DECEMBER 7984 VOL.7 NO.4

a quarterly bulletin
of the IEEE computer society
technical committee

on

Database
Engineering

Contents

Cooperation Between IEEE TC on DBE and
ACMSIGMOD 1
Liaison Person Needed: ACM SIGMOD—IEEE
Technical CommitteeonDBE 2
Letterfromthe Editor........ 3
Information System Design at the Conceptual Level—
The Taxis Project. 4

J. Mylopoulos, A. Borgida, S. Greenspan,
and H.K.T. Wong

The Database Design and Evaluation Workbench
(DDEW) Projectat CCA 10
D. Reiner, M. Brodie, G. Brown, M. Friedell,
D. Kramlich, J. Lehman, and A. Rosenthal

Database Design Activities Within the

DATAID Project 16
C. Batini, V. De Antonellis, and A. Di Leva

A RealisticlookatData......................... 22

_ WKent o

Tools for View Integration 28

R. Elmasri, J.A. Larson, S. Navathe, and T. Sashidar

RED1: A Database Design Tool for the Relational
ModelofData 34
A. Bjornerstedt and C. Hulten

IRMA: An Automated Logical Data Base Design and

Structured AnalysisTool 40
R.M. Curtice

An Overview of Research in the Design of

Distributed Databases 46

S. Ceri, B. Pernici, and G. Wiederhold

Current Research in Database Design at the
Universityof Minnesota 52
S. March, S. Mendu, P. Palvia, M. Prietula,
D. Ridjanovic, J.V. Carlis, D. Beyer, and K.L. Ryan

Research on Form Driven Database Design and
Global View Design 58
M.V. Mannino and J. Choobineh

A Prototyping Approach to Database Applications

Development. i 64
A. Albano and R. Orsini
A Causal Approach to Dynamics Modeling 70

V. De Antonellis and B. Zonta

" Designing Database Updates76

S. Salveter and D.E. Stumberger
CallsforPapers........ 82

Special Issue on Database Design Aids, Methods, and Environments

Chairperson, Technical Committee
on Database Engineering

Prot. Gio Wiederhold

Medicine and Computer Science
Stanford University

Stanford, CA 94305

(415) 497-0685

ARPANET: Wiederhold@SRI-Al

Editor-in-Chief,

Database Engineering

Dr. David Reiner

Computer Corporation of America
Four Cambridge Center
Cambridge, MA 02142

(617) 492-8860

ARPANET: Reiner@CCA

UUCP: decvax!ccalreiner

Database Engineering Bulletin is a quarterly publication of
the IEEE Computer Society Technical Committee on Database
Engineering. Its scope of interest includes: data structures
and models, access strategies, access control techniques,
database architecture, database machines, intelligent front
ends, mass storage for very large databases, distributed
database systems and techniques, database software design
and implementation, database utilities, database security
and related areas.

Contribution to the Bulletin is hereby solicited. News items,
letters, technical papers, book reviews, meeting previews,
summaries, case studies, etc., should be sent to the Editor.
All letters to the Editor will be considered for publication
unless accompanied by a request to the contrary. Technical
papers are unrefereed.

Opinions expressed in contributions are those of the indi-
vidual author rather than the official position of the TC on
Database Engineering, the IEEE Computer Society, or orga-
nizations with which the author may be affiliated.

Associate Editors,
Database Engineering

Dr. Haran Boral

Microelectronics and Computer
Technology Corporation (MCC)

9430 Research Blvd.

Austin, TX 78759

(512) 834-3469

Prof. Fred Lochovsky

Department of Computer Science
University of Toronto

Toronto, Ontario

Canada M5S1A1

(416) 978-7441

Dr. C. Mohan

IBM Research Laboratory
K55-281

5600 Cottle Road

San Jose, CA 95193
(408) 256-6251

Prof. Yannis Vassiliou

Graduate School of
Business Administration

New York University

90 Trinity Place

New York, NY

(212) 598-7536

Mempership in the Database Engineering Technical Com-
mittee is open to individuals who demonstrate willingness to
actively participate in the various activities of the TC. A
member of the IEEE Computer Society may jointhe TC asa
full member. A non-member of the Computer Society may
join as a participating member, with approval from at least
one officer of the TC. Both full members and participating
members of the TC are entitled to receive the quarterly
bulletin of the TC free of charge, until further notice.

Cooperation between IEEE TC on DBE and ACM SIGMOD

The 1EEE Technical Committee on Database Engineering puts out this
publication; ACM SIGMOD (Special Interest Group on Management of Data)
publishes the SIGMOD Record. 1In orientation, goals, and membership,
there 1is much in common between the two groups, and both publications
are aimed at researchers and practitioners in the database area. To
foster cooperation and cross~fertilization between these groups, SIGMOD
has agreed to fund distribution of this issue of Database Engineering
(DBE) to its members. The IEEE TC hopes to reciprocate in 1985 by dis-
tributing an issue of SIGMOD Record to its members.

A SIGMOD member wishing to receive future issues of Database
Engineering may 3join the IEEE Computer Society, which allows him to
join any of a number of TCs. Alternatively, he may join just the TC on
DBE, as a correspondent, at no cost (currently). (Write to: IEEE Com-
puter Society, 1109 Spring St., Suite 300, Silver Spring, MD 20910.)

A TC on DBE member wishing to receive future issues of SIGMOD
Record may 3join ACM and any of a number of Special Interest Groups

(SIGs), including SIGMOD. (Write to: ACM, 11 West 42nd St., New York,
NY 10036.)

If you already belong to both organizations, please: (1) pass your
extra copy of this issue along to a colleague, and (2) notify David
Reiner (see address on inside front cover) by mail (or netmail), using
the tear-out form on the next page. This will help us keep down costs
of duplicate mailings in the future.

Briefly, here are the differences between the two publications.
DBE, published quarterly, focuses on a particular theme with each
issue, and tends to contain mainly invited papers on current research
and development efforts. Although submissions are not subject to a
formal review process, the editors generally read articles very care-
fully, and work with the authors to achieve both clarity and brevity.
Upcoming 1985 issues will treat DBMS Performance, Concurrency Control
and Recovery in DBMSs, Natural Languages and Databases, and Object
Oriented Systems and DBMSs.

The Record, published from two to four times a year, accepts sub-
missions on "a broad range of database-related topics, and prefers to
see somewhat unusual articles which may not fit other forums such as
the ACM SIGMOD Conference, the IEEE Data Engineering Conference (Comp-
DEC), or VLDB. When possible, issues have a unifying theme. There is
no formal review process.

We hope in the future to cooperate on one or more joint issues of
these two publications, and plan to refer papers back and forth where
appropriate. In the meantime, enjoy this issue whatever your +affilia-
tion.

David Reiner, Editor-in-Chief, Database Engineering
Jon Clark, Editor, SIGMOD Record

Liason Person Needed:
ACM SIGMOD - IEEE Technical Committee on DBE

We would like to follow up on the direction of greater
inter-society cooperation annunciated by the ACM and the IEEE
Computer Society. To make something actually happen, we are
looking for an individual willing to be a focal point in this
task. Such a person would be appointed to the ACM SIGMOD and
the IEEE CS TC DBE as coordinator, or whatever reasonable title
can be invented and supported. .

Concerns will be shared publication efforts, conference
sponsorship and schedules, and anything else which appears to
be a positive step. Bea Yormark, chair of the ACM SIGMOD, has
indicated her support. Please contact either one of us.

Gio Wiederhold, Chairperson,
Technical Committee on Database Engineering

[Gio's address and phone # are on the inside front cover; Bea's
are 7503 Lynn Drive, Chevy Chase, MD 20815, (703)-836-2696.]

If you are or plan to become a member of both ACM SIGMOD
and IEEE TC on DBE, please send a copy of this form to:

David Reiner

Computer Corporation of America
Four Cambridge Center
Cambridge, MA 02142

or notify Dave via netmail:

Arpanet: reiner@cca
UUCP: decvax!ccalreiner

Our purpose is to keep down costs of duplicate mailings.

Name
Address

Net address (if any)

Check all that apply:

ACM IEEE TC IEEE
SIGMOD on DBE Computer Soc

Currently a member

Plan to join

Letter from the Editor

Designing a database is a complex iterative process. It
requires familiarity with design techniques, methods, heuristics,
and tools, and with the nature of the data and its intended uses.
In the 1last few years, database design research has been on the
upswing. Researchers are concentrating not just on improved
design tools, but also on the overall methodological framework of
the design process, and on integrated environments to support it.

There seems to be general agreement that database design is
best separated into a succession of related but independent steps,
moving from the more abstract levels of requirements analysis and
conceptual design, to the 1logical 1level where the target data
model is introduced, to the more concrete 1levels of distributed
and physical design (though the exact nature and numbers of these
steps may vary slightly from one methodology to another). There
is increasing interest in design systems which support many stages
of database design, and which connect database design to the
broader lifecycle of system design and evolution, including appli-
cation development.

Current trends and areas of concentration in database design
include: expanded data model semantics (1nc1uding more emphasis on
constraints and improved techniques for view integration), more
attention to dynamic (transaction-oriented) aspects of designs,
graphics workstation-based design environments (with interactive
design tools), and AlI-related approaches (expert systems technol-
ogy, designing for natural language interfaces to databases).
Productive work continues in rapid database prototyping, form-
based design, and physical and distributed design. Commercial
database design products are beginning to be available.

The first three papers in this special issue describe fairly
comprehensive design environments now under development: the Taxis
project at Toronto, CCA's DDEW project, and the Italian DATAID
effort, The next four cover various aspects of conceptual and
logical design: the "fact-based"™ approach, view integration, the
REDl 1logical design tool from Sweden's SYSLAB, and ADL's logical
designer. Several university research projects come next, on dis-
tributed design, physical design, and form-based design. The last
three papers discuss early prototyping, modeling dynamic aspects
of databases, and designing database updates in a natural language
environment.

My thanks to the contributors to this issue, who have
invested considerable effort to produce concise but readable sum-
maries of their current resegg;h. ACM SIGMOD's support for prlnt-

ing and distributing extra copies of this issue for its members is
also gratefully acknowledged.

@Mzé/ /@M'LM
David Reiner

Cambridge, Massachusetts
December, 1984

INFORMATION SYSTEM DESIGN AT THE CONCEPTUAL LEVEL --
THE TAXIS PROJECT

John Mylopoulos, University of Toronto!
Alexander Borgida, Rutgers University
Sol Greenspan, Schlumberger-Doll Research, Conn.
Harry K.T.Wong, Lawrence Berkeley Labs

Abstract

This i1s a brief overview of the Taxis project, concerned with the development of languages, tools
and methodologies for the design of interactive information systems (ISS) such as reservations, inventory
control and credit card verification. We describe the major novel ideas explored in this project, the
tools and techniques supporting them, and their source in significant ideas of Artificial Intelligence and
Software Engineering.

1. INTRODUCTION
The development of database design techniques and tools is based on philosophical considerations
concerning the nature of databases, their role and the major source of problems in their development.
(Such philosophical underpinnings are of course not always made explicit.) In our case, there appear to
be three fundamental observations whose logical conclusions have shaped the nature of our design aids
and approach in general.

First, we consider the design of databases an integral and inseparable part of the design of
Information Systems (ISs), which include transactions, user interfaces, etc. and hence have broadened
the scope of our research to cover all aspects of Information System design, not just those dealing with
the storage of data.

Secondly, as others, we view an IS as a model of some relevant portion of the ”real world”, or
more accurately a model of the end-user’s [conceptual) perception of the world. ~As with models in
other fields, an IS is then useful to the extent that it reflects reality accurately, and to the extent that
the information in it is easily accessible. One consequence of this axiom is that IS design is now viewed
as model development or modeling. A second consequence is that IS development should then be much
easier and more successful if it begins at the conceptual level rather than the logical level. For this
reason, the Taxis project has drawn inspiration from Knowledge Representation schemes current in
Artificial Intelligence, and has adapted them to the specific problems of IS design. An underlying
assumption here is that the mapping from the conceptual design to the more ”physical” /”machine
dependent” levels can be automated.

Finally, we view ISs as software, and hence believe that important precepts of Software
Engineering are applicable to IS engineering. However, there is much to be gained by taking advantage
of the fact that ISs form a strict subclass of all possible software, one subject to many restrictions and
limitations.

Among the consequences of these views we list

e the applicability of the software life cycle to ISs. In particular, we advocate separate requirements
specification and design phases, but emphasize the advantages of a uniform philosophy, conceptual
modeling, underlying both;

e the importance of abstraction followed by gradual refinement as a fundamental tool for coping
with the sea of minutiae which need to be captured in a model. ISs however provide an
opportunity to explore new abstraction principles, which may not apply as successfully in the case
of general software.

o the utility of prototyping as a technique for obtaining quick feedback in determining what the user
really wants.

e the need for a methodology of software engineering to provide at least three things for each level

1Address correspondence to Depariment of Computer Science, University of Toronto, Toronto, Ontario, Canada. (416)
978 5180. Netmail to jm@toronto.csnet, borgida@rutgers.arpa, greenspan@rutgers.arpa, or wong@lbl-csam.arpa.

This research has been supported by grants from the Natural Sciences and Engineering Research Council of Canada,
US NSF, and DEC Corporation.

—4-

of specification:

o languages -- precise notations for expressing the relevant information.
o techniques -- procedures for constructing, manipulating, and validating specifications.
o tools -- automated aids designed to support the above.

2. THE TAXIS LANGUAGE

The focus of the Taxis Project is the Taxis programming language, which supports the description of
ISs at the conceptual level ([MYLO80a, 80b], [WONGS83|). Taxis incorporates a so-called ”semantic
data model” which provides for the description of the entities in the world and their inter-relationships
through the notions of objects, related by properties/attributes. A major advantage of this object-
centered framework over traditional record-based approaches is the direct and natural correspondence
between the model and the world (e.g., no reliance on keys), which facilitates both the design and
access of the IS. Individual objects are organized into classes, which describe commonalities of their
instances in the form of constraints -- e.g., properties applicable to them, the valid ranges of values of
such properties. In Taxis, classes themselves are objects, and hence can be members of meta-classes;
therefore classes can have their own properties (e.g., aggregate information). Furthermore, classes are
organized into a hierarchy with general classes located above their specializations. If one class (e.g.
employee) is defined to be a specialization, or subclass of another class (e.g., person), then at all times
every instance of the first is considered to be an instance of the second. An important consequence of
this organization is that properties can be tnherited from superclass to subclass, e.g., the class of
employees inherits properties such as name, address, and so on, from the class of persons.

In addition to modeling data, Taxis supports the development of Information Systems by
providing language features to model the activities in the world. For short-term activities, Taxis
provides the notion of transaction familiar in databases as the basic unit of integrity and recovery
maintenance. A transaction consists of an initial group of preconditions which check the applicability of
the operation at this point, followed by a sequence of actions described in traditional procedural
notation (e.g., assignments, loops, conditionals, data manipulations), and concludes with post-conditions.
Taxis attempts to maintain uniformity and parsimony by casting transactions in the same mold as
entities: a transaction is viewed as an object, with its parameters, conditions and actions becoming its
properties; procedure definitions become class descriptions (hence procedure invocations are instances of
these classes); and most innovatively, transactions are also organized into specialization hierarchies (e.g.,
admitting a surgical patient is a specialization of admitting a general patient).

In order to deal with special cases, Taxis incorporates a procedure-oriented exception handling
mechanism, and in a recent extension, provxdes the ability to store information which does not fit the
c]ass-schema (see Section 6).

To model persistent activities -- i.e., activities with prolonged duration such as participat.ing mn a
clinical trial or attending university -- Taxis also supports the notion of scripts (|BARRS0,82|,
[PILO83a,83b], [CHUNB84|, |TAXI84]). A script is built around a Petri-net skeleton of states connected
by transition arcs, which are augmented by condition-action rule pairs (viz. [ZISM78]). The rules are
described in Taxxs but also allow reference to the passage of time, and permit the transmission of
messages following Hoare’s CSP mechanism. Scripts are integrat.ed completely into the Taxis
framework, so that script classes are organized into a subclass hierarchy according to their
generality /specificity, have their states and transitions defined in terms of properties, and their instances
can be accessed through the same facilities used to access instances of entity classes. This allows among
others queries concerning the currently executing set of scripts.

Finally, an extension of Taxis allows designers to describe user tnterfaces to 1Ss, e.g., the query
or interaction language, in the same uniform framework of objects with properties in classes. Such an
extension allows a direct hnk to be established between the "referring expressions” used in the query
language and their "referents” in the database. The extension described in [PILO83a,83b],|TAXI84| also

provides for modelling tools to be used for the specification of a grammar and a lexicon which are
integral components of any user interface.

3. THE RML LANGUAGE FOR REQUIREMENTS

A requirements model is .a description of some portion of the world that encompasses potential
information systems and is used to communicate and analyze the problem situation. (A model at this
level corresponds to ”Corporate Requirements®.) In our case, it also provides a starting point for
information system design using Taxis.

We have defined a language called the Requirements Modeling Language (RML) for the purpose

-5-

of describing requirements models ((GREE82,84], |[TAXI84|).

A fundamental premise of the Taxis project is that one conceptual framework (such as the object
oriented framework described above) can be used both at the design and the requirements specification
level. What does change as a designer moves from one level to the other are the kinds of classes at his
disposal as he constructs his specification, and the kinds of information which needs to be captured.
For the design level these are data, transaction, exception and script classes. For the requirements level,
on the other hand, they are classes of individuals, activities and assertions. Informally, classes of
individuals correspond fairly directly to Taxis data classes. Activity classes are intended to model both
instantaneous actions and long-term events, corresponding to transactions and scripts in Taxis. Finally,
assertions are logical formulas making statements about the world, the rest of the requirements
specification, or the relation between the two. -

Abiding by the maxim that ”the requirements should express WHAT the system does but not
HOW”, RML does not have the notion of ”control flow”; instead, RML supports a temporal view of
the world: properties of objects, and their existence are all related to a time line, and the designer must
specify temporal constraints in order to ensure the desired sequencing of events, for example. RML does
however provide abbreviation techniques such as ”property categories” (e.g., ”instially”, ”always”) which
shorten descriptions by removing the clutter of temporal indices. Furthermore, RML provides a
mechanism for introducing and defining new property categories, allowing RML to be customized to a
specific task.

In addition to higher-level descriptions of activities, RML provides the opportunity to model
objects from both the world and the proposed IS, thereby allowing the specifier to express definitions of
terms, such as units of measurements, which would not normally appear in the IS, and to specify
constraints on the performance and accuracy of the IS.

4. METHODOLOGIES OF DESIGN

4.1. Dimensions of Abstraction

An abstraction mechanism is a conceptual or linguistic mechanism that allows certain information to be
highlighted while suppressing other information. In software engineering, abstraction is usually equated
with the suppression of design decisions or implementation detail. However, within a given level, the
Taxis framework offers a set of complementary abstraction facilities based on the notions of aggregation,
classification, and generalization [SMIT77].

If we define a property to be a directed relationship between two objects, aggregation allows one
to view an object as a composite of the objects to which it is related by properties. For example, a
person has a name, an address, and so on. The "abstraction” here is that one may talk about an
object while choosing to ignore its components for the moment.

Along an orthogonal dimension, the classification abstraction allows individuals to be grouped into
classes (and classes into metaclasses) that share common properties. By describing class objects, one
abstracts away the the detailed differences of the class instances.

Generalization allows the common properties of several classes to be factored out into the
definition of a single, more general, class. For example, the class of persons can be represented as a
generalization of the classes representing males, females, managers, engineers, female engineers, and so
on. The taxonomic organization provided by generalization hierarchies can lead to models that are
understandable and consistent, because the more that classes have in common with each other, the
"closer” they are located to each other in the hierarchy. Also, generalization hierarchies can lead to
more concise models, since it is sufficient to associate properties to the most general, applicable class
and let inheritance imply the rest. :

4.2. Taxonomic Programming

A methodology for specification/modeling should provide guidance to its users. At the heart of many
software development methodologies lies one or more abstraction mechanisms, which allow us to ignore
details at some level, plus a refinement principle which provides for the guided and gradual
introduction of details across the abstraction dimension.

We have explored the utility of the generalization abstraction as the basis of a methodology for
building descriptions which we call tezonomic programming or stepwise refinement by specialization
[BORG82|. Its main idea is that a model should be constructed by modeling first the most general
classes, and then proceeding to more specialized classes. For example, in modeling a hospital world, one
might consider first the concepts of patient, doctor, admission, treatment, etc. Later, the modeler can
differentiate between child patients, heart patients, internists and surgeons, surgical and medical
treatments, etc. At each step, only the information (properties) appropriate to that level are specified,
and because of inheritance, only new facts need to be stated.

—6—

Generalization is the appropriate principle to exploit when the difficulty of modeling is due to a
large number of details rather than due to algorithmic complexity; a hierarchy of classes organized
along this dimension guides the attention of the designer, and provides a convenient structure for
distributing information and associating it where it most naturally belongs. We emphasize that in
Taxis, specialization is applicable not only to data objects but also to the description of activities,
transactions, exceptions, and scripts.

5. DESIGN AIDS

5.1. Compilers and interpreters

Brian Nixon has implemented a compiler for Taxis programs |[NIXO83]. The target language for the
compiler is Pascal, avgmented with relational database facilities such as those provided by Pascal/R
[SCHMB0]. Taxis data hierarchies are translated into relational schemata, and hierarchies of
transactions are translated into the block structure of Pascal. The output of the compiler is a program
containing definitions of all classes and transactions, routines to enforce constraints, a database interface
(as provided by Pascal/R), and a near-empty database.

In developing such a compiler, several interesting implementation problems needed to be resolved,
including the distribution of information about an object in multiple relations, the possibility of
conflicting inherited properties, and the operation of inheritance for procedures. The implementation of
the Taxis compiler has been extended to handle the execution of scripts [CHUN84|. The major problem
in implementing scripts is the development of efficient algorithms for testing whether a state transition
is ready to fire or whether the invariants associated with a script state (and expressed in terms of a
logical assertion) are not being violated at a particular time.

Turning to prototyping facilities, an interactive environment for creating and trying out Taxis
programs has been designed and implemented by Pat O’Brien |O’BRI82|. It includes a class-oriented
editor, whose commands and functionality are centered on Taxis classes; a semantic consistency verifier
which ensures that Taxis programs conform to the semantic rules of Taxis; and an interpreter and
debugger for prototyping. The editor provides the information system designer with facilities to
construct, inspect, and modify a Taxis program. The consistency verifier performs various checks to
ensure the correctness of the conceptual model being specified. The interpreter simulates execution of
Taxis programs, and the debugger assists the designer in validating the model. The design environment
also provides various other aids to the user, such as an online help facility, a documentation generator,
and a way of keeping track of multiple versions of models. The Taxis design environment is also being
expanded to handle scripts [PARKS4).

5.2. The connection of RML to SADTTM

The difficulty of building a high-level requirements specification as in RML should not be understated.
In the initial stages of requirements definition, all of the parties involved are faced with the problem of
deciding what concepts and phenomena are relevant to the situation at hand, agreeing on terminology,
and conveying their "mental models” of the situation to each other. We propose, therefore, that
requirements be defined in two steps:

e The first would use a language for structured analysis such as SADT™ [ROSS177], in which terms
are introduced in an organized way.

e The second would use RML for semantic modeling, which gives definitions of the semantics of the
concepts introduced in the first step.

In [GREES84|, the connection between SADT and RML is made. SADT provides a way of
introducing concepts/terms into the requirements specification by a process of stepwise decomposition
(expanding a concept "box” into a ”diagram” containing several interconnected boxes). The result is a
hierarchically organized structure of interrelated terms, which provide a ”structured lexicon”, a sort of
road map to guide the RML modeling process. --

RML is then used to express more formally the information usually expressed by natural language
labels and comments on SADT arrows and boxes. In the process, the semantic relationships expressed
in the RML model are constrained by the connectivity of the SADT diagram from which it is derived
-- e.g., arrows connecting boxes become properties relating the corresponding classes.

In- an attempt to validate our design methodology, Taxis was used for describing a medical
information system for the Pacemaker Center at the Toronto General Hospital [DIMAS83], which keeps
track of patients who have received a cardiac pacemaker. It was also used to design a medical
information system for managing clinical trials |BUCH82], which are controlled experiments for
investigating the cause/effect relationship of new treatments. In both cases, Taxis’ facilities for

describing scripts, exceptions and organizing classes in specialization hierarchies proved to be very
important.

6. CONCLUSIONS AND CURRENT WORK . .

The Taxis Project has designed and implemented a variety of languages and tools for requirements and
design. Although they draw on ideas that are popular in Artificial Intelligence and Data Base
Management, as well as in some programming languages, they are all based on the same object-oriented
framework, which uses three fundamental abstraction mechanisms to structure and organize information.

Software engineering is viewed as the construction of a series of models, starting with a world-
oriented requirements model (SADT plus RML), then a Taxis design model, and ultimately a
completely implemented system. The task of requirements modeling is likened to the task of knowledge
representation in Artificial Intelligence, and the Taxis framework applies concepts that are popular in
Artificial Intelligence (as well as in semantic data models) to both RML and the Taxis language.

Current work is proceeding both on RML and Taxis. The RML language is being extended in
several directions: the uniform treatment of properties as objects; linguistic mechanisms for relating
objects in the world and their images in the IS; allowing contradictory information to be introduced
during specialization, thereby supporting a new abstraction principle: normalization. By providing a
translation of RML into logic, and by connecting this to a specialized theorem-prover, we hope to allow
reasoning about specifications, such as checking for consistency. We are also co-operating with a
software house in adapting RML for ”practical use”.

The exception-handling facilities of Taxis have also been greatly extended to allowing dynamic
exceptions -- i.e., allowing information to be stored which violates the schema of classes used during
compilation. This mechanism allows an IS to be much more flexible in the face of variability in the
world, especially unexpected occurrences, and can also be used to deal with such thorny problems as
null values, conversions of measurements, estimates, etc. (see [BORG84|, |[TAXI84]).

Acknowledgments The following members of the Taxis project have contributed significantly to the
advancement of the research reported here: Dr. P. Bernstein, J. Barron, B. Nixon, Dr. M. Pilote,
P. O’Brien, 1. Buchan, C. DiMarco, S. Park, L. Chung.

REFERENCES

[BARRSO| John Barron, Dialogue Organization and Structure for Interactive Information Systems.
Technical Report CSRG-108, Computer Systems Research Group, University of Toronto,
January 1980.

[BARRS2| John Barron, Dialogue and Process Design for Interactive Information Systems Using
Taxis. Proceedings, SIGOA Conference on Office Information Systems, Philadelphia, PA,
June 1982. SIGOA Newsletter, 3(1,2), pp. 12-20.

[BORG82] A. Borgida, J. Mylopoulos, H.K.T. Wong. ”Generalization as a Basis for Software
Specification” in M.Brodie, J.Mylopoulos, J.Schmidt(eds.) On Conceptual Modeling:
Perspectives from Al, Databases and Programming Languages, Springer Verlag, 1984.

[BORG84| A. Borgida, ”Language Features for Flexible Handling of Exceptions in Information
Systems”, Technical Note, Department of Computer Science, Rutgers University; submitted
for publication.

[BUCHS82| I. Buchan, H. D. Covvey, J. Mylopoulos, C. DiMarco, and E. D. Wigle, "Taxis: A
Language for the Development of Clinical Trial Management Systems,” Proc. Sizth Annual
Symposium on Computer Applications in Medical Care, October 1982. (also |TAXI84))

[CHUNB84| K. Lawrence Chung, An FEztended Tazis Compiler: M.Sc. thesis, Dept. of Computer
Science, University of Toronto, 1984.

[DIMAB83| Chrysanne DiMarco, Using TAXIS to Design a Medical Information System. (M.Sc.
Thesis) Tech. note #31, Department of Computer Science, University of Toronto, 1983.

[GREES82] S. Greenspan, J. Mylopoulos, and A. Borgida, "Capturing More World Knowledge in the
Requirements Specification,” Proc. 6th International Conference on Software Engineering,
Tokyo, 1982. (also [TAXI84])

[GREE84| S. Greenspan, Requirements Modeling: A Knowledge Representation Approach to
Requirements Specifications, Ph.D. thesis, University of Toronto, 1984.

-8-

[IMYLO80a|

[MYLOS8Ob]

[NIX083)

[O’BRIs?]

[PARKS84]
[PILO83a)|

[PILO8Sb)|

[ROSST7]
[SCHMg0|

[SMIT77]

[TAXI84]
[WONGS83|

|ZISM78)

J. Mylopoulos, P. A. Bernstein, and H. K. T. Wong, "A Language Facility for Designing
Interactive Database-Intensive Applications,” ACM Transactions on Database Systems,
Volume 5, Number 2, June 1980, pp. 185-207.

J.- Mylopoulos and H. K. T. Wong, "Some Features of the TAXIS Model,” Sizth
International Conference on Very Large Data Bases, 1-3 October 1980, pp. 399-410.

Brian Nixon, Translating Tazis Programs, M.Sc. Thesis, Dept. of Computer Science,
University of Toronto, 1983.

Patrick D. O’Brien, TAXIED: An Integrated Interactive Design Environment for TAXIS.
(M.Sc. Thesis) Tech. note #29, Department of Computer Science, University of Toronto,
1982.

Sun G. Park, Implementation of Eztended Tazis Environment, M.Sc. thesis, Department of
Computer Science, University of Toronto, 1984.

Michel Pilote, A Framework for the Design of Linguistic User Interfaces. Ph.D. thesis,
Dept. of Computer Science, University of Toronto, 1983.

Michel Pilote, A Programming Language Framework for the Design of User Interfaces,”
Proc. of the Conference on Principles of Programming Languages, June 1983. (also
[TAXI84])

D. T. Ross, "Structured Analysis(SA): A Language for Communicating Ideas,” in IEEE
Transactions on Software Engineering, Volume SE-3, Number 1, January 1977, pp. 16-34.

Joachim W. Schmidt and Manuel Mall, Pascal/R Report. Bericht Nr. 66, Fachbereich
Informatik, Universitaet Hamburg, Jan. 1980.

J. M. Smith and D. C. P. Smith, ”Database Abstractions: Aggregation and
Generalization,” ACM Transactions on Database S/yatcma, Volume 2, Number 2, June 1977,
pp. 105-133.

Tazis ’84: Selected Papers, Brian Nixon (ed.), Technical Report CSRG-160, June 1984,
Department of Computer Science, University of Toronto. ,

H. K. T. Wong, Design and Verification of Interactive Information Systems, Ph.
D. Dissertation, University of Toronto, 1983.

Michael D. Zisman, Use of Production Systems for Modeling Concurrent Processes. In
D. A. Waterman and Frederick Hayes-Roth (Eds.), Pattern-Directed Inference Systems New
York: Academic Press, 1978, pp. 53-68.

The Database Design and Evaluation Workbench (DDEW) Project at CCA

David Reiner, Michael Brodie, Gretchen Brown, Mark Friedellt®,
David Kramlich, John Lehman, Arnon Rosenthal

Computer Corporation of America
Four Cambridge Center Cambridge, MA 02142 USA
617/492-8860

Abstract

The Database Design and Evaluation Workbench (DDEW) is a graphics workstation
for database designers. DDEW provides an interactive support environment for speci-
fying and experimenting with database structures and designs, while automatically
maintaining a complete history of the design alternatives that are investigated. It
allows easy and uniform access to a highly integrated and extensible suite of
evaluation, analysis, and design transformation tools that range over the entire
database design life-cycle. The system is object oriented, supports multiple win-
dows, and has powerful diagram representation and editing capabilities.

1. Introduction to the Project

DDEW will reside on a Jupiter 12 workstation with a 68010 microprocessor (run-
ning Berkeley 4.2 UNIX#%), 2 MB of main memory (with 160 MB more on a hard disk), a
bit-sliced graphics processor, and a 1280 x 1024 color frame buffer. This system
may be loosely coupled to a DEC VAX with an Ethernet link. The workstation accepts
input from both a keyboard and a mouse. The mouse is used to point to objects and
to rapidly select commands from fixed and pop-up menus.

On the, workstation screen, the designer can build, display, and manipulate
objects of two fundamental types: lists and diagrams. Restricting the number of
fundamental object types to two makes designer-system interactions quite uniform.
Free-form and formatted textual data (such as requirements, attribute definitions,
constraints, and design annotations) are represented as list items, which may be
added, deleted, and modified with DDEW's list editor. Database schemas and the
design history are represented as diagrams, which may be edited with DDEW's diagram
editor. Contrasting colors and graphic icons help clarify design structures.

2. The Database Design Process
2.1 Design Methodology

DDEW supports a stepwise methodology for database design that is based on ear-
lier work by Teorey and Fry [TEOR82b]. Its steps and the tools that DDEW will pro-
vide for them are shown in Figure 1 (see [REIN8M] for more details). Preliminary
versions of some of these tools were developed at the University of Michigan
[TEOR82a]. Improved versions are being built specifically for the DDEW project.
The methodology is iterative; earlier decisions always can be reconsidered, and
alternatives to them can be explored in parallel.

DDEW's integrated methodology is a framework for the efficient use of the sys-
tem by all designers, and an educational aid for novice designers. New and improved
tools (e.g., for physical design) can be incorporated as they become available.

This project is supported by the Rome Air Development Center (of the United States
Alr Force) under contract number F30602-83-C-0073.

% Center for Research in Computing Technology, Harvard University
#% UNIX is a trademark of Bell Laboratories

-10-

Contributing to this ease of modification is the use of a common storage system for

design data, a relatively general system-tool interface, and a clean division of the
methodology into levels of abstraction.

2.2 Data Models

An extended version of the Entity-Relationship model [CHEN77] (referred to as
ER+) underlies all design phases of DDEW. The principal components of the ER+ model
are entities, binary relationships between entities, and attributes (of both enti-
ties and relationships). Multivalued attributes (repeating groups) are represented
as (weak) entities. DDEW recognizes and exploits ER+ functional dependencies
(including keys), inclusion dependencies (subset constraints), and constraints on
cardinalities of relationships and on data types of attributes. Transaction speci-
fications take the form of a sequence of operations (query, update, insert, delete)
on data objects and on intermediate, set-valued results of other operations.

The user does conceptual design in the ER+ model, and logical design in (gen-
eric) relational, network, or hierarchical models. The system represents all DDEW
designs internally as ER+ schemas, with additional information and restrictions for
the logical (and subsequent) levels of design. Examples of data model restrictions
on ER+ are: for the relational model, each entity must have a declared key, and no
relationships are allowed; and for the network model, no m:n or cyclic relationships
are permitted. The (generic) hierarchical model is a subset of the network model,
where there is at most one incoming relationship for entities and no cycles.

Future extensions to the ER+ model may include: aggregation, generalization
hierarchies, multivalued dependencies, "null not allowed" declarations for attribute
values, derived fields (a feature often implemented in commercial systems), and an
ER query language.

3. User Interface and Graphics Support

3.1 Earlier CCA systems

Many characteristics of the DDEW user interface originated in three earlier
systems developed at CCA: SDMS (Spatial Data Management System), the View System,
and PV (Program Visualization). SDMS [HEROB0] is a graphical user interface to con-
ventional databases. Graphical 1lcons that represent entities in the database are
arranged in 2-D Information Spaces, over which the user can scroll and zoom to exam-
ine different parts of the database at different levels of detail. The View System
[FRIE82] is an enhanced SDMS that automatically creates new Information Spaces in
response to a user's ad hoc queries. A repertoire of layout heuristics enables View
to arrange icons within Information Spaces. PV [KRAM83] allows programmers to exam-
ine and manipulate dynamic graphical representations of programs.

3.2 DDEW Screen Layout

Figure 2 shows a typical DDEW screen configuration (mocked up) that a designer
of a project control database might have created. The screen is divided into fixed
areas. The rectangular yorkspace takes up roughly two-thirds of the screen. On it
appear windows onto design diagrams and the design tree, lists, and pop-up menus,
Windows can _be scrolled left, right, up, and down, or resized.. Below the-workspace
is a legend, from which the designer selects object icons or list templates to add
to the active window. The legend contains only those icons or templates that
legally can be added to the diagram or list in the active window.

To the right of the workspace is the fixed menu area containing global com-
mands that are always accessible. These include basic window operations (move,
cycle, copy, save, restore) and commands to control tools running in the background
(abort, suspend, resume). Across the top of the screen is an area for system mes-
sages and prompts, a mailbox for messages from tools running in nonactive windows,
and a pavaid (navigational aid). The navaid shows a miniaturized view of the entire
diagram in the active window, with a dotted rectangle to indicate the portion of the
diagram that is visible in the window.

-11-

Steps in the methodology

Requirements Analysis

Tools Provided

List (and text) editor

and Specification - ’ (aiso used in subsequent levels)
e e e e Entity-relationship schema
Requirements | < synthesis tool
specification
A View integrstor
Normalizer
Conceptual e e e e e e e Disgram editor (ER +)
Design Automatic diagram lsyout tool
Intertace to data dictionary
Transaction editor
ER+ schema diagram
(and transactions) 3 a N
e e e e e e e e e —_—
Logical - ——— Logical record access evaluator
Design Diagram editors (Rel, Ntwk, Hier)
Rel, Ntwk, or Hier
schema diagram
(end transactions)
[Morizontal and vertical fragment generator]
Distributed -———— —— —. J Distributed database allocator
Database Design Distributed transaction optimizer
(o] editor (k topology)
Database partition
and sllocation
\
index selection tool
Local Physical — e e e [Pa terized query optimi
Database Design Physical record access evaluator
[Clustering, blocking, etc. tools]
Physical database DDL/DSOL generator for Troll DBMS
structures (DDL/DSDL) |#— ——————————) [Other schema generators (Rel, Ntwk, Hier)]
Y
Prototyping - ————— — ——— ’ Trol relational DBMS
Note: tools in brackets [] are
possible extensions
Figure 1. DDEW Methodology and Tools

3.3 Object-Centered Command Interface

To avoid making the designer learn arcane and convoluted syntax, DDEW has an
object-oriented command interface and uses pop-up menus. When the designer selects
an object from a diagram or list (using the mouse), a pop-up menu appears containing
the operations that are applicable to the selected object. This menu disappears
when an operation is selected from it (or from the fixed menu, which is always
available). The designer may be prompted for additional arguments to the command.

3.4 On~-Line Help

In DDEW, help is provided by two mechanisms: referential help and context-

sensitive help. Referential help, invoked by the MORE HELP command on the fixed
menu, provides descriptions of DDEW commands, graphical notation, and the design

methodology. Context-sensitive help, invoked with a dedicated button on the mouse,
provides fast, concise help messages that focus on interaction expectations. It
gives the designer a view of where he or she is in the system and what the system
expects next. Context is based on the designer's position in the design tree, the
states of active database design tools, and the state of the user command handler.

-12-

..........

Ready. '

D]
‘
[3
Design Tree: PROJECT CONTROL t AIDE
MORE HELP
Requirements Lisi: OVERALL REQUIREMENTS pROJECT DIRECTORY
Retiablity: CONTROL EXI\T
Security:
Comments: As ABC has grown in size. our informal arrangements for tracking projects N
their gers and y and Ihesr Spo need to be lormatized Tne database 15 ES
being established at the request of Joe Brown oveAALL WINDOWS
attrib(s). CONTRACT» determine(s) attrib{s); START DATE, END DATE. AMOUNY Rsomﬂ(nm\vs *_—MOVE
attrid(s): PROJNAME determine(s) attrib{s): STATUS. MGR COPY
attrl : DI EAABLE - NAME det: ine(s) sttrib(s). DUE_DATE
| ib(s): DELIVERAI ermine(s) ib(s) o . DELETE
task: BUSY EMPLOYEES accessess attrib(s): EMP_sPROJ CYCLE
tagk: HIRE - EMPLOYEE accesses Bttrib{s): EMP NAME. EMP sPROJ

o2
tash: SPONSOR.OF-CONTRACT accesses attrib(s). CONTRACT#, SPONSOR NAME DESIGN TREE
') T —
Conceplual Design: CD2 SAVE
suremvison RESTORE
'G_'_,, ! DISTRIBUTED!
: *} L] T00LS

- ABORT
SUSPEND
s RESUME
=]
ADMIN
UNIX SHELL
_ICON EDITOR

ENTITY RELATIONSHIP

Figure 2. Conceptual Design (workstation screen mockup)

3.5 Windows

DDEW allows the user to create multiple overlapping windows (e.g., to view
related lists and diagrams). Multiple windows promise efficent use of that precious
resource, screen real-estate. The designer can open several windows onto different
diagrams or onto different portions of the same diagram. DDEW maintains consistency
among its windows by propagating changes to all relevant windows. Obscured portions
of a window are saved and restored by the system to avoid having to recalculate
their contents when the obscured portion is brought into view. The scrolling
mechanisms and the navaid help the designer browse through and keep from getting
lost in diagrams and lists that are too large to fit in a window.

3.6 Design Tree

As the designer moves through the database design life cycle, DDEW keeps a
graphic record of the alternatives that are investigated and their interrelation-
ships, in the form of a design tree. This ensures that no design work will be lost,
and allows the designer to track the progress of designs. The tree contains the
designer's comments about designs, retains the results of design analysis tools, and

allows inspection of the ancestors of a design. Figure 2 shows a sample design
tree.

3.7 Conceptual and Logical Design Diagrams _

ER+, relational, network, and hierarchical schemas are represented graphically
by nodes with arcs connecting them. For the ER+ model, we developed new graphic
methods of specifying relationship cardinalities (by shading the halves of a dia-
mond), and partial versus total participation in relationships (using dotted and
solid lines, respectively). In Figure 2, P-C is 1:1, and both PROJ and CONTRACT par-

13-

ticipate totally in P-C. EMP to PROJ is 1:n through MGR; an employee need not

manage any projects, but each project must have a manager. EMP to SKILL is m:n;
some skills possessed by no employee may be present, but every employee must have at
least one skill.

Network schemas are similar, but half-diamonds (which look like arrowheads)
are used to represent set types between record types. The network display includes
ER+ information that cannot be captured in a network schema (e.g., whether or not a
set owner instance must have at least one member instance).

For relational schemas, inclusion dependencies (represented by set inclusion
symbols) are shown as graphic links between relations, similar to with set types in
network schemas. Translation to the relational model always creates one or two
inclusion dependencies (which ensure referential integrity) when a relationship is
given a value-based representation. Representing dependencies graphically allows
the designer to perceive the structure of the database much more easily than when a
relational schema is represented as a collection of unrelated boxes.

Diagram editing commands allow the designer to manipulate single nodes and
arcs in a diagram. Basic editing functions for nodes include: create a new
instance, delete, move, and rename, Arcs can be moved and reconnected. The
designer also can specify collections of nodes, called affinity groups, as named
subsets of the entire diagram, and can move them as a block.

DDEW provides layout assistance ranging from incremental placement and connec~
tion of nodes and affinity groups to automatic layout of design diagrams, drawing
partly on placement techniques developed for VLSI design. Fast layout heuristies
(e.g., placement of nodes only at grid positions) are used to improve response time
and diagram uniformity. The goal is to quickly produce a first-cut layout that the
designer can modify if desired.

3.8 List Manipulation

Textual data in DDEW generally is displayed in lists. The main list types
are: information (status of design nodes), free-form annotations (on objects),
attributes, transactions, functional dependencies, inclusion dependencies, system
and user-defined affinity groups, requirements, mail, tool input (e.g., candidate
attributes for indexing), tool output (e.g., schedules of transactions in a distri-
buted enviromment), and both generic and DBMS-specific DDL. The field-sensitive
DDEW list (and text) editor will allow the designer to perform uniform operations on
a broad range of objects.

3.9 Tool Interface

One of DDEW's main strengths is the high degree of integration of its evalua-
tion, analysis, and design transformation tools. The interface to all the tools is
uniform, and the designer will not have to memorize invocation conventions, write
format translation programs between tools, learn a file system, cope with version
control, or know UNIX. The system automatically retrieves and stages tool input
data, and the designer need only examine and evaluate the results.

L, Systems Aspects

DDEW has an internal DBMS (Troll) that provides both centralized data storage
and a high degree of flexibility and data independence, making it easy to incor-
porate new tools and data model extensions into the system. The design database
will include information about entities, relationships, attributes, relationship
cardinalities, functional and inclusion dependencies, transactions, display posi-
tions of objects (such as nodes and arcs), and relationships among design tree
nodes. Much meta-information also will reside there (e.g., list item templates,
legal design tree and design diagram configurations, and menu contents). Other sys-
tems aspects of DDEW are described at greater length in [REIN84].

—14-

5. Related Work

Giant wall charts maintained by pencil, scissors, and paste are useful for
schema visualization but are unwieldy and a poor form of input to computerized
analysis tools. Data dictionary systems enforce a certain amount of uniformity
across schemas but are not as complete as design tools. Some early automated data-
base design aids have become popular but are either limited in their scope of appli-
cation to a single system [IBM75] or are overly text-oriented [TEIC77]. Research
into similar (and fairly ambitious) database design systems is underway in Sweden
[sYSL83] and Italy [BATA84].

6. Future Plans

The DDEW prototype will be completed by July 1985, after a total effort of
eight person-years. The Rome Air Development Center, the project sponsor, expects
to use DDEW in a variety of upcoming design and redesign efforts and to encourage
standardization of design methodologies.

Possible extensions to the prototype DDEW include capabilities for enhanced
semantic modeling in ER+, query optimization (parameterized for the target DBMS),
evaluation of database security, extensive physical design, generation of other
DBMS-specific DDL/DSDL, hard-copy output of design diagrams, off- or on-line data-
base tuning, and semiautomatic schema generation from requirements. An intriguing
direction is enhancing the user interface to make DDEW more of an expert system,
capable of understanding the designer”s context, goals, and available tools, and of
giving useful advice about alternative choices and their implications.

7.‘References

[BATA84] Batini, C., De Antonellis, V., Di Leva, A., '"Database Design Activities
within the DATAID Project," Database Engineering, 7, 4, December 1984,

[CHEN77] Chen, P., "The Entity-Relationship Approach to Logical Data Base Design",
Q.E.D. Monograph Series, Wellesley, Massachusetts, 1977,

[FRIE82] Friedell, M., Barnett, J., and Kramlich, D., "Context-Semsitive, Graphic
Presentation of Information," SIGGRAPH “82 Proceedings, July 1982,

[HERO80] Herot, C., Carling, R., Friedell, M., and Kramlich, D., "A Prototype Spa-
tial Data Management System," SIGGRAPH “80 Proceedings, July 1980.

[1BM75] "IBM Data Base Design Aid - A Designer’s Guide", Program No. 5748-XX4,
GH20-1627-0, 1975.

[KRAM83] Kramlich, D., Brown, G., Carling, R., and Herot, C., "Program Visualiza-—
tion: Graphics Support for Software Development," ACM IEEE 20th Design
Automation Conference Proceedings, June 1983.

[REIN84] Reiner, D., et al., "A Database Design and Evaluation Workbench: Prelim-
inary Report," Proc. SPOT-3 Conf., SYSLAB, Chalmers University of Tech-
nology, Goteborg, Sweden, August 1984,

[SYSL83] "Progress Report, July 1982 - June 1983", The Systems Development Labora-

tory, University of Stockholm and Chalmers University of Technology,
Sweden,

[TEIC77] Teichroew, D., and Hershey, E.A., "PSL/PSA: A Computer-Aided Technique -
for Structured Documentation and Analysis of Information Processing Sys-
tems", IEEE Trans. on Software Eng., SE-3, 1, 1977.

[TEOR82a] Teorey, T.J., and Cobb, R., "Functional Specifications for a Database

Design and Evaluation Workbench", Working Paper 82 DE 1.15, Information

- Systems Research -Group, Graduate School of Business Administration,
University of Michigan.

[TEOR82b] Teorey, T.J., and Fry, J.P., Design of Database Structures, Prentice-
Hall, Englewood Cliffs, New Jersey, 1982.

-15-

DATABASE DESIGN ACTIVITIES WITHIN THE DATAID PROJECT
C. BATINI (+), V. DE ANTONELLIS (++), A. DI LEVA (+++)

(+) Dirartimento di Informatica e Sistemistica
Universita’ di Roma "La Sarienza"
(++) Istituto di Cibernetica — Universita’ di Milano
(+++) Istituto di Scienza dell’ Informazione - Universita’ di Torino

ABSTRACT

This ParPer summarizes current research and development activities
carried on by the Italian DATAID five-vears research prodect in
the area of methodolosies and tools for database desian. The main
contributions of the pProdect were a manual methodolosy. DATAID-1,
that covers all the rhases of database desian, and a set of tools
that support the methodolosy in most eritical activities.

1. INTRODUCTION

In September 1979 the Italian National Research Council (C.N.R.) started,
within the PROGETTO FINALIZZATO INFORMATICA research proJect, a five-vear
ProdJect, called DATAID, to develor a computer aided methodolosy for data
base desian. DATAID has considered the develorment of a comPuter aided
methodoloay for database desian with the following features: it covers all
the desian prhases from requirements collection and analysis to the choice
of the internal data structures: it is aided by tools which supPort the
execution of the methodolosical steps, automatically wverify desisgn
consistency, and handle desian documentation; it is oriented towards both
centralized and distributed arplications.

A manual methodoloay, DATAID-1, was first been develored and is now
auvailable tozether with teaching modules. Several tools suprPPortinsg the
methodolosy have been desianed and implemented as Prototyres. The research
Prugram until the end of the pfrodect includes the extension of the
methodologsy to incorrporate distribution desisn and the full development and
testing of tools.

A detailed description of the first proJect results is in [CERIB3al, while
the most recent results are described in the forthcomina bookK [ALBA8BSbH].
In this Parer we pProvide a brief description of both the methodology and
tools develored within the DATAID prodect.

Z. THE DATAID-1 METHODOLOGY

In order to experiment with the desired seneral features mentioned above.
we decided to produce, first of all, a simPplified pPrototyre of the desisn
methodolosy, called DATAID-1, whose maJor characteristics are:

1. the methodolosy is manual, 1i.e. it does not reAauire a compPuter
su”srPOTt;

2. the conceptual model adopted is the Entity Relationshir Model, enriched
with generalization hierarchies:

3. in the concertual ster the methodolosy Provides several heuristics to
siuide the desianer 1in choosina concerptual structures and checKkins the
schema qualitry.

4. in the loaical and physical desian rPhases, both relational and CODASYL

~16~

classes of DBMS‘s are considered;

5. the loaical and phvsical desian pPhases are driven by <Quantitative
parameters in order to oPtimize the execution of the most impPortant
orerations that will be rerformed on the database.

The DATAID~-1 methodolosy decompPoses the desian of a database application
inte four desisn pPhases. user requirements collection and analvsis;
caonceprtual desian (views desian and integration): losical desian;
Phvsical desian. These rhases are described below.

Z.1 Requirements collection and analvsis

The aim of this phase is to collect, for each enterprise environment, user
requirements and formalize them into descriptions of data, orerations, and
events. InPuts to the phase are natural languase sentencesr, c¢collected
+ollowing a collection mlan which identifies, for each environment, users
fvom whom to get the reauirements of the database aprplicationy users are
asiied to describe how the functions are executed, sPecifvina the data and
the opPerations of interest for each function. OutPut of the Phase is a
coellection of slossaries describina data, orperations and events. In order
to fill in the slossaries, natural language sentences are filtered and
rewritten in a restricted lansuase; revised requirements are then
classified into different sentence tvres (data, orPerations and events
sentences).

2.2 Conceptual Desian

In the concerptual desisn rPhase a concerPtual view 1is built for each
ovzanization environment (view) of the enterpPrrise; these views are then
intesrated to form a slobal concertual description. The concertual schema
of an environment 1is the formalized rePresentation of both the static
(data) and the dynamic requirements (orperations and events).

Startina from the gslossaries built in the pPrevious phase, a set of
oreration schemas 1is first modeled. An orPeration schema is a hish level.
nonerocedural descripPtion of the data involved in the oreration. expPpressed
using an Entity Relationship description. The data schemar, which is the
comPlete representation of all the data wused by the opPerations of a
Particular environment, is built incrementally:! when an oreration schema
is comPleted, it is aasreaated with the Previous partial data schema. This
rrrocess is iterated for all the orperations and eventually produces the data
schema. A similar Process produces the events schema, a3 description of all
the functions of the environment 3s a network of conditions and orevrations.
Data and operations schemas are described with an extended version of the
Entity Relationship model; for the events schemas, the Petri net formalism
15 used.

Data schemas are then analvzed and intesrated to build the _ gslobal data

schema. Because of different pPerspPectives that users may have and
different equivalent repPresentations that exist in the model, several
complex actvities are required during wuvieuws intearation: findina the

common part of the different schemas, findins the different repPresentations
chosen by the desigsners, and so on. After the galobal data schema has been
obtained, orerations schemas are restructured in order to maKe them
consistent with the final representation of data in the gslobal schema. and
enriched with procedural and «quantitative information. Finally, events
schemas are coordinated in order to TePresent communication amons the

-17-

environments of the enterprise. This results in the =slobal events schema,
the formal specification of the database arpplication behaviour. In the
Ppresent version of the methodolosy, the events schema is considered as an
infput to software desian and is not used in further desian pPhases.

Recently the DATAID-1 concertual ster has been improved in several
directions:

1. Attention has been gsiven to the influence of linauistic representations
used to exPress requirements on desian activities. The idea is that each
linguistic rerresentation used for requirements (e.a. natural lansuase.,
forms:, vecord formats) has its own pPeculiarities in expPressina the
semantics of data; such pPeculiarities should be captured by the desisner
to simpPlify the desian pProcess (see [BATIB4al).

2. A deerer compPrehension has been obtained of concertual desisn goals
(completness, minimality, readability, self-documentation) and activities
needed to achieve them (see [BATIB4b1).

Presently, vesearch activities concern the extension of the methodolosy to
specific colasses of arplications (e.s. statistical databases) and the
introduction of a maintenance rhase, whose soal is to reuse as far as
Possible documentation on Previous desians when some restructuring is
needed.

2.3 Loaical Desian

The pProcess of losical desian transforms the slobal concertual schema into
a8 losical schema, derending on the database manasement svystem chosen for
the imprlementation. Two classes of database manasement systems are
considered: relational DBMSs and network (Codasvyl—-like) DBMSs. The
transformation Process is based on two fundamental tasKs.

1. Simplification of the slobal concertual schema: data structures not
directly translatable into the losical model (such as generalization
hierarchies and multirle relationships) are converted into simpPler ones.

Z. Refinement of the simplified schema. a set of transformations an the
simplified schema 1is applied (tipically., Ppartitioninag of entities and
rerlication of attributes); performance measures (based on the number of
losical accesses) are used in order to select, amona different
alternatives, the solution which opPtimizes the execution of the most
imPportant opevations.

2.4 Physical Desian

Physical desian decisions for Codasvl-liKe databases are subdivided 1into
three broad decision areas.

1. access pPath surPpPort decisions. imPlementation stratesgsies for entry
Point records (LOCATION MODE <clause opPtions) and sets (SET MODE clause
options) are considered;’ ’

2. Placement strateay decisions.: member records of a set are dispersed
throushout the database area or clustered so that neishbouring member
records tend to be stored in the vicinity,

3. storase allocation decisions: database areas for storase of records.
indexes and pPointers array tables are selected; each area is subdivided
into a8 number of pases and the Pase lenath is fixed.

The methodolosy is based on the evaluation of all possible record and set
implementation stratesies from the aslobal processina point of view. This

-18-

is accomplished in the followina tasKs:

1. creation of record usase trees. accesses to a record are globally
described as a tree where the leaf nodes are the different tyrpes of
orerations performed on the ob.Ject record:s

2. storase allocation:. heuristic rules are used for calculating record
lensht, record allocation ¥n areas, area and Page size, and other Physical
Farameters.

3. evaluation of implementation strategies: startinag from the relative
costs and frequencies of the operations, implementation stratesies are
evaluated.

The main soal of physical desian for relational DBMS‘’s is the selection of
secondary indexes of the relations of .the schema. Physical desiasn in this
case proceeds evaluating first of all costs of orperations and ageneratins
then an efficient set of indexes.

Logical and prhysical desisn activities are now beinsa extended to
distributed environments (see [CERIS3b1], [NAVAl, [CERIB4al, [CERIB4b1]1).
The main contribution is the distinction between two sters, a losical ster
that concerns desian of the structure of horizontal and vertical frasments,
and a physical sterp that concerns the orptimal allocation of fraaments to
nodes.

3. THE COMPUTER AIDED METHODOLOGY

After experimentinzg with the DATAID-1 manual methodoloay, several automated
tools were develored: the tools were intended to Provide surPoTt to the
data base desianer by means of an environment in which a desisn tool
collects the static and dynamic definitions, tests their mutual
consistency, and sometimes detects or solues desisn problems. A detailed
descrirption of tools mav be found in [CERIB3al, [ALBAB5al! we focus here
on INCOD-DTE., DIALOGD., ISIDE.

INCOD-DTE (Interactive Conceprtual Desiani Data, Transactions. Events) was
develored at the DirPartimento di Informatica e Sistemistica — Universita’
di Roma, and at the Istituto Jdi Cibernetica - Universita’ di Milano, with
the collaboration of Database Informatica — Roma. The tool prrovides an
intearated environment for the definition of data., transactions, events.
Data are described using the extended Entitvy—-Relationshiep Model, as in
DATAID-1. Transactions are described at different levels of abstraction.
as the tool provides transaction definition commands at a conceprtual level
(describinag the data involved), at a navisational level (describinas access
Paths) and at an executable level (testins a Prortotyre implementation of
the database). Events are modeled throush Petri Nets, and are specified
using event specification commands (concernins events, see also [DEAN83al.,
in which the original formalism 1is extended to exPress executable
Procedures). INCOD-DTE can suprport the desisner in the concéptiialization
of static and dvynamic requirements, automatically checKkina the consistency
of the eprocess and simplifvying the manasement of the correspondins
documentation. It handles several tvyrpes of metadata. interacts with the
user in discoverinag conflicts, PromPtina Possible solutions (scenarios) and
guiding him throush some sters of the desisn activities. INCOD-DTE is
currently being implemented in a UNIX environment.

INCOD-DTE is now beings extended with GINCOD, a srarphical interface that can
also be seen as a self—-contained asrarhical editor for interactive desisn of

-19-

conceprtual schemas expPressed in terms of a diaaram. Placement of symbols
and lavout of diaarams can be driven in GINCOD both by the designer (with
classical gsrarhical editor commands) and by the svystem. When lavout is
performed by the system: the followina "aesthetics" are taKen into account
(cee also [(BATIB4cl):

- minimization of the number of crossinss between connections

- minimization of the number of bends in connection lines

- minimization of the slobal lenaht of connections lines.

A runnins prototyre of GINCOD has been implemented in PASCAL.

DIALOGO was develored at the Dirpartimento di Informatica - Universita’ di
Pisa with the collaboration of Systems and Managsement - Torino. DIALOGO is
ar interactive system that allows use of the pProgramminsg lansuase GALILEOC
in the desisn of a conceptual schema. The main characteristics of DIALOGO
are that the user interacts with the system using a sinsle lansuase to.:
edit the schema and opPerations definitions; ask the system information
about definitions; load sample data to test the behaviour of the
orevrations; dJefine new orPerations to rPersonalize the worKing environment.
DIALOGO is now being extended to managse also the prhase of requirements
collection and analvysis in 8 unified environment. For further information
on DIALOGO, see [ALBAB4al in this issue.

INCOD-DTE and DIALOGO can be seen as two compPlementary attempts to desian
effective tools for the desianer of a concertual schema.

In INCOD maJor enphasis is given to identifvinag which spPecific desian
activities can be siven to an automatic srstem: e.s. in order to increase
the readability of the schema, several rossible restructurings can be
rerformed. MWhile it is a task of the desisner to find the frasments of the
schema to be restructured, INCOD can rpPerform the transformation. In
DIALOGO the maJdor effort is to Provide a hishly sophisticated linsuistic
feature that allows expPression at the concertual level of a rich set of
semantic pProrerties of data and executable specifications for Processes.
Althoush the systems are based on different data models, that 1is an
extended Entity Relationshir data model and a semantic data model, the
tools pProvided by INCOD-DTE can also be embedded in DIALOGO and infact the
concerptual desian pProduced by INCOD-DTE can be considered as a first step
toward an executable conceptual desian siven in GALILEQ.

Attomated suprpPort for the losical and ephysical desian pPhases is under
develoPment as a Joint ProdJect - the ISIDE (Intesrated Svstem for
lmplementation DEsian) proJect— by the Dipartimento di Informatica -
Universita’ di Torino, CIOC - Boloana, CSELT - Terino and CRAI - Cosenza.
ISIDE (see LBONAl, [DILE], CORLA]) is a collection of intearated tools that
suPrPort the losical and pPhysical desigsn phases and sive an evaluation of
data manirPpulation orerations considered in the concertual rhase. ISIDE is
comrPosed of six modules: :

1. the Dynamics analyzer senerates quantitative Parameters for the losical
and Physical desian Process.

2. the Losical desisner translates the conceptual description into a
Codasyl or relational losical schema. The translation process is driven by
the quantitative pParameters that characterize the worKkload defined on the
database.

3. Relational and Codasyl pPhysical desianers refine the losical schema
with the arppropPriate prPhysical data structures definition statements to
become a comrlete database schema pProcessable by the tarset DBMS.

-20-

4, Relational and Codasvl performance predictors help the desianer in
testinag the adequacy of desian decisions. GGiven a Processins scenario
(rnumber and tvyre of orPevrations simultaneously active on the database at a
given time), the predictors evaluate the exrpected response time for each
oreration. This information can be used to check whether the desian is
liKely to satisfy the user efficiency reauirements,

The ISIDE system is beina develored usina PASCAL under UNIX. For modules
2:3,4,5 and 6 a worKing pProptotyre is oprPerative; module 1 is under
develorment.

Concernina extensions to distributed . desian, wvarious alasorithms for
vertical and horizontal partitionina have been implemented and are
currently intearated. '

REFERENCES

[ALBAB4al A. Albano, R. Orsini - A PROTOTYPING APPROACH TO DATABASE
APPLICATIONS DEVELOPMENT ~ IEEE Database Ensineering, this issue.

[ALBABSal A. Albano, L. Cardelli, R. Orsini - GALILEO: A STRONGLY

TYPED, INTERACTIVE CONCEPTUAL LANGUAGE - To aprear in ACM Transactions on
Database Svstems, 1985.

[ALBABSb] A. Albano, Y. De Antonellis, A. Di Leva (eds.), COMPUTER AIDED
DNTABASE DESIGN, North Holland 1985.

[BATIB4al C. Batini, B. Demo, A. Di Leva - A METHODOLOGY FOR CONCEPTUAL
DESIGN OF OFFICE DATA BASES - Information Systems, Vol. 9 N. 4 (1984)
LRATIBAbL) C. Batini, M. Lenzerini ~- A METHODOLOGY FOR DATA SCHEMA
INTEGRATION IN THE ENTITY RELATIONSHIP MODEL - IEEE Transactions on
Software Ensineerina, 1984. .

[BATIB4c¢c] C. Batini, M. Talamo, R. Tamassia - COMPUTER AIDED LAYOUT OF
ENTITY RELATIDONSHIP DIAGRAMS - Journal of Software and Systems., 1984.
[BONABS] R. Bonanno. D. Maio, P. Tiberio — AN APPROXIMATION ALGORITHM
FOR SECONDARY INDEX SELECTION - to be published in Computer Journal.
[CERI83al S. CLeri (ed.) - METHODOLOGY AND TOOLS FOR DATABASE DESIGN, North
Holland 1983.

[CERIB3b] S. Ceri. S.B. Navathe, G. MWiederhold - DISTRIBUTION DESIGN OF
LOGICAL DATABASE SCHEMAS — IEEE Transactions on Software Enaineerina, Vol
SE-9, N. 3, July 1983.

[CERIB4a]l S. Ceri, G. Pelasatti - DISTRIBUTED DATABASE SYSTEMS - McGraw
Hill. 1984. . ,

[CERIB4b]I S. Ceri — AN OVERWIEV OF RESEARCH IN THE DESIGN OF DISTRIBUTED
DNTABASES - IEEE Database Enaineerina, this issue.

[DEANB83al V. De Antonellis, R. _ Bertocchi, B. Zonta - CONCEPTS AND
MECHANISMS FOR HANDLING DYNAMICS IN DATA BASE APPLICATIONS, Prec. 7th ICS
ACM Eurorpean Regional Conference, Nurbersa 1983.

[DEANBS] V. De Antonellis, A. Di Leva - DATAID-1: A DATABASE DESIGN
METHODOLOGY, Information Systems 19895.

[DILE] A. Di Leva, P. Giolito - AUTOMATIC LOGICAL DATA BASE DESIGN IN A

CODASYL ENVIRONMENT - Proc. IEEE 4th Jerusalem Conference on Information
Technolosy., Jerusalem 1984.
CNAVA]l S. B, Navathe, 8. Ceri, GG. Wiederhold, J. Dou - VERTICAL

PARTITIONING ALGORITHMS FOR DATABASE DESIGN - ACM Transactions on Database
Systems, Vol. 9, N. 3, September 1984.

{ORLAYl S. Orlando., P. Rullo, W. StaninzKys -~ TRANSACTION WORKLOAD
EVALUATION IN THE CODASYL ‘DATABASE ENVIRONMENT - Proc. IEEE Computer Data
Pase Enaineerina Conference ~ Los Angseles, 1984.

-21-

A REALISTIC LOOK AT DATA

W. Kent

IBM General Products Division
Santa Teresa Laboratory
San Jose, California, 95150

Re-examining the basic properties of records
leads to a simpler, fact-based approach to data
analysis, design, and documentation.

It's useful to keep in mind that the subject matter of data
analysis, design, and documentation is data records. How we
perform those functions is guided by our view of the nature of
records themselves. As with constellations and elephants, ue
can choose to see the "reality" of these things in different
Wways.

Our goal initially is to determine what concepts are really
essential for the tasks of logical design and documentation of
normalized relational databases. The concepts will apply
quite readily to record design in other kinds of data bases,
and provide a sound basis for considering non-normalized
designs as well [KENT83a,b,c].

The central questions in logical data design are: (1) what
records should be specified? and (2) what fields should those
records have?

Current methodologies define records on the basis of an entity
concept, perhaps motivated by the perception of records as
entities in themselves. A data record has the characteristics
of an entity. It is inserted, deleted, and retrieved as a sin-
gle unit. Record occurrences are uniquely identified (by their
keys), and they are aggregated into record types, correspond-
ing to the notion of "entity type". Hence records are
entities.

There is an understandable appeal in the apparent analogy
between records and real-world entities. The fundamental mod-
elling assumption underlying most current methodologies is
that some things in the real world are entities and others are
not, and records are chosen to correspond to the entities.
That is, data records constitute a "model" of real entities.
In simple situations we have, e.g., one record to represent an
employee, another to represent a department, and so on.

In this approach, which we can call "entity-based"”, two kinds
of information are distinguished: attributes of entities, and
relationships among entities. Records are populated with
fields in two steps:

—29-

1. Provide fields for single-valued attributes of the entity.

2. Provide fields for many-to-one relationships with other
entities.

Afterwards, additional records must be defined to accommodate
many-to-many relationships, n—-ary relationships, and
multi-valued attributes.

This entity-based approach provides a reasonable first approx-
imation, but leaves considerable room for refinement. In the
first place, there really are no effective criteria for decid-
ing which things in the real world are entities and which are
not. Ultimately we are left only with a circular definition:
we ought to define as entities those things for which we want
corresponding records. The distinction between attributes and
relationships is similarly blurred. At best, if we have fig-
ured out which things are entities, then we might say that
relationships are facts which connect entities, while attri-
butes connect entities with non-entities.

Furthermore, the correspondence between records and real-world
entities is quite imperfect. In most real databases, one can
find:

1. Information about a given entity distributed over several
records.

2. Information about several entities contained in the same
record.

3. Records that don't represent any one entity, or records
that "represent™ several entities.

G . Things which we might intuitively consider to be entities
but having no corresponding records to represent them.

As much as we might wish it, we cannot find a general one-to-one
correspondence between records and real-world entities --
unless we rely on the circular argument which defines an entity
to be something represented by a record.

At best, we will have a one-to-one correspondence between some
records and some entities. In such cases, a record type is
serving as a "master list"™ for the population of the corre-
sponding entity type. That is, entities of this particular
type are deemed to.-exist if and only-if they have a correspond-
ing occurrence of the record type. This underlies the concept
of "referential integrity" [DATE811]l, wherein entities of cer-
tain types may be referred to only if they are identified by a
"orimary key", i.e., in a master-1list record.

We could arbitrarily define "entity" to mean those things for
which we do provide such master—-list records, but that dis-

—23~

tinction is not particularly useful, and should not be exagger-
ated. '

Now suppose we discard those modelling assumptions, and take a
fresh look at the realities of data records.

If we examine any field in a record, we find that it contains a
character string. These character strings generally represent
something in the real world, e.g., a person, a department, a
color, a length, a money amount, and so on. Furthermore, any of
these things in the real world can often be represented by dif-
ferent strings in different fields, i.e., according to
different representation conventions. A department may have a
name and a number; a color may have different names in differ-
ent languages; lengths can be expressed in different units, and
money in different currencies. Some representation schemes
provide unique identification: "D99" represents one depart-
ment, and "6 feet" represents one distance.

How is information conveyed by fields? Any field considered in
isolation contains very little useful information. A field by
itself can only tell you that certain things exist, e.g.,
employees, dates, money amounts, etc. Most of the real infor-
mation contained in databases consists of the interconnections
among such things. A money field is only meaningful because it
is connected in a record with the employee who earns that money
as a salary. A date field is only meaningful when connected to
a field representing something related to that date, e.g., the
employee who was born, or hired, or married, on that date.

Information is provided by the aggregation of fields into
records, i.e., by the connections among fields. This is the
essential information-bearing property of records: they tie
fields together in order to capture the connections among them.
That's why we have records: to connect related fields.

There are thus three main components in the descriptions of
fields and records:

1, What each field mentions, i.e., the entity type.

2. How each field refers to that entity, i.e., the form of
representation used.

3. Why each field is present in the record, i.e., what infor-
mation is being conveyed by the fields. This corresponds
to a connection among the things occurring in several
fields, i.e., a relationship, or fact.

Everything we have said about fields applies uniformly to all
fields. We don't have any basis here for saying that entities
occur in fields in one way and non—-entities occur in a differ-
ent way, or that fields for attributes are somehow different
from fields for relationships. Facts are "about"™ any of their
participants. The assignment of employees to departments is as

—24—

much a fact about departments as about emplovees. Birthdates
are facts about people, and also about dates (who was born on
that date).

Records are, we observe, aggregations of facts. But, given a
collection of facts to be maintained in a database, how should
they be clustered into records? That question essentially
restates the fundamental task of logical database design.

Here the fact-based approach departs significantly from the
entity-based approach. Rather than saying that we choose enti-
ties as <clustering points., and aggregate facts around
entities, We observe that clustering is actually dictated by
the mechanism for maintaining single-valued facts (many-to-one
relationships). This mechanism is provided by single fields in
keved records.

Key fields, containing unique and singular identifiers, insure
that there will not be more than one record corresponding to
the entity identified in the key. This allows a record type to
serve as a "master list" for the population of an entity type.

Single-valued facts are then maintained by representing them
in (non-repeating) fields in keyed records. For example, if
there is only one record per employvee, and each such record
contains only one field for a department, then we have no way to
associate an employee with more than one department. A single
field in a keyed record enforces the many-to—-one relationship,
i.e., the single-valuedness of the fact.

Many-to-many relationships, such as the list of departments in
which an employee has worked in the past, or the list of his
skills, must go in a separate record, sometimes referred to as
an "intersection record".

The structure of records in a logical database design is dic~
tated by the following principles:

1. The single-valuedness of a fact about something is
enforced by maintaining that fact in a record having that
thing's identifier as its key.

2. Several single-valued facts about the same thing can be
maintained in the same record.

3. For all other kinds of facts (e.g., multi-valued, n-ary), a
separate record is required for each fact.

The results of the entity-based design methodologies eventual-
ly conform to this principle. It is simpler to use this record
pattern directly as the basis for a design methodology.

We note that this record pattern is the same for
"relationships" and "attributes™. If an employee is assigned
to a single department and earns a single salary, then each

-25-

gets a single field in the employee record. If an employee has
been assigned to several departments and has earned several
salaries, then each of these must be maintained in a distinct
intersection record. We only need to distinguish which facts
are single~valued and which are multi-valued. There is no
motivation to distinguish between "relationships" and "attri-
butes" based on record structure.

The record pattern principles subsume the master list concept,
in practice. In all real applications, it seems that there are
always some single-valued facts to be maintained about any
entity type that may need a master list. Thus the fact-based
approach will define the necessary records, wWwithout having to
rely on a master-list principle for defining records.

The "first principles" developed in this re-examination of
record semantics lead naturally to certain conclusions about
entity-relationship models, data analysis and design, and data
documentation.

A realistic look at the semantics of records and at the task of
logical design reveal no basis for distinguishing between
things which are entities and things which are not, or between
facts which are relationships and facts which are attributes.
This justifies the simplified entity-relationship model based
on just the two fundamental constructs: entities and relation-
ships [KENT78, NIJS83].

This does not imply a totally homogeneous view of all entities;
some significant distinctions remain. Some entity types may be
considered more important than others, and will be dealt with
at earlier stages of data analysis and design than others.
Some will be considered important enough to be included in con-
ceptual schema diagrams, and others will not. Some entity
types have corresponding record types to serve as
master-lists, others don't.

The significance of such distinctions should not be exagger-
ated. They do not imply essential distinctions in the seman-
tics of data structure, or in the methodologies of data
analysis and design.

The fact-based approach leads to a simple synthetic methodol-
ogy for data analysis and logical design [KENT83cl. Data anal-
ysis consists essentially of identifying the facts to be
maintained, without trying to distinguish between entities and
non-entities, or between relationships and attributes. It is
only necessary to distinguish between single-valued and
multi-valued facts.

Logical data design then consists simply of aggregating
together single-valued facts about the same things.
Multi-valued facts and n-ary relationships will, in most
cases, remain unaggregated, i.e., they will be left in separate

—26-

records. The end results are the same as for the entity-based
methodologies, but achieved more simply and directly.

The fact-based approach also leads to a simple structure for
documenting the meanings of data elements in a dictionary
[KENT85]. The first requirement is to have a distinct diction-
ary entry for each field. Factoring several fields into the
same "data element"™, as is common practice, precludes the pos-
sibility of fully documenting the unique meaning of each field,
The documentation for each field should capture:

1. The entity type represented in the field.
2. The form of representation used in the field.

3. The relationship(s) in which the field is 1involved,
including the role it plays.

This documentation can be developed during the design process.
References

[DATE81)] C.J. Date, An Introduction to Database Systems (third
edition), Addison-Wesley, 1981.

[KENT78] W. Kent, Data and Reality, North Holland, 1978.

[KENT83a] W. Kent, "A Simple Guide to Five Normal Forms in
Relational Database Theory", Communications of the ACM
26(2), Feb. 1983, 120-125.

[KENT83b] W. Kent, "A Catalog of Logical Data Design Options",
IBM Technical Report TR03.224, March 1983.

[KENT83c] W. Kent, "Fact-Based Data Analysis and Design", in
Entity-Relationship Approach to Software Engineering,
North Holland, 1983 (Davis, Jajodia, Ng, Yeh, eds.}. Also
in Proc. Symposium on Data Base Management Systems, Nov.
15-17, 1983, Sydney, Australia. Also in Journal of Systems
and Software 4(2,3), July 1984.

[KENT85] W. Kent, "The Semantics of Records", (in
preparation).

[NIJS83)] G.M. Nijssen, "From Data Bases Towards Knowledge Bas-

es", in DBMS: A Technical Comparison, (Infotech State of
the Art), P.G.H. King, editor, Pergamon Press, U.K., 1983.

—27-

TOOLS FOR VIEW INTEGRATION

Ramez Elmasri (1) James A. Larson (2), Sham Navathe (3)
and T. Sashidar (3)

(1) University of Houston
(2) Honeywell Computer Sciences Center
(3) University of Florida

ABSTRACT

Tools to aid the DBA in view integration are needed in two different contexts:
a) merging views to form a logical schema of a single database, and b) merging
views of separate databases to form a global schema representing the content
of all the databases. This paper describes tools that are being designed for
translating views to a canonical format, collecting correspondences among
schema objects, merging views, and generating mappings between views and the
merged schema.

1. INTRODUCTION

With the diversity of data models and database management systems, the
development of view integration tools 1is becoming increasingly important.
View integration arises in two different contexts: .

a) Logical database design. Several views are merged to form a logical
schema describing the entire database. User queries and transactions
specified against each view are mapped to the logical schema.

b) Global schema design. Several databases already exist and are in use.
The objective is to design a single global schema which represents the
contents of all these databases. This global schema can then be used as
an interface to the diverse databases. User queries and transactions
specified against the global schema are mapped to the views (schemas)
supported by the relevant databases.

Figure 1 illustrates four major tasks to be performed during integration:

1. Convert views to canonical data model. Intra-schema transformations are
applied to each view to be merged so that it 1is converted into an
easy-to-integrate form.

2. Specify correspondences among objects in two or more schemas.
Correspondences are specified among the attributes, object classes, and
relationships of the views to be merged.

3. Merge view. Objects 1in two or more views are merged, based on the
specified assertions.

-28-

DBA

View
Translator

View . Assertion
Integrator Assertions |Specification

Canonical
Schema

Tailor

Statement
of
Conflicts

Merged
Schema

Mappings

Figure 1

4. Generate mappings. Mappings between schemas and views are generated for
use in translating database requests within either of two contexts:

a) from views to the logical schema
b) from the global schema to the underlying databases.

These four tasks are based on an extension of the methodology for view
integration in [NAVA82]. Because these four tasks are closely related,
software tools which aid the DBA in performing these tasks must be likewise
interrelated. The remainder of this paper describes proposed software tools
for performing these tasks.

II. CONVERT VIEWS TO CANONICAL DATA MODEL

View translators convert data - descriptions expressed using different data
model representations into a canonical format. For the canonical format, we
have chosen an extension to the Entity-Relationship (E-R) data model [CHEN76],
called the Entity-Category-Relationship (E-C-R) data model [WEEL80, ELMA].
The E-C-R data model extends the E-R model in two main areas:

—29-

1. The category concept is used to represent sub-classes [HAMM81].
Categories can also be used to group entities playing the same role in a
relationship.

2. Cardinality and dependency constraints on relationships are specified
precisely.

The E-C-R model uses the following constructs: entity sets, relationship
sets, categories, and attributes. The term object set refers to entity sets
or categories. Entity sets represent sets of entities that have the same
attributes. Categories represent additional groupings of entities from one or
more entity sets. Similarity, a category can be used to model a subset of one
entity set. An example of the E-C-R model is shown in Figure 2; the E-C-R
diagram is an extension of the E-R diagram [CHEN76]. Rectangular boxes
represent entity sets, hexagonal boxes represent categories and diamond shaped
boxes represent relationship sets.

Pname e—
|~e Cname
Paddr e~ FERSON COMPANY |~ P
OWNER
owns
(.. m)
Pur. date
OWNERSHIP
owned b
Tam
VEHICLE | Hed
~—eModel
Car type Tonnage
Figure 2.

Two types of categories exist in the E-C-R model. A sub-class category is a
grouping of entities from one entity set or category. Members of any entity
set may belong to any number of sub-class categories. The category concept
allows one to model generalization. In the example shown in Figure 2, CAR and
TRUCK are defined to be sub-classes of the VEHICLE set.

-30-

The second type of category is used to group entities playing the same role in
a relationship. The category OWNER includes the entities COMPANIES and
PERSONS playing the owner role in the OWNER relationship. Thus OWNERS are a
subset of the union of COMPANIES and PERSONS.

Constraints on the number of 1instances of an entity or category that may
participate in an instance of a relationship are represented by a pair of
integers. In Figure 2, each vehicle instance must participate in at least one
and at most n instances of the OWNERSHIP relationship.

III. SPECIFY CORRESPONDENCES AMONG OBJECTS

The following correspondences among the individual views are established by
the DBA:

. Object set name correspondences.

. Attribute name correspondences.

. Candidate keys for each entity set.

. Correspondences between object sets in several schemas.

. Correspondences among role names and relationship sets.

. Correspondences among relationships sets relating the same object sets.

NN =

The correspondence of two object sets from different schemas depends on the
possible extensions of these object sets when the database is populated. Two
similiar object sets A and B from different views are related in one of the
following ways:

(1) For each point in time, the extension of A are the same as the
extension of B (DOM(A)=DOM(B))

(2) For each point in time, the extension of A includes the
extension of B (DOM(A)>DOM(B))

(3) For each point in time,
the intersection of the extension of A and
the extension of B is empty (DOM(A)N\DOM(B)=R)

(4) None of the above.

The DBA systematically specifies which of these correspondences apply for
pairs of object sets. Checking routines automatically notify the DBA whenever
contradictory correspondence relationships have been specified. For example,
if DOM(A) = DOM(B), DOM(D)ADOM(A) = ®, then DOM(B) = DOM(D) would result in a
contradiction.

Correspondences are automatically generated for some pairs of objects. For
example if DOM(A) = DOM(B) and DOM(B) = DOM(D) have been specified then DOM(B)
= DOM(D) is automatically generated. ,

IV. MERGE VIEWS
We are designing an interactive view integration algorithm that will merge
several views given a collection of specified relationships among object sets

within the views. Object set integration rules are given in [ELMA84] and
relationship set integration rules are presented in [NAVA84].

-31-

V. GENERATE MAPPINGS

The TAILOR algorithm, which is invoked by the view integration algorithms,
generates mappings between the merged schema and the views to be merged.
These mappings are used to translate commands expressed against the merged
schema into commands expressed against views, or to translate commands
expressed against one of the views into commands expressed against the merged
schema, depending upon the context of the view integration process. The
TAILOR algorithm will use query modification [STONT5] to translate retrieval
operations.

The design of a translation mechanism for update operations (sometimes called
the view update problem) is difficult primarily because there may be many
plausible translations for an update operation, each having a different effect
on the database contents. The DBA uses TAILOR to develop several translation
procedures for each object set and relationship set of the global schema or
view seen by the user. The DBA may (1) restrict the set to one element,
leaving the user no choice for choosing a translation procedure at run time;
(2) make no restrictions; or (3) restrict the set somewhat but leave some
choice for choosing a translation procedure for run time selection by the
database user. Figure 3 illustrates the approach.

We have designed translation procedures to modify, delete from, and insert
into an entity set derived from two entity sets participating in a
relationship in the underlying schemas [LARS83]. However, additional general
translation procedures need to be designed for entity sets and relationships
sets derived in other ways. The update translation mechanism suggested by
Masunaga [MASU83] appears promising for this purpose.

Definition of the Schema : :
or View Seen by the Genergl:cz)gdgranslauon
Database User edures

) Interaction to Select
Tailor Allowable TranslationD_’D *
l DBA

Translation Procedures for
Object sets in Schema or View
Seen by the User

SCHEMA DESIGN TIME

EXECUTION TIME
Runtime Processer 5 ‘:
———————— ~

&/ Interaction to Select -
*\ Translation)‘

e e —— 7

Database

: User
Update Request Against
Underlying Views or
Schemas

Figure 3

-32-

(CHEN76]

(ELMASY]

[ELMA]

[HAMMB 1]

(LARS83]

[MASU83]

[NAVAS2]

[NAvVASY]

[STONT75]

[WEEL80]

REFERENCES

Chen, P.P.S., "The Entity Relationship Model- Towards a Unified
View Data," ACM Transaction on Database Systems, Vol. 1, No. 1,
1976.

Elmasri, R., and Navathe, S. B., "Object Integration in Database
Design", Proceedings of IEEE Conference on Data Engineering, Los
Angeles, CA, April 24-27, 1984, pp. 426-033.

Elmasri, R., Hevner, A., and Weldreyer, J., "The Category Concept:
An Extension to the Entity-Relationship Model", submitted for
publication.

Hammer, M., and McLeod, D., “Database Description with SDM: A
Semantic Database Model," ACM Transactions on Database Systems,
Volume 6, Number 3, September 1981.

Larson, J. A., and Dwyer, P., "Defining External Schemas for an
Entity-Relationship Database", in Entity-Relationship Approach to
Software Engineering (C. G. Davis, S. Jajodia, P. A. Ng, and
R. T. Teh, eds.) Elsevier Science Publishers B. V., 1983, pp.
347-364.

Masunaga, Yoshifumi "A Relational View Update Translation
Mechanism", IBM Research Report RJ3742(43118), 1/12/83.

Navathe, S.B., and Gadgil, S. G., "A Methodology for View
Integration in Logical Database Design; Proceedings of the Eighth
International Conference on Very Large Databases, Mexico City,
September 1982.

Navathe, S.B., Sashidhar, T., Elmasri, R., "Relationship
Integration in Logical Database Design", Proceedings of the Tenth
International Conference on Very Large Databases, Singapore, 1984.

Stonebraker, M.R., "Implementation of Integrity Constraints and
views by Query Modification," Proceedings of the ACM SIGMOD
Conference, San Jose, California, May 1975.

Weeldreyer, J.A., "Structural Aspects of the
Entity-Category-Relationship Model of Data," Report Hr-80-251,
Honeywell CCSC, Bloomington, Minnesota, March 1980.

-33-

RED1: A Database Design Tool
for the Relational Model of Data¥*

Anders Bjornerstedt
Christer Hulten

SYSLAB
Department of Information Processing & Computer Science
University of Stockholm
SWEDEN

ABSTRACT

A design tool, RED1 (RElational Database design aid version 1), is presented.
The objective of RED1 is to:

a) give the designer a means of prototyping a small, but representative data
base and to actually execute queries and transactions. The designer will
then be able to test whether a design (consisting of relation schemes and
constraints) performs as expected under transactions and queries. Such
behavior is difficult or impossible to determine analytically. As the

designer changes the design, RED1 will monitor the consistency of schema
and transactions.

b) give the designer a set of analytical support functions on the meta data-
base (schema) level.

The programming language Prolog [CLOC8l] is used for the implementation of the
tool. This simplifies the programming of the tool, makes modifications of it
easy, and gives a natural connection to predicate logic.

khkkhkhkkhkhkkkkkkkkhkhkkhkkhkkkhkkhkkkkkkhkhkkkkkkkkkk
1. Introduction

Systems for managing large scale databases under the relational model have
become commercially available and therefore the value of design tools for the
relational model is obvious. RED1 [BJOR83] is a tool which supports the user in
schema and transaction design. It contains a number of small procedures or
operations which are used in a free and interactive manner. The operations can
be divided into two categories, depending on their objective:

a) Operations which support a prototyping approach to database design. They
collectively provide the functions of a small scale DBMS. That is, the
DBMS is functionally fully relational [CODD82, DATES31, even if it is not a

*This work is supported by the National Swedish Board for Technical Development
(STU) .

—34~

'true' DBMS in terms of scale. By using these operations the designer can
define a database (in terms of domains, relations, constraints, transac-
tions and views), and experiment with a small extension. The database
definition (schema) is itself represented relationally. RED]1 is thus in a
sense self-descriptive.

b) Operations which are used to analyze properties of the schema and to sug-
gest designs. For example there are operations for testing whether a rela-
tion scheme is in a certain normal form [SAGI80], and for synthesizing
relation schemes in third normal form [BERN76]. These operations are
presently based purely on the analysis of database dependencies (functional
and multivalued) .

The user defines relation schemes, transactions, data dependencies and
integrity constraints. He may also build the database extension. The same
query and data manipulation operations (relational operators) are used for
accessing schema definition, transaction definitions, currently defined depen-
dencies, as well as the basic extension of the database being defined.

The programming language Prolog [CLOC8l] is used for the implementation of
the tool. Prolog is a small, interpretive, high level language, with a very
simple syntax. The interpreter is basically a mechanical theorem prover for a
restricted first order predicate calculus (Horn Clauses). This simplifies the
programming of the tool, makes modifications and extensions to it easy, and
gives a natural connection to predicate logic. The last aspect is most apparent
in connection with the expression of constraints.

The database which the designer builds in RED1 is in general defined with
more precision than that which can be handled by today's large scale relational
DBMS. Explicit constraints of many kinds (including dynamic constraints) are
allowed. Constraints are expressed in a restricted first order language, which
is similar to but not as terse as pure Prolog. The facilities of RED1 should
encourage the designer to experiment with different solutions, to "cut and
paste" relations. The analytic operations presuppose some elementary knowledge
of relational theory [ULIM82, MAIE83], on the part of the designer.

2. Prototyping with RED1

The operations of REDl operate on the system relations and user defined rela-
tions which all are maintained in primary storage. The relations are
loaded/saved at the beginning/end of a session with RED1. A schema is created
by:

o Defining data types.

o Defining domains on data types.

o Defining attributes on domains.

o Defining relations on attributes.

o Defining constraints, transactions and views on relations.

-35-

Actually a strict bottam up approach is not required or recommended. The gystem

constraints and system transactions(l) of RED]1 will ensure that the database
definition will not be left in an incomplete state.

RED1 has an integrity monitor which evaluates relevant constraints after a
transaction is completed. If an integrity violation occurs, the designer is
notified and either the database state is autamatically reset to the state that
existed before the transaction, or another (presumably correcting) transaction
is automatically invoked. (2)

A data type defines how elements of a domain, defined on that data type, are
represented in the database. A domain, on the other hand, is an abstraction on
the level of the semantics the designer is trying to express. By making the
distinction between domain and data type we avoid confusing syntactic similarity
with semantic similarity, e.qg., adding a person's salary with his shoe size
should not be possible just because they are represented identically. It is our
experience that the number of data types needed is usually few compared with the
nunber of domains. RED]1 has a few predefined data types which we think suffice
for the designer who is concerned with logical design. The distinction between
domain and data type also encourages the designer to create as many domains as
needed. Creating a new domain simply consists of deciding on a suitable name
and stating which data type it is to be defined on. The handling of data type
and domain definition in REDl is based on McLeod's approach [MCLE76, HAMM7S].

Attribute names are global in the database. An attribute can appear in
several relation schemes, but can only be defined on one domain. An attribute
represents one 'role' for a domain in the database. (3)

Relations are defined by a relation name, the set of attributes included in
the relation scheme, and the subset of the attributes which is to be the primary
key.

Views, constraints and transactions are defined in terms of relations and
operations on these. Views and transactions can also be defined in temms of
previously defined views and transactions (operations) respectively. The
primitive (predefined) operations of RED1 can best be described as a combination
of the relational algebra and the relational calculus. Primitive operations can

(1) System-relations, constraints and transactions, could be called meta-
relations, constraints and transactions, i.e., they hold and operate on the
schema. An example of a system transaction would be "create relation", which
would operate on system relations "relation," "attribute,” etc. and involve
system constraints expressed over those relations.

(2) The risk of infinite recursion is avoided by letting the designer intervene
at each violation before a correcting transaction is executed. The designer
can then choose to back up instead of allowing the correcting transaction to
proceed.

(3) For an explanation of 'role' see [DATESl] p. 86.

-36-

be added or modified by the designer, although this does require knowledge of
Prolog programming. All the primitive operations of RED1 are regarded as tran—
sactions by RED] if they are used in isolation. More complex operations can be
built by composition over primitive or complex operations, and named and stored
in the database. The composed operation when executed in isolation will then be
regarded by RED] as a transaction, i.e., the unit of consistency.

3. Explicit Constraints

A constraint is defined by:

o An integrity assertion.
o One or more enfercement specifications.
o For each enforcement specification, a wviolation action.

The integrity assertion is a labeled statement which must hold in every con-
sistent database state. In RED1 assertions are closed formulas of first order
logic. However they are expressed in a restricted way. To achieve goal direct-
edness, that is a procedural interpretation, and a simpler language, no explicit
quantifiers are used. Instead, quantification of variables is determined by the
context in which they appear. Variables always range over the domain of attri-
butes in relations. Relation schemes correspond to predicates in the formula.
A simple example would be:

shipment (partnum:X, suppnum:Y)
=>
part(partnum:X) & supplier (suppnum:Y)

which roughly states that "for every shipment, the part and the supplier must
exist". The variables X and Y would in this case be universally quantified.
Dynamic constraints, which are restrictions on allowable transitions between
database states, are expressed using dynamic relations. With every defined
relation, RED]l associates two dynamic relations. Every tuple inserted into a
relation by a transaction is also inserted into one of the associated dynamic
relations. Every tuple deleted from a relation is inserted into the other asso-
ciated dynamic relation. When the transaction is completed and integrity is to
be determined, the total change to the database is reflected in the dynamic
relations. Dynamic constraints are then expressed as static constraints on
dynamic relations. If no constraints are violated, the transaction can be
accepted and RED1 deletes the extensions of the dynamic relations. This idea is
obtained from Nicolas and Yazdanian (NICO78]. An example of a dynamic con—
straint would be:

del_employee (empno:E, salary:S) &
ins employee(empno:E, salary:Snew)

=> Snew > S,

which states that "the salary of an employee cannot decrease”.

-37-

An enforcement specification is a statement about when a constraint should be
evaluated. It would be very inefficient (even in a prototyping situation) to
evaluate all constraints after every transaction. A constraint should be tested
if and only if the transaction included operations which could have violated the
constraint. Enforcements are specified by relating an operation (name), a rela-
tion (name) and a constraint (label) to each other. Whenever an operation
(primitive or composed) has been performed on one or more relations, all con-
straints related to this operation and relation are added to a list of con-
straints to be enforced after the transaction is finished.

To each enforcement specification the designer can associate a violation
action stating what RED1 should do in case of violation. The default action is
to back up and generate an error message consisting of the label of the con-
straint which has been violated. The designer can optionally specify his own
error message, which may be more explanatory, or indicate that a certain opera-
tion (correcting transaction) is to be performed.

4. Analyzing and Synthesizing Schemes

Independently of prototyping the database and transactions the designer can
analyze alternative relation schemes on a purely intentional level. RED1 has
operations for defining functional and multivalued dependencies by relating sets
of attributes with each other. A relation scheme can be tested to see if it
conforms to a certain normal form (2nd, 3rd, bcnf & 4th). Furthermore, it can
be determined if a particular data dependency logically follows from previously
defined dependencies. Given a set of functional dependencies it is possible to
mechanically generate a set of relation schemes in third normal form [BERN76].
The designer can easily focus on a subset of the attributes and dependencies
defined so far that is considered important for the moment.

5. Concluding Remarks

RED]1 is a tool for logical design of relational databases, which tries to
integrate analytical and constructive functions with a prototyping approach. It
is based on a small relational DBMS with an integrity monitor that aids the
designer both in creating a consistent design and testing proposed transactions.
However, RED1 has not yet been tested on any larger practical design problem.
Such a test may influence its future development. One such development would be
to provide automatic schema and application program generation for large scale
production DBMS's, with the specified schema and transactions of RED1 as input.

References

BERN76. P.A. Bernstein, "Synthesizing third normal form relations from func-
tional dependencies,”" ACM TODS Vol. 1(4) pp. 277-298 (Dec. 1976).

-38-

BJORB3. A. Bjornerstedt and C. Hulten, "RED1 A database design tool for the
relational model," Report No. 18, SYSLAB, Dept. of Information Processing &
Computer Science, Stockholm, Sweden (March 198).

Coc8l. W.F. Clockskin and C.S. Mellish, Programming in Prolog, Springer-
Verlag, Berlin Heidelberg (198l1).

oD82. E.F. Codd, "Relational Database: A Practical Foundation for Produc-

tivity," Communications of the ACM Vol. 25(2) (February 1982). The 1981 ACM
Turing Award Lecture.

DATES8l. C.J. Date, An Introduction to Database Systems, third edition,
Addison—Wesley (1981).

DATE83. C.J. Date, An Introduction to Database Systems, Addison-Wesley Systems
Programming Series (1983). Volume II

BAMM75. M.M. Hammer and D.J. MclLeod, "Semantic integrity in a relational data-
base system," Proceedings VLDB, pp. 25-47 (Sept 22-24, 1975).

MAIES3. D. Maier, The Theory of Relational Databases, Computer Science Press,
Rockville, MD. (1983).

MCLE76. D.J. Mcleod, "High level expression of semantic integrity specifica-
tions in a relational database system," MIT/LCS/TR-165, MIT, Cambridge
Massachusetts (1976).

NICO78. J.M. Nicolas and K. Yazdanian, "Integrity Checking in Deductive Data-

bases," pp. 325-344 in Logic and Databases, ed. H. Gallaire & J. Minker,
Plenum Press, New York and London (1978).

SAGI80. Y. Sagiv, "An algorithm for inferring multivalued dependencies with an
application to propositional logic," Journal of the ACM Vol. 27(2) pp.
250-262 (April 1980).

ULIM82. J.D. Ullman, Principles of Database Systems, Second Edition, Computer
Science Press, Rockville, Maryland 20850 (1982).

-39-

/N wva®

An Automated Logical Data Base Design and Structured Analysis Tool

Robert M. Curtice
Arthur D. Little, Inc.
Acorn Park
Cambridge, Massachusetts
(617) 864-5770

Abstract
A brief description of the main features and examples of the outputs from
an automated tool are presented. The tool is an aid in logical data base

design and in structured systems analysis.

Introduction

ADL IRMA (Information Resource Management Aid) is a system designed to aid in
logical data base design, structured system analysis, and strategic systems
planning. It has been under development at Arthur D. Little, Inc. for more
than four years and has been successfully applied to more than a dozen
industrial and government situations. ADL IRMA operates on the IBM Personal
Computer (or compatible) and utilizes 128K bytes of memory and the graphics
option.

Logical Data Base Design Methodology

ADL IRMA is designed to support a particular methodology for logical data
base design, and to appreciate its features, a brief introduction to this
methodology is required. A more substantial and rigorous description of the
method can be found in [CURT82].

By logical data base design (sometimes called conceptual design) we mean a
description of data which is free from any physical implementation
considerations or specifications. The intent is to define what the data 1is,
what it means, and how it is interrelated. The resulting logical data base
design does not imply implementation using Data Base Management Software.
The level of definition dealt with by the methodology is appropriate for data
modeling (in which case the design does not imply implementation at all), or
for the logical level design of an application's data base or files.

As with most logical data design approaches, this method begins with the
identification of types of objects, called entities, about which data needs
to be recorded in a data base or file (or modeled in a data model). For
example: Employee, Vendor, Department, Part, Customer, Account, and Policy

AL]RMA S ig a ServiceMark of Arthur D. Little, Inc. Hereinafter
referred to as ADL IRMA.

—-40-

are typical entity types. In our terminology, each of these entity types
becomes a '"key" in a data structure chart, and is depicted graphically at the
top of such a chart in a box. Subordinate to each key, we will record the
elements of data which are about that entity.

Four types of data elements are permissible:

(1) The regular data element, which characterizes or describes the
key. It is depicted in an oval shape on the data structure chart.

(2) The multiply-occurring regular data element, for cases in which
more than one value of the characteristic may apply to one
instance of the key. This is depicted as a three dimensional oval.

(3 The associator data element, which serves to relate the key of
this chart to the key of another chart, or perhaps to itself. It
is shown in a box on the data structure chart.

(4) The multiply-occurring associator, used when the key may be
related to more than one instance of the related key, in the same
relationship. It is depicted in a three dimensional box.

There are three remaining fundamental aspects to the methodology. If the key
element may validly exist with no value of the subordinate element (regular
or associator) then we insert a small "o" in front of the element's shape on
the chart to signify it as optional. Also, the elements subordinate to the
key may be arranged in a tree structure with the following interpretation:
Each node (data element) in the tree becomes a created entity type, with
subordinate data elements being "about" that newly created entity.

Finally, we always observe the reversal rule: If Key A relates to Key B
through an associator in A's structure chart, then we must supply another
associator in B's chart to relate B to A in the inverse relationship. This
not only provides a cross-reference of all associators, but forces the
designer to specify the one/many and optional/mandatory choices for the
inverse relationship.

All of these components of the methodology are exhibited in Figure 1 which
shows three keys in an oversimplified '"toy" data base. The interpretation of
the first of these three data structure charts is as follows:

For each Part there must exist one and only one Name of Part. Each Part
may be related to nome, one, or more than one Approved Vendor. For each
Approved Vendor which a Part does have, there must be one and only one
Vendor's Part Number. Finally, each Part may be associated with one or more
Purchase Orders Issued for that Part, but some parts may exist with no
Purchase Orders Issued.

The methodology makes use of the concept of domain. We distinguish a data
element (each shape on a data structure chart) from a domain which is the set
of values or identifiers which a data element can assume. Thus Part (as a
key), Part Vendor Supplies, and Part Ordered are three distinct data elements’
all defined over the same domain of Part Number.

“41-

A 'TOY' DATA BASE

PART NQO.

PURCHASE OROER

|0

Figure 1
Example of Data Structure Charts

The reader may want to satisfy himself that an unambiguous interpretation can
be made for the remaining two keys in Figure 1. Also notice that each
associator (box subordinate to a key) does indeed reference a legitimate key,
and that all such associations are reversed (e.g. Part Vendor Supplies
reverses Approved Vendor). The element Vendor's Part No. is subordinate to
both Part and Approved Vendor; as such it is a characteristic of a created
entity which is the idea of a Part as it is supplied by an Approved Vendor.

Finally, students of relational data base theory will observe that each
branch of the tree under a key forms a third normal form (but not first
normal form) relation, since the concept of functional dependency is imbedded

into the logic of data structure chart formation.

ADL IRMA as a Logical Data Design Aid

The heavy involvement of user personnel in the design process is central
to the way in which the methodology is applied. Thus the approach must be
explainable to non-data processing personnel in 15 minutes or less. The
actual design process is conducted in intensive working sessions during which
the data structure charts are initially prepared, and reviewed and modified
in iterative sessions. A major benefit of the ADL IRMA system is that it
permits entry and maintenance of all the data associated with a logical data
design, and can rapidly produce up-to-date data structure charts for use by
all design participants. A sample of the computer generated data structure
chart is shown in Figure 2.* In this output, note that the domain of each
element is explicitly listed and that a text definition of each data element
is also printed.

* This chart is drawn from the sample problem set forth in [VANG82].

49~

-y

——————

DOMAIN IS Manwfacturer Mase (001)

A manufacterer is any organization which
produces cars that cose under the control
of the Registration Authority. All
sanufacturers which have produced such
cars since the Registration Authority was
foraed are recorded in the data base.

-

/ \
—-(Eftective Date of Manufacturer’'s Operation (M110))
/

DOMAIN [S Date (006&)

& date on which the subject sanufacterer
began operations. Mo sore than five
aanufacturers are persitted to be in
operation at the same tise. Note,
however, that a manufacturer siy cease
operation and resuse at a later date.

e mm e mre— -~ . —— -

! \
--0-¢ Date Manufacturer Ceased Operations (N{20) /)
\

DOMAIN IS Date <004}

Date upon which manufacturer ceased
aperations and peraission to operate
lapsed. A sanufacturer sust not own any
cars when operation ceases,

Car Mode! Produced By Manufacturer (M4OC!

DOMAIN IS Model Wase (003}
Identifies all of the sodels of cars
which were produced by the subject
sanufacturer during its operation.

~-g--i Car Owned by Manufacturer (N500)

DOMAIN 15 Registration Nusber (002}
References the cars which are owned bv
the subject manufacturer. Cars which are
produced but not yet transferred to
garazts are first registered in the name
of the Manufacturer,

/ \
—0-¢([Date of Manufacturer's Fuel Consusption Letter (N330})
\ / DOMAIN [S Date (008)
Date of letter mtifying sanufacturer
that the cars produced by its operation
during the previous year had exceeded the
naxisua fue cmwnplion value. This
letter is aziled sosetise in January for
violations of the previous veir's
acceptable fuel consusption levels.

Figure 2
Data Structure Chart Output from ADL IRMA

Data structure charts can be immediately displayed on the monitor using
ADL IRMA. Modification to the specifications of a data element and the
structure is made in an interactive mode. Moving an element in the structure
automatically moves the entire sub-tree subordinate to that element. In
addition to the ability to easily modify the data structure charts and print
them, ADL IRMA produces a variety of other reports along with appropriate
error messages indicating a violation of the methodology. Among these are:

e A domain report which cross references all data elements
defined over each domain.

® An element report which flags errors such as an invalid
domain, or an associator which has no valid reference.

e A report and associated file which can be used to load
one of a number of DBMS data dictionaries on the mainframe.

-43-

ADL IRMA as a Structured Analysis Aid

The PC user may create a data flow diagram on the monitor and to print it
using a standard dot matrix printer. In order to provide sufficient room for
a complex diagram, four '"windows" each slightly smaller than the monitor
screen may be utilized. Moving the cursor across the window boundary
automatically displays that window.

The basic operation of the system in this mode is to place the cursor at the
desired position on the diagram and press a single key to generate the
appropriate symbol for a process, datastore, external entity or data flow;
these are the basic primitives of structured analysis [GANE79]. Then the
identifier of the process, data store, external entity or data flow is
entered; the system looks it up in its files, and if valid, places the full
name on the diagram. An example of the resulting diagram is presented in
figure 3.

Processes, external entities and data flows are described to the ADL IRMA
system prior to creating the diagram. Each datastore is equivalent to a
"key" as previously described. This approach integrates the structured
analysis support with the logical data design. Additionally, the data flow
descriptions can reference the data elements which appear on them; again data
elements are precisely those described during logical data design.

In addition to the data flow diagram itself, ADL IRMA produces a series of
reports about processes and data flows. If a key data element is referenced
as the source or destination of any data flows, then these are cross
referenced in the corresponding data element report.

Labor Of fers[8a04] Perf. Plans & Requests(@128)
Product Datal@aei} Labor Requests[80891 l 0bj., Guides & Approvalsl@i2l)
- Sales Object
Rarket Needsloatk]) W\Y - ep :le: ;vesleml Py | Uendor Invoices(8910]
- * " Products ales Perf. & Forecast(6831} [Plan, & Conteol) Customer Paywentsl6a7]
Inguivies and Orders[0882)s (MKTPRD} 7 »
Inguiries and Orders(3082):, S MMP Jostonee Puments 07
> L Design Costs(@817] [\ Customer {nvoicel 80881 N
Product Caabilitiesl6gls] epdoe Pumols B,

Ihternal Onder Status!@a20)

- N Internal Onders(@g15)
PRODYCT DESIGN .
[Fart] ufacturing Costsl0832)
‘ L
Design Dat Deswn Design Specification{ddly] ./ M ~, _Purchase OMmmll{
—'ﬂ—“—b Products) '[Delum- Products;
_\(D PRM) A Hanuiacturing Peohlens(8318) {NFGPRD}
HEOROPONER. NDUSTRLAL 7 d ——’T

DIVISEON T : Techaolocyl 8951 y

LEVEL 1 LATH FLOW ' . Uendor Product Data{G3w3)

Figure 3

Sample Data Flow Diagram Output

—4l=

Experience with ADL IRMA

As previously mentioned, ADL IRMA has been utilized in more than a dozen
actual design and planning situations. The major benefit of the system is
the ability to maintain consistent documentation about a rapidly evolving
design, and the facility to easily modify specifications and obtain new
documentation (including graphics) with short turnaround. For example, if a
data flow appears on several data flow diagrams when its name is changed
once, then subsequent printings of each diagram will reflect the current
name. Typically, both data base and data flow designs- are intitially
prepared on flipcharts and entered into the ADL 1IRMA system by a
para-professional. Viewgraphs prepared from ADL IRMA output are then marked
up and used to modify the specifications in the system in an iterative manner.

A secondary benefit of the system is the checking and cross referencing that
it performs. These features help insure that the final design is consistent
and within the rules of both the logical data design and structured analysis
methodologies.

Finally, one of the interesting side benefits of the system is that it has
allowed us to build up a number of data designs in machine readable form
which cover a cross section of industries and data problems. From this 'data
base" of data base designs, we are able to collect and analyze properties
across designs, which few people are likely to be in a position to think
about. Empirical data about the properties and statistical attributes of
data base designs are not well developed. We plan to report on the results
of these investigations in the near future,

References

[GANE79] Gane, C. and T. Sarson, Structured Systems Analysis; Tools and
Techniques, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1979.

[CURT82] Curtice, R., and P. Jones, Logical Data Base Design, Van Nostrand
Reinhold, Inc., New York, NY, 1982,

[VANG82] Van Griethuysen, J. (ed) Concepts and Terminology for the
Conceptual Schema and the Information Base, International
Standards Organization, ISO/TC97/SC5-N 695, March 15, 1982.

—45~

An Overview of Research in the Design of Distributed Databases

Stefano Ceri, Barbara Pernici, and Gio Wiederhold*

Dip. di Elcttronica, Politecnico di Milano, P.za L.da Vinci 32, Milano Italy; (2)236-7241
*Computer Scicnce Dep., Stanford University, Stanford CA 94305; (415)497-0785

Abstract

Distributed databasc design is viewed as consisting of threc phases, partitioned to minimize
their interaction. The initial and final phases relate strongly to traditional logical and physical
database design. The second phase is itself subdivided into fragmentation and allocation tasks. We
report on methods appropriate to those tasks and their interaction, based on rescarch work done
at Stanford, under the KBMS projectt, and in Italy, under the DATAID projecti.

1. Introduction

Several prototypes and comtnercial systems for accessing distributed databases have been de-
veloped. Rapid growth in their application is predicted. Most operational applications have been
handcrafted, and appear difficult to optimize initially and maintain in the long terin. The problem
of designing cffective applications using these systems is thus becoming more and more important.

2. Framework

The design of a database application in a nondistributed environment is typically subdivided
into two distinct phases. The logical design aims at producing a representation (schema) of all
the data and their relationships required by the application. The physical design aims at sclecting
the physical storage structures which allow efficient access to the data. In this paper we do not
address the techniques which are required for these two phases, which are described,; for instance,
in [Ceri 83] and [Wied 83].

The design of a distributed database application inserts a phase, called. distribation design,
between the logical and physical phases. Distribution design aims at determining the distribution
of the data to the sites of the distributed database. Two possible approaches exist:

a: Top-Down Approach.

This approach is typical of a distributed database system which is developed from sceratch.
An integrated database schema which models all the data of the distributed application is initially
designed; the schema is then partitioned into several subscheinas, one at cach database site, and data
are distributed accordingly. In particular, global data objects (relations) belonging to the integrated
schema are decomposed into fragments, and fraginents are then assigned to the subschemas ab the
different sites. Fragmeotation is an important aspeet of distributed databases, because i6 allows
the user to write programs which use global data objects and arce transparent to data distribulion
and fraginentation, while the system controls the placement. of fragments in the most eflicient way.
Top-down distribution design is therefore decomposed into two phases:

al: The design of fragmentation. The goal of this subphasce is to determine fragiments
as “units of data distribution”, i.c., portions ol global data objects which can conveniently be
distributed. The design of fragmentation requires an understanding of the properties of global

t sponsored by DARPA contracts N39-82-C-25 and N39-84-C-21L

1 sponsored by the National Rescarch Council

~46-

data objects and of the applications which use them; thercfore, the design of fragmentation can be
regarded to be the logical phase of the distribution design.

a2: The allocation of fragments. The goal of this subphase is to determinc the sites where
fragments should be allocated, possibly by replicating fragments over multiple sites. Allocation of
fragments aims at the optimization of the distributed database performance, and can therefore be
considered a “physical” decision.

With this approach, distribution design follows the logical design of the global schema, and the
physical design at each site follows, in turn, the design of data distribution., as shown in TMig. 1.

LOGICAL DESIGN
(global schema)

|

DISTRIBUTION DESIGN

| DESIGN of FRAGMENTATION I
U
I DESIGN of ALLOCATION I

l

PHYSICAL DESIGN
(at each site

Fig. 1: Phases in the Design of a Distributed Database

b: Bottom-Up Approach.

This approach is typical of distributed databases which are developed as an aggregation of
pre-existing databases. With this approach, schemas representing the portion of data stored at
cach individual site constilute the starting point, and distribution design consists in identifying
the data which are common to the distinct schemas, and giving them a common representation.
The integration process should solve “conflicts”, i.c., different representations of the same data
in different schemas. Tn this paper, we concentrate on the top-down approach; the bottom-up
approach was studied in [Daya 82], and the integration of different schemas is deseribed in [Bati 83],
[Nava 82, and [Nava 84b).

3. Design Problems

In this scction, we review the design problems which arise in the top-down approach; in the
next two scctions, we will indicate the approaches developed to the solution of cach individual
problem, and to the integration of all the solution methods within a single framework.

Let us assume the relational model for the global schema. With the relational model, two
types of fragmentations arve possible:

a: Horizontal. TFragments arc subsets of the tuples of a global relation. Bach horizontal
fragment of a same global relation has the same relation schema. Each fragment is associated
with a predicate (called “qualification”) which indicates the distinguishing property possessed by
the tuples of that fragment. In this paper we assume disjoint fragments, and therefore also the
predicates should be disjoint. Horizoutal fragments can be defined from global relations using
sclections and semi-joins (see [Ceri 84)).

b: Vertical. Fragments are defined by projecting global relations over subsets of their
attributes. In order to make the projection lossless the key attribute or a tuple identifier is included

—47-

within cach fragment. A vertical fragmentation can be nonoverlapping, when each nonkey attribute
belongs to one and only one vertical fragment, or overlapping, when some nonkey attributes belong
to two or more vertical fragments.

Mixced fragmentations arc built by combining horizoutal and vertical fragmentation. The number of
fraginents becomes rapidly greater than the number of relations in the database. Correspondingly,
the problem of optimal design becomnes even less tractable on a quantitative basis. Overlapping or
replicated fragments increase complexity further.

In the allocation of fragments, two alternatives can be considered:

a: Nonreplicated allocation

Here cach fragment is allocated to one site. A nonreplicated allocation is required if the system
docs not support data replication. The optimmization criteria which is primarily used for solving
this problem is the maximization of processing locality of applications.

Capacity constraints within the sites are commonly ignored. This assumption is ccrtamly valid
whenever distributed transactions arce a small fraction of the load submitted to a site.

b: Replicated allocation

Here a fragment is allocated to one or more sites. In this case, the degree of replication
of cach individual fragment is a variable of the problem. Update of replicated data has stringent
requirements if global consistency is to be maintained. Typically, the benefit of replication is higher
if the ratio between retrieval and update accesses to the fragment is lug,h If update is infrequent
capacity constraints may become limiting.

Replication may have the auxiliary benefit of redundancy, which can allow recovery after loss
of data within one site [Apers 84|, [Mino 82]; this additional benefit is hard to assess. If replication
is to be-used to this end, then a minimum replication factor may be initially established.

Given the above classification of problems, the top-down approach to distribution design con-
sists of solving for cach relation the following individual design problems: horizontal partitioning
(H). vertical partitioning (V), nonredundant allocation (A), redundant allocation (R). In current
practice R is often a post-process on the allocation produced by A. This leads to sufficient, but
does not guarantee optimal results.

4. Solutions to Individual Design Problems

In the past two years, we have concentrated on the solution of some combinations of the above
design problems. The extreme complexity of the mathematical models required for solving the
problems has led to the development of heuristic approaches.

In [Ceri 83] an analytical model was presented for sclecting among alternative horizontal (rag-
mentations of global objects. Users specify alternative fragmentation criteria, and also indicate
for cach fragment a single preferred allocation site in case the fragmentation criterion is selected
by the solution method. The solution is produced by a lincar integer program; in the solution,
cach relation is cither fragmented with the best possible fragmentation or stored whole at one site.
T'hus, the model solves the H - A problems. Heuristies are added in order to generate replicated
allocations starting from the nonreplicated solulion, thus solving the H + A + R problem.

In [Nava 84a] several algorithms are shown for the vertical partitioning of relations in different
design contexts. The basic method used by all algorithins is based on the notion of aflinity among
attributes, which measures the common usage of any two attributes. Using affinitics, attributes
arc clustered together, and algorithins then determine the best vertical partitioning by considering
all clusters. One heuristic algorithm is developed for the vertical partitioning of relations with
nonredundant allocation, solving the V 4+ A problem. Another algorithm is used for generating
replicated allocations starting from the nonreplicated solution, thus solving-the V + R problem.

—-48-

In [Sacc 83] the problem of distributing the databasc on a cluster of processors was considered.
The motivation of such an architecture is increasing performance, availability, and reliability. The
problem differs from the standard distribution design problem, because the applications nced also
to be allocated to processors; thus, an object to be allocated can be either an application or a
fragment. The model must now consider capacity constraints for the CPUs, processors’ 1/0, and
network communication. The definition of fragments is an input for the solution method, which
produces a nonreplicated allocation of objects - fragments and applications — thus solving the A
problem. The solution uses two well-known heuristics in a novel combination: a greedy algorithm
corubines pairs of objects based on maximal benefit, and the combination is then allocated to sites
using a first-fit bin-packing heuristic.

5. Integration of Solution Methods

Our current rescarch interest is in the integration of several solution methods within a single
framework. However, the solution of design subproblemns is hampered by their extreme compu-
tational complexity (N-P completeness), as shown in [Aper 84] and in [Sacc 83]. Thus, simple
merging of our algorithms and solution spaces would be computationally unfeasible for problems
of rcalistic sizes.

The complexity of models is not fictitious; it is duc to the intrinsic complexity of the overall
design problem and the quantity of objects. The mmunbers of sites, relations, applications, horizontal
fragments, vertical fragments, and copies of fragments considered in a particular design problem
can be rather large, and cach of these numbers has a potential for gencrating a combinatorial
explosion of the solution space.

We cnvision the development of an enviromment of tools which are able to solve partial prob-
lems, under the control of an cxpert database designer. The experience of the designer will be
primarily uscful in selecting the order of evaluation and iterations of individual problemns (e.g., H
+ V 4+ A + R is a likely combination), and in interpreting the results returned by cach tool. In
general, the following precedence relations hold between the evalnation of problemns:

A<R H V<AR
The designer can decide to repeal. design steps based on the feedback of previous computations.

Morcover, the designer will be able to give the tool indications which might reduce the dimen-
sions of the design space (for instance, by indicating some promising initial fragmentations and
allocations). Solutions which violate capacity or connmon-sense constraints can also be avoided.

The major goals of such an environment, would be:

a. To include tools for the solution of cach of the design problems we defined (H, V, A, R).
b. To allow for exchangeability of design methods and algorithins.

c. To have a common basis of evaluation of exccution strategies over distributed databases,
used by all the tools. This evaluation of execution strategies might be substituted by the use of
the optimizer of one particular distributed dalabase system.

We have started working towards such an environment by outlining the architecture of the design
syster, and designing and implementing some portions of it. A similar approach is also assumed
in a project conducted at the Computer Corporation of America, deseribed in [Rein 84).

In order to accomplish goal b above and to accomodate the use of our previous solution
algorithms, the architecture of the system st be very modular. The design system should provide
functions for designing the fragmentation, for selecting and allocating fragments, for performing
query optimization, and for evaluating an exccution strategy. These functions are shown in Fig. 2.

Tools and solution models should not necessarily be in one-to-one correspondence with these
functions. Thus, for instance, the algorithms described in {Ceri 83] and in |[Nava 84a] cover both

—49-

fragmentation and allocation design; we do not plan to decompose those algorithms in order to
obtain a more layecred software architecture.

As shown by Tig. 2, the tool cnvironment should also be capable of performing a query opti-
mization function. This is necessary: in order to cvaluate a specific fragmentation and allocation,
it is required to know the query cxecution strategy that will be developed by the optimizer of
the actual distributed database system. Unfortunatly, this requirement compromises the general-
ity of the tool environment, because very many different approaches exist to query optimization.
Moreover, the optimization should be relatively cfficient, even if suboptimal, because it has to be
repeated for each candidate solution produced by the fragmentation and allocation design and for
cach considered query and update transaction.

| FRAGMENT DESIGNER |« ———88™
| (H or V or both) | Note: .
The cstimate of cost
J logical fragments might be used cither by
the fragment allocator
| FRAGMENT ALLOCATOR < ———— for testing several
| (A or/and R) | alternative allocations
: of the same fragments, or
J physical fragments by the fragment designer
for testing different
| QUERY OPTIMIZER | fragmentations.

access strategy over
physical fragments

I EVALUATOR |

|L__estimate of cost

Fig. 2. Tunctionalities to be Provided by a Design Tool for Distributed Databases

In [Sacc 83] the query optimizer was outside of the design system, since the actual Rx optinizer
was to be used. In such an architecture the cost of repeated evaluabion is high so that four tactics
were considered. Greedy allocation was driven by selecting the pair of objects which benefitted most
from placing them at the same node. Minimnal query evaluation cost is obtained by computing the
object? benetits for all pairs only once. The benefits for the selected pair versus all other objects are
added to estimate benefit values for the next object allocation. This technique leads to imprecision
as the allocation is progresses. The best approach, full benefit recomputation throughout the
iterations, requires object® evaluations.

The lower-level function in Fig. 2 consists in providing an evaluator for a specific query ex-
ceution strategy on a specilie data distribution and allocation. The evaluator should be able to
indicate specifically the costs which are due to the execution of the query, in terms of CPU, 1/0,
and messages required; it should also be possible to indicate the distribution of CPU and 1/0 costs
to the various sites, and of transiiission costs along the various links.

We have recently designed and implemented an evaluator for distributed database applications.
The evaluator uses an algebraic representation of queries, which can include selection, projection,
join, and umnion operations. It also considers updates, with update specifications which apply
dircelly to tuples of fragments. The evaluator receives as input the deseription of the query in
terms of an operator graph, similar to an operator tree but with the additional capability of using

-50-

the result of an expression more than once. It produces as output a detailed description of CPU,
1/0 and transmission costs. Bach fragment is described by giving its profile; profiles include the
cardinality (number of tuples) and, for cach attribute, the size (number of bytes), the number of
distinct values, and the minimum and maximum value. In order to evaluate the profiles of relations
produced at cach operation, we used the formulas from [Ceri 84].

After completing the cvaluator, we started integrating the vertical fragmentation algorithms
described in [Nava 84a] within the new cnvironment. The analytical formulas used by the vertical
partitioning algorithm are replaced by calls to the new evaluator. The vertical fragmentation
algorithm produces at each iteration a possible vertical fragmentation and allocation; in order
to provide an interface between the vertical fragmentation algorithm and the evaluator, which
evaluates specific execution strategics over a distributed database, we have designed a small query
optimizer, which transforms the queries over global relations into queries over fragments, and then
allocates cach operation of the queries over fragments to the most convenient site; we are currently
implementing the query optimizer. This experiment will allow us to test the vertical fragmentation
algorithms with more accurate cost cvaluations, and at the same time will give us insight on the
practicability of our approach towards the intcgration of distribution design tools.

Acknowledgments
Sham Navathe, from the University of Tlorida, Giuscppe Pelagatti, from the Politecnico di
Milano, and Domenico Saccd, from C.R.A.I. (Cosenza), have contributed to our past work.

6. References

[Aper 84] P. Apers and G. Wicderhold: “Transaction Classification to Survive a Network Parti-
tion”; Stanford University, submitted for publication, 1984.

[Bati 83] C. Batini, M. Lenzerini, and M. Moscarini: “Views Integration”; in [Ceri 83a].

[Ceri 82] S. Ceri, M. Negri, and G. Pelagatti: “Horizontal Partitioning in Database Design”;
Proc. SIGMOD Conference, Junc 1982.

[Ceri 83a} S. Ceri (ed.): Mecthodology and Tools for Database Design; North Holland, 1983.

[Ceri 83b] 8. Ceri, S. Navathe, and G. Wicderhold “Distribution Design of Logical Database
Schemas”; IEEE Transactions on Software Engincering, Vol. SE-9 no. 4, 1983.

[Ceri 84] S. Ceri and G. Pelagatti: Distributed Databasces: Principles and Systems; MecGraw-Hill,
1984.

[Daya 82] U. Dayal and H. Y. IIwang: “View Definition and Generalization for Database Integra-
tion in Multibase: A System for Tleterogencous Databases”; Proc. Sixth Berkeley Conf. on
Distributed Data Management and Computer Networks, 1982,

[Mino 82] T. Minoura and G. Wicderhold: “Resilient Extended True-Copy Scheme for a Distri-
buted Database System”; IEEE Trans. on Software Engincering, Vol. §I-8 No. 3, May
1982.

[Nava 82] S. B. Navathe and S. Gadgil: “A Mcthodology for View Integration in Logical Database
Dcsign”; Proc. 8th VLDB Conference, Mexico Cily, Sept. 1982, pp. 142- 164.

[Nava 84a] S. B. Navathe, S. Ceri, G. Wicderhold, and J. Dou: “Vertical Partitioning Algorithms
for Database Design™; to appear in ACM-TODS, vol.9 no.4, Dec. 1984.

[Nava 84b] S. B. Navathe, T. Sashidhar, and R. ElMasri: “Relationship Merging i Schema
Integration”; Proc. 10th VLDDB Conference, Singapore, Aug. 1984.

[Rein 84] D. Reiner, M. Brodice, G. Brown, M. Chilenskas, M. Tricdell, D. Kramlich, J. Lehman,
and A. Rosenthal “A Database Design and Evaluation Workbench” Preliminary report,
SPOT couference, Goteborg, Sweden, Aug. 1984.

[Sacc 83] D. Sacca and G. Wiederhold: “Partitioning in a Cluster of Processors”; IBM Report
RJA076, ext. abstract in Proc. 9th VLDDB Couference, Florence Italy, 1983, pp. 242--247.

[Wicd 83] G. Wicderhold: Database Design 2nd ed.; McGraw-IIill, 1983.

-51-

Current Research in Database Design at the University of Minnesota

Salvatore T. March John V. Carlis
Sunder Mendu Diane Reyer
Frashant Falvia X Karen L. Ryan

Michael Prietula XX
senan Ridjanovic

Management Sciences Computer Science
(612) I73-4363 (612) 3I76-4592
School of Management Institute of Technology

University of Minnesota
Minneapolis, MN 55455

0. ABSTRACT

Research in database design at the University of Minnesota is organized
into three major areas: abstraction, optimization, and implementation.
Efforts in each area are briefly described and directions for future
research are discussed.

1. INTRODUCTION

Databases are formally defined and logically controlled collections of
information that are of interest to people within an organization. The
effective development of organizational databases requires a three phase
process: -

1. Abstraction: the determination and documentation of the
information, processing and performance requirements of the
database,

2. Optimization: the design of the 1logical and physical database
structures that best accomplish these requirements, and

3. Implementation: the creation of computer code to accomplish the
design and meet the requirements on a target computer system.

In the following sections we describe research efforts at the University
of Minnesota aimed at supporting each of these processes. Since the
Optimization process has historically received the most attention in the
literature, we begin with research aimed at supporting this process in
Section 2. In Section T we treat the Abstraction process and in Section
4, the Implementation process. Finally, in Section %S, we present a
summary and directions for future research.

2. SUPFORT FOR DATAERASE DESIGN OPTIMIZATION

Given a formal description of the informational, functional, and
performance requirements for a database (presumably obtained during the
Abstraction Frocess), the Optimization Frocess seeks to determine a
physical database design that most effectively meets those requirements.
The term "optimization" is-net strictly used in the - mathematical sense
of maximizing or minimizing & given and fixed objective (e.qg., minimize
computer resaource usage) since there are a number of complex and
conflicting design objectives and many nongquantifiable factors.
Rather, the process selects "the best" design as a compromise among such
factors as operating efficiency (which can be mathematically optimired),
design flexibility, simplicity, and development effort.

X Fresent Address: Temple University, Fhiladelphia, FA
¥x Fresent Address: Dartmouth College, Hanover, NH Q3755

-52—

In (MARCBZ, CARLBZa) we describe A Database Design Methodology (ADDM)
that focuses on supporting the Optimization Process. The methodology is
based on a multileveled descriptive model (CARLB4) that defines database
design problem parameters (e.g.. logical data content and user
activities) in its loagical level and database design solution parameters
(e.g., record and data structures) in its physical level. The logical
level uses an Entity—-Attribute-Relationship data model to describe the
logical data structures and a FORAL like language (SENE73) to describe
user activities on the logical data. The physical level uses a generic
file organization model to parametrically define supported database
record structures as well as inter and intra file access paths. The
model supports record segmentation and aggregation (MARC8Ia) and a wide
range of data access paths (MARCBIb).

Database designs are produced interactively in ADDM. The human designer
inputs the design problem (expressed using the logical 1level of the
descriptive model) and interacts with the software to establish
constraints on the solution space (e.g., to confine consideration only
to those physical design alternatives permitted in a specific DBEMS).
The software utilizes both heuristic and analytic procedures to generate
and search the solution space and produce an efficient database design
(CARL8Zb). The software can also be uwused to perform sensitivity
analysis on various problem and solution parameters.

Curraent research efforts are aimed at:

1. expanding the scope of problems to which this approach can be
applied,
improving the human interface to the software, and
analyzing the sensitivity of database design parameters to
variations in the problem parameters. '

i 1)

As initially developed, ADDM was limited to the design of a centrally
stored and maintained database. It did not directly support data
redundancy, data distribution or the analysis of backup and recovery
policies. These are the major area of functional capability currently
under investigation.

March and Scudder (MARC84) analyzed the interactive effects of record
segmentation and backup and recovery policies. Segregating data items
that have high update frequencies (e.g., current balance, project
assignment) from thogse that have low update frequencies (e.g.., name,
se) can significantly reduce the backup and recovery costs., Such cost
savings must, however, be weighed against possible retrieval cost
increases due to such an arrangement of data items. March and Scudder
developed and analyzed heuristic procedures to select an efficient
combination of record segmentation and backup and recovery policies.
Fotential cost savings of up to 40 percent were demonstrated over
earlier heuristics that did not consider the interactive effects of
record segmentation and backup and recovery. Cost savings faor a
particular database depend on data item lengths, update and retrieval
patterns and frequencies and hardware characteristics.

Mendu (MENDBI) is addressing the problem of data allocation in a
distributed database environment. Distributed databases offer increased
reliability (e.g.. "failgoft" capability), faster access to data,
reduced communications costs and better overall responsiveness to user
needs as compared to centralized systems. The provision of these
benefits depends on the effective design of the database, of which data
allocation is a critical component. Fast research on data allocation
has focused, for the most part, on building mathematical models to

-53-

allocate entire files to the nodes in & network. Users, however,
typically require subsets of files rather than entire files. These file
subsets utilize both vertical (record instance) and horizontal (data
items) selection criteria. Frequently the location of a user request
correlates strongly with the file subset required (e.g., information
about customer account balances for customers in the northwest sales
region may be nearly exclusively requested by people located in the
northwest sales region). Hence, the allocation of (horizontal and
vertical) file subsets rather than whole files can lead to significant
savings in system operating costs. The change in the unit of allocation
from files to file subsets has impacts on other design areas such as the
management of the network directory and the implementation of security
mechanisms. FEoth analytic and heuristic algorithms will be developed
and tested to efficiently allocate file subsets based on a
characterization of user access patterns and network characteristics.

While data allocation is a significant problem in distributed database
design, the efficiency of any data allocation is dependent on the way in

which queries are processed. 8imilarly, the solution of this "Guery
Dptimization" Fraoblem is dependent on the data allocation. Approaches
to distributed database design have, traditionally, solved one or the
other of these problems assuming that the other was fixed. Beyer is

investigating the relationships between these problems with the goal of
developing heuristic procedures to be imbedded within the ADDM framework
to aid a designer in solving the combined problem.

Falvia (FALYB4) developed and tested very fast heuristic procedures that
produce efficient physical record structures given a problem as defined
in the logical level model. He also analyzed the sensitivity of
physical record structures to variations in the problem parameters. His
analysis includes such factors as: the number of entities in the logical
data structure; the number, frequency, retrieval proportions and degree
of conflict Ffor retrieval activities; access and storage costs;
pagesize; data access methods (dependent on the availability and use of
buffers to hold intermediate results) and pointer types. While the
complete results are contained in (FALY84), Falvia generally concludes
that the structure of database records are most sensitive to the method

of data access used and to the activities on the data. In addition,
Falvia formulated a simple subcase of the general physical database
design problem as a non-linear, zeroc—-one integer program. Efforts are

underway to optimally solve this formulation and to apply this approach
to the more general problem.

FPrietula (PRIEB4) analyzed the reasoning processes employed by people as
they go about designing physical database structures. He studied both
experts and novices and developed a model of human reasoning for
database design. He concludes that people use a number of different
types of strategies and heuristic procedures to configure database
designs. In addition, he suggests that humans rely more on qualitative
reasoning-rather - than quantitative reasoning when -designing databases.
The implications for database design are that tools aimed at supporting
database design must be flexible enough to accomodate different design
strategies and heuristics and that quantative output is insufficient to
insure adequate support for database design.

. SUPPORT FOR DATABASE ABSTRACTION
BRefore a database can be built to effectively meet the needs of its
community of users, these needs must be determined and documented. The

database literature has focused primarily on developing formalisms in

—54—

which such requirements could be specified rather thanm on the process of
specifying them. Research efforts at Minnesota are addressing both
issues.

Databases, no matter how efficiently designed. are of 1little value
unless they contain the correct information and are appropriately

organized. Flory, March and Ridjanovic (FLOR84a) have developed a
frameworlk for developing the information resource within an
organization. They proposed a two dimensional grid which was used to
characterize nisting database design methodol ogies. The first

dimension delimits four development levels: Corporate Requirements,
Application Requirements, Logical Database, and Physical Implementation.
The second dimension differentiates the means of development for each
level: Maodels, Methods and Tools. They established goals and objectives
for each level and argued that existing methodologies tend to focus on
one level only. As a result the process of mapping from one level to
another is not well facilitated by any methodol ogy. This is
particularly evident at the Corporate Requirements level where planning
models are developed but often do not impact the databases or systems
that are implemented.

Current research aimed at resolving this problem includes using MIS
Analysis methods (such as Business Systems Flanning (BSP), Critical
Success Factors (CSF) and Means/Ends Analysis as described in (WETH8Z))
to establish an overall "Information Architecture”" and to establish the
global database requirements. Semantic data modelling principles
(BROD8B4) can then be used to develop an "abstract" conceptual data
model. Refinement of the conceptual model is accomplished using more
rigorous and formal data models (FLOR84b) that camn then serve as the
input to the Optimization Process as described above.

Support tools for building semantic data models are nearly nonexistent.
Data dictionaries and tools 1like FSL/FSA (TEIC77) can serve as
containers for the model, but they provide no support for building the
model. Similarly, tools to support the building of the formal data
models needed for the Optimization Frocess are also lacking. While
microcomputer graphics packages can support the drawing of such data
models, they lack the intelligence to support the process of creating
the well formed structures. The Functional Dependency Model (FDM)
developed by Flory and March (FLORB4b) addresses this issue by providing
a mathematical definition of "well formed" data. Algorithms can then be
developed to support building data models, not merely drawing them,

A global characterization of user activities is often used to build a
data model for a database application (i.e., data dynamics); however, it
is typically not until after the data model has been built that a
detailed specification of the retrieval and update patterns is
developed. This detailed specification of activities is often more
difficult to develop thanm the data model. Ryan and Carlis (RYANS4)
present a procedure that analyzes a data model and automatically
suggests representative query sets for the database. Rather than having
the users gpecify their queries, these representative sets of queries
can be validated or perhaps modified by the users. Having concrete sets
of queries for an application reduces the burden for the user and
increases the probability that a good characterization of the retrieval
patterns will be obtained.

4. IMPLEMENTATION

Implementation is the production of computer code to accomplish the

—55~

database design and meet the user requirements on some target computer
system (including DEMS software). Froductivity in this area has been
less than spectacular. Fourth generation languages based on relational
database management systems promise order of magnitude increases in
productivity (CODD8Z2) for simple queries, but they offer only slight
improvement over third generation languages for transaction processing,
a critical area for database systems.

An approach to increased productivity suggested in the Software

Engineering literature is the utilization of reusable software
components ——- generic procedures that define a collection of high level
building blocks from which a particular system can be configured. In

fact, database management systems may be considered to be a collection
of such components at a primitive level.

Ridjanovic is developing & taxonomy of generic business database
functions, and a corresponding library of generic procedures. This
effort will focus on maintaining database integrity while supporting
transaction processing activities (including input validation, exceptian
handling, and update propagation). Three applications from different
business areas will be developed to test and improve the library of
generic procedures. Results from this effort will be analyzed with
respect to reusability among different business areas. Finally, a
controlled xperiment will evaluate the impact of these generic
procedures on the productivity of system developers.

5. SUMMARY AND FUTURE DIRECTIONS

Research efforts are underway to develop and evaluate tools to support
three database design processes: Abstraction - the determination and
documentation of database requirements, Optimization -~ the design of
effective and efficient physical database structures, and Implementation
~ the production of code to implement the designs.

Future research efforts will continue in these directions with increased
emphasis on the human engineering of the resultant tools. Frietula
(PRIEB4) has laid the groundwork for new research in this area by
analyzing and developing & model of bhuman reasoning processes in
physical database design. There are aspects of database design which,
at this time, are best left to a human designer. Thus, the tools must
be able to both support and adapt to the ways "people think" about those
aspects of database design.

6. REFERENCES

BROD84 Brodie, M. L. and Ridjanovic, D., "On the Design and
Specification of Database Transactions,"” in 0On Conceptual
Modelling: Ferspectives from Artificial Intelligence,

Databases, and Frogramming Languages, Springer—Verlag{ 1984,

CARLBZa Carlis, J. V. and March, S. T., "A Computer Aided Database
Design Methodology," Computer Performance, Decembher 1983.

CARLBZb Carlis, J. V., Dickson, G. W., and March, 8. T., "Fhysical

. Database Design: A DSS Approach," Information and Management,

Vol. &, No. 4, August 1983.

CARLB4 Carlis, J. V. and March, 8. T., "A Descriptive Model of
Fhysical Database Design Froblems and Solutions,” Froc. Data
Engineering Conference, IEEE, Los Angeles, April 24-27, 1984.

~56-

coppe2

FLORB4a

FLOR84Db

MARCEB2

MARCBZa

MARC83b

MARCB4

MEND8S

FALVE84

FRIES4

RYANB4

SENKT7S

TEIC77

WETHBS3

Codd, E. F., "Relational Database: The Key to Froductivity,"
CACM, Vol. 25, No. 2, February 1982.

Flory, A., March, S. T., and Ridjanovic, D., "A Framework for
the Development of the Information Resource," University of
Minnesota Working Faper 85-01i, August 1984,

Flory, A. and March, 8. T., "The Functional Dependency Model: A
Unified Approach to Information System Development," Working
Manuscript, University of Minnesota, May 1984.

March, 8. T. and Carlis, J. V., "An Overview of Fhysical
Database Design Research at the University of Minnesota," IEEE
Database Engineering Newsletter, IEEE Computer Society, Vol. S,
No. 1, March 1982, '

March, 8. T., "Techniques for Structuring Database Records,"
Computing Surveys, Vol. 13, No. 1, March 1983.

March, S. T., "A Mathematical Frogramming Approach to the
Selection of Access Paths for Large Multiuser Databases,"
Decision Science, VYol. 14, No. 4, Fall 1983,

March, S. T. and Scudder, G. D., "On the Selection of Efficient
Record Segmentations and Backup Strategies for Large Shared
Databases," ACM Transactions on Database Systems, Vol. 9, No.
Z, September 1984,

Mendu, S., An Investigation into the Unit of Data Allocation
for the Design of Distributed Databases, Fh.D. Dissertation,
University of Minnesota, expected June 19835.

Falvia, F.. An Analytical Investigation into Record Structuring
and Fhysical Database Design of Generalized Logical Data
Structures, unpublished Ph.D. Dissertation, University of

Minnesota, April 1984.

Frietula, M. J., An Investigation of Reasoning Methods Used in
Fhysical Database Design Froblem Solving, unpublished Fh.D.
Digssertation, University of Minnesota, expected December 1984.

Ryan, K. L. and Carlis, J. V., "Automatic Generation of
Representative Guery Sets," Froceedings 1984 Trends and
Applications Conference, Making Database Work, National Bureau

of Standards, Gaithersburg, MD, May 23-24, 1984.

Senko, M. E., "Specification of Stored Data Structures and
Desired Output results in DIAM II With FORAL," Froceedings Very
Large Data Rase Conference, Framingham, MA, 1975, pp. 5S57-587.

Teichroew, D. and Hershey, E. A., "FSL/FSA: A Computer Aided
Technigque for Structured Documentation and Analysis of
Information Frocessing Systems," IEEE Transactions on Software
Engineering, Vol. 3, No. 1, January 1977.

Wetherbe, J. C. and Davis, 6. E., "Developing a Long Range

Information Architecture," Froceedings National Computer
Conference, Anaheim, 1983.

~57-

RESEARCH ON FORM DRIVEN DATABASE DESIGN
AND GLOBAL VIEW DESIGN

Michael V. Mannino t and Joobin Choobineh #

t Database Systems Research and Development Center
Computer & Information Sciences Department
University of Florida
Gainesville, FL 32611
CSnet: mannino@ufi

¥ Department of Management information Systems
University of Arizona
Tucson, AZ 85721

ABSTRACT

We are currently invesltigating two non-traditional approaches to
database design. Form-driven database design is the derivation of a da-
tabase schema from a collection of documents or forms. Giobal view
design is the problem of defining the objects and mappings in a global
view which is a view of more than one database. In this short paper,
we discuss our results and on-going work on both of these topics.

1. FORM DRIVEN DATABASE DESIGN

We define a form as any standardized set of data variables. A form
schema is the definition of the form fields and their constraints. A form tem-
plate is a particular representation of a form type on a given medium. A form
schema is medium independent whereas a form template is medium dependent.
The same form schema may have form templates on a video screen. paper. and
even voice. This definition of a form is quite broad and fits well into the
current research in the area of office automation [TSIC82].

Forms are attractive as a primary input to the database design process for
several reasons. First, forms are formai modeils and do not have the ambigui-
ties of natural tanguage requirements. Second. a form model is a data model.
By studying and analyzing a form and its relationships to other forms. many data
dependencies - and mappings can be discovered. Third, many forms contain
instructions about filling out the form which provide additional information about
an organization’s data. Fourth, forms are easy to understand and are widely
used in most organizations. Users should be able to participate in the database:
design process through the definition of their forms.

Our research approach involves the definition of a form model and the
investigation of intra- and inter-form analysis (CHOOB4]). Our form model permits
a hierarchical grouping of form fields. The grouping is indicated by form fieid
embedding and cardinalities which indicate the number of occurrences of form

-58-

fields. The cardinality of a form field can be 1 (1 value per form). set (col-

lection of unique values), or bag (collection of values with duplicates). We
also specilty the domain and origin (input. display. computed) of each form
tield. in Figure 1, all form fieilds have a cardinality of one except for

PRODUCT-NO which is set-valued. LOCATION which is set-valued within
PRODUCT-NO. BIN-NO which is set-valued within LOCATION, QUANTITY which is
bag-valued within LOCATION, and WEIGHT which is bag-valued within LOCATION.
Alternately, WEIGHT and QUANTITY could be considered as single-valued within
BIN-NO.

intra—form analysis converts a form schema into an extended Entity-
Relationship diagram. We first partition form fields according to their cardinality
and embedding levei. All top level single-valued fields are placed in one group
which is named with the form name. Each top-level. set-valued form field is
placed in a separate group along with any embedded form fields. We then use a
rulie—driven dialogue 1o establish entity types and relationships. cardinalities. and
some functional dependencies. in the Shipment form., we have the following
torm field groups:

SHIPMENT group: DATE OF AUTHORIZATION, INVOICE NUMBER,
NAME. ADDRESS. SALES ORDER NO., TOTAL., AUTHORIZED BY.
CARRIER

SHIPMENT-LINE group: PRODUCT-NO, LOCATION, BIN-NO. QUANTITY,
WEIGHT

Figure 2 shows a possible Entity—Relationship diagram that represents the
form. The top-level, single-valued fields are split into four entity types: CUSTO-
MER. SHIPMENT. CLERK, and CARRIER. This splitting can be accomplished by
collecting functional and muliti-valued dependencies or by asking for the the entity
types. The rest of the Entity-Relationship diagram is more difficult to derive. It
is possible to consider the SHIPMENT-LINE group as a single entity type. but the
designer would likely indicate that it should be decomposed into PRODUCT,
WAREHOUSE. BIN, and SHIPMENT-LINE. This is because the designer can
recognize that PRODUCT-NO, LOCATION, and BIN-NO represent entity types.

The use of pure intra—form analysis usually requires redundant user interac—
tion. To reduce the user interaction. knowledge gained from analyzing previous
forms is utilized in analyzing the current form. The user interaction may be sig-
nificantly reduced if previously analyzed forms contain similar information. For
example, if NAME and ADDRESS are grouped together as the result of the
analysis of another form., they can be immediately split into a separate group
without user interaction.

Inter-form analysis involves form flow and incremental design. The form
flow shows the relationship between form fields across all forms. The form flow
analysis can resolve many synonym and homonym differences and ensure that
each form fieild has an origin (i.e.. is an input field on some form) and a des-
tination (i.e., is a display field on some form).

The conceptual schema can be incrementally designed by integrating form
schemas. Forms can be analyzed in groups where each form in a group is
closely-related to the others. Two forms are closely related if they have many
form fields in common. The incremental analysis of forms allows the identifica-
tion of conflicts in requirements, attributes of a form field group on one form
which are entity types on other forms, additional attributes for entity types and

~59-

SHIPMENT AUTHORIZATION

DATE OF INVOICE
AUTHORIZATION 12-12-83 NO. 580
SHIP TO: | NAME ABC Stores
ADDRESS Any Street SALES
New York, N.Y. 20000 ORDER NO. 153
WAREHOUSE
PRODUCT-NO. LOCATION BIN-NO. QUANTITY WEIGHT
P10 TUC 2 18 180
3 8 80
P20 TUC 8 10 50
PHE 4 10 50
8 5 25
TOTAL -— - —-—— -- 385
AUTHORIZED
BY anyclerk CARRIER ACME
Figure 1: Shipment Authorization Form
CARRIER - name CUSTOMER gzﬁjess CLERK I name
(0:m) (0:m)
DELIVERS AUTHORIZES
(1:1) (1:1)
invno
SHIPMENT —— sales-orderno
— total
(1:n)
NTAINS
(1:1)
— lineno
WAREHOUSE |~location | SHIPMENT-LINE |— wgt
— qty
(1:m) (1:1)

(0:m)

BIN

F—— binno

Figure 2:

INVOLVES

(0:n)

PRODUCT —prodno

One Possible ER Didgram for the

Shipment Authorization Form

-60-

relationships., and entity generalizations.

After the conceptual schema design is complete, the mappings to materialize
the forms are defined. i a form schema includes updatable fields. the form’'s
underlying mapping must either produce an updatable view or the designer
resolves the ambiguities. This is the general problem of view updates where the
database system restricts the type of view mappings and possibly permits the
designer 10 resolve ambiguities where the mapping is outside of this range.

Most of this work is currently in progress. Our form model is complete and
we are now investigating intra—form analysis. A detailed investigation of inter-
form analysis will follow.

2. GLOBAL VIEW DESIGN

in recent years. there has been an increasing interest in uniform access to
heterogeneous. distributed databases. while preserving investment in existing
software and hardware [GLIG84. LANDB82). An important element of heterogene-
ous database technology is the global view which is an integrated view of multiple
databases. A giobal view consists of a set of global schema objects and a
mapping from the global objects to the underlying local objects. The design of
large-scale global views can be difficult because of the number of global
objects. the number of global to local mappings. and the complexity of the map-
pings.

To address the difficulties of global view design. we have developed a
methodology [MANN84a.bl which consists of four steps. In the first step. the
local schemas are translated into equivalent schemas in a common or unifying

data model. This resolves differences merely due to the different local data
models. We use the Generalized Entity Manipulator (GEM) [ZANI83] as a common
or unifying data model. GEM supports generalization. entity-valued attributes,

set vajued attributes, and surrogate primary keys.

In the second step. assertions are defined and analyzed about entity types
and attributes in the local unifying schemas. The entity types are partitioned
into identification-independent and identification-dependent groups. Within each
group. the designer identifies the entity types that can be generalized. Then,
for each generalization group. the designer makes assertions about the semantic
equivalence and range of meaning of attributes. Assertions can be made about
individual attributes. groups of attributes. and functions of an attribute. We have
devised an algorithm to check the consistency and completeness of the entity and
attribute assertions. The major part of the algorithm is to transitively derive
omitted attribute assertions including the range of meaning.

in the third step. entity types in each generalization group are merged. We
have devised an interactive merging algorithm to assist the designer with the
merging process. The merging algorithm connects two entity families at a time
where an entity family is a set of entity types related by generalization. The
designer indicates where to connect the two entity families and the merging algo—
rithm removes unneeded parts of the local entity families. connects the local
entity families. and assigns attributes to the gilobal entity family as indicaled by
attribute assertions.

in the fourth step. the format and mappings of the global attributes are
defined by the designer using a collection of conversion operators. OQur conver-
sion operators inciude data type converters, arithmetic formulas, concatenation
and substring. table lookups (actually GEM queries). and database procedures.

-61-

These operators can handle differences in names. data types. lengths. scales,
groupings. and codes. Combinations of differences can be handied by nesting
conversion operators. We are currently studying rules to aid a designer in
delining global attribute formats and mappings. These rules may possibly be
incorporated into an expert system.

The major thrust of our on-going work is to implement the methodology. In
one project, we are developing a graphical schema merging editor. The editor
will graphically display the entity families of interest and then connect them as
indicated by the designer. The designer can see alternative merging possibili-
ties by placing the result of a merge operation in a window. Our initial imple-
mentation will be to merge a pair of entity families. Later, we plan to extend
this to N schemas at a time and to incrementally merge two schemas at a time.

In a second project., we are developing an expert system for converting from
an INGRES schema to a Generalized Entity Manipulator (GEM) ([ZANI83]) schema.
The conversion can be trivial because GEM is compatible with the data definition
language of INGRES. However. our effort focuses on the hidden semantics in
the INGRES schema. For example. a group of three relations may represent a
set of entity types related by generalization. We are investigating the conversion
of the following hidden semantics: 1) generalization. 2) physical database design
options that affect the conceptual schema such as vertical partitions and denor-
malization. and 3) referential integrity. We hope to extend this work to different
relational database systems and to different classes of database systems (e.g..
CODASYL. IMS).

in a third project. we have developed a global view definition language
(KARL84). The global view definition language can be used instead of the design
methodology or in conjunction with the methodology. For example. the designer
could initially use the methodology to design a global view and then make
changes 1o the generated view definition statements instead of using the metho-
dology again. Implementation of the language is planned.

Future work is planned in the areas of updatable global views and compiex
objects. We need to extend the previous work on updatable views to giobal
views. We foresee changes 1o steps three and four of our methodology to sup-
port the design of updatable global views. Complex objects are an important
data modelling feature in design data management such as CAD/CAM. We fore-
see eoxtending GEM and our methodology to support complex objects. We would
like to support the design of global views with complex objects materialized from
more than one database.

ACKNOWLEDGEMENTS

We thank Dr. Stanley Su and Dr. David Reiner for useful suggestions on
earlier versions of this paper.

REFERENCES

CHOO84 Choobineh, J. Form ODriven Database Design. Ph.D. Dissertation,
Dept. of Management Information Systems. University of Arizona,
1984, (in preparation).

GLIGB4 Gligor. V. and Luckenbaugh. G. ‘“interconnecting Heterogeneous
Database Management Systems.,® IEEE Computer 17, 1 (Jan. 1984),

-62-

KARL84

LANDS82

MANNBS84a

MANN84b

TSIC82

ZANIB3

33-43.

Karle., C. A Global View Definition Language, Master's Thesis. Com-
puter and Information Sciences Dept.. University of Florida. August
1984.

Landers. T. and Rosenthal. R. ®"An Overview of Muitibase.® in Proc.
2nd Intl. Symposium on Distributed Databases, H.J. Schneider (ed.).
Sept. 1982, Berlin, F.R.G.. pp. 153-184.

Mannino. M. and Effelsberg. W. “Maitching Techniques in Global
Schema Design.* in Proc. Intl. Conf. Data Engineering (COMPDEC),
IEEE. Los Angeles. CA. April 1984, pp. 418-425.

Mannino. M. and Effelsberg. W. “A Methodology for Global Schema
Design.® UF-CIS Tech. Report TR-84-1., Computer and Information
Sciences Dept.. University of Florida. Sept. 1984, submitted for pub-
lication.

Tsichritzis, D. °*Form Management.® Communications of the ACM 25,
7 (July 1982). 453-478.

Zaniolo, C. "The Database Language GEM." in Proc. ACM SIGMOD
Conf., San Jose, CA. pp. 207-218.

-63-

A Prototyping Approach to Database Applications Development
Antonio Albano and Renzo Orsini

Dipartimento di Informatica, Universita di Pisa
Corso Italia, 40 - S6100 Pisa, Italy

Abstract

Several research projects are presently in progress to implement an integrated environment of tools
to support the database design process. The conventional approach is based on the principle that the
design process produces a non executable specification of the application. An alternative approach,
called the operational approach, is presented, based on recent trends in software engineering: it
assumes that the conceptual design should be made with an high level, executable language to
implement rapidly a prototype of an application. The approach will be briefly motivated and a
description will be given of the database designer’'s workbench Dialogo that is currently being
implemented.

1. INTRODUCTION

Several research projects are presently in progress to implement an integrated environment of
tools to support the database design process [ALBA8Sa), [ATZE82], [CERIB3), [REINS4], [TEORSZ].
There is a general consensus on the proper phases of the process and on the decisions to be made
during those phases. This conventional approach to database design is pictured in Figure 1. The main
assumptions upon which almost all the proposals are based are:

® The goal of the process is to design a reasonable structure of the database that will allow an efficient
implementation of the applications during the implementation stage, which however is not
considered as part of the design process, but it is seen as a separate stage. in other words, the
proposed tools support the design process, but not the database life cycle.

o The attention of the database workbench designers is mainly focused on tools for dats analysis, view
integration, schema mappings and physical design. Other important issues that should be considered
in the design stage are often underestimated: constraint specification and verification, transaction
specification and dialog specification. These issues have been considered by many authors, but for
the time being the tool-builders are not offering specific solutions for them.

¢ Conceptual design is considered a fundamental step of the design process, and it must be independent
of the DBMS used in the implementation stage. A great deal of attention is given to a graphical
notation to visualize the information content of the database, but the proposed tools usually are not
based on an executable conceptual language.

This paradigm has a strong analogy with the conventional “software life cycle™, which has been
followed in the field of softwere engineering, and it presents the same drawbacks that have been
pointed out by software designers {BALZ83]:

® The tools supporting the design process are of limited interest once the applications have been
implemented. In particular they can not be used to maintain the released information system,
which has been implemented in a target language not contemplated during the design process.

® Users have no means of ensuring that the specified system matches their intent before a first
release of the implemention is operational. This compounds the maintenance problem.

This work was supported in part by the Consiglio Nazionale delle Ricerche, Progetto Finalizzatc
tnformatica, Obiettivo DATAID, and in part by the Ministero della Pubblica Istruzione.

-64—

INFORMAL

NFORMA
INFO " REQUIREMENTS

REQUIREMENTS

!

DATABASE CONCEPTUAL
DESIGN DESIGN [T
NON EXECUT ABLE SPECIFICATION PROTOTYPE
VALIDATION
CODING |4
l TESTING
SCHEMA AND PROGRAMS ’
v
DECISIONS L%G.J(Y; g:_c QND
VALIDATION AND — L te
RATIONALE MAPPING

!

TESTING SCHEMA AND PROGRAMS

TUNING |
TUNING

MAINTENANCE

Fig.1 Conventional Paradigm Fig. 2 Operational Paradigm

To overcome these difficulties a new approach to software development is gaining popular ity among
practitioners and academicians in the software engineering and information systems tields: an
operational, or prototyping, approach to software development (Fig. 2) [ALAV84], [BUDD®4],
[ZAVESB4].

The basic assumption of this approach is that, during the design phase, computer specialists give
an implementation independent, executable (operational) specification of the system to be
implemented. The operaticnal specification is a prototype, an early version of the system that exibits
the essential features of the future operational system, except for the resource requirements and
performances.

The first advantage of this approach is that users can exper iment with the prototype to determine
whether or not it matches their requirements. Such prototypes are expected to improve the users’
perception of their needs, and so the resulting systems are more responsive to those needs. A second
advantage is that computerized tools can be designed to support the transformation of the prototype
into an efficient, system dependent implementation. A third advantage is that the main result of the
design phase, the prototype, is not discarded once the system is operational, but will be used to
perform maintenance of the applications.

in our opinion, the operational approach is also relevant to the database field. The natural stage to
introduce prototyping capabilities is at the conceptual level, by providing an executable, high level
language to specify data, constraints, operations, and dialogs [ALBA83a], [0BRIB3]. investigations
are reguired to define which features a language should have for these purposes and how to embed this
tool in & system to support the database life cycle. We are presently engaged in a project, called the
Galileo Project, to design and implement a database designer's workbench based on this approach,
where the language Galileo is used for prototyping [ALBA8SD]. We do not claim that Galileo is the best
language for this scope, because it is still a research topic to isclate the right language features.
However, the language is sufficiently expressive and DBMS independent to be considered as 8 candidate

—65-

to experiment. Another reason why we are using Galileo is that the language is almost operational and
it can be used on real applications to test its features and to investigate the architecture of the
database designer’s workbench, called Dialogo.

The next section presents an overview of the Galileo Project and the language Galileo. Section 3
briefly describes the architecture of Dialogo. Section 4 contains the summary and comments on the
current status of the projet. A more detailed description of the implemented tools appears in
[ALBABSC].

2. THE Galileo Praoject

The goal of the project is to design and implement en interactive integrated system to design and
prototype database applications. The language supported by the system is Galileo, specifically designed
to deal with the different aspects of complex database applications. The system will support also a non
executable version of the language, Galileo/R, to document user requirements. Both the languages are
intended to be used by experts, when detailed descriptions must be given. However, for high level
descriptions of the database structure, graphical notations and interactive interfaces are provided to
communicate with casual users. The underlying assumption is that the system should aliow users to
give specifications at different levels of detail, using a single set of abstraction mechanisms; the more
the user becomes familiar with the capabilities of the tools and with the problem to solve, the more he
should be able to give a detailed description of the specifications. In other words, requirement
specification and conceptual design should not appear as two isolated worlds, but only two different
levels of description that can be transformed into each other once the user becomes more expert. Of
course, the less detailed the specification, the less possibilities there are to verify it.

2.1 The Galilec Language _

We assume that the goal of the conceptual design is the implementation of a working prototype that
exibits the essential features of the final product. Therefore a great deal of attention has been given to
the design of a high level programming language that supports adequate abstraction mechanisms for
database applications. The language should also allow the definition and test of the prototype in a small
fraction of the time required to make the same prototype with languages available in commercial
DBMSs. Here is an overview of the language.

Galileo is an expression language: each construct is applied to values to return a value.

Galileo is an interactive language: the system repeatedly prompts for inputs and reports the results
of computations; this interaction is said to happen at the top level of evaluation. At the top level one
can evaluate expressions or perform declarations. This feature, which is not present in other
conceptual languages, allows the interactive use of Galileo without a separate query language.

Galileo is higher order, in that functions are denotable and expressibie values of the languege.
Therefore, a function can be embedded in data structures, for instance to model derived properties of
entities, passed as parameter and returned as value.

Galileo is a safe language. Every denotable value of the language possesses a type. Besides predefined
types, type constructors exist to define new types, from predefined or previously defined types. They
are: tuple, sequence, discriminated union, array, function and abstract types. In defining abstract
types, it is possible to restrict the set of possible values with assertions and to inherit the primitive
operations of the representation type. in general, any expression has a type that can be statically
determined, so that every type violation can be detected by textual inspection (static type checking).
Although any statically detectable error could also be detected at run-time, the language has been
designed to be statically type checkable for the following bssic reasons: firstly, programs can be
safely executed disregarding-any information about types; secondly,-the language offers considerable
benefits in testing and debugging applications, since the type-checker detects a large class of common
programming errors without the need of executing programs, while errors at run-time could be
detected only by providing test date that cause the error to be raised. in fact, static type checking is
considered an example of consistency checking extremely useful to detect frequent semantic errors.
For database applications the above benefits are certainly valuable, but static type checking does not
prevent dynamic testing for assertion enforcement. However, the type-checker is still useful to
provide information to the translator to produce specislized testing code.

Galileo has type inheritance. If a type T is a subtype of a type T', then a value of T can be used as
argument of any operation defined for values of T', but not vice versa because the subtype relation is a

-66~

partial order. Type hierarchy is important to incorporate the generalization abstraction mechanism
of semantic data models into a strongly typed programming language [ALBAS3b).

Galilen has control mechanism for failures and their handling.

Galilen supports the abstraction mechanisms of semantic data models: classification, aggregation
and generalization. Classes are the mechanism to represent a database by means of sequences of
modifiable, interrelated objects, which are the computer representation of certain facts of entities of
the wor1d that is being modeled. Class elements possess an abstract type and are the only values which
can be destroyed. Predefined assertions on classes are provided and, if not otherwise specified, the
operators for including or eliminating elements of a class are automatically defined.

Galileo supports modularization as another abstraction mechanism to partition data and operations
into interrelated modules. Therefore, a complex schema can be structured into smaller units. For
instance, & unit may model a user view or a description of the schema produced by a stepwise
refinement methodology [ALBA83c).

Galileo has a process mechanism to model user activities and dialogs with the system as long term
transactions which can proceed in parallel and interact by message passing.

Galileo has a form oriented interface to input or to display database objects.

3. THE Dialogo SYSTEM.

Dialogo is an environment for the development of complex, interactive information systems. While
its current scope is towards the production of prototypes, in the future it will be extended to deal
efficiently with large gquantities of data in secondary memory, and so to develop applications
programmed in Galileo on graphics workstations. Besides tools designed to support prototyping, other
tools will exist to collect Galileo/R definitions, to transform them in Galileo, and to transiate the
Galileo design in a DBMS language.

To control the designer’s activities, the system keeps track of the alternatives investigated and of
the “derived” relationships between the products of the various stages of the development, such as
designer’s produced schemas or results of design analysis tools. A “project tree” is used to give an
overall view of the project, to control different versions, to inspect the ancestors of a design, and so
on. This idea is borrowed from the DDEW system, being implemented at CCA [REIN84].

Dialogo is intended to be used mainly by expert designers, although a simple graphical interface
will be provided for end users, to let them interact with the system both to verify the designer’s
work, and to check the prototype's behaviour. However, graphics is also relevant for designers, since
there is an increasingly and widespread convinction about the importance of user-friendly interfaces
in all the software systems used by humans. For these reasons, the system is designed to offer a
uniform graphical interface to all its users, and it is implemented in a graphics workstation with a
high-resolution screen and a “mouse” as a pointing device. This approach is not new, and a notable
example in the database design area is the DDEW system [REIN84]. A preliminary version of Dialogo
was described in [ALBA83a).

3.1 System architecture. -

The system's kernel is the “project database”, shared by all the system’'s components. This
database is in effect a collection of databases. s overall structure is a tree, representing the project
tree. The nodes of such a tree are the meta databases of the various schemas produced automatically or
manually during the design phasis, in all their different versions, and the databases created during
the execution of the prototypes.

Another fundamental component of the system is the graphical editor. In fact, it is the only
component seen by the user, in the sense that it provides a double function: an homogeneous way to
interact with the project database, and mechanism to activate the other tools of the system. From
these points of view, some of its functions are similar to those performed by the Macintosh™
operating system.

Through a graphical representation of the project tree and of the databases, the user can inspect and
modify the project database. The basic operation is the “opening” of an icon representing some kind of
data, which pops-up a new window on the screen, showing a portion of the interested data, which can
be of graphical or textual nature or a mix of these. Due to the higly structured kind of data in the
database, this selection will continue typically for several levels. When the user wants to change
something in the actual window, he must not change the environment: simply he will use the

—67-

appropriate (graphical or textual) modifying functions of the editor. Windows can be scrolled in any
directions, with scroll bars, and resized and deleted with corresponding tabs at the corners of the
window. The command language is provided by menu mechanisms. A puli-down menu in a fixed area of
the screen will contain global commands always accessible. Pop-up menus come out in response to
particular user's actions, typically to the push of a mouse’'s button, and are appropriate to the
context in which the user is currently working. This kind of command language is used both to invoke
and to dialogate with the tools of the system.

The system provides also tools to input schemas, to analyse and execute prototypes, and to map from
conceptual to logical designs. All these tools, invoked by the user via the graphical editor, access and
manipulate the project database through a set of Galileo inter faces (abstract types with appropriate
operators). They will be listed in the next section. Finally, to develop Galilea programs before the
graphical interface is operational, there are tools to input @ schema with traditional textual editors.

3.2 Functional components.

A first set of tools is standard for any software development system based on a programming
language: a) semantic analysers and type-checkers for the control of data and programs definitions;
b) interpreters and compilers for the execution of Galileo prototypes; ¢) interactive monitors and
debuggers, to trace a program execution and to inspect graphically its data, with the possibility of
intervening during the execution.

Another set of tools is addressed more directly to the database design process: a) report generators,
both batch-like, to produce summary end cross-reference tables, and interactive, to show
graphically data relationships, connections between data and programs, etc; b) tools for the
specification and verification of user requirements in Galileo/R, with type checking facilities,
although limited by the possibility of inserting natural language specifications intermixed with
formal specifications; c) report generators for user requirements and their relationships with the
prototype; d) tools for the transiation of Galileo definitions into the language of a specific DBMS, for
the logical and physical design phase.

4. CONCLUSIONS

An overview of the Galileo Project at University of Pisa has been presented. The project is finalized
to the implementation of an experimental database designer’s workbench for graphics workstations,
based upon an operational approach. The implementation of the workbench is in progress on a Sun
Workstation and on a Yax 11/780, both running UNIX™ Berkely 4.2. The implementation is carried
out in Pascal in cooperation with Systems & Management S.p.A., and our efforts are presently on the
implementation of Galileo. The following tools are in the testing stage: 8) an interactive compiler for
Galileo. In the present implementation, the management of persistent data has not yet been included,
but two functions, save and restore, are provided to save and restore the current state of a working
session on a specified file; b) a syntax driven editor of Galileo programs. The editor and the compiler
are presently two independent tools; c) an integrated syntax driven editor and interpreter,
implemented at Systems & Management S.p.A.. The implementation reflects the kind of architecture
we have in mind for the final system, but it does not make use of graphics [CAPABS].

The following tools are not yet operational: 8) e graphical editor for requirement specification and
analysis in Galilea/R; b) the metadatabase to collect information on projects in progress; c) a form
oriented interface to input and display objects of a database described in Galileo.

Since the graphics workstation has been acquired only recently, the graphical interface has not yet
" been designed, but this aspect will be one of ourmain concerns for the near future, together with the
integration of editor, interpreter, compiler, and project database. Next, the inclusion of mapping
tools, from the prototype in Galileo to specific DBMS languages, will be considered.

-68-

SELECTED BIBLIOGRAPHY

[ALAY84])

[ALBA83a]

Alavi, M., “An Assesment of the Prototyping Approach to Information Systems
Development”, Communications of the ACM 27, 6,556-563, 1981,

Albano, A., and R. Orsini, “Dialogo: An Interactive Environment for Conceptual Design in
Galileo”, in ethodology end Tools for Dstabase Design, S. Ceri (ed.), North
Holland, Amsterdam, 229-253, 1983.

[ALBAB3D] Albano, A., “Type Hierarchies and Semantic Data Models", AC/T Sigplsn ‘83

[ALBA83c)

[ALBASS)
[ALBA8BSb)

[ALBA8SC])

(ATZEB2]

[BALZ83]

{BUDDBA4]
[CAPASS])

[CERIB3)

[REINB4]

[TEOR8Z]

[ZAVE84])

Symposium on Progremming [engusge /ssues in Software Systems, 5San
Francisco, 178-186, 1983.

Albano, A., M. Capaccioli, M.E. Occhiuto, and R. Orsini, A Modularization Mechanism for
Conceptual Modeling”, Proc. 9th /ntl. Conf. on V.DB, Florence, italy, 232-240,
1983.

AlbanoA., V. De Antonellis, and A. Di Leva (eds.), Computer Aided Datsbase Design,
North-Holland, Amsterdam, 1985 (to appear).

Albano, A., L. Cardelli, and R. Orsini, “Galileo: A Strongly Typed, Interactive Conceptual
Language”, ACM 70DS, 1985 (1o appear).

Albano, A., and R. Orsini, “A Software Engineering Approach to Database Design: The
Galileo Project”, in Computer Aided Databese Design, Albano A., V. De Antonellis,
and A. Di Leva (eds.), North-Holland, Amsterdam, 1985 (to appear).

Atzeni, P., C. Batini, V. De Antonellis, M. Lenzerini, F. Villanelli, and B. Zonta, “A
Computer Aided Tool for Conceptual Database Design”, in Awfomated Tools for
/nformation System Design, H.J. Schneider and A; Wasserman (eds.), North
Holland, 85-106, 1982.

Balzer, R., T.E. Cheatham, and C. Green, “Software Technology in the 1990's: Using a
New Paradigm”, Computer, 33-45, 1983

Budde, R., K. Kuhlenkamp, L. Mathiassen, and H. Zullighoven (eds), Approsches to
Prolotyping, Springer-VYerlag, Berlin, 1984.

Capaccioli, M., and M.E. Occhiuto, “A Workbench for Conceptual Design in Galileo”, in
Computer Aided Database Design, Albano A., Y. De Antonellis, and A. Di Leva (eds.),
North-Holland, Amsterdam, 1985 (to appear).

Ceri, S. (ed), Methodology 8nd Tools for Databsse Design, North-Holland,
Amsterdam, 1983.

Reiner, D., M. Brodie, G. Brown, M.Chilenskas, M. Friedell, D. Kramlich, J. Lehman, and
R. Rosenthal, “A Database Design and Evalustion Workbench: Preliminary Report”,
/ntl. Conf. on Systems Development and Reguirement Specificalion,
Gothenburg, Sweden, Aug. 28-30, 1984.

Teorey, T.J., and R. Cobb, “Functional Specification for a Database Design and Evaluation
Workbench”, Working Paper 82 DE 1.15, Information Systems Research Group,
CGraduate School of Business Administration, University of Michigan, 1982.

Zave, P., “The Operational Yersus the Conventional Approach to Software Development”
communicelions of the ACM 27, 2,104-118, 1984,

-69-

A CAUSAL APPROACH TO DYNAMICS MODELING
V. De Antonellis(*), B. Zonta(**)

(*) Istituto di Cibernetica, Universitid degli Studi di Milano
Via Viotti 5 - 20133 Milano (Italy)
(**) Consiglio Nazionale delle Ricerche - Milano (Italy)

Abstract

This paper summarizes the results of a research devoted to the specification of
dynamic properties of database applications. The concepts of event and procedure
have been introduced. Petri Nets have been adopted to represent formally them,
and methodological steps for their modeling in the design process of database
applications have been defined.

1. Introduction

In the design of a database application, four phases /CERI83,LUMV78, NAVA80/ are
usually distinguished: requirements collection and analysis, in which users
information needs are identified; conceptual design (view design and integra-
tion), in which information needs are expressed in a formal language; logical
design, in which the conceptual schema is translated into a DBMS-processable
schema; and physical design, in which physical optimizations are performed.

In particular, the aim of conceptual design is to obtain a formal, integrated,
and DBMS independent description of the relevant concepts of the object system
to be automated. Such a description has to involve both static and dynamic
aspects. For the description of static aspects, several data models with related
languages have been proposed in literature /ALBA85,CHEN76,ELMA79,HAMM81,.../.
For the dynamic aspects, there are various proposals concerning modeling single
operations (transactions) on data classes. Less attention has been given to the
equally important problem of modeling application dynamics: sets of operatioms,
and their precedence relationships (i.e., the organization activities).

The ISO report /ISOT81/ identifies three approaches to modeling dynamic aspects:
state-oriented, command-oriented, and interaction-oriented approach. 1In a
state-oriented approach, the after-states which may be reached from a given
before-state are described by means of rules. The rules can be expressed by
sentences from the predicate logic. There 1is no interest in the commands
performed to transform one state into the next one. In a command-oriented
approach, on the contrary, the main interest is in describing allowed command
sequences, which cause permissible actions which change a permissible state into
another permissible state. Rules are expressed in conditional sequences of
commands. Both state-oriented and command-oriented approaches formulate which
changes are permissible and concentrate on. the description of rules and
constraints, Some sources refer to them using the terms 'definitional' and
'procedural’ approaches respectively. Finally, an interaction-oriented approach
describes the interaction between the application and the environment, and the
causality of the changes in the application. The concepts used are: operations,
events, and synchronization.

-70-

Our research /BERT83,DEAN80O,DEAN81/ addresses the specification of dyramic
properties of database applications using an interaction-oriented approach. We
analyze the behavior of the object system (i.e., the activities to be automated)
and formalize it into procedures against the database using the Petri Net
formalism /PETR80/. Other similar approaches /BARR80,ROLL83,TARD80/, differ from
ours in various aspects. In /BARR80/, nets are used to express only the control
flow of procedures, with knowledge about them expressed in production rules. In
our approach, nets express also knowledge, as a consequence of the adopted
methodology, in which the description of the knowledge acquired on events is
constitutive of the net building itself, from the first step to the last step.
Unlike /ROLL83,TARD80/, in which Petri Nets constitute only a starting point for
peculiar modeling formalisms, our approach exploits the original Condition-Event
interpretation of Petri Nets with its syntactic and semantic capabilities, and
the related simulation rules.

2. Relevance of Dynamics Modeling

Application dynamics modeling results in a clear and unambiguous representation
of the way in which the activities to be automated must be executed. Specifi-
cally, operations and causal dependencies/independencies between them are
identified, and the related conditions are described. This representation, if
expressed in a formal language, highlights the design choices, allows the
discovery of inadequacies and inconsistencies, and suggests alternatives. In the
conceptual design, it allows to check the completeness and consistency of the
data and operations schemata (i.e. to test whether all the operations are
defined in the operations schema, and all the data that are needed to execute
the operations are adequately represented in the data schema). In the
logical/physical design, it provides guidelines in choosing optimization
parameters. Furthermore, such a formal representation, approved by experts and
designers, can be made automatically executable. In this way, operations are
executed according to their causality relationships, keeping track of the
execution 'iter'.

In our approach, the activities are formalized into procedures by means of Petri
Nets which have a well-defined syntax and a sound basic interpretation., Petri
Nets have been proved easy to comprehend and use in the phase of conceptual
design. Furthermore, their capability to represent causal dependencies/indepen-
dencies by means of structures of 'sequence', 'conflict' (mutual exclusion) and
'concurrency' (parallelism), can be exploited in the phases of logical and
physical design (i.e., when optimization choices on data structures and opera-
tions are made /BALB84/).

3. Causal Model of Procedures

A procedure consists of a set of operations and precedence relationships between
them. Precedence relationships are expressed by means of conditions which hold
before (or after) the execution of an operation. The causal model is based on
the notion of event. An event is a change of conditions from those which hold
before (pre-conditions) the execution of an operation to those which hold after
(post-conditions) such an execution. An event is described by means of its
pre-conditions and the operation which makes the change (post-conditions are
left implicit in the semantics of the respective operation). A procedure is a
'texture' of events which expresses their mutual dependencies/independencies.

-71-

To illustrate our procedure modeling method, let us consider as an example the
dispatch of an order by a customer and the order handling by the involved
enterprise. We can distinguish two activities. That of the customer who sends
the order, and waits for the answer from the enterprise; then, in the positive
case (the required items are available) he receives the items and the bill, and
pays the bill. That of the enterprise, which receives the order and checks item
availability. If the items are available, the enterprise prepares the shipment
together with the bill, and sends everything to the customer, waiting for
payment; otherwise, the enterprise informs the customer, provides for repleni-
shment, and put the order into the backorders.

For these activities, we can define two procedures, "customer' and "enterprise",
each of them composed by a number of events. An example of event, for the
enterprise, is: when an order arrives (preconditions), check-availability
(operation which makes the change), availability has been checked (postcon-
ditions).

Features of procedures are the following. The execution of procedures can be
carried on concurrently. See for example the procedures 'customer" and
"enterprise'. The customer can prepare to receive the arriving items, and start
an advertising campaign in order to promote sales, concurrently with the
enterprise, which has to prepare the bill and the items. Note that also
operations within the same procedure may be concurrent, as for example item
preparation and bill preparation. Procedures can interact according to a
synchronous or asynchronous communication protocol. In fact, it is possible that
a procedure needs information from another procedure, or that a procedure starts
another one. Communication is synchronous if a procedure sends a message to
another ‘and cannot proceed until 1t answers. For example, the procedure
"customer" cannot proceed, after having sent the order, until the procedure
"enterprise" answers. Asynchronous communication is also possible, that is, if a
procedure sends a message to another one and proceeds without waiting for an
answer. In our example, this happens when the enterprise sends the positive
message to the customer. In fact, after sending the message, the enterprise
begins preparing the items and the bill without waiting for a confirmation by
the customer., Since not all the aspects of the activities can be automated,
procedures communicate with wusers, who provide information which cannot be
obtained automatically. Each procedure can have multiple instances, some or all
of which may be in execution at any instant. The behavior of an instance depends
on events, that is, on change of conditions as a consequence of the execution of
operations.

4, Methodological Steps in Modeling Procedures by Means of Petri Nets

Petri Nets are the language adopted to represent procedures. The net
interpretation adopted here 1is essentially the original C(ondition)-E(vent)
interpretation, both in the structural and the dynamic aspects. Specifically,
transitions (graphically, bars) represent operations; places (graphically,
circles) represent conditions; an arc from an (input) place to a tramsition
defines a pre-condition of an operation, while .an arc from a transition to an
(output) place defines a post-condition. A marker in a place (graphically, a dot
in a circle) indicates the holding of the corresponding condition. If all the
input places of a transition are marked, and if no output place of its is
marked, that transition is enabled (i.e., it can fire); after firing, the
markers disappear from the input places and a marker appears in each of the
output places of the transition.

-72-

In our interpretation, the firing of a transition corresponds to an event
occurrence (i.e., to a change of conditions because of the execution of an
operation). Labels naming conditions and operations are related to the
corresponding elements of each net., Figure 1 shows the net of the procedure
"enterprise" (for simplicity, one assumes that the arrived orders refer to items
present in the catalogue of the enterprise).

WHEN orderarrives WHEN replenishment-arrives

check-availability

check-availability- forback ord
- er

-for-order

IF check-avail
NO

IF check-avail.
YES

prepare-
-bill

prepare- provide-fo
=Shipment -repleni

put-finto-
- -bhckorders

DONE

DONE DONE D

send-to-customer

DONE

Fig. 1 Net of the procedure "enterprise"
(unlabelled elements represent conflict or concurrency structures)

The methodological steps which allow the formal specification of procedures
starting from the user requirements have been defined within the DATAID-1
methodology /CERI83,DEAN81/ and are here summarized.

Requirements collection and analysis:

User requirements regarding the object system to be automated are translated
into a restricted natural language (synonyms are eliminated, pronouns are
replaced by the corresponding nouns, restrictions are imposed on the use of
articles, quantifiers, plurals, and so on). In particular, requirements
descriptions for events are extracted. Since, at this level, it is already
possible to recognize events which share the same preconditions either ‘in
conflict or in concurrency, such information is preserved into major units,
called event-blocks. For each event or event-block, details and classificatioms
of its conditions and operations are described in a form. Specifically, two
types of conditions are distinguished according to whether they hold as a
consequence of operations performed within or outside the same procedure. The

-73-

first are expressed by IF plus the name of the corresponding operation, the
latter by WHEN plus a message or time reference. Operations are expressed by
imperative verbs followed by complements. Multiple conditions/operations for one
event are coordinated according to their mutual relationships by AND, OREX, OR,
and by means of parentheses (forming hierarchies). The events are then collected
and coded in a glossary, together with: references to activities to which they
belong; involved data and operations; and, possibly, information about prece-
dence relationships between events of the same activity.

Conceptual design:

By means of the association grammar /DEAN81/, each event-block is related to the
corresponding Petri Net graph, whose elements are labelled with condition/
operation expressions. Activity by activity, these graphs are composed in
structures of sequence, conflict and concurrency according to rules which
exploit the identity or the equivalence of labels. The composition results in a
texture of events which shows the reciprocal causal dependencies/independencies.
The final graph represents the way in which the activity to be automated must be
executed, that is, the corresponding procedure. Finally, the defined procedures
are coordinated through communication links which represent message exchanges
between them.

Logical and physical design:

Formal procedure specifications are used in the logical and physical design
phases. Causal dependencies between operations provide guidelines in choosing
logical and physical parameters. In particular, a flow analysis of the Petri
Nets representing procedures is performed in order to derive the operation
activation frequencies /BALB84/.

N

5. Conclusions

The aim of our research is to model database procedures in terms of events and
to execute the modeled procedures against a database /BERT83/. For modeling
procedures at the conceptual level, we have developed a methodology and a
computer-aided system, INCOD-E /ATZE82/. For automated operational support, we
have designed an interactive system for the execution of procedures, IEHS
/BERT84/. Our goal is to obtain an integrated work environment for procedure
design and execution, We are currently investigating problems related to the
interface between the two systems. Such an interface should allow the designer
to generate a net description using the incremental facilities of INCOD-E, to
make such a description executable, and to execute it using IEHS. The systems
are currently being implemented in a UNIX environment with the INGRES relational
database management system.

Bibliographical References

/ALBA85/ Albano,A., Cardelli,L., Orsini,R., "Galileo: A strongly typed,
interactive, conceptual language'", to appear in ACM TODS, 1985.

/ATZE82/ Atzeni,P., Batini,C., De Antonellis,V., Lenzerini,M., Villanelli, F.,
Zonta,B., "A computer-aided tool for conceptual database design",
Proc. of the IFIP WG 8.1 Working Conf. on Automated Tools for
Information Systems Design and Development, New Orleans, 1982.

-74-

/BALB84/

/BARR8O/

/BERT83/

/BERT84/

/BROD83/

/CERI83/

/CHEN76/

/DEAN8SO/

/DEAN81/

/ELMA79/

JHAMMS1/

/1S0T81/

/LUMV78/

/NAVASO/

/PETR80/

/ROLL83/

/TARD8O/

Balbo,G., Demo,G.B., Di Leva,A., Giolito,P., "Dynamics analysis in
database design'", International Conf. on Data Engineering, Los
Angeles, 1984.

Barron,J.L., "Dialogue organization and structure for interactive
information systems", TR-CSRG-108, CSRG, University of Toronto, 1980.

Bertocchi,R., De Antonellis,V., Zonta,B., ''Concepts and mechanisms for
handling dynamics in database applications', 7th ICS, ACM European
Regional Conf., Nurnberg, 1983.

Bertocchi,R., De Antonellis,V., Zhang,X.W., "An interactive events
handling system, lst Intern. Conf. on Computers and Applications,
Peking, 1984.

Brodie,M., Silva,E., "Active and passive component modeling: ACM/PCM",
in Information System Design Methodologies: a Comparative Review,
North Holland, 1983.

Ceri,S,(ed), Methodology and tools for database design, North Holland,
1983.

Chen,P.P.,"The entity-relationship model: toward a unified view of
data'", ACM TODS, Vol. 1.1, 1976,

De Antonellis,V., Degli Antoni,G., Mauri,G., Zonta,B., "Extending the
entity relationship approach to take into account historical aspects
of systems", in E-R Approach to Systems Analysis and Design, P. Chen
ed., North Holland, 1980.

De Antonellis,V., Zonta,B., "Modeling events in database applications
design'", Proc. Int. Conf. on Very Large Data Bases, Cannes, 1981.

El-Masri,R., Wiederhold,G., "Data model integration using the
structural model", Proc. ACM SIGMOD, 1979.

Hammer ,M., McLeod,D., "Database description with SDM: a semantic
database model'", ACM TODS, Vol. 6, 1981.

ISO TC97/SC5/WG3, "Concepts and terminology for the conceptual
schema', 1981.

Lum,V.Y.,et al., 1978 New Orleans Database Design Workshop, IBM Report
RJ2554 (33154). -

Navathe,S.B., et al., "Information modeling tools for database
design', Data Base Directions, Fort Lauderdale, Florida, 1980.

Petri,C.A., "Introduction to general net theory", in Lecture Notes in
Computer Sciences, n,84, Springer-Verlag, 1980.

Rolland,C., '"Database dynamics'", DATA BASE, Vol. 14, n.3, 1983.

Tardieu,H., Nanci,D., Pascot,D., "Conception d'un systdme
d'information", Les Editions de 1'Organisation, Paris, 1980.

-75-

DESIGNING DATABASE UPDATES*

Sharon Salveter
Douglas E. Stumberger

Boston University Computer Science Department
111 Cummington Street Boston, MA 02215
(617) 353-8927

ABSTRACT

Natural language database access requires support of both query and update capa-
bilities. Although a great deal of research effort has been expended to support natural
language database query, little effort has gone to support update. We describe a model
of action that supports natural language database update. and the implementation of a
system that supports the model. A major goal of this research is 1o design a system that
is easily transportable to both different databases and different DBMSs.

1. Introduction

Database access includes both query and update. In order to access a database, an end-user has
traditionally had two options. He could learn the database structure and the DML required by a particu-
lar database, and formulate the access request himself. Alternatively, he could explain his request to a
programmer who then writes the DML. Both options have serious drawbacks. In the first, it is not
always reasonable for a possibly naive user to learn a formal DML and database navigation strategies. In
addition, because of database integrity constraints and view update problems. users are often prohibited
from writing transactions that update the database. The second option places a level of administration
between the user and the database that is generally cumbersome, and which is inappropriate for a user sit-
ting at a terminal in his office. Such an approach is particularly inappropriate for personal databases.

In order to avoid these impediments to database access, it is desirable to support natural language
database access. Although a great deal of research effort has been expended in support of natural
language database query [HARR77, DAME78, WOOD76, KAPL79, WALK78, WALT78], and at least
one commercial system is available |HARR79], little effort has been expended in support of natural
language database update, as noted by Wiederhold |[WIEDS81|. In this paper, we describe a system that
supports natural language database updates that are admissible for a given database. An additional goal
is to design a system that is easily transportable both to different databases and DBMSs.

2. The Update Problem

Previous research [SALV82| has shown that it is not possible, in a natural manner, to extend natural
language query systems to support update. In order to support natural language database query, a com-
puter system must be able to represent a stative correspondence between database states and real world
states, as shown in Figure 1. This stative correspondence logically connects- database objects with real
world entities and relationships. The stative correspondence is not adequate for supporting natural
language database update. In Figure 2, we see that when some action in the real world causes a state
change from RWS1 to RWS2, we must execute a DML sequence to change the database state from DBS1
to DBS2. Given an update command that describes a real world action we need to find a DML sequence
that will accomplish the corresponding change in the database. We need to specify -what is to be modified

* This research is partially supported by NSF grant 1ST-8214622.

-76-

Real World States Database States

RWS1 < > DBS1
RWS2 < > DBS2
RWSn < > DBSn
Stative
Semantic Description < =====================> Database Definition
Correspondence
Figure 1

Real World State - Database State Connection

RWS1 < > DBSH1
| i
| Active |

Action | =S oo oo D> I DML

| Correspondence !
l !

RWS2 < > DBS2

Figure 2

Real World Action - DML Sequence Connection

and how to make the modification. We need to connect active verbs, such as "hire" and "schedule" with
structures that dictate DML sequences that perform the corresponding database update. We need to
represent an active correspondence between natural language descriptions of actions and DML sequences.

3. System Overview

Our research has resulted in a formal language for specifying what real world actions mean with
respect to a particular database. and a system that executes it. The formal structure that links natural
language update commands to DML sequences is called a verbgraph. The verbgraphs are designed in tan-
dem with the database. During the database design process, the design staff analyzes a real world enter-
prise and creates a database scheme that is an appropriate formal model of that enterprise. A critical
consideration in designing a good database scheme is how the database will be used. That is, what types
of queries will be addressed to the database, what kinds of update transactions will need to be performed,
and what consistency contraints must be satisfied. Our approach provides the design staff with a formal
language for specifying update transactions*, just as the DDL of a DBMS is a formal language for specify-
ing database schema. The formal representation can then be processed by our system, just as a DBMS
interprets the DDL to create and maintain a database instance. Our system facilitates formal and sys-
tematic capture of domain-specific database knowledge, which heretofore resided only in a programmer’s
head.

The overall architecture of our transportable system is shown in Figure 3. The parser embodies
domain-independent general linguistic knowledge. From the natural language update command it pro-
duces a caseframe representation [CHART76|. Briefly, a caseframe is a collection of named slots, such as
AGENT or OBJECT, which can be instantiated. We are currently using simulated output of the RUS
parser |BOBR78|. Program Update embodies domain-dependent knowledge. It takes the formal

* Although we have not yet implemented query capability, there is no theoretical impediment.

-77-

NL---> [Parser | --->Caseframe--- > [Program Update | --->DML---> [DBMS |--->Result

Figure 3
Domain-Independent Natural Language Database Access Architecture

caseframe representation as input, links linguistic elements to database objects and updates, and produces
a DML sequence that represents what the natural language command means with respect to this database.
We are using the INGRES DBMS |HELD?75]. Actually, we are not tied to a particular DBMS, as Figure
3 implies. Our system produces a representation in a formal intermediate language (IL} that can be
translated into the DML of a given DBMS. Thus, the overall architecture looks like Figure 4.

NL---> [Parser]--->Caseframe---> [Update | --->1L---> [Translator | --- > DML---> [DBMS]--- >Result

) Figure 4
Transportable Natural Language Database Access Architecture

An IL-to-QUEL translator has already been written |[ASSI84]. Thus our attention is limited to the nature
of the caseframe-to-IL conversion. The architecture of this component is shown in Figure 5.

Caseframe------ > | | Control | | l |
| | Program | | Verbgraphs | —— >IL
Database---——-- >| | | | l |
| e |
Figure 5

Caseframe-to-Intermediate Language Translator Architecture

Because the IL-to-DML translation is a well-understood problem, and not of further interest here, we
sometimes speak of the IL as the language that actually updates the database. The verbgraphs are a set
of structures that represents what various natural language update commands mean with respect to this
database; they must be specified for each database. The control program directs execution of the verb-
graphs; it need never be rewritten. This design is analogous to expert systems where domain-dependent
information is represented in production rules. There, the control program is domain-independent; it con-
trols selection and execution of productions.

4. The Verbgraph

A natural language verb may have a number of different senses. A sense of a verb roughly
corresponds to the different definitions that might be given in a dictionary. For example "run" has a least
the three senses: a person moving quickly, a machine operating, and a person campaining for public office.
In our scheme, a verbgraph represents a single verb sense. Thus one verbgraph might represent the "hir-
ing" action, regardless of how the update is specified in natural language. A given verb sense may have a
number of variants. For example, hiring faculty may require different database actions than hiring secre-
taries. A-verbgraph represents-all legal variants of an action, and is-also used to determine which variant
is specified in the natural language command. The set of verbgraphs for a database is the repository for
several kinds of information (constraints and default values may eventually be supported by some ideal
DBMS):

1. Linkage of linguistic constructs to database objects and updates. (Use the AGENT case as the value

of attribute NAME in EMP, "hiring" results in insertion into EMP.)
2. Constraints on the database. (Maximum of 40 students in a course.)

-78-

3. Default values. (All courses are 4 credits, unless otherwise specified.)
4. Parameterized IL update commands that will utimately comprise the update transaction.
5. Database retrievals that may have to be performed 1n order to process the update request.
6. Questions to ask the user if insufficient information is specified in the natural language command.
7. Templates for tuples Lo be inserted into, deleted from. or modified in the database.
A verbgraph is composed of a tree and a blackboard. as shown in Figure 6a.
VERBGRAPH <name> NODE <name> BLACKBOARD
node guard variables
node prerequisites IL
node actions retrievals
blackboard questions
Figure 6a Figure 6b Figure 6¢
Verbgraph Node Blackboard
Figure 6

The Verbgraph

The tree controls instantiation of the blackboard. which contains objects that will ultimately determine
the IL sequence. The tree has at most two levels*. There is a distinguished root node and an arbitrary
number of leaf nodes. Each node contains a guard, a boolean expression. The root node has guard true.
A variant is defined by the accumulation of all the nodes in the tree whose guards evaluate to true for a
given input. The order of execution of the leaf nodes is unimportant. When the control program executes
a verbgraph. it evaluates the guards of all nodes, selects all nodes whose guards evaluate to true, and exe-
cutes each node in turn. Node execution may cause access to the caseframe, the database, the user, or the
blackboard. When all the chosen nodes have been executed, the blackboard will contain a correct 1L
sequence that will update the database. It is important to note that that no update action is taken on
the database until all selected nodes have been executed, at which time the IL is translated to DML, and
executed by the DBMS.

The Blackboard

The blackboard, shown in Figure 6c, 1s a common repository of information that any node can
access. It is composed of four types of information: variables, parameterized IL update commands, 1L
database retrieval commands, and questions that may be asked of the user. Variables are of two kinds,
tuple and local, which are instantiated during node execution. A tuple variable is bound to a relation and
is composed of fields that correspond to the attributes of the named relation. The other kind of variable
is a local variable. The blackboard IL component is a set of labeled IL sequences. Each sequence consists
of parameterized IL update operations, which were specified during verbgraph design. An IL update com-
mand may cause insertion, deletion, or modification of zero or more tuples in the database. During node
execution, the label of an IL sequence may be "checked off." The checked off sequences will comprise the
transaction to be translated into DML. The three types of IL updates are insert, delete, and modify. The
forms are:

' A two-level tree simplifies our control strategy. We could allow N-level trees, as discussed in [SALV84].

-79-

<(retrieve-label >
‘Insert <tvar> into <relname> take <attrset> from <set>

<.interval>>
delete <tvar> from <relname> where <boolexp>

modify <tvar> from <relname> where <boolexp> assign <attrspecs>

Here we are not concerned with the particular semantics of these statements. It is only important to note
their flavor: a pseudo-DML with a high-level insert commands that can cause the insertion of many
tuples.

The retrieval component of the blackboard is a set of labeled IL retrieval commands. They are
retrievals that may have to be performed against the database to determine the correct variant of a verb
sense, .instantiate blackboard variables, or process the insert command.

It may be the case that that the natural language update command did not contain sufficient infor-
mation to complete processing: it may be impossible to determine the variant, or the variant may be
determined but the required data incomplete. The questions component of the blackboard is a place for
specifying canned natural language questions to be asked of the user.

The Tree

The blackboard stores information needed by the tree. However, the control program does not
directly access the blackboard: it selects a set of nodes and executes them. The nodes are responsible for
ensuring thai the correct IL transaction is constructed. It is in the tree, then, that linguistic objects are
linked to database objects, real world actions are linked to database updates, database integrity con-
straints are specified, and the blackboard objects are manipulated. Conceptually, the root of the tree
represents what is true for all variants of this verb sense, and each leaf represents that which is the case
for some aspect of a variant. (Recall that a variant is defined by the root and all leaves, or aspects, whose
guards evaluate to true.] The tree is specified by a series of node definitions, as shown in Figure 6a. One
node is the distinguished root, the remaining nodes are the leaves. The format of a node is shown in Fig-
ure 6b. A node consists of three parts: guard, prerequisite, and action.

The guard determines whether a node is selected for execution. Guards test caseframe values.
Because a variant is determined by information in the natural language sentence (and therefore the
caseframe), the guard can only compare caseframe values against constants, caseframe values, and results
of retrievals on the database. The prerequisite component indicates those caseframe slots that must have
values before node execution is to proceed. If any specified caseframe slot does not have a value, a black-
board question is asked of the user, and processing is suspended until the caseframe slot is instantiated.

Actions are the crux of the node. They perform a wide variety of functions: instantiate blackboard
variables, ask the user for more information, "check off" blackboard IL, retrieve database values, specify
default values, and specify database integrity constraints. An action is either a checkoff or an assignment.
The various forms are best illustrated by example. A checkoff is the simplest action. The statement
check (A3) causes the blackboard IL sequence labeled A3 to be checked off on the blackboard; it will be
part of the final IL transaction.

The basic function of an assignment is to instantiate a blackboard variable. The value may be:

- a constant: t.X := 5

- a system variable: t.X := clocktime

- a blackboard variable: t1.X := t2.Y

- a caseframe value: t.X := cf//location

- a default value: ¢.X := cf//duration| default(lhour)

If the caseframe slot named duration has no value, use 1 hour.

- the result of a database retrieval: t.X := R1 .

R1 is the label of a blackboard retrieval that returns a single value.

- required to be in a range of values: t.X := cf//location in R1 # Q8

R1 is the label of a blackboard retrieval, Q8 of a question. If the cf//location value is in the result of R1,

~80-

then use it. Otherwise, ask question Q8 and wait for a response.

- required to be in a range of values if it exists, otherwise a default is used:

t.X := cf//location in R1 # Q8 | default (R2)

If cf//location has a value and it is in R1, then use it. If it has a value but it is not in R1, ask Q8 and
wait for a response.

If cf//location does not have a value, use the default, which is the result of executing blackboard retrieval

labeled R2.

A formal description of the verbgraph language, a more complete description of the system, and
Hlustrative examples can be found in [SALV84|.

5. Concluding Remarks
A prototype of this system is implemented in C on a VAX 11/780 running Berkeley UNIX. We
expect the full system to be completed in 1985.

We plan to implement a toolbox for verbgraph specification. which will include a structured editor.
We will also provide an interactive verbgraph debugger, which will allow the verbgraph designer to test
the correctness of the verbgraphs. He will be able to test which verbgraph nodes evaluate to true for a
given input or class of inputs, step through instantiation of blackboard variables and IL checkoff, and
query the consistency of verbgraph components.

We also need to address the complex problem of run-time interaction with the user. For example,
the user may supply additional information that changes which node’s guards evaluate to true. We pro-
pose to design our end-user interaction package so that minimum reprocessing is necessary, while allowing
maximum flexibility. An important design criterion is to avoid forcing the user to restate information
that has been given previously.

Acknowledgments
Michael Siegal participated in the verbgraph design. Thomas Schutz assisted in the implementation.

References

[ASSI84] Assiff, S. Intermediate Language to QUEL Translation. BU CS Dept Masters Thesis, 1984.

[BOBR78] Bobrow, R. The RUS System. BBN Report #3878, 1978.

[CHAR76] Charniak, E. and Y. Wilks, Computational Semantics, North Holland. 1976.

[DAME78} Damereau, F., The Derivation of Answers from Logical Forms in a Question Answering Sys-
tem. American Journal of Computational Linguistics, microfiche 75, 1978, pp. 3-42.

[HARR77] Harris, L., Using the Database itself as a Semantic Component to Aid the Parsing of Natural
Language Database Queries. Dartmouth College Mathematics Department TR 77-2, 1977.

[HARR79] Harris, L., Experience with ROBOT in 12 Commercial Natural Language Database Query
Applications. Proceedings of the International Joint Conference on Artificial Intelligence,
Tokyo, 1979, pp.365-368.

[HELD75; Held,G., M. Stonebraker and E. Wong, INGRES - A Relational Database Management System.
Proceedings of the 1975 National Computer Conference, 1975.

|KAPL79] Kaplan, S.J., Cooperative Responses from a Natural Language Database Query System. Stan-
ford University TR HPP-79-19, 1979.

{SALV82| Salveter, S. and D. Maier, Natural Language Database Updates. Proceedings of the 20th
Annual Meeting of the Association for Computational Linguistics, Toronto, 1982, pp.67-73.

|SALV&4] Salveter, S., Natural Language Database Update. BU CS Dept TR# 84/001.

[WALK78] Walker, D., Understanding Spoken Language. American Elsevier, 1978.

[WALT75] Waltz. D., Natural Language Access to a Large Database: An Engineering Approach.
Proceedings of the International Joint Conference on Artificial Intelligence, 1975.

[WIED81] Wiederhold, G., S.J. Kaplan and D. Sagalowicz, Research in Knowledge Base Management
Systems. SIGMOD Record, 7, 3, April 1981, pp.26-54.

[WOOD76] Woods, W. et al, Speech Understanding Systems: Final Technical Report. BBN Report

#3468, 1976.

-81~

CALL FOR PAPERS

The 4th International Conference on

ENTITY-RELATIONSHIP APPROACH
October 28-30, 1985

ER

APPROACH

Chicago, lllinois

Major Theme: The Use of ER Concept in Knowledge Representation

Sponsored by: IEEE Computer Society in University of Illinois

TC on Datapase Engipeering cooperation Louisiana State University
TC on Machine Intelligence with Purdue University
TC on Office Automation

This conference will bring together researchers and practitioners to
exchange ideas on the concept of entity relationship and its
Conference Chairman applications on knowiedge representation. Papers on both the
K.S. Fu - : : ~
principles and the pragmatics of ER approach in knowledge

Purduc Universily . Pl

Program Committee Chairman representatlon are SOIlCl[Ed.
Jane W.S. Liu
University ol lllinois

Tutorial Chairman
Robert Carlson

Major Topics of Interest Include, But Are Not Limited To:

Iilinois Institute of Technology
Local Arrangement Chairman

e Expert and Knowledge Based Systems
¢ Natural Language Processing

Adarsh K. Arora
Gould Inc.

Conference Treasurer

Gerald F. Decjong
University of Hlinois

Publicity Chairman

Kathy Davis

Northern lllinois University

Peter P. Chen

Steering Committee Chairmun

Louisiana State University

Program Committee Members

Adarsh K. Arora USA
Carlo Batini ltaly
Don Batory USA
Bruce P. Berra USA
Yuri Breitbart USA
David Cohen USA
Gerald F. Dejong USA
Elizabeth N. Fong USA
Robert Fraley USA
A.L. Furtado Brazil
A. Jay Goldstein USA
Udai Gupta USA
Leslie Hazelton USA
Yahiko Kambayashi Japan
Won Kim USA
Wang Tok Ling Singapore
Vicent Lum USA
Hector Garcia-Molina USA
Martin Model! USA
J. Mylopoulos Canada
Peter A. Ng USA
Ross A. Overbeek USA
D.S. Parker USA
Ncil Rowe USA
Hirotaka Sakai Japan
Peter Scheueman USA
Gerhard Schiffner Germany
Stefano Spaccapietra France
John F. Sowa USA
T.C. Ting USA
Julius T. Tou USA
Ben Wah USA
L.X. Zhang China
Rodney P. Zimmerman ~~ USA

e | earning and Knowledge Acquisition

¢ Memory and Database Models

¢ Extension of Entity-Relationship Models
e Management Science Models

* Semantics of Entity-Relationship

e Database Design Tools

e Data Dictionary and Directory

¢ Database Dynamics

Special Invitation:

Several sessions on business and industrial practices will be organized.
Practioners are invited to submit papers that describe the use of ER
approach in system maintenance and enhancemnent projects, projects
using 4th generation languages and project leadership, and
experiences in training nonexperts to understand the ER approach.

To Submit Your Papers:

¢ Five copies of double-spaced manuscript should be submitted by
March 15, 1985 to the address listed below:
Dr. Jane W.S. Liu
1304 W. Springfield Avenue
Department of Computer Science
University of Illinois
Urbana, Illinois 61801
¢ Notification of acceptance or rejection will be sent to authors by
June 14, 1985.
¢ For inclusion in the Conference Proceedings, the final, camera-ready
manuscript of each accepted paper must be received by the Program
Committee Chairman by August 9, 1985.

Important Dates:

Submission Deadline: March 15, 1985
Final Version Due: August 9, 1985

Acceptance Notification: June 14, 1985
Conference Date: October 28-30, 1985

-82-

THE INTERNATIONAL FEDERATION
FOR INFORMATION PROCESSING

N\,

IFIP Working Group 8.1 Working Conference on

ENVIRONMENTS TO SUPPORT INFORMATION SYSTEM
DESIGN METHODOLOGIES

Bretton Woods, New Hampshire USA; 4-6 September 1985

Call for Papers

The environment in which information system design methodologies are applied has a strong effect on the
design process. Environment, in this sense, refers to a variety of different topics, including:

® the hardware and software facilities available to the information system development organization,
including workstations, software tools, and networks;

e the management and structure of the information system development organization;

e the staffing and skills of the information system development organization;

® the ancillary support services, e.g., telecommunications, available to the information system
development organization

There is an ecology of environments, since changes in any of these areas may affect the other areas.
Improvements in the development environment can have a beneficial effect on the development process
and/or on the developed product.

We seek papers that address one or more of these areas, with emphasis on the observed impact of
environmental changes on the use of a methodology or on the resuits of its use. We are especially interested
in papers that discuss the following topics:

® integrated software development environments containing tools explicitly oriented to a methodology;
L the hardware environment, such as a design workstation, to support the development process;

o the communication environment, such as the use of electronic mail and computer networks;
°

the quality assurance environment, involving software or organizational procedures to evaluate the
development process or its products,

the physical work environment for information system developers;
e evaluative data on the impact of environmental changes.

Submitted papers should not exceed 6000 words in length and should not have been published or submitted
for publication elsewhere. Four copies of the paper should be submitted to the Program Chairman to arrive
by 15 February 1985. Authors will be notified of acceptance or rejection by 1 May 1985. Proceedings will
be published by North Holland and authors will be expected to sign a copyright transfer agreement. Camera
ready copies of the final papers will be due by 15 June 1985.

General Chairman Program Chairman Program Committee

Prof. Anthony 1. Wasserman Prof. Peter C. Lockemann S. Berild (Sweden)

Medical Info Science Institut fir Informatik H.M. Blanken (Netherlands)

Room A-16 Universitit Karlsruhe R. Brooks (USA)

U. of Calif., San Francisco Zirkel 2 M. Mantei (USA)

San Francisco, CA 94143 USA 7500 Karlsruhe 1 M.H. Penedo (USA)
Federal Republic of Germany C. Rolland (France)

1+ (415) +666-2951 49+(0721) 608-3968

-83-

¢
&\

	40979_DataEngineering_Dec1984_Vol 7_No4.pdf

