incorporated in turnkey graphic systems.

4.0 THE IPIP DATA BASE MANAGEMENT SYSTEM

The IPIP (IPAD Information Processor) DBMS is intended to manage engineering data

in CAD and CAM environments. To this end, IPIP supports multiple data models,
multiple levels of schemas, and concurrent, multiple-user, multi—thread access

through multiple application interfaces in a distributed environment. A single-
user, single—thread version of IPIP is also available.

Scientific data types and arrays are supported. Composite objects called

structures (complex objects), which may consist of multiple tuples from multiple
relations, may be declared and manipulated as a single relation to manage geometry
and other scientific data. Data may be partitioned logically into datasets to

support concurrency control, access restriction, versioning, releasing, and

archival procedures. See 8] for a general description of IPIP.

IPAD has developed a general purpose network facility for intertask communication

in a heterogeneous, distributed processing environment. The IPAD network has been

implemented in accordance with ISO specifications of layered protocol. Access to

IPIP and IPIP-managed data is via this network. See t 9 1 for a general description
of the network facility. IPIP and the network are written primarily in Pascal.

The IPAD network is being replaced in this configuration by recently developed
NETEX from Network Systems Corporation.

Some intended IPIP features are not available at this time. For example, the

latest version of IPIP does not support versioning, releasing, or archival aspects
of datasets nor the MODIFY command for structure-defined relations. Application
interfaces are limited to FORTRAN programs. IPIP proper, and CDC and DEC FORTRAN

precompilers execute on CDC CYBER series machines (operating under the NOS

operating system). DEC VAX 11 FORTRAN programs against the CYBER—resident data

base may be submitted via the IPAD network from a VAX 11/780, and then executed on

the VAX, calls to IPIP being forwarded to the CYBER for execution and results being
returned via the network to the VAX.

CDC has announced IPIP as a class 3 product. Migration of IPIP to other hosts is

under consideration.

4.1 Data Architecture

There are three types of IPIP schemas: internal, logical, and mapping. The IPIP

internal schema corresponds to the internal schema of the ANSI DBSG 10] and the

storage schema of~ the CODASYL DDLC 11]
.

IPIP logical schemas correspond to ANSI

conceptual and external schemas and also to CODASYL schemas and subschemas. The

IPIP mapping schema is used for mapping between schemas of the other two types.

An IPIP data base is described by a single level of internal schemas and one or

more (i.e., n, n ? 1) levels of logical schemas mapped to underlying logical and/or

internal schemas. An application program may be written against logical schemas at

any level.

41

Locical schemas can be configured in the ANSI and CODASYL tree structure

arrangement to provide for centralized definition of a data base through a

comprehensive, base-level logical (conceptual) schema. Multiple tree

configurations of logical schemas can be coupled by mapping one logical schema to

multiple logical schemas or by invoking multiple logical schemas in a single
application program or session. This provides for decentralized definition of a

data base or of a federation of data bases (121. This coupling capability may be

used for a variety of purposes ranging from integration of existing data bases with

minimal change to data definition, to decentralization of data administration over

multiple clusters of shared and/or private data.

IPIP provides for preruntime binding of programs and logical schemas, Programs may
be bound at runtime regardless of whether underlying schemas have been bound.

4.2 Support for Multiple Data Models

A single Logical Schema Language (LSL) and a Data Manipulation Language
(DML) 13,141 support both the relational and network data models. These languages
are based on subsets of the 1973 CODASYL DOL 111 and 1979 FORTRAN

DML 151 specifications. Included are those CODASYL constructs supporting value—

based sets; i.e., those for which relationships are determined by states (value or

null) of corresponding attributes in owner and member records. Constructs specific
to other set selection criteria are excluded.

The CODASYL INSERTION and RETENTION clauses which specify constraints on

associ ati on/di sassoci ati on of members wi th/from owners are retai ned and extended

with respect to the handling of null attributes and dovetailed with an IPIP

extension (MEMBERSHIP clause), which provides for member records to be put into

ownerless ‘potential’ set occurrences and to be associated automaticaly by IPIP

with an owner when it is created as well as providing for the CODASYL option where

owner must exist whenever member does (referential integrity in relational

terminology). IPIP extensions include explicit clauses governing IPIP propagation
(both from owner to member and member to owner) of record deletion. The CODASYL

SOURCE clause which provides for system propagation of attribute state from owner

to member is extended to provide for bidirectional propagation.

For more direct support of the relational data model, an optional FOREIGN KEY

clause is included in the LSL using syntax which retains the relational flavor of

the concept, but parallels set syntax. Clauses were included to specify insertion,
retention, and membership options in terms of attribute states. Propagation of

record (tuple) deletion and attribute state may be specified relative to foreign
keys as well as to sets.

The IPIP DML provides for operations relative to foreign keys (by name) paralleling
CODASYL operations relative to sets. A WHERE phrase was incorporated into the IPIP

FIND, FETCH, MODIFY, and DELETE commands to support specification of more general
conditions for many-record-at-a-time operations. Record name in a DML command may
be qualified by a cursor name to support program definition of multiple relations,

concurrently, over a single schema-defined relation.

A DATA MODEL clause was included in the LSL to govern which data model dependent
constructs (i.e., set, foreign key, or both) may be used in a particular schema.

‘RELATION’ and ‘RECORD’ are treated as synonyms in IPIP languages, and may be used

interchangeably regardless of data model specified. A DOMAIN clause, which is

included in the LSL and ISL (internal schema language) to provide for user~

42

declaration of data types, may be used with either data model. It is intended that

in future releases of IPIP that regardless of data model specified, DML commands

across relations (records) may be expressed either in the CODASYL style of

referencing schema—declared relationships (e.g., FETCH items of A, items of B VIA

(name of) schema-declared set or foreign key relating A and B; where ai=bl,...an=bn
is the criteria defining that relationship) or in the relational style of inline

specification of relationship criteria (e.g., FETCH items of A, items of B WHERE

a1~bi,...an=bn). The full relational join is not available at this time.

The ISL resembles the LSL as nearly as possible. This unified approach to support
for the network and relational data models is described more fully in 18,161.

4.3 Datasets and Structures

An IPIP data base is partitioned into datasets. A dataset is declared implicitly
on first-user access. Dataset intersections with relations are the units of

locking data for read/update. Access by dataset is supported by IPIP indexing (B
tree). IPIP indexing and address conversion structures have been designed to

support access to versions of datasets while minimizing physical redundancy of data

across versions. Datasets may be used in specifying data to be processed by a

prototype facility for transferring data between IPIP and RIM data bases.

Composite objects called structures. (complex objects) are supported to manage

geometry and other scientific data. A structure is defined in a logical schema to

consist of tuples from a tree or network of relations as related by foreign keys.
A structure may also be defined in terms of records and sets. A relation/record in

one logical schema may be mapped to a structure in another schema. Such a

relation/record is said to be structure—defined. A structure is manipulated
(retrieval and update) as an entity through operations on a structure—defined

relation; the same commands used on nonstructure-defined records.

A user accesses structure-defined data as an entity (e.g., surface, curve,

segment). A single-user command may result in IPIP processing of multiple
underlying tuples as specified by schema-declared constraints and propagated
actions for relations and foreign keys within the structure. On store, IPIP

generates values for unique keys when the user does not. IPIP sequences retrieved

data according to schema specification for inclusion in the structure-defined

record. User productivity is enhanced through support of entities which are

natural to his application. Data integrity is enhanced through definition of

structure processing in the schema, as opposed to complicated command sequences

being embedded in numerous other applications.

The IPIP structure processing facility was developed originally to support
management of geometry data. The semantics of a particular geometry representation
may be declared via structure declarations. Thus, IPIP is aware of and can

maintain the semantics of the geometry. The schema may be revised or extended as

appropriate. The structure processing facility is independent of any particular
geometry representation. It is also applicable to numerous applications including
parts explosion and financial data. See (17,18,19] for more details on structure

processing and its application to geometry data.

5.0 IPAD NETWORK EXECUTIVE SYSTEM (INES)

IPAD is currently implementing a network executive system. INES provides an

environment on a heterogeneous network of computers in which a task closely

43

reflects the user’s concept of a unit of work. This environment includes a common,

uniform, friendly, man—machine interface; common task definition; concurrent task

execution control; and design architecture supportive of task or hardware changes.
Code will be developed at both layers 6 and 7 of the ISO model (presentation and

application layers).

The prototype environment includes a CYBER 835, a VAX 11/780, and an IBM 4341

connected by NSC NETEX software and Hyperchannel hardware. The RIM DBMS is

resident on the VAX, IPIP on the CYBER, and SQL on the IBM.

Plans for fiscal year 1984 calls for functionality to be in place for sending and

receiving files, transferring relational data bases between the machines and DBMSs

noted above, and -network configuration control. Follow-on work includes

development of a task definition language along with appropriate processors. Users

will then be able to define tasks to be performed, but execution details will be

transparent to them. Tasks may be performed on machines different from their

origin.

6.0 IPAD DISTRIBUTED DATA BASE MANAGEMENT FACILITY (IDE)

Work has begun on a distributed data base management facility, IDF, which provides
for data base management in a CAD/CAM environment consisting of a heterogeneous
network of computers encompassing multiple DBMSs supporting a variety of data

models. Initial prototyping will be conducted in the IPIP/CYBER-SQL/IBM
environment described in Section 5.0. Work on IDF addresses the following
objectives. See 20,21,22] for more details on IDF.

6.1 Support Requirements of the CAD/CAM User Environment

The system must provide facilities to support traditional engineering requirements
such as scientific data types, geometry, datasets, versions, and configuration
control.

6.2 Encompass Heterogeneity of Hardware and Software

The typical product life cycle is supported by a heterogeneous mix of computers
supporting multiple DBMSs and a variety of data models. A data management facility
spanning these sites provides for integration of the applications that support the

life cycle.

6.3 Incorporate Existing Enterprises

As time passes, the perception of a computing enterprise changes. What has been

viewed as several enterprises, each supported by a centralized data base and an

attendant application suite, comes to be viewed as a single, more encompassing
enterprise. In this view, the multiple coexisting data bases and application
suites together form a basis for the expanded enterprise. Existing data and

applications must continue to be supported with minimal change (i.e., data or

program conversion). It must be possible to redistribute and br replicate
existing data to~~better support the expanded enterprise--again, with~minimal

impact; and it should be possible to write new applications which span what were

formerly distinct data bases.

6.4 Support of Relational, Network, and Hierarchical Data Models

Most DBMSs coninercially available or in the public domain support either the

relational, network, or hierarchical data models. Many CAD/CAM data bases have

44

been or will be implemented using these products. To support existing enterprises,
IDF must support these three data models.

6.5 Provide a High Degree of Site Autonomy

The facility must respond to local users even when remote sites are unavailable,
providing access to data on those sites which remain available. This requires that
all centralized dependencies be avoided in the distributed environment. Such

things as dictionaries, scheduling, and deadlock detection must be implemented in a

decentralized manner.

6.6 Provide Transparency of Data Location/Replication

In a dynamic organization, access patterns change over time. Users must be

insulated from the need to be aware of where data is located and/or replicated.
This provides data administration the freedom to relocate and replicate data to

enhance system performance without impacting the user or his programs.

6.7 Provide User-Friendly Interfaces

Ease of use has been and will continue to be paramount in obtaining widespread
acceptance of any new technology. Users muct be able to invnke IDF facilities in a

convenient manner. Aspects of convenience include simplicity of use, familiarity
and uniformity Simplicity involves easy-to-use interfaces, such as forms or

menus, along with help facilities. Such facilities should accommodate novices as

well as experienced users. Familiar interfaces require no additional training of

users, and support existing applications without modification. Uniformity allows

users to work at multiple sites without having to deal with multiple data models.

User friendliness is relative to particular user/application mixes. Requirements
may vary from user to user of a single system.

6.7.1 Support DBMS-Native Interface

In accordance with the user-friendly aspect of familiarity, IDE must support, with

minimal change, the DDL/DML interfaces of those DBMSs which may be linked into an

IDF network.

6.7.2 Support Configurable User Interfaces

In accordance with the user-friendly aspects of familiarity and uniformity, IDE

must allow user interfaces to be configurable on an individual user basis. It

should provide facilities to configure user interfaces from a common data model

(DDL/DML), to be used at every site, to multiple data models, to be used at

designated sites. Thus one user might, for example, use the SQL DDL/DML at any

site, while another user might use the IPIP DDL/DML across the network.

Alternatively, user interfaces might be configured so that the DDL/DML available to

users might vary from site to site.

6.8 Support Configurable Data Administration

To accorrrnodate various organizational approaches to management, the system should

provide facilities for configuring data administration from a centralized to a

federated function. Configurability provides for various degrees of local

administrative autonomy. This capability complements the facility to incorporate
existing enterprises (see Section 6.3). Each existing enterprise has an

established data administration function. One attractive approach to data

administration for the merged enterprise is a federation of these data

45

administration functions. Another approach would be to merge these into a single,
centralized data administration function.

6.9 Provide an Open System Architecture

A iiultitude of data base management systems and data models are available.

Initially, IDE can incorporate only limited subsets of these. IDE must provide an

open system interface to allow future inclusion of additional DBMSs/data models.

6.10 Support Homogeneous Distributed Systems as a Special Case

Special support should be provided in the case where an IDE facility encompasses

instances only of a single DBMS. Support of the DDL/DML native to this DBMS is one

example of this. In the area of performance, data model translation might be

circumvented.

7.0 FURTHER GEOMETRY APPLICATIONS

The IPIP structure processing facility is independent of any particular geometry
representation. However, IPAD has developed schemas to model geometric objects
using the rational Hermite representation. These schemas support points, segments,
and objects (groups of entities). Segments supported by these schemas include

lines, conics, rational cubics, and quintics. These schemas are being enhanced to

support composite curves, patches, tabulated cylinders, ruled surfaces, and limited

engineering drawing layouts.

IPAD has written translators to retrieve geometry stored in an IPIP data base,
write it to a file in IGES format; and conversely, to store data from an IGES file

to an IPIP data base. Currently, the translators are limited to points, lines,
circular arcs and objects, though they are being enhanced to handle additional

entities.

8.0 STAND-ALONE GEOMETRY MANAGEMENT UTILITY

IPIP facilities for manipulating geometry data (maintaining owner-member

relationships, propagating attribute states, and tuple deletion, etc.) are being
packaged in a utility which uses the SQL DBMS. These facilities are hard coded, in

that they are driven by a utility-supplied schema. Design of the facility is

modular to facilitate its migration to other DBMSs and its extension to support
user-supplied data description.

Activities in this area will include comparison of this DBMS—external utility
approach with the DBMS-embedded approach taken by IPIP.

REFERENCES

1. Swanson, W. E., “Industry Involvement in IPAD Through the Industry Technical

Advisory Board,” Proceedings of IPAD National Symposium, NASA Conference

Publication 2143, September 1980, pp. 21-26.

2. Miller, R. E., “IPAD Products and Implications for the Future,” Proceedings of

IPAD National Symposium, NASA Conference Publication 2143, September 1980, pp.
219-234.

3. Johnson, H. R. and Bernhardt, D. L., Engineering Data Management Activities

Within the IPAD Project,” IEEE Quarterly Bulletin an Database Engineering,
Vol. 5, No. 2, June 1982, pp. 2-8.

46

4. Meyer, D. D., “Reference Design Process,” IPAD Document D6—IPAD-70010-D, March

1977.

5. Southall, J. W., “Integrated Information Processing Requirements,” IPAD

Document D6-IPAD-70012-D, June 1977.

6. Fisher, 1. R, McKenna, E. G., Meyer, D. D., and Schweitzer, J. E.,
“Manufacturing Data Management Requirements,” IPAD Document D6—IPAD-70038—D,
December 1981.

7. “BCS RIM--Relational Information Management System User Guide,” Version 6.0,
RIM Document 70101-03-017, July 1983.

8. Comfort, D. L., Johnson, H. R., and Shull, 0. 0., “An Engineering Data

Management System,” Proceedings of IPAD National Symposium, NASA Conference

Publication 2143, PP. 145-178, September 1980.

9. Ives, F. M., Kirkwood, D. M., and Tanner, J. G., “Executive and Communication

Service to Support the IPAD Environment,” Proceedings of IPAD National

Symposium, NASA Conference Publication 2143, September 1980, pp. 95-144.

10. Kiug, A. and Tsichritzis, D., Editors, “The ANSI/X3/SPARC DBMS Framework,”
Report of the Study Group on Data Base Management Systems, AFIPS Press, 1977.

11. CODASYL Data Description Language Committee, “Journal of Development,” January
1978.

12. Heimbigner, D. and McLeod, D., “A Federated Architecture for Data Base

Systems,” Proceedings of the National Computer Conference, 1980, pp. 283—289.

13. “Data Base Administration User Guide, IPAD Information Processor (IPIP),”
Version 5.0, CYBER/VAX configuration, IPAD Document UM—REL5—200.

14. “Application Programming User Guide, Interfaceing and Integrating Application
Programs,” Version 5.0, CYBER/VAX configuration, IPAD Document UM—REL5-300.

15. CODASYL FORTRAN Data Base Committee, CODASYL FORTRAN Data Base Facility
Journal of Development, August 1979.

16. Johnson, H. R., Larson, J. A., and Lawrence, J. D., “Network and Relational

Data Modeling in a Common Data Base Architecture Environment,” Sperry Univac

Research Report TMAOO72O, Roseville MN, March 1979.

17. Dube, R. P., Herron, G. J., Schweitzer, J. E., and Warkentine, E. R., “An

Approach for Management of Geometry Data,” Proceedings of IPAD National

Symposium, NASA Conference Publication 2143, September 1980, pp. 179-202.

18. Johnson, H. R., Schweitzer, J. E., and Warkentine, E. R., “A DBMS Facility for

Handling Structured Engineering Entities,” Proceedings of Annual Meeting,
SIGMOD 83, Engineering Design Applications, May 1983.

19. Dube, R. P. and Smith, M. R., “Managing Geometric Information with a Data Base

Management System,” IEEE Computer Graphics and Applications, October 1983, pp.
57-62.

20. Baiza, R. M., Beaudet, R. W., and Johnson, H. R., “A Distributed Data Base

Management Facility for the CAD/CAM Environment,” Proceedings of IPAD

Symposium II on Advances in Distributed Data Base for CAD/CAM,” April 1984.

21. Johnson, H. R., Beaudet, R. W., Baiza, R. M., Baum, L. S., and Nelson, B. W.,
“IPAD Distributed Data Base Management Facility—-Functional Specification,”
IPAD Document, February 1984.

22. Johnson, H. R., Beaudet, R. W., Baiza, R. M., Baum, L. S., and Nelson, B. W.,
“IPAD Distributed Data Base Management Facility--Architectural Specification,”
IPAD Document, March 1984.

47

The map introduces a level of indirection that has the following advan

tages:

- it implements stable identifiers that are not affected by database reor

ganization;
- it permits the use of small 2-byte identifiers;
- it permits copying a complex object without any relocation other than

adjusting the physical addresses in the map;

- it actually implements an index on non-root identifiers in a very

compact way; and

- it permits getting all the tuples in an object without traversing any

lists.

2.3 Query Optimization

The map also offers an opportunity to expedite the execution of queries

involving ~the complex object. We have extended the System R optimizer

131 to consider the map as an additional access path when generating a

plan for a statement involving a complex object.

One way in which the map can be effective is in evaluating predicates
of the form “N = value” where N is the name of an IDENTIFIER column. The

value consists of a 10-byte identifier. To locate a tuple that satisfies

this type of predicate, the system first retrieves the map identified by
the S-byte identifier of the complex object and then finds the desired map

entry using the 2-byte internal identifier. The map entry provides the

TID of the desired tuple.

A second way to use the map is for predicates of the form “Y value”

where Y is the name of a C0~1P0NENT OF column. The system first locates the

map associated with the complex object, and then, using the 2-byte inter

nal identifier in the value as the index into the map, finds the TID of the

parent tuple. It fetches the parent tuple, which in turn contains the

internal identifier of the first component tuple which satisfies the “Y =

value” predicate. The first component tuple in turn contains the internal

identifier of the next component tuple, and so on.

A third way of using the map is for predicates of the form “Z = value”

where Z is the name of an INTERNAL REFERENCE column (all references must

be to tuples in the same object, otherwise the EXTERNAL REFERENCE column

type would be used). The system first locates the map. It then sequen

tially scans all map entries. For each entry corresponding to the

relation of interest, it fetches the tuple to see if the INTERNAL REFER

ENCE column contains the value shown in the predicate.

2.4 Fetching Complex Objects

Engineering applications tend to require a large volume of data to be

moved from the database into the application’s data areas for use in the

design and analysis work. The usual method to accomplish this with a

complex object is to code several nested loops that fetch the root tuple,
each of i~scbmponent tuples. each of their component tuples, and so on,

one tuple at a time until the necessary data have been retrieved. Since

50

the system knows the structure of a complex object, the application should

be able to declare which data it wants from an object. Then the system can

return all the desired data in one request, which in turn can considerably

simplify data area management in the application program; see Figure 2.

EXEC SQL DECLARE CC COMPLEX CURSOR FOR

SELECT CID, CDATA, ->FIRST(INSTANCES), ->FIRST(PATHS)

FROM CELL;

SELECT ISUBCELL, IDATA, ->NEXT, ->PREVIOUS

FROM INSTANCES;

SELECT PDATA, ->NEXT, ->FIRST(RECTANGLES)

FROM PATHS;

SELECT RDATA, ->NEXT

FROM RECTANGLES;

EXEC SQL END COMPLEX;

EXEC SQL BEGIN DECLARE SECTION;

DCL I CELLSTR BASED(CELLPTR),
2 CELLID C}IAR(1O), /° IDENTIFIER

2 CDATA

2 IFIRST FIXED BIN(15), /“ Index FIRST INSTANCES ~‘/
2 PFIRST FIXED BIN(15); /° index FiRST PATHS ‘V

DCL I INSTSTR BASED(INSTPTR),
2 ISUBCELL CIIAR(1O), /‘~ Ref id of another CELL “/
2 IDATA

-

2 INEXT FIXED BIN(15), /~‘ Index NEXT INSTANCES “/
2 IPREV FIXED BIN(15); /“ Index PREV INSTANCES “f

DCL 1 PATHSTR BASED(PATHPTR),
2 PDATA

2 RFIRST FIXED BIN(15), /° Index FIRST RECTANGLES ‘V
2 PNEXT FIXED BIN(15); 7’~ Index NEXT PATHS ‘V

DCL 1 RECTSTR BASED(RECTPTR),
2 RDATA

2 RNEXT FIXED BIN(15); /* Index NEXT RECTANGLES ~‘/

DCL CHAR VAR1 CHAR(3276O) VARYING; /0 Buffer 1 0/
DCL CHAR VAR2 CHAR(3276O) VARYING; /“ Buffer 2

EXEC SQL END DECLARE SECTION;

EXEC SQL OPEN CC

TEMPLATES CELLSTR, INSTSTR
,
PATHSTR

, RECTSTR;
IF SQLCODE = 0 THEN DO;
EXEC SQL FETCH CC INTO :CHARVAR1, :CHAR_VAR2;
IF SQLCODE -= 0 THEN CALL HANDLE ERROR;

END;
EXEC SQL CLOSE CC;

Figure 2: Complex Fetch, Declarations and Code.

3. LONG FIELDS

A database system that manages engineering data requires the ability to

store items of arbitrary length. This imposes several requirements on the

database system:

- Access Methods: For engineering applications, it is often necessary to

store long, unformatted items such as raster images or large matrices in

fields of arbitrary length. However, if the data is extremely long (e.g.,
megabytes), retrieving it in one chunk may be impractical or even impossi
ble. This requires the ability to deal with long fields piecewise, in a

manner analogous to file operations.

51

- Recovery: System R uses logging superimposed on a shadow page mechanism

to provide recovery 2]. Among other things, the log contains both the

old and new record contents after each update. Logging imposes a great

space and performance penalty on the use of long fields.

- Secondary Storage Space Management: “Long” fields can vary widely in

size making it impractical to allocate space in multiples of one

fixed-size unit (page). A large page size wastes too much space at the

end of partially full pages. Small pages require many I/O’s to read or

write a field. Small pages could be allocated contiguously to reduce the

number of I/O’s but this would lead to fragmentation, requiring frequent
compaction of the database. Different size pages must be available for

different size fields.

We have implemented a storage system for long fields that satisfies

these requirements. This long field manager is called by the data manager

component (RDS) of the system and uses the storage manager component (RSS)
to manage storage allocation information, thus easily obtaining trans

action management and recovery functions. Long field storage is main

tained using pools of different size pages; a best-fit algorithm is used

to allocate part of a long field value to the appropriate size page or

pages. Finally, updates to a long field value are carried out using a

shadow page mechanism 9]; this removes the need for logging updates while

maintaining the ability for transaction backout.

4. LONG TRANSACTIONS

Transaction management has been extensively studied in the context of

classical database applications 3] .
In such an environment, a trans

action is generally defined as the unit of both consistency and recovery.
In a design environment, one needs the notion of transaction for control

ling the consistency. But in design applications, the time needed to

arrive at a new consistent state of the data is much longer, maybe days or

weeks. Therefore, classical use of locks, waits, and deadlock resolution

techniques is not suitable.

One proposed approach 6, 11, 71 is to emulate what engineers have done

manually in the past; that is, to make copies of the data so that they can

work independently of others. Thus, an engineer would CHECK OUT an object
from the shared (public) database and store it in a private database,
leaving a nonvolatile lock in the shared database. This is the start of a

long transaction. When the design has reached a consistent state, the

engineer CHECKs IN the changed consistent data, releasing the nonvolatile

lock. Each engineering transaction may encompass several such CHECK OUT

and CHECK IN actions.

This model is easy to understand, but assumes a very rigid design envi-

ronment; in particular, it does not support the complex design environment

where a hierarchy of designers must complete a complex design involving
many design objects by passing incomplete objects back and forth among
them in a controlled manner. We have extended the model to allow a

designer to CHECK OUT a partial design from another designer and complete
the design for the first designer or use it in his own design. These

extensions combine and generalize concepts found in both the existing

52

models of engineering transactions and the model of nested transactions

for conventional business applications 12].

For each engineering transaction, we define a “~bl~” database.

A transaction may CHECK OUT an object from the public database, or the

semi-public database of another transaction. The transactions which

check out objects from another transaction’s semi-public database become

its dependent transactions; that is, they are its children in a trans

action hierarchy.

For each CHECK IN, the transaction may commit the object to its own

semi-public database, or to the semi-public database of its parent trans

action (the public database if the transaction does not have a parent

transaction). When a transaction ends, all objects in its semi-public
database are committed to the semi-public database of its parent.

Using the semi-public database of a parent transaction, several engi
neers communicate and share objects that are partially consistent while

maintaining the consistency of the public database.

5. VALIDATION

We briefly describe one validation effort for our prototype system. We

have implemented a VLSI layout editor 4} which makes extensive use of

complex objects. Each VLSI cell is represented by one or more complex

object instances in a structure similar to that in Figure 1.

Cells in the database are stored hierarchically, yet should be

displayed as flat objects. This is achieved by recursive interpretation;
the algorithm draws the rectangles of a cell, and then calls itself to

draw the cells which are instantiated in it.

Because of replication, there is a good chance that an object, i.e., a

cell, once used, will be accessed again. This justifies the use of an

object buffer. The object buffer manager provides access and manipulation

capabilities for objects and their components. Modification of a record

triggers a transparent, synchronous modification to the database. A

simple request for a record or an entire object causes the object buffer

manager to return a type code and a pointer to the record or object in main

memory. Thus only if the object is not in the buffer will the database be

accessed. We believe this methodology to be essential in providing

adequate performance.

The use of our database system made the implementation easier because

of three factors: the ability to change the schema without loss of data or

appreciable down-time of the database system, the availability of an ad

hoc query language which can be used as sophisticated peek and poke
commands to evaluate the results of transactions, and the ability to back-

out a transaction when testing a piece of code.

In addition, several aspects of complex objects have proved to be

extremely valuable in the database design for VLSI data management. The

hierarchical structure of complex objects supports well the inherent

53

hierarchical structure of the several records that describe the compo

nents of a VLSI object, the availability of identifiers makes it easier to

maintain the relationships between tables, and the inherent integrity
constraints helped to simplify the programming task.

6. FUTURE WORK

The results we have seen so far are promising. The approach provides
the user with valuable functions. It should also improve the performance
because of

- special access paths for complex objects,
- special long field management, and

- high level support for long transactions.

But we believe that a greater improvement in performance should come

from the fact that, in an engineering environment, much of the work is

done on private data. This suggests the development of engineering work

stations that would support the private processes and provide full rela

tional capability. However, because the size of the workstation database

is smaller, and because capabilities like full, multi-user support,

authorization, and extensive transaction recovery are not necessary in a

private environment (in communication with the central, shared database),

one can expect to be able to speed up the processing substantially.

Our current efforts are focussed in three areas: implementing communi

cation between the workstation databases and the public database; devel

oping and implementing the protocols for CHECK OUT and CHECK IN, including
nonvolatile locks on the public database, and nested environments for

maintaining semi-public databases on the public database system; and

developing a single-user workstation database system.

ACKNOWLEDGEMENTS

Gary Hallmark implemented the VLSI layout editor mentioned in the

section on validation, and in the process helped us test major sections of

the database system.

REFERENCES

11 Chamberlin, D. D., et. al., “SEQUEL 2: A Unified Approach to Data

Definition, J1anipulation~ and Con~trol,t! IBM ~ Re~. DeV. 20, 6

(November 1976), pp. 560-575.

21 Gray, J., et. al., “The Recovery Manager of the System R Database

Manager,” ACM Computing Surveys 13, 2 (June 1981), pp. 223-242.

3] Gray, J., “The Transaction Concept: Virtues and Limitations,” Proc.

7th Intl. Conf. on Very Large Data Bases (ACM), September 1981, pp.

144- 154.

54

4] Hallmark, G., and Lone, R., “Towards VLSI Design Systems Using Rela

tional Databases,” Proc. Spring Compcon 64 (IEEE), February 1984.

5] Ilaskin, R.
,

and Lone, R.
,

“Using a Relational Database System for

Circuit Design,” Database Engineering 5, 2 (June 1982), pp. 10-14.

6] Flaskin, R.
,
and Lone, R., “On Extending the Functions of a Relation

al Database System,” Proc. Intl. Conf. on Management of Data (ACM),
June 1982, pp. 207-212.

7] Katz, R., and Weiss, S., “Transaction Management for Design Data

bases,”, Working Paper, Computer Sciences Dept., Univ. of Wisconsin,
Madison, Wisconsin, 1983.

8] Kim, W., et. al., “Nested Transactions for Engineering Design Data

bases,” IBM Research Report RJ 3934, IBM Research Laboratory, San

Jose, California, June 1983.

9] Lone, R.
, “Physical Integrity in a Large Segmented Database,” ACM

Trans. on Database Systems 2, 1 (March 1977), pp. 91-104.

10] Lone, R., “A Project on Design Systems,” Database Engineering 4, 1

(September 1961), pp. 5-9.

11] Lone, R., and Plouffe, W., “Complex Objects and Their Use in Design
Transactions,” Proc. Annual Meeting - Database Week: Engineering

Design Applications (IEEE), May 1983, pp. 115-121.

12] Moss, J. E., “Nested Transactions and Reliable Distributed

Computing,” Proc. 2nd Symp. on Reliability of Distributed Software

and Database Systems (IEEE), October 1982, pp. 33-39.

13] Selinger, P. G., et al., “Access Path Selection in a Relational Data

base System,” Proc. Intl. Conf. on Management of Data (ACM), May
1979, pp. 23-34.

55

USING A RELATIONAL DATABASE MANAGEMENT SYSTEM

FOR COMPUTER AIDED DESIGN DATA - AN UPDATE

by

Michael Stonebraker

Antonin Guttman

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

UNWERSITY OF CALWORNIA

BERKELEY, CA.

I INTRODUCTION

Two years ago GUTT82] we reported on the result of an experiment comparing the

performance of a special purpose CAD editor, KIC KELL81J with a general purpose data

base system, INGRES STON8OJ on a data base consisting of a VLSI circuit. KIC

dramatically outperformed INGRES, and we indicated some of the factors influencing the

outcome. These included the inability of a general purpose data base system to accom

plish efficient two dimensional search, the lack of a transitive closure command to

efficiently expand design trees and the absence of support for geometric constructs as

primitive objects in the data base.

In this, paper we sketch a collection of solutions to these problems that we have been

investigating. These include a new multi-dimensional access method appropriate for spa..

tial data, the use of abstract data types (ADTs) in a DBMS, the addition of commands in

the query language as a new data type, and syntactic and algorithmic solutions to express

ing and solving transitive closure queries. We briefly summarize our research on these

topics in the remainder of this paper.

II R-TREES

We have devised an index structure called an R-tree which allows efficient access to

spatial data according to its location GUTT84a]. Leaf nodes in an R-tree contain index

entries, each consisting of a pointer to a spatial object and a rectangle that covers it.

Higher nodes contain similar entries, with pointers to lower nodes and rectangles covering
those in the lower nodes. This hierarchy of covering rectangles is built and maintained

dynamically in a manner similar to a B+tree.

To search for all data overlapping a given rectangle, we examine the root node to

find which entries have rectangles overlapping the search area. The corresponding sub-

trees can have datain the search area, therefore we apply the search algorithm recursively
to each one. In this way we find all qualifying data but avoid searching parts of the tree

corresponding to objects that are far from the search area.

This research was sponsored by the National Science Foundation Grant ECS-8300465, by the

Air Force Office of Scientific Research Grant AFOSR-83-0254 and by a Grant from ESL, Inc.

56

R-trees can be built for any number of dimensions, and in addition they are useful

for overlapping objects of non-zero size, a characteristic not shared by most multi

dimensional indexing schemes, for example quad trees (FINK74J, k-d trees BENT75J, and

K-D-B trees ROBI81].

We have implemented R-trees, and in spatial search tests using VLSI data, only
about 150 usec. of CPU time was required per qualifying item. This indicates that the

structure effectively restricts processing to qualifying or near-qualifying data.

Ill ABSTRACT DATA TYPES

We have suggested allowing new types of columns to be added to a data base system

and new operators on these columns to be defined. Basically, a knowledgeable user must

write a collection of procedures which will be called by the DBMS as necessary. For

example, a user could define a polygon ADT and create the following POLYGON relation

create POLYGON (pid = i4, p-desc = polygon’

Then an overlap operator (!!) could be defined for the new type, and a user could find the

polygons overlapping the unit square as follows:

retrieve (POLYGON.all) where POLYGON.p-desc !! “0,0,1,1”

Support for user defined types and new operators has been constructed in about 2500

lines of code for the INGRES relational data base system. Implementation details are

addressed in FOGG82, 0NG82], and ADTs execute with a modest performance degrada
tion FOGG82]. Initial suggestions concerning how to integrate new operators into query

processing heuristics and access methods are contained in STON83, 0NG83J. We are now

attempting to cleanly support new operators throughout the query execution engine.

IV QUEL AS AN AN ABSTRACT DATA TYPE

There has been substantial discussion concerning data base support for complex
objects. It is possible to support them as ADTs along the lines discussed in the previous
section, and this position is advanced in STON83J. This approach is conceptually clean

because no facilities peculiar to CAD data are required. However, it has the disadvantage
that one cannot easily “open up” an object an examine its component objects. A second

possibility is to extend a relational data base system with specific facilities for complex
objects. This is the approach taken in LORJ83J. it has the advantage that component

objects can be addressed but requires special-purpose services from a DBMS.

In this section we propose a third approach which may offer the good features of

each of the above proposals. It involves supporting commands in the query language as a

data type in a DBMS. In our environment this means that a column of a relation can

have values which are one (or more) commands in the data manipulation language QUEL.
We explain our proposal using the following relations:

OBJECT (Old, o-desc)
LINE (Lid, l-desc)
TEXT (Tid, t~desc)
POLYGON (Pid, p-desc)

Suppose a complex object is composed of text, lines and polygons. For each such com

ponent object, a tuple would be inserted into the LINE, TEXT or POLYGON relation.

For example:

57

append to LINE (Lid = 22,

description = “(0,0) (14,28)”)
append to POLYGON (Pid = 44,

description = “(1,10) (14,22) (6,19) (12,22)”)

Then, the description field in OBJECT would be of type QUEL and contain queries to

assemble the pieces of any given object from the other relations. For example, the follow

ing query would make object 6 be composed of line 22 and polygon 44.

append to OBJECT(
oid 8,
o-desc = “retrieve (LINE.all) where LINE.id 22

retrieve (POLYGON.all) where pid = 44”)

We have proposed extensions to QUEL which allow the components of an object to be

addressed. For example, one could retrieve all the line descriptions making up object 6

which were of length greater than 10 as follows:

range of 0 is OBJECT

retrieve (O.o-desc.l-desc) where

length (O.o-desci-desc)> 10

This notation has many points in common with the data manipulation language GEM

ZANI83], and allows one to conveniently discuss subsets of components of complex
objects. In addition we can support clean sharing of lines, text and polygons among mul

tiple composite objects by having the same query in the description of more than one

object, a feature lacking in the proposal of L0R183J.

Materializing an object from the OBJECT relation will be slow since it involves exe

cuting several QUEL queries. Hence it is clearly desirable to precompute the value of fre

quently used objects and store the actual result in the OBJECT description field. We are

investigating how to efficiently precompute values for complex objects represented by
commands in the query language.

V TRANSITIVE CLOSURE OPERATIONS

In our earlier paper GUTT82I we suggested syntax for adding transitive closure

capability to INGRES. A *
operator added to an append command indicates that the

operation is logically repeated as long as new tuples are generated. For example, suppose

the structure of a hierarchical VLSI circuit design is represented by tuples in a CELL-REF

relation. Each tuple stands for the use of one circuit cell as a component in another:

CELL-REF (parent-cell, child-cell, location)

Then all cells used in the entire design for CKT-A can be collected by

retrieve into TREE (cell=CKT-A)
range of T is TREE

range of C is CELL-REF

append* to TREE (cell=C.child-cell)
where C.parent-cell=T.cell

The *
operator can be applied to retrieve into, delete and replace with a similar meaning.

We have added append’ to INGRES and have tested our implementation by expand

ing VLSI design trees GUTT84bJ. Tree expansion was faster using a depth-first

58

algorithm in our implementation, because we could use the stack to store TREE tuples

currently undergoing processing, whereas during breadth-first expansion the current level

of TREE was stored in a temporary relation. The depth-first method also used much less

buffer space, because our VLSI trees were much wider than they were high, as is typical.

If a tree being expanded by appcnd* contains duplicate subtrces, time can be saved

by eliminating duplicate tuples in order to avoid processing the redundant subtrees. We

tested a variety of duplicate tuple elimination methods, and found that detecting dupli
cates in the entire tree or within one level is expensive but sometimes worthwhile. Elim

inating duplicates on a vertical path from the root to a leaf is necessary for correct pro

cessing of some queries. The cost is negligible for the depth-first implementation, which is

another advantage of this algorithm.

REFERENCES

BENT75I Bentley, J. L., “Multidimensional Binary Search Trees Used for

Associative Searching”, Co?nmunication8 of the ACM 18, 9 (Sep
tember 1975), 509-517.

FINK74] Finkel, R. A. and J. L. Bentley, “Quad Trees - A Data Structure

for Retrieval on Composite Keys”, Acta Inforrnatica 4, (1974), 1-

9.

(FOGG82I Fogg, D., “Implementation of Domain Abstraction in the Rela

tional Database System, INGRES”, Masters Report, EECS Dept,
University of California, Berkeley, Sept. 1982.

GUTT82~ Guttman, A. and M. Stonebraker, “Using a Relational Database

Management System for Computer Aided Design Data”, Data

Base Engineering, 5, 2, June 1982.

GUTT84a] Guttman, A., “R-Trees: A Dynamic Index Structure for Spatial
Searching”, submitted for publication.

GUTT84bI Guttman, A., New Fcaturc8 for a Relational Database System to

Support Computer Aided Design, Ph.D. thesis, University of Cali

fornia, Berkeley, in preparation.

EHASK82I Haskins, R. and R. Lone, “On Extending the Functions of a Rela

tional Database System,” Proc. 1982 ACM-SIGMOD Conference
on Management of Data, Orlando, Fl, June 1982.

KELL81] Keller, K., “KIC, A Graphics Editor for Integrated Circuits”, Mas

ters thesis, Dept. of EECS, University of California, Berkeley, June

1981.

L0R183] Lone, R. and W. Plouffe, “Complex Objects and Their Use in

Design Transactions,” Proc. Engineering De8ign AppUcation.s of
ACM-IEEE Data Ba8e Week, San Jose, Ca., May 1983.

0NG82] Ong, J., “The Design and Implementation of Abstract Data Types
in the Relational Database System, INGRES,” Masters Report,
EECS Dept, University of California, Berkeley, Sept. 1980.

ONG83] Ong, J., et. al., “Implementation of Data Abstraction in the Rela

tional Database System INGRES,” to appear in SIGMOD Record.

59

ROBI81] Robinson, J. T., “The K-D-B Tree: A Search Structure for Large
Multidimensional Dynamic Indexes”, ACM-SIGMOD Conference

Proc., April 1981, 10-18.

STON76I Stonebraker, M. et al., “The Design and Implementation of

INGRES,” ACM Transactions on Database Systems 2, 3, Sep
tember 1978.

STON83J Stonebraker, M. et. aL, “Application of Abstract Data Types and

Abstract Indices to CAD Databases,” Proc. Engineering Design

Applications of ACM-IEEE Database Week, San Jose, Ca., May

1983.

ZANI83] Zaniola, C., “The Database Language GEM,” Proc. 1988 ACM

SIGMOD Conference on Management of Data, San Jose, Ca.,

May 1983.

60

Relational and Entity-Relationship Model Databases

and VLSI Design
Marianne Winslett Wilkins and Cio Wiederhold

Stanford University, Computer Science Dept.

Abstract. Databases have a number of advantages
over specialized design files for use in the VLSI design

process. Balanced against these advantages is the pre

sumed extra run-time cost of accessing the database. In

particular, ordinary relational databases appear to be

too slow to he used on-line by engineers in the design

process Eastman 80, Ilaynie 81, Sidle 80, Stonebraker

82].
The requirements for design access include the re

trieval of major units of data at one time, implying

joins of many attributes with their libraries, and projec
tions to obtain the relevant attributes for a given study.

Previously, in order to test if databases could achieve

acceptable performance at all, we experimented using

a CODASYL database system Beetem 82, Wiederhold

821. This appeared to provide adequate performance,
but at a high cost of software maintenance and lack of

flexibility due to CODASYL limitations.

Our hypothesis is that the relational data model

per se is not the crucial factor in performance; rather,
the internal access mechanisms of the database signifi

cantJy affect performance. To test this hypothesis, we

ran experiments using the Cypress database system in

the Cedar environment at Xerox Palo Alto Research

Center. The program used is a design macro expander,

more fully described in Section 3. The tests show that

colocating pointers to all relations that a VLSI com

ponent appears in will reduce CPU time spent in the

main database access routines by 25%. Ilowever, the

largest component of execution time is the time spent

to write the expansion results to a file.

1. Motivation

Database systems provide a number of attractive fea

tures for use in VLSI design efforts. For example, data

base systems usually automatically provide features for

data sharing, concurrency control, and automatic crash

recovery. Database systems are often geared to handle

the large amounts of data common in VLSI applications.
The use of a database system has the potential to free

its users from routine data mnanagenient tasks.

On the other hand, a general-purpose database sys

tem may complicate the design task through cumber

some user interfaces, rigid schemas and access paths,

sluggish response time, and lack of support for long
transactions. Researchers have considered the suita

l)ility of commercially available databases Beetem 82,
Sidle 80, Wiederhold 82, Zintl 811 and the appropriate

ness of various data models Ilaskin 82, Katz 82, Lone

81, Stonchrakcr 82, 83] for good performance in the

VLSI design environment. Relational databases typi

cally do not suffer from rigid schemas and access paths
and cumbersome interfaces; in this paper, we address

the issue of relational database response time in a VLSI

application.
We believe that it is not so much the higher-level

data model as the underlying implementation structures

that determine the suitability of a database system for

use in a design application. We also believe strongly
that the implementation structure of the database sys

tem can be isolated from its client interface Steel 75].
With effective mappings from the interface to the in

ternal structure, one calm provide a design tool that

combines clarity and performance. Through use of the

Cypress database system at Xerox Palo Alto Research

Center (PARC) Brown 81, Cattell 83], we were able to

measure the differences iii performance in VLSI macro

expansion resulting from use of two different internal

access structures: a purely relational data model with

internal indexing via B-trees, and an entity-relationship
data model with internal B-trees and colocated links

to all tuples associated with each entity. The inter

nal access structures of tIme entity-relationship model

database can be implemented for purely relational data

bases that allow typed attributes.

2. The Experiment Environment

The experiments were conducted in a “workplace of

the future,” the Computer Science Laboratory (CSL) of

Xerox PARC, using Dorados Clark 81, Lampson 80, 81]
interconnected by a 3 megabit Experimental Ethernet

IMetcalfe 76]. The Dorados run Cedar Teitelmnan 84],
an experimental progrannming environment developed

61

Relational and Entity-Relationship Model Databases and VLSI !)esign

at Xerox PARC. The different components of this en

vironment are discussed iii more detail below.

2-1. The Dorado

The Dorado is a high-performance personal computer

developed at Xerox l’ARC. Dorados have been the hard

ware of choice at PARC for building prototype systems

over the last several years. Pier 831 gives a quick sum

mary of Dorado features:

The Dorado is a 16-bit machine] designed to be used

by a singlc (expert) user running multiple cooperating

processes in an integrated programming environment. It

has a microprogrammed processor with a 60 nanosecond

microinstruction cycle time, a high-speed cache, memory

map, large main memory, an instruction fetch/decode
unit, and high- resolution monochrome and color displays.
The processor is shared among priority-ordered microcod

ed tasks, performing microcode context switches on de

mand with no overhead. The memory subsystem is con

trolled by a seven-stage pipeline. It can deliver a peak

main-storage bandwidth of 530 million bits per second

The IFU is implemented with a six-stage pipe!ine, and un

der favorable conditions can deliver instructions at a peak
rate of 16 million instructions per second. The machine

is implemented using standard ECL 10K technology.

From this description of existing facilities, we ex

trapolate and say that the Dorado presents a model for

the engineering workstations that will become common

in industry.
The Dorado on which the VLSI macro expander

runs is equipped with an 80 megabyte disk and a mouse.

2-2. The Software Environment: Cedar

Cedar is an integrated computing environment devel

oped at PARC over the last five years. The system re

volves around a single language—Cedar Mesa Mitchell
79]—and includes facilities for document typesetting,
color graphics, performance monitoring, remote and lo

cal debugging, automatic garbage collection, network

ing, print servers, file servers, mail servers, tape serv

ers, and many other features. Cedar Mesa is an object-

oriented, modular, strongly typed language with a PAS

CAL-like syntax. The experirrients were run under Ced

ar 5.1 of February 1984.

2-3. The Database System: Cypress

Cypress is an entity-relationship-datum model database

Chen 76, Cattell 831 system designed to run under

Cedar. From the user’s viewpoint, a Cypress database

consists of a set of domains, a relation schema, sets of

entities in the defined domains, relations representing

properties of those entities, and other relations among

entities and string-, integer-, h)oolean-, and (late-valued

fields. Cypress allows the user to define a hierarchy of

entity types and subtypes. Stored Cypress values are

not restricted to conventional underlying data types,
and may be extended to include large pieces of text and

graphical data.

For the purpose of this experiment, the most irupor
tant Cypress feature is that a Cyprecs database without

user-defined domains and entities is a purely relational

database using B-trees as its only indexing mechanism.

Thus, Cypress allows a controlled comparison of the

performance of a purely relational implementation and

an entity-relationship database imptemnentatiomi. We are

al)lC to measure the effect of the entity access method

while keeping other internal and external factors con

stant—an unusual opportunity.
The programming language interface to Cypress

allows for tuple-at-a-timc access. Access path selection

is done at each database call; if the access path were

chosen at the time of initial result-query definition, as

in System R Astrahan 76] and its cornmercia,l relative

SQL-DS, we would expect a substantial improvement in

the execution times given below.

2-4. The Remote File Server: Alpine

Alpine is a general-purpose transactional file server pack

age developed at Xerox PARC. CSL uses one Alpine

server, equipped with several large disks. The server

is heavily used for mail storage and as a repository for

large files.

2-5. The Measurement Tool: The Cedar Spy

We used the Cedar Spy to monitor the performance
of the VLSI programs. With the Spy, a user can ex

amine execution parameters for both specific routines

and programs and in the system as a whole. The user

may watch CPU usage or one of five other interest

ing parameters within selected sections of code. When

turned on, the Spy operates by keeping track of the

state of all interesting programs and routines. After

turning off the Spy, the user may obtain a statistical

summary of the monitored information at a specified

degree of precision.

3. The VLSI Macro Expander and Data

The main program used in these e~periments is a

Cedar version of a hierarchical VLSI macro expander

originally written in PASCAL Payne 80] for use on

a DEC-10. The PASCAL macro expander and some

associated FORTRAN routines were used by Beetem
82] to evaluate the performance in a VLSI design ap

plication of a commercially available network database,
DRMS-20. The macro expander has been further devel

oped ?] and is now a commercial offering from Silvar

Lisco. For the current experiment, this PASCAL pro

gram was translated to Cedar Mesa, with a substantial

62

Relational and Eiitity-Rclationship Model Databases and VLSI Design

number of changes made for the new environment.

The macro expander takes a given hierarchical de

sign component name-—the ALU for example—and pro

duces a description of that component in terms of lower-

level components, such as transistors. The user controls

the level of detail in the expansion by telling the macro

expander which hierarchical levels to expand.

In the Cedar environment, the macro expander runs

on the user’s local Dorado and uses a local version of

the Cypress database package to access the VLSI design
macros. Due to the large size of these macros, they
are kept omi a remote file server running Alpine. This

setup is appropriate for a large design project, where

engineers have their own personal machines, and large
files of general interest are kept in a central location

to facilitate sharing and insure consistency. However,
there is no programming requirement that the VLSI

macros be kept on a remote disk; the physical location

of the data is of interest only to the database access

routines, and not to any higher level code.

The file resulting from the expansion is stored on

the local disk. Again, for a larger result file the expan

sion could he kept on the remote file server with no

program changes. We store the result file as a flat file

with no special index structures. While not~the recom

mended method for an integrated environment, this cor

responds to current-day practice where the design en

gineer is confronted with a set of incompatible design
tools for use at different phases of the design process

]CADTEC 83].

The most interesting feature of the macro expander
is the inclusion of au additional level of indirection to

allow for the explicit storage of multiple representations
of the same object. For example, the database may con

tain earlier and later versions of the same component.
In a VLSI application, one expects to store multiple,
logically equivalent representations of the same object,
such as sticks, geometric layouts, and the more conven

tional component—pin-net representations.

For data, this experiment uses a hierarchical des

cription of a PDPIJ CPU Slutz 79]. These macros take

up approximately two megabytes of storage, though
not all of the database relations are used in the expan

sion process. We expand the conventional component-

pin-net representation of the PDPI1, as opposed to its

geometric representation.

Table 1. Expansion sizes

ALU components 193

CPU components

nets

pins

4. Experiments and Results

295

1026

504

1238

4183

We will consider the effects of varying two basic param

eters: first, whether the on-going expansion is kept in

main memory or written out to a temporary file; and

second, whether the internal access mechanism is B-

trees alone or a combination of B-trees and other point-
ers.

4-1. Temporary Files

The intermediate results of a VLSI expansion require
a great deal of storage space. In the absence of vir

tual memory, or in a small virtual address space, it

will be necessary to keep intermediate results in a tem

porary file. This version of the macro expander creates

a temporary file during each expansion pass at a given
level of the design hierarchy, then reads that file on the

next expansion pass. Tables 2 and 3 give a summary of

CPU time requirements for complete expansions of the

PDP11 ALU and CPU. As these tables show, the read

ing and writing of temporary files is very expensive: it

takes 80% more CPU time to expand the PDP11 CPU

with temporary files than to do an in-core expansion.

Table 2. Expansion CPU Times for the PDP1I ALU

Entities Temporary Files CPU Seconds

y y 34.2

y 39.7

n

n 33.8

n

the PDP11 CPU

CPU Seconds

265.2

281.2

n 153.1

In fact, writing out the results of an expansion is

always a very expensive operation. According to Table

4, over half the time of all types of expansions is spent
in writing the results to disk. A considerable savings
would result if the in-memory structures could be put
to direct use, as is possible in an integrated system like

Cedar.

nets

pins

27.4

n

y

II

Table 3. Expansion CPU Times for

Entities Teniporary Files

y y

n y

y

n

141.1

63

llchLtional and !~ntity-Relationship Model Databases and VLSI Design

Table 4. Sample of Where Execution Time Is

Spent For a PDI’ll CPU Expansion

Entities Temp. Writing Main Database

Files Files Access Routine

Sec. % Sec. %

y y 147.0 55.2 42.6 16.0

n y 115.5 51.9 53.8 19.2

y 1’ 84.4 60.0 42.4 30.6

n n 83.0 55.0 54.3 35.9

4-2. Entities

We examine the effects of two different access structures:

a purely relational B-tree approach, and an entity-rela

tionship method. In the latter approach, all VLSI com

ponents are declared as Cypress entities. This might

be regarded as a first step along the lines of recent

proposals for sernaiitic additions to the relational model

for VLSI design Johnson 83, Lone 83, Stonebraker 83].
internally, the declaration of an entity corresponds to

a B-tree lookup that returns an object of type Entity.

Internally, this object~corresponds to a database record

that includes pointers to the first tuple referencing that

entity, for each relation in which that entity might pos

sibly appear. Within a given relation, all tuples refer

encing the same entity are chained together. Therefore,

when using entities only one B-tree index lookup is re

quired for referencing any or all of the relations in which

an entity appears. Index looktips are particularly expen
sive in Cypress due to a small page size, so minimiza

tion of their occurence should substantially decrease the

time spent in database calls.

The techniques described above are similar to ones

used in System It’s RSS Astrahan 76], the major model

for Cypress’s storage level implementation. An addi

tional feature of Cypress, not yet implemented, that

would speed database access, is the provision for the

colocation of tuplcs referencing entities with the records

defining those entities. This is also an unimplemented

feature of the CODASYL DBMS-20 used in earlier ex

periments Bectem 821.
Tables 2 and 3, for ALU and CPU expansions re

sl)ectively, show that the use of entities gives a notice

able decrease in running time. Table 4 shows that for

—~ the CPU expansion-, most of the CPU savings can be ac

counted for by the main database access routine in the

macro expander, where the great majority of database

calls are made.

The use of entities is not without its cost, however.

Getting- the print name of an entity requires a Cypress
call which is not always balanced by a corresponding

reduction in tuple access time. The running time of

the macro expander could be improved by only having

entity values in those domains that are used to look

up particular tuples. For example, the database treats

iiets as entities, though in our tests database tuples

are almost never looked up via net name. Thus the

macro expander incurs an extra cost in looking up the

net name, with no corresponding savings in tuple ac

cess. The cost of using entities can be seen in Table 4,

where approximately 1.5 seconds more are required to

write files when entities are being used. This is a small

penalty, however, if there is any chance that another

application might need to make use of nets as entities.

Table 5. Sample Wait Tunes For a PDP11 CPU

Expansion Without Temporary Files

Or Entities

Type Of Wait Seconds

Condition variable 93.7

Page fault 19.8

Preempted 14.3

Other 3.7

Total 131.5

Total running time = wait time + CPU time:

286.7 seconds

5. Summary and Conclusion

Databases have a number of advantages over spe

cialized design files for use in the VLSI design pro

cess. Balanced against these advantages is the pre

sumed extra run-time cost of accessing the database. In

particular, ordinary relational databases appear to be

too slow to be used on-line by engineers in the design

process.

Our hypothesis is that the relational data model

per se is not time crucial factor in performance; rather,

the internal access mechanisms of the database signiFi

cantly affect performance. To test this hypothesis, we

ran experiments using the Cypress database system and

a design macro expander in the Cedar environment at

Xerox Palo Alto Research Center.

We found that the use of temporary files, as op

posed to doing an in-core VLSI macro expansion, im

~0SCS an 80% overhead for our larger expansions. In

all expansions, the expense ol writing result files to disk

accounts~ for over half of the CPU time, with an -addi

tional third of the execution time being spent in the

main database access routines.

The use of entities reduces expansion time by an

amount that is independent of whether temporary files

are being used. ‘l’he use of-entities gives- an 8%-savings
in C P U time for aim expansion of a I’]) ‘11 C1~U without

temporary Files. If we restrict our attention to the

64

Relational and Eiitity-t~elationship Model Databases and VLSI Design
V

macro expander routine that is respoiisihk for most of

the database calls, we find that the use of entities gives

an approximate 25% savings in CPU time.

We conclude that the choice of internal indexing

structure has significant repercussions for the perfor

niance of relational and entity-relationship (latabases

in VLSI design applications. Flowever, the database is

not necessarily the weakest link in a design expansion;

in our case, the CPU demands of our database system

were overshadowed by the costs of writing the expan

sion results out to a result file.

6. Acknowledgements

Our appreciation goes to Xerox Palo Alto Research Cen

ter for the use of their equipment; to Rick Cattell for

his help with database problems; to John Maxwell for

help with the Cedar Spy; and to Dan Swinehart for

general aid and assistance. This work was supported
in part by contract N00039-82-G-0250 (the Knowledge

Base Management Systems Project, Prof. Gio Wicder

hold, Principal Investigator) from the Defense Advanced

Research Projects Agency of the United States Depart

nient of Defense, and by an AT&T Bell Laboratories

Doctoral Fellowship. The views and conclusions con

tained in this docunient are those of the authors and

should not be interpreted as representative of the official

policies of DARPA or the US Government.

7. Bibliography

Astrahan 761 M. M. Astrahan, et al., “System R:

Relational Approach to Database Management,”
Trans. on Database Systems, 1:2, ACM, June

1976.

Beetem 82] A. Beetem, J. Milton, and C. Wiederhold,

“Performance of Database Management Systems

in VLSI Design”, Database Engineering, 5:2, June

1982.

Brown 81] M. Brown, R. G. G. Cattell, and

N. Suzuki, “The Cedar Database Management

System: A Preliminary Report”, Proceedings ACM

SIGMOD Conference 1981, Ann Arbor, 1981.

CADTEC 83] “Series 8000 Design System”, Technical

Introduction, CADTEC Corporation, April 1983.

Cattell 83] R. G. C. Cattell, “Design and

Implementation of a Relationship-Entity-Datum
Data Model”, Technical Report CSL-83-4, Xerox

Palo Alto Research Center, May 1983.

Chen 76] P. Chen, “The Entity-Relationship
Model—-Towards a Unified View of Data”, ACM

Transactions on Database Systems, 1:1, January

1976.

Clark 1981] D. W. Clark, B. W. Lamnpson, and K. A.

Pier, “The Memory System of a High-Performance

Personal Computer”, I1~EE Transactions On

Computers, 30:10, October 1981. Also Technical

Report CSI~-81-i, Xerox Palo Alto Research

Center, January 1981.

Eastman 80] C. Eastman, “Systems Facilities for

CA]) Databases”, Proceedings of the 17th Design

A utomation Con fcrcnce, Minneapolis, 1980.

Haskin 82] R. Haskin and H. Lone, “On Extending

the Functions of a Relational Database System”

Proceedings of the ACM SIGMO!) Conference on

Management of Data, Orlando, June 1982.

Haynie 81] M. Haynie, “The Relational/Network
Hybrid Data Model for Design Automation

Databases”, Proceedings of the 18th Design

Automation Conference, Nashville, 1981.

Johnson 831 H. R. Johnson, J. E. Schweitzer, and

E. H. Warkentinc, “A DBMS Facility for handling

Structured Engineering Entities”, Proceedings of

Database Week 1983, San Jose, May 1983.

Katz 81] H. 11. Katz, “A Database Approach for

Managing VLSI Design 1)ata”, I’rocecdings of the

19th Design Automation Conference, Las Vegas,

June 1982.

Lampson 801 B. W. Lampson and K. A. Pier.

“A Processor for a High-Performance Personal

Computer”, Proceedings of the 7th International

Symposium on Computer Architecture, La Baule,

May 1980. Also in Technical Report CSL-81-1,

Xerox Palo Alto Research Center, January 1981.

Lampsoii 81] B. W. Lampson, G. A. McDaniel, and

S. M. Ornstein, “An Instruction Fetch Unit for a

High-Performance Personal Computer”, Technical

Report CSL-81-1, Xerox Palo Alto Research

Center, January 1981.

Lone 81] R. Lone, “Issues in Databases for Design

Applications”, Proceedings of the Il’II’ Conference

on File Structures and Databases for CAD,

Seeheim, September 1981.

Lone 831 R. Lone and W. Plouffe, “Complex

Objects and Their Use in Design Transactions”,

Proceedings of Database Week 1983, San Jose,

May 1983.

MetcalIe 76] H. M. Metcalfe and D. R. Boggs,
“Ethernet: Distributed Packet Switching for Local

Computer Networks”, Communications of the

ACM, 19:7, July 1976.

Mitchell 79] J. Mitchell, W. Maybury, and R. Sweet,

“Mesa Language Manual”, Technical Report

CSL-79-3, Xerox Palo Alto Research Center, April

1979. Unfortunately no later external reference on

the Mesa language is available, and Cedar Mesa

has diverged somewhat from the description in

65

Relational and l~ntity-Relationship Model Databases and VLSI Design

this manual.

Payne 80) T. Payne, PASCAL Macroexpander Pro

gram, Stan ford Univcrsi ty Electrical Engineering
Department, Comnpu Ler Systems Laboratory, and

Center for Integrated Systenis, 1980.

Pier 83] K. A.. Pier, “A Retrospective on the

Dorado, A lEigh-Performance Personal Computer”,
Technical Report ISL-83-1, Xerox Palo Alto

Research Center, August 1983.

Sidle 80] T. Sidle, “Weakness of Commercial

Data Base Management Systems in Engineering
Applications”, Proceedings of the 17th Design
Automation Conference, Minneapolis, 1980.

Slutz 79] E. Slutz, “SDL Description of DEC

PDP-1 1”, Stanford University Computer Systems
Laboratory and Center for Integrated Systems,
1979.

Steel ~ T. B. Steel, “Interim Report of the

ANSI-SPARC Study Group”, ACM—SIGMOD

FDT, 7:2, September 1975.

Stonebraker 82] M. Stonchrakcr, and A. Guttinan,
“Using a l~claLional Database Management System
for CAl) Data”, 1)atabase Engineering, 5:2, June

1982.

Stonebraker 83] M. Stonebraker, B. Ruhenstein,
and A. Guttman, “Application of Abstract Data

Types and Abstract Indices to CAD Data Bases”,
Proceedings of Database Week 1983”, San Jose,
May 1983.

Teitelman 84] W. Teitelinan, “A Tour Through
Cedar”, Proceedings of time 7th Intl. Conference

on Software Engineering, Orlando, March 1984.

To appear in iEEE Transactions on Software

Engineering, April 1984.

Wiederhold 82) C. Wiederhold, A. Beetein, and G.

Short, “A Database Approach to Communication

in VLSI Design”, IEEE Transactions on Computer
Aided 1)esign of Integrated Circuits and Systems,
1:2, April 1982.

Zintl 82] C. Zintl, “A CODASYL CAD Data

Base System”, Proceedings of the 18th Design
Automation Conference, Nashville, June 1982.

66

AN EXTENDED RELATIONAL DATABASE SYSTEM FOR ENGINEERING DATA MANAGEMENT

Y. UDAGAWA and T. MIZOGUCHI

Mitsubishi Electric Corporation
325 Kamimachiya, Kamakura city, Kanagawa 247, Japan

1. INTRODUCTION

During the past quarter of a century, several data models have been devel

oped, e.q. network, hierarchical and relational data models /1/. They have been

designed for business data applications in which objects are represented by

alphanumeric data and relationships among them are rather simple. In engineer
ing data applications, however, pictorial data are essential in addition to

alphanumeric data. Furthermore, relationships among data are so complex that

they must b~ managed in multiple levels of abstraction. It has already been

discussed that conventional database systems cannot effectively support engi
neering data management /2/. Much research has been done to investigate the use

of relational data model for pictorial data management /3, 4, 5/. Describing
pictures requires some extensions to the model. For example, Becerril et al./4/

developed a system to handle relations in which tuples are ordered and duplicated.
In this paper, we describe a database system for engineering applications,

called ADAM (Advanced Database system with Abstraction Mechanism). ADAM is

based on the relational model. The relational model was chosen because (1) it

provides set-oriented data processing on a simple data structure, i.e. a relation,
and (2) it provides a more effective way of representing the complex relationships

among data than the other data models. ADAM data model uses the relational model

for representing attributes information and relationships among data. As for pic
torial information, ADAM provides figure-specification capabilities where picto
rial notations of instances are represented in terms of built-in functions of

computer graphics. Objects are modeled by multi-level constructions of these

frameworks. Roughly speaking, the single-level construction without the figure

specifications of the ADAM model corresponds to the relational model. The corre

spondence between Codd!s relational model and ADAM is illustrated in Fig.l.
The main features of ADAM are as follows.

(1) ADAM can deal with pictorial data as well as alphanumeric data.

(2) ADAM has a facility called abstraction mechanism for managing a group of

data as a unit.

(3) ADAM uses instances with arguments (called abstract instances hereafter)
for efficient description, storage and manipulation of repeated appearances of

similar objects.
(4) Objects are modeled as a hierarchical structure of instances. This allows

the users to model objects step by step.

(5) ADAM allows users to view a pictorial notation in any detail desired.

(6) Updates of data affect a pictorial notation immediately.

2. SOME OBSERVATIONS ABOUT ENGINEERING DATA

By engineering data we mean all the data pertaining to industrial activities.

Among these, we shall focus our attention upon electric circuit diagrams and

system architecture diagrams, etc. Fig.2 shows a typical engineering data.

Table 1 gives the identifiers and their notations for the parts in Fig.2. The

followings are the main features of engineering data.

67

ADAM Data Model

Fig.1 Correspondence between the relational

data model and ADAM data model.

CLOCK

Object Relational Data Model

Object

Fig.2 An example of engineering data.

POWER SUPPLY

68

Table 1 Parts in Fig. 1 and their notations.

Part Notation Part Notation

Terminal • Synchronizer Q

I/O Latch L117 Tone Controller Cj

Tuner /~\ Timer cD

Display Signal Processor I

(1) Engineering data consist of pictorial information as well as alphanumeric
information.

Each part has attribute information, e.g. for tone controller, maximum power

of output, location installed and date manufactured. This kind of information is

usually represented by fixed-format alphanumeric data in the same manner as in

conventional databases. On the other hand, parts in Fig.2 have pictorial nota

tions.

(2) Attributes relevant to objects are different one another.

For parts in Fig.l, there are attributes which are common to all objects,

e.g. date manufactured. However there are attributes which are not common. For

example, a display is specified by the size of screen, whereas tone controller is

specified by its output power.

(3) Engineering data have too complex a structure to be manipulated by only one

level of abstraction.

In most engineering applications, an object to be manipulated is represented
by more than one diagram. Further, these diagrams are structured in such a way

that an element in a diagram is represented by other detailed diagram. For exam

ple, the electric diagram in Fig.2 may best be managed in four levels of abstrac

tion as shown in Fig.3 rather than one level of abstraction as in Fig.2
(4) Engineering data include many repeated instances of similar objects.

As an example, a terminal indicated by the notation • appears twenty-one

times in Fig.2. This aspect arises from the fact that many parts used in engi

neering applications are standardized.

(5) The amount of information contained in engineering data is so enormous and

their structure so complex that we can not analyze all the information in advance.

As a result, we can only model engineering objects via many interactions with

the engineering database. This requires a database system to be more interactive

and more flexible.

The features (3) and (5) are also pointed out in Haskin and Lone /5/.

3. OVERVIEW OF ADAM

3.1 Data Definition Facilities -

ADAM data model includes two classes of instances. One is a class of in

stances which are represented by fixed-format data, e.g. character strings, inte

69

VASYS(x, Y

Fig.3 Hierarchical structure for the Fig.2.

gers and reals. Instances of this class are used -in business-oriented databases.

The other is a class of abstract instances (instances with arguments). An

abstract instance, in turn, can be used to define other abstract instances. In

this way abstract instances form a hierarchy.
ADAM data definition language consists of the following six parts.

(1) variable declaration

(2) abstract instance declaration

(3) general figure specification
(4) domain declaration

(5) relation declaration

(6) detailed figure specification
They are stored in four types of files as shown in Fig.4. For details see Udagawa
and Mizoguchi /7/.

The most interesting feature of the data definition facilities of ADAM is

that it includes two figure specification parts general and detailed. These two

parts are provided, because abstract instances have two aspects of figure repre

sentations. Suppose an instance A is constructed from other instances, say B and

C as in Fig.5. Now, if we view B and C from abstraction level A, we need only

general notations which suggest detailed structures of A’s constituents. That is,

in dealing with constituents as units, their detailed structures are transparent

IOL(X ,Y)

70

~abstractinstance table

GF : file for general

figure specificatio~J

Fig.4 File organization of ADAM/xl.

to the general notations. The general
figure specification part defines a gen
eral notation for the underlying in

stances. Intuitively, this part speci
fies the bold rectangle for instance A

in Fig.5. A general figure is usually
described in terms of built-in func

tions of computer graphics.
On the other hand, the detailed

figure specification part specifies a

pictorial notation for the detailed

structure of an instance. A notation

specified in this part is usually de

scribed in terms of graphic functions

and relational operations. The nota

tion allows users to get a precise
pictorial representation, even if con

stituents of an abstract instance are

frequently changed by updating rela

tions. This part specifies the pic
tures in the bold rectangle for

instance A in Fig.5.
Syntax of the figure specifica

tion parts are as follows.

< general figurespecification > ::=

< detailed figure specification >

Fig.5 Correspondence between

general and detailed figures.

Examples of the figure specification are shown in Fig.6.

DF: file for detailed

figure specifications

$GENERAL FIGURE

< figure specification list >

$DETAILED FIGURE

< figure specification list >

< figure specification list > < figure specification >

< figure specification > ; < figure specification list >

< figure specification > ::= GRAPHICS (< relational operation >)
< temporary relation > < relational operation >

< graphics operation > < relational operation >

< graphics operation > POINT LINE CIRCLE ELLIPSE GRID

RECT POLY SYMBOL
,

etc.

71

$GENERAL—FIGURE ; $DETAILED—FIGURE ;

LINEC X , Y+16.O, x , y—io.o ; GRAPHICS (FIG <! ELEM >) ;

X , Y—16.O, X+36.O, y—io.o ; X (Hi, Vi, DIEID, DINAME

X+36.O, Y—i6.Q, x+36.O, v+io.o ; C CONN <* STE ID = TE_ID

X+36.O, Y+16.O, X , Y+16.O ; SINAME = INAME *> TERM)

X+36.O, Y+~•~J, X+34.Q, V—i6.D) ; <! UCOOR, VCOOR, DTE_ID~ DINAME !> ;

LINE C C X <* DIE_ID = TE_ID ,

DINAME = INAME x> TERM)

<! Hi, vi, HCOOR, VCOOR !>) ;

Fig.6 Examples of figure specifications.

3.2 Data Manipulation Facilities

3.2.1 Equivalence and Ordering of Instances

Many data in engineering applications include similar instances. We intro

duced abstract instances to describe these instances efficiently. Introducing
abstract instances lead to a basic mathematical problem, i.e. to define the equiv
alence and ordering among them. Ordering for abstract instances falls into two

classes. One is the ordering for instances of different instance identifiers.

The other is for the same identifiers.

As discussed already, instances in the ADAM data model form a hierarchy in

which an instance is at a higher level than its constituents. For the former

class, we define the ordering of abstract instances based on a hierarchy of in

stances.

Ordering Rule 1 : An instance is greater than its constituent instances.

Some examples of the ordering of instances in Fig.3 are given.

Ex.l VASYS(*, *) > AUDIO(*, *) > SUNIT(*, *) > IOL(*, *) ,
where *

indicates any appropreate arguments.
Ex.2 Ordering among IOL(*, *), TONE(*, *) and TIMER(*, *) is not defined.

This ordering allows the users to traverse hierarchical structures of arbi

trary levels.

Now we consider the ordering for instances of the same identifiers and there

fore the same number of arguments. We define three ordering rules which are dif

ferent from each other in processing of arguments.

Ordering Rule 2 : An ordering for instances is defined by the alphabetical and

numerical ordering.

Ex.3 AIJDIO(U, 3.0) < AUDIO(V, 3.0) < AUDIO(X, Y), since U < V < X in EBCDIC

code system.

Ordering Rule 3 An ordering for instances is defined by the alphabetical and

numerical ordering except for variables.

Ex.4 AUDIO(X, Y) < AUDIO(U, 3.0) = AUDIO(V, 3.0), since Y < 3 in EBCDIC

code system.

Ordering Rule 4 : An ordering of instances is defined by the fouowing criteria.

(1) If instances given are -unifiable /6/, then they are equivalent.
(2) If instances given are not unifiable because constants are unmatched, then

ordering is defined by the alphabetical and numerical ordering of constants;

otherwise it is not defined.

72

Ex.5 AUDIO(X, Y) = AUDIO(V+2.0, 5.0) since { V+2.0/X, 5.O/Y } is a legal

substitutiOn. Thus the set { AUDIO(X, Y), AUDIO(V+2.O, 5.0) } is unifiable.

Ex.6 AUDIO(U, 2.0) < AUDIO(5.0, 3.0), since { 5.0/U } is a legal substitu

tion and 2.0 < 3.0.

Ex.7 Ordering between AUDIO(X, X+l.0) and AUDIO(U, U) is not defined, since

1 X/U, X+l.0/U } is an illegal substitution and ordering between X and X+l.0 is

not defined.

Based on the ordering rules

above, ADAM provides three evaluation

modes for data manipulation.
(A) Alpha-evaluation mode

Expressions for data manipulation are

evaluated according to Ordering Rules

1 and 2.

(B) Beta-evaluation mode

Expressions for data manipulation are

evaluated according to Ordering Rules

1 and 3. In this mode, if identi

fiers are used systematically, we can

efficiently distinguish whether a

variable is substituted by a constant

or not.

(C) Gamma-evaluation mode

Expressions for data manipulation are

evaluated according to Ordering Rules

1 and 4. Gamma-evaluation mode is

useful for manipulating abstract in

stances whose arguments are variables,

constants and functions.

Fig.7 gives examples of natural

join in each evaluation mode. In

stances in ADAM are partially ordered

in general. Thus “not-ordered join”,
“not-ordered restriction” operations,
etc. are available in addition to the

relational operations.

LR2 INSTANCE AT~
E(x,y) E(x,y) 2x+y
E(u,3) E(2,3)

E(x,3)

7

2xi-3

INSTANCE] ATTR

I R5 INSTANCE ATTR

3.2.2 Data Retrieval Operations
Fig.7 Examples of natural-join.

As discussed in section 2, objects
in engineering applications are modeled

as multiple levels of abstraction.

Thus conventional data manipulation
facilities for the relational data model are insufficient for data manipulation in

ADAM, because many essential data manipulations require a facility to traverse

from one level to another through an arbitrary number of intermediate levels of

abstraction. Data r’~trieval operations for the relational data model are extended

so that the users can specify retrieval conditions at arbitrary (but adjacent)

levels of hierarchy. For example,
$MODE is gamma
< ELEM > FIG ELEM] / (FIG ELEM = ‘TIMER(X,Y)’]) count (ELEM) > 1 1

specifies a query “find all the constituent modules which contains more than equal

to one timer.”

I Rl I INSTANCE I

(A) An example relational database.

I R3 INSTANCE ATTR

E(x,y) 2x+y

(B) Alpha-natural-join
R3 = Rl INSTANCE = INSTANCE] R2

E(x,y)
E (u, 3)

2 x+ y

2u+ 3

(C) Beta-natural-join
R4 = Rl INSTANCE = INSTANCE] R2

E(x,y)
E(2,3)
E(x, 3~)

2x+y
7

2x+ 3

(D) Gamma-natural-join
R5 = Ri INSTANCE = INSTANCE] R2

73

3.3 Graphic facilities

As discussed in section 3.1, an entire pictorial notation for an instance is

separately stored at different abstraction levels. So some sophisticated graphic

algorithms have to be developed to retrieve a required pictorial notation.

Let <{GFS},m> denote general figure specifications at abstraction level m

and <~DFSj~,m> U GRAPHICS <REL},m>) denote detailed figure specifications at

abstraction level m. <{DFS},m> indicates specifications using built-in graphic
functions and <{REL},m>, which is usually described in terms of relational opera

tions, denoted an argument of the function GRAPHICS. The graphic algorithm in

ADAM takes an integer, say n, as a parameter and produces the result as follows.

For n = 0, GRAPHICS(<{GFS},m>).

For n = 1, GRAPHICS(<{DFS},m> U <{GFSI,m-1>).

For n = 2, GRAPFIICS(<{DFS},m> U <{DFS},m-l> U <{GFS},m-2>), etc.

Notice that the result is different from a simple overlay of figures at each

abstraction level in that general figures of intermediate levels are not dis

played. Applying the algorithm to the AUDIO(X,Y) in Fig.3, we get the result

shown in Fig.8.

(A)n=O (B)n=1

Fig.8 Results of the graphic algorithm in ADAM.

4. CONCLUDING REMARKS

This paper described an extended relational database system for the unified

management of engineering data. Our approach is characterized

(1) figure specification parts to augment the data definition facilities,

(2) a facility called abstraction mechanism for dealing with a group of objects
as a unit.

(3) instances with arguments for manipulating repeatedappearances of similar

objects efficiently.
We have discussed overall facilities of ADAM, i.e. data definition, data

manipulation and graphic facilities. Detailed discussions and examples are given
in Udagawa and Mizoguchi /8/. A first version of ADAM is being implemented on

MELCOM-COSMO 900 II computer system.

(C) n = 2

74

ACKNOWLEDGEMENT

The authors are grateful to Dr. M. Sudo, manager of Computer and Software

Department at Information Systems and Electronics Development Laboratory for many

helpful comments. We thank Dr. Won Kim, IBM Research Laboratory, San Jose, for

his careful reading of the paper and comments on improving the presentation.
We also thank Dr. Y. Masunaga, the University of Library and Information Science,
for his encouragement to publish this article.

REFERENCES

/1/ C.J.Date, “An introduction to database systems,” 3rd. ed. Addison-IVesley,1981.
/2/ T.W.Sidle, “Weakness of commertial database management systems in engineering
applications,” Proc. 17th Design Automation Conf., 1980, pp.57-61.
/3/ N.S.Chang and K.S.Fu “A relational database system for images,” In “Pictorial

Information Systems,” Lecture Notes in Computer Science, Vol. 80, Springer-Verlag,
pp.288-321, 1980.

/4/ J.L.Becerril, R.Casajuana and R.A.Lorie “GSYSR : A relational database inter

face for graphics,” In “Data Base Techniques for Pictorial Applications,” Lecture

Notes in Computer Science, Vol.81, Springer-Verlag, pp.459-474, 1980.

/5/ R.L.I-laskin and R.A.Lorie “On extending the functions of a relational database

system,” Proc. ACM-SIGMOD mt. Conf. Management of data, pp.207-212, June 2-4, 1982.

/6/ J.A.Robinson “A machine oriented logic based on the resolution principle,”
J. Ass. Comput. Mach., Vol.12, No.1, pp.25-41, 1965.

/7/ Y.Udagawa and T.Mizoguchi, “Implementation techniques of ADAM data definition

language,” Proc. 28th National Convention of Inf. Process. Society of Japan.
/8/ Y.Udagawa and T.Mizoguchi, “An advanced database system ADAM --- towards

integrated management of engineering data,” Proc. IEEE Computer Data Engineering
Conference, Apr. 1984.

75

INTEGRATION OF WORD PROCESSING AND DATABASE MANAGEMENT

IN ENGINEERING ENVIRONMENT

Furnio Nakamura, Atsumi Kimura,

Sadasaburoh Kanai, Kazuhiko Ohmachi

Systems Development Lab., Hitachi, Ltd.

1099 Ohzenji, Asaoku, Kawasaki

215 JAPAN

1 • Introduction

The Database technology for business applications is at a mature stage now. However, the database

technology for engineering applications is only emerging. We can see the reason from the following

differences between the histories of computerization in business and engineering applications:

(1) In business applications, data is transformed by sorting, merging, etc. and several reports are

generated during the transformation. In an analysis of business systems, the design of input and output
files and forms is important. Further, computerized business systems involve many simple repetitive

applications.

(2) Engineering applications place heavy emphasis on algorithms (procedures) ,
like complex numerical

calculations. Subroutines are shared and managed in engineering systems. One evidence is FORTRAN. It has

much poorer data or file manipulation functions than COBOL..

However, the environment of engineering or manufacturing companies is rapidly changing. More varieties

of products must be designed and manufactured in shorter period. To accomplish this, integration of

engineering applications is essential, and engineering databases hold the key and have drawn attention in

recent years.

We have addressed one of the problems in engineering database systems, support for design—document

generation, and built a system called EASY—DOC (Engineering Activity support SYstem —DOCument generation).
Design documents, as well as drawings, are one of the most important outputs of the designers. Unlike

drawings, however, computer aided design—document generation has not been frequently discussed. Design—
document generation requires not only word processing but also database management, since design documents

involve variable fields whose values vary from product to product. EASY—DOC is now being used for a pump

design system at Hitachi.

in Section 2, we will review the features of engineering databases and technical problems to be solved to

realize engineering database systems. We will clarify the features of design documents and describe the

architecture of EASY—DOC in Section 3.

2. Featwes of ~gineerii~g Databames and Technical Problems

2.1 Features of Engineering Databases

A global view of an engineering database as a data center in a total design and production system is

depicted in Figure L It includes three different types of data.

(1) Geometric data —— holds three—dimensional shape and attribute data of products, and drawing
information which is a two—dimensional projection of shape data. It has highly complex relationships among
data items and requires high speed data access. Therefore, current general purpose database management

76

systems (abbreviated to DBMSs)

cannot fully manipulate the

data structures with adequate

performance. As a result, most

present CAD systems move

geometric data between main

memory and secondary storage

in simple ways (e.g. direct

block access) and manage it as

main—memory data during one

job (e.g. processing of a

drawing). This approach lacks

flexibility in modifying data

structures (e.g. addition of

new attributes), since they do

not provide even data

definition facility which all

DBMSs provide.

(2) Engineering data ——

includes several kinds of data

such as design data (other

than geometric data) for the

products being designed,

design results and maintenance

histories of completed

products, reliability data,

and design standards. Among
the three types of data, this

is the least integrated into databases. Data access is made in an ad—hoc manner with a wide variety of data

selectior\ conditions. The most important factor in selecting DBMSs for this type of data is the ease of use,

which is a significant advantage of relational DBMSs.

(3) Administration data —— is data required for managerial applications such as manufacturing control

and cost management. This is already supported in on—line database systems using traditional DBMSs.

2.2 Technical Issues in Engineering Database Systems

Since engineering applications have different data processing characteristics from business applications,
The following technical problems must be solved to realize engineering database systems.

(1) Geometric Data Management
Geometric data has a complex data structure and is processed in the following manner:

— A block of semantically correlated data (e.g. data in one drawing) is retrieved as a unit.

— The retrieved data is interactively processed via a display terminal, over a relatively long duration.

— After completion of interaction, a new set of data is generated and replaces the old one.

Therefore, if geometric data structures are faithfully defined using data definition functions of current

DBMSs, the performance will become intolerable because of lengthy database access time and locking overhead;
thousands of reoords must be read in before the interaction and many of them must be updated during and

after the interaction. On the other hand, database management concept is necessary for relating the

geometric data with other attributes and product data.

(2) Numeric Data and Units

Engineering databases frequently require floating point numbers and arrays, unlike business databases.

And such numeric fields usually carry units. Database processing must take units into consideration, and in

some cases (e.g. exported products), unit conversion is required (e.g. between the metric system and the

yard—pound system).

(3) Long Life of Data

In some cases (e.g. turbines in electric power plants), design data must be kept for tens of years. The

old data is unloaded to magnetic tapes, and reloaded when required. The data structure may change during a

long span of time. If it happens, the data reload could be unsuccessful. This is also true for products with

rapid technical improvements like semiconductor products. For this, the system may have to allow multiple
versions of data definition for one database.

(LI) Program Management
Accumulation of programs and subroutines is an important aspect of engineering systems, and a method is

required to manage these programs. The nucleus of a program management system is a program base. Although
the notion of program base has not been established yet, a global view of a program base is “a set of data

about programs for program development, execution, and maintenance”. Engineering applications need a

flexible program execution mechanism which enables to dynamically relate and execute independently developed

programs.

(5) Design—Document Generation

This will be discussed in detail later.

Figure 1. Global View of an Engineering Database System

77

3.3 Document Database

All information about defined documents and

generated documents is stored in the document

database and controlled by the document

management facility. The principal entity sets

and relationship sets are shown in Figure 5 as an

Entity—Relationship diagram6~. The document

database is directly maintained by EASY—DOC.

Users access it through EASY.~DOC.

(1) DOC—DEF holds overall document definition

information like standard form format.

(2) FORM corresponds to defined forms and holds

all information for each form specified via the

document definition facility.
(3) VAR—FD holds information for each variable

field specified during document definition such

as length, internal data type, and display
format.

(~) DOCUMENT holds information corresponding to

each generated document from a defined document

by setting variable field values. Further, more

than one document of the same kind for each

product (e.g. revisions) may exist.

(5) Each PAGE is constructed by setting variable

field values in a form and by making minor

changes to the form if necessary.

(6) FIGURE has information about figures and

graphs to be inserted into forms and pages. It

is extracted from graphic systems in plotter
command form.

3.~I Program Generation

The program generation facility makes it easy

for users to write procedures which set variable

field values. Users can write procedures using
the pseudo—codes the program generator provides.

The pseudo—codes consist of FORTRAN, including
database access calls, and form control

statements. they may also include variable field

names which are specified in the document

definition. The program generator generates

complete FORTRAN77 source programs from specified

pseudo—codes by translating the form control

statements and variable field names into

appropriate FORTRAN procedural and declaration

statements as shown in Figure 6. It refers to

the document definition information in the

document database during the translation process.

An example pseudo—code program and the program

generated from it is shown in Figure 7.

Pseudo—Codes

(a) Pseudo—codes

- -

- - - (b) Generated FORTRAN Program
-

Figure 7. Example of Program Generation

Figure 5. Main Data Structure of the Document Database

%OPEN FORM1

%GETF ?A, ?B, ?C

(Read the values of the variable

fields ?D and ?E from the database

using the input values ?A, ?B and ?C.)

FORTRAN : statements

%LINK PROG1 (?D, ?E, ?F)

(Calculate the variable field ?F

using ?D and ?E.)
%SETF ?D, ?E, ?F

%DISPLAY PAGE1

~SAVE PAGE 1

%CLOSE FORM1

END

CBARACTER’B $FORM

CRARACTER’8 $FLD(3)
REAL $FAOO1

$FORM = ‘FORMl’

CALL $OPEN ($FORM)
$FLD(1) = ‘A’

$FLD(2) ‘B’

$FLD(3) ‘C’

CALL $GE?F ($FLD(1),
$FLD(3),

$FAOO1, $FLD(2), $FAOO2,
$FA 003)

(Retrieval of ?D and ?E from the database.)

FORTRAN statements

Figure 6. Program Generator

(Translation of %LINK, %SETF, %DISPLAY, %SAVE

Omitted.)

CALL $CLOSE ($FORM)
EN)

80

(1) FORTRAN Statements

Pseudo—codes are primarily based on FORTRAN77 since most designers are familiar with FORTRAN, and

FORTRAN77 carS handle non—numeric data well.

(2) Variable Fields

When the program generator encounters a variable field whose name is preceded by “?“, it takes the

following actions:

(a) It replaces the name by a FORTRAN variable name which begins with “$F”.

(b) It generates a declaration statement for the variable by retrieving the variable field definition

information from the document database.

(3) Form Control Statements

These are special statements provided by the program generator for form control such as open and close

of forms, setting up variable field values, and display of pages on display terminals. The control

statements begin with p1%,,. There are ten different types of statements.

(a) %OPEN makes a form ready for processing.

(b) %CLOSE makes a form inaccessible.

Cc) %GETF is used to receive field values, from a display terminal in conversational mode or as card

image data in batch mode.

(d) %SETF sets up variable field values in the form. The values are edited based on the display format

defined in the document database.

(e) %DISPLAY outputs the generated page to the display terminal, for verification.

(f) %SAVE stores the generated page to the document database.

(g) %GETP returns the number of pages already generated in the document.

(h) %SETP attaches a page number to the generated page.

Ci) %LINK dynamically links to another program specified.

(j) %PUT outputs a message.

Acknowledgments
The authors wish to thank to Mr. K. Arai (Software Technology Promotion Center), Mr. T. Takanishi and Mr.

S. Oyamada (Tsuchiura Works), and Mr. I. Yoshida (Systems Development Lab.) for their encouragements and

cooperation with this work.

References

1. Survey Reports on Engineering Database systems (in Japanese), Joho—Shori Sinkoh Jigyoh Kyohkai (IPA)

(March 1976, 1977, 1978).

2. A Survey Report on Computer Aided Engineering (in Japanese), Nihon Joho—Shori Kaihatsu Kyohkai (JIPDEC)
(March 1982).

3. Computer—Aided Design, Vol.11, No.3 (Special issue on databases) (May 1979).

4. Encarnacao, J. (ed.): File Structures and Data Bases for CAD, Proc. IFIP WG5.2 Conf.(Sept. 1981).

5. Proc. of Engineering Design Applications in Database Week Conf., IEEE Computer Society Press (May 1983).

6. Chen, P.: The Entity—Relationship Model — Toward a Unified View of Data, ACM TODS, Vol.1, No.1

(March 1976).

7. Nakamura, F.: Engineering Databases (in Japanese), Joho—shori, Vol.25, No.4 (April 1984).

81

Call For Papers
INTERNATIONAL CONFERENCE ON

FOUNDATIONS OF DATA ORGANIZATION

Kyoto University, May 22 - 24, 1985

The International Conference on Foundations of Data Organization will be held at Ryoto University,
Kyoto, Japan on May 22-24, 1985. Papers presenting original research on theoretical aspects of data

organization are being sought

Suggested Topics: typical, hut not esclusive, topics include:

Mathematical file organization Impact of VLSI on file organization
Consecutive retrieval property and applications File organization for relational databases
Geometrical techniques for data organization Models of data organization
Data organization for high-level databases) historical, inferential, statistical, CAD databases, etc.)

Submission of Papers: Authiirs are invited to submit three copies of a full paper before October 15, 1984

to the Vice-Chairperson of the Program Committee.

Program Committee Chairperson Program Committee Vice-Chairperson
Witold Lipski Kalsumi Tanaka

Universitd de Paris-Sod College of Liberal Arta

Centre d’Orsay Robe University
Laboratoire de Recherche en Informatique Nada, ICobe 65?, Japan
Bat. 490

91405 ORSAYCedex, France

Authors will be notified of acceptance/rejection by January 25, 1985. Final papers will be due by March

10, 1985.

International Organization Committee

Chairperson
-

Sakti P. Ghosh

IBM Research K541282

5600 Cott)e Road

San Jose, California 95193, U.S.A.

Program Committee Members:

Françoss Bancilhon (Unieersito dv Paris.Sud, France)
Walter A. Burkhard (University of California, San Diego, U.S.A.)
Merrick Furst (Carnegie-Mellon University, U.S.A.)
Hideki Imsi (Yokohama National University, Japan)
Won Kim (IBM Research, U.S.A.)

Yoshifumi Masunaga (University of Library snd Information Science, Japan)
J. Ian Munro (University of Waterloo, Canada)
Tetsuo Mizogochi (Mitsubishi, Japan)
Peter Scheuermann (Northwestern University, U.S.A.)
Michel Scholl IINRIA, France)

Shinsei Tazaws (Kinki University, Japan)
Miroslaw Truszczynski (Technical University of Warsaw, Poland)

An attempt will be made to publish selected outstanding papers of the conference in the book form,
similar to the previous conference, which was held in Warsaw in August 1981 (Academic Press, titled:
Data Base File Organization, 1983).

Kyots used to be the capital of Japan for over one thousand years. There will be Tsukuba Science
EXPO’85 at Tsukuba. Details to attend the conference are available from the Conference Publicity
Chairperson.

International Organizing Committee Members

Tim H MrrreuitaoGill University) Yutakn Matsushita lOhi)

Shu Case Shi (Wohan Univerviiyi Takes Nakans (St. Paul’s tisioersity)
Braislao Rovan lKomenshy Uviorreity) Hiroteha Sohai (Hitachi Seftwarrl

Claude Delohel tUsivernity srcrenohle(Kesji Sasuki. Hirs(ami Ketsuen (N’s”)’)

Jsgohrata Roy iledias Statistical institutni Kanohiha nhrnaehi (Hitachi)

Rarhara Prroiei iPoiitaesies di Milanoi Setnus Dhsoea University at Tokyo)

Yoshihiro Ahiyama (IBM Japan) Syoecuke Uemsea iEiectestechntcal Leh.l

Setso Artksws (Kyoshu Uer’crrsity I Shhhv tee (Seoul Hniisnnl Universityi

Ryossohe Hstuha ilsuhube Usiversityl Wiktor March (Warsaw University)

H,deto ihedo IHtrsshims University) Robert A. Cook (Not. Univ. erSisgepore)
Ycehiohi lshii (Software A.C. Far Enat) Joeg Nirvergelt iETIt)

lassie Kohayashi)Snson University) Paul Dirts

Akifomi Mahiecorhi (Fojitso) (Unicrroity orSoothern Cnhirornie(

Masso Manegahi (NEC) Chusig Le Viet HDR Systems)

W. Germany: H. -0. ghrich (Tech, Unioeraii.at Rraonschweigi

total Arrangement thoirpersoo: Kasuo twenso)Kyoto SOsg’co Uoiversityl

Memben: Shires Iwsosws (laM Japen), Shoiiro More (Kyoto Univereity), Deems Koniahi)Negoya

University), Ysnues Hirega)Unioersiiy ortibrary and lorormation Scieaee)

Publicity end Treasurer: theirfeersso: Maoatoohi Yoohikeo’a lKyoto Unioersiiy(

Members: Hiroto Yaaouea lKyoia Usiveesityt Tet.ssys Forahawa IKyota Usiversityl

In cooperation wish: IEEE Campoiser Satiety, ACM SIOMOO, kyota Ueioers’rry, Kyoshu unieersisy. iBM Research. IBM Japan

Honorary Conference Chairperson
Sumiyasu Yamamoto

Department of Applied Mathematics

Science University of Tokyo
Shinjuku, Tokyo 162, Japan

Conference Chairperson
Yahiko Kambayashi
Department of Computar Science & Com. Eng.
Kyushu University
Hakozak.i, Fukuoka 812, Japan

European Coordinator

Fabrizio Luccio (Université di Pisa)
Middle East/Africa Coordinator

Sabah S. Al-Fedaghi (Kuwait University)

Csnadu:

China:

Cerohoalovakis:

Frnscr:

India:

italy:

Japan:

Korrs:

Poland:

Singapore:

Switzerland:

U.S.A.:

82

Call for Papers and Participation

FIRST INTERNATIONAL WORKSHOP ON EXPERT DATABASE SYSTEMS

October 25-27, 1984, Kiawah Island, South Carolina

1 Sponsored by:

-

~ The Institute of Information Management, Technology and Policy,
~ ~ College of Business Administration,

University of South Carolina

In cooperation with:

S
Association for Computing Machinery — SIGMOD and SIGAIRT

IEEE Technical Committee on Data Base Engineering

This workshop will address the theoretical and practical issues involved in making databases more

knowledgeable and supportive of Al applications. The tools and techniques of database management are

being used to represent and manage more complex types of data and applications environments.

The rapid growth of online systems containing text, bibliographic, and videotex databases with their

specialized knowledge, and the development of expert systems for scientific, engineering and business

applications indicate the need for intelligent database interfaces and new database system architectures.

The workshop will bring together researchers and practitioners from academia and industry to discuss these

issues in Plenary Sessions and specialized Working Groups. The Program Committee will invite 40 to 80

people, based on submitted research and application papers (5000 words) and issue-oriented position

papers (2000-3000 words). Topics of interest include (but are not limited to):

Knowledge Base Systems Knowledge Engineering Expert Database Systems
environments acquisition natural language access

architectures representation domain experts

languages design database design tools

hardware learning knowledge gateways
industrial applications

Database Specification Methodologies Constraint and Rule Management Reasoning on Large Databases

object-oriented models metadata management fuzzy reasoning
temporal logic data dictionaries deductive databases

enterprise models constraint specification semantic query optimization
transactional databases verification, and enforcement

Please send five (5) copies of full papers or position papers by June 1, 1984 to:

Larry Kerschberg, Program Chairperson

College of Business Administration

University of South Carolina

Columbia, SC 29208

(803) 777-7 159/messages 777-5766

Submissions will be considered by the Program Committee and authors will be notified of acceptance or

rejection by July 16, 1984. Preprints of accepted papers will be available at the workshop. Workshop

presentations, discussions, and working group reports will be published in book form.

83

Using COMPMAIL+ you can...

1. Communicate via electronic mail withyour cal

leagues — one-onone, or in electronic mail conter

ences. Either way, there’s no more postal system
delays, no more “telephone tag.’

2. Access Computer Society listings at upcoming con
ferences, publications, and technical activities.

3. Scan the complete, up-to-the-minute list of Com

puter Society Press publications.

4, Speed up your Computer Society publications orders

and conference registrations by ordering on-line and

charging to your credit card. On’line book orders

are shipped in 48 hours: conference registrations
are processed in 24 hours.

5. Locate your colleagues in the system by accessing
a complete on-line directory of all COMPMAIL+

users.

6. Post your own messages to — and scan — a soci

ety-wide electronic bulletin board.

7. Set up your own executive calendar system: sched

ule meetings, display your own open time slots, and

scan colleagues’ schedules for open time slots.

8. Access state, national, and international newswires.

Scan the headlines, or do keyword inquiries.

9. Obtain current stock, bond, and commodity quotes.

10. Use the on-line Official Airline Guide to obtain

Current flight schedules and lares.

11~ Utilize a wide range of programs in the system

library (over 200), ranging from finance and statisti

cal routines to games.

12. Create your own programs and data files using

compilers and the database management system
resident on COMPMAIL+.

And remember: this is lust a partial list of the tools and

facilities available through COMPMAIL+ right now. Even

more wilt be available in the future.

EASY TO USE

Prime Time (8.OOa.m. to 6:00 p.m..

Monday through Friday)

Ott-Prime (601 p.m. to 900 p.m -

Monday through Friday,
and 8:00 am, to 9:00 p.m.,

Saturdays, Sundays, and

holidays)

Times Shown are based on Eastern Time

BEST OF ALL...

There’s no start-up or enrollment charge.

SUBSCRIBE NOW!

Complete and mail the coupon below. That’s all there is

to it. By return mail you’ll receive an ID and password; a

complete schedule of rates, terms, and Conditions; and

basic documentation

>c~
COMPMAIL+ APPLICATION

ifl Diatcom, inc is hereby aaihorized to register me as a use, in the

I
IEEE Computer Society’s COMPMA1L+ system. i urrdersiarid thai as

an iniroduCtron to tIle new systerrr, I will receive a $3000 credit

I toward my use at eiectroriic mail and cornmunicatrons (Tyrnnet arid

I Telenei) services, The credit is fbi applicable io the use at surcharge

services such as OAG. IJn,sioe, flies, and UPI. Farther, ihe credit is

I only applicabie to charges incurred ihroagh the last day 01 ihe month

tollowing the month in which I am registered. I understand that

I
COMPMAiL* services wifl be made available upon in’ Diaicom’s

Standard terms and condiiions or COMPMA1L-4- services at ihe rates

I speciiied in the COMPMAIL+ schedule 01 prices, which will be ia,

I fished to me with my access ID number and password i agree thaI

system use will be upon said terms and conditions and at said rates

I and agree to be bound thereby. I iarther understand that: 1100 nOt

$16/hour I use the system. no charge will be incurred, this authorization consii.

tuies no other obligation tome, charges tot my use 01 COMPMAIL+

I
seiaices may be rnuo’ced to my credit card account as vacated

$7/hour below, and. ill eieCt trot in use my credit card and opt ior direct

invoice, a $2500 minimum monthly ssage charge w,ti apply

Checkone
‘

: VISA ~: MasierCard fl Direct invoicing

I PLEASE PRINr OR TYPE

Credil Card
I Account NO

Credii Card Enp Dale

My billing address is

Name

I
Membership No ImandalOryl

Address

I CilylSlaieiZip

I Signalure

I
Date

THIS FORM MAY BE DUPLICATED

Announcing
a major new

IEEE Computer Society
membership benefit...

Computer communications for today’s computer professionals

To assure maximum access for all society members.
COMPMAIL-4- IS available via Telenet, Tymnet, or Unmet

All you need is a telephone, a modem, and a terminal or

a microcomputer capable of communicatIng via ASCII

protocols over telephone lines. When you log on you’ll
see a Complete menu of available services, together
with extensive on-lIne help commands and functions.

There’s even a specIal HELP mailbox in case you run

Into a problem, and a SUGGESTION mailbox in case you

think of enhancements that will make Ihe system even

,more useful to Computer SocIety members.

LOW COST
For most COMPMAIL+ services, the basic rate is an

hourly connect charge that varies by time of day. In addi

tion, there is a communications charge that varies by
time of day and by the particular network you select

(Telenet, Tymnet, or Unmet). The following sample rates

cover basic electronic mail and communications assum

ing you access COMPMAIL+ via Telenet

Nighttime (9:01 p.m. to 7.59 a.m. daily) $6/hour

It you use the tIling capability of the system there is a

small storage charge (405 per 2048-byte storage unit

per month). There are surcharges for use of some of the

special services such as the OAG and news or stock

quotation systems. Finally, If you use the system for pro

gramming or database applications there are CPU lime-

and-storage Charges. A complete schedule of rates for

al/services wi/I be sent to all new subscribers, so you ‘II

know exactly what each service costs before you use

the system.

IEEE COMPUTER SOCIETY

TIlE iIIsli’TUTE OF ELECTRICAL AND

1/14
-~

‘IReN ELECrAONiCS ENGINEERS, INC.

• As a special introductory otter, you’ll receive a

$30 CREDIT
toward your use of the basic COMPMAIL± services

(items 1 thrOugh 7 opposite)

Return to:

Compmail +

IEEE Computer Society
P.O. Box 3489

Silver Spring, MD 20901

TCDBE

	40979_DataEngineering_June1984_Vol 7_No2.pdf

