
DECEMBER 1984 VOL.7 NO.4

a quarterly bulletin

of the IEEE computer society
technical committee

on

Database
ri

Cooperation Between IEEE TC on DBE and

ACM SIG MOD 1

Liaison Person Needed: ACM SIGMOD—IEEE

Technical Committee on DBE 2

Letter from the Editor 3

Information System Design at the Conceptual Level—

The Taxis Project 4

J. Mylopoulos, A. Borgida, S. Greenspan,
and H.K.T. Wong

The Database Design and Evaluation Workbench

(DDEW) ProjectatCCA 10

D. Reiner, M. Brodie, G. Brown, M. Friedell,
D. Kramlich, J. Lehman, and A. Rosenthal

Database Design Activities Within the

DATAID Project 16

C. Batini, V. De Antonellis, and A. Di Leva

A Realistic Look at Data 22

W.Kent

Tools for View Integration 28

A. Elmasri, J.A. Larson, S. Navathe, and T. Sashidar

RED1: A Database Design Tool for the Relational

Model of Data 34

A. Bjornerstedt and C. Hulten

IRMA: An Automated Logical Data Base Design and

Structured Analysis Tool 40

R.M. Curtice

An Overview of Research in the Design of

Distributed Databases 46

S. Ceri, B. Pernici, and C. Wiederhold

Current Research in Database Design at the

University of Minnesota 52

S. March, S. Mendu, P. Palvia, M. Prietula,
D. Ridjanovic, J.V. Carlis, D. Beyer, and K.L. Ryan

Research on Form Driven Database Design and

Global View Design 58

M.V. Mannino and J. Choobineh

A Prototyping Approach to Database Applications
Development 64

A. Albano and A. Orsini

A Causal Approach to Dynamics Modeling 70

V. De Antonellis and B. Zonta

Designing Database Updates ..

~/6

S. Salveter and D.E. Stumberger

Calls for Papers 82

Contents

Special Issue on Database Design Aids, Methods, and Environments

Chairperson, Technical Committee

on Database Engineering

Prof. Gb Wiederhold

Medicine and Computer Science

Stanford University
Stanford, CA 94305

(415) 497-0685

ARPANET: Wiederhold@SRI-Al

Editor-in-Chief,
Database Engineering

Dr. David Reiner

Computer Corporation of America

Four Cambridge Center

Cambridge, MA 02142

(617) 492-8860

ARPANET: Reiner@CCA

UUCP: decvax!cca!reiner

Database Engineering Bulletin is a quarterly publication of

the IEEE Computer Society Technical Committee on Database

Engineering. Its scope of interest includes: data structures

and models, access strategies, access control techniques,
database architecture, database machines, intelligent front

ends, mass storage for very large databases, distributed

database systems and techniques, database software design
and implementation, database utilities, database security
and related areas.

Contribution to the Bulletin is hereby solicited. News items,

letters, technical papers, book reviews, meeting previews,

summaries, case studies, etc., should be sent to the Editor.

All letters to the Editor will be considered for publication
unless accompanied by a request to the contrary. Technical

papers are unretereed.

Opinions expressed in contributions are those of the indi

vidual author rather than the oflicial position of the TC on

Database Engineering, the IEEE Computer Society, or orga

nizations with which the author may be affiliated.

Associate Editors,
Database Engineering

Dr. Haran Boral

Microelectronics and Computer
Technology Corporation (MCC)

9430 Research Blvd.

Austin, TX 78759

(512) 834-3469

Prof. Fred Lochovsky
Department of Computer Science

University of Toronto

Toronto, Ontario

Canada M5S1A1

(416) 978-7441

Dr. C. Mohan

IBM Research Laboratory
K55-281

5600 Cottle Road

San Jose, CA 95193

(408) 256-6251

Prof. Yannis Vassiliou

Graduate School of

Business Administration

New York University
90 Trinity Place

New York, NY

(212) 598-7536

Memoership in the Database Engineering Technical Com

mittee is open to individuals who demonstrate willingness to

actively participate in the various activities of the TC. A

member of the IEEE Computer Society may join the TC as a

full member. A non-member of the Computer Society may

join as a participating member, with approval from at least

one officer of the TC. Both full members and participating
members of the TC are entitled to receive the quarterly
bulletin of the TC free of charge, until further notice.

Cooperation between IEEE TC on DBE and ACM SIGMOD

The IEEE Technical Committee on Database Engineering puts out this

publication; ACM SIGMOD (Special Interest Group on Management of Data)

publishes the SIGMOD Record In orientation, goals, and membership,
there is much in common between the two groups, and both publications
are aimed at researchers and practitioners in the database area. To

foster cooperation and cross—fertilization between these groups, SIGMOD

has agreed to fund distribution of this issue of Database En~ineerin~
(~~) to its members. The IEEE TC hopes to reciprocate in 1985 by dis

tributing an issue of SIGMOD Record to its members.

A SIGMOD member wishing to receive future issues of Database

Engineering may join the IEEE Computer Society, which allows him to

join any of a number of TCs. Alternatively, he may join just the TC on

DBE, as a correspondent, at no cost (currently). (Write to: IEEE Com

puter Society, 1109 Spring St., Suite 300, Silver Spring, MD 20910.)

A TC on DBE member wishing to receive future issues of £IQMQD
Record may join ACM and any of a number of Special Interest Groups
(SIGs), including SIGMOD. (Write to: ACM, 11 West 42nd St., New York,
NY 10036.)

If you already belong to both organizations, please: (1) pass your
extra copy of this issue along to a colleague, and (2) notify David

Reiner (see address on inside front cover) by mail (or netmail), using
the tear—out form on the next page. This will help us keep down costs

of duplicate mailings in the future.

Briefly, here are the differences between the two publications.
~ published quarterly, focuses on a particular theme with each

issue, and tends to contain mainly invited papers on current research

and development efforts. Although submissions are not subject to a

formal review process, the editors generally read articles very care

fully, and work with the authors to achieve both clarity and brevity.
Upcoming 1985 issues will treat DBMS Performance, Concurrency Control

and Recovery in DBMS5, Natural Languages and Databases, and Object
Oriented Systems and DBMSs.

The Record published from two to four times a year, accepts sub

missions on a broad range of database—related topics, and prefers to

see somewhat unusual articles which may not fit other forums such as

the ACM SIGMOD Conference, the IEEE Data Engineering Conference (Comp—
DEC), or VLDB. When possible, issues have a unifying theme. There is

no formal review process.

We hope in the future to cooperate on one or more joint issues of

these two publications, and plan to refer papers back and forth where

appropriate. In the meantime, enjoy this issue whatever your ‘affilia

tion.

David Reiner, Editor—in—Chief, Database Engineering

Jon Clark, Editor, SIGMOD Record

—1—

Liason Person Needed:

ACM SIGMOD — IEEE Technical Committee on DBE

We would like to follow up on the direction of greater
inter—society cooperation annunciated by the ACM and the IEEE

Computer Society. To make something actually happen, we are

looking for an individual willing to be a focal point in this

task. Such a person would be appointed to the ACM SIGMOD and

the IEEE CS TC DBE as coordinator, or whatever reasonable title

can be invented and supported.

Concerns will be shared publication efforts, conference

sponsorship and schedules, and anything else which appears to

be a positive step. Bea Yormark, chair of the ACM SIGMOD, has

indicated her support. Please contact either one of us.

Gio Wiederhold, Chairperson,
Technical Committee on Database Engineering

Gio’s address and phone # are on the inside front cover; Bea’s

are 7503 Lynn Drive, Chevy Chase, MD 20815, (703)—836—2696.1

If you are or plan to become a member of both ACM SIGMOD

and IEEE TC on DBE, please send a copy of this form to:

David Reiner

Computer Corporation of America

Four Cambridge Center

Cambridge, MA 02142

or notify Dave via netmail:

Arpanet: reiner@cca

EJUCP: decvax!cca!reiner

Our purpose is to keep down costs of duplicate mailings.

Name

Address

Net address (if any)

Check all that apply:

ACM IEEE TC IEEE

SIGMOD on DBE Computer Soc

I I I I

Currently a member I

I

I

I

I I I I

Plantojoin I

I

I

I

—2—

Letter from the Editor

Designing a database is a complex iterative process. It

requires familiarity with design techniques, methods, heuristics,
and tools, and with the nature of the data and its intended uses.

In the last few years, database design research has been on the

upswing. Researchers are concentrating not just on improved
design tools, but also on the overall methodological framework of
the design process, and on integrated environments to support it.

There seems to be general agreement that database design is
best separated into a succession of related but independent steps,
moving from the more abstract levels of requirements analysis and

conceptual design, to the logical level where the target data
model is introduced, to the more concrete levels of distributed
and physical design (though the exact nature and numbers of these

steps may vary slightly from one methodology to another). There

is increasing interest in design systems which support many stages
of database design, and which connect database design to the

broader lifecycle of system design and evolution, including appli
cation development.

Current trends and areas of concentration in database design
include: expanded data model semantics (including more emphasis on

constraints and improved techniques for view integration), more

attention to dynamic (transaction—oriented) aspects of designs,
graphics workstation—based design environments (with interactive

design tools), and Al—related approaches (expert systems technol

ogy, designing for natural language interfaces to databases).
Productive work continues in rapid database prototyping, form—
based design, and physical and distributed design. Commercial
database design products are beginning to be available.

The first three papers in this special issue describe fairly
comprehensive design environments now under development: the Taxis

project at Toronto, CCA’s DDEW project, and the Italian DATAID

effort. The next four cover various aspects of conceptual and

logical design: the fact—base& approach, view integration, the
RED1 logical design tool from Sweden’s SYSLAB, and ADL’s logical
designer. Several university research projects come next, on dis
tributed design, physical design, and form—based design. The last
three papers discuss early prototyping, modeling dynamic aspects
of databases, and designing database updates in a natural language
environment.

My thanks to the contributors to this issue, who have

invested considerable effort to produce concise but readable sum

maries of their current s~_arçh. ACM SIGMOD’s support for print
ing and distributing extra copies of this issue for its members is

also gratefully acknowledged.

David Reiner

Cambridge, Massachusetts

December, 1984

—3—

INFORMATION SYSTEM DESIGN AT THE CONCEPTUAL LEVEL --

THE TAXIS PROJECT

John Mylopoulos, University of Toronto1

Alexander Borgida, Rutgers University
Sol Greenspan, Schiumberger-Doll Research, Conn.

Harry K.T.Wong, Lawrence Berkeley Labs

Abstract

This is a brief overview of the Taxis project, concerned with the development of languages, tools

and methodologies for the design of interactive information systems (ISS) such as reservations, inventory
control and credit card verification. We describe the major novel ideas explored in this project, the

tools and techniques supporting them, and their source in significant ideas of Artificial Intelligence and

Software Engineering.

1. INTRODUCTION

The development of database design techniques and tools is based on philosophical considerations

concerning the nature of databases, their role and the major source of problems in their development.
(Such philosophical underpinnings are of course not always made explicit.) In our case, there appear to

be three fundamental observations whose logical conclusions have shaped the nature of our design aids

and approach in general.

First, we consider the design of databases an integral and inseparable part of the design of

Information Systems (ISs), which include transactions, user interfaces, etc. and hence have broadened

the scope of our research to cover all aspects of Information System design, not just those dealing with

the storage of data.

Secondly, as others, we view an IS as a model of some relevant portion of the “real world”, or

more accurately a model of the end-user’8 (conceptual) perception of the world. As with models in

other fields, an IS is then useful to the extent that it reflects reality accurately, and to the extent that

the information in it is easily accessible. One consequence of this axiom is that IS design is now viewed

as model development or modeling. A second consequence is that IS development should then be much

easier and more successful if it begins at the conceptual level, rather than the logical level. For this

reason, the Taxis project has drawn inspiration from Knowledge Representation schemes current in

Artificial Intelligence, and has adapted them to the specific problems of IS design. An underlying
assumption here is that the mapping from the conceptual design to the more “physical”/”machine
dependent” levels can be automated.

Finally, we view ISs as software, and hence believe that important precepts of Software

Engineering are applicable to IS engineering. However, there is much to be gained by taking advantage
of the fact that ISs form a strict subclass of all possible software, one subject to many restrictions and

limitations.

Among the consequences of these views we list

• the applicability of the software life cycle to ISs. In particular, we advocate separate requirements
specification and design phases, but emphasize the advantages of a uniform philo8ophy, conceptual
modeling, underlying both;

• the importance of ab8traction followed by gradual refinement as a fundamental tool for coping
with the sea of minutiae which need to be captured in a model. ISs however provide an

opportunity to explore new abstraction principles, which may not apply as successfully in the case

of general software.

• the utility of prototyping as a technique for obtaining quick feedback in determining what the user

really wants.

• the need for a methodology of 8oftware engineering to provide at least three things for each level

‘Address correspondence to Department or Computer Science, University or Toronto, Toronto, Ontario, Canada. (416)
978 5180. Netmail to jm@toronto.csnet, borgidaOrutgers.arpa, greenspanOrutgers.arpa, or wongOlbl-csam .arpa.

This research has been supported by grants rrom the Natural Sciences and Engineering Research Council of Canada,

US NSF, and DEC Corporation.

—4—

of specification:

o languages -- precise notations for expressing the relevant information.

o techniques -- procedures for constructing, manipulating, and validating specifications.
o tools -- automated aids designed to support the above.

2. THE TAXIS LANGUAGE

The focus of the Taxis Project is the Taxis programming language, which supports the description of

ISs at the conceptual level (IMYLO8Oa, 80bj, W0NG831). Taxis incorporates a so-called “semantic

data model” which provides for the description of the entities in the world and their inter-relationships
through the notions of objects, related by properties/attributes. A major advantage of this object-
centered framework over traditional record-based approaches is the direct and natural correspondence
between the model and the world (e.g., no reliance on keys), which facilitates both the design and

access of the IS. Individual objects are organized into classes, which describe commonalities of their

instances in the form of constraints -- e.g., properties applicable to them, the valid ranges of values of

such properties. In Taxis, classes themselves are objects, and hence can be members of meta-classes;
therefore classes can have their own properties (e.g., aggregate information). Furthermore, classes are

organized into a hierarchy with general classes located above their specializations. If one class (e.g.
employee) is defined to be a specialization, or subclass of another class (e.g., person), then at all times

every instance of the first is considered to be an instance of the second. An important consequence of

this organization is that properties can be inherited from superclass to subclass, e.g., the class of

employees inherits properties such as name, address, and so on, from the class of persons.

In addition to modeling data, Taxis supports the development of Information Systems by
providing language features to model the activities in the world. For short-term activities, Taxis

provides the notion of transaction familiar in databases as the basic unit of integrity and recovery

maintenance. A transaction consists of an initial group of preconditions which check the applicability of

the operation at this point, followed by a sequence of actions described in traditional procedural
notation (e.g., assignments, loops, conditionals, data manipulations), and concludes with post-conditions.
Taxis attempts to maintain uniformity and parsimony by casting transactions in the same mold as

entities: a transaction is viewed as an object, with its parameters, conditions and actions becoming its

properties; procedure definitions become class descriptions (hence procedure invocations are instances of

these classes); and most innovatively, transactions are also organized into specialization hierarchies (e.g.,
admitting a surgical patient is a specialization of admitting a general patient).

In order to deal with special cases, Taxis incorporates a procedure-oriented exception handling
mechanism, and in a recent extension, provides the ability to store information which does not fit the

class-schema (see Section 6).

To model persistent activities -- i.e., activities with prolonged duration such as participating in a

clinical trial or attending university -- Taxis also supports the notion of 8cript8 (!BARR8O,82],
PILO83a,83b], CHUN84I, ITAXI84I). A script is built around a Petri-net skeleton of states connected

by transition arcs, which are augmented by condition-action rule pairs (viz. ZISM78I). The rules are

described in Taxis, but also allow reference to the passage of’ time, and permit the transmission of

messages following bare’s CSP mechanism. Scripts are integrated completely into the Taxis

framework, so that script classes are organized into a subclass hierarchy according to their

generality/specificity, have their states and transitions defined in terms of properties, and their instances

can be accessed through the same facilities used to access instances of entity classes. This allows among

others queries concerning the currently executing set of scripts.

Finally, an extension of Taxis allows designers to describe user interfaces to ISs, e.g., the query

or interaction language, in the same uniform framework of objects with properties in classes. Such an

extension allows a direct link to be established between the “referring expressions” used in the query

language and their “referents” in the database. The extension described in jPILO8~a,83bJ,~TAXI84] also

provides for modelling tools to be used for the specification of a grammar and a lexicon which are

integral components of any user interface.

3. THE RML LANGUAGE FOR REQUIREMENTS
A requirements model is

- a description of some portion of the world that encompasses potential
information systems and is used to communicate and analyze the problem situation. (A model at this

level corresponds to “Corporate Requirements”.) In our case, it also provides a starting point for

information system design using Taxis.

We have defined a language called the Requirements Modeling Language (RML) for the purpose

—5—

of describing requirements models (~GREE82,84], ITAXI84D.
A fundamental premise of the Taxis project is that one conceptual framework (such as the object

oriented framework described above) can be used both at the design and the requirements specification
level. What does change as a designer moves from one level to the other are the kinds of classes at his

disposal as he constructs his specification, and the kinds of information which needs to be captured.
For the design level these are data, transaction, exception and script classes. For the requirements level,
on the other hand, they are classes of individuals, activities and as8ertions. Informally, classes of
individuals correspond fairly directly to Taxis data classes. Activity classes are intended to model both

instantaneous actions and long-term events, corresponding to transactions and scripts in Taxis. Finally,
assertions are logical formulas making statements about the world, the rest of the requirements
specification, or the relation between the two.

Abiding by the maxim that “the requirements should express WHAT the system does but not

HOW”, RML does not have the notion of “control flow”; instead, RML supports a temporal view of
the world: properties of objects, and their existence are all related to a time line, and the designer must

specify temporal constraints in order to ensure the desired sequencing of events, for example. RML does

however provide abbreviation techniques such as “property categories” (e.g., “initially”, “always”) which

shorten descriptions by removing the clutter of temporal indices. Furthermore, RML provides a

mechanism for introducing and defining new property categories, allowing RML to be customized to a

specific task.

In addition to higher-level descriptions of activities, RML provides the opportunity to model

objects from both the world and the proposed IS, thereby allowing the specifier to express definitions of

terms, such as units of measurements, which would not normally appear in the IS, and to specify
constraints on the performance and accuracy of the IS.

4. METHODOLOGIES OF DESIGN

4.1. Dimensions of Abstraction

An abstraction mechanism is a conceptual or linguistic mechanism that allows certain information to be

highlighted while suppressing other information. In software engineering, abstraction is usually equated
with the suppression of design decisions or implementation detail. However, within a given level, the
Taxis framework offers a set of complementary abstraction facilities based on the notions of aggregation,
classification, and generalization SMIT77J.

If we define a property to be a directed relationship between two objects, aggregation allows one

to view an object as a composite of the objects to which it is related by properties. For example, a

person has a name, an address, and so on. The “abstraction” here is that one may talk about an

object while choosing to ignore its components for the moment.

Along an orthogonal dimension, the classification abstraction allows individuals to be grouped into

classes (and classes into rnetaclasses) that share common properties. By describing class objects, one

abstracts away the the detailed differences of the class instances.

Generalization allows the common properties of several classes to be factored out into the

definition of a single, more general, class. For example, the class of persons can be represented as a

generalization of the classes representing males, females, managers, engineers, female engineers, and so

on. The taxonomic organization provided by generalization hierarchies can lead to models that are

understandable and consistent, because the more that classes have in common with each other, the

“closer” they are located to each other in the hierarchy. Also, generalization hierarchies can lead to

more concise models, since it is sufficient to associate properties to the most general, applicable class

and let inheritance imply the rest.

4.2. Taxonomic Programming
A methodology for specification/modeling should provide guidance to its users. At the heart of many
software development methodologies lies one or more abstraction mechanisms, which allow us to ignore
details at some level, plus a refinement principle which provides for the guided and gradual
introduction of details across the abstraction dimension.

We have explored the utility of the generalization abstraction as the basis of a methodology for

building descriptions which we call tazonomic programming or 8tepwise refinement 6y specialization
IBORG82J. Its main idea is that a model should be constructed by modeling first the most general
classes, and then proceeding to more specialized classes. For example, in modeling a hospital world, one

might consider first the concepts of patient, doctor, admission, treatment, etc. Later, the modeler can

differentiate between child patients, heart patients, internists and surgeons, surgical and medical

treatments, etc. At each step, only the information (properties) appropriate to that level are specified,
and because of inheritance, only new facts need to be stated.

—6—

Generalization is the appropriate principle to exploit when the difficulty of modeling is due to a

large number of details rather than due to algorithmic complexity; a hierarchy of classes organized
along this dimension guides the attention of the designer, and provides a convenient structure for

distributing information and associating it where it most naturally belongs. We emphasize that in

Taxis, specialization is applicable not only to data objects but also to the description of activities,
transactions, exceptions, and scripts.

5. DESIGN AIDS

5.1. Compilers and interpreters
Brian Nixon has implemented a compiler for Taxis programs N1X0831. The target language for the

compiler is Pascal, augmented with relational database facilities such as those provided by Pascal/R
I SCHM8O]. Taxis data hierarchies are translated into relational schemata, and hierarchies of

transactions are translated into the block structure of Pascal. The output of the compiler is a program

containing definitions of all classes and transactions, routines to enforce constraints, a database interface

(as provided by Pascal/R), and a near-empty database.

In developing such a compiler, several interesting implementation problems needed to be resolved,
including the distribution of information about an object in multiple relations, the possibility of

conflicting inherited properties, and the operation of inheritance for procedures. The implementation of

the Taxis compiler has been extended to handle the execution of scripts CHUN84I. The major problem
in implementing scripts is the development of efficient algorithms for testing whether a state transition

is ready to fire or whether the invariants associated with a script state (and expressed in terms of a

logical assertion) are not being violated at a particular time.

Turning to prototyping facilities, an interactive environment for creating and trying out Taxis

programs has been designed and implemented by Pat O’Brien O’BR182]. It includes a class-oriented

editor, whose commands and functionality are centered on Taxis classes; a semantic consistency verifier

which ensures that Taxis programs conform to the semantic rules of Taxis; and an interpreter and

debugger for prototyping. The editor provides the information system designer with facilities to

construct, inspect, and modify a Taxis program. The consistency verifier performs various checks to

ensure the correctness of the conceptual model being specified. The interpreter simulates execution of

Taxis programs, and the debugger assists the designer in validating the model. The design environment

also provides various other aids to the user, such as an online help facility, a documentation generator,
and a way of keeping track of multiple versions of models. The Taxis design environment is also being
expanded to handle scripts EPARK84I.

5.2. The connection of RML to SADTTM
The difficulty of building a high-level requirements specification as in RML should not be understated.

In the initial stages of requirements definition, all of the parties involved are faced with the problem of

deciding what concepts and phenomena are relevant to the situation at hand, agreeing on terminology,
and conveying their “mental models” of the situation to each other. We propose, therefore, that

requirements be defined in two steps:

• The first would use a language for structured analysis such as SADTTM ROSS77~, in which terms

are introduced in an organized way.

• The second would use RML for semantic modeling, which gives definitions of the semantics of the

concepts introduced in the first step.

In CREE84], the connection between SADT and RML is made. SADT provides a way of

introducing concepts/terms into the requirements specification by a process of stepwise decomposition
(expanding a concept “box” into a “diagram” containing several interconnected boxes). The result is a

hierarchically organized structure of interrelated terms, which provide a “structured lexicon”, a sort of

road map to guide the RML modeling process.

RML is then used to express more formally the informat’ion usually expressed by natural language
labels and comments on SADT arrows and boxes. In the process, the semantic relationships expressed
in the RML model are constrained by the connectivity of the SADT diagram from which it is derived

-- e.g., arrows connecting boxes become properties relating the corresponding classes.

in an attempt to validate our design methodology, Taxis was used for describing a medical

information system for the Pacemaker Center at the Toronto General Hospital IDIMA83I, which keeps
track of patients who have received a cardiac pacemaker. It was also used to design a medical

information system for managing clinical trials IBUCH82I, which are controlled experiments for

investigating the cause/effect relationship of new treatments. In both cases, Taxis’ facilities for

—7—

describing scripts, exceptions and organizing classes in specialization hierarchies proved to be very

important.

6. CONCLUSIONS AND CURRENT WORK.
The Taxis Project has designed and implemented a variety of languages and tools for requirements and

design. Although they draw on ideas that are popular in Artificial Intelligence and Data Base

Management, as well as in some programming languages, they are all based on the same object-oriented
framework, which uses three fundamental abstraction mechanisms to structure and organize information.

Software engineering is viewed as the construction of a series of models, starting with a world-

oriented requirements model (SADT plus RML), then a Taxis design model, and ultimately a

completely implemented system. The task of requirements modeling is likened to the task of knowledge
representation in Artificial Intelligence, and the Taxis framework applies concepts that are popular in

Artificial Intelligence (as well as in semantic data models) to both RML and the Taxis language.

Current work is proceeding both on RML and Taxis. The RML language is being extended in

several directions: the uniform treatment of properties as objects; linguistic mechanisms for relating
objects in the world and their images in the IS; allowing contradictory information to be introduced

during specialization, thereby supporting a new abstraction principle: normalization. By providing a

translation of RML into logic, and by connecting this to a specialized theorem-prover, we hope to allow

reasoning about specifications, such as checking for consistency. We are also co-operating with a

software house in adapting RML for “practical use”.

The exception-handling facilities of Taxis have also been greatly extended to allowing dynamic
exceptions -- i.e., allowing information to be stored which violates the schema of classes used during
compilation. This mechanism allows an IS to be much more flexible in the face of variability in the

world, especially unexpected occurrences, and can also be used to deal with such thorny problems as

null values, conversions of measurements, estimates, etc. (see 1B0RG841, TAXI84]).

Acknowledgments The following members of the Taxis project have contributed significantly to the

advancement of the research reported here: Dr. P. Bernstein, J. Barron, B. Nixon, Dr. M. Pilote,
P. O’Brien, I. Buchan, C. DiMarco, S. Park, L. Chung.

REFERENCES

BARR8OJ John Barron, Dialogue Organization and Structure for Interactive information Sy8tems.
Technical Report CSRG-108, Computer Systems Research Group, University of Toronto,
January 1980.

BARR82I John Barron, Dialogue and Process Design for Interactive Information Systems Using
Taxis. Proceedings, SIGOA Conference on Office Information Sy8tems, Philadelphia, PA,
June 1982. SIGOA Newsletter, 3(1,2), pp. 12-20.

BORG82] A. Borgida, J. Mylopoulos, H.K.T. Wong. “Generalization as a Basis for Software

Specification” in M.Brodie, J.Mylopoulos, J.Schmidt(eds.) On Conceptual Modeling:
Perspectives from Al, Databases and Programming Languages, Springer Verlag, 1984.

1B0R0841 A. Borgida, “Language Features for Flexible Handling of Exceptions in Information

Systems”, Technical Note, Department of Computer Science, Rutgers University; submitted

for publication.

BUCH82J 1. Buchan, H. D. Covvey, J. Mylopoulos, C. DiMarco, and E. D. Wigle, “Taxis: A

Language for the Development of Clinical Trial Management Systems,” Proc. Sixth Annual

Symposium on Computer Applications in Medical Care, October 1982. (also ITAXI84])

CHUN84I K. Lawrence Chung, An Extended Taxis Compiler: M.Sc. thesis, Dept. of Computer
Science, University of Toronto, 1984.

DIMA83I Chrysanne DiMarco, Using TAXIS to Design a Medical Information System. (M.Sc.
Thesis) Tech. note #31, Department of Computer Science, University of Toronto, 1983.

GREE82J S. Greenspan, J. Mylopoulos, and A. Borgida, “Capturing More World Knowledge in the

Requirements Specification,” Proc. 6th International Conference on Software Engineering,
Tokyo, 1982. (also FTAXI84I)

IGREE84I S. Greenspan, Requirements Modeling: A Knowledge Representation Approach to

Requirements Specifications, Ph.D. thesis, University of Toronto, 1984.

—8—

IMYLO8OaJ
J. Mylopoulos, P. A. Bernstein, and H. K. T. Wong, “A Language Facility for Designing
Interactive Database-Intensive Applications,” ACM Transactions on Databa8e Sy8terns,
Volume 5, Number 2, June 1980, pp. 185-207.

IMYLO8ObJ
J.- Mylopoulos and H. K. T. Wong, “Some Features of the TAXIS Model,” Sixth
International Conference on Very Large Data Bases, 1-3 October 1980, pp. 399-410.

NIXO83] Brian Nixon, Translating Taxis Pro grams, M.Sc. Thesis, Dept. of Computer Science,
University of Toronto, 1983.

10’BR182] Patrick D. O’Brien, TAXIED: An Integrated Interactive Design Environment for TAXIS.
(M.Sc. Thesis) Tech. note #29, Department of Computer Science, University of Toronto,
1982.

IPARK84I Sun C. Park, Implementation of Extended Taxis Environment, M.Sc. thesis, Department of
Computer Science, University of Toronto, 1984.

IPILO83aI Michel Pilote, A Framework for the Design of Linguistic User Interfaces. Ph.D. thesis,
Dept. of Computer Science, University of Toronto, 1983.

IPIL083b1 Michel Pilote, “A Programming Language Framework for the Design of User Interfaces,”
Proc. of the Conference on Principles of Programming Languages, June 1983. (also
TAXI84])

R0SS77J D. T. Ross, “Structured Analysis(SA): A Language for Communicating Ideas,” in IEEE
Transactions on Software Engineering, Volume SE-3, Number 1, January 1977, pp. 16-34.

SCHM80] Joachim W. Schmidt and Manuel Mall, Pascal/R Report. Bericht Nr. 66, Fachbereich
Informatik, Universitaet Hamburg, Jan. 1980.

ISMIT77] J. M. Smith and D. C. P. Smith, “Database Abstractions: Aggregation and
Generalization,” ACM Transactions on Database Systems, Volume 2, Number 2, June 1977,
pp. 105-133.

TAXI84] Taxis ‘84: Selected Papers, Brian Nixon (ed.), Technical Report CSRC-160, June 1984,
Department of Computer Science, University of Toronto.

WONC83I H. K. T. Wong, Design and Verification of Interactive Information Systems, Ph.
D. Dissertation, University of Toronto, 1983.

ZISM78] Michael D. Zisman, Use of Production Systems for Modeling Concurrent Processes. In
D. A. Waterman and Frederick Hayes-Roth (Eds.), Pattern-Directed Inference Systems New
York: Academic Press, 1978, pp. 53-68.

—9—

The Database Design and Evaluation Workbench (DDEW) Project at Cci

David Reiner, Michael Brodie, Gretchen Brown, Mark Friedell1,
David Kramlich, John Lehman, Arnon Rosenthal

Computer Corporation of America

Four Cambridge Center Cambridge, MA 021112 USA

617/1192—8860

Abstract

The Database Design and Evaluation Workbench (DDEW) is a graphics workstation

for database designers. DDEW provides an interactive support environment for speci

fying and experimenting with database structures and designs, while automatically

maintaining a complete history of the design alternatives that are investigated. It

allows easy and uniform access to a highly integrated and extensible suite of

evaluation, analysis, and design transformation tools that range over the entire

database design life—cycle. The system is object oriented, supports multiple win

dows, and has powerful diagram representation and editing capabilities.

1. Introduction to the Project

DDEW will reside on a Jupiter 12 workstation with a 68010 microprocessor (run

ning Berkeley 11.2 UNIX**), 2 MB of main memory (with 160 MB more on a hard disk), a

bit—sliced graphics processor, and a 1280 x 10211 color frame buffer. This system

may be loosely coupled to a DEC VAX with an Ethernet link. The workstation accepts

input from both a keyboard and a mouse. The mouse is used to point to objects and

to rapidly select commands from fixed and pop—up menus.

On the, workstation screen, the designer can build, display, and manipulate

objects of two fundamental types: lists and diagrams Restricting the number of

fundamental object types to two makes designer—system interactions quite uniform.

Free—form and formatted textual data (such as requirements, attribute definitions,
constraints, and design annotations) are represented as list items, which may be

added, deleted, and modified with DDEW’s list editor. Database schemas and the

design history are represented as diagrams, which may be edited with DDEW’s diagram
editor. Contrasting colors and graphic icons help clarify design structures.

2. The Database Design Process

2.1 Design Methodology

DDEW supports a stepwise methodology for database design that is based on ear

lier work by Teorey and Fry TEOR82b]. Its steps and the tools that DDEW will pro

vide for them are shown in Figure 1 (see REIN8II] for more details). Preliminary
versions of some of these tools were developed at the University of Michigan

TEOR82a]. Improved versions are being built specifically for the DDEW project.
The methodology is iterative; earlier decisions always can be reconsidered, and

alternatives to them can be explored in parallel.

DDEW’s integrated methodology is a framework for Ithe efficient use of the sys

tem by all designers, and an educational aid for novice designers. New and improved
tools (e.g., for physical design) can be incorporated as they become available.

This project Is supported by the Rome Air Development Center (of the United States

Air Force) under contract number F30602—83—C—0073.

* Center for Research in Computing Technology, Harvard University
1* UNIX is a trademark of Bell Laboratories

—10—

Contributing to this ease of modification is the use of a common storage system for

design data, a relatively general system—tool interface, and a clean division of the

methodolo~’ into levels of abstraction.

2.2 Data Models

An extended version of the Entity-Relationship model CHEN77] (referred to as

ER+) underlies all design phases of DDEW. The principal components of the ER+ model

are entities, binary relationships between entities, and attributes (of both enti

ties and relationships). Multivalued attributes (repeating groups) are represented
as (weak) entities. DDEW recognizes and exploits ER+ functional dependencies
(including keys), inclusion dependencies (subset constraints), and constraints on

cardinalities of relationships and on data types of attributes. Transaction speci
fications take the form of a sequence of operations (query, update, insert, delete)
on data objects and on intermediate, set—valued results of other operations.

The user does conceptual design in the ER+ model, and logical design in (gen
eric) relational, network, or hierarchical models. The system represents all DDEW

designs internally as ER+ schemas, with additional information and restrictions for

the logical (and subsequent) levels of design. Examples of data model restrictions

on ER+ are: for the relational model, each entity must have a declared key, and no

relationships are allowed; and for the network model, no m:n or cyclic relationships
are permitted. The (generic) hierarchical model is a subset of the network model,
where there is at most one incoming relationship for entities and no cycles.

Future extensions to the ER+ model may include: aggregation, generalization
hierarchies, multivalued dependencies, “null not allowed” declarations for attribute

values, derived fields (a feature often implemented In commercial systems), and an

ER query language.

3. User Interface and Graphics Support

3.1 Earlier CCL systems

Many characteristics of the DDEW user interface originated in three earlier

systems developed at CCA: SDMS (Spatial Data Management System), the View System,
and PV (Program Visualization). SDMS HERO8O] is a graphical user interface to con

ventional databases. Graphical icons that represent entities In the database are

arranged in 2—D Information Spaces, over which the user can scroll and zoom to exam

ine different parts of the database at different levels of detail. The View System
FRIE82] is an enhanced SDMS that automatically creates new Information Spaces in

response to a user’s ad hoc queries. A repertoire of layout heuristics enables View

to arrange icons within Information Spaces. PV KRAM83) allows programmers to exam

ine and manipulate dynamic graphical representations of programs.

3.2 DDEV Screen Layout

Figure 2 shows a typical DDEW screen configuration (mocked up) that a designer
of a project control database might have created. The screen is divided Into fixed

areas. The rectangular workspace takes up roughly two—thirds of the screen. On it

appear windows onto design diagrams and the design tree, lists, and pop-up menus.

Windows can_be scrolled left, right, up, and down, or resized.- Below the~workspace
is a legend from which the designer selects object icons or list templates to add

to the active window. The legend contains only those Icons or templates that

legally can be added to the diagram or list in the active window.

To the right of the workspace is the fixed menu area containing global com

mands that are always accessible. These include basic window operations (move,
cycle, copy, save, restore) and commands to control tools running in the background
(abort, suspend, resume). Across the top of the screen is an area for svstem mes—

sag and DromDts a mailbox for messages from tools running in nonactive windows,
and, a navaid (navigational aid). The navaid shows a miniaturized view of the entire

diagram in the active window, with a dotted rectangle to indicate the portion of the

diagram that Is visible in the window.
—11—

Steps In the methodology Tools Provided

Requirements Analysis List (and text) editor

and Specification (also used in subsequent levels)

Entity-relationship schema
Requirements ~ — —

synthesis tool
specification

VIew integrator
Normalizer

Conceptual
~_

Diagram editor (ER +)
Design

————

Automatic diagram layout tool

Interface to data dictionary
1tsnaactlon editor

ER + schema diagram
(and transactions)

— Automatic schema transistor

Logical
~_ —

Logical record access evaluator

Design Diagram editora (Rd. Ntwk, Hier)

Ret, Ntwk, or Hier

scheme diagram
(and transactions)

(Horizontal and vertical fragment generatorl
Distributed

~_ ——

Distributed database allocator

Database Design Distributed transaction optimizer

Diagram editor (network topology)

Database partition
and allocation

Index selection tool

Local Physical
~

(Parameterized query optimizerj
Database Design Physical record access evaluator

(Clustering, blocking, etc. toola)

Physical database DDLIDSDL generator for Troll DBMS
structures (DDLIDSOL) ~ (Other schema generators (Rd. Ntwk, Hier))

Prototyping ..~-.—— Troll relational DBMS

Note: tools in brackets (are

possible extensions

Figure 1. DDEW Methodology and Tools

3.3 Object—Centered C~nd Interface

To avoid making the designer learn arcane and convoluted syntax, DDEW has an

object—oriented command interface and uses pop—up menus. When the designer selects

an object from a diagram or list (using the mouse), a pop—up menu appears containing

the operations that are applicable to the selected object. This menu disappears

when an operation is selected from it (or from the fixed menu, which is always

available). The designer may be prompted for additional arguments to the command.

3.11 On-Line Help

In DDEW, help is provided by two mechanisms: referential helo and context—

sensitive help Referential help, invoked by the MORE HELP command on the fixed

menu, provides descriptions of DDEW commands, graphical notation, and the design

methodology. Context—sensitive help, invoked with a dedicated button on the mouse,

provides fast, concise help messages that focus on interaction expectations. It

gives the designer a view of where he or ~e is in the system and what the system

expects next. Context is based on the designer’s position in the design tree, the

states of active database design tools, and the state of the user command handler.

—12—

Figure 2. Conceptual Design (workstation screen mockup)

3.5 Windows

DDEW allows the user to create multiple overlapping windows (e.g., to view

related lists and diagrams). Multiple windows promise efficent use of that precious
resource, screen real—estate. The designer can open several windows onto different

diagrams or onto different portions~ of the same diagram. DDEW maintains consistency
among its windows by propagating changes to all relevant windows. Obscured portions
of a window are saved and restored by the system to avoid having to recalculate

their contents when the obscured portion is brought into view. The scrolling
mechanisms and the navaid help the designer browse through and keep frcm getting
lost in diagrams and lists that are too large to fit in a window.

3.6 Design Tree

As the designer moves through the database design life cycle, DDEW keeps a

graphic record of the alternatives that are investigated and their interrelation

ships, in the form of a design tree. This ensures that no design work will be lost,
and allows the designer to track the progress of designs. The tree contains the

designer’s comments about designs, retains the results of design analysis tools, and

allows inspection of the ancestors of a design. Figure 2 shows a sample design
tree.

3.7 Conceptual and Logical Design Diagrams

ER+, relational, network, and hierarchical schemas are represented graphically
by nodes with arcs connecting then. For the ER+ model, we developed new graphic
methods of specifying relationship cardinalities (by shading the halves of a dia

mond), and partial versus total participation in relationships (using dotted and

solid lines, respectively). In Figure 2, P—c is 1:1, and both PROJ and CONTRACT par’—

Ready.

RQeII.meerts Lid: OVERALL REOUIREMENTS

Tree: PROJECT CONTROL

Rs4IsBItBy

Comiusets: AS ABC has grown in sin. Out informal arrangements to, tracking protects

their managers and employees and their sponsors need to be lormaluied The database is

being eslabhsrred at the request Of Joe Brown

t

eitelb(i) CONTRaCT. d.t.nrrtn.(5) NOrth(s): STaRT DATE. END DATE. AMOUNT

Mtrlb(s): PROJNAME d.t.nr.tn.(s) allAh(s): STATUS. MGR

. DELIVERABLE~ NAME det.rirrine(I) .tgflb(l). DUE DATE

U.k BUSY EMPLOYEES anne..... .ttrlb~,): EMP .PIyOJ

Ush: HIRE . EMPLOYEE Inc..... .tlflb(h(: EMP NAME. EMP •PROJ

AIDE

MORE HELP

DIRECTORY

EXIT

S

U.a: SPONSOR-OF-CONTRACT .ccem. .ttflbt.I. CONTRACT.. SPONSOR NAME

WINDOWS

MOVE

COPY

DELETE

CYCLE

DESIGN TREE

SCALE

SAVE

RESTORE
Conceptual Design: CD2

TOOLS~
ABORT

SUSPEND

RESUME

(
ENTITY

0
RELATIONSHIP

ADMIN

UNIX SHELL

ICON EDITOR

—13—

ticipate totally in P—C. EMP to PROJ is 1:n through MGR; an employee need not

manage any projects, but each project must have a manager. EMP to SKILL is m:n;

some skills possessed by no employee may be present, but every employee must have at

least one skill.

Network schemas are similar, but half—diamonds (which look like arrowheads)

are used to represent set types between record types. The network display includes

ER+ information that cannot be captured in a network schema (e.g., whether or not a

set owner instance must have at least one member instance).

For relational schemas, inclusion dependencies (represented by set inclusion

symbols) are shown as graphic links between relations, similar to with set types in

network schemas. Translation to the relational model always creates one or two

inclusion dependencies (which ensure referential integrity) When a relationship is

given a value—based representation. Representing dependencies graphically allows

the designer to perceive the structure of the database much more easily than when a

relational schema is represented as a collection of unrelated boxes.

Diagram editing commands allow the designer to manipulate single nodes and

arcs in a diagram. Basic editing functions for nodes include: create a new

instance, delete, move, and rename. Arcs can be moved and reconnected. The

designer also can specify collections of nodes, called affinitY arouDs as named

subsets of the entire diagram, and can move them as a block.

DDEW provides layout assistance ranging from incremental placement and connec

tion of nodes and affinity groups to automatic layout of design diagrams, drawing

partly on placement techniques developed for VLSI design. Fast layout heuristics

(e.g., placement of nodes only at grid positions) are used to improve response time

and diagram uniformity. The goal is to quickly produce a first—cut layout that the

designer can modify if desired.

3.8 List Manipulation

Textual data in DDEW generally is displayed in lists. The main list types
are: information (status of design nodes), free—form annotations (on objects),
attributes, transactions, functional dependencies, inclusion dependencies, system
and user—defined affinity groups, requirements, mail, tool input (e.g., candidate

attributes for indexing), tool output (e.g., schedules of transactions in a distri

buted environment), and both generic and DBMS—specific DDL. The field—sensitive

DDEW list (and text) editor will allow the designer to perform uniform operations on

a broad range of objects.

3.9 Tool. Interface

One of DDEW’s main strengths is the high degree of integration of its evalua

tion, analysis, and design transformation tools. The interface to all the tools is

uniform, and the designer will not have to memorize invocation conventions, write

format translation programs between tools, learn a file system, cope with version

control, or know UNIX. The system automatically retrieves and stages tool input

data, and the designer need only examine and evaluate the results.

It. Syste~ia Aspects

DDEW has an internal DBMS (Troll) that provides both centralized data storage

and a high degree of flexibility and data independence, making it easy to incor

porate new tools and data model extensions into the system. The design database

will include information about entities, relationships, attributes, relationship

cardinalities, functional and inclusion dependencies, transactions, display posi

tions of objects (such as nodes and arcs), and relationships among design tree

nodes. Much meta—information also will reside there (e.g., list item templates,

legal design tree and design diagram configurations, and menu contents). Other sys

tems aspects of DDEW are described at greater length in REIN8ZI].

—1 4-.

	40979_DataEngineering_Dec1984_Vol 7_No4.pdf

