JUNE 1984 VOL. 7 NO. 2

a quarterly bulletin
of the IEEE computer society
technical committee

on

Database
Engmeerlng

Contents

Changes to the Editorial Staff . .. '

Letter from the Associate Editor .

A Selected Bibliography with Keywords

on Engineering Databases.
F. Vernadat

CAD/CAM Database Management...............

M.L. Brodie, B. Blaustein, U.

Dayal,

F. Manola, and A. Rosenthal

Database Concepts in the
Vdd System...................
K.-C. Chu and Y.E. Lien

Revision Relations—Maintaining
Revision History Information
M. Haynie and K. Gohl

Database Management and Computer-

Assisted VLSI Fabncatlon

= RHKatz ——— S

Engineering Data Management
Activities Within the IPAD Project
H.R. Johnson

A Database System for

Engineering Design L 48
W. Plouffe, W. Kim, R. Lorle
and D. McNabb

Using a Relational Database Management

System for Computer Aided Design

Data—An Update.............................. 56
M. Stonebraker and A. Guttman

Relational and Entity-Relationship
Model Databases and VLSI Design.............. 61
M.W. Wilkins and G. Wiederhold

An Extended Relational Database

System for Engineering Data

Management 67
Y. Udagawa and T. Mizoguchi

Integration of Word Processing
and Database Management in

__Engineering Environments S I8

F. Nakamura, A. Kimura,
S. Kanai, and K.Ohmachi

Chairperson, Technical Committee
on Database Engineering

Professor P. Bruce Berra

Dept. of Electrical and
Computer Engineering

111 Link Hall

Syracuse University

Syracuse, New York 13210

(315) 423-2655

Editor-in-Chief,
Database Engineering
Dr. Won Kim

IBM Research
K54-282

5600 Cottle Road

San Jose, Calif. 95193
(408) 256-1507

Database Engineering Bulletin is a quarterly publication
of the IEEE Computer Society Technical Committee on
Database Engineering. Its scope of interest includes: data
structures and models, access strategies, access control
techniques, database architecture, database machines,
intelligent front ends, mass storage for very large data-
bases, distributed database systems and techniques,
database software design and implementation, database
utilities, database security and related areas.

Contribution to the Bulletin is hereby solicited. News
items, letters, technical papers, book reviews, meeting
previews, summaries, case studies, etc., should be sent
to the Editor. All letters to the Editor will be considered for
publication unless accompanied by a request to the con-
trary. Technical papers are unrefereed.

Opinions expressed in contributions are those of the indi-
vidual author rather than the official position of the TC on
Database Engineering, the IEEE Computer Society, or
organizations with which the author may be affiliated.

Associate Editors,
Database Engineering

Prof. Don Batory
T.S. Painter Hall 3.28
University of Texas
Austin, Texas

(512) 471-1593

Prof. Fred Lochovsky
K52-282

IBM Research

5600 Cottle Road

San Jose, California 95193

Dr. David Reiner

Computer Corporation of America
4 Cambridge Center

Cambridge, Massachusetts 02142
(617) 492-8860

Prof. Randy Katz

Dept. of Electrical Engineering and
Computer Science

University of California

Berkeley, California 94720

(415) 642-8778

Dr. Dan Ries

Computer Corporation of America
4 Cambridge Center

Cambridge, Massachusetts 02142
(617) 492-8860

Membership in the Database Engineering Technical
Committee is open to individuals who demonstrate willing-
ness to actively participate in the various activities of the
TC. A member of the IEEE Computer Society may join the
TC as a full member. A non-member of the Computer
Society may join as a participating member, with approval
from at least one officer of the TC. Both a full member and
a participating member of the TC is entitled to receive the
quarterly bulletin of the TC free of charge, until further
notice.

Changes to the Editorial Staff

With this issue, Randy Katz and Don Batory resign as Associate Editors of Data-
base Engineering. Also, I resign as Editor-in-Chief. I have asked Dave Reiner
to replace me and guide the publication of the bulletin with a new editorial
board.

I shall cherish the pleasure of having worked with my Co-Editors, Alan
Hevner, Don Batory, Randy Katz, Dan Ries, Fred Lochovsky and Dave Reiner. The
success Database Engineering has enjoyed during the past three years is due
largely to their initiatives, cooperation and hard work. The professional and
personal friendship that has developed between myself and these outstanding col-
leagues during the course of shaping and sustaining the direction of the publi-
cation more than compensates for all the time and energy I have had to invest
since May 1981.

I owe special thanks to Chip Stockton, Director of Publications for the Com-
puter Society, for the extra special way in which he has handled the printing
and distribution of Database Engineering. I would like to also thank Jane Liu,
past chairperson of the TC, and Bruce Berra, the current chairman of the TC, for
their enthusiastic support of the Database Engineering bulletin and attention to
all my enquiries and suggestions concerning the TC activities.

This issue contains two papers from Japan, one by Udagawa and Mizoguchi, and
another by Nakamura, et al, which, due to late arrival, were included after Ran-
dy Katz finalized the manuscript. The September issue will be on multi-media
database user interface and is being put together by Dan Ries. Dave Reiner will
finish off 1984 with an issue on database design.

W L,
Won Kim

San Jose, Calif.
June 1984

Letter from the Assoclate Editor:

This issue of Database Engineering Newsletter focuses on Engineering Data Management. The
area has blossomed into a major new thrust of database system research activity since our first
issue on the subject two years ago. A number of groups are actively working on the problem in
universities and industry, and aciual systems are now becoming operational.

Vernadat sets the stage by providing a convenient bibliography of the CAD database litera-
ture. Many of these references are from outside the traditional literature read by the database
research community, and should prove useful to researchers. Some of the papers are quite old,
testifying that design databases are not a new problem!

Chu & Lien, Johnson, and Ploufle, et. al., describe the status of several large system build-
ing efforts. Brodie, et. al., describes an implementation effort just getting underway at Computer
Corporation of America, Inc. Chu & Lien and Ploufle, et. al. deal with electrical CAD, while the
other two papers are concerned with the engineering data needs of the aerospace industry.

While much interest has been generated for design databases, this is only half of the
engineering task. The papers by Johnson, Brodie, et. al., and Katz place some emphasis on the
fiip side of design, namely manufacturing.

The papers by Haynie & Gohl and Stonebraker & Guttman describe efforts to extend the
relational model with more powerful operations and support structures to handle CAD require-
ments. Finally, Wilkins & Wiederhold address the performance issues of using a relational data-
base for CAD applications.

With this issue, I step down as an associate editor of the Database Engineering Newsletter.
The Newsletter has grown over the last few years to become the primary vehicle for rapid dis-
semination of recent results to the database system community. This is primarily due to the
dogged determination of fearless leader, Won Kim, without whom this newsletter could not possi-
bly ‘bave existed. Thanks and credit for our success go to all the associate editors, past and
present, and our contributing authors. The future editors will have some mightly large shoes to
fill.

Yours truly,

2

Randy™H Katz
Berkeley, CA

A Selected Bibliography with Keywords on Engineering Databases

F. Vernadat

National Research Council of Canada
Ottawa, Canada, K1A OR8

The use of computers in the wide range of CAD/CAM activities have
introduced database technology in application domains such as mechanical
engineering, civil or architectural design, electronic engineering, chemical
engineering, automative industry, aircraft industry, etc., and in more res-
trictive areas of computer graphics such as geometric modelling, image pro-
cessing, and pictorial databases. We refer to those database systems as
engineering databases. However, over the years it has become recognized
that engineering databases differ slightly from classical administrative
databases directly issued from database theory. However, people concerned
by the design, implementation, or use of engineering databases must not
neglect the knowledge of the general theory of database which can provide
solutions to numerous problems (storage structures, access methods,
concurrency control mechanisms, distributed systems, ...).

Since more and more attention is given to this domain, it is the pur-
pose of the present bibliography to gather together selected major contribu-
tions on database theory and on engineering databases for helping interested
people to get a rapid state-of-the-art of the field or to get acquainted
with a specific topic of the field. 1In order to guide the reader, a few
keywords accompany each reference. (Since all entries not classified in
database theory are supposed to deal with database and CAD, these keywords
have not been indicated).

The following list of references is a digest of an extensive biblio-
graphy available from the author (A Commented and Indexed Bibliography on
Data Structuring and Data Management in CAD/CAM. 1970-mid 1983. Res. Rep.
ERB-956, National Research Counclil, Ottawa, CDN, 1984). The orginal list of
references contains 909 entries and the number of keywords is over 180. . The
bibliography includes a keyword index and an author's index and it contains
a bibliographical survey. Both the references listed below and the referen-
ces listed in the report are written according to the Harvard system.

Some abbreviations have been used as keywords. Their meanings are
indicated below:

CAD Computer-Aided Design

CAM Computer—Aided Manufacturing

CIM Computer-Integrated Manufacturing
CODASYL Conference on Data System Languages
DBMS Data Base Management System

DDL Data Definition Language

HRCC 23170

DBMS Data Base Management System

DDL Data Definition Language

DML Data Manipulation Language

E-R model Entity-Relationship Model

IGES Initial Graphics Exchange Specification

IPAD Integrated Programs for Aerospace-Vehicle Design
MRP Material Requirements Planning

NC Numerical Control

PCB Printed Circuit Board

QL Query Language

VLSI Very Large Scale Integration;

Many references come from the following publications:

- Computer (monthly)

- Computer—Aided Design (monthly)

- Computer-Aided Design (monthly)

- Computer Graphics (quarterly) .
- IEEE Computer Graphics and Applications (monthly)

and also from proceedings of regular technical meetings such as:
- the Design Automation Conference (annual)

- CAD Conference and Exhibition in England (bi-annual)

- Autofact Conference (annual)

other sources of information include

- Working Conferences of Work Group W.G.5.2 and W.G.5.3 of IFIP
- technical papers available from CASA-SME

001.

002.

003.

004.

005.

006.

007.

008.

009.

010.

01l.

012.

013.

Aggarwal, S., and V. Rajaraman (1983). Computer-aided design of
logical data base far infarmation systems. Comput. Sci. and Inf.,
13(1), 3-12.

DBMS, automatic programming, logical database design

Appleton D.S. (1982). Planning a manufacturing data base. Autofact
IV Conf. Proc. (Philadelphia, PA), Nov.
mechanical engineering, database planning, manufacturing

Anmtage, B.S., and P.A.V. Hall (1977). Conceptual schema for CAD.
Oomput. Aided Des., 9(3), 194-8.
conceptual schema, logical database design

Atkinson, M.P. (1980). Data management for interactive graphics. In
Computer Graphics, Infotech State of the Art Report, 8(5).
Infotech, Maidenhead, UK. pp. 3-23.

coméuter graphics, DBMS, requirements, data models

Atklnson, M.P., and N. Wiseman (1977). Data management requirements
for 'large scale design and production. A SIGDA Newsl., 7(1), 2-16.
de51gn ergineering ,DBMS, requirements

Bandurskl, A.E., and D.K. Jefferson (1975). Enhancements to the
DBTG model for computer-aided ship design. Proc. AM Workshop on
Data Bases for Interactive Design (Waterloo, Ont.), Sept., 17-25.
shlg design, DBMS, OODASYL model, conceptual schema, subschema

Bandurski, A.E., and D.K. Jefferson (1975). Data description for
camputer- -aided design. Proc. ACM SIQMOD Conf. on Management of Data
(San Jose, CA), May, 193-202.

shlp design, DBMS, CODASYL model, ML

Baron N., E. Bornkessel, N. Cullmann, W.F. Klos, and L.F.
Magalhaes (1982). An approach to the integration of geametrical
capabllxtles into a data base for CAD applications. In J. Encarna-
cao, and F.L. Krause (Eds.), File Structures and Data Bases for
CAD. North-Holland, Amsterdam. pp. 231-43.

geometnc modelmg, computer graphics, data structures

Beeby, W. (1982) The future of integrated CAD/CAM systems: the
Boeing perspective. IEEE Comput. Graphics and Appl., 2(1), 51-6.
aircraft industry, DBMS, communication, CAD/CAM

Beeby, W.D. (1983). Data-driven autamation. The heart of integra-
tlon a sound data base. IEEE Spectrum, 20(5), 44-8.

alrchraft industry, DBMS, communication, CAD/CAM, network
]

Bell, F.E. (1983). CAD o CMM - Using a shared data base. Autofact
v Conf Proc. (Detroit, MI), Nov.
mechamcal engineering, CAD/CAM, DBMS, manufacturing

Benngtt, J. {(1982). A database management system for design
engineers. Proc. AM IEEE 19th Design Automation Conf. (Las Vegas,
NV), ! June, 268-73,

elecFronic engineering, DBMS, relational model

|
Bittner, J. (1983). Data independence in CAD/CAM data bases. In E.
A. Warman (Ed.), Computer Applications in Production and Enginee-
ring. North-Holland, Amsterdam. pp. 573-587.
CAD/CAM, DBMS, data independence, data modeling, E-R model, DDL, QL

|
|
|
|
t .- - " - —

0l4.

0l1s.

016.

017.

018.

019.

020.

022.

023.

024.

025.

026.

Blaser, A. (Ed.) (1980). Data Base Techniques for Pictorial
Applications. Springer-Verlag, Berlin.
pictorial databases, computer graphics, DBMS, image processing

Blaser, A., and U. Schauer (1977). Aspects of data base systems for
computer-aided design. Infarmatik-Fachberichte, 11, 78-119.
engineering design, DBMS, requirements ,tutorial

Bo, K. (1980). Data base design. In J. Encarnacao (Ed.), Computer-
Aided Design, Modelling, Systems Engineering, CAD-Systems. Springer
Verlag, Berlin. pp. 227-61.

logical database, DBMS, data independence, data models, tutorial

Bray, O.H. (1983). Data base management in CAD/CAM. Autofact V
Conf. Proc. (Detroit, MI}, Nov.
mechanical engineering, CAD/CAM, DBMS

Buchmann, A.P., and A.G. Dale (1979). Evaluation criteria for
logical database design methodologies. Comput. Aided Des., 11(3),
121-6.

database theory, logical database design, design methodologies

Buchmann, A.P., and T.L. Kunii (1979). Evolutionary drawing
farmalization in an engineering database envirornment. Proc IEEE
QOMPSAC 79 3rd Int. Camputer Software and Applications Coni .
{Chicago, IL), Nov., 732-7.

computer graphics, chemical engineering, process plants

Burger, W.F. (1983). MLD: a language and data base for modeling.

In E.A. Warman (Ed.), Camputer Applications in Production and
Engineer ing. North-Holland, Amsterdam. pp. 559-571.

mathematical programming, DBMS, modeling language, user interaction

. Challis, M.F. (1982). Typing in data base models. In J. Encarnacao,

and P.L. Krause (Eds.), File Structures and Data Bases for CAD.
North-Holland, Amsterdam. pp. 265-79.
data modelling, data types, DDL

Chang, N.S., and K.S. Fu (198l). Picture query languages for picto-
rial data-base systems. Camputer, 14(11), 23-33.
computer graphics, pictorial databases, relational model, QI

Chang, S.K., and K.S. Fu (Eds.) (1980). Pictorial Information
Systems. Springer-Verlag, Berlin.
computer graphics, image processing, pictorial databases, DBMS

Chang, S.K., and T.L. Kunii (1981). Pictorial data-base systems.
Computer, 14(11), 13-21. .
image processing, DBMS, pictorial databases, relational model

Cheng Chao Wang, P. (Ed.) (1981). Automation Technology for Manage-
ment and Productivity Advancement Through CAD/CAM and Engineer ing
Data Handling. Prentice-Hall, Englewood cliffs, NJ.

CAD/CAM, data management, infarmation management, applications

Cholvy, L., and J. Foisseau (1983). Representation of information
in a design process. In E.D. Warman (Ed.), Computer Applications in
Production and Engineering CAPE'83. North-Holland, Amsterdam.

PP. 545-558. ’

data modeling, semantic integrity, integrity control

076.

077.

078.

079.

080.

081.

082,

083.

084.

086.

087.

Kawano, I., H. Fukushima, and T. Numata (1978). The design of a
database organisation for an electronic equipment DA system. Proc.

AM IEEE 15th Design Automation Conf. (Las Vegas, NV), June, 167-7S.

electronic engineering, data structures, requirements

Kimura, F., Y. Yamaguchi, Y. Sasaki, K.Kido, and M. Hosaka (1982).
Construction and uses of an engineering data base in design and
manufacturing environments. In J. Encarnacao, and F.L. Krause
(Eds.), File Structures and Data Bases for CAD. North-Holland,
Amsterdam. pp. 95-116.

CAD/CAM, mechanical engineering, DBMS, geometrical modeling

Koller, H., and K. Fruhauf (1981). A data base management system
for industrial process control. Camput. Ind., 2, 171-7.
rpoduction control, process control, DBMS, relational model

Korenjack, A.J., and A.H. Teger (1975). An integrated CAD data base
system. Proc. AOM IEEE 12th Design Automation Conf. (Boston, MA),
June, 399-406.

electronic engineering, commercial database, network model, IDMS

Kung-Chao Chu, J.P. Fishburn, P. Honeyman, and Y.E. Lien (1983).
VDD - A VLSI design database system. Proc. AOM IEEE Annu. Meeting
Database Week: Engineering Design Applications (San Jose, CA),
May, 25-37.

electronic engineering, VLSI, DBMS, relational model

Kunii, T.L., and H.S. Kunii (1979). Architecture of a virtual
graphic database system for interactive CAD. Comput. Aided Des.,
11(3), 132-5.

computer graphics, DBMS, interactive system, system architecture

Kunii, T.L., S. Weyl, and J.M. Tenenbaum (1974). A relational data
base schema for describing complex pictures with color and texture.
Proc. 2nd Int. Joint Conf. on Pattern Recognition (Lyngby,
Copenhagen, DK), Aug., 310-6.

computer graphic, pictorial databases, relational model

Kutay, A.R., and C.M. Eastman (1983). Transaction management in
engineering databases. Proc. AOM IEEE Annu. Meeting Database Week:
Engineering Design Applications (San Jose, CA), May, 73-80.
design engineering, DBMS, transactions, integrity control

Lacroix, M.,and A. Pirotte (198l). Data structures for CAD object
description. Proc. AOM IEEE 18th Design Automation Conf. (Nashville,
M), June, 653-9.

electronic engineering, semantic data modeling, DDL, schema

. Lafue, G.M.E. (1978). Design data base and data base design. Proc.

CAD 78 3rd Int. Conf. and Exhib. on Computers in Engineering and
Building Design (Brighton, UK), March, 254-62.
design engineering, DBMS, relational model, integrity control

Lafue, G.M.E. (1979). An approach to autamatic maintenance of
semantic integrity in large design databases. Proc. Nat. Comput.
Conf., AFIPS-48. AFIPS Press, Montvale, NJ. pp. 713-6.

design engineering, integrity control, semantic integrity

Lafue, G.M.E. (1979). Integrating language and database for CAD
applications. Comput. Aided Des., 11(3), 127-30.
design engineering, languages, integrity control

-088.

089,

090.

091.

092,

093.

094.

095.

096.

097.

098.

099.

Lafue, G.M.E. (1979). An Approach to Automatic Checking of Semantic
Integrity in Design Databases. Ph.D. Dissertation, School of Urban
and Public Affairs, Carnegie-Mellon Univ. (Pittsburgh, PA), Dec.
design engineering, DBMS, integrity control, semantic integrity

Lafue, G.M.E. (1982). Semantic integrity dependencies and delayed
integrity checking. Proc. 8th Int. Conf. on Very Large Data Bases
(Mexioo—-City, Mex.), Sept.,292-9,

DBMS, integrity control, semantic integrity

Lafue, G.M.E., and T.M. Mitchell (1982). Data Base Management
Systems and Expert Systems for CAD. Res. Rep. LCSR-TR-28, Lab. for
Camputer Science Research, Rutgers Univ. (New Brunswick, NJ), May.
DBMS, artificial intelligence, expert systems, integrity control

Lee, Y.C., and K.S. Fu (1983). Integration of solid modeling and
data base management for CAD/CAM. Proc. AOM IEEE 20th Design
Automation Conf. (Miami Beach, FA), June, 367-73.

CAD/CAM, geametric modeling, DBMS, relational model, grammars

Lee, Y.C., and K.S. Fu (1983). A CSG based DBMS for CAD/CAM and its
supporting query language. Proc. ACM IEEE Annu. Meeting Database
Week: Engineering Design Applications (San Jose, CA), May, 123-30.
s0lid geometry, DBMS, relational model, grammars, languages, QL

Leesley, M.E., and A.P. Buchmann (1980). Databases for camputer-
aided process plant design. Comput. and Chem. Eng., 4(2), 79-83.
chemical engineering, DBMS, process plant

Leiremann, K. (1982). GRIMBI ~ A combination of interactive
graphics methods and CAD database techniques for functional
modelling. Proc. Graphics Interface '82 (Toronto, Ont.), 153-60.
computer graphics, data modeling, DDL, DML, interactive systems

Leyking, L.W. (1979). Data base consideration for VISI. Proc.
CALTECH Conf. on Very Large Scale Integration (VLSI) (California
Institute of Technology, Pasadena, CA), Jan., 275-301.

electronic engineering, VLSI, DBMS, data models, hierarchical model

Liewald, M.H., and P.R. Kenniocott (1982). Intersystem data transfer
via IGES. IEEE Comput. Graphics and Appl., 2(3), 55-63.
CAD/CAM, systems communication, IGES, graphics databases

Lillehagen, F.M. (1981). CAD/CAM systems. In J. Encarnacao, O.F.F.
Torres, and E.A. Warman (Eds.), CAD/CAM as a Basis for the Develo-
pment of Technology in Developing Nations. North-Holland,
Ansterdam. pp. 367-414.

CAD/CAM, specifications, mechanical engineering, DBMS, TORNADO

Lillehagen, F.M., and T. Dokken (1982). Towards a methodology for
constructing product modelling databases in CAD. In J. Encarnacao,
and F.L. Krause (Eds.), File Structures and Data Bases for CAD.
North-Holland, Amsterdam. pp. 59-91.

design engireering, DBMS, logical database design, DDL, DML,

Lorie, R.A., R. Casajuana, and J.L. Becerril (1979). GSYSR: A
Relational Database Interface for Graphics. Res. Rep. RJ2511,
IBM Res. Lab. (San Jose, CA), Apr.

computer graphics, relational model, interface

100.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

Lorie, R.A. (1982). Issues in databases for design applications. In
J. Encarnacao, anf F.L. Krause (Eds.), File Structures and Data
Bases for CAD. North-Holland, Amsterdam. pp. 213-29.

design engineering, DBMS, computer graphics, relational model

. Lorie, R.A., and W. Plouffe (1983). Complex objects and their use

in design transactions. Proc. MM IEEE Annu. Meeting Database Week:
Engineering Design Applications {San Jose, CA), May, 115-21.
design engineering, DBMS, relational model, transactions , System R

Ludlam, D., and E.J. Purslow (1981). An integrated CAD/CAM system
using a relational data base. Proc. European Conf. on Electronic
Design Automation (Brighton, UK), Sept., S-8.

electronic engineqring, DBMS, relational model, integration, PCB

Ludham, D. (1983). The design database. Comput. Syst., 3(7), 55-7.
electronic engincering, DBMS, relational model, PCB, manufacturing

Managaki, M. (1982). Multi-layered database architecture for CAD/
CAM systems. In J. Encarnacao, and F.L. Krause (Eds.), File Struc-
tures and Data Bases for CAD. North-Holland, Amsterdam. pp. 281-94.
CAD/CAM, DBMS, system architecture, implementation, integrity

Matsuka, H., S. Uno, and T. Sata (198l). Application of advanced
integrated designer's activity support system. In E.A. Warman (Ed.),
Man-Machine Communication in CAD/CAM. North-Holland, Amsterdam.

pp. 251-69.

geometric modeling, integrated system, DBMS, relational model

Matsuka, H. (1982). Data base in CAD system. Inf. Process: Soc.
Jpn. (Jcho Shori), 23(10), 1000~7 (in Japanese).
CAD/CAM, design documentation, numerical control, process control

McIntosh, J.F. (1978). The interactive digitizing of polygons and
the processing of polygons in a relational database. Camput.
Graphics, 12(3), 60-63.

computer graphics, DBMS, relational model, interactive system

McLeod, D., K. Narayanaswamy, and K.V. Bapa Rao (1983). An approach
to information management for CAD/VLSI applications. Proc. ACM IEEE
Annu. Meeting Database Week: Engineering Design Applications (San
Jose, CA), May, 39-50.

electronic engineering, VLSI, DBMS, semantic data modeling

Meder, H.G., and F.P. Palermo (1977). Data base support and
interactive graphics. Proc. 3td Int. Conf. on Very Large Data Bases
(Tokyo, J), Oct., 396~402.

computer graphics, DBMS, relational model

Miller, R.E., J. Southall, and S. Wahlstrom (1979). Requirements
for management of aerospace engineering data. Comput. and Struct.,
10, 45-52.

aerospace industry, data management, requirements, IPAD

Nash, D. (1978). Topics in design automation data bases. Proc. AM
IEEE 15th Design Automation Conf. (Las Vegas, NV), June, 463-74.
design engineering, DBMS, data models, requirements, survey

112.

1n3.

114.

115.

116.

117.

1ns.

119.

120.

121,

122,

123.

Nash, J.H. (1982). Graphics interaction with database systems.
Proc. CAD 82 5th Int. Conf. and Exhib. on Computers in Design
Engineering (Brighton, UK), March, 107-18.

design engineering, DBMS, user interaction, graphics display

Neumann, T. (1980). CAD data base requirements and architectures.
In J. Encarnacao (Ed.), Computer-Aided Design, Modelling, Systems
Engineering, CAD-Systems. Springer-Verlag, Berlin. pp. 262-92.
DBMS, data modeling, data consistency, data integrity, tutorial

Neumann, T., and C. Hornung (1982). Consistency and transactions in
CAD databases. Proc. 8th Int. Conf. on Very Large Data Bases
{Mexico~City, Mex.), Sept., 181-8.

DBMS, data consistency, integrity control, transactions

Neumann, T. (1983). On representing the design information in a
common database. Proc. AOM IEEE Annu. Meeting Database Week:
Engineering Design Applications (San Jose, CA), May, B1-7.
CAD/CAM, manufacturing control, DBMS, E-R model, logical database

Niida, K., H.H. Yagi, and T. Umeda (1977). An application of data
base management system (DBMS) to process design. Camput. and
Chem. Eng., 1(1), 33-40.

chemical engineering, DBMS, plant design

Noon, W.A., K.N.Robtbins, and M.T. Roberts (1982). A design system
approach to data integrity. Proc. AOM 1EEE 19th Design Automation
Conf. (Las Vegas, W), June, 699-705.

electronic engineering, VLSI, data integrity

Okino, N., Y. Kabazu, H. Kubo, and N. Hashimoto (1980). Geometry
data-base for milti-parts in CAD/CAM systems, TIPS/GDB. In P. Blake
(Ed.), Advanced Manufacturing Technology. North-Holland, Amsterdam.
pp. 71-86.

CAD/CAM, mechanical engineering, geametric modeling

Oyake, I., H. Mizuno, and M. Yamagishi (1982). A graphic database
for interactive CAD. Proc. CAD 82 5th Int. Conf. and Exhib. on
Camputers in Design Engineering (Brighton, UK), March, 133-42.
mechanical engineering, geametric modeling, graphic data

Palermo, F.P., and D. Weller (1979). Picture building systems.
Proc. IEEE QOMPOON Spring 79 (San Francisco, CA), Feb.
computer graphics, DBMS, relational model, DDL, DML

Palermo, F.P., and D. Weller (1980). Same data base requirements
for pictorial applications. In A.Blaser (Ed.), Data Base Techniques
for Pictorial Applications. Springer-Verlag, Berlin. pp. 555-67.
computer graphics, DBMS, requirements, relational model, DL, DML

Patnaik, L.M., and N. Ramesh (1982). Implementation of an interac-
tive relational graphics database. Camput. and Graphics, 6(3), 93-6.
ocomputer graphics, DBMS, relational model, DL, DML

Peled, J. (1982). Simplified data structure for "mini-based"
turnkey CAD systems. Proc. AOM IEEE 19th Design Automation Conf.
(Las Vegas, NV}, June, 636-42.

design engineering, DBMS, mini-computers, turnkey systems

01

124.

125,

126.

127.

128.

129.

130.

131.

132.

133.

134,

135,

136.

pPhillips, R.J., M.J. Beaumont, and D. Richardson (1979). AESOP: an
architectural relational database. Comput. Aided Des., 11(4),217-26.
architectural design, DBMS, relational model, fuzzy relations

phillips, R.J., M.J. Beaumont, D. Richardson, and J. Bartley (198l1),
Geometry for CAD. Comput. Aided Des., 13(2), 89-97.
architectural ‘design, computer graphics, relational model

Prior, H., and H. Fuchs (1980). Integrated production of manufactu-
ring documentation. Ind.-Anz., 102(82), 120-7 (in German}.
CAD/CAM, mechanical engineering, process planning, NC programs

Quinlan, K.M., and J.R. Woodwork (1982). A spatially-segmented
solids database -~ Justification and design. Proc. CAD 82 5th Int.
Conf. and Exhib. on Computers in Design Engineering (Brighton, UK),
March, 126-32.

mechanical engineering, geometric modeling, implementation

Rasdor £, W.J., and A.R. Kutay (1982). Maintenance of integrity
during concurrent access in a building design database. Comput.
Aided Des., 14(4), 201-7.

architectural design, DBMS, relational model, integrity control

Roberts, K.A., T.E. Baker, and D.H. Jerome (1981). A vertically
organized camputer-aided design data base. Proc. AOM IEEE 18th
Design Automation Conf. (Nashville, ™), June, 595-602.

electronic engineering, PCB, DBMS, commercial databases, schema

Romberg, F.A. (1981). A Logical Design Methodology far Complex
Databases such as a Manufacturing Operations Database. Ph.D.
Dissertation, Southern Methodist Univ. (Dallas, TX), Sept.
logical database design, methodology, manufacturing

Roussopoulcs, N. (1979). Tools for designing conceptual schemata
of databases. Camput. Aided Des., 11(3), 119-20.
database theory, logical database design, methodology

Ruiz-de~-Molina, E. (1983). The role of data base management and
simulation in engineering projects. Autofact V Conf. Proc.
(Detroit, MI), Nov.

CAD/CAM, DBMS, simulation, engineering projects

Sanborn, J.L. (1982). Evolution of the engineering design system
data base. Proc. AOM IEEE 19th Design Automation Conf. {(Las Vegas,
NV), June, 214-8,

electronic engineering, data files, database, file structures

Scheffer, L. (1979). Database considerations for VLSI design. In W.
M. Van Cleemput (Ed.), Design Automation at Stanford. Stanford
Univ., Computer Systems Lab., Stanford, CA.

electronic engineering, VISI, hierarchical design, requirements

Scott, M. (1980). A data base for small computers. Prod. Erg.,
27(3), 50-4.)
CAM, DBMS, data files, manufacturing operations

Shaw, G.W. (1980). The use of database techniques in production
control - A practical example from the aerospace industry.
Comput. Ind., 1(4), 245-9.

production control, aerospace industry

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

Shenoy, R.S., and L.M. Patnaik (1983). Data definition and manipu-
lation languages for a CAD database. Comput. Aided Des., 15(3),
131-4.

geametric modeling, DBMS, relational model, DDL, DML

Sidle, T.W. (1980). Weaknesses of commercial data base management
systems in engineering applications. Proc. ACM IEEE 17th Design
Aubomation Conf. (Mimmeapolis, MN), June, 57-61.

engineering databases, commercial databases, DBMS, comparision

Smolin, R. (1981). DBMS for bill of materials processing. Interface
Age, 6(12), 88-91.
CAM, bill of materials, DBMS

Snook, S. (1979). The database for controlling work-in-progress at
Perkins engines. Database J., 9(4), 8-15.
CaM, production control, DBMS, process control

Sorokin, V.K. (1982). Database organization in computer-aided
design systems. Avtom. and Telemekh., 43(9), 122-6,
engineering databases, file organization, CAD, design quality

Sparr, T.M. (1982). A language for a scientific and engineering
database system. Proc. AOM IEEE 19th Design Automation Conf. (Las
Vegas, NV), June, 865-71.

engineering databases, query language, relational model

Spoonamore, J.H. (1982). CAEADS -~ Camputer-Aided Engineering and
Architectural Design System. Tech. Rep., US Army, Construction
Engineering Research Ltd. (Champaign, IL), Aug.

architectural design, geametric modeling, DBMS, CAEADS

Stonebraker, M., B. Rubenstein, and A. Guttman (1983). Application
of abstract data types and abstract indices to CAD data bases.
Proc. AM IEEE Annu. Meeting Database Week: Engineering Design
Applications (San Jose, CA), May, 107-13,

DBMS, abstract data types, abstract indices, boxes, wires, polygons

Taraman, S.R. (1981). Machining data bank structure. Tech., Paper
MS81-490, CASA-SME, Dearborn, MI.
CMM, mechanical engineering, machining, file structures

Throop, J.W. (1981). A common data base for metal cutting data.
Tech. Paper MS81-183, CASA-SME (Dearborn, MI), April.
CAM, logical database design, machining, standardization

Ulfsby, S., S. Meen, and J. Oian (1982). TORNADO: a database
management system for graphics applications. IEEE Comput. -Graphics
and Appl., 2(3), 71-9.

CAD/CPM, mechanical engineering, DBMS, network model, CODASYL

Ulfshky, S., S. Meen, and J. Oian (1982). TCRNADO: a DBMS for CAD/
CAM systems. In J. Encarnacao, and F.L. Krause (Eds.), File
Structures and Data Bases for CAD. North-Holland, Amsterdam.

pp. 335-50.

CAD/CAM, mechanical engineering, DBMS, network model, OJDASYL

Valle, G. (1975). Relational data handling techniques in integrated
circuit mask layout procedures. Proc. AOM IEEE 12th Design Automa-
tion Conf. (Boston, MA), June, 407-13.

electronic engineering, IC masks, mask layout, relational model

i1

150.

151.

152.

Valle, G. (1977). Relational data handling techniques in camputer
aided design procedures. In J.J. Allan (Ed.), CAD Systems.
North-Holland, Amsterdam. pp. 309-25.

design engineering, database, relational model

VanCleemput, W.M., and J.G. Linders (Eds.) (1975). Data Bases for
Interactive Design. University of Waterloo, Waterloo, CDN.
design engineering, computer graphics, data structures, DBMS

Vernadat, F. (1983). Cammunication: a key requirement in camputer
integrated manufacturing. Proc. IEEE 2nd Annu. Phoenix Conf. on

. Camputers and Communications (Phoenix, AZ), March, 193-8.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

CAD/CAM, CIM, activities, commnication, requirements

Vernadat, F. (1983). New requirements for user interaction with
CAD/CAM databases. Proc. Graphics Interface '83 (Edmonton, CDN),
May, 271-9.

CAD/CAM, DBMS, user interaction, data types, data models, DDL, DML

Vernadat, F., (1983). Manufacturing Databases. Res. Rep. ERB-955,
Div. of Electrical Engineering, National Research Council of
Canada, Ottawa, CDN.

CAD/CAM, DBMS, logical database design, manufacturing applications

Waters, M.A. (1978). A Data Base for Efficient VLSI Checking and
Artwork Generation. Intren. Rep., BCI Div. of E-Systems, Inc.
(St. Petershurg, FaA), June.

electronic engineering, VISI, circuit layout

Weller, D., and F. Palermo (1979). Database requirements for
graphics. Proc. IEEE QOMBCON Spring 79 (San Francisco, Ch),
Feb., 231-7.

computer graphics, DBMS, relational model, requirements

White, C. (Ed.) (1980). The nature of graphics databases. In
Camputer Graphics, Infotech State of the Art Report. Infotech,
Maidenhead, UK. pp. 139-70.

computer graphics, graphics databases, requirements

Wiederhold, G. (198l). Research in knowledge base management
systems., AOM SIGMOD Newsl., 11(3).
electronic engineering, digital circuits, DBMS

Wiederhold, G., A.F. Beetem, and G.A. Short (1982). A database
approach to commnication in VLSI design. IEEE Trans. Camput.,
Aided Des., CAD-1(2), 57-63.

electronic engineering, VISI, commercial database, DBMS-20

Williams, R., and G.M. Giddings (1976). A picture-building system.
IEEE Trans. Software Eng., SE-2(1), 62-6.
computer grphics, image processing, relational model, DDL

Wilmore, J.A. (1979). The design of an efficient data base to
support an interactive ISI layout system. Proc. AOM IEEE 16th
Design Automation Conf. (San Diego, CA), June, 445-51.

electronic engineering, mask layout, DBMS, interactive system

Wang, C.S5., and E.R. Reid (1982). FLAIR ~ User interface dialog
design tool. Comput. Graphics, 16(3), 87-98.
computer graphics, user intecrface, DBMS, relational model

163.

164.

165.

166.

167.

Wong, S., and W.A. Bristol (1979). A computer-aided design data
base. Proc. AM IEEE 16th Design Automation Conf. (San Diego, CA),
June, 398-402.

electronic engineering, DBMS, centralized database

Wood, C., E.B. Fernandez, and R.C, Summers (1980). Data base
security: requirements, policies, and models. IBM Syst. J.,
19(2), 229-52.

database theory, DBMS, data security

Yasky, Y. (1981). A Consistent Database for an Integrated CAAD
System: Fundamentals for an Automated Design Assistant. Ph.D.
Dissertation, Dept. Architecture, Carnegie-Mellon Univ.
(Pittsburgh, PA).

architectural design, DBMS, data consistency, data integrity

Zdeblick, W.J., J. Lindberg, and L.J. Hawkins (1981). Machina~
bility Data Base for End Mill Application. Tech. Paper MS81-184,
CASA-SME (Dearbarn, MI), April.

CAM, process planning, machining

2intl, G. (198l1). A CODASYL CAD data base system. Proc. ACM IEEE
18th Design Automation Conf. (Nashville,), June, 589-94.
electronic engineering, network model, OODASYL, DML

CAD/CAM Database Management®

By .
Michael L. Brodie, Barbara Blaustein, Umeshwar Dayal,
Frank Manola, Arnon Rosenthal

Computer Corporation of America

1. The CAD/CAM Database Management System

The design and manufacture life cycle of a product involves many distinct
engineering disciplines, each with its own specialized computer systems. Gen-
erally these systems have massive data repositories handled by inadequate data
managers that cannot communicate with each other. As a result, there are sig-
nificant problems for data management and for the efficient coordination of
hundreds of complex heterogeneous systems.

Data provides a basis for integration and coordination. Design and
manufacturing data consists of all types of product descriptions including
requirements, drawings, parts hierarchies, geometries, analyses, and manufac-
turing processes, as well as administrative data for controlling, monitoring
and planning. Although the same data is frequently used in different forms by
many systems, it seldom is shared or exchanged automatically.

Ideally, a DBMS would be used to integrate current and future CAD/CAM
systems by providing means to store, manipulate, and manage all CAD/CAM data.
However, current database technology does not provide means to solve such
problems as representing engineering data semantics (e.g., parts hierarchies
and geometry), version control, data exchange, distributed processing over
heterogeneous databases, and suitable interfaces.

A CAD/CAM DBMS (CCDBMS) which solves the above problems is being designed
and developed to integrate all CAD/CAM systems. Each system will continue to
operate autonomously, but some measure of global control and access will be
imposed. The components of the CCDBMS architecture fall into three functional
groups. First, a set of user interface components will provide uniform access
to all CCDBMS facilities, including those of the individual CAD/CAM systems.
Second, a Global Data Manager will provide distributed processing for CCDBMS
requests that require access to more than one system within the CCDBMS.
Third, a new DBMS will provide a global view of all data. needed to support
queries against the whole CCDBMS, distributed processing, and version control.
The global view will include an abstract or extract of all data in the CCDBMS
as well as a global dictionary and directory.

*This research is funded by General Dynamics, Data Systems Division.

12

CAD/CAM Database Management

This paper summarizes the research results on which the CCDBMS is based.
Early research results 1indicated that two approaches to the problem, as we
considered it, were not feasible. First, a centralized database for all
CAD/CAM data would make the integration of current and future CAD/CAM systems
economically infeasible. Second, the problem of determining one or more stan-~
dard data representations for all CAD/CAM data is currently intractable due to
mathematical problems with translation between representations and the real
need for specialized representations.

2. Data Model and Languages

The CCDBMS uses the functional data model Daplex [Shipman8l1]. Charac-
teristics that suit it for this application are:

- Like the relational model, it provides high—level set-oriented operations,
and relatively user-friendly query capabilities.

- Again like the relational model, it provides the basis for the construction
of powerful DBMSs [Chan81, Chan83].

- It supports the interaction of heterogeneous data collections as in Multi-
base [Smith8l, Dayal83].

— Daplex permits a straightforward modelling of "complex objects", which are
important constructs in design-oriented applications [Lorie8l], via
entity-valued functions (attributes).

- Daplex allows explicit declaration of ISA hierarchies, which is an impor-
tant semantic construct for this application.

It is interesting to note that Daplex has definitional capabilities simi-
lar to those of IDEF-1, which is being used in design and manufacturing appli-
cations for conceptual modelling [IDEF-1}. IDEF-1 models map to Daplex sche-
mas in a straightforward way.

The current conceptual model being developed consists of information
about parts and related documents, such as drawings, specifications, and
change notices (the ISA relationship is useful here). Extensions to this
model also have been investigated for including manufacturing data (e.g. group
technology and planning data) and analysis data such as finite element models,
test cases, and results of analysis programs.

The information about parts in the schema 1is a generalization of the
usual parts-explosion (or bill-of-materials) structure used in databases in
that particular “instances of 'a (next-level) subcomponent part within a
higher-level assembly must be represented. For example, this generalization
1s necessary to hold the orientation data that defines the geometric relation-
ship of each individual part instance to the assembly.

Extensions to Daplex are currently being investigated in order to meet
the special demands of CAD/CAM applications. Geometric data handling exten-
tions are discussed in Section 4. Another important example is support for

13

CAD/CAM Database Management

computation of transitive <closures within the parts hierarchy. Although
Daplex allows explicit looping and if-then testing, traversing a parts-
hierarchy 1s not much easier in Daplex than it is in other languages. As a
result, it appears desirable to have special syntax to support the particular
problems of querying parts hierarchies and other similar cyclic structures.

We also are investigating special constructs for defining parts hierar-
chies. Just as the generalization hierarchies (defined using the ISA con-
struct) include special semantics (such as inheritance), so the parts hierar-
chy (defined using new constructs) might include its own special semantics
(such as acyclicity). Further extensions also might be justified since the
conceptual schema 1is extended to deal with additional types of design and
manufacturing data, as well as individual processes that use it.

3. Screen Oriented Interface

A uniform screen oriented interface is being designed to provide access
to all CCDBMS functions including database query and update, data dictionary
operations, definition and execution of distributed transactions, system com-
mands, and help facilities. It must be appropriate for thousands of design
and manufacturing engineers whose level of skill and familiarity with computer
systems (such as database systems and query languages) vary widely.

Most CCDBMS functions including query, update, and dictionary commands,
will be available via an interface based on concepts from OBE [Z1l00f82] and
DACOS [Kaufman83]. Separate screen interfaces will be provided for special-
ized functions such as system commands. The research issues involved the
extension of OBE to support Daplex.

The syntax and semantics of OBE had to be extended for data definition,
query, and manipulation. The major extensions, which concern the object and
set orientation of Daplex, involved additional domain and data type capabili-
ties. Concepts for values, variables, and operations were added for entity
types, entity subtypes, set types, and some engineering data types. Daplex
constraints such as overlap of type hierarchies and entity uniqueness were
also added. QBE”s predicates have been wused to integrate operations and
predicates for entities, sets, and geometry. Extensions were made for the
expression and display of queries that involve transitive closure, including
the ability to express queries over any recursively defined structure and to
retrieve the relationships between the nodes in the structure. QBE and OBE
functien and program invocation mechanisms have been generalized to permit any
function or program to be invoked. This is particularly important for prede-
fined transactions over the CCDBMS. Mechanisms for arbitrary view definition
and maintenance are now being considered.

Significant extensions have been made to the QBE display syntax. Screens

can contain multiple tables, each representing one entity or a user defined
view. Relationships between tables are displayed via entity and other

14

CAD/CAM Database Management

variables as well as by views. To simplify the potentially complex display,
graphic devices such as scrolling, zooming, windowing, editing, and overlaying
have been introduced. Mechanisms have been integrated for entity and set
valued variables, predicates, and functions. New windows have been introduced
to display queries and errors. As a screen query is entered, the CCDBMS can
automatically display the corresponding Daplex query for tutorial and checking
purposes. Many other features have been added such as specialized displays of
results to hierarchic queries, and search broadening and narrowing.

Future investigations are planned for the definition, update, and brows-
ing of local and global schemas, schema mappings, local systems capabilities,
and version control rules. More sophisticated graphical concepts based on
VIEW [Barnett82] are being investigated.

4. Geometric Query Capabilities, Processing, and Representation

Geometric information currently is generated and displayed on worksta-
tions. The CCDBMS will store this information centrally and provide access to
parts information via geometric conditions. For example, in considering a
design change, all parts close to the point of change can be found and their
properties (e.g., low melting point) accessed.

The parts hierarchy shows the component parts of each part in the data-
base. Queries to a part hierarchy, particularly geometric queries, raise dif-
ficult issues in query language behavior and data management, in addition to
issues of computational geometry. Special semantics are used for queries to
part hierarchies to enable the system to return results at the proper level of
detail. For example, a query requesting parts within 4 feet of an airplane
instrument panel normally should not return the parts "airplane" or '"cockpit",
not every bolt in the pilot”s seat. Instead, "pilot“s seat" could be
returned.

A system of rules addresses these problems by categorized geometric
predicates according to their behavior when going down the parts hierarchy.
The rules prevent unwanted output and speed the search process. The output
limitation rules can be informally expressed as:

-~ On predicates that easily are satisfied by large (small) parts, return only
the smallest (largest) satisfying parts.

- Return parts at approximately the same level of decomposition.

- Do not decompose unimportant parts.

The geometric predicates supported are '"contained" and "intersects".
Other geometric operators change coordinate systems (parts are stored relative
to their immediate superassembly), define regions relative to a part, calcu-
late distances, etc.

15

CAD/CAM Database Management

Rather than doing sophisticated geometric calculations, the DBMS works
with approximations to actual shapes. We chose rectangular boxes, since these
permit refinements (sets of boxes), allow useful regions to be defined (e.g.,
the region directly to the left of x), and are easily manipulated. Since the
geometric representation of a part is its containing rectangular box, we some-
times obtain false positives.

In our enviromment, we cannot use an index structure for geometric infor-
mation. The difficulty is that moving a large assembly (e.g., a pump) poten-
tially changes the position of hundreds of parts and could cause hundreds of
database wupdates. Instead, the search algorithm wuses the part hierarchy
itself as the branching structure. The search down a branch terminates when
subparts are reached that cannot satisfy the search predicate or when an
output-limitation rule halts further decomposition.

5. Version Control

A number of issues often are thrown together under the heading ''version
control" or I"configuration management". This function is defined as: "The
systematic approach to identifying, controlling, and accounting for the status
of the parts and assemblies required in a product and/or design from the point
of its initial definition throughout its entire 1life" [Knox83] (emphasis
added).

There are three main components of version control, each of which imposes
a set of requirements on a CAD/CAM DBMS: 1) Schema definition (discussed
above): recording status and descriptive information about products,
numerically-controlled tool programs, schedules, etc.; 2) Access control: res-
tricting access of various users to data at various stages in the 1life of a
product; and 3) Change control: monitoring updates, recording change requests
and approvals, and changing data availability as a product moves from one
design or manufacturing stage to another.

An effective CAD/CAM access control system should support four functions:
1) value-based access privileges, 2) definition of access privileges at the
attribute (function) level, 3) linking of some access privileges to particular
pre-defined transactions, and &) flexibility granting and revoking of
privileges (including privilege to granting and revoking).

Value-based access privileges work together with the schema definition
since database values are used to determine user access to data at a particu-
lar time. Attribute-level access privileges are essential to provide the
degree of control required in the CAD/CAM environment. However, supporting
attribute-level access privileges becomes complicated when a schema allows
entity-valued attributes (or functions) needed to capture complicated rela-
tionships in CAD/CAM. The CCDBMS can control the kinds of updates allowed by
requiring the use of predefined transactions to update sensitive data. Dif-
ferent types of privileges are needed for different products and for different

16

CAD/CAM Database Management

stages within the 1life of a single product, and different (relatively auto-
nomous) groups involved in design and manufacturing may wish to follow dif-
ferent access control policies. The CCDBMS must therefore support a closely
controlled system for defining and changing access privileges.

Change control is perhaps the most difficult aspect of version control.
"The basic change control process consists of six major functions: (1) deter-
mination of the need for a change, (2) identification and logging of change,
(3) description and documentation of change, (4) evaluation and approval of
change, (5) incorporation of change in hardware, and (6) verification and
documentation of change incorporation" [Samaras].

The role of an automated system in supporting change control 1is chiefly
to monitor various types of changes and, when possible, to initiate appropri-
ate actions. CCDBMS support for change control could be partially embedded in
predefined transactions. Conditions to be tested could be encoded in the
appropriate transactions, and if necessary one predefined transaction would
invoke another.

Access and change control share three fundamental components: the abili-
ties to activate an access or change control procedure when a particular event
occurs, to evaluate a boolean formula and, based on the evaluation, to invoke
an appropriate action. Because of the great variability in the types of
access privileges and change monitoring needed for different products and at
different stages within the life of a product, the CCDBMS must be able to
store access and change control information (or rules) and to enforce these
rules using general techniques. General techniques developed for rule-based
expert systems may be useful in enforcing these rules.

6. Distributed Processing

The CCDBMS is a heterogeneous distributed DBMS. 1Its salient capabilities
include: High-level data definition facilities for a tight integration of
part, drawing, and version control information (which currently 1is scattered
in many different repositories under the control of different DBMSs, file sys-—
tems, and application systems); global version and access control; efficient
processing of ad hoc global queries over the global view; and centralized
management of global predefined transactions.

The design of the CCDBMS applies and extends MULTIBASE [SmithS8l,
Landers83] technology. As in MULTIBASE, the problems of heterogeneity and
data integration are handled separately by two diferent kinds of software
modules: the former by the Local System Interfaces (LSIs), and the latter by
the Global Data Manager (GDM). The GDM is the key component of the distri-
buted processing architecture. It presents a unified view of the heterogene-
ous repositories; it accepts, plans, and monitors the execution of user
requests; and it returns results to the user. The role of the LSIs is to
present a uniform interface between the GDM and the heterogeneous host systems

17

CAD/CAM Database Management

by hiding the idiosyncracies of the host systems from the GDM. The GDM can
thus commmunicate with all the sites via a common protocol, expect data
returned from all the sites in a common format, and make consistent assump-
tions about the transaction management capabilities of all the sites.

Data in each repository is first described by a Local Schema (LS) in a
common language. Then a logically integrated view, the Global Schema (GS), is
defined over the LSs. Global query processing in the CCDBMS is similar to the
one used in MULTIBASE, (See [Dayal8l, Dayal82a, Dayal82b, Dayal83, Gol-
dhirsch84] for details.) Global queries over the GS are 1input to the GDM
from the wuser interfaces 1in an internal form called a query processing
envelope (QPE). The GDM uses the definition of the GS to transform the global
QPE into QPEs over the LSs. It then constructs an efficient global query pro-
cessing strategy that consists of local QPEs (each of which represents a query
over a single LS, and is executable at a single site), move steps that specify
data transfer between sites, and a partial order that specifies precedence
constraints on the execution of the local QPEs and move steps. The local QPEs
are shipped to the appropriate LSIs, which translate them into efficient pro-
grams in the host DMLs. The results of executing the host programs are for-
matted and returned to the GDM, which combines them into a final answer that
1s returned to the user.

Unlike MULTIBASE, the CCDBMS must process update transactions in addition
to queries. This raises two sets of issues. First, updates on the GS must be
mapped into equivalent updates on the LSs. But automatic view update mapping
is a notoriously difficult problem. Hence, we initially avoid the problem by
insisting that all global transactions be predefined (i.e., the mapping of
every global transaction into local transactions must be supplied to the GDM
before the global transaction is invoked).

The second set of issues pertains to global tramsaction management: con-
currency control, commitment, and recovery. These problems are more compli-
cated here than in "conventional distributed DBMSs for two reasons. First:
the host systems might not provide a uniform set of capabilities. For simpli-
city, we use centralized two-phase locking at the GDM to synchronize global
transactions, centralized deadlock detection at the GDM, and centralized two-
phase commitment with the GDM as coordinator. In addition, we require that
each site be capable of synchronizing purely local transactions, detecting
local deadlocks, and supporting atomic commitment. Capabilities that are
lacking in the host system must be compensated for by the LSI. Second: CAD/CAM
transactions typically are long. Using an entire transaction as the unit of
commitment would result in poor resource utilization. Our solution is to (a)
treat each transaction as though it were composed of several atomically com-
mittable units; and (b) use special version control procedures for synchron-
izing special groups of predefined tramsactions (e.g., use approval, release,
and check-out procedures for synchronizing design, redesign, and manufacturing
transactions).

Future extensions will consider the processing of ad hoc global transac-

tions, decentralized transaction management, enhanced robustness through rep-
lication, and issues of autonomy.

18

CAD/CAM Database Management

7. References

[Barnett82] Barnett, J., M. Friedell, and D. Kramlich, "Context-Sensitive,

Graphic Presentation of Information," Computer Graphics, Vol. 16, No. 3,
1982.

[Chan81] Chan, A., S. Fox, K. Lin, D. Ries, "The Design of an Ada Compatible

Local Database Manager', Technical Report CCA-81-09, Computer Corporation
of America, 198l1.

[Chan83] Chan, A., U. Dayal, S. Fox, N. Goodman, D. Ries, D. Skeen, "Overview
of an Ada Compatible Distributed Database Manager'", Technical Report
CCA-83-01, Computer Corporation of America, 1983.

[Dayal8l] Dayal, U., et al., "Local Query Optimization in MULTIBASE: A System
for Heterogeneous Distributed Databases," Technical Report CCA-81-11,
Computer Corporation of America, September 198l.

[Dayal82a] Dayal, U., T. Landers, and L. Yedwab, "Global Query Optimization in
MULTIBASE: A System for Heterogeneous Distributed Databases,'" Technical
Report CCA-82-05, Computer Corporation of America, 1982.

[Dayal82b] Dayal, U., and N. Goodman, "Query Optimization for CODASYL Database
Systems," Proceedings ACM SIGMOD Conference, Junme 1982, pp. 138-150.

Py .
[Dayal83] Dayal, U., "Processing Queries over Generalization Hierarchies, in a
Multidatabase System", Proc. Ninth VLDB Conference, Oct. 1983.

[Goldhirsch84] Goldhirsch, D., and L. Yedwab, "A Hybrid Approach for Handling
Generalized Entities in Views," Computer Corporation of America, January
1984 (submitted for publicationmn).

[IDEF-1] Softech, Inc., Integrated Computer—-Aided Manufacturing (ICAM) Archi-
tecture Part II, Volume 5--Information Modeling Manual (IDEF-1), AFWAL-
TR-81-4023, Wright-Patterson AFB, Ohio, June 1981 (NTIS AD-B062-458).

[Raufman83] Kaufman, C., J. Barnett, and B. Blaustein, The DACOS Forms Based
Query System," Journal of Telecommunications Networks, Computer Science
Press, Rockville, MD, winter issue, 1984.

[Knox83] Knox, Charles S., CAD/CAM Systems: Planning and Implementation, Mar-
cel Dekker, Inc., New York,; 1983.

[Landers83] Landers, T., and R.L. Rosenberg, "An Overview of MULTIBASE." 1In
H.J. Schneider (ed.), Distributed Databases, North-Holland Publishing
Company, 1982.

19

CAD/CAM Database Management

[Lorie81] Lorie, R.A., "Issues in Database for Design Applications', IBM
Research Report RJ3176, IBM Research Lab., San Jose, CA, July 1981.

[Samaras] Samaras, T.T., Engineering Graphics Desk Book, Prentice-Hall.

[Shipman81l] Shipman, D., "The Functional Data Model and the Data Language

Daplex," ACM Transactions on Database Systems,, Vol. 6, No. 1, March
1981.

[Smith81] Smith, J.M., et al., "MULTIBASE--Integrating Heterogeneous Distri-

buted Database Systems", Proc. National Computer Conference, Chicago, May
1981.

[Zloof82] Zloof, M.M., Office-by-Example: A Business Language that Unifies

Data and Word Processing and Electronic Mail, IBM Systems Journal, Vol.
21, No. 3, 1982.

20

Database Concepts in the Vdd System

Kung-Chao Chu
Y. Edmund Lien

AT&T Bell Laborataries
Murray Hill, New Jersey 07974

ABSTRACT

The VLSI design database (Vdd) system is a set of programs targeted to assist a
drcuit designer in layout design, verification, and simulation. As a subsystem in
a package of integrated design aids, it also provides interface to other higher-
level tools. We state the major problems in designing Vdd and outline how
these problems can be solved using existing database techniques. The problems
are: the need to have two distinct representations of a chip - a language
description and a database representation, the desirability to support chip design
in different silicon processing technologies, and the need to treat a design
session as a database transaction. The database techniques used include
database modeling by schemas, secondary indexing, swapping of data in and out
of the main storage according to data semantics, and atomic transaction
commi tment.

1. INTRODUCTION

The Vdd system [Chu] is part of a design package called Ida, for Integrated design aids, developed
in the research area at AT&T Bell Laboratories. Ida is designed to support individual or a small
team of chip designers in an integrated design environment. Integration, one of today’s industry
buzzwords, means in our context a set of programs that is suffident to aid the designer in the
entire chip design cycle, nicely packaged with clean interface between programs, and not overly
complicated to intimidate the designer.

At present, Ida includes the layout design subsystem Vdd, logic and circuit simulators, routers, and
layout generators. It has been operational for more than a year. A typical design environment to
run /da is a "personal” work station with color graphics in a UNIXt operating system.

The Vdd software assists the designer in design activities ranging from layout editing, layout
programming, design-rule checking, plotting, access to cell libraries, and interface to simulators.

2. DESIGN CONSIDERATIONS IN Vdd

We set out in the beginning three goals that the Vdd software should achieve. First, it has to
support a syntax-oriented layout representation, i.e., a layout description language. We will discuss
the pros and cons of a description language shortly. Second, the Vdd system should be technology
independent as much as feasible, and this independence should be achieved without requiring the
designer to work with primitive geometric components. Since MOS technology is significantly
different from others and is the main force in the silicon industry, we decided that Vdd should
support all varieties of the MOS family. Third, Vdd should be complete in its own right for a
layout designer. In other words, a person skillful in chip layout should be able to use Vdd to
design, verify, and simulate a chip and to produce a mask representation ready for chip
fabrication. This goal, if couched in database terms, is the ability to support a design transaction.

+ UNIXis a Trademark of AT&T Bell Laboratories.

21

2.1 The Role of Description Languages

Vking a language to describe a chip is fairly common. The language approach has been used at
different levels of abstraction. We have scen languages like XYMASK [Fowler], cif [Mead], ¢
[Johnson], LSL [Bose], and PMS and ISP [Bell]. For chip layouts, a language offers a concise and
powerful way to describe the components and the interconnection of components in a chip.
Geometric constraints and electrical connectivity can be easily stated in such a way that "binding"
to real physical mask layers and actual coordinates can be done at the compilation time.

A strong argument for having a powerful layout language in a VLSI design system is to ease the
task of automatic layout generation. Tools that generate layouts from high-level specifications
need a target language. The more flexible the layout language is, the simpler the task of
implementing such a generator.

On the other hand, a layout program can be time and space consuming to translate. A typical 8bit
microprocessar takes about 3 million characters to describe in the i language and after translation,
it occupies about 5 million bytes of storage in the address space in the UNIX system (Berkeley
version 4.1c). If a minor editing of the top-level cell requires the complete translaticn of this chip,
it can take at least half an hour on a lightly-loaded VAX} system. Moreover, the updates have to
be translated into the language description.

A language based design system would also require all tools to have this translator as their front-
end. While many tools only need partial information of a chip, for example, a logic simulation
need not know the detailed mask layout, lack of a means to build an index structure into the chip
description results in a heavy time and space penalty in these tools.

2.2 Technology Independence

As we stated earlier, technology independence can be accomplished easily if we require the
designer to deal only with rectangles. The interpretation of the geometric primitives in the context
of VLSI and the composition of these primitives to form electrical pnmxtxves such as transistors
and contacts, will then be left with a drcuit extractor.

One alternative is to define a set of electrical primitives at the layout level and to support all these
primitives in every tool. Of course the trick is that these primitives should not be limited to one
particular variety of MOS technology. This approach makes the life of the chip designer easier at
the expense of the life of a tool designer.

2.3 Design Transactions

The layout of a chip is often created in one of the three means: it is generated by another tool, like
a PLA generator, it is created by layout programming using a text editor, or it is created by
interactive graphics editing. The first two describe the end result in a layout language. The last
does not necessarily lead to a layout program.

In fact, the last approach can best be thought of in terms of a database transaction. A design
transaction involves a sequence of layout display, layout changes, and commitment of changes to
the design. The layout information can also be retrieved for the purpose of simulation or
verification. Two most obvious needs in a design transaction are to provide random access to parts
of a chip and to implement atomic transaction commitment.

Once we start to parallel a drcuit design activity and a conventional business database transaction,
we can take advantage of the well understood techniques such as the B-tree data structure and
page shadowing. Katz and Weiss provides a more thorough coverage of the issues concerning
design transaction management [Katz).

$ VAXis a Trademark of Digital Equipment Corporation.

22

3. DATABASE TECHNOLOGY APPLIED TO VLSI DESIGN

In the rest of this article, we describe the particular approaches we took in Vdd to resolve the
problems listed above. Our main contributions are two: We use a relational schema to describe a
silicon processing technology, therefore, tools are made independent of the spedifics of a
technology. This is essentially the manifestation of data independence in design tools. The other
main idea is to arganize a chip database far every chip design. The description of a chip is stored
in several crash-resistant B-trees, which provide effident indexing as well as the capability to
perform atomic transaction commitment.

3.1 Data Model of Processing Technology

The information about the MOS technology family can be represented by a relational database.
Each technology is represented by a database instance. We envision that there will be an expert
who knows the details of a specific technology and can specify them for the general user
community. This technology administrator will prepare a technology database to match the local
processing capability.

We started out with a generic model of MOS technology. A taxonomy was then developed,
providing a means for the designer to define wires, how wires are grouped to form connections and
transistars. All tools were designed to understand this generic MOS technology, but the specific
details of a technology were left in the technology database.

In designing the schema of the technology database, we follow a few prindples. We want to hide
the processing details from the drcuit designer. For instance, one should be able to describe
transistors and connections between transistor terminals without specifying the layers of the
transistors. It is also desirable to treat a combinatian of related layers as one composite wire.

Our generic MOS drcuit layout model consists of three conceptual object types: a layer type, a
contact type, and a transistor type. For example, a wire type is represented by the following
relation

wire(name, minwid, color, inner, outer, rim, subslevel, subsrim, xymask)

A wire instance has a name, a minimum width, and a color representation. A wire is a
composition of at most three layers. The attributes inner, outer, and subslevel refer to the
individual layers. These attributes can have other wire names as values. The attribute rim and
subsrim give the extensions of the outer layer and the substrate layer relative to the inner layer,
respectively. Finally, the name of the mask in XYMASK is also given.

Likewise, an instance of a contact type must contain information about its component layers, its
substrate if any, their sizes, the locations and names of reference points in the contact. Fach
instance of a transistor type is assumed to be a four-terminal MOS transistor with an end-user
definable channel size, reference points, and four functional parts (a gate, two symmetrical pieces
for source and drain, and a substrate). The layer names of the four parts are specified by the
technology administratar.

Similarly, the details of design rules can be coded in a relation. This allows our design-rule
checker to be independent of the technology.

The infarmation in the technology database is retrieved via the database schema. All tools are then
bound to the spedific technology at run time,

What we have demonstrated is that it is possible to elevate the level of sophistication of design
tools by permitting certain generic MOS infor nation in the software while leaving other out and

making it updatable by the design community.
By going to a set of higher level primitives such as variable-sized transistors, we have to give up

some flexibility found in conventional systems. For now, we can only deal with MOS transistors
with rectangular channel area. More complicated transistor types can be handled as cells.

23

3.2 A Family of Layout Languages

With the generic MOS model in place, we designed a family of MOS layout languages, each of
them tailored to a specific technology. For example, two members of the family are layout
languages for CMOS and NMOS. They differ in the keywords for the basic components and the
semantics of the wires. In the CMOS language, the construct of composite wires are used to model
the three-layered complex of N-diffusion, thinox, and P-substrate. In the NMOS situation, all
wires have only one layer. Therefore, the language translators for CMOS and NMOS differ in the
way the electrical connectivity is determined. These differences are reflected in the two technology
databases.

The UNIX tool yacc was used to generate a translator for all languages in the family. Since all
techno]ogm share the same relational schema, we only need ane syntactic specification for all
languages in the family. The translator retrieves information from a technology database and uses
it to perform the necessary computation such as determining electrical connectivity, determining
sizes of components, and resolving geometric constraints.

3.3 A Datahase Representation for Chip Design

A chip layout can be specified as a layout program using a layout language. An alternate
representation is to organize the chip information as a list of components in the chip.

In Vdd, we model the chip information by a set of relations, each of them representing a
component type. There are transistors, wires, contacts, externs interns calls, and cells. Calls refer
to the inclusions of subcells in a cell.

Each relation stores information about the components; for example, names of transistors,
orientations, sizes, and locations are kept in the transistors relation. Each relation is implemented
as a Btree. Secondary indexing by attributes can also be constructed.

The B-tree package is due to Peter Weinberger. He uses the scheme of shadow pages to obtain
atomic updates to a B-tree. In case of a soft disk crash, the contents of a B-tree will not be

corrupted.
3.4 Storage Management

A tool in the Vdd package needs to retrieve information from the design database. Let’s consider
the case of the graphics editor in Vdd. It allows the designer to edit a drcuit interactively. The
designer chooses a cell to edit, therefore, the software needs to display the components of the cell.
In addition, the designer may remove, relocate, or add a companent. The Vdd editor also allows
the designer to verify the circuit against the design rules interactively.

The information in the design database is moved into the main memory on a demand basis. As far
as the information contents in the main memory are concerned, a cell can be in one of the three
states: STRIPPED, HALF, and FULL. Each cell has its "summary” information stored in the cell
relation. A cell is STRIPPED, if it has only this record in the main memory. Since the record
contains the name of the cell, its bounding box, and status, it is the minimal information to bring
into the main memory. This is particularly useful at the beginning of an editing session.

A HALF cell has all its calls and externs in the main memory. When a cell is added into another
cell as a call, it is necessary to check if the calls run into a recursion. Therefare, all cells directly
or indirectly called by the first cell have to be brought into the main memory. But they only need
to be HALF.

A FULL cell has all its components stored in the main memcry. In Vdd, we keep the cell being
edited FULL. The design-rule check of a cell keeps all its sut sells FULL.

When chips are getting very large, the amount of main memory usable by a design tool becomes
crucal. Our storage management strategy tends to keep anly a few cells in the main memory.
When the main storage runs scarce, Vdd starts to purge the cells that are not critical from the
main memory. Each cell is timestampped to reflect its currency. This information is used by the

24

design-rule checker to ensure that only updated cells are checked. For example, a cell needs to be
checked only if it ar one of its subcells has becn changed after the last check.

Timestamps and the ahility to provide quick access to partial information of a cell as well as to
swap cell information in and out of the main memary as the need arises allow us to support quick
iterations of layout editing and design-rule checking.

4. CONCLUSIONS

In our effort to integrate VLSI design tools, we have found several useful applications of database
concepts. Mbodeling the processing technology by a relational schema and retrieving the
information via relational queries makes the tools independent of changes to database contents. As
the Vdd system evolved, we had the need to augment the technology database. These changes were
made without disturbing the existing tools.

The designer is given two options to represent a chip. It can be represented by a layout language
or a design database. Translators are provided to map between the two representations.

The language representation is useful for tools that generate layouts automatically. The database
representation is useful if the designer engages in interactive layout design. In this case, quick
response time, efficdent storage management, and reliable updates to the chip description can be
achieved by implementing a design session as a database transaction.

Acknowledgement

We would like to thank the other members of the Vdd design team: Jack Fishburn, Peter
Honeyman, and Paul Rubin. Fishburn implemented the interactive design-rule checker and also
built several technology databases. Honeyman implemented the interface to Weinberger’s B-tree
package. Rubin programmed the relational software for the technology database.

REFERENCES

(Bell] C. G. Bell and A Newell, Computer Structures: Readings and Examples,
McGraw-Hill computer sdence series, McGraw-Hill, New York, 1971.

[Bose] , A K. Bose, B. R Chawla, H K. Gummel, "A VLSI Design System,” IEEE
1983 International Symposium on Circuits and Systems Proceedings, pp. 734-739,
1983.

[Chu] K.-C. Chy, J. P. Fishburn, P. Honeyman, Y. E. Lien, "Vdd - A VLSI Design
Database System,” Proceedings, 1983 ACM-SIGMOD Database Week, pp. 25-37,
May 1983.

[Fowler] B. R Fowler, "XYMASK," Bell Laboratories Records, Vol. 47, No. 6, pp. 204-
209, July 1969.

[Johnson] S. C. Johnson, private communication.

[Katz] R. H Katz and S. Weiss, "Transaction Management for Design Databases,”
Technical Report, Computer Sdence, University of Wisconsin, 1983.

[Mead] C. A Mead and L. A Conway, Introduction to VLSI Systems, Addison-Wesley,

Reading, Mass., 1980.

25

Revision Relations
Maintaining Revision History Information

Mark Haynie
Karl Gohl
Amdahl Corp.

ABSTRACT

This paper describes the use and implementation of revision rela-
tions. Revision relations allow revision history information to be
maintained in a relation. The design presented here has several
advantages over similar ideas in both speed and storage require-
ments.

1. INTRODUCTION

The need for revision history information and versioning control in certain
applications is described in [HAYN81]. 1In that paper, the Relational/Network
Hybrid data model describes how several instances of a particular relation
definition can exist as separate entities. Instances of relations all contain
the same type of informatin (say, interconnection information in a computer
system) but the data is divided on functional boundaries (say, the chip level
of that system). This method is fine when storing information about different
chip designs but may not be optimal for keeping track of versions of the same
chip. Revision two of an integrated circuit will, in all probability, look
the same as revision one with a few interconnect changes. Revision relations
are proposed to allow many revisions (versions) of a relation to be stored in
a single physical relationm.

Hypothetical relations described in [STON81, WOOD83] are unsuitable for this
task in that they are geared primarily for '"what if'" changes to a database.
They can be used to debug applications on live data without fear of corrupting
the database. Used in this way, one usually works with level one hypothetical
relations (based on actual relations) or, possibly, level two hypothetical
relations (based on a level one hypothetical relation) but, rarely much
further. To use this construct for version control each level 1l..n of a
hypothetical relation set must be applied in order to archive the nth version
of the relation.

Two requirements for revision relations are fast retrieval at any revision
level and that control constructs in the form of extra attributes defined on a
relation be kept at a minimum. The wusage pattern of revision relations,
unlike hypothetical relations, is that changes are performed at the highest

26

revision only and queries are performed at any level. This restriction is not
strictly enforced, however. Like hypothetical relations, once a tuple has
been changed at level n, changes at levels < n cannot affect tuples at levels
>= n. A final requirement is the ability to view all revisions as a single
composite relation. This may be important to the app Z tion that wishes to
see the-changes between revisions as opposed to the data at a particular revi-
sion.

2. REVISION RELATION STRUCTURE

2.1 COMPONENTS

All revisions of a particular relation are stored in a single relation. All
tuples of a revision relation have two new column definitions, @revin and
@revout. @Revin contains the revision number for each tuple at which it
became effective. @Revout contains the revision number of when the tuple has
been obsoleted. (@Revin and C@revout are normally invisible to the user:
selecting "all" the columns of a relation in a query will not print these.
Data manipulation operations on revision relations will automatically modify
the @ columns appropriately and queries will use the @ columns to retrieve
only those tuples requested by the user at a certain revision level.

The figure below depicts a personnel database at revision one.

cmp

name | dept | @revin | @revout
Diana 16 1 NULL
Mark | 16 ' 1 ' NULL

Each tuple has a @revin of | (the revision at which it was added) and a
@revout of NULL (to signify that it is applicable for all further revisions).
If new employees are hired during revision 2 of the database the relation may
look like:

emp

name | dept | @revin | @revout
Diana 16 1 NULL
Mark 16 1 NULL
Ken 16 2 NULL
Hanfei 16 2 NULL

27

- 2.2 RETRIEVAL

Queries made to the database are qualified with the revision number.

select * ' (1)
from emp using <1>;

will retrieve only those tuples in effect at the time revision one modifica-
tions were made (<Diana,l16>, <Mark,16>). [The <1> is a symbolic representa-
tion of revision number specification. Actual format in our system 1is
explained later.]

select * (2)
from emp using <2>;

will print the name and dept fields of the emp relation reflecting all modifi-
cations up to and including those performed at revision two (<Diana,l6>,
<{Mark,16>, <Ken,16>, <Hanfei,l16>). Retrieval operations on revision relations
are implemented like view expansion on base relations. Expression (2) is actu-
ally modified by the system to

select name, dept (3)
from emp
where (@revin <= 2) and
((@revout > 2) or
@revout = NULL));

2.3 DELETES AND UPDATES

Deletes to revision relations are actually performed by changing the @revout
column. The operation of firing employee Mark

delete emp using <2> (4)
where name = "Mark’;

and transferring Diana from department 16 to 12

update emp using <2> (5)
set dept = 12
where name = ‘Diana’;

during the revision two time frame would cause the composite relation to look
like:

28

emp

name | dept | @revin | @revout
Diana 16 1 2
Diana 12 2 NULL
Mark 16 1 2
Ken 16 2 NULL
Hanfei 16 2 NULL

Queries on revision one will continue to see the old revision one data,
expression (1) will still retrieve (<Diana,l6>, <Mark,l16). Expression (2)
will still be modified to (3) but now retrieves (<Diana,l12>, <Ken,l6>, <Han-
fei,16>).

The ability to view the composite revision relation is possible by turning off
the query modification which normally occurs when a particular revision is
referenced. This allows a user to look at only the changes between revisions
or all data in all revisions. Applications must be aware of the @revim and
@revout columns when using revision relations in this way. To print out all
the tuples (the old values) that were changed at revision two, one may code:

select * (6)
from emp
where @revout = 2;

3. IMPLEMENTATION

Revision relations are drastically different from regular relations and there-

fore the four basic database operations select, insert, delete and update must
be enhanced to handle them.

3.1 INTEGRATION WITH THE HYBRID MODEL

The Taco database management system is an implementation of the Hybrid data
model [HAYN83b]. In this model, access attributes are the mechanism for
determining which of possibly many relational instances are to be used for a
particular database operation. Access attributes for a relation are stored in
another relation (a "control" relation), whiéh usually contains history infor-
mation. The access attribute and control relations constructs are used also
for differentiating between revisions. Further, revision relations are
dynamic relation instances in Taco so many instances of revisioned tables may
exist simultaneously.
The following database contains information on chip interconnection (net)
information.

29

control

pn | rev | owner | netsaa
123 1 harry @1-1
123 2 harry @1-2
124 1 george @2-1
124 2 george @2-2
@1: nets @2: nets
netno| cpname |@revin|@revout netno| cpname |@revinj@revout
1 blkl.cpl 1 2 1 blk4.cpl 1 NULL
2 blk2.cp2 1 NULL 2 blk9.cp2 2 NULL
3 blk3.cp3 1 NULL 3 blk8.cpl 2 3
4 blké.cph 2 NULL 3 blk8.cpl 2 3
Figure 1. Sample Interconnect Database using Revision Dynamic Relations
3.2 DATA DEFINITION

To define a revision dynamic relation one includes the revision keyword in the
Taco define statement:

define revision table nets{netno(integer), (7
cpname(char(9)));

An instance of a revision table is created the same way as a dynamic table --
the create keyword being inserted into the access attribute column.

insert into control(pn, rev, owner, netsaa): (8)
<126, 1, “fred’, created;

The create keyword will create revision one of the instance. Deleting all the
access attributes to a particular revision relation will remove the instance.
The next revision (two in this case) can be created using a built in function.
The insert statement

insert into control(pn, rev, owner, netsaa):
select 126, 2, “fred’, nextrev(netsaa) 9)
from control
where <pn,rev> = <126,1>;

will take the access attribute of revision one and make a new access attribute
with the next revision (via the nextrev built in function) by inserting a new
tuple into control. Modification of revision two of the relation will be seen
by revisions two and higher ~- revision one will continue to see the old data.

3.3 INSERTION

Taking the example database in fig. l, any references using the access attri-
bute corresponding to <pn,rev> of <123,1> will reference revision one. For
example, data can be entered into revision one using normal data manipulation

30

statements:

insert into nets using (select netsaa
from control (10)
where <{pn,rev)> = <123,1>)
(<1, ‘blkl.cpl’>, <2, ‘blk2.cp2’>, <3, 'blk3.cp3’>);

The access attribute used to reference the revision table instance holds the
revision number as well. That number is inserted into the @revin column of
each tuple inserted. The @revout column always is set to null for new tuples.
The statement:

insert into nets using (select netsaa
from control (11)
where <pn,rev> = <123,2>)
<h, “blkb.cph’>;

results in the tuple <4, “blk&4.cpt’, 2, nulld> actually being inserted.

3.4 RETRIEVAL

Retrieval of data from revisions is performed by modifying the query to view
only a single revision. The revision number is encoded in the access attri-
bute so a query entered as

select *

from nets using (select netsaa (12)
from control
where <pn,rev> = <123,2>)

where netno > 3;

is modified to look like:

select *
from nets using instance# (13)
where (netno > 3) and

(@revin <= rev# and

(@revout > rev# or @revout = NULL));

Where instanceff is the dynamic instance number portion of the access attribute
returned by the using clause query and rev# is the revision number of the
access attribute. In our implementation, NULL is represented by a large posi-
tive integer when stored in integer columns such as @revout. This means that
the clause (@revout > rev#) will produce a true value when @revout is NULL, so
the clause (@revout = NULL) may be eliminated.

Referencing all revisions of a relation is implemented using a built in func-
tion to turn an access attribute of a particular revision into an access
attribute of all revisions.
select * (14)
from nets using (select allrevs(netsaa)
from control
where <pn,rev> = <123,1>);

31

The allrevs function simply modifies the rev# portion of the access attribute
to 0. An additional expression in the where clause must check for this case.
The expression (l4) is, therefore, modified to be

select *
from nets using instanced# (15)
where (netno > 3) and

((@revin <= rev# and @revout > rev#) or

revit = 0);

3.5 DELETION

Deletion of tuples in a revision relation is actually a two step process. The
statement

delete nets using (select netsaa (16)
from control
where <pn,rev> = <123,2>)

where cpname = “blk2.cp2”;

will be modified as with queries to select only the tuples in effect at the
time of revision two. Then an update operation rather than a delete operation
is performed to change the @revout column to the value of the revision number
of the access attribute used to access the nets relation. The one exception
to this is when the @revin and @revout columns are the same -- in which case
the tuple is really removed. (When a tuple is added and deleted during the
same revision there is no way to access it since the where clause modification
performed during queries will never select that tuple. Thus, it might as well
be removed from the table.)

3.6 MODIFICATION

An update operation on a revision table translates to an update and an insert.
A statement such as

update nets using (select netsaa (17)
from control .
where <{pn,rev> = <123,2>)

set cpname := ‘blkl7.22°

where netno = 1;

first gets modified such that the revision two is acted upon. For each tuple
that is a candidate for modification, the tuple (before modification) is rein-
serted into the relation but, with the @revin field set to the current revi-
sion (two in this case) and the @revout field set to NULL. The original tuple
is then modified according to the set clause and the @revout column is set to
the current revision number (two in this case). As with deletion, a special
case is made for updates to tuples inserted or updated previously at the same
revision level. A standard update operation with no modification of the
@revin or @revout columns is performed in this case since to do otherwise
would prevent the tuple before modification to be seen by the user. (In

32

standard revision relation retrieval mode, that is. "Allrevs" retrieval mode

could see these changes but is was felt the current solution made better
sense).,

4, OBSERVATIONS ~-- ALL REVISION PROCESSING

For applications operating on the composite relation ("allrevs' mode) certain
guidelines must be followed in order for applications to determine the old and
new tuples of an update set. Following an update of a single tuple in a revi-
sion relation we have two tuples stored in the composite relation, the data
before modification (the @revout column indicates the revision number) and the
data after modification (the @revin column contains the same revision level).
In order for querying processes to later match up which new tuples belong with
which old tuples an unchanging primary key must exist for the relation.

In our first set of employee examples above we assume that name is an unchang-
ing primary key. However, if changes to the primary key of revision relations
are allowed to occur (if an employee marries and changes his/her name, for
instance) then an additional mechanism is needed to match old and new tuples.
A tuple number column may be added to the relation for this purpose. A tuple
number is unique for each logical tuple in the relation (although in the com-—
posite relation there may be several tuples with the same tuple number, all at
different revision levels). Taco, however, makes no attempt to maintain these
numbers automatically.

REFERENCES

[ASTR76] Astrahan, M.M., et. al. "System R: Relational Approach to Database

Management." ACM Trans. on Database Systems. 1:3, September, 1976,
pp. 189-222,

[GOHL83] Gohl, K.W. DA Architecture, Amdahl Working Document P/N D3 114668,
1983.

[GOHL82] Gohl, K.W. Reducing Storage Requirements for DA, Amdahl Technical
Reference Memorandum, 1982.

[GRAY81] Gray, J., et. al., The Recovery Manager of the System R Database Com-
puting Surveys 13:2, June 1982.

[HAYN8B1] Haynie, M.N. "The Relational/Network Hybrid Data Model." Proc. 18th
Design Automation Conf., 1981, pp. 646-652.

{HAYN83a] Haynie, M.N. '"The Relational Data Model for Design Automation

33

Databases." Proc. 20th Design Automation Conf., 1983.

[HAYN83b] Haynie, M.N., Taco User’s Guide, Amdahl Software Specification P/N
819043-600, 1983

[STON81] Stonebraker, M., "Hypothetical Data Bases as Views," University of
California - Berkeley Memorandum No. UCB/ERL M81/27, 1981.

[WOOD83] Woodfill, J. and M. Stonebraker, "An Implementation of Hypothetical

Relations," University of California - Berkeley Memorandum No.
UCB/ERL M83/2, 1983.

34

Database Management and Computer-Assisted VLSI Fabrication

Randy H. Katz
Computer Science Division
Electrical Engineering and Computer Science Department
University of California, Berkeley
Berkeley, CA 94720

Abstract: We discuss the data management issues for a computerized manufacturing facility.
Berkeley’s new research facility for integrated circuit fabrication, capable of manufacturing VLSI
complexity circuits, is being used as a testbed for computer-assisted manufacturing. Projects
include: applied expert systems for fabrication line diagnosis and repair, automated laboratory
notebook, real time computer-based machinery control, man-machine interaction in the manufac-
turing environment, and automatic scheduling of machine use and maintenance times. The
INGRES relational database management system is currently being used for the management of
some of the fabrication line data.

1. Introduction

As engineers (software and hardware), we typically think of “design” as the activity that
turns an tdea into an engineering prototype. An equally important activity is manufacturing: tak-
ing an object’s design specification and reproducibly creating instances of it, usually in large quan-
tity.

In this paper, we describe the data management requirements for the integrated circuit
fabrication line. Surprisingly enough, the very machinery that has made the microelectronics
revolution possible has yet to become directly controllable by computer! However, the situation is
beginning to change. The goal is to improve circuit yield, quality, and throughput for VLSI cir-
cuits by improving the control of the process and making it more predictable. The first step is
have the plant description available on-line, and to be able to track the state of the line at any
point in time.

The information about a manufacturing facility includes machine descriptions (what they
are and how to use them), machine histories (usage and maintenance), process descriptions (the
set of machine control sequences), inventories, environmental monitoring, and personnel informa-
tion. An objective is to understand the correlations of the many variables with circuit yield. The
interrelationships among the data are complex, and lead to a challenging database design prob-
lem.

The organization of the paper is as follows. In the next section, we give a more detailed
description of what constitutes the computer-assisted fabrication line. A description of the kinds
of data found in this environment is given in section 3. With the description of the manufactur-
ing machinery and processes on-line, more intelligent "adaptive” applications are possible, and
one such application for fault diagnosis is described in section 4. Section 5 briefly describes exten-
sions to database systems that should be incorporated in the next generation systems to better
support such applications. Section 6 contains the summary.

2. The Computer-Assisted Fabrication Line

The integrated circuit fabrication line is a marvel of technology. The ”tooling” of the
manufacturing process is a collection of masks containing geometric shapes. The masks specify
the patterning of a three dimensional structure on the silicon wafer. Current technology is

approaching one micron feature sizes, with research efforts striving for reproducible submicron

“resolution. Special equipment is used for both mask making and wafer growth and preparation.
The wafers are submitted to a complex sequence of chemical and physical processes to transfer
the specification of the circuit from the masks to the silicon surface. The control of the process

35

completion.

The final step is to attempt to learn from the faults. Newly discovered correlations should
be recognized by the system. This may involve such things 2s more frequent maintenance or
tighter environmental controls.

5. Implications for Next Generation Databases

For forcasting and for discovering correlations among laboratory variables, the data must be
organized for time-series analysis. The notion of time must be embedded in the database system.
Much of the analysis is based on pattern recognition techniques, and support for statistical queries
will be necessary.

Monitors/trigger mechanisms must become adaptive. Triggering conditions can change over
time as new relationships among the variable are discovered. For example, if overdue mainte-
nance is correlated with reduced yield, the trigger that schedules maintenance should be changed
to trigger more frequently.

Since the comparison of observed and expected results is frequent, the database should sup-
port convenient encodings of the expected results in the form of simulations. Thus, some data is
stored in the form of programs that can generate the needed data on demand.

These systems will have to be made highly available. An automated factory is expected to
be kept busy around the clock, and outages of service will not be tolerated. Much of the environ-
mental monitoring is related to safety, futher emphasizing the need for twenty-four hour availa-
bility.

8. Summary

Engineering databases are more than design databases, they also include manufacturing
data: machine descriptions, inventories, environmental monitoring, process descriptions, and per-
sonnel. An accurate description of the process line, the process, and the laboratory environment
in order to control the process line, including the ability to adapt to faults or unexpected condi-
tions. The computer-assisted fab line provides an excellent testbed environment for coupling
intelligent systems, such as fault diagnosis, with very large databases. These problems are
currently under study at UC Berkeley and several other universities.

7. References
[OSSH83|] Ossher, H. L., B. Reid, "Fable: A Programming Language Solution to IC Process Auto-

mation Problems,” Proc. Sigplan '83 Symp. on Prog. Lang. Issues in Software Systems,
San Francisco, CA, (June 1983). Available as SIGPLAN Notices, V 18, N 6, (June 1983).

38

Engineering Data Management Activities
Within the
IPAD Project

H. R. Johnson

Boeing Computer Services
Seattle, Washington

ABSTRACT

This paper summarizes current research and development activity in engineering data
base management systems by the IPAD* Project at The Boeing Company.

1.0 INTRODUCTION

In 1976, NASA awarded The Boeing Company a contract to develop IPAD. The specific
goal of IPAD was to increase productivity in the United States aerospace industry
througn the application of computers to manage engineering data. An Industrial
Technical Advisory Board (ITAB) was established to gquide the development of
IPAD[1] . Members of ITAB represent major manufacturing (aerospace and other) and
computer companies. More recently, IPAD has also received funding from the Navy to
investigate computer-aided manufacturing.

IPAD has considered applying data base management (DBM) technology to all phases of
the product life cycle: design (CAD), manufacturing (CAM) , and
operations/maintenance. IPAD has also investigated the application of data base
management technology to the integration of processes within and between all phases
of the life cycle through access to a common data base management facility.

In this connection, IPAD has analyzed engineering design methodologies, identified
requirements for integrated, computer-based systems for managing engineering data,
and developed software to demonstrate these concepts. Results have included
development of the RIM and IPIP data base management systems (DBMSs) and a network
facility for multi-host, intertask communication. See [2] for a comprehensive
discussion of IPAD objectives and products.

An earlier report 3 published in this journal provided brief descriptions of the
RIM and IPIP DBMSs and documented briefly some of the requirements identified for
engineering data base management. Consequently, this paper treats these subjects
in less detail and considers, as well, current activities which make use of RIM and
IPIP.

These include work on the following:

0 Distributed processing (including DBMS file transfer) in a heterogeneous
hardware/software (DBMS) environment.

0 Distributed data base management in the same heterogeneous environment.

*[PAD (Integrated Programs for Aerospace-Vehicle Design) development is performed
by The Boeing Company under NASA Contract NAS1-17555. IPAD software and
documentation may be obtained from the IPAD Program Management Office, The Boeing
Company, P.0. Box 24346, Seattle, WA 98124, M/S 73-03.

39

0 Further geometry applications utilizing IPIP structure (complex object)
handling capabilities.

0 A stand-alone geometry management utility supported by the SQL DBMS which
incorporates structure processing capabilities currently embedded in
[PIP.

2.0 REQUIREMENTS FOR ENGINEERING DATA MANAGEMENT

Early in the IPAD contract, the engineering design process was analyzed, and a
number of requirements for engineering data management were identified (3,4,5,6].
The foliowing briefly describes just a few of these requirements.

The system must support definition and manipulation of geometry data and provide
for interfacing this data with design drafting and graphic display systems.

Multiple levels and styles of data description are required to provide for
differing data requirements and for data independence to support a variety of users
in a dynamic environment. Specifically, the network and relational data models are
required.

The system must support logical partitioning of a data base into "datasets" which
figure in restricting data access, concurrency control, configuration control
(including versioning), and data archival.

The system must support distribution of engineering data across a heterogeneous
network of computers encompassing multiple DBMSs supporting the data models noted
above.

3.0 THE IPAD/RIM DATA BASE MANAGEMENT SYSTEM

The IPAD/RIM (Relational Information Management) DBMS was developed on the IPAD
Project to explore relational data base concepts prior to the development of IPIP.
RIM has been enhanced by the University of Washington and The Boeing Company in
cooperation with ITAB and the IPAD Project.

A RIM data base may be accessed in read mode by multiple users. Access to the data
base is restricted to a single user when it is opened for update.

RIM supports a single level of data definition. Relations are organized into
schemas. Schema definition may be entered and modified interactively through a
menu interface. Rules on data relationships within and between relations may be
declared. Rules can be used as constraints, although the user may turn rule
checking off and on. RIM supports matrices, vectors, and real data types. It also
supports a tolerance capability which supports qualification by user-specified
approximation of equality.

RIM offers both algebra-level (including join) and calculus-level (excluding join)
data manipulation commands through an interactive interface, along with facilities
for formatting retrieved data. RIM supports the calculus-level data manipulation
commands for FORTRAN programs via subroutine calls.

RIM is written primarily in FORTRAN 66, but will compile in FORTRAN 77. It is
available on several hosts. More than 300 copies of RIM have been supplied to

40

universities and corporations. RIM is used on a daily basis in many of these
organizations.

Development of IPAD/RIM has ceased. However, it has served as the basis of
commercial OBMSs (see [7] for example), for mainframes, minis and micros, and has
oeen incorporated in turnkey graphic systems.

4.0 THE IPIP DATA BASE MANAGEMENT SYSTEM

The IPIP (IPAD Information Processor) DBMS is intended to manage engineering data
in CAD and CAM environments. To this end, IPIP supports multiple data models,
muitipie levels of schemas, and concurrent, multiple-user, multi-thread access
througn multiple application interfaces in a distributed environment. A single-
user, single-thread version of IPIP is also available.

Scientific data types and arrays are supported. Composite objects called
structures (complex objects), which may consist of multiple tuples from multiple
relations, may be declared and manipulated as a single relation to manage geometry
and other scientific data. Data may be partitioned logically into datasets to
support concurrency control, access restriction, versioning, releasing, and
archival procedures. See [8] for a general description of IPIP.

IPAD has developed a general purpose network facility for intertask communication
in a heterogeneous, distributed processing environment. The IPAD network has been
implemented in accordance with ISO specifications of layered protocol. Access to
IPIP and IPIP-managed data is via this network. See [91] for a general description
of the network facility. IPIP and the network are written primarily in Pascal.
The IPAD network is being replaced in this configuration by recently developed
NETEX from Network Systems Corporation.

Some intended IPIP features are not available at this time. For example, the
latest version of I[PIP does not support versioning, releasing, or archival aspects
of datasets nor the MODIFY command for structure-defined relations. Application
interfaces are limited to FORTRAN programs. IPIP proper, and CDC and DEC FORTRAN
precompilers execute on CDC CYBER series machines (operating under the NOS
operating system). DEC VAX 11 FORTRAN programs against the CYBER-resident data
base may be submitted via the IPAD network from a VAX 11/780, and then executed on
the VAX, calls to IPIP being forwarded to the CYBER for execution and results being
returned via the network to the VAX.

CDC has announced IPIP as a class 3 product. Migration of IPIP to other hosts is
under consideration.

4.1 Data Architecture

There are three types of IPIP schemas: internal, logical, and mapping. The IPIP
internal schema corresponds to the internal schema of the ANSI DBSG [10] and the
storage schema of the CODASYL DDLC [11]. IPIP logical schemas correspond to ANSI
conceptual and external schemas and also to CODASYL schemas and subschemas. The
IPIP mapping schema is used for mapping between schemas of the other two types.

An [PIP data base is described by a single level of internal schemas and one or
more (i.e., n, n2>1) levels of logical schemas mapped to underlying logical and/or
internal schemas. An application program may be written against logical schemas at
any level.

41

Logical schemas can be configured in the ANSI and CODASYL tree structure
arrangement to provide for centralized definition of a data base through a
comprehensive, base-level logical (conceptual) schema. Multiple tree
configurations of logical schemas can be coupled by mapping one logical schema to
multiple logical schemas or by invoking multiple logical schemas in a single
application program or session. This provides for decentralized definition of a
data base or of a federation of data bases {12]. This coupling capability may be
used for a variety of purposes ranging from integration of existing data bases with
minimal change to data definition, to decentralization of data administration over
muitiple clusters of shared and/or private data.

IPIP provides for preruntime binding of programs and logical schemas. Programs may
be bound at runtime regardless of whether underlying schemas have been bound.

4.2 Support for Multiple Data Models

A single Logical Schema Language (LSL) and a 0Oata Manipulation Language
(OML) [13,14] support both the relational and network data models. These languages
are based on subsets of the 1978 CODASYL OOL {11] and 1979 FORTRAN
DML [15] specifications. Included are those CODASYL constructs supporting value-
based sats; i.e., those for which relationships are determined by states (value or
null) of corresponding attributes in owner and member records. Constructs specific
to other set selection criteria are excluded.

The CODASYL INSERTION and RETENTION <clauses which specify constraints on
association/disassociation of members with/from owners are retained and extended
with respect to the handling of null attributes and dovetailed with an IPIP
extension (MEMBERSHIP clause), which provides for member records to be put- into
ownerless ‘potential' set occurrences and to be associated automaticaly by IPIP
with an owner when it is created as well as providing for the CODASYL option where
owner must exist whenever member does (referential integrity in relational
terminology). IPIP extensions include explicit clauses governing IPIP propagation
(both from owner to member and member to owner) of record deletion. The CODASYL
SOURCE clause which provides for system propagation of attribute state from owner
to member is extended to provide for bidirectional propagation.

For more direct support of the relational data model, an optional FOREIGN KEY
clause is included in the LSL using syntax which retains the relational flavor of
the concept, but parallels set syntax. Clauses were included to specify insertion,
retention, and membership options in terms of attribute states. Propagation of
record (tuple) deletion and attribute state may be specified relative to foreign
keys as well as to sets.

The IPIP DML provides for operations relative to foreign keys (by name) paralleling
CODASYL operations relative to sets. A WHERE phrase was incorporated into the IPIP
FIND, FETCH, MODIFY, and DELETE commands to support specification of more general
conditions for many-record-at-a-time operations. Record name in a DML command may
be qualified by a cursor name to support program definition of multiple relations,
concurrently, over a single schema-defined relation.

A DATA MODEL clause was included in the LSL to govern which data model dependent
constructs (i.e., set, foreign key, or both) may be used in a particular schema.
'RELATION' and 'RECORD' are treated as synonyms in IPIP languages, and may be used
interchangeably regardless of data model specified. A DOMAIN clause, which is
included in the LSL and ISL (internal schema language) to provide for user-

42

-y

declaration of data types, may be used with either data model. It is intended that
in future releases of IPIP that regardless of data model specified, DML commands
across relations (records) may be expressed either in the CODASYL style of
referencing schema-declared relationships (e.qg., FETCH items of A, items of B VIA
(name of) schema-declared set or foreign key relating A and B; where aj=bi,...ap=by
is the criteria defining that relationship) or in the relational style of inline
specification of relationship criteria (e.g., FETCH items of A, items of B WHERE
a1=b1,...an=bpn). The full relational join is not available at this time.

Tne ISL resembles the LSL as nearly as possible. This unified approach to support
for the network and relational data models is described more fully in [8,16].

4.3 Datasets and Structures

An IPIP data base is partitioned into datasets. A dataset is declared implicitly
on first-user access. Dataset intersections with relations are the units of
locking data for read/update. Access by dataset is supported by IPIP indexing (B-
tree). I[PIP indexing and address conversion structures have been designed to
support access to versions of datasets while minimizing physical redundancy of data
across versions. Datasets may be used in specifying data to be processed by a
prototype facility for transferring data between IPIP and RIM data bases.

Composite objects called structures (complex objects) are supported to manage
geometry and other scientific data. A structure is defined in a logical schema to
consist of tuples from a tree or network of relations as related by foreign keys.
A structure may also be defined in terms of records and sets. A relation/record in
one 1logical schema may be mapped to a structure in another schema. Such a
relation/record is said to be structure-defined. A structure is manipulated
(retrieval and update) as an entity through operations on a structure-defined
relation; the same commands used on nonstructure-defined records.

A user accesses structure-defined data as an entity (e.g., surface, curve,
segment). A single-user command may result in IPIP processing of multiple
underlying tuples as specified by schema-declared constraints and propagated
actions for relations and foreign keys within the structure. On store, IPIP
generates values for unique keys when the user does not. IPIP sequences retrieved
data according to schema specification for inclusion in the structure-defined
record. User productivity 1is enhanced through support of entities which are
natural to his application. Data integrity is enhanced through definition of
structure prccessing in the schema, as opposed to complicated command sequences
being embedded in numerous other applications.

The [IPIP structure processing facility was developed originally to support
management of geometry data. The semantics of a particular geometry representation
may be declared via structure declarations. Thus, IPIP is aware of and can
maintain the semantics of the geometry. The schema may be revised or extended as
appropriate. The structure processing facility is independent of any particular
geometry representation. It is also applicable to numerous applications including
parts explosion and financial data. See (17,18,19] for more details on structure
processing and its application to geometry data.

5.0 IPAD NETWORK EXECUTIVE SYSTEM (INES)

IPAD is currently implementing a network executive system. INES provides an
environment on a heterogeneous network of computers in which a task closely

43

reflects the user's concept of a unit of work. This environment includes a common,
uniform, friendly, man-machine interface; common task definition; concurrent task
execution control; and design architecture supportive of task or hardware changes.
Code will be developed at both layers 6 and 7 of the ISO model (presentation and
application layers).

The prototype environment includes a CYBER 835, a VAX 11/780, and an IBM 4341
connected by NSC NETEX software and Hyperchannel hardware. The RIM DBMS s
resident on the VAX, IPIP on the CYBER, and SQL on the IBM.

Plans for fiscal year 1984 calis for functionality to be in place for sending and
receiving files, transferring relational data bases between the machines and DBMSs
noted above, and -network configuration control. Follow-on work includes
development of a task definition language along with appropriate processors. Users
will then be able to define tasks to be performed, but execution details will be
transparent to them. Tasks may be performed on machines different from their
origin.

6.0 [IPAD DISTRIBUTED DATA BASE MANAGEMENT FACILITY (IDF)

Work has begun on a distributed data base management facility, IDF, which provides
for data base management in a CAD/CAM environment consisting of a heterogeneous
network of computers encompassing multiple DBMSs supporting a variety of data
models. Initial prototyping will be conducted in the IPIP/CYBER-SQL/IBM
environment described in Section 5.0. Work on IDF addresses the following
objectives. See [20,21,22] for more details on IDF.

6.1 Support Requirements of the CAD/CAM User Environment

The system must provide facilities to support traditional engineering requirements
such as scientific data types, geometry, datasets, versions, and configuration
control.

6.2 Encompass Heterogeneity of Hardware and Software

The typical product 1life cycle is supported by a heterogeneous mix of computers
supporting multiple DBMSs and a variety of data models. A data management facility
spanning these sites provides for integration of the applications that support the
1ife cycle.

6.3 Incorporate Existing Enterprises

As time passes, the perception of a computing enterprise changes. What has been
viewed as several enterprises, each supported by a centralized data base and an
attendant application suite, comes to be viewed as a single, more encompassing
enterprise. In this view, the multiple coexisting data bases and application
suites together form a basis for the expanded enterprise. Existing data and
applications must continue to be supported with minimal change (i.e., data or
program conversion). It must be possible to redistribute and /or replicate
existing data to better support the expanded enterprise--again, with minimal
impact; and it should be possible to write new applications which span what were
formerly distinct data bases.

6.4 Support of Relational, Network, and Hierarchical Data Models

Most DBMSs commercially available or in the public domain support either the
relational, network, or hierarchical data models. Many CAD/CAM data bases have

44

been or will be implemented using these products. To support existing enterprises,
[DF must support these three data models.

6.5 Provide a High Degree of Site Autonomy

The facility must respond to local users even when remote sites are unavailable,
providing access to data on those sites which remain available. This requires that
all centralized dependencies be avoided in the distributed environment. Such
things as dictionaries, scheduling, and deadlock detection must be implemented in a

decentralized manner.
6.6 Provide Transparency of Data Location/Replication

In a dynamic organization, access patterns change over time. Users must be
insulated from the need to be aware of where data is located and/or repiicated.
This provides data administration the freedom to relocate and replicate data to
enhance system performance without impacting the user or his programs.

6.7 Provide User-Friendly Interfaces

Ease of use has been and will continue to be paramount in obtaining widespread
acceptance of any new technology. Users muct be able to invnke IDF facilities in a
convenient manner. Aspects of convenience include simplicity of use, familiarity,
and uniformity. Simplicity involves easy-to-use interfaces, such as forms or
menus, along with help facilities. Such facilities should accommodate novices as
well as experienced users. Familiar interfaces require no additional training of
users, and support existing applications without modification. Uniformity allows
users to work at multiple sites without having to deal with multiple data models.
User friendliness is relative to particular user/application mixes. Regquirements
may vary from user to user of a single system.

6.7.1 Support DBMS-Native Interface

In accordance with the user-friendly aspect of familiarity, IOF must support, with
minimal change, the DDL/DML interfaces of those DBMSs which may be linked into an
IDF network.

6.7.2 Support Configurable User Interfaces

In accordance with the user-friendly aspects of familiarity and uniformity, IDF
must allow user interfaces to be configurable on an individual user basis. It
should provide facilities to confiqure user interfaces from a common data model
(DDL/DML), to be used at every site, to multiple data models, to be used at
designated sites. Thus one user might, for example, use the SQL DDL/DML at any
site, while another wuser might wuse the IPIP DDL/DML across the network.
Alternatively, user interfaces might be configured so that the DDL/DML available to
users might vary from site to site.

6.8 Support Configurable Data Administration

To accommodate various organizational approaches to management, the system should
provide facilities for configuring data administration from a centralized to a
federated function. Configurability provides for various degrees of 1local
administrative autonomy. This capability complements the facility to incorporate
existing enterprises (see Section 6.3). tach existing enterprise has an
established data administration function. One attractive approach to data
administration for the merged enterprise is a federation of these data

45

administration functions. Another approach would be to merge these into a single,
centralized data administration function.

6.9 Provide an Open System Architecture

A nultitude of data base management systems and data modeis are available.
Initially, IDF can incorporate only limited subsets of these. [IDF must provide an
open system interface to allow future inclusion of additional DBMSs/data models.

6.10 Support Homogeneous Distributed Systems as a Special Case

Special support should be provided in the case where an IDF facility encompasses
instances only of a single DBMS. Support of the DDL/DML native to this DBMS is one
example of this. In the area of performance, data model translation might be
circumvented.

7.0 FURTHER GEOMETRY APPLICATIONS

The IPIP structure processing facility is independent of any particular geometry
representation. However, IPAD has developed schemas to model geometric objects
using the rational Hermite representation. These schemas support points, segments,
and objects (groups of entities). Segments supported by these schemas include
Tines, conics, rational cubics, and quintics. These schemas are being enhanced to
support composite curves, pnatches, tabulated cylinders, ruled surfaces, and limited
engineering drawing layouts.

[PAD has written translators to retrieve geometry stored in an IPIP data base,
write it to a fiie in IGES format; and conversely, to store data from an IGES file
to an IPIP data base. Currently, the translators are limited to points, lines,
circular arcs and objects, though they are being enhanced to handle additional
entities.

8.0 STAND-ALONE GEOMETRY MANAGEMENT UTILITY

IPIP facilities for manipulating geometry data (maintaining owner-member
relationships, propagating attribute states, and tuple deletion, etc.) are being
packaged in a utility which uses the SQL DBMS. These facilities are hard coded, in
that they are driven by a utility-supplied schema. Design of the facility is
modular to facilitate its migration to other DBMSs and its extension to support
user-supplied data description.

Activities in this area will include comparison of this DBMS-external utility
approach with the DBMS-embedded approach taken by IPIP.

REFERENCES

1. Swanson, W. E., "Industry Involvement in IPAD Through the Industry Technical
Advisory Board," Proceedings of IPAD National Symposium, NASA Conference
Pub11cat1on 2143 September 1980, Pp. 21-26.

‘2. Miller, R. E., "IPAD Products and Implications for the Future," Proceed1ngs of
IPAD National Symposium, NASA Conference Publication 2143, September 1980, pp.
219-234,

3. Johnson, H. R. and Bernhardt, D. L., Engineering Data Management Activities
Within the IPAD Project," IEEE Quarterly Bulletin on Database Engineering,
Vol. 5, No. 2, June 1982, pp. 2-8.

46

10.
11.
12.
13.
14,
15.

16.
17.
18.
19.
20.
21.

22.

Meyer, D. D., "Reference Design Process," IPAD Document D6-IPAD-70010-D, March
1977.

Southall, J. W., "Integrated Information Processing Requirements," IPAD
Document 06-IPAD-70012-D, June 1977.

Fisher, T. R, McKenna, E. G., Meyer, D. D., and Schweitzer, J. E.,
"Manufacturing Data Management Requirements," IPAD Document D6-IPAD-70038-D,
December 198l1.

“BCS RIM--Relational Information Management System User Guide," Version 6.0,
RIM Document 70101-03-017, July 1983.

Comfort, D. L., Johnson, H. R., and Shull, 0. D., "An Engineering Data
Management System," Proceedings of IPAD National Symposium, NASA Conference
Publication 2143, pp. 145-178, September 1980.

Ives, F. M., Kirkwood, D. M., and Tanner, J. G., "Executive and Communication
Service to Support the IPAD Environment," Proceedings of IPAD National
Symposium, NASA Conference Publication 2143, September 1980, pp. 95-144.

Klug, A. and Tsichritzis, D., Editors, "The ANSI/X3/SPARC DBMS Framework,"
Report of the Study Group on Data Base Management Systems, AFIPS Press, 1977.

CODASYL Data Description Language Committee, "Journal of Development," January
1978.

Heimbigner, D. and MclLeod, D., "A Federated Architecture for Data Base
Systems," Proceedings of the National Computer Conference, 1980, pp. 283-289.

“Data Base Administration User Guide, IPAD Information Processor (IPIP),"
Version 5.0, CYBER/VAX configuration, IPAD Document UM-REL5-200.

"Application Programming User Guide, Interfaceing and Integrating Application
Programs," Version 5.0, CYBER/VAX configuration, IPAD Document UM-REL5-300.

CODASYL FORTRAN Data Base Committee, CODASYL FORTRAN Data Base Facility
Journal of Development, August 1979.

Johnson, H. R., Larson, J. A., and Lawrence, J. D., "Network and Relational
Data Modeling in a Common Data Base Architecture Environment," Sperry Univac
Research Report TMAOO720, Roseville MN, March 1979.

Dube, R. P., Herron, G. J., Schweitzer, J. E., and Warkentine, E. R., "An
Approach for Management of Geometry Data," Proceedings of IPAD National
Symposium, NASA Conference Publication 2143, September 1980, pp. 179-202.

Johnson, H. R., Schweitzer, J. E., and Warkentine, E. R., "A DBMS Facility for
Handling Structured Engineering Entities," Proceedings of Annual Meeting,
SIGMOD 83, Engineering Design Applications, May 1983.

Dube, R. P. and Smith, M. R., "Managing Geometric Information with a Data Base
Management System," IEEE Computer Graphics and Applications, October 1983, pp.
57-62.

Balza, R. M., Beaudet, R. W., and Johnson, H. R., "A Distributed Data Base
Management Facility for the CAD/CAM Environment," Proceedings of IPAD
Symposium II on Advances in Distributed Data Base for CAD/CAM," April 1984.

Johnson, H. R., Beaudet, R. W., Balza, R. M., Baum, L. S., and Nelson, B. W.,
"IPAD Distributed Data Base Management Facility--Functional Specification,"
IPAD Document, February 1984.

Johnson, H. R., Beaudet, R. W., Balza, R. M., Baum, L. S., and Nelson, B. W.,
"IPAD Distributed Data Base Management Facility--Architectural Specification,"
IPAD Document, March 1984,

47

The map introduces a level of indirection that has the following advan-
tages:

- it implements stable identifiers that are not affected by database reor-
ganization;

- it permits the use of small 2-byte identifiers;

- it permits copying a complex object without any relocation other than
adjusting the physical addresses in the map;

- it actually implements an index on non-root identifiers in a very
compact way; and

- it permits getting all the tuples in an object without traversing any
lists.

2.3 Query Optimization

The map also offers an opportinity to expedite the execution of queries
involving .the complex object. We have extended the System R optimizer
[13] to consider the map as an additional access path when generating a
plan for a statement involving a complex object.

One way in which the map can be effective is in evaluating predicates
of the form "X = value" where X is the name of an IDENTIFIER column. The
value consists of a 10-byte identifier. To locate a tuple that satisfies
this tyvpe of predicate, the system first retrieves the map identified by
the 8-byte identifier of the complex object and then finds the desired map

entry using the 2-byte internal identifier. The map entry provides the
TID of the desired tuple.

A second way to use the map is for predicates of the form "Y = value"
where Y is the name of a COMPONENT OF column. The system first locates the
map associated with the complex object, and then, using the 2-byte inter-
nal identifier in the value as the index into the map, finds the TID of the
parent tuple. It fetches the parent tuple, which in turn contains the
internal identifier of the first component tuple which satisfies the "Y =
value" predicate. The first component tuple in turn contains the internal
identifier of the next component tuple, and so on.

A third way of using the map is for predicates of the form "Z = value"
where Z is the name of an INTERNAL REFERENCE column (all references must
be to tuples in the same object, otherwise the EXTERNAL REFERENCE column
type would be used). The system first locates the map. It then sequen-
tially scans all map entries. For each entry corresponding to the
relation of interest, it fetches the tuple to see if the INTERNAL REFER-
ENCE column contains the value shown in the predicate.

2.4 Fetching Complex Objects

Engineering applications tend to require a large volume of data to be
moved from the database into the application's data areas for use in the
design and analysis work. The usual method to accomplish this with a
complex object is to code several nested loops that fetch the root tuple,
‘each of its component tuples, each of their component tuples, and so on,
one tuple at a time until the necessary data have been retrieved. Since

50

the system knows the structure of a complex object, the application should
be able to declare which data it wants from an object. Then the system can
return all the desired data in one request, which in turn can considerably
simplify data area management in the application program; see Figure 2.

EXEC SQL DECLARE CC COMPLEX CURSOR FOR
SELECT CID, CDATA, ->FIRST(INSTANCES), ->FIRST(PATHS)
FROM CELL;
SELECT ISUBCELL, IDATA, ->NEXT, ->PREVIOUS
FROM INSTANCES;
SELECT PDATA, ->NEXT, ->FIRST(RECTANGLES)
FROM PATHS;
SELECT RDATA, ->NEXT
FROM RECTANGLES;
EXEC SQL END COMPLEX;

EXEC SQL BEGIN DECLARE SECTION;

DCL 1 CELLSTR BASED(CELLPTR),

2 CELLID CHAR(10), /* IDENTIFIER x/f
2 CDATA N

2 IFIRST FIXED BIN(15), /* Index FIRST INSTANCES =/
2 PFIRST FIXED BIN(15); /* Index FIRST PATHS #/

DCL 1 INSTSTR BASED(INSTPTR),
ISUBCELL CHAR(10), /* Ref id of another CELL %/
2 IDATA ...,
2 INEXT FIXED BIN(15), /* Index NEXT INSTANCES #/
2 IPREV ~ FINED BIN(15); /% Index PREV INSTANCES #/
DCL 1 PATHSTR BASED(PATHPTR),

N

2 PDATA ...,
2 RFIRST FIXED BIN(15), /% Index FIRST RECTANGLES +*/
2 PNEXT FINED BIN(15); /* Index NEXT PATHS. w/
DCL 1 RECTSTR BASED(RECTPTR),
2 RDATA

2 RNEXT FIXED BIN(15); /* Index NEXT RECTANGLES */

DCL CHAR_VAR1 CHAR(32760) VARYING; /* Buffer 1 */
DCL CHAR VAR2 CHAR(32760) VARYING; /* Buffer 2 */

EXEC SQL END DECLARE SECTION;

EXEC SQL OPEN CC
TEMPLATES CELLSTR, INSTSTR, PATHSTR,RECTSTR;
IF SQLCODE = 0 THEN DO;
EXEC SQL FETCH CC INTO :CHAR_VAR1, :CHAR_VARZ2;
IF SQLCODE ~= 0 THEN CALL HANDLE_ERROR;
END;
EXEC SQL CLOSE CC;

Figure 2: Complex Fetch, Declarations and Code.

3. LONG FIELDS

A database system that manages engineering data requires the ability to
store items of arbitrary length. This imposes several requirements on the
database system:

- Access Methods: For engineering applications, it is often necessary to
store long, unformatted items such as raster images or large matrices in
fields of arbitrary length. However, if the data is extremely long (e.g.,
megabytes), retrieving it in one chunk may be impractical or even impossi-
ble. This requires the ability to deal with long fields piecewise, in a
manner analogous to file operations.

51

- Recovery: System R uses logging superimposed on a shadow page mechanism
to provide recovery [2]. Among other things, the log contains both the
old and new record contents after each update. Logging imposes a great
space and performance penalty on the use of long fields.

- Secondary Storage Space Management: ''Long" fields can vary widely in
size making it impractical to allocate space in multiples of one
fixed-size unit (page). A large page size wastes too much space at the
end of partially full pages. Small pages require many I/0's to read or
write a field. Small pages could be allocated contiguously to reduce the
number of I/0's but this would lead to fragmentation, requiring frequent
compaction of the database. Different size pages must be available for
different size fields.

We have implemented a storage system for long fields that satisfies
these requirements. This long field manager is called by the data manager
component (RDS) of the system and uses the storage manager component (RSS)
to manage storage allocation information, thus easily obtaining trans-
action management and recovery functions. Long field storage is main-
tained using pools of different size pages; a best-fit algorithm is used
to allocate part of a long field value to the appropriate size page or
pages. Finally, updates to a long field value are carried out using a
shadow page mechanism [9]; this removes the need for logging updates while
maintaining the ability for transaction backout.

4. LONG TRANSACTIONS

Transaction management has been extensively studied in the context of
classical database applications [3]. 1In such an environment, a trans-
action is generally defined as the unit of both consistency and recovery.
In a design environment, one needs the notion of transaction for control-
ling the consistency. But in design applications, the time needed to
arrive at a new consistent state of the data is much longer, maybe days or
weeks. Therefore, classical use of locks, waits, and deadlock resolution
techniques is not suitable.

One proposed approach [6, 11, 7] is to emulate what engineers have done
manually in the past; that is, to make copies of the data so that they can
work independently of others. Thus, an engineer would CHECK OUT an object
from the shared (public) database and store it in a private database,
leaving a nonvolatile lock in the shared database. This is the start of a
long transaction. When the design has reached a consistent state, the
engineer CHECKs IN the changed consistent data, releasing the nonvolatile
lock. Each engineering transaction may encompass several such CHECK OUT
and CHECK IN actionms.

This model is easy to understand, but assumes a very rigid design envi--
ronment; in particular, it does not support the complex design environment
where a hierarchy of designers must complete a complex design involving
many design objects by passing incomplete objects back and forth among
them in a controlled manner. We have extended the model to allow a
designer to CHECK OUT a partial design from another designer and complete
the design for the first designer or use it in his own design. These
extensions combine and generalize concepts found in both the existing

52

models of engineering transactions and the model of nested transactions
for conventional business applications [12].

For each engineering transaction, we define a "semi-public'" database.
A transaction may CHECK OUT an object from the public database, or the
semi-public database of another transaction. The transactions which
check out objects from another transaction’'s semi-public database become
its dependent transactions; that is, they are its children in a trans-
action hierarchy.

For each CHECK IN, the transaction may commit the object to its own
semi-public database, or to the semi-public database of its parent trans-
action (the public database if the transaction does not have a parent
transaction). When a transaction ends, all objects in its semi-public
database are committed to the semi-public database of its parent.

Using the semi-public database of a parent transaction, several engi-
neers communicate and share objects that are partially consistent while
maintaining the consistency of the public database.

5. VALIDATION

We briefly describe one validation effort for our prototype system. We
have implemented a VLSI layout editor [4] which makes extensive use of
complex objects. Each VLSI cell is represented by one or more complex
object instances in a structure similar to that in Figure 1.

Cells in the database are stored hierarchically, yet should be
displayed as flat objects. This is achieved by recursive interpretation;
the algorithm draws the rectangles of a cell, and then calls itself to
draw the cells which are instantiated in it.

Because of replication, there is a good chance that an object, i.e., a
cell, once used, will be accessed again. This justifies the use of an
object buffer. The object buffer manager provides access and manipulation
capabilities for objects and their components. Modification of a record
triggers a transparent, synchronous modification to the database. A
simple request for a record or an entire object causes the object buffer
manager to return a type code and a pointer to the record or object in main
memory. Thus only if the object is not in the buffer will the database be
accessed. We believe this methodology to be essential in providing
adequate performance.

The use of our database system made the implementation easier because
of three factors: the ability to change the schema without loss of data or
appreciable down-time of the database system, the availability of an ad
hoc query language which can be used as sophisticated peek and poke
commands to evaluate the results of transactions, and the ability to back-
out a transaction when testing a piece of code.

In addition, several aspects of complex objects have proved to be
extremely valuable in the database design for VLSI data management. The
hierarchical structure of complex objects supports well the inherent

53

hierarchical structure of the several records that describe the compo-
nents of a VLSI object, the availability of identifiers makes it easier to
maintain the relationships between tables, and the inherent integrity
constraints helped to simplify the programming task.

6. FUTURE WORK

The results we have seen so far are promising. The approach provides

the user with valuable functions. It should also improve the performance
because of

- special access paths for complex objects,
- special long field management, and
- high level support for long transactions.

But we believe that a greater improvement in performance should come
from the fact that, in an engineering environment, much of the work is
done on private data. This suggests the development of engineering work-
stations that would support the private processes and provide full rela-
tional capability. However, because the size of the workstation database
is smaller, and because capabilities like full multi-user support,
authorization, and extensive transaction recovery are not necessary in a
private environment (in communication with the central, shared database),
one can expect to be able to speed up the processing substantially.

Our current efforts are focussed in three areas: implementing communi-
cation between the workstation databases and the public database; devel-
oping and implementing the protocols for CHECK OUT and CHECK IN, including
nonvolatile locks on the public database, and nested environments for
maintaining semi-public databases on the public database system; and
developing a single-user workstation database system.

ACKNOWLEDGEMENTS

Gary Hallmark implemented the VLSI layout editor mentioned in the

section on validation, and in the process helped us test major sections of
the database system.

REFERENCES

(1] Chamberlin, D. D., et. al., "SEQUEL 2: A Unified Approach to Data
. Definition, -Manipulation; and Control," IBM J- Res. Dev. 20, 6
(November 1976), pp. 560-575.

[2] Gray, J., et. al., "The Recovery Manager of the System R Database
Manager,' ACM Computing Surveys 13, 2 (June 1981), pp. 223-242.

[3] Gray, J., "The Transaction Concept: Virtues and Limitations," Proc.
7th Intl. Conf. on Very Large Data Bases (ACM), September 1981, pp.
144-154.

54

(4]

(5]

(6]

7]

(8]

(9]

(10]

[11]

[12]

[13]

Hallmark, G., and Lorie, R., "Towards VLSI Design Systems Using Rela-
tional Databases," Proc. Spring Compcon 84 (IEEE), February 1984.

Haskin, R., and Lorie, R., "Using a Relational Database System for
Circuit Design," Database Engineering 5, 2 (June 1982), pp. 10-14.

Haskin, R., and Lorie, R., "On Extending the Functions of a Relation-
al Database System," Proc. Intl. Conf. on Management of Data (ACM),
June 1982, pp. 207-212.

Katz, R., and Weiss, S., "Transaction Management for Design Data-
bases,'", Working Paper, Computer Sciences Dept., Univ. of Wisconsin,
Madison, Wisconsin, 1983.

Kim, W., et. al., "Nested Transactions for Engineering Design Data-
bases," IBM Research Report RJ 3934, IBM Research Laboratory, San
Jose, California, June 1983.

Lorie, R., "Physical Integrity in a Large Segmented Database,” ACM
Trans. on Database Systems 2, 1 (March 1977), pp. 91-104.

Lorie, R., "A Project on Design Systems,' Database Engineering &4, 1
(September 1981), pp. 5-9.

Lorie, R., and Plouffe, W., '"Complex Objects and Their Use in Design
Transactions," Proc. Annual Meeting - Database Week: Engineering
Design Applications (IEEE), May 1983, pp. 115-121.

Moss, J. E., '"Nested Transactions and Reliable Distributed
Computing," Proc. 2nd Symp. on Reliability of Distributed Software
and Database Systems (IEEE), October 1982, pp. 33-39.

Selinger, P. G., et al., "Access Path Selection in a Relational Data-

base System," Proc. Intl. Conf. on Management of Data (ACM), May
1979, pp. 23-34.

55

USING A RELATIONAL DATABASE MANAGEMENT SYSTEM

FOR COMPUTER AIDED DESIGN DATA - AN UPDATE

by

Michael Stonebraker
Antonin Guttman

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
UNIVERSITY OF CALIFORNIA
BERKELEY, CA.

1 INTRODUCTION

Two years ago [GUTT82] we reported on the result of an experimert comparing the
performance of a special purpose CAD editor, KIC [KELL81] with a general purpose data
base system, INGRES [STONS80] on a data base consisting of a VLSI circuit. KIC
dramatically outperformed INGRES, and we indicated some of the factors influencing the
outcome. These included the inability of a general purpose data base system to accom-
plish efficient two dimensional search, the lack of a tramsitive closure command to
efficiently expand design trees and the absence of support for geometric constructs as
primitive objects in the data base.

In this paper we sketch a collection of solutions to these problems that we have been
investigating. These include a new multi-dimensional access method appropriate for spa-
tial data, the use of abstract data types (ADTs) in a DBMS, the addition of commands in
the query language as a new data type, and syntactic and algorithmic solutions to express-
ing and solving transitive closure queries. We briefly summarize our research on these
topics in the remainder of this paper.

I1 R-TREES

We have devised an index structure called an R-tree which allows efficient access to
spatial data according to its location [GUTT84a). Leaf nodes in an R-tree contain index
entries, each consisting of a pointer to a spatial object and a rectangle that covers it.
Higher nodes contain similar entries, with pointers to lower nodes and rectangles covering
those in the lower nodes. This hierarchy of covering rectangles is built and maintaired
dynamically in a manner similar to a B-+tree.

To search for all data overlapping a given rectangle, we examine the root node to
find which entries have rectangles overlapping the search area. The corresponding sub-
trees can have data'in the search area, therefore we apply the search algorithm recursively
to each one. In this way we find all qualifying data but avoid searching parts of the tree
corresponding to objects that are far from the search area.

This research was sponsored by the National Science Foundation Grant ECS-8300465, by the
Air Force Office of Scientific Research Grant AFOSR-83-0254 and by a Grant frcm ESL, Inc.

56

R-trees can be built for any number of dimensions, and in addition they are useful
for overlapping objects of non-zero size, a characteristic not shared by most multi-
dimensional indexing schemes, for example quad trees [FINK74), k-d trees [BENT75}, and
K-D-B trees [ROBI81|.

We have implemented R-trees, and in spatial search tests using VLSI data, only
about 150 usec. of CPU time was required per qualifying item. This indicates that the
structure effectively restricts processing to qualifying or near-qualifying data.

Il ABSTRACT DATA TYPES

We have suggested allowing new types of columns to be added to a data base system
and new operators on these columns to be defined. Basically, a knowledgeable user must
write a collection of procedures which will be called by the DBMS as necessary. For
example, a user could define a polygon ADT and create the following POLYGON relation

create POLYGON (pid = i4, p-desc = polygon}

Then an overlap operator (!!) could be defined for the new type, and a user could find the
polygons overlapping the unit square as follows:

retrieve (POLYGON.all) where POLYGON.p-desc !! “‘0,0,1,1”

Support for user defined types and new operators has been constructed in about 2500
lines of code for the INGRES relational data base system. Implementation details are
addressed in [FOGG82, ONG82], and ADTs execute with a modest performance degrada-
tion [FOGGS82]. Initial suggestions concerning how to integrate new operators into query
processing heuristics and access methods are contained in [STON83, ONG83]. We are now
attempting to cleanly support new operators throughout the query execution engine.:

IV QUEL AS AN AN ABSTRACT DATA TYPE

There has been substantial discussion concerning data base support for complex
objects. It is possible to support them as ADTs along the lines discussed in the previous
section, and this position is advanced in [STON83}. This approach is conceptually clean
because no facilities peculiar to CAD data are required. However, it has the disadvantage
that one cannot easily ‘“‘open up” an object an examine its component objects. A second
possibility is to extend a relational data base system with specific facilities for complex
objects. This is the approach taken in [LORI83]. It has the advantage that component
objects can be addressed but requires special-purpose services from a DBMS.

In this section we propose a third approach which may offer the good features of
each of the above proposals. It involves supporting commands in the query language as a
data type in a DBMS. In our environment this meaps that a column of a relation can
have values which are one (or more) commands in the data manipulation language QUEL.
We explain our proposal using the following relations:

OBJECT (Oid, o-desc)

LINE (Lid, l-desc)

TEXT (Tid, t-desc)

POLYGON (Pid, p-desc)
Suppose a complex object is composed of text, lines and polygons. For each such com-
ponent object, a tuple would be inserted into the LINE, TEXT or POLYGON relation.
For example:

57

append to LINE (Lid = 22,
description = */(0,0) (14,28)")
append to POLYGON (Pid = 44,
description = */(1,10) (14,22) (6,19) (12,22)")

Then, the description field in OBJECT would be of type QUEL and contain queries to
assemble the pieces of any given object from the other relations. For example, the follow-
ing query would make object 8 be composed of line 22 and polygon 44.

append to OBJECT(
oid = 6,
o-desc = “‘retrieve (LINE.all) where LINE.id = 22
retrieve (POLYGON.all) where pid = 44")

We have proposed extensions to QUEL which allow the components of an object to be
addressed. For example, one could retrieve all the line descriptions making up object 6
which were of length greater than 10 as follows:

range of O is OBJECT
retrieve (O.o-desc.l-desc) where
length (O.o-desc.l-desc) > 10

This notation has many points in common with the data manipulation language GEM
[ZANI83], and allows one to conveniently discuss subsets of components of complex
objects. In addition we can support clean sharing of lines, text and polygons among mu!l-
tiple composite objects by having the same query in the description of more than one
object, a feature lacking in the proposal of [LORI83].

Materializing an object from the OBJECT relation will be slow since it involves exe-
cuting several QUEL queries. Hence it is clearly desirable to precompute the value of fre-
quently used objects and store the actual result in the OBJECT description field. We are
investigating how to efficiently precompute values for complex objects represented by
commands in the query language.

V TRANSITIVE CLOSURE OPERATIONS

In our earlier paper [GUTT82] we suggested syntax for adding transitive closure
capability to INGRES. A * operator added to an append command indicates that the
operation is logically repeated as long as new tuples are generated. For example, suppose
the structure of a hierarchical VLSI circuit design is represented by tuples in a CELL-REF
relation. Each tuple stands for the use of one circuit cell as a component in another:

CELL-REF (parent-cell, child-cell, location)
Then all cells used in the entire design for CKT-A can be collected by

retrieve into TREE (cell=CKT-A)
range of T is TREE
range of C is CELL-REF
append* to TREE (cell=C.child-cell)
where C.parent-cell=T .cell
The * operator can be applied to retrieve into, delete and replace with a similar meaning.

We have added append® to INGRES and have tested our implementation by expand-
ing VLSI design trees [GUTT84b). Tree expansion was faster using a depth-first

58

algorithm in our implementation, because we could use the stack to store TREE tugles
currently undergoing processing, whereas during breadth-first expansion the current level
of TREE was stored in a temporary relation. The depth-first method also used much less
buffer space, because our VLSI trees were much wider than they were high, as is typical.

If a tree being expanded by append? contains duplicate subtrees, time can be saved
by eliminating duplicate tuples in order to avoid processing the redundant subtrees. We
tested a variety of duplicate tuple elimination methods, and found that detecting dupli-
cates in the entire tree or within one level is expensive but sometimes worthwhile. Elim-
inating duplicates on a vertical path from the root to a leaf is necessary for correct pro-
cessing of some queries. The cost is negligible for the depth-first implementation, which is
another advantage of this algorithm.

REFERENCES .

[BENT75] Bentley, J. L., “Multidimensional Binary Search Trees Used for
Associative Searching”, Communications of the ACM 18, 9 (Sep-
tember 1975), 509-517.

[FINK74] Finkel, R. A. and J. L. Bentley, “Quad Trees - A Data Structure
for Retrieval on Composite Keys”, Acta Informatica 4, (1974), 1-
9.

[FOGG82| Fogg, D., “Implementation of Domain Abstraction in the Rela-

tional Database System, INGRES", Masters Report, EECS Dept,
University of California, Berkeley, Sept. 1982.

[GUTT8?] Guttman, A. and M. Stonebraker, ‘‘Using a Relational Database
Management System for Computer Aided Design Data”, Data
Base Engineering, §, 2, June 1982.

[GUTT84a) Guttman, A., “R-Trees: A Dynamic Index Structure for Spatial
Searching”, submitted for publication.
[GUTT84b} ' Guttman, A., New Features for a Relational Database System to

Support Computer Asded Dessgn, Ph.D. thesis, University of Cali-
fornia, Berkeley, in preparation.

[HASKS2) Haskins, R. and R. Lorie, *‘On Extending the Functions of a Rela-
tional Database System,” Proc. 1982 ACM-SIGMOD Conference
on Management of Data, Orlando, Fl, June 1982.

[KELLS8I] Keller, K., “KIC, A Graphics Editor for Integrated Circuits”, Mas-
ters thesis, Dept. of EECS, University of California, Berkeley, June
1981.

[LORIg3) Lorie, R. and W. Plouffe, “Complex Objects and Their Use in

Design Transactions,” Proc. Engineering Design Applications of
ACM-IEEE Data Base Week, San Jose, Ca., May 1983.

[ONG82] Ong, J., “The Design and Implementation of Abstract Data Types
in the Relational Database System, INGRES,” Masters Report,
EECS Dept, University of California, Berkeley, Sept. 1980.

[ONG83] Ong, J., et. al., “Implementation of Data Abstraction in the Rela-
tional Database System INGRES,” to appear in SIGMOD Record.

59

[ROBISI)

[STON76]

[STONS3]

[ZANIS3]

Robinson, J. T., “The K-D-B Tree: A Search Structure for Large
Multidimensional Dynamic Indexes”, ACM-SIGMOD Conference
Proc., April 1981, 10-18.

Stonebraker, M. et al., “The Design and Implementation of
INGRES,” ACM Transactions on Database Systems 2, 3, Sep-
tember 1976.

Stonebraker, M. et. al., ‘“Application of Abstract Data Types and
Abstract Indices to CAD Databases,” Proc. Engineering Design
Applications of ACM-IEEE Databasc Week, San Jose, Ca., May
1983.

Zaniola, C., “The Database Language GEM,” Proc. 1989 ACM-
SIGMOD Conference on Management of Data, San Jose, Ca,,
May 1983.

60

Relational and Entity-Relationship Modcl Databases
and VLSI Design
Marianne Winslett Wilkins and Gio Wiederhold
Stanford University, Computer Science Dept.

Abstract. Databases have a number of advantages
over specialized design files for use in the VLSI design
process. Balanced against these advantages is the pre-
sumed extra run-time cost of accessing the database. In
particular, ordinary relational databases appear to be
too slow to be used on-line by engineers in the design
process [Eastman 80, Haynie 81, Sidle 80, Stonebraker
82].

The requirements for design access include the re-
trieval of major units of data at one time, implying
joins of many attributes with their libraries, and projec-
tions to obtain the relevant attributes for a given study.
Previously, in order to test if databases could achieve
acceplable performance at all, we experimented using
a CODASYL database systemm [Beetem 82, Wiederhold
82]. This appeared to provide adequate performance,
but at a high cost of software maintenance and lack of
flexibility due to CODASYL limitations.

Our hypothesis is that the relational data model
per se is not the crucial {actor in performance; rather,
the internal access mechanisms of the database signifi-
cantly aflfect performance. To test this hypothesis, we
ran experiments using the Cypress database system in
the Cedar environment at Xerox Palo Alto Research
Center. The program used is a design macro expander,
more fully described in Section 3. The tests show that
colocating pointers to all relations that a VLSI com-
ponent appears in will reduce CPU time spent in the
main database access routines by 25%. IHowever, the
largest component of execution time is the time spent
to write the expansion results to a file.

1. Motivation

Database systems provide a number of attractive fea-
tures for use in VLSI design efforts. For example, data-
base systems usually automatically provide {eatures for
data sharing, concurrency control, and automatic crash
recovery. Database systems are often geared to handle
the large amounts of data common in VI.SI applications.
The usc of a database system has the potential to free
its users from routine data management tasks.

61

On the other hand, a gencral-purpose database sys-
tem may complicate the design task through cumber-
some uscr interfaces, rigid schemas and access paths,
sluggish response time, and lack of support for long
transactions. Researchers have considered the suita-
bility of cominercially available databases [Beetem 82,
Sidle 80, Wicdcrhold 82, Zintl 81] and the appropriate-
ness of various data models [Haskin 82, Katz 82, Lorie
81, Stonebraker 82, 83| for good performance in the
VLSI design cenvironment. Relational databases typi-
cally do not suffer from rigid schemas and access paths
and cumbersome interfaces; in this paper, we address
the issue of relational database response time in a VLSI
application.

We belicve that it is not so much the higher-level
data model as the underlying implementation structures
that determine the suitability of a database system for
use in a design application. We also believe strongly
that the implementation structure of the database sys-
tem can be isolated from its client interface [Steel 75].
With effective mappings from the interface to the in-
ternal structure, one can provide a design tool that
combines clarity and performance. Through use of the
Cypress database system at Xcrox Palo Alto Research
Center (PARC) [Brown 81, Cattell 83], we were able to
measurc the differences in performance in VLSI macro
expansion resulting from use of two different internal
access structures: a purely relational data model with
internal indexing via B-trees, and an eatity-relationship
data model with internal B-trees and colocated links
to all tuples associated with cach entity. The inter-
nal access structures of the entity-relationship model
database can be implemented for purely relational data-
bases that allow typed atiributes.

2. The Experiment Environment

The experiments were conducted in a “workplace of
the future,” the Computer Science Laboratory (CSL) of
Xerox PARC, using Dorados [Clark 81, Lampson 80, 81]
interconnected by a 3 megabit Experimental Ethernet
[Metealfe 76]. The Dorados run Cedar [Tcitclman 84),
an cxperimental programming cnvironment developed

Relational and Entity-Relationship Model Databases and VLSI Design

at Xerox PARC. The different commponents of this en-
vironment are discussed in more detail below.

2-1. The Dorado

The Dorado is a high-performance personal computer
developed at Xerox PARC. Dorados have been the hard-
ware of choice at PARC for building prototype systems
over the last several years. [Picr 83] gives a quick sum-
mary of Dorado features:
..[The Dorado is a 16-bit machine| designed to be used
by a singlc {expert) user running multiple cooperating
processes in an integrated programming environment. It
has a microprogrammed processor with a 60 nanosecond
microinstruction cycle time, a high-speed cache, memory
map, large main memory, an instruction fetch/decode
unit, and high-resolution monochrome and color displays.
The processor is shared among priority-ordered microcod-
ed tasks, performing microcode context switches on de-
mand with no overhead. The memory subsystem is con-
trolled by a seven-stage pipeline. It can deliver a peak
main-storage bandwidth of 530 million bits per second ...
The II'U is implemented with a six-stage pipeline, and un-
der favorable conditions can deliver instructiouns at a peak
rate of 16 million instructions per second. The machine
is implemented using standard ECL 10K technology.
From this description of existing facilities, we ex-
trapolate and say that the Dorado presents a model for
the enginecring workstations that will become common
in industry.
The Dorado on which the VLSI macro expander
runs is equipped with an 80 megabyte disk and a mouse.

2-2. The Software Environment: Cedar

Cedar is an integrated computing environment devel-
oped at PARC over the last five ycars. The system re-
volves around a single language—Cedar Mesa [Mitchell
79]—and includes facilities for document typesetting,
color graphics, performance monitoring, remotc and lo-
cal debugging, automatic garbage collection, network-
ing, print servers, file servers, mail servers, tape serv-
ers, and many other features. Cedar Mesa is an object-
oriented, modular, strongly typed language with a PAS-
CAL-like syntax. The experiments were run under Ced-
ar 5.1 of February 1984,

2-3. The Database System: Cypress

Cypress is an entity-relationship-datum model database
[Chen 76, Cattell 83] system designed to run under
Cedar. From the user’s viewpoint, a Cypress database
consists of a set of domains, a relation schema, scts of
entitics in the defined domains, rclations representing
propertics of those entitics, and other relations among
enlitics and string-, integer-, boolean-, and date-valued
fields. Cypress allows the user to define a hierarchy of

62

entity types and subtypes. Stered Cypress values are
not resiricted to conventional underlying data types,
and may be extended Lo include large pieces of text and
graphical data.

For the purpose of this experiment, the most impor-
tant Cypress feature is that a Cypress database withoul
user-defined domains and entitics is a purely relational
database using B-trees as its only indexing mechanism.
Thus, Cypress allows a controlled comparison of the
performance of a purely relational implementation and
an entily-relationship database implementation. We are
able to mecasure the elfect of the entity access method
while keeping other internal and external faclors con-
stant—an unusual opportunity.

The programming language interface to Cypress
allows for tuple-at-a-time access. Access path selection
is done at each database call; if the access path were
chosen at the time of initial result-query definition, as
in System R [Astrahan 76] and its commercial relative
SQL-DS, we would cxpect a substantial improvement in
the execution times given below.

2-4. The Remote File Server: Alpine

Alpine is a general-purpose transactional file server pack-
age developed at Xerox PARC. CSL uses one Alpine
server, equipped with several large disks. The server
is heavily used for mail storage and as a repository for
large files.

2-5. The Measurement Tool: The Cedar Spy

We used the Cedar Spy to mornitor the performance
of the VLSI programs. With the Spy, a user can ex-
amine exccution paramneters for both specific routines
and programs and in the system as a whole. The user
may watch CPU usage or onc of five other interest-
ing paramelers within sclected scclions of code. When
turned on, the Spy opcrates by keeping track of the
state of all interesting programs and routines. After
turning ofl the Spy, the user may obtain a statistical
summary of the monitored information at a specified
degrce of precision.

3. The VLSI Macro Expander and Data

The main program used in these experiments is a
Cedar version of a hicrarchical V9LSI macro expander
originally written in PASCAL [P’aync 80] for use on
a DEC-10. The PASCAL macro expander and some
associated FORTRAN routines were used by [Bectem
82] to evaluate the performance in a VI.SI design ap-
plication of a commercially available network database,
DBMS-20. The macro expander has been further devel-
oped [?] and is now a commercial offering from Silvar-
Lisco. For the current cxperiment, this PASCAL pro- .
gram was transiated to Cedar Mesa, with a substantial

Relational and Intity-Relationship Model Databases and VLSI Design

number of changes made for the new environment.

The macro expander takes a given hierarchical de-
sign component name—the ALU for example—and pro-
duces a description of that component in terms of lower-
level components, such as transistors. The user controls
the level of detail in the expansion by telling the macro
expander which hierarchical levels to expand.

In the Cedar environment, the macro expander runs
on the user’s local Dorado and uses a local version of
the Cypress database package to access the VLSI design
macros. Due to the large size of these macros, they
are kept on a remote file server running Alpine. This
setup is appropriate for a large design project, where
engineers have their own personal machines, and large
files of general interest are kept in a central location
to facilitate sharing and insure consistency. However,
there is no programming requirecment that the VLSI
macros be kept on a remote disk; the physical location
of the data is of interest only to the database access
routines, and not to any higher level code.

The file resulting from the expansion is stored on
the local disk. Again, for a larger result file the expan-
sion could be kept on the remote file server with no
program changes. We store the result file as a flat file
with no special index structures. While not the recom-
mended method for an integrated environment, this cor-
responds to current-day practice where the design en-
gincer is confronted with a set of incompatible design
tools for use at different phases of the design process

[CADTEC 83].

The most interesting feature of the macro expander
is the inclusion of an additional level of indirection to
allow for the explicit storage of multiple representations
of the same object. For example, the database may con-
tain earlier and later versions of the same component.
In a VLSI application, onc expects to store multiple,
logically equivalent representations of the same ohject,
such as sticks, geometric layouts, and the more conven-
tional component-pin-net representations.

For data, this experiment uses a hierarchical des-
cription of a PDP11 CPU [Slutz 79]. These macros take
up approximatcly two megabytes of storage, though
not all of the database relations are used in the expan-
sion process. We expand the conventional component-
pin-nel representation of the PDP11, as opposed to its
geomelric representation.

63

Table 1. Expansion sizes

ALU components 193

nets 295
pins 1026
CPU components 504
nets 1238
pins 4183

4. Experiments and Results

We will consider the effccts of varying two basic param-
eters: first, whether the on-going expansion is kept in
main memory or written out to a temporary file; and
second, whether the internal access mechanism is B-
trees alone or a combination of B-trees and other point-
ers. .

4-1. Temporary Files

The intermediate results of a VLSI expansion require
a great deal of storage space. In the absence of vir-
tual memory, or in a small virtual address space, it
will be necessary to keep intermediate results in a tem-
porary file. This version of the macro expander creates
a temporary file during each expansion pass at a given
level of the design hierarchy, then reads that file on the
next expansion pass. Tables 2 and 3 give a summary of
CPU time requirements {or complete expansions of the
PDP11 ALU and CPU. As these tables show, the read-
ing and writing of temporary files is very expensive: it
takes 80% more CPU time to expand the PDP11 CPU

with temporary files than to do an in-core expansion.

Table 2. Expansion CPU Times for the PDP11 ALU

Entities Temporary Files CPU Secconds
y y 34.2
n y 39.7
y n 274
n n 33.8

Table 3. Expansion CPU Times for the PDP11 CPU

Entities Temporary IFiles CPU Secconds
y y 265.2
n y 281.2
y n 141.1
n n 153.1

In fact, writing out the results of an cxpansion is
always a very expensive operation. According to Table
4, over half the time of all types of cxpansions is spent
in writing the results to disk. A considerable savings
would result if the in-memory structures could be put
to direct use, as is possible in an integrated system like

Cedar.

Relational and Intity-Relationship Model Databases and VLSI Design

Table 4. Sample of Where Txecution Time Is
Spent For a PDP11 CPPU Expansion
Entities Temp. Writing Main Database
Files Files Access Routine
Sec. % Sec. %

y y 1470 55.2 42.6 16.0
n y 1455 51.9 53.8 19.2
y n 84.4 609 424 30.6
n n 83.0 550 543 359

4-2, Entities

We examine the effects of two dillerent access structures:
a purely relational B-tree approach, and an entity-rela-
tionship method. In the latter approach, all VLSI com-
ponents are declared as Cypress entities. This might
be regarded as a first step along the lines of receut
proposals for semantic additions to the relational model
for VLSI design [Johnson 83, Lorie 83, Stoncbraker 83].
Internally, the declaration of an entity corresponds to
a B-tree lookup that returns an object of type Entity.
Internally, this object corresponds to a database record
that includes pointers to the first tuple referencing that
entity, for cach relation in which that entity might pos-
sibly appear. Within a given relation, all tuples refer-
encing the same entity are chained together. Therefore,
when using entities only one B-trec index lookup is re-
quired for referencing any or all of the relations in which
an entity appears. Index lookups are particularly expen-
sive in Cypress due Lo a small page size, so minimiza-
tion of their occurence should substantially decrease the
time spent in database calls.

The techniques described above are similar to ones
used in System R’s RSS [Astrahan 76), the major model
for Cypress’s storage level implementation. An addi-
tional feature of Cypress, not yet implemented, that
would speed database access, is the provision for the
colocation of tuples referencing entities with the records
defining those entitics. This is also an unimplemented
feature of the CODASYL DBMS-20 used in earlier ex-
periments [Bectemn 82).

Tables 2 and 3, for ALLU and CPU expansions re-
spectively, show that the use of entilies gives a notice-
able decrease in running time. Table 4 shows that for
the CPU expansion, most of the CPU savings can be ac-
counted for by the main database access routine in the
macro expander, where the great majority of database
calls are made.

The use of entitics is not without its cost, however.
Getling the print name of an cntity requires a Cypress
call which is not always balanced by a corresponding
reduction in tuple access lime. The running lime of

64

the macro expander could be improved by only having
entity values in those domains that are used to look
up particular tuples. For example, the database treats
nets as entities, though in our Llests database tuples
are almost ncver looked up via net name. Thus the
macro expander incurs an extra cost in looking up the
net name, with no corresponding savings in tuple ac-
cess. The cost of using entities can be seen in Table 4,
where approximately 1.5 seconds morce are required to
write files when entities are being used. This is a small
penally, however, if there is any chance that another
application migh$ need to make use of nets as entities,

Table 5. Sample Wait Times For a PDP11 CPU
Expansion Without Temporary Iiles
Or Entities

Type Of Wait Seconds
Condition variable 93.7
Page fault 19.8
Preempted 14.3
Other 3.7
Total 131.5

Total running time = wait time + CPU time:
286.7 seconds

5. Summary and Conclusion

Databases have a number of advantages over spe-
cialized design files for use in the VLSI design pro-
cess. Balanced against these advantages is the pre-
sumed extra run-time cost of accessing the database. In
particular, ordinary relational databases appear to be
too slow to be uscd on-line by engineers in the design
process.

Our hypothesis is thal the relational data model
per sc is not the crucial factor in performance; rather,
the internal access mechanisms of the database signifi-
cantly affect performance. To test this hypothesis, we
ran experiments using the Cypress database system and
a design macro expander in the Cedar environment at
Xerox Palo Alto Rescarch Center.

We found that the usc of temporary files, as op-
posed to doing an in-core VLSl macro expansion, im-
poses an 80% overhecad for our larger expansions. In
all expansions, the expcnse of wriling result files to disk
accounts. for over hall of the CPU time, with an addi-
tional third of the exccution time being spent in the
main database access routines.

The use of entities reduces expansion time by an
amount that is independent of whether temporary files
arc being used. ‘The use of entitics gives an 8% savings
in CPU time for an expansion of a PDP11 CPU without
temporary liles. If we restrict our attention to the

Relational and Entity-Relationship Modcl Databases and VLSI Design

macro expander routine that is responsible for most of
the database calls, we find that the use of entities gives
an approximate 25% savings in CPU time.

We conclude that the choice of internal indexing
structure has significant repercussions for the perfor-
mance of relational and entity-relationship databases
in VLSI design applications. However, the database is
not nccessarily the weakest link in a design expansion;
in our case, the CPU demands of our database system
were overshadowed by the costs of writing the expan-
sion results out to a result file.

6. Acknowledgements

Our appreciation goes to Xerox Palo Alto Research Cen-
ter for the use of their equipment; to Rick Cattell for
his help with database problems; to John Maxwell for
help with the Cedar Spy; and to Dan Swinehart for
general aid and assistance. This work was supported
in part by contract N00039-82-G-0250 (the Knowledge
Base Management Systems Project, Prof. Gio Wieder-
hold, Principal Investigator) from the Defense Advanced
Research Projects Agency of the United States Depart-
ment of Defense, and by an AT&T Bell Laboratories
Doctoral Fellowship. The views and conclusions con-
tained in this document are those of the authors and

should not be interpreted as representative of the official

policies of DARPA or the US Government.

7. Bibliography

[Astrahan 76] M. M. Astrahan, et al., “System R:
Relational Approach to Database Management,”
Trans. on Database Systems, 1:2, ACM, June
1976.

[Beetem 82] A. Beetem, J. Milton, and G. Wiederhold,
“Performance of Database Management Systems
in VLSI Design”, Database Engineering, 5:2, June
1982.

[Brown 81] M. Brown, R. G. G. Cattell, and
N. Suzuki, “The Cedar Database Management
System: A Preliminary Report”, Proceedings ACM
SIGMOD Conference 1981, Ann Arbor, 1981.

[CADTEC 83] “Series 8000 Design System”, Technical
Introduction, CADTLEC Corporation, April 1983.

[Cattell 83] R. G. G. Cattell,
Implementation of a Relationship-Entity-Datum
Data Model”, Technical Report CSL-83-4, Xerox
Palo Alto Research Center, May 1983.

[Chen 76] P. Chen, “The Entity-Relationship
Model—Towards a Unified View of Data”, ACM
Transactions on Database Systcms, 1:1, January
1976.

[Clark 1981] D. W. Clark, B. W. Lampson, and K. A.
Pier, “The Memory System of a High-Performance

“Design and

65

Personal Computer”, JIEEL Transactions On
Computers, 30:10, Oclober 1981. Also Technical
Report CSI-81-1, Xerox Palo Alto Rescarch
Center, January 1981.

[Eastman 80] C. Bastman, “Systems Facilities for
CAD Dalabases”, Procecdings of the 17th Design
Automation Counference, Minneapolis, 1980.

[Haskin 82] R. Haskin and R. Lorie, “On Extending
the Functions of a Rclational Database System”
Proceedings of the ACM SIGMOD Conference on
Management of Data, Orlando, June 1982.

[Haynie 81] M. Haynie, “The Reclational/Network
Hybrid Data Model for Design Automation
Databases”, Proceedings of the 18th Design
Automation Conference, Nashville, 1981.

[Johnson 83] H. R. Johunson, J. E. Schweitzer, and
E. R. Warkentine, “A DBMS Facility for Handling
Structured Engincering Entities”, Proceedings of
Database Week 1983, San Jose, May 1983.

[Katz 81] R. H. Katz, “A Database Approach for
Managing VLSI Design Data”, Procecdings of the
19th Design Automation Conference, Las Vegas,
June 1982.

[Lampson 80] B. W. Lampson and K. A. Pier.
“A Processor for a High-Performance Personal
Computer”, Proccedings of the 7th International
Symposium on Computer Architecture, La Baule,
May 1980. Also in Techrical Report CSL-81-1,
Xerox Palo Alto Rescarch Center, January 1981.

[Lampson 81] B. W. Lampson, G. A. McDaniel, and
S. M. Ornstein, “An Instruction Fetch Unit for a
High-Performance Personal Computer”, Technical
Report CSL-81-1, Xecrox Palo Alto Research
Center, January 1981.

[Lorie 81] R. Lorie, “Issues in Databases for Design
Applications”, Proceedings of the IFII> Conference
on File Structures and Databases for CAD,
Seeheim, September 1981.

[Lorie 83] R. Lorie and W. Plouffe, “Complex
Objects and Their Use in Design Transactions”,
Proccedings of Dalabase Week 1983, San Jose,
May 1983.

[Metealfe 76] R. M. Metcalfe and D. R. Boggs,
“Ltherncet: Distributed Packet Switching for Local
Computer Networks”, Communications of the
ACM, 19:7, July 1976.

[Mitchell 78] J. Mitchell, W. Maybury, and R. Sweet,
“Mesa Language Manual”, Tecchnical Report
CSL-79-3, Xerox Palo Alto Rescarch Center, April
1979. Unfortunately no later external reference on
the Mesa language is available, and Cedar Mesa
has diverged somewhat from the description in

Relational and Eintity-Relationship Model Databases and VLS Design

this manual.

[Payne 80] 7T. Payne, PASCAL Macroexpander Pro-
gram, Stanford University Electrical Engincering
Department, Comnputer Systems lLaboratory, and
Center for Integrated Systems, 1980.

[Pier 83] K. A. Pier, “A Retrospective on the
Dorado, A High-Performance Personal Computer”,
Technical Report [S1.-83-1, Xerox Palo Alto
Research Center, August 1983.

[Sidle 80] T. Sidle, “Weakness of Commercial
Data Base Management Systems in Engincering
Applications”, Proceedings of the 17th Design
Automation Conference, Minneapolis, 1980.

[Slutz 79] K. Slutz, “SDL Description of DEC
PDP-11”, Stanford University Computer Systems
Laboratory and Center for Integrated Systcms,
1979.

[Steel 75] T. B. Stcel, “Interim Report of the
ANSI-SPARC Study Group”, ACM-SIGMOD
FDT, 7:2, September 1975.

66

[Stonebraker 82] M. Stoncbraker, and A. Guitman,
“Using a Relational Database Management System
for CAD Data”, Databasc Ingincering, 5:2, June
1982.

(Stonebraker 83] M. Stoncbraker, B. Rubcnstein,
and A. Guttman, “Application of Abstract Data
Types and Abstract Indices to CAD Data Bases”,
Procecdings of Database Weck 1983”, San Jose,
May 1983.

[Teitclman 84] W. Teitelman, “A Tour Through
Cedar”, Proccedings of the 7th Intl. Conference
on Software Engincering, Orlando, March 1984.
To appear in IEELLE Transactions on Software
Engincering, April 1984.

[Wiederhold 82] G. Wicderhold, A. Beetem, and G.
Short, “ A Database Approach to Communication
in VLSI Design”, IEEE Transactions on Computer
Aided Design of Integrated Circuits and Systems,
1:2, April 1982.

[Zintl 82] G. Zintl, “A CODASYL CAD Data
Base System”, Proceedings of the 18th Design
Automation Conference, Nashville, June 1982,

AN EXTENDED RELATIONAL DATABASE SYSTEM FOR ENGINEERING DATA MANAGEMENT

Y. UDAGAWA and T. MIZOGUCHI

Mitsubishi Electric Corporation
325 Kamimachiya, Kamakura city, Kanagawa 247, Japan

1. INTRODUCTION

During the past quarter of a century, several data models have been devel-
oped, e.q. network, hierarchical and relational data models /1/. They have been
designed for business data applications in which objects are represented by
alphanumeric data and relationships among them are rather simple. In engineer-
ing data applications, however, pictorial data are essential in addition to
alphanumeric data. Furthermore, relationships among data are so complex that
they must be managed in multiple levels of abstraction. It has already been
discussed that conventional database systems cannot effectively support engi-
neering data management /2/. Much research has been done to investigate the use
of relational data model for pictorial data management /3, 4, 5/. Describing
pictures requires some extensions to the model. For example, Becerril et al./4/
developed a system to handle relations in which tuples are ordered and duplicated.

In this paper, we describe a database system for engineering applications,
called ADAM (Advanced Database system with Abstraction Mechanism). ADAM is
based on the relational model. The relational model was chosen because (1) it
provides set-oriented data processing on a simple data structure, i.e. a relation,
and (2) it provides a more effective way of representing the complex relationships
among data than the other data models. ADAM data model uses the relational model
for representing attributes information and relationships among data. As for pic-
torial information, ADAM provides figure-specification capabilities where picto-
rial notations of instances are represented in terms of built-in functions of
computer graphics. Objects are modeled by multi-level constructions of these
frameworks. Roughly speaking, the single-level construction without the figure
specifications of the ADAM model corresponds to the relational model. The corre-
spondence between Codd's relational model and ADAM is illustrated in Fig.l.

The main features of ADAM are as follows.

(1) ADAM can deal with pictorial data as well as alphanumeric data.

(2) ADAM has a facility called abstraction mechanism for managing a group of
data as a unit.

(3) ADAM uses instances with arguments (called abstract instances hereafter)
for efficient description, storage and manipulation of repeated appearances of
similar objects.

(4) Objects are modeled as a hierarchical structure of instances. This allows
the users to model objects step by step.

(5) ADAM allows users to view a pictorial notation in any detail desired.

(6) Updates of data affect a pictorial notation immediately.

2. SOME OBSERVATIONS ABOUT ENGINEERING DATA

By engineering data we mean all the data pertaining to industrial activities.
Among these, we shall focus our attention upon electric circuit diagrams and
system architecture diagrams, etc. Fig.2 shows a typical engineering data.

Table 1 gives the identifiers and their notations for the parts in Fig.2. The
followings are the main features of engineering data.

67

Object Relational Data Model

Object ADAM Data Model

Fig.l Correspondence between the relational
data model and ADAM data model.

CLOCK

T I SIGNAL

[
0w om 9

z{__ Aéz@

POWER SUPPLY

Fig.2 An example of engineering data.

68

Table 1. Parts in Fig. 1 and their notations.

Part Notation Part Notation

Terminal Synchronizer E:]

I/0 Latch Tone Controller

Display Signal Processor

L7 0
Tuner Zijx Timer C::)
)]

(1) Engineering data consist of pictorial information as well as alphanumeric
information.

Each part has attribute information, e.g. for tone controller, maximum power
of output, location installed and date manufactured. This kind of information is
usually represented by fixed-format alphanumeric data in the same manner as in
conventional databases. On the other hand, parts in Fig.2 have pictorial nota-
tions.

(2) Attributes relevant to objects are different one another.

For parts in Fig.l, there are attributes which are common to all objects,
e.g. date manufactured. However there are attributes which are not common. For
example, a display is specified by the size of screen, whereas tone controller is
specified by its output power.

(3) Engineering data have too complex a structure to be manipulated by only one
level of abstraction.

In most engineering applications, an object to be manipulated is represented
by more than one diagram. Further, these diagrams are structured in such a way
that an element in a diagram is represented by other detailed diagram. For exam-
ple, the electric diagram in Fig.2 may best be managed in four levels of abstrac-
tion as shown in Fig.3 rather than one level of abstraction as in Fig.2
(4) Engineering data include many repeated instances of similar objects.

As an example, a terminal indicated by the notation e appears twenty-one
times in Fig.2. This aspect arises from the fact that many parts used in engi-
neering applications are standardized.

(5) The amount of information contained in engineering data is so enormous and
their structure so complex that we can not analyze all the information in advance.

As a result, we can only model engineering objects via many interactions with
the engineering database. This requires a database system to be more interactive
and more flexible.

The features (3) and (5) are also pointed out in Haskin and Lorie /5/.

3. OVERVIEW OF ADAM
3.1 Data Definition Facilities -

ADAM data model includes two classes of instances. One is a class of in-
stances which are represented by fixed-format data, e.g. character strings, inte-

69

VA SYS(X, Y)

7
/ /
L L
L A\
N/
AUDIO(\X, Y TV_SET(E& Y)

TONE (X,Y) TIMER (X,Y)

VAR -
/485 -
FIG -+

IOL (X,Y)

Fig.3 Hierarchical structure for the Fig.2.

gers and reals. Instances of this class are used in business-oriented databases.
The other is a class of abstract instances (instances with arguments). An
abstract instance, in turn, can be used to define other abstract instances. In
this way abstract instances form a hierarchy.

ADAM data definition language consists of the following six parts.
(1) variable declaration
(2) abstract instance declaration
(3) general figure specification
(4) domain declaration
(5) relation declaration
(6) detailed figure specification
They are stored in four types of files as shown in Fig.4. For details see Udagawa
and Mizoguchi /7/.
) The most interesting feature of the data definition facilities of ADAM is
that it includes two figure specification parts general and detailed. These two
parts are provided, because abstract instances have two aspects of figure repre-
sentations. Suppose an instance A is constructed from other instances, say B and
C as in Fig.5. Now, if we view B and C from abstraction level A, we need only
general notations which suggest detailed structures of A's constituents. That is,
in dealing with constituents as units, their detailed structures are transparent

70

GF : file for general
figure specifications

AIT : abstract DF: file for detailed file for
instance table figure specifications relation 1
DD : data dictionary file for
relation N

Fig.4 File organization of ADAM/X1.

to the general notations. The general
figure specification part defines a gen-
eral notation for the underlying in-
stances. Intuitively, this part speci-
fies the bold rectangle for instance A
in Fig.5. A general figure is usually
described in terms of built-in func-
tions of computer graphics. 1 / L

On the other hand, the detailed
figure specification part specifies a
pictorial notation for the detailed C
structure of an instance. A notation
specified in this part is usually de-
scribed in terms of graphic functions
and relational operations. The nota-
tion allows users to get a precise
pictorial representation, even if con-
stituents of an abstract instance are
frequently changed by updating rela-
tions. This part specifies the pic- Fig.> Correspondence between
tures in the bold rectangle for general and detailed figures.
instance A in Fig.5,

Syntax of the figure specifica-
tion parts are as follows,

< general figure specification > ::= $GENERAL FIGURE ;
< figure specification list >
< detailed figure specification > ::= $DETAILED FIGURE ;
< figure specification list >
< figure specification list > ::= < figure specification > ;
| < figure specification > ; < figure specification list >
< figure specification > ::= GRAPHICS (< relational operation >)
< temporary relation > := < relational operation >
< graphics operation > < relational operation >
< graphics operation > ::= POINT | LINE | CIRCLE | ELLIPSE | GRID
| RECT | POLY | SYMBOL , etc.

Examples of the figure specification are shown in Fig.6.

71

$GENERAL-FIGURE ; $DETAILED-FIGURE

LINEC X , Y+16.0, X . Y-16.0 GRAPHICS (FIG <! ELEM !>)
X , Y-16.0, X+36.0, Y-16.0 ; X ¢ H1, V1, DTE_ID, DINAME) :=
X+36.0, Y=16.0, X+36.0, Y+16.0 s ¢ CONN <* STE_ID = TE_ID ,

X+36.0, Y+16.0, X , Y+16.0 : SINAME = INAME *> TERM)
X+34.0, Y+16.0, X+34.0, Y=16.0) ; <! HCOOR, VCOOR, DTE_ID, DINAME !> ;

LINE ¢ ¢ X <x DTE_ID = TE_ID .,
DINAME = INAME x> TERM)
<! H1, V1, HCOOR, VCOOR !>) 7/

Fig.6 Examples of figure specifications,

Data Manipulation Facilities
.1 Equivalence and Ordering of Instances

3.2
3.2

Many data in engineering applications include similar instances. We intro-
duced abstract instances to describe these instances efficiently. Introducing
abstract instances lead to a basic mathematical problem, i.e. to define the equiv-
alence and ordering among them. Ordering for abstract instances falls into two
classes. One is the ordering for instances of different instance identifiers.

The other is for the same identifiers.

As discussed already, instances in the ADAM data model form a hierarchy in
which an instance is at a higher level than its constituents. For the former
class, we define the ordering of abstract instances based on a hierarchy of in-
stances.

Ordering Rule 1 : An instance is greater than its constituent instances.

Some examples of the ordering of instances in Fig.3 are given.

Ex.1 VA_SYS(*, *) > AUDIO(%, =) > S UNIT(%, %) > IOL(%, *) , where %
indicates any appropreate arguments.
Ex.2 Ordering among IOL{ %, %), TONE(%, %) and TIMER({ %, %) is not defined.

This ordering allows the users to traverse hierarchical structures of arbi-
trary levels.

Now we consider the ordering for instances of the same identifiers and there-
fore the same number of arguments. We define three ordering rules which are dif-
ferent from each other in processing of arguments.

Ordering Rule 2 : An ordering for instances is defined by the alphabetical and
numerical ordering.

Ex.3 AUDIO(U, 3.0) < AUDIO(V, 3.0) < AUDIO(X, Y), since U < V < X in EBCDIC
code system.

Ordering Rule 3 : An ordering for instances is defined by the alphabetical and
numerical ordering except for variables.

Ex.4 AUDIO(X, Y) < AUDIO(U, 3.0) = AUDIO(V, 3.0), since Y < 3 in EBCDIC
code system.

Ordering Rule 4 : An ordering of instances is defined by the following criteria.

(1) If instances given are unifiable /6/, then they are equivalent.

(2) 1If instances given are not unifiable because constants are unmatched, then
ordering is defined by the alphabetical and numerical ordering of constants;
otherwise it is not defined.

72

Ex.5 AUDIO(X, Y) =
substitution.
Ex.6
tion and 2.0 < 3.0.
Ex.7

{ X/U,
not defined.

Based on the ordering rules
above, ADAM provides three evaluation
modes for data manipulation.

(A) Alpha-evaluation mode
Expressions for data manipulation are
evaluated according to Ordering Rules
1 and 2.

(B) Beta-evaluation mode

Expressions for data manipulation are
evaluated according to Ordering Rules
1 and 3. In this mode, if identi-
fiers are used systematically, we can
efficiently distinguish whether a
variable is substituted by a constant
or not.

(C) Gamma-evaluation mode
Expressions for data manipulation are
evaluated according to Ordering Rules
1 and 4. Gamma-evaluation mode is
useful for manipulating abstract in-
stances whose arguments are variables,
constants and functions.

Fig.7 gives examples of natural
join in each evaluation mode. In-
stances in ADAM are partially ordered
in general. Thus '"not-ordered join",
"not-ordered restriction'" operations,
etc. are available in addition to the
relational operations.

3.2.2 Data Retrieval Operations

As discussed in section 2, objects
in engineering applications are modeled

as multiple levels of abstraction.
Thus conventional data manipulation

AUDIO(V+2.0, 5.0) since { V+2.0/X,
Thus the set { AUDIO(X, Y), AUDIO(V+2.0, 5.0) } is unifiable.
AUDIO(U, 2.0) < AUDIO(5.0, 3.0), since { 5.0/U } is a legal substitu-

5.0/Y } is a legal

Ordering between AUDIO(X, X+1.0) and AUDIO(U, U) is not defined, since
X+1.0/U } is an illegal substitution and ordering between X and X+1.0 is

[R1 [INSTANCE [R2 T INSTANCE | ATTR
E(x,y) E(x,y) 2x+y
E(u,3) E(2,3) 7

E(x, 3) 2x+3

(A)

(B)

(€)

(D)

An example relational database.

(3

INSTANCE

ATTR

E(x,y)

2X+y

Alpha-natural-join :

R3 = R1 [INSTANCE =

[R4 | INSTANCE | ATTR
E(x,y) 2x+y
E (u, 3) 2u+3

Beta-natural-join :

R4 = R1 [INSTANCE =

[R5 | INSTANCE | ATTR
E(x,y) 2x+y
E(2,3) 7
E(X,3) 2x+3

Gamma-natural-join :

R5 =

Fig.7

R1 [INSTANCE =

INSTANCE] R2

INSTANCE] R2

INSTANCE] R2

Examples of natural-join,

facilities for the relational data model are insufficient for data manipulation in

ADAM, because many essential data manipulations require a facility to traverse

from one level to another through an arbitrary number of intermediate levels of

abstraction.

Data retrieval operations for the relational data model are extended

so that the users can specify retrieval conditions at arbitrary (but adjacent)

levels of hierarchy.
$MODE is gamma

For example,

< ELEM > FIG [ELEM] / (FIG [ELEM = 'TIMER(X,Y)']) [count (ELEM) > 1]
specifies a query "find all the constituent modules which contains more than equal

to one timer."

73

3.3 Graphic facilities

As discussed in section 3.1, an entire pictorial notation for an instance is
separately stored at different abstraction levels. So some sophisticated graphic
algorithms have to be developed to retrieve a required pictorial notation.

Let <{GFS},m> denote general figure specifications at abstraction level m
and <{DFS},m> U GRAPHICS (<{REL},m>) denote detailed figure specifications at
abstraction level m. <{DFS},m> indicates specifications using built-in graphic
functions and <{REL},m>, which is usually described in terms of relational opera-
tions, denoted an argument of the function GRAPHICS. The graphic algorithm in
ADAM takes an integer, say n, as a parameter and produces the result as follows.
For n = 0, GRAPHICS(<{GFS},m>).

For n = 1, GRAPHICS(<{DFS},m> U <{GFS},m-1>).

For n = 2, GRAPHICS(<{DFS},m> U <{DFS},m-1> U <{GFS},m-2>), etc.

Notice that the result is different from a simple overlay of figures at each
abstraction level in that general figures of intermediate levels are not dis-
played. Applying the algorithm to the AUDIO(X,Y) in Fig.3, we get the result

shown in Fig.8.
| 1 ¢ :
-9

<~ L

Jagpes =

() n =0 (B) n =1 (C) n =2

Fig.8 Results of the graphic algorithm in ADAM.

4. CONCLUDING REMARKS

This paper described an extended relational database system for the unified
management of engineering data. Our approach is characterized
(1) figure specification parts to augment the data definition facilities,

(2) a facility called abstraction mechanism for dealing with a group of objects
as a unit, 7
(3) instances with arguments for manipulating repeated appearances of similar
objects efficiently.

We have discussed overall facilities of ADAM, i.e. data definition, data
manipulation and graphic facilities. Detailed discussions and examples are given
in Udagawa and Mizoguchi /8/. A first version of ADAM is being implemented on
MELCOM-COSMO 900 II computer system.

74

ACKNOWLEDGEMENT

The authors are grateful to Dr. M. Sudo, manager of Computer and Software
Department at Information Systems and Electronics Development Laboratory for many
helpful comments. We thank Dr. Won Kim, IBM Research Laboratory, San Jose, for
his careful reading of the paper and comments on improving the presentation.

We also thank Dr. Y. Masunaga, the University of Library and Information Science,
for his encouragement to publish this article.

REFERENCES

/1/ C.J.Date, "An introduction to database systems,'" 3rd. ed. Addison-Wesley,1981.
/2/ T.W.Sidle, ''Weakness of commertial database management systems in engineering
applications,'" Proc. 17th Design Automation Conf., 1980, pp.57-61l.

/3/ N.S.Chang and K.S.Fu "A relational database system for images,'" In "Pictorial
Information Systems,'" Lecture Notes in Computer Science, Vol. 80, Springer-Verlag,
pp.288-321, 1980.

/4/ J.L.Becerril, R.Casajuana and R.A.Lorie "GSYSR : A relational database inter-
face for graphics,"” In '"Data Base Techniques for Pictorial Applications,' Lecture
Notes in Computer Science, Vol.81, Springer-Verlag, pp.459-474, 1980.

/5/ R.L.Haskin and R.A.Lorie "On extending the functions of a relational database
system,'" Proc. ACM-SIGMOD Int. Conf. Management of data, pp.207-212, June 2-4, 1982.
/6/ J.A.Robinson "A machine oriented logic based on the resolution principle,"

J. Ass. Comput. Mach., Vol.12, No.1l, pp.25-41, 1965.

/7/ Y.Udagawa and T.Mizoguchi, "Implementation techniques of ADAM data definition
language,' Proc. 28th National Convention of Inf. Process. Society of Japan.

/8/ Y.Udagawa and T.Mizoguchi, '"'An advanced database system ADAM --- towards
integrated management of engineering data,'" Proc. IEEE Computer Data Engineering
Conference, Apr. 1984,

75

INTEGRATION OF WORD PROCESSING AND DATABASE MANAGEMENT
IN ENGINEERING ENVIRONMENT

Fumio Nakamura, Atsumi Kimura,
Sadasaburoh Kanai, Kazuhiko Ohmachi

Systems Development Lab., Hitachi, Ltd.
1099 Ohzenji, Asaoku, Kawasaki
215 JAPAN

1. Introduction

The Database technology for business applications is at a mature stage now. However, the database
technology for engineering applications is only emerging. We can see the reason from the following
differences between the histories of computerization in business and engineering applications:

(1) In business applications, data is transformed by sorting, merging, etc. and several reports are
generated during the transformation. In an analysis of business systems, the design of input and output
files and forms is important. Further, computerized business systems involve many simple repetitive
applications.

(2) Engineering applications place heavy emphasis on algorithms (procedures) , like complex numerical
calculations. Subroutines are shared and managed in engineering systems. One evidence is FORTRAN. It has
much poorer data or file manipulation functions than COBOL.

However, the environment of engineering or manufacturing companies is rapidly changing. More varieties
of products must be designed and manufactured in shorter period. To accomplish this, integration of
engineering applications is essential, and engineering databases hold the key and have drawn attention in
recent years. '

We have addressed one of the problems in engineering database systems, support for design-document
generation, and built 2 system called EASY-DOC (Engineering Activity support SYstem -DOCument generation).
Design documents, as well as drawings, are one of the most important outputs of the designers. Unlike
drawings, however, computer aided design-document generation has not been frequently discussed. Designe-
document generation requires not only word processing but also database management, since design documents
involve variable fields whose values vary from product to product. EASY-DOC is now being used for a pump
design system at Ritachi.

In Section 2, we will review the features of engineering databases and technical problems to be solved to
realize engineering database systems. We will clarify the features of design documents and describe the
architecture of EASY-DOC in Section 3.

2. Features of Engineering Databases and Technical Problems

2.1 Features of Engineering Databases

A global view of an engineering database as a data center in a total design and production system is
depicted in Figure 1. It includes three different types of data.

(1) Geometric data -- holds three-dimensional shape and attribute data of products, and drawing

information which is a two-dimensional projection of shape data. It has highly complex relationships among
data items and requires high speed data access. Therefore, current general purpose database management

76

systems (abbreviated to DBMSs)
cannot fully manipulate the
data structures with adequate
performance. As a result, most
present CAD systems move
geometric data between main
memory and secondary storage
in simple ways (e.g. direct
block access) and manage it as
main-memory data during one
job (e.g. processing of a
drawing). This approach lacks
flexibility in modifying data
structures (e.g. addition of
new attributes), since they do
not provide even data
definition facility which all
DBMSs provide.

rAPPLICATION PROGRANS

~DEs16N
CALCULATION

- GEOMETRIC DATA
HANDL ¥NG

~Ap Hoc QUERIES —ManuracTurINe ConTrOL

- DocUMERTION =~ CosT MANAGEMENT ETC,

ADYANCED
DBMS

Esr,"A,E

- GEOMETRIC Data
- ENGINEERING DATA

~ ADMINISTRATION DATA

(2) Engineering data --
includes several kinds of data
such as design data (other
than geometric data) for the
products being designed,
design results and maintenance
histories of completed Figure 1. Global View of an Engineering Database System
products, reliability data,
and design standards. Among
the three types of data, this
is the least integrated into databases. Data access is made in an ad-hoc manner with a wide variety of data
selection conditions. The most important factor in selecting DBMSs for this type of data is the ease of use,
which is a significant advantage of relational DBMSs.

IINYNILNIVY

ORDER

(3) Administration data -- is data required for managerial applications such as manufacturing control
and cost management. This is already supported in on-line database systems using traditional DBMSs.

2.2 Technical Issues in Engineering Database Systems

Since engineering applications have different data processing characteristics from business applications,
The following technical problems must be solved to realize engineering database systems.

(1) Geometric Data Management

Geometric data has a complex data structure and is processed in the following manner:

- A block of semantically correlated data (e.g. data in one drawing) is retrieved as a unit.

~ The retrieved data is interactively processed via a display terminal, over a relatively long duration.

- After completion of interaction, a new set of data is generated and replaces the old one.
Therefore, if geometric data structures are.faithfully defined using data definition functions of current
DBMSs, the performance will become intolerable because of lengthy database access time and locking overhead;
thousands of records must be read in before the interaction and many of them must be updated during and
after the interaction. On the other hand, database management concept is necessary for relating the
geometric data with other attributes and product data.

(2) Numeric Data and Units

Engineering databases frequently require floating point numbers and arrays, unlike business databases.
And such numeric fields usually carry units. Database processing must take units into consideration, and in
some cases (e.g. exported products), unit conversion is required (e.g. between the metric system and the
yard-pound system).

(3) Long Life of Data

In some cases (e.g. turbines in electric power plants), design data must be kept for tens of years. The
old data is unioaded to magnetic tapes, and reloaded when required. The data structure may change during a
long span of time. If it happens, the data reload could be unsuccessful. This is also true for products with
rapid technical improvements like semiconductor products. For this, the system may have to allow multiple
versions of data definition for one database.

(4) Program Management

Accumulation of programs and subroutines is an important aspect of engineering systems, and a method is
required to manage these programs. The nucleus of a program management system is a program base. Although
the notion of program base has not been established yet, a global view of a program base is "a set of data
about programs for program development, execution, and maintenance". Engineering applications need a
flexible program execution mechanism which enables to dynamically relate and execute independently developed
programs.

(5) Design-Document Generation
This will be discussed in detail later.

77

3.3 Document Database

All information about defined documents and
generated documents is stored in the document
database and controlled by the document
management facility. The principal entity sets
and relationship sets are shown in Figure 5 as an
Entity-Relationship diagram®’/. The document
database is directly maintained by EASY-DOC.
Users access it through EASY-DOC.

(1) DOC-DEF holds overall document definition
information like standard form format.

(2) FORM corresponds to defined forms and holds
all information for each form specified via the
document definition facility.

(3) VAR-FD holds information for each variable
field specified during document definition such
as length, 1internal data type, and display
format.

(4) DOCUMENT holds information corresponding to
each generated document from a defined document
by setting variable field values. Further, more
than one document of the same kind for each
product (e.g. revisions) may exist.

(5) Bach PAGE is constructed by setting variable
field values in a form and by making minor
changes to the form if necessary.

(6) FIGURE has information about figures and
graphs to be inserted into forms and pages. It
is extracted from graphic systems in plotter
command form.

3.4 Program Generation

The program generation facility makes it easy
for users to write procedures which set variable
field values. Users can write procedures using
the pseudo-codes the program generator provides.
The pseudo-codes consist of FORTRAN, including
database access calls, and form control
statements. they may also include variable field
names which are specified in the document
definition. The program generator generates
complete FORTRANT7 source programs from specified
pseudo-codes by translating the form control
statements and variable field names into
appropriate FORTRAN procedural and declaration
statements as shown in Figure 6. It refers to
the document definition information 1in the
document database during the translation process.
An example pseudo-code program and the program
generated from it is shown in Figure 7.

Pseudo-Codes

FORTRAN
«+ Form Control
Statements

Document

Program Generator | Database

Completed Program
(FORTRAN Source)

Figure 6. Program Generator
80

1
DOCUMENT < ~ | DOC-DEF

| %X>
n n

PAGE FORM
m
m 1
n n n
FIGURE VAR-FLD

Figure 5. Main Data Structure of the Document Database

SOPEN FORM1 ;
4GETF 2?4, ?B, ?2C ;

(Read the values of the variable
fields ?D and ?E from the database
using the input values ?A, 7B and ?C.)

FOHTRAN_ statements

SLINK PROGt (?D, ?E, ?F) ;
(Caleculate the variable field ?F
using 7D and 7E.)

4SETF ?D, ?E, ?F ;

%DISPLAY PAGE1

ASAVE PAGE1 ;

3CLOSE FORM1

END

(a) Pseudo-codes

CHARACTER¥8 $FORM
CHARACTER#*8 $FLD(3)
REAL $FA0O1

$FORM = 'FORMY'
CALL $OPEN ($FORM)

$FLD(1) = 'A'
$FLD(2) = 'B'
$FLD(3) = 'C!

CALL $GETF ($FLD(1), $FAOD1, $FLD(2), $FA002,
$FLD(3), $FA003)

(Retrieval of 7D and ?E from the database.)

FORTRAN} statements

(Translation of ZLINK, 3SETF, IDISPLAY, $SAVE
omitted.)
CALL $CLOSE ($FORM)

END

(b) Generated FORTRAN Program’ oo

Figure 7. Example of Program Generation

(1) FORTRAN Statements
Pseudo-codes are primarily based on FORTRAN77 since most designers are familiar with FORTRAN, and
FORTRAN77 car. handle non-numeric data well.

(2) Variable Fields
When the program generator encounters a variable field whose name is preceded by "?", it takes the
following actions: :
(a) It replaces the name by a FORTRAN variable name which begins with "§F™.
(b) It generates a declaration statement for the variable by retrieving the variable field definition
information from the document database.

(3) Form Control Statements
These are special statements provided by the program generator for form control such as open and close
of forms, setting up variable field values, and display of pages on display terminals. The control
statements begin with "%$". There are ten different types of statements.
(a) %OPEN makes a form ready for processing.
(b) %CLOSE makes a form inaccessible.
(¢) %GETF is used to receive field values, from a display terminal in conversational mode or as card
image data in batch mode.
(d) ®SETF sets up variable field values in the form. The values are edited based on the display format
defined in the document database.
(e) IDISPLAY outputs the generated page to the display terminal, for verification.
(f) %SAVE stores the generated page to the document database.
(g) 3GETP returns the number of pages already generated in the document.
(h) %SETP attaches a page number to the generated page.
(i) SLINK dynamically links to another program specified.
(J) $PUT outputs a message.

Acknowledgments

The authors wish to thank to Mr. K. Arai (Software Technology Promotion Center), Mr. T. Takanishi and Mr.
S. Oyamada (Tsuchiura Works), and Mr. I. Yoshida (Systems Development Lab.) for their encouragements and
cooperation with this work.

References
1. Survey Reports on Engineering Database systems (in Japanese), Joho-~Shori Sinkoh Jigyoh Kyohkai (IPA)
(March 1976, 1977, 1978).

2. A Survey Report on Computer Aided Engineering (in Japanese), Nihon Joho-Shori Kaihatsu Kyohkai (JIPDEC)
(March 1982).

3. Computer-Aided Design, Vol.11, No.3 (Special issue on databases) (May 1979).
4. Encarnacao, J. (ed.): File Structures and Data Bases for CAD, Proc. IFIP WG5.2 Conf.(Sept. 1981).
Y
5. Proc. of Engineering Design Applications in Database Week Conf., IEEE Computer Society Press (May 1983).

6. Chen, P.: The Entity-Relationship Model - Toward a Unified View of Data, ACM TODS, Vol.1, No.!l
(March 1976).

7. Nakamura, F.: Engineering Databases (in Japanese), Joho-shori, Vol.25, No.Y4 {(April 1984).

81

Call For Papers
INTERNATIONAL CONFERENCE ON
FOUNDATIONS OF DATA ORGANIZATION
Kyoto University, May 22-24, 1985

The International Conference on Foundations of Data Organization will be held at Kyoto University,
Kyoto, Japan on May 22-24, 1985. Papers presenting original research on theoretical aspects of data
organization are being sought.

Suggested Topics: typical, but not exclusive, topics include:

Mathematical file organization Impact of VLSI on file organization
Consecutive retrieval property and applications File organization for relational databases
Geometrical techniques for data organization Models of data organization

Data organization for high-level databases (historical, inferential, statistical, CAD databases, etc.)

Submission of Papers: Authors are invited to submit three copies of a full paper before October 15, 1984
to the Vice-Chairperson of the Program Committee.

Program Committee Chairperson Program Committee Vice-Chairperson
Witold Lipski Katsumi Tanaka
Université de Paris-Sud College of Liberal Arts
Centre d’Orsay Kaobe University
Laboratoire de Recherche en Informatique Nada, Kobe 657, Japan
Bat. 490

91405 ORSAY Cédex, France

Authors will be notified of acceptance/rejection by January 25, 1985. Final papers will be due by March
10, 1985.

Honorary Conference Chairperson Conference Chairperson
Sumiyasu Yamamoto Yahiko Kambayashi
Department of Applied Mathematics Department of Computer Science & Com. Eng.
Science University of Tokyo Kyushu University
Shinjuku, Tokyo 162, Japan Hakozaki, Fukuoka 812, Japan
International Organization Committee
Chairperson) European Coordinator
Sakti P. Ghosh Fabrizio Luccio (Universita di Pisa)
IBM Research K54/282 Middle East/Africa Coordinator
5600 Cottle Road Sabah S. Al-Fedaghi (Kuwait University)

San Jose, California 95193, U.S.A.

Program Committee Members:
Frangois Bancilhon (Université de Paris-Sud, France)
Walter A. Burkhard (University of California, San Diego, U.S.A)
Merrick Furst (Carnegie-Mellon University, U.S.A))
Hideki Imai (Yokohama National University, Japan)
Won Kim (IBM Research, U.S.A))
Yoshifumi Masunaga (University of Library and Information Science, Japan)
J. lan Munro (University of Waterloo, Canada)
Tetsuo Mizoguchi (Mitsubishi, Japan)
Peter Scheuermann (Northwestern University, U.S.A)
Michel Scholl (INRIA, France)
Shinsei Tazawa (Kinki University, Japan)
Miroslaw Truszczynski (Technical University of Warsaw, Poland)

An attempt will be made to publish selected outstanding papers of the conference in the book form,
similar to the previous conference, which was held in Warsaw in August 1981 (Academic Press, titled:
Data Base File Organization, 1983).

Kyoto used to be the capital of Japan for over one thousand years. There will be Tsukuba Science
EXPQO’85 at Tsukuba. Details to attend the conference are available from the Conference Publicity
Chairperson.

International Organizing Committee Members

Canada: TimH Merrett (McGill University) Yutzks Matsushita (Oki)
China: Shu Gang Shi (Wuhan University) Takeo Nakano (St. Paul's University)
Czechoslovakia: Braislav Rovan (Komensky University) Hirotaka Sakai (Hitachi Software)
France: Claude Delobel (University of Grenoble) Kenji Suzuki, Hirofumi Katsuno (NTT}
India: Jogobrata Roy (Indien Statistica) Institule) Kazuhiko Ohmachi (Hitachi)
Italy: Barbara Pernici (Politecnico di Milano) Setsuo Ohsuga (University of Tokyo)
Japan: Yoshihiro Akiyama (IBM Jepan) Syunsuke Uemura (Electrotechnical Lab.)
Setuo Arikaws (Kyushu University) Korea: Shkho Lee (Seoul Nationa) University)
Ryousuke Hotaka (Tsukuba University) Poland: Wiktor Marek (Warsaw University)
Hideto Ikeda (Hiroshima University) Singapore: Robert A. Cook {Nat Univ. of Singapore)
Yoshioki Ishii (Software A.G. Far East) Switzerland: Jurg Nievergelt (ETH)
Isamu Kobeyashi (Sanno University) USA.: Pau! Dietz
Akifumi Makinouchi (Fujitsu) {University of Southern California)
Masao Managaki (NEC) Chung Le Viet (HDR Systems)

W._Germeny: H. .D. Ehrich (Tech. Universitat Braunachweig)

Local Arrangement: Chairperson: Kazua lwama (Kyoto Sangyn University)
Members: Shirou 1wasawa (IBM Japan), Shojiro Muro (Kyoto University), Osamu Konishi (Negoya
University), Yuzuru Hiraga (University of Library and Information Science)

Publicity and Treasurer; Cheirperson: Masatoshi Yoshikawa (Kyoto University)
Members: Hiroto Yasuura (Kyoto University), Tetsuya Furukawa (Kyoto University)

In cooperation with: IEEE Computer Society, ACM SIGMOD, Kyoto University, Kyushu University, IBM Resgarch, IBM Japan

82

Call for Papers and Participation

FIRST INTERNATIONAL WORKSHOP ON EXPERT DATABASE SYSTEMS

October 25-27, 1984, Kiawah Island, South Carolina

Sponsored by

The Institute of Information Management, Technology and Policy,
College of Business Administration,
University of South Carolina

In cooperation with:
Association for Computing Machinery — SIGMOD and SIGART

IEEE Technical Committee on Data Base Engineering

This workshop will address the theoretical and practical issues involved in making databases more
knowledgeable and supportive of Al applications. The tools and techniques of database management are
being used to represent and manage more complex types of data and applications environments.

The rapid growth of online systems containing text, bibliographic, and videotex databases with their
specialized knowledge, and the development of expert systems for scientific, engineering and business
applications indicate the need for intelligent database interfaces and new database system architectures.

The workshop will bring together researchers and practitioners from academia and industry to discuss these
issues in Plenary Sessions and specialized Working Groups. The Program Committee will invite 40 to 80
people, based on submitted research and application papers (5000 words) and issue-oriented position
papers (2000-3000 words). Topics of interest include (but are not limited to):

Knowledge Base Systems Knowledge Engineering Expert Database Systems
environments acquisition natural language access
architectures representation domain experts
languages design database design tools
hardware learning knowledge gateways

industrial applications

Database Specification Methodologies Constraint and Rule Management Reasoning on Large Databases

object-oriented models metadata management fuzzy reasoning

temporal logic data dictionaries deductive databases
enterprise models constraint specification semantic query optimization
transactional databases verification, and enforcement

Please send five (5) copies of full papers or position papers by June 1, 1984 to:

Larry Kerschberg, Program Chairperson
College of Business Administration
University of South Carolina

Columbia, SC 29208

(803) 777-7159/messages 777-5766

Submissions will be considered by the Program Committee and authors will be notified of acceptance or
rejection by July 16, 1984. Preprints of accepted papers will be available at the workshop. Workshop
presentations, discussions, and working group reports will be published in book form.

83

Announcing
amajor new

IEEE Computer Society
ership benefit...

me

Computer communications for today’s computer professionals

Using COMPMAIL+youcan...

1. Communicate via electronic mail with.your col-
leagues — one-on-one, of in electronic mail confer-
ences. Either way, there’s no more postal system
delays, no more "telephone tag.”

2. Access Computer Society listings ot upcoming con-
ferences, publications, and technical activities.

3. Scan the complete, up-to-the-minute list of Com-
puter Society Press publications.

4. Speed up your Computer Society publications orders
and conference registrations by ordering on-line and
charging to your credit card. On-line book orders
are shipped in 48 hours; conference registrations
are processed in 24 hours.

5. Locate your colleagues in the system by accessing
a complete on-line directory of all COMPMAIL+
users.

6. Post your own messages to — and scan — a soci-
ety-wide electronic bulletin board.

7. Setup your own execulive calendar system: sched-
ule meetings, display your own open time slots, and
scan colleagues' schedules for open time slots.

8. Access slate, national, and international newswires.

Scan the headlines, or do keyword inquiries.
9. Obtain current stock, bond, and commadity quotes.
10. Use the on-line QOfficial Airline Guide to obtain
current flight schedules and fares.

11. Utilize a wide range of programs in the system
library (over 200), ranging from finance and statisti-
cal routines to games.

12. Create your own programs and data files using
compilers and the database management system
resident on COMPMAIL+.

And remember: this is just a partial list of the tools and

facilities available through COMPMAIL+ right now. Even
more will be available in the future.

@AEEE COMPUTER SOCIETY

0 THE INSTITUYE OF ELECTRICAL AND
1644 W96 ELECTRONICS ENGINEERS, INC.

EASY TO USE

To assure maximum access for all society members,
COMPMAIL+ 15 available via Telenet, Tymnet, or Uninet

All you need is a telephone, a modem, and a terminal or
a microcomputer capable of communicating via ASCl)
protocols over telephone lines. When you log on you'll
see a complete menu of available services, together
with extensive on-line help commands and functions.
‘There's even a special HELP mailbox in case you run
nto a problem, and a SUGGESTION mailbox in case you
jthink of enhancements that will make the system even
‘more useful 1o Computer Society members.

LOW COST

For most COMPMAIL + services, the basic rate is an
hourly connect charge that varies by time of day. In addi-
tion, there is a communications charge that varies by
time of day and by the particular network you select
(Telenet, Tymnet, or Uninet). The following sample rates
cover basic electronic mail and communications assum-
ing you access COMPMAIL+ via Telenet:

Prme Time (8.00 a.m.* 106:00p.m., $16/hour
Monday through Friday)
(6:01p.m. 10900p.m,
Monday through Friday,
and 8:00a.m. 10 9:00 p.m.,
Saturdays, Sundays, and
holidays)

(9:01 p.m. 10 7.59 a.m. daly) $6/hour

Off-Prime $7/hour

Nighttime
*Times shown are based on Eastern Time

It you use the filing capability of the system there is a
small storage charge (40¢ per 2048-byte storage unit
per month). There are surcharges for use of some of the
special services such as the OAG and news or stock
quotation systems. Finally, if you use the system for pro-
gramming or database applications there are CPU time-
and-storage charges. A complete schedule of rates for
all services will be sent to all new subscribers, so you'll
know exactly what each service costs before you use
the system.

BEST OF ALL...

« There's no start-up or enrollment charge.
* As a special introductory offer, you'll receive a

$30 CREDIT

toward your use of the basic COMPMAIL+ services
(tems 1 through 7 opposite)

SUBSCRIBE NOW!

Compiete and mail the coupon below. That's ail there is
to it. By return matl you'll receive an 1D and password; a
complete schedule of rates, terms, and conditions; and
basic documentation

Fmm e DG m e

: COMPMAIL+ APPLICATION

| ITT Dialcom, Inc , is hereby authorized to register me as a user in the
I IEEE Computer Society's COMPMAIL+ system, | understand that as
an introduction ta the new system, | will receive a $30.00 credit
I toward my use of electroric mail and communications {Tymnet and
l Telenet) services, The creditis not apphcable to the use of surcharge
services such as OAG, Unistox, Inta-X, and UPI, Further, the credit 1s
l only applicable to charges incurred through the last day of the month
| following the month in which | am registered. | understand (hat
COMPMAIL+ services will be made avatlable upon ITT Dialcom's
' slandard terms and condttions ior COMPMAIL + services at Ihe rates
| specitied in the COMPMAIL+ schedule of prices, which will be fur-
| nished 1o me with my access |0 number and password. | agree that
system use will be upon said terms and cond:lions and at said rates
| ana agree [0 be bound thereby, | further understand that: it | do not
I use the system, no charge will be incurred. this authonization consti-
tutes no other obligation 10 me, charges for My use o COMPMAIL+
1 services may be invaiced 10 my credit card account as indicated
| pelow, and, if | elec! not to use my credit card and opt lor direct
' wvoice. 2 $25 00 mimmum monihly usage chatge wi apply

|

1

|

i

l

|

l

|

|

|

|

|

Cneckone' ‘I VISA [T MasterCard T~ Dwectlinvoicing

PLEASE PRINT OR TYPE
Credit Card
Account No

Credit Card Exp Date

My billing address 15

Name

Membership No (mandatory)

Address

I City/StatetZip

' Signature

I Date _________ __ THISFORM MAY BE DUPLICATED

Return to:

Compmail +

IEEE Computer Socisty
P.O. Box 3489

Silver Spring, MD 20901

TCDBE

	40979_DataEngineering_June1984_Vol 7_No2.pdf

