
DECEMBER 1984 VOL.7 NO.4

a quarterly bulletin

of the IEEE computer society
technical committee

on

Database
ri

Cooperation Between IEEE TC on DBE and

ACM SIG MOD 1

Liaison Person Needed: ACM SIGMOD—IEEE

Technical Committee on DBE 2

Letter from the Editor 3

Information System Design at the Conceptual Level—

The Taxis Project 4

J. Mylopoulos, A. Borgida, S. Greenspan,
and H.K.T. Wong

The Database Design and Evaluation Workbench

(DDEW) ProjectatCCA 10

D. Reiner, M. Brodie, G. Brown, M. Friedell,
D. Kramlich, J. Lehman, and A. Rosenthal

Database Design Activities Within the

DATAID Project 16

C. Batini, V. De Antonellis, and A. Di Leva

A Realistic Look at Data 22

W.Kent

Tools for View Integration 28

A. Elmasri, J.A. Larson, S. Navathe, and T. Sashidar

RED1: A Database Design Tool for the Relational

Model of Data 34

A. Bjornerstedt and C. Hulten

IRMA: An Automated Logical Data Base Design and

Structured Analysis Tool 40

R.M. Curtice

An Overview of Research in the Design of

Distributed Databases 46

S. Ceri, B. Pernici, and C. Wiederhold

Current Research in Database Design at the

University of Minnesota 52

S. March, S. Mendu, P. Palvia, M. Prietula,
D. Ridjanovic, J.V. Carlis, D. Beyer, and K.L. Ryan

Research on Form Driven Database Design and

Global View Design 58

M.V. Mannino and J. Choobineh

A Prototyping Approach to Database Applications
Development 64

A. Albano and A. Orsini

A Causal Approach to Dynamics Modeling 70

V. De Antonellis and B. Zonta

Designing Database Updates ..

~/6

S. Salveter and D.E. Stumberger

Calls for Papers 82

Contents

Special Issue on Database Design Aids, Methods, and Environments

Chairperson, Technical Committee

on Database Engineering

Prof. Gb Wiederhold

Medicine and Computer Science

Stanford University
Stanford, CA 94305

(415) 497-0685

ARPANET: Wiederhold@SRI-Al

Editor-in-Chief,
Database Engineering

Dr. David Reiner

Computer Corporation of America

Four Cambridge Center

Cambridge, MA 02142

(617) 492-8860

ARPANET: Reiner@CCA

UUCP: decvax!cca!reiner

Database Engineering Bulletin is a quarterly publication of

the IEEE Computer Society Technical Committee on Database

Engineering. Its scope of interest includes: data structures

and models, access strategies, access control techniques,
database architecture, database machines, intelligent front

ends, mass storage for very large databases, distributed

database systems and techniques, database software design
and implementation, database utilities, database security
and related areas.

Contribution to the Bulletin is hereby solicited. News items,

letters, technical papers, book reviews, meeting previews,

summaries, case studies, etc., should be sent to the Editor.

All letters to the Editor will be considered for publication
unless accompanied by a request to the contrary. Technical

papers are unretereed.

Opinions expressed in contributions are those of the indi

vidual author rather than the oflicial position of the TC on

Database Engineering, the IEEE Computer Society, or orga

nizations with which the author may be affiliated.

Associate Editors,
Database Engineering

Dr. Haran Boral

Microelectronics and Computer
Technology Corporation (MCC)

9430 Research Blvd.

Austin, TX 78759

(512) 834-3469

Prof. Fred Lochovsky
Department of Computer Science

University of Toronto

Toronto, Ontario

Canada M5S1A1

(416) 978-7441

Dr. C. Mohan

IBM Research Laboratory
K55-281

5600 Cottle Road

San Jose, CA 95193

(408) 256-6251

Prof. Yannis Vassiliou

Graduate School of

Business Administration

New York University
90 Trinity Place

New York, NY

(212) 598-7536

Memoership in the Database Engineering Technical Com

mittee is open to individuals who demonstrate willingness to

actively participate in the various activities of the TC. A

member of the IEEE Computer Society may join the TC as a

full member. A non-member of the Computer Society may

join as a participating member, with approval from at least

one officer of the TC. Both full members and participating
members of the TC are entitled to receive the quarterly
bulletin of the TC free of charge, until further notice.

Cooperation between IEEE TC on DBE and ACM SIGMOD

The IEEE Technical Committee on Database Engineering puts out this

publication; ACM SIGMOD (Special Interest Group on Management of Data)

publishes the SIGMOD Record In orientation, goals, and membership,
there is much in common between the two groups, and both publications
are aimed at researchers and practitioners in the database area. To

foster cooperation and cross—fertilization between these groups, SIGMOD

has agreed to fund distribution of this issue of Database En~ineerin~
(~~) to its members. The IEEE TC hopes to reciprocate in 1985 by dis

tributing an issue of SIGMOD Record to its members.

A SIGMOD member wishing to receive future issues of Database

Engineering may join the IEEE Computer Society, which allows him to

join any of a number of TCs. Alternatively, he may join just the TC on

DBE, as a correspondent, at no cost (currently). (Write to: IEEE Com

puter Society, 1109 Spring St., Suite 300, Silver Spring, MD 20910.)

A TC on DBE member wishing to receive future issues of £IQMQD
Record may join ACM and any of a number of Special Interest Groups
(SIGs), including SIGMOD. (Write to: ACM, 11 West 42nd St., New York,
NY 10036.)

If you already belong to both organizations, please: (1) pass your
extra copy of this issue along to a colleague, and (2) notify David

Reiner (see address on inside front cover) by mail (or netmail), using
the tear—out form on the next page. This will help us keep down costs

of duplicate mailings in the future.

Briefly, here are the differences between the two publications.
~ published quarterly, focuses on a particular theme with each

issue, and tends to contain mainly invited papers on current research

and development efforts. Although submissions are not subject to a

formal review process, the editors generally read articles very care

fully, and work with the authors to achieve both clarity and brevity.
Upcoming 1985 issues will treat DBMS Performance, Concurrency Control

and Recovery in DBMS5, Natural Languages and Databases, and Object
Oriented Systems and DBMSs.

The Record published from two to four times a year, accepts sub

missions on a broad range of database—related topics, and prefers to

see somewhat unusual articles which may not fit other forums such as

the ACM SIGMOD Conference, the IEEE Data Engineering Conference (Comp—
DEC), or VLDB. When possible, issues have a unifying theme. There is

no formal review process.

We hope in the future to cooperate on one or more joint issues of

these two publications, and plan to refer papers back and forth where

appropriate. In the meantime, enjoy this issue whatever your ‘affilia

tion.

David Reiner, Editor—in—Chief, Database Engineering

Jon Clark, Editor, SIGMOD Record

—1—

Liason Person Needed:

ACM SIGMOD — IEEE Technical Committee on DBE

We would like to follow up on the direction of greater
inter—society cooperation annunciated by the ACM and the IEEE

Computer Society. To make something actually happen, we are

looking for an individual willing to be a focal point in this

task. Such a person would be appointed to the ACM SIGMOD and

the IEEE CS TC DBE as coordinator, or whatever reasonable title

can be invented and supported.

Concerns will be shared publication efforts, conference

sponsorship and schedules, and anything else which appears to

be a positive step. Bea Yormark, chair of the ACM SIGMOD, has

indicated her support. Please contact either one of us.

Gio Wiederhold, Chairperson,
Technical Committee on Database Engineering

Gio’s address and phone # are on the inside front cover; Bea’s

are 7503 Lynn Drive, Chevy Chase, MD 20815, (703)—836—2696.1

If you are or plan to become a member of both ACM SIGMOD

and IEEE TC on DBE, please send a copy of this form to:

David Reiner

Computer Corporation of America

Four Cambridge Center

Cambridge, MA 02142

or notify Dave via netmail:

Arpanet: reiner@cca

EJUCP: decvax!cca!reiner

Our purpose is to keep down costs of duplicate mailings.

Name

Address

Net address (if any)

Check all that apply:

ACM IEEE TC IEEE

SIGMOD on DBE Computer Soc

I I I I

Currently a member I

I

I

I

I I I I

Plantojoin I

I

I

I

—2—

Letter from the Editor

Designing a database is a complex iterative process. It

requires familiarity with design techniques, methods, heuristics,
and tools, and with the nature of the data and its intended uses.

In the last few years, database design research has been on the

upswing. Researchers are concentrating not just on improved
design tools, but also on the overall methodological framework of
the design process, and on integrated environments to support it.

There seems to be general agreement that database design is
best separated into a succession of related but independent steps,
moving from the more abstract levels of requirements analysis and

conceptual design, to the logical level where the target data
model is introduced, to the more concrete levels of distributed
and physical design (though the exact nature and numbers of these

steps may vary slightly from one methodology to another). There

is increasing interest in design systems which support many stages
of database design, and which connect database design to the

broader lifecycle of system design and evolution, including appli
cation development.

Current trends and areas of concentration in database design
include: expanded data model semantics (including more emphasis on

constraints and improved techniques for view integration), more

attention to dynamic (transaction—oriented) aspects of designs,
graphics workstation—based design environments (with interactive

design tools), and Al—related approaches (expert systems technol

ogy, designing for natural language interfaces to databases).
Productive work continues in rapid database prototyping, form—
based design, and physical and distributed design. Commercial
database design products are beginning to be available.

The first three papers in this special issue describe fairly
comprehensive design environments now under development: the Taxis

project at Toronto, CCA’s DDEW project, and the Italian DATAID

effort. The next four cover various aspects of conceptual and

logical design: the fact—base& approach, view integration, the
RED1 logical design tool from Sweden’s SYSLAB, and ADL’s logical
designer. Several university research projects come next, on dis
tributed design, physical design, and form—based design. The last
three papers discuss early prototyping, modeling dynamic aspects
of databases, and designing database updates in a natural language
environment.

My thanks to the contributors to this issue, who have

invested considerable effort to produce concise but readable sum

maries of their current s~_arçh. ACM SIGMOD’s support for print
ing and distributing extra copies of this issue for its members is

also gratefully acknowledged.

David Reiner

Cambridge, Massachusetts

December, 1984

—3—

INFORMATION SYSTEM DESIGN AT THE CONCEPTUAL LEVEL --

THE TAXIS PROJECT

John Mylopoulos, University of Toronto1

Alexander Borgida, Rutgers University
Sol Greenspan, Schiumberger-Doll Research, Conn.

Harry K.T.Wong, Lawrence Berkeley Labs

Abstract

This is a brief overview of the Taxis project, concerned with the development of languages, tools

and methodologies for the design of interactive information systems (ISS) such as reservations, inventory
control and credit card verification. We describe the major novel ideas explored in this project, the

tools and techniques supporting them, and their source in significant ideas of Artificial Intelligence and

Software Engineering.

1. INTRODUCTION

The development of database design techniques and tools is based on philosophical considerations

concerning the nature of databases, their role and the major source of problems in their development.
(Such philosophical underpinnings are of course not always made explicit.) In our case, there appear to

be three fundamental observations whose logical conclusions have shaped the nature of our design aids

and approach in general.

First, we consider the design of databases an integral and inseparable part of the design of

Information Systems (ISs), which include transactions, user interfaces, etc. and hence have broadened

the scope of our research to cover all aspects of Information System design, not just those dealing with

the storage of data.

Secondly, as others, we view an IS as a model of some relevant portion of the “real world”, or

more accurately a model of the end-user’8 (conceptual) perception of the world. As with models in

other fields, an IS is then useful to the extent that it reflects reality accurately, and to the extent that

the information in it is easily accessible. One consequence of this axiom is that IS design is now viewed

as model development or modeling. A second consequence is that IS development should then be much

easier and more successful if it begins at the conceptual level, rather than the logical level. For this

reason, the Taxis project has drawn inspiration from Knowledge Representation schemes current in

Artificial Intelligence, and has adapted them to the specific problems of IS design. An underlying
assumption here is that the mapping from the conceptual design to the more “physical”/”machine
dependent” levels can be automated.

Finally, we view ISs as software, and hence believe that important precepts of Software

Engineering are applicable to IS engineering. However, there is much to be gained by taking advantage
of the fact that ISs form a strict subclass of all possible software, one subject to many restrictions and

limitations.

Among the consequences of these views we list

• the applicability of the software life cycle to ISs. In particular, we advocate separate requirements
specification and design phases, but emphasize the advantages of a uniform philo8ophy, conceptual
modeling, underlying both;

• the importance of ab8traction followed by gradual refinement as a fundamental tool for coping
with the sea of minutiae which need to be captured in a model. ISs however provide an

opportunity to explore new abstraction principles, which may not apply as successfully in the case

of general software.

• the utility of prototyping as a technique for obtaining quick feedback in determining what the user

really wants.

• the need for a methodology of 8oftware engineering to provide at least three things for each level

‘Address correspondence to Department or Computer Science, University or Toronto, Toronto, Ontario, Canada. (416)
978 5180. Netmail to jm@toronto.csnet, borgidaOrutgers.arpa, greenspanOrutgers.arpa, or wongOlbl-csam .arpa.

This research has been supported by grants rrom the Natural Sciences and Engineering Research Council of Canada,

US NSF, and DEC Corporation.

—4—

of specification:

o languages -- precise notations for expressing the relevant information.

o techniques -- procedures for constructing, manipulating, and validating specifications.
o tools -- automated aids designed to support the above.

2. THE TAXIS LANGUAGE

The focus of the Taxis Project is the Taxis programming language, which supports the description of

ISs at the conceptual level (IMYLO8Oa, 80bj, W0NG831). Taxis incorporates a so-called “semantic

data model” which provides for the description of the entities in the world and their inter-relationships
through the notions of objects, related by properties/attributes. A major advantage of this object-
centered framework over traditional record-based approaches is the direct and natural correspondence
between the model and the world (e.g., no reliance on keys), which facilitates both the design and

access of the IS. Individual objects are organized into classes, which describe commonalities of their

instances in the form of constraints -- e.g., properties applicable to them, the valid ranges of values of

such properties. In Taxis, classes themselves are objects, and hence can be members of meta-classes;
therefore classes can have their own properties (e.g., aggregate information). Furthermore, classes are

organized into a hierarchy with general classes located above their specializations. If one class (e.g.
employee) is defined to be a specialization, or subclass of another class (e.g., person), then at all times

every instance of the first is considered to be an instance of the second. An important consequence of

this organization is that properties can be inherited from superclass to subclass, e.g., the class of

employees inherits properties such as name, address, and so on, from the class of persons.

In addition to modeling data, Taxis supports the development of Information Systems by
providing language features to model the activities in the world. For short-term activities, Taxis

provides the notion of transaction familiar in databases as the basic unit of integrity and recovery

maintenance. A transaction consists of an initial group of preconditions which check the applicability of

the operation at this point, followed by a sequence of actions described in traditional procedural
notation (e.g., assignments, loops, conditionals, data manipulations), and concludes with post-conditions.
Taxis attempts to maintain uniformity and parsimony by casting transactions in the same mold as

entities: a transaction is viewed as an object, with its parameters, conditions and actions becoming its

properties; procedure definitions become class descriptions (hence procedure invocations are instances of

these classes); and most innovatively, transactions are also organized into specialization hierarchies (e.g.,
admitting a surgical patient is a specialization of admitting a general patient).

In order to deal with special cases, Taxis incorporates a procedure-oriented exception handling
mechanism, and in a recent extension, provides the ability to store information which does not fit the

class-schema (see Section 6).

To model persistent activities -- i.e., activities with prolonged duration such as participating in a

clinical trial or attending university -- Taxis also supports the notion of 8cript8 (!BARR8O,82],
PILO83a,83b], CHUN84I, ITAXI84I). A script is built around a Petri-net skeleton of states connected

by transition arcs, which are augmented by condition-action rule pairs (viz. ZISM78I). The rules are

described in Taxis, but also allow reference to the passage of’ time, and permit the transmission of

messages following bare’s CSP mechanism. Scripts are integrated completely into the Taxis

framework, so that script classes are organized into a subclass hierarchy according to their

generality/specificity, have their states and transitions defined in terms of properties, and their instances

can be accessed through the same facilities used to access instances of entity classes. This allows among

others queries concerning the currently executing set of scripts.

Finally, an extension of Taxis allows designers to describe user interfaces to ISs, e.g., the query

or interaction language, in the same uniform framework of objects with properties in classes. Such an

extension allows a direct link to be established between the “referring expressions” used in the query

language and their “referents” in the database. The extension described in jPILO8~a,83bJ,~TAXI84] also

provides for modelling tools to be used for the specification of a grammar and a lexicon which are

integral components of any user interface.

3. THE RML LANGUAGE FOR REQUIREMENTS
A requirements model is

- a description of some portion of the world that encompasses potential
information systems and is used to communicate and analyze the problem situation. (A model at this

level corresponds to “Corporate Requirements”.) In our case, it also provides a starting point for

information system design using Taxis.

We have defined a language called the Requirements Modeling Language (RML) for the purpose

—5—

of describing requirements models (~GREE82,84], ITAXI84D.
A fundamental premise of the Taxis project is that one conceptual framework (such as the object

oriented framework described above) can be used both at the design and the requirements specification
level. What does change as a designer moves from one level to the other are the kinds of classes at his

disposal as he constructs his specification, and the kinds of information which needs to be captured.
For the design level these are data, transaction, exception and script classes. For the requirements level,
on the other hand, they are classes of individuals, activities and as8ertions. Informally, classes of
individuals correspond fairly directly to Taxis data classes. Activity classes are intended to model both

instantaneous actions and long-term events, corresponding to transactions and scripts in Taxis. Finally,
assertions are logical formulas making statements about the world, the rest of the requirements
specification, or the relation between the two.

Abiding by the maxim that “the requirements should express WHAT the system does but not

HOW”, RML does not have the notion of “control flow”; instead, RML supports a temporal view of
the world: properties of objects, and their existence are all related to a time line, and the designer must

specify temporal constraints in order to ensure the desired sequencing of events, for example. RML does

however provide abbreviation techniques such as “property categories” (e.g., “initially”, “always”) which

shorten descriptions by removing the clutter of temporal indices. Furthermore, RML provides a

mechanism for introducing and defining new property categories, allowing RML to be customized to a

specific task.

In addition to higher-level descriptions of activities, RML provides the opportunity to model

objects from both the world and the proposed IS, thereby allowing the specifier to express definitions of

terms, such as units of measurements, which would not normally appear in the IS, and to specify
constraints on the performance and accuracy of the IS.

4. METHODOLOGIES OF DESIGN

4.1. Dimensions of Abstraction

An abstraction mechanism is a conceptual or linguistic mechanism that allows certain information to be

highlighted while suppressing other information. In software engineering, abstraction is usually equated
with the suppression of design decisions or implementation detail. However, within a given level, the
Taxis framework offers a set of complementary abstraction facilities based on the notions of aggregation,
classification, and generalization SMIT77J.

If we define a property to be a directed relationship between two objects, aggregation allows one

to view an object as a composite of the objects to which it is related by properties. For example, a

person has a name, an address, and so on. The “abstraction” here is that one may talk about an

object while choosing to ignore its components for the moment.

Along an orthogonal dimension, the classification abstraction allows individuals to be grouped into

classes (and classes into rnetaclasses) that share common properties. By describing class objects, one

abstracts away the the detailed differences of the class instances.

Generalization allows the common properties of several classes to be factored out into the

definition of a single, more general, class. For example, the class of persons can be represented as a

generalization of the classes representing males, females, managers, engineers, female engineers, and so

on. The taxonomic organization provided by generalization hierarchies can lead to models that are

understandable and consistent, because the more that classes have in common with each other, the

“closer” they are located to each other in the hierarchy. Also, generalization hierarchies can lead to

more concise models, since it is sufficient to associate properties to the most general, applicable class

and let inheritance imply the rest.

4.2. Taxonomic Programming
A methodology for specification/modeling should provide guidance to its users. At the heart of many
software development methodologies lies one or more abstraction mechanisms, which allow us to ignore
details at some level, plus a refinement principle which provides for the guided and gradual
introduction of details across the abstraction dimension.

We have explored the utility of the generalization abstraction as the basis of a methodology for

building descriptions which we call tazonomic programming or 8tepwise refinement 6y specialization
IBORG82J. Its main idea is that a model should be constructed by modeling first the most general
classes, and then proceeding to more specialized classes. For example, in modeling a hospital world, one

might consider first the concepts of patient, doctor, admission, treatment, etc. Later, the modeler can

differentiate between child patients, heart patients, internists and surgeons, surgical and medical

treatments, etc. At each step, only the information (properties) appropriate to that level are specified,
and because of inheritance, only new facts need to be stated.

—6—

Generalization is the appropriate principle to exploit when the difficulty of modeling is due to a

large number of details rather than due to algorithmic complexity; a hierarchy of classes organized
along this dimension guides the attention of the designer, and provides a convenient structure for

distributing information and associating it where it most naturally belongs. We emphasize that in

Taxis, specialization is applicable not only to data objects but also to the description of activities,
transactions, exceptions, and scripts.

5. DESIGN AIDS

5.1. Compilers and interpreters
Brian Nixon has implemented a compiler for Taxis programs N1X0831. The target language for the

compiler is Pascal, augmented with relational database facilities such as those provided by Pascal/R
I SCHM8O]. Taxis data hierarchies are translated into relational schemata, and hierarchies of

transactions are translated into the block structure of Pascal. The output of the compiler is a program

containing definitions of all classes and transactions, routines to enforce constraints, a database interface

(as provided by Pascal/R), and a near-empty database.

In developing such a compiler, several interesting implementation problems needed to be resolved,
including the distribution of information about an object in multiple relations, the possibility of

conflicting inherited properties, and the operation of inheritance for procedures. The implementation of

the Taxis compiler has been extended to handle the execution of scripts CHUN84I. The major problem
in implementing scripts is the development of efficient algorithms for testing whether a state transition

is ready to fire or whether the invariants associated with a script state (and expressed in terms of a

logical assertion) are not being violated at a particular time.

Turning to prototyping facilities, an interactive environment for creating and trying out Taxis

programs has been designed and implemented by Pat O’Brien O’BR182]. It includes a class-oriented

editor, whose commands and functionality are centered on Taxis classes; a semantic consistency verifier

which ensures that Taxis programs conform to the semantic rules of Taxis; and an interpreter and

debugger for prototyping. The editor provides the information system designer with facilities to

construct, inspect, and modify a Taxis program. The consistency verifier performs various checks to

ensure the correctness of the conceptual model being specified. The interpreter simulates execution of

Taxis programs, and the debugger assists the designer in validating the model. The design environment

also provides various other aids to the user, such as an online help facility, a documentation generator,
and a way of keeping track of multiple versions of models. The Taxis design environment is also being
expanded to handle scripts EPARK84I.

5.2. The connection of RML to SADTTM
The difficulty of building a high-level requirements specification as in RML should not be understated.

In the initial stages of requirements definition, all of the parties involved are faced with the problem of

deciding what concepts and phenomena are relevant to the situation at hand, agreeing on terminology,
and conveying their “mental models” of the situation to each other. We propose, therefore, that

requirements be defined in two steps:

• The first would use a language for structured analysis such as SADTTM ROSS77~, in which terms

are introduced in an organized way.

• The second would use RML for semantic modeling, which gives definitions of the semantics of the

concepts introduced in the first step.

In CREE84], the connection between SADT and RML is made. SADT provides a way of

introducing concepts/terms into the requirements specification by a process of stepwise decomposition
(expanding a concept “box” into a “diagram” containing several interconnected boxes). The result is a

hierarchically organized structure of interrelated terms, which provide a “structured lexicon”, a sort of

road map to guide the RML modeling process.

RML is then used to express more formally the informat’ion usually expressed by natural language
labels and comments on SADT arrows and boxes. In the process, the semantic relationships expressed
in the RML model are constrained by the connectivity of the SADT diagram from which it is derived

-- e.g., arrows connecting boxes become properties relating the corresponding classes.

in an attempt to validate our design methodology, Taxis was used for describing a medical

information system for the Pacemaker Center at the Toronto General Hospital IDIMA83I, which keeps
track of patients who have received a cardiac pacemaker. It was also used to design a medical

information system for managing clinical trials IBUCH82I, which are controlled experiments for

investigating the cause/effect relationship of new treatments. In both cases, Taxis’ facilities for

—7—

describing scripts, exceptions and organizing classes in specialization hierarchies proved to be very

important.

6. CONCLUSIONS AND CURRENT WORK.
The Taxis Project has designed and implemented a variety of languages and tools for requirements and

design. Although they draw on ideas that are popular in Artificial Intelligence and Data Base

Management, as well as in some programming languages, they are all based on the same object-oriented
framework, which uses three fundamental abstraction mechanisms to structure and organize information.

Software engineering is viewed as the construction of a series of models, starting with a world-

oriented requirements model (SADT plus RML), then a Taxis design model, and ultimately a

completely implemented system. The task of requirements modeling is likened to the task of knowledge
representation in Artificial Intelligence, and the Taxis framework applies concepts that are popular in

Artificial Intelligence (as well as in semantic data models) to both RML and the Taxis language.

Current work is proceeding both on RML and Taxis. The RML language is being extended in

several directions: the uniform treatment of properties as objects; linguistic mechanisms for relating
objects in the world and their images in the IS; allowing contradictory information to be introduced

during specialization, thereby supporting a new abstraction principle: normalization. By providing a

translation of RML into logic, and by connecting this to a specialized theorem-prover, we hope to allow

reasoning about specifications, such as checking for consistency. We are also co-operating with a

software house in adapting RML for “practical use”.

The exception-handling facilities of Taxis have also been greatly extended to allowing dynamic
exceptions -- i.e., allowing information to be stored which violates the schema of classes used during
compilation. This mechanism allows an IS to be much more flexible in the face of variability in the

world, especially unexpected occurrences, and can also be used to deal with such thorny problems as

null values, conversions of measurements, estimates, etc. (see 1B0RG841, TAXI84]).

Acknowledgments The following members of the Taxis project have contributed significantly to the

advancement of the research reported here: Dr. P. Bernstein, J. Barron, B. Nixon, Dr. M. Pilote,
P. O’Brien, I. Buchan, C. DiMarco, S. Park, L. Chung.

REFERENCES

BARR8OJ John Barron, Dialogue Organization and Structure for Interactive information Sy8tems.
Technical Report CSRG-108, Computer Systems Research Group, University of Toronto,
January 1980.

BARR82I John Barron, Dialogue and Process Design for Interactive Information Systems Using
Taxis. Proceedings, SIGOA Conference on Office Information Sy8tems, Philadelphia, PA,
June 1982. SIGOA Newsletter, 3(1,2), pp. 12-20.

BORG82] A. Borgida, J. Mylopoulos, H.K.T. Wong. “Generalization as a Basis for Software

Specification” in M.Brodie, J.Mylopoulos, J.Schmidt(eds.) On Conceptual Modeling:
Perspectives from Al, Databases and Programming Languages, Springer Verlag, 1984.

1B0R0841 A. Borgida, “Language Features for Flexible Handling of Exceptions in Information

Systems”, Technical Note, Department of Computer Science, Rutgers University; submitted

for publication.

BUCH82J 1. Buchan, H. D. Covvey, J. Mylopoulos, C. DiMarco, and E. D. Wigle, “Taxis: A

Language for the Development of Clinical Trial Management Systems,” Proc. Sixth Annual

Symposium on Computer Applications in Medical Care, October 1982. (also ITAXI84])

CHUN84I K. Lawrence Chung, An Extended Taxis Compiler: M.Sc. thesis, Dept. of Computer
Science, University of Toronto, 1984.

DIMA83I Chrysanne DiMarco, Using TAXIS to Design a Medical Information System. (M.Sc.
Thesis) Tech. note #31, Department of Computer Science, University of Toronto, 1983.

GREE82J S. Greenspan, J. Mylopoulos, and A. Borgida, “Capturing More World Knowledge in the

Requirements Specification,” Proc. 6th International Conference on Software Engineering,
Tokyo, 1982. (also FTAXI84I)

IGREE84I S. Greenspan, Requirements Modeling: A Knowledge Representation Approach to

Requirements Specifications, Ph.D. thesis, University of Toronto, 1984.

—8—

IMYLO8OaJ
J. Mylopoulos, P. A. Bernstein, and H. K. T. Wong, “A Language Facility for Designing
Interactive Database-Intensive Applications,” ACM Transactions on Databa8e Sy8terns,
Volume 5, Number 2, June 1980, pp. 185-207.

IMYLO8ObJ
J.- Mylopoulos and H. K. T. Wong, “Some Features of the TAXIS Model,” Sixth
International Conference on Very Large Data Bases, 1-3 October 1980, pp. 399-410.

NIXO83] Brian Nixon, Translating Taxis Pro grams, M.Sc. Thesis, Dept. of Computer Science,
University of Toronto, 1983.

10’BR182] Patrick D. O’Brien, TAXIED: An Integrated Interactive Design Environment for TAXIS.
(M.Sc. Thesis) Tech. note #29, Department of Computer Science, University of Toronto,
1982.

IPARK84I Sun C. Park, Implementation of Extended Taxis Environment, M.Sc. thesis, Department of
Computer Science, University of Toronto, 1984.

IPILO83aI Michel Pilote, A Framework for the Design of Linguistic User Interfaces. Ph.D. thesis,
Dept. of Computer Science, University of Toronto, 1983.

IPIL083b1 Michel Pilote, “A Programming Language Framework for the Design of User Interfaces,”
Proc. of the Conference on Principles of Programming Languages, June 1983. (also
TAXI84])

R0SS77J D. T. Ross, “Structured Analysis(SA): A Language for Communicating Ideas,” in IEEE
Transactions on Software Engineering, Volume SE-3, Number 1, January 1977, pp. 16-34.

SCHM80] Joachim W. Schmidt and Manuel Mall, Pascal/R Report. Bericht Nr. 66, Fachbereich
Informatik, Universitaet Hamburg, Jan. 1980.

ISMIT77] J. M. Smith and D. C. P. Smith, “Database Abstractions: Aggregation and
Generalization,” ACM Transactions on Database Systems, Volume 2, Number 2, June 1977,
pp. 105-133.

TAXI84] Taxis ‘84: Selected Papers, Brian Nixon (ed.), Technical Report CSRC-160, June 1984,
Department of Computer Science, University of Toronto.

WONC83I H. K. T. Wong, Design and Verification of Interactive Information Systems, Ph.
D. Dissertation, University of Toronto, 1983.

ZISM78] Michael D. Zisman, Use of Production Systems for Modeling Concurrent Processes. In
D. A. Waterman and Frederick Hayes-Roth (Eds.), Pattern-Directed Inference Systems New
York: Academic Press, 1978, pp. 53-68.

—9—

The Database Design and Evaluation Workbench (DDEW) Project at Cci

David Reiner, Michael Brodie, Gretchen Brown, Mark Friedell1,
David Kramlich, John Lehman, Arnon Rosenthal

Computer Corporation of America

Four Cambridge Center Cambridge, MA 021112 USA

617/1192—8860

Abstract

The Database Design and Evaluation Workbench (DDEW) is a graphics workstation

for database designers. DDEW provides an interactive support environment for speci

fying and experimenting with database structures and designs, while automatically

maintaining a complete history of the design alternatives that are investigated. It

allows easy and uniform access to a highly integrated and extensible suite of

evaluation, analysis, and design transformation tools that range over the entire

database design life—cycle. The system is object oriented, supports multiple win

dows, and has powerful diagram representation and editing capabilities.

1. Introduction to the Project

DDEW will reside on a Jupiter 12 workstation with a 68010 microprocessor (run

ning Berkeley 11.2 UNIX**), 2 MB of main memory (with 160 MB more on a hard disk), a

bit—sliced graphics processor, and a 1280 x 10211 color frame buffer. This system

may be loosely coupled to a DEC VAX with an Ethernet link. The workstation accepts

input from both a keyboard and a mouse. The mouse is used to point to objects and

to rapidly select commands from fixed and pop—up menus.

On the, workstation screen, the designer can build, display, and manipulate

objects of two fundamental types: lists and diagrams Restricting the number of

fundamental object types to two makes designer—system interactions quite uniform.

Free—form and formatted textual data (such as requirements, attribute definitions,
constraints, and design annotations) are represented as list items, which may be

added, deleted, and modified with DDEW’s list editor. Database schemas and the

design history are represented as diagrams, which may be edited with DDEW’s diagram
editor. Contrasting colors and graphic icons help clarify design structures.

2. The Database Design Process

2.1 Design Methodology

DDEW supports a stepwise methodology for database design that is based on ear

lier work by Teorey and Fry TEOR82b]. Its steps and the tools that DDEW will pro

vide for them are shown in Figure 1 (see REIN8II] for more details). Preliminary
versions of some of these tools were developed at the University of Michigan

TEOR82a]. Improved versions are being built specifically for the DDEW project.
The methodology is iterative; earlier decisions always can be reconsidered, and

alternatives to them can be explored in parallel.

DDEW’s integrated methodology is a framework for Ithe efficient use of the sys

tem by all designers, and an educational aid for novice designers. New and improved
tools (e.g., for physical design) can be incorporated as they become available.

This project Is supported by the Rome Air Development Center (of the United States

Air Force) under contract number F30602—83—C—0073.

* Center for Research in Computing Technology, Harvard University
1* UNIX is a trademark of Bell Laboratories

—10—

Contributing to this ease of modification is the use of a common storage system for

design data, a relatively general system—tool interface, and a clean division of the

methodolo~’ into levels of abstraction.

2.2 Data Models

An extended version of the Entity-Relationship model CHEN77] (referred to as

ER+) underlies all design phases of DDEW. The principal components of the ER+ model

are entities, binary relationships between entities, and attributes (of both enti

ties and relationships). Multivalued attributes (repeating groups) are represented
as (weak) entities. DDEW recognizes and exploits ER+ functional dependencies
(including keys), inclusion dependencies (subset constraints), and constraints on

cardinalities of relationships and on data types of attributes. Transaction speci
fications take the form of a sequence of operations (query, update, insert, delete)
on data objects and on intermediate, set—valued results of other operations.

The user does conceptual design in the ER+ model, and logical design in (gen
eric) relational, network, or hierarchical models. The system represents all DDEW

designs internally as ER+ schemas, with additional information and restrictions for

the logical (and subsequent) levels of design. Examples of data model restrictions

on ER+ are: for the relational model, each entity must have a declared key, and no

relationships are allowed; and for the network model, no m:n or cyclic relationships
are permitted. The (generic) hierarchical model is a subset of the network model,
where there is at most one incoming relationship for entities and no cycles.

Future extensions to the ER+ model may include: aggregation, generalization
hierarchies, multivalued dependencies, “null not allowed” declarations for attribute

values, derived fields (a feature often implemented In commercial systems), and an

ER query language.

3. User Interface and Graphics Support

3.1 Earlier CCL systems

Many characteristics of the DDEW user interface originated in three earlier

systems developed at CCA: SDMS (Spatial Data Management System), the View System,
and PV (Program Visualization). SDMS HERO8O] is a graphical user interface to con

ventional databases. Graphical icons that represent entities In the database are

arranged in 2—D Information Spaces, over which the user can scroll and zoom to exam

ine different parts of the database at different levels of detail. The View System
FRIE82] is an enhanced SDMS that automatically creates new Information Spaces in

response to a user’s ad hoc queries. A repertoire of layout heuristics enables View

to arrange icons within Information Spaces. PV KRAM83) allows programmers to exam

ine and manipulate dynamic graphical representations of programs.

3.2 DDEV Screen Layout

Figure 2 shows a typical DDEW screen configuration (mocked up) that a designer
of a project control database might have created. The screen is divided Into fixed

areas. The rectangular workspace takes up roughly two—thirds of the screen. On it

appear windows onto design diagrams and the design tree, lists, and pop-up menus.

Windows can_be scrolled left, right, up, and down, or resized.- Below the~workspace
is a legend from which the designer selects object icons or list templates to add

to the active window. The legend contains only those Icons or templates that

legally can be added to the diagram or list in the active window.

To the right of the workspace is the fixed menu area containing global com

mands that are always accessible. These include basic window operations (move,
cycle, copy, save, restore) and commands to control tools running in the background
(abort, suspend, resume). Across the top of the screen is an area for svstem mes—

sag and DromDts a mailbox for messages from tools running in nonactive windows,
and, a navaid (navigational aid). The navaid shows a miniaturized view of the entire

diagram in the active window, with a dotted rectangle to indicate the portion of the

diagram that Is visible in the window.
—11—

Steps In the methodology Tools Provided

Requirements Analysis List (and text) editor

and Specification (also used in subsequent levels)

Entity-relationship schema
Requirements ~ — —

synthesis tool
specification

VIew integrator
Normalizer

Conceptual
~_

Diagram editor (ER +)
Design

————

Automatic diagram layout tool

Interface to data dictionary
1tsnaactlon editor

ER + schema diagram
(and transactions)

— Automatic schema transistor

Logical
~_ —

Logical record access evaluator

Design Diagram editora (Rd. Ntwk, Hier)

Ret, Ntwk, or Hier

scheme diagram
(and transactions)

(Horizontal and vertical fragment generatorl
Distributed

~_ ——

Distributed database allocator

Database Design Distributed transaction optimizer

Diagram editor (network topology)

Database partition
and allocation

Index selection tool

Local Physical
~

(Parameterized query optimizerj
Database Design Physical record access evaluator

(Clustering, blocking, etc. toola)

Physical database DDLIDSDL generator for Troll DBMS
structures (DDLIDSOL) ~ (Other schema generators (Rd. Ntwk, Hier))

Prototyping ..~-.—— Troll relational DBMS

Note: tools in brackets (are

possible extensions

Figure 1. DDEW Methodology and Tools

3.3 Object—Centered C~nd Interface

To avoid making the designer learn arcane and convoluted syntax, DDEW has an

object—oriented command interface and uses pop—up menus. When the designer selects

an object from a diagram or list (using the mouse), a pop—up menu appears containing

the operations that are applicable to the selected object. This menu disappears

when an operation is selected from it (or from the fixed menu, which is always

available). The designer may be prompted for additional arguments to the command.

3.11 On-Line Help

In DDEW, help is provided by two mechanisms: referential helo and context—

sensitive help Referential help, invoked by the MORE HELP command on the fixed

menu, provides descriptions of DDEW commands, graphical notation, and the design

methodology. Context—sensitive help, invoked with a dedicated button on the mouse,

provides fast, concise help messages that focus on interaction expectations. It

gives the designer a view of where he or ~e is in the system and what the system

expects next. Context is based on the designer’s position in the design tree, the

states of active database design tools, and the state of the user command handler.

—12—

Figure 2. Conceptual Design (workstation screen mockup)

3.5 Windows

DDEW allows the user to create multiple overlapping windows (e.g., to view

related lists and diagrams). Multiple windows promise efficent use of that precious
resource, screen real—estate. The designer can open several windows onto different

diagrams or onto different portions~ of the same diagram. DDEW maintains consistency
among its windows by propagating changes to all relevant windows. Obscured portions
of a window are saved and restored by the system to avoid having to recalculate

their contents when the obscured portion is brought into view. The scrolling
mechanisms and the navaid help the designer browse through and keep frcm getting
lost in diagrams and lists that are too large to fit in a window.

3.6 Design Tree

As the designer moves through the database design life cycle, DDEW keeps a

graphic record of the alternatives that are investigated and their interrelation

ships, in the form of a design tree. This ensures that no design work will be lost,
and allows the designer to track the progress of designs. The tree contains the

designer’s comments about designs, retains the results of design analysis tools, and

allows inspection of the ancestors of a design. Figure 2 shows a sample design
tree.

3.7 Conceptual and Logical Design Diagrams

ER+, relational, network, and hierarchical schemas are represented graphically
by nodes with arcs connecting then. For the ER+ model, we developed new graphic
methods of specifying relationship cardinalities (by shading the halves of a dia

mond), and partial versus total participation in relationships (using dotted and

solid lines, respectively). In Figure 2, P—c is 1:1, and both PROJ and CONTRACT par’—

Ready.

RQeII.meerts Lid: OVERALL REOUIREMENTS

Tree: PROJECT CONTROL

Rs4IsBItBy

Comiusets: AS ABC has grown in sin. Out informal arrangements to, tracking protects

their managers and employees and their sponsors need to be lormaluied The database is

being eslabhsrred at the request Of Joe Brown

t

eitelb(i) CONTRaCT. d.t.nrrtn.(5) NOrth(s): STaRT DATE. END DATE. AMOUNT

Mtrlb(s): PROJNAME d.t.nr.tn.(s) allAh(s): STATUS. MGR

. DELIVERABLE~ NAME det.rirrine(I) .tgflb(l). DUE DATE

U.k BUSY EMPLOYEES anne..... .ttrlb~,): EMP .PIyOJ

Ush: HIRE . EMPLOYEE Inc..... .tlflb(h(: EMP NAME. EMP •PROJ

AIDE

MORE HELP

DIRECTORY

EXIT

S

U.a: SPONSOR-OF-CONTRACT .ccem. .ttflbt.I. CONTRACT.. SPONSOR NAME

WINDOWS

MOVE

COPY

DELETE

CYCLE

DESIGN TREE

SCALE

SAVE

RESTORE
Conceptual Design: CD2

TOOLS~
ABORT

SUSPEND

RESUME

(
ENTITY

0
RELATIONSHIP

ADMIN

UNIX SHELL

ICON EDITOR

—13—

ticipate totally in P—C. EMP to PROJ is 1:n through MGR; an employee need not

manage any projects, but each project must have a manager. EMP to SKILL is m:n;

some skills possessed by no employee may be present, but every employee must have at

least one skill.

Network schemas are similar, but half—diamonds (which look like arrowheads)

are used to represent set types between record types. The network display includes

ER+ information that cannot be captured in a network schema (e.g., whether or not a

set owner instance must have at least one member instance).

For relational schemas, inclusion dependencies (represented by set inclusion

symbols) are shown as graphic links between relations, similar to with set types in

network schemas. Translation to the relational model always creates one or two

inclusion dependencies (which ensure referential integrity) When a relationship is

given a value—based representation. Representing dependencies graphically allows

the designer to perceive the structure of the database much more easily than when a

relational schema is represented as a collection of unrelated boxes.

Diagram editing commands allow the designer to manipulate single nodes and

arcs in a diagram. Basic editing functions for nodes include: create a new

instance, delete, move, and rename. Arcs can be moved and reconnected. The

designer also can specify collections of nodes, called affinitY arouDs as named

subsets of the entire diagram, and can move them as a block.

DDEW provides layout assistance ranging from incremental placement and connec

tion of nodes and affinity groups to automatic layout of design diagrams, drawing

partly on placement techniques developed for VLSI design. Fast layout heuristics

(e.g., placement of nodes only at grid positions) are used to improve response time

and diagram uniformity. The goal is to quickly produce a first—cut layout that the

designer can modify if desired.

3.8 List Manipulation

Textual data in DDEW generally is displayed in lists. The main list types
are: information (status of design nodes), free—form annotations (on objects),
attributes, transactions, functional dependencies, inclusion dependencies, system
and user—defined affinity groups, requirements, mail, tool input (e.g., candidate

attributes for indexing), tool output (e.g., schedules of transactions in a distri

buted environment), and both generic and DBMS—specific DDL. The field—sensitive

DDEW list (and text) editor will allow the designer to perform uniform operations on

a broad range of objects.

3.9 Tool. Interface

One of DDEW’s main strengths is the high degree of integration of its evalua

tion, analysis, and design transformation tools. The interface to all the tools is

uniform, and the designer will not have to memorize invocation conventions, write

format translation programs between tools, learn a file system, cope with version

control, or know UNIX. The system automatically retrieves and stages tool input

data, and the designer need only examine and evaluate the results.

It. Syste~ia Aspects

DDEW has an internal DBMS (Troll) that provides both centralized data storage

and a high degree of flexibility and data independence, making it easy to incor

porate new tools and data model extensions into the system. The design database

will include information about entities, relationships, attributes, relationship

cardinalities, functional and inclusion dependencies, transactions, display posi

tions of objects (such as nodes and arcs), and relationships among design tree

nodes. Much meta—information also will reside there (e.g., list item templates,

legal design tree and design diagram configurations, and menu contents). Other sys

tems aspects of DDEW are described at greater length in REIN8ZI].

—1 4-.

5. Related Work

Giant wall charts maintained by pencil, scissors, and paste are useful for

schema visualization but are unwieldy and a poor form of input to computerized

analysis tools. Data dictionary systems enforce a certain amount of uniformity
across schemas but are not as complete as design tools. Some early automated data

base design aids have become popular but are either limited in their scope of appli
cation to a single system 1BM75] or are overly text—oriented TEIC77]. Research

into similar (and fairly ambitious) database design systems is underway in Sweden

SYSL83] and Italy BATA84].

6. Future Plans

The DDEW prototype will be completed by July 1985, after a total effort of

eight person—years. The Rome Air Development Center, the project sponsor, expects

to use DDEW in a variety of upcoming design and redesign efforts and to encourage

standardization of design methodologies.

Possible extensions to the prototype DDEW include capabilities for enhanced

semantic modeling in ER+, query optimization (parameterized for the target DBMS),
evaluation of database security, extensive physical design, generation of other

DBMS—specific DDL/DSDL, hard—copy output of design diagrams, off— or on—line data

base tuning, and semiautomatic schema generation from requirements. An intriguing
direction is enhancing the user interface to make DDEW more of an expert system,

capable of understanding the deSigner’s context, goals, and available tools, and of

giving useful advice about alternative choices and their implications.

7. References

EBATA84] Batini, C., De Antonellis, V., Di Leva, A., “Database Design Activities

within the DATAID Project,” Database Engineering 7, 4, December 1984.

CHEN77] Chen, P., “The Entity—Relationship Approach to Logical Data Base Design”,
Q.E.D. Monograph Series, Wellesley, Massachusetts, 1977.

FRIE82] Friedell, M., Barnett, J., and Kramlich, D., “Context—Sensitive, Graphic
Presentation of Information,” SIGGRAPH ‘82 Proceedings July 1982.

HERO8OI Herot, C., Caning, R., Friedell, M., and Knamlich, D., “A Prototype Spa
tial Data Management System,” SIGGRAPH ‘80 Proceedings July 1980.

1BM75] “IBM Data Base Design Aid — A Designer’s Guide”, Program No. 5748—XX4,

GH2O—1627—0, 1975.

KRAN83] Kramlich, D., Brown, G., Caning, R., and Herot, C., “Program Visualiza

tion: Graphics Support for Software Development,” ACM IEEE 20th Design

Automation Conference Proceedings June 1983.

REIN84] Reiner, D., et al., “A Database Design and Evaluation Workbench: Prelim

inary Report,” Proc SPOT—3 Conf., SYSLAB, Chalmers University of Tech

nology, Goteborg, Sweden, August 1984.

SYSL83] “Progress Report, July 1982 — June 1983”, The Systems Development Labora

tory, University of Stockholm and Chalmers University of Technology,
Sweden.

TEIC77] Teichroew,D., and Hershey, E.A.,~ “PSL/PSA:~A Computer—Aided Technique
for Structured Documentation and Analysis of Information Processing Sys
tems”, IEEE Trans on Software ~ SE—3, 1, 1977.

TEOR82a] Teorey, T.J., and Cobb, R., “Functional Specifications for a Database

Design and Evaluation Workbench”, Working Paper 82 DE 1.15, Information

Systems Research Group, Graduate School of Business Administration,
University of Michigan.

ETEOR82b] Teorey, T.J., and Fry, J.P., Design of Database Structures Prentice—

Hall, Englewood Cliffs, New Jersey, 1982.

—15—

DATABASE DESIGN ACTIVITIES WITHIN THE DATAID PROJECT

C. BAT1NI (+), V. DE ANTONELLIS (++), A. DI LEVA(+++J

(4) Dipartimento di Informatica e Sistemistica

Universita’ di Roma “La Sapienza”

C++) Istituto di Cibernetica — Universita’ di Milano

C+++) Istituto di Scienza deli’ Informazione — Universita’ di Torino

ABSTRACT

This ~a~er summarizes current research and development activities

carried on by the Italian DATAID five—years research Project in

the area of methodologies and tools for database design. The main

contributions of the project were a manual methodology, DATAID—1,

that covers all the phases of database design, and a set of tools

that su~~ort the methodolos~ in most critical activities.

1. INTRODUCTION

In September 1979 the Italian National Research Council (C.N.R.) started,

within the PROGETTO FINALIZZATO INFORMATICA research project, a five—year

project, called DATAID, to develop a comPuter aided methodolosv for data

base design. DATAID has considered the development of a computer aided

methodolo~v for database design with the following features: it covers all

the design Phases from requirements collection and analysis to the choice

of the internal data structures; it is aided by tools which suPport the

execution of the methodological steps, automatically verify design

consistency, and handle design documentation; it is oriented towards both

centralized and distributed applications.

A manual methodology, DATAID—1, was first been developed and is now

awailable tosether with teaching modules. Several tools supporting the

methodology have been designed and implemented as prototypes. The research

Piugram until the end of the project includes the extension of the

methodolos~ to incorporate distribution design and the full development and

te~jting of tools.

A detailed description of the first project results is in (CERIB3a), while

the most recent results are described in the forthcoming book (ALBA85b].

In this ~aeer we provide a brief description of both the methodolosv and

tools developed within the DATAID ProJect.

2. THE DATAID—1 METHODOLOGY

In order to experiment with the desired seneral features mentioned above,

we decided to produce, first of all, a simplified Prototv~e of the design

methodology, called DATAID—1, whose major characteristics are:

1. the methodolosv is manual, i.e. it does not require a comPuter

sttPport

2. the conceptual model adopted is the Entity Relationship Model, enriched

with seneralization hierarchies;

3. in the conceptual step the methodolosv provides several heuristics to

~uide the designer in choosing conceetual structures and checking the

schema quality.

4. in the logical and physical design phases, both relational and CODASYL

—16—

classes of DBMS’s are considered;

5. the logical and physical design phases are driven by quantitative

parameters in order to optimize the execution of the most important

oPerations that will be performed on the database.

The DATAID—1 methodolos~ decomposes the design of a database application

into four design phases: user requirements collection and analysis;

conceptual design (views design and integration); logical design;

physical design. These phases are described below.

2..~1 Requirements collection and analysis

The aim of this phase is to collect, for each enterprise environment, user

requirements and formalize them into descriptions of data, operations, and

cuents. Inputs to the Phase are natural lan~uase sentences, collected

following a collection elan which identifies, for each environment, users

from whom to set the requirements of the database application; users are

eu~Red to describe how the functions are executed, specifying the data and

the operations of interest for each function. Output of the phase is a

collection of glossaries describing data~ operations and events. In order

to fill in the glossaries, natural lansuase sentences are filtered and

rewritten in a restricted language; revised requirements are then

classified into different sentence t~~es (data, operations and events

sentences).

2.2 Conceptual Design

In the conceetual design phase a conceptual view is built for each

organization environment (view) of the enterprise; these views are then

integrated to form a slobal conceptual description. The conceptual schema

of an environment is the formalized representation of both the static

(data) and the dynamic requirements (operations and events).

Starting from the glossaries built in the Previous phase, a set of

operation schemas is first modeled. An operation schema is a high level,

nonprocedural description of the data involved in the operation, exeressed

using an Entity Relationship description. The data schema, which is the

complete representation of all the data used by the operations of a

particular environment, is built incrementally: when an operation schema

is completed, it is assresated with the previous partial data schema. This

process is iterated for all the operations and eventually produces the data

sehema. A similar process produces the events schema, a description of all

the functions of the environment as a network of conditions and operations.

Data and operations schemas are described with an extended version of the

Entity Relationship model; for the events schemas, the Petri net formalism

is used.

Data schemas are then analyzed and integrated to build the slobal data

sohema. Because of different perspectives that users ma~ have and

different equivalent rePresentations that exist in the model, several

complex actvities are required during views integration: finding the

common part of the different schemas, finding the different representations

chosen by the designers, and so on. After the slobal data schema has been

obtained, operations schemas are restructured in order to make them

consistent with the final representation of data in the slobal schema, and

enriched with procedural and quantitative information. Finally, events

schemas are coordinated in order to rePresent communication amons the

—17—

environments of the enterprise. This results in the slobal events schema,

the formal specification of the database application behaviour. In the

Present version of the methodology, the events schema is considered as an

input to software design and is not used in further design phases.

Recently the DATAID—1 conceptual step has been improved in several

directions:

1. Attention has been given to the influence of linguistic rePresentations

used to express requirements on design activities. The idea is that each

linguistic representation used for requirements (e.g. natural language,

forms, record formats) has its own peculiarities in expressing the

semantics of data; such peculiarities should be captured by the designer

to simplify the design process (see (BATI84a]).

2. A deeper comprehension has been obtained of conceptual design soals

(completness, minimality, readability, self—documentation) and activities

needed to achieve them (see (BATI84b]).

Presently, research activities concern the extension of the methodolosv to

specific classes of applications (e.g. statistical databases) and the

introduction of a maintenance phase, whose soal is to reuse as far as

possible documentation on previous designs when some restructuring is

needed.

2.3 Logical Design

The process of logical design transforms the slobal conceptual schema into

a logical schema, depending on the database manasement system chosen for

the implementation. Two classes of database manasement systems are

considered: relational DBMSs and network (Codasyl—like) DBMSs. The

transformation process is based on two fundamental tasks:

1. Simplification of the slobal conceptual schema: data structures not

directly translatable into the logical model (such as generalization

hierarchies and multiple relationships) are converted into simpler ones.

2. Refinement of the simplified schema: a set of transformations on the

simplified schema is applied (tipically, partitioning of entities and

replication of attributes); performance measures (based on the number of

logical accesses) are used in order to select, amons different

alternatives, the solution which optimizes the execution of the most

important operations.

2.4 Physical Design

Physical design decisions for Codasyl—like databases are subdivided into

three broad decision areas:

1. access path suPport decisions: implementation strategies for entry

point records (LOCATION MODE clause options) and sets (SET MODE clause

options) are considered;

2. elacement strates~ decisions: member records of a set are dispersed

throushout the database area or clustered so that neighbouring member

records tend to be stored in the vicinity;

3. storase allocation decisions: database areas for storase of records,

indexes and pointers array tables are selected; each area is subdivided

into a number of eases and the ease lensth is fixed.

The methodolos~ is based on the evaluation of all possible record and set

implementation strategies from the slobal processing point of view. This

—18—

is accomplished in the following tasks

1. creation of record usase trees: accesses to a record are sloballv

described as a tree where the leaf nodes are the different tYPes of

oPerations performed on the object record;

2. storase allocation: heuristic rules are used for calculating record

lenght, record allocation i’n areas7 area and ease size, and other physical

Parameters.

3. evaluation of implementation strategies: starting from the relative

costs and frequencies of the operations, implementation strategies are

evaluated.

The main soal of physical design for relational DBMS’s is the selection of

secondary indexes of the relations of .the schema. Physical design in this

case proceeds evaluating first of all costs of operations and generating

then an efficient set of indexes.

Logical and physical design activities are now being extended to

distributed environments (see CCERIB3b], NAVA], ECERI84a], CERI84b]).

The main contribution is the distinction between two steps, a logical step

that concerns design of the structure of horizontal and vertical fragments,

and a physical step that concerns the optimal allocation of frasments to

nodes.

3.. THE COMPUTER AIDED METHODOLOGY

After experimenting with the DATAID—1 manual methodology, several automated

tools were developed; the tools were intended to provide suPPort to the

data base designer by means of an environment in which a desien tool

collects the static and dynamic definitions, tests their mutual

consistency, and sometimes detects or solves design problems. A detailed

description of tools ma~ be found in ECERI83a], (ALBA85a] we focus here

on INCOD—DTE, DIALOGO, ISIDE.

INCOD—DTE (Interactive Conceptual Design: Data, Transactions, Events) was

developed at the Dipartimento di Informatica e Sistemistica — Universita’

di Roma, and at the Istituto di Cibernetica — Universita’ di Milano, with

the collaboration of Database Informatica — Roma. The tool provides an

integrated environment for the definition of data, transactions, events.

Data are described using the extended Entity—Relationship Model, as in

DATAID—1. Transactions are described at different levels of abstraction,

as the tool provides transaction definition commands at a conceptual level

(describing the data involved), at a navigational level (describing access

paths) and at an executable level (testing a proptotype implementation of

the database). Events are modeled throush Petri Nets, and are specified

using event specification commands (concerning events7 see also EDEANS3a],

in which the original formalism is extended to express executable

procedures). 1NCOD—DTE can suppOrt the desisner in the~conceptUälization

of static and dynamic requirements, automatically checking the consistency

of the process and simplifying the manasement of the corresponding

documentation. It handles several t~~es of metadata, interacts with the

user in discovering conflicts, prompting possible solutions (scenarios) and

guiding him throush some steps of the design activities. INCOD—DIE is

currently being implemented in a UNIX environment.

INCOD—DIE is now being extended with GINCOD, a graphical interface that can

also be seen as a self—contained graphical editor for interactive design of’

—19—

conceptual schemas exPressed in terms of a diagram. Placement of symbols

a~’d layout of diagrams can be driven in GINCOD both by the designer (with

classical graphical editor commands) and by the system. When layout is

performed by the system, the following “aesthetics” are taken into account

(see also EBATIS4c])

— minimization of the number of crossings between connections

— minimization of the number of bends in connection lines

— minimization of the slobal lensht of connections lines.

A running Prototv~e of GINCOD has been implemented in PASCAL.

DJAL000 was developed at the Dipartimento di Informatica — Universita’ di

Pisa with the collaboration of Systems and Management — Torino. DIALOGO is

an interactive system that allows use of the programming lansuase GALILEO

in the design of a conceptual schema. The main characteristics of DIAL000

are that the user interacts with the system using a single lansuase to:

edit the schema and operations definitions; ask the system information

about definitions; load sample data to test the behaviour of the

onerations define new operations to personalize the working environment.

DIAL000 is now being extended to manase also the phase of requirements

collection and analysis in a unified environment. For further information

on DIALOGO7 see ALBAS4a] in this issue.

iNCOD—DTE and DIALOGO can be seen as two com~lementar~ attempts to design

effective tools for the designer of a conceptual schema.

In INCOD major enphasis is given to identifying which specific design

activities can be given to an automatic system; e.g. in order to increase

the readability of the schema, several possible restructurings can be

performed. While it is a task of the designer to find the frasments of the

schema to be restructured, INCOD can perform the transformation. In

DIALOGO the major effort is to provide a highly sophisticated linguistic

feature that allows expression at the conceptual level of a rich set of

semantic properties of data and executable specifications for processes.

Although the systems are based on different data models, that is an

extended Entity Relationship data model and a semantic data model, the

tools provided by INCOD—DTE can also be embedded in DIALOGO and infact the

conceptual design produced by INCOD—DTE can be considered as a first steP

toward an executable conceptual design given in GALILEO.

Automated suPPort for the logical and physical design phases is under

development as a joint project — the ISIDE (Intesrated System for

lmplementation DEsign) project— by the Dipartimento di Informatica —

Universita’ di Torino, CIOC — Bologna, CSELT — Torino and CRAI — Cosenza.

ISIDE (see BONA], EDILE], (ORLA]) is a collection of integrated tools that

suPPort the logical and physical design phases and give an evaluation of

dilta manipulation operations considered in the conceptual phase. ISIDE is

composed of six modules:

1. the Dynamics analyzer senerates quantitative Parameters for the logical

and physical design process.

2. the Logical designer translates the conceptual description into a

Codasvl or relational logical schema. The translation process is driven by

the quantitative Parameters that characterize the workload defined on the

d a tab as e.

3. Relational and Codasvl physical designers refine the logical schema

with the appropriate physical data structures definition statements to

become a complete database schema ~rocessable by the target DBMS’.

—20—

4. Relational and Codasvl performance predictors help the designer in

testing the adeauacv of design decisions. Given a Processing scenario

(number and tYPe of operations simultaneously active on the database at a

siven time), the predictors evaluate the expected response time for each

o~eratjon. This information can be used to check whether the design is

liI~ely to satisfy the user efficiency requirements.

The ISIDE sYstem is being developed using PASCAL under UNIX. For modules

2.3,4,5 and 6 a working ProPtotYPe is operative; module 1 is under

development.

Concerning extensions to distributed design, various algorithms for

vertical and horizontal partitionins have been implemented and are

currently integrated.

REFERENCES

EALBAS4a] A. Albano, R. Orsini — A PROTOTYPING APPROACH TO DATABASE

APPLICATIONS DEVELOPMENT — IEEE Database Engineerin~, this issue.

EALBA85a] A. Albano, L. Cardelli, R. Orsini — GALILEO: A STRONGLY

TYPED, INTERACTIVE CONCEPTUAL LANGUAGE — To a~~ear in ACM Transactions on

Database Systems~ 1985.

EALBA85b] A. Albano, V. De Antonellis, A. Di Leva (eds.), COMPUTER AIDED

DATABASE DESIGN, North Holland 1985.

(BATI84a3 C. Batini, B. Demo, A. Di Leva — A METHODOLOGY FOR CONCEPTUAL

DESIGN OF OFFICE DATA BASES — Information Systems, Vol. 9 N. 4 (1984)

.P.ATI84b) C. Batini, M. Lenzerini — A METHODOLOGY FOR DATA SCHEMA

INTEGRATION IN THE ENTITY RELATIONSHIP MODEL — IEEE Transactions on

Software Engineerins, 1984.

C8ATI84c] C. Batini, M. Talamo, R. Tamassia — COMPUTER AIDED LAYOUT OF

ENTITY RELATIONSHIP DIAGRAMS — Journal of Software and Systems, 1984.

EBONAG5] R. Bonanno, D. Maio, P. Tiberio — AN APPROXIMATION ALGORITHM

FÜR SECONDARY INDEX SELECTION — to be published in Comeuter Journal.

(CERI83a] S. Ceri (ed.) — METHODOLOGY ANDTOOLS FOR DATABASE DESIGN, North

Holland 1983.

ECERI83b] S. Ceri, S.B. Navathe, 0. Wiederhold — DISTRIBUTION DESIGN OF

LOGICAL DATABASE SCHEMAS — IEEE Transactions on Software En~ineerins, Vol

SE—9, N. 3, July 1983.

ECERI84a] S. Ceri, G. Pelagatti — DISTRIBUTED DATABASE SYSTEMS — McGraw

Hill, 1984.

ECERIB4b] S. Ceri — AN OVERWIEV OF RESEARCH IN THE DESIGN OF DISTRIBUTED

DATABASES — IEEE Database Engineering, this issue.

DEAN83a] V. De Antonellis, R. Bert.occhi, B. Zonta — CONCEPTS AND

MECHANISMS FOR HANDLING DYNAMICS IN DATA BASE APPLICATIONS, Proc. 7th ICS

ACM European Resional Conference, Nurbers 1983.

EDEAN85] V. DeAntonellis, A. Di Leva —DATAID—1: A DATABASE DESIGN

METHODOLOGY, Information Systems 1985.

DILE] A. Di Leva, P. Giolito — AUTOMATIC LOGICAL DATA BASE DESIGN IN A

CODASYL ENVIRONMENT — Proc. IEEE 4th Jerusalem Conference on Information

Technology, Jerusalem 1984.

ENAVAJ S. B, Navathe, S. Ceri, G. Wiederhold, J. Dou — VERTICAL

PARTITIONING ALGORITHMS FOR DATABASE DESIGN — ACM Transactions on Database

Systems, Vol. 9~ N. 3, September 1984.

CORLA] S. Orlando, P. Rullo, W. Staninzkys — TRANSACTION WORKLOAD

EVALUATION IN THE CODASYL~DATABASE ENVIRONMENT — Proà. IEEE Comeuter Data

Base Engineering Conference — Los Angeles, 1984.

—21—

A REALISTIC LOOK AT DATA

W. Kent

IBM General Products Division

Santa Teresa Laboratory

San Jose, California, 95150

Re—examining the basic properties of records

leads to a simpler, fact—based approach to data

analysis, design, and documentation.

It’s useful to keep in mind that the subject matter of data

analysis, design, and documentation is data records. How we

perform those functions is guided by our view of the nature of

records themselves. As with constellations and elephants, we

can choose to see the “reality” of these things in different

ways.

Our goal initially is to determine what concepts are really

essential for the tasks of logical design and documentation of

normalized relational databases. The concepts will apply

quite readily to record design in other kinds of data bases,

and provide a sound basis for considering non—normalized

designs as well t KENTB3a,b,c 1.

The central questions in logical data design are: (1) what

records should be specified? and (2) what fields should those

records have?

Current methodologies define records on the basis of an entity

concept, perhaps motivated by the perception of records as

entities in themselves. A data record has the characteristics

of an entity. it is inserted, deleted, and retrieved as a sin

gle unit. Record occurrences are uniquely identified (by their

keys), and they are aggregated into record types, correspond

ing to the notion of “entity type”. Hence records are

entities.

There is an understandable appeal in the apparent analogy

between records and real—world entities. The fundamental mod

elling assumption underlying most current methodologies is

that some things in the real world are entities and others are

not, and records are chosen to correspond to the entities.

That is, data records constitute a “model” of real entities.

In simple situations we have, e.g., one record to represent an

employee, another to represent a department, and so on.

In this approach, which we can call “entity—based”, two kinds

of information are distinguished: attributes of entities, and

relationships among entities. Records are populated with

fields in two steps:

—22—

1. Providefields forsingle—valuedattributesoftheentity.

2. Provide fields for many—to—one relationships with other

entities.

Afterwards, additional records must be defined to accommodate

many—to—many relationships, n—ary relationships, and

multi—valued attributes.

This entity—based approach provides a reasonable first approx

imation, but leaves considerable room for refinement. In the

first place, there really are no effective criteria for decid

ing which things in the real world are entities and which are

not. Ultimately we are left only with a circular definition:

we ought to define as entities those things for which we want

corresponding records. The distinction between attributes and

relationships is similarly blurred. At best, if we have fig

ured out which things are entities, then we might say that

relationships are facts which connect entities, while attri

butes connect entities with non—entities.

Furthermore, the correspondence between records and real—world

entities is quite imperfect. In most real databases, one can

find:

1. Information about a given entity distributed over several

records.

2. Information about several entities contained in the same

record.

3. Records that don’t represent any one entity, or records

that “represent” several entities.

Li. Things which we might intuitivelyconsider to be entities

but having no corresponding records to represent them.

As much as we might wish it, we cannot find a general one—to—one

correspondence between records and real—world entities ——

unless we rely on the circular argument which defines an entity

to be something represented by a record.

At best, we will have a one—to—one correspondence between some

records and some entities. In such cases, a record type is

serving as a “master list” for the population of the corre

sponding entity type. That is, entities of this particular

type ar~e deemed to~exist if and onLy--if they hav-e a correspond

ing occurrence of the record type. This underlies the concept

of “referential integrity” DATES1I, wherein entities of cer

tain types may be referred to only if they are identified by a

“primary key”, i.e., in a master—list record.

We could arbitrarily define “entity” to mean those things for

which we do provide such master—list records, but that dis—

—23—

tinction is not particularly useful, and should not be exagger

ated.

Now suppose we discard those modelling assumptions, and take a

fresh look at the realities of data records.

If we examine any field in a record, we find that it contains a

character string. These character strings generally represent

something in the real world, e.g., a person, a department, a

color, a length, a money amount, and so on. Furthermore, any of

these things in the real world can often be represented by dif

ferent strings in different fields, i.e., according to

different representation conventions. A department may have a

name and a number; a color may have different names in differ

ent languages; lengths can be expressed in different units, and

money in different currencies. Some representation schemes

provide unique identification: “D99” represents one depart

ment, and “6 feet” represents one distance.

How is information conveyed by fields? Any field considered in

isolation contains very little useful information. A field by

itself can only tell you that certain things exist, e.g.,

employees, dates, money amounts, etc. Most of the real infor

mation contained in databases consists of the interconnections

among such things. A money field is only meaningful because it

is connected in a record with the employee who earns that money

as a salary. A date field is only meaningful when connected to

a field representing something related to that date, e.g., the

employee who was born, or hired, or married, on that date.

Information is provided by the aggregation of fields into

records, i.e., by the connections among fields. This is the

essential information—bearing property of records: they tie

fields together in order to capture the connections among them.

That’s why we have records: to connect related fields.

There are thus three main components in the descriptions of

fields and records:

1. What each field mentions, i.e., the entity type.

2. J±~ each field refers to that entity, i.e., the form of

representation used.

3. ~Lj~ each field is present in the record, i.e., what infor

mation is being conveyed by the fields. This corresponds

to a connection among the things occurring in several

fields, i.e., a relationship, or fact.

Everything we have said about fields applies uniformly to all

fields. We don’t have any basis here for saying that entities

occur in fields in one way and non—entities occur in a differ

ent way, or that fields for attributes are somehow different

from fields for relationships. Facts are “about” any of their

participants. The assignment of employees to departments is as

—24—

much a fact about departments as about employees. Birthdates

are facts about people, and also about dates (who was born on

that date).

Records are, we observe, aggregations of facts. But, given a

collection of facts to be maintained in a database, how should

they be clustered into records? That question essentially

restates the fundamental task of logical database design.

Here the fact—based approach departs significantly from the

entity—based approach. Rather than saying that we choose enti

ties as clustering points, and aggregate facts around

entities, we observe that clustering is actually dictated by

the mechanism for maintaining single—valued facts (many—to—one

relationships). Thismechanism isprovidedbysingle fields in

keyed records.

Key fields, containing unique and singular identifiers, insure

that there will not be more than one record corresponding to

the entity identified in the key. This allows a record type to

serve as a “master list” for the population of an entity type.

Single—valued facts are then maintained by representing them

in (non—repeating) fields in keyed records. For example, if

there is only one record per employee, and each such record

contains only one field for a department, then we have no way to

associate an employee with more than one department. A single
field in a keyed record enforces the many—to—one relationship,

i.e., the single—valuedness of the fact.

Many—to—many relationships, such as the list of departments in

which an employee has worked in the past, or the list of his

skills, must go in a separate record, sometimes referred to as

an “intersection record”.

The structure of records in a logical database design is dic—

tatedbythe following principles:

1. The single—valuedness of a fact about something is

enforced by maintaining that fact in a record having that

thing’s identifier as its key.

2. Several single—valued facts about the same thing can be

maintained in the same record.

3. For all other kinds of facts (e.g., multi—valued, n—ary), a

separate record is-required for each fact.

The results of the entity—based design methodologies eventual

ly conform to this principle. It is simpler to use this record

pattern directly as the basis for a design methodology.

We note that this record pattern is the same for

“relationships” and “attributes”. If an employee is assigned

to a single department and earns a single salary, then each

—25—

gets a single field in the employee record. If an employee has

been assigned to several departments and has earned several

salaries, then each of these must be maintained in a distinct

intersection record. We only need to distinguish which facts

are single—valued and which are multi—valued. There is no

motivation to distinguish between “relationships” and “attri

butes” based on record structure.

The record pattern principles subsume the master list concept,

in practice. In all real applications, it seems that there are

always some single—valued facts to be maintained about any

entity type that may need a master list. Thus the fact—based

approach will define the necessary records, without having to

rely on a master—list principle for defining records.

The “first principles” developed in this re—examination of

record semantics lead naturally to certain conclusions about

entity—relationship models, data analysis and design, and data

documentation.

A realistic look at the semantics of records and at the task of

logical design reveal no basis for distinguishing between

things which are entities and things which are not, or between

facts which are relationships and facts which are attributes.

This justifies the simplified entity—relationship model based

on just the two fundamental constructs: entities and relation

ships EKENT7B, NIJS83J.

This does not implyatotallyhomogeneousviewofallentities

some significant distinctions remain. Some entity types maybe

considered more important than others, and will be dealt with

at earlier stages of data analysis and design than others.

Some will be considered important enough to be included in con

ceptual schema diagrams, and others will not. Some entity

types have corresponding record types to serve as

master—lists, others don’t.

The significance of such distinctions should not be exagger

ated. They do not imply essential distinctions in the seman

tics of data structure, or in the methodologies of data

analysisand design.

The fact—based approach leads to a simple synthetic methodol

ogy for data analysis and logical design KENTB3c]. Data anal

ysis consists essentially of identifying the facts to be

maintained, without trying to distinguish between entities and

non—entities, or between relationships and attributes. It is

only necessary to distinguish between single—valued and

multi—valued facts.

Logical data design then consists simply of aggregating

together single—valued facts about the same things.

Multi—valued facts and n—ary relationships will, in most

cases, remain unaggregated, i.e., they will be left in separate

—26—

records. The end results are the same as for the entity—based

methodologies, but achieved more simply and directly.

The fact—based approach also leads to a simple structure for

documenting the meanings of data elements in a dictionary

KENT85J. The first requirement 15 to have a distinct diction

ary entry for each field. Factoring several fields into the

same “data element”, as is common practice, precludes the pos—

sibilityof fully documenting the unique meaning of each field.

The documentation for each field should capture:

1. The entity type represented in the field.

2. The form of representation used in the field.

3. The relationship(s) in which the field is involved,

including the role it plays.

This documentation can be developed during the design process.

References

(DATE81 I C.J. Date, An Introduction to Database Systems (third

edition), Addison—Wesley, 1981.

KENT78I W. Kent, Dpta and Reality North Holland, 1978.

(KENT83aI W. Kent, “A Simple Guide to Five Normal Forms in

Relational Database Theory”, Communications of the ACM

26(2), Feb. 1983, 120—125.

KENTB3bI H. Kent, “A Catalog of Logical Data Design Options”,

IBM Technical Report TRO3.224, March 1983.

KENT83cJ H. Kent, “Fact—Based Data Analysis and Design”, in

Entity—Relationship Approach to Software Enqineering

North Holland, 1983 (Davis, Jajodia, Ng, Yeh, eds.). Also

in Proc. Symposium on Data Base Management Systems, Nov.

15—17, 1983, Sydney, Australia. Also in Journal of Systems

and Software 4(2,3), July 1984.

EKENT85] W. Kent, “The Semantics of Records”, (in

preparation).

NIJS83] G.M. Nijssen, “From Data Bases Towards Knowledge Bas

es”, in DBMS: A Technical Comparison (Infotech State of

the Art), P.G.H. King, editor, Pergamon Press,U.K., 1983.

—27—

TOOLS FOR VIEW INTEGRATION

Ramez Elntasri (1) James A. Larson (2), Sham Navathe (3)
and T. Sashidar (3)

(1) University of Houston

(2) Honeywell Computer Sciences Center

(3) University of Florida

ABSTRACT

Tools to aid the DBA in view integration are needed in two different contexts:

a) merging views to form a logical schema of a single database, and b) merging

views of separate databases to form a global schema representing the content

of all the databases. This paper describes tools that are being designed for

translating views to a canonical format, collecting correspondences among

schema objects, merging views, and generating mappings between views and the

merged schema.

I. INTRODUCTION

With the diversity of data models and database management systems, the

development of view integration tools is becoming increasingly important.

View integration arises in two different contexts:

a) Logical database des~g~ Several views are merged to form a logical

schema describing the entire database. User queries and transactions

specified against each view are mapped to the logical schema.

b) Global schema design Several databases already exist and are in use.

The objective is to design a single global schema which represents the

contents of all these databases. This global schema can then be used as

an interface to the diverse databases. User queries and transactions

specified against the global schema are mapped to the views (schemas)

supported by the relevant databases.

Figure 1 illustrates four major tasks to be performed during integration:

1. Convert views to canonical data model Intra-schema transformations are

applied to each view to be merged so that it is converted into an

easy-to-integrate form.

2. Specify correspondences among objects in two or more schenlas

Correspondences are specified among the attributes, object classes, and

relationships of the views to be merged.

3. Merge view Objects in two or more views are merged, based on the

specified assertions.

—28—

DBA

These four tasks are based on an

Integration In NAVA82]. Because

software tools which aid the DBA in

interrelated. The remainder of this

for performing these tasks.

extension of the methodology for view

these four tasks are closely related,

performing these tasks must be likewise

paper describes proposed software tools

II. CONVERT VIEWS TO CANONICAL DATA MODEL

View translators convert data descriptions expressed using different data

model representations Into a canonical format. For the canonical format, we

have chosen an extension to the Entity-Relationship (E-R) data model CHEN76],
called the Entity-Category-Relationship (E-C-R) data model WEEL8O, ELMA].

The E-C—R data model extends the E-R model in two main areas:

Figure 1

14• Generate mappings Mappings between schemas and views are generated for

use in translating database requests within either of two contexts:

a) from views to the logical schema

b) from the global schema to the underlying databases.

—29—

1. The category concept is used to represent sub-classes HAMM81].

Categories can also be used to group entitles playing the same role in a

relationship.

2. Cardinallty and dependency constraints on relationships are specified
precisely.

The E-C-R model uses the following constructs: entity sets, relationship
sets, categories, and attributes. The term object set refers to entity sets

or categories. Entity sets represent sets of entities that have the same

attributes. Categories represent additional groupings of entitles front one or

more entity sets. Similarity, a category can be used to model a subset of one

entity set. An example of the E-C-R model is shown in Figure 2; the E-C-R

diagram Is an extension of the E-R diagram CHEN76). Rectangular boxes

represent entity sets, hexagonal boxes represent categories and diamond shaped
boxes represent relationship sets.

Car type

Figure 2.

Two types of categories exist in the E-C-R model. A sub-class category is a

grouping of entitles from one entity set or category. Members of any entity

set may belong to any number of sub-class categories. The category concept

allows one to model generalization. In the example shown in FIgure 2, CAR and

TRUCK are defined to be sub-classes of the VEHICLE set.

Pname

Paddr
Cname

Pur. date

Tonnage

—30—

The second type of category is used to group entitles playing the same role in

a relationship. The category OWNER includes the entities COMPANIES and

PERSONS playing the owner role in the OWNER relationship. Thus OWNERS are a

subset of the union of COMPANIES and PERSONS.

Constraints on the number of instances of an entity or category that may

participate in an instance of’ a relationship are represented by a pair of

Integers. In Figure 2, each vehicle instance must participate in at least one

and at most n instances of the OWNERSHIP relationship.

III. SPECIFY CORRESPONDENCES AMONG OBJECTS

The following correspondences among the individual views are established by
the DBA:

1. Object set name correspondences.
2. Attribute name correspondences.
3. Candidate keys for each entity set.

4. Correspondences between object sets in several schemas.

5. Correspondences among role names and relationship sets.

6. Correspondences among relationships sets relating the same object sets.

The correspondence of two object sets from different schemas depends on the

possible extensions of these object sets when the database is populated. Two

similiar object sets A and B from different views are related in one of the

following ways:

(1) For each point in time, the extension of A are the same as the

extension of B (DOM(A)~DOM(B))

(2) For each point in time, the extension of A includes the

extension of B (DOM(A)~DOM(B))

(3) For each point in time,
the intersection of the extension of A and

the extension of B is empty (DOM(A)(~DOM(B)=~)

(4) None of the above.

The DBA systematically specifies which of these correspondences apply for

pairs of object sets. Checking routines automatically notify the DBA whenever

contradictory correspondence relationships have been specified. For example,
if DOM(A) = DOM(B), DOM(D)(~DOM(A) ~, then DOM(B) DOM(D) would result in a

contradiction.

Correspondences are automatically generated for some pairs of objects. For

example if DOM(A) DOM(B) and DOM(B) DOM(D) have been specified then DOM(B)

= DOM(D) is automatically generated.

IV. MERGE VIEWS

We are designing an interactive view integration algorithm that will merge

several views given a collection of specified relationships among object sets

within the views. Object set integration rules are given in ELMA84) and

relationship set integration rules are presented in NAVA84I.

—31—

V. GENERATE MAPPINGS

The TAILOR algorithm, which is invoked by the view integration algorithms,

generates mappings between the merged schema and the views to be merged.

These mappings are used to translate commands expressed against the merged

schema into commands expressed against views, or to translate commands

expressed against one of the views into commands expressed against the merged

schema, depending upon the context of the view integration process. The

TAILOR algorithm will use query modification STON75I to translate retrieval

operations.

The design of a translation mechanism for update operations (sometimes called

the view update problem) is difficult primarily because there may be many

plausible translations for an update operation, each having a different effect

on the database contents. The DBA uses TAILOR to develop several translation

procedures for each object set and relationship set of the global schema or

view seen by the user. The DBA may (1) restrict the set to one element,

leaving the user no choice for choosing a translation procedure at run time;

(2) make no restrictions; or (3) restrict the set somewhat but leave some

choice for choosing a translation procedure for run time selection by the

database user. Figure 3 illustrates the approach.

We have designed translation procedures to modify, delete from, and insert

into an entity set derived from two entity sets participating in a

relationship in the underlying schemas LARS83). However, additional general

translation procedures need to be designed for entity sets and relationships

sets derived in other ways. The update translation mechanism suggested by

Masunaga MASU83I appears promising for this purpose.

I or View Seen by the

~Definition of the Schema~”\

~~~neraIized Translation

Procedures

\~Databas~se~aseUser
_

I
DBA

~~LTh$
Database

User

Figure 3

—32—



REFERENCES

CHEN76I Chen, P.P.S., “The Entity Relationship Model- Towards a Unified

View Data,” ACM Transaction on Database Systems Vol. 1, No. 1,
1976.

ELMA84I Elmasri, H., and Navathe, S. B., “Object Integration in Database

Design”, Proceedings of IEEE Conference on Data Engineering Los

Angeles, CA, April 24—27, 1984, pp. 1I26_Ii~3.

ELMA] Elmasri, R., Hevner, A., and Weldreyer, J., “The Category Concept:
An Extension to the Entity—Relationship Model”, submitted for

publication.

HAMII81) Hammer, N., and McLeod, D., “Database Description with SDM: A

Semantic Database Model,” ACM Transactions on Database Systems
Volume 6, Number 3, September 1981.

LARs83] Larson, J. A., and Dwyer, P., “Defining External Schemas for an

Entity-Relationship Database”, in Entity-Relationship Approach to

Software Engineering (C. G. Davis, S. Jajodia, P. A. Ng, and

R. T. Teh, eds.) Elsevier Science Publishers B. V., 1983, pp.

347—364.

MASU83] Masunaga, Yoshifumi “A Relational View Update Translation

Mechanism”, IBM Research Report RJ3742(43118), 1/12/83.

NAVA82] Navathe, S.B., and Gadgil, S. G., “A Methodology for View

Integration in Logical Database Design; Proceedings of the Eighth
International Conference on Very Large Databases Mexico City,

September 1982.

NAVA84] Navathe, S.B., Sashidhar, T., Elmasri, R., “Relationship

Integration in Logical Database Design”, Proceedings of the Tenth

International Conference on Very Large Databases Singapore, 1984.

STON75] Stonebraker, M.R., “Implementation of Integrity Constraints and

views by Query Modification,” Proceedings of the ACM SIGMOD

Conference San Jose, California, May 1975.

WEEL8O] Weeldreyer, J.A., “Structural Aspects of the

Entity-Category-Relationship Model of Data,” Report Hr--,

Honeywell CCSC, Bloomington, Minnesota, March 1980.

—33—



RED1: A Database Design Tool

for the Relational Model of Data*

Anders Bjornerstedt
Christer Hulten

SYSLAB

Departhent of Information Processing & Computer Science

University of Stockholm

~~EDEN

ABSTRACT

A design tool, RED1 (RElational Database design aid version 1), is presented.
The objective of RED1 is to:

a) give the designer a means of prototyping a small, but representative data

base and to actually execute queries and transactions. The designer will

then be able to test whether a design (consisting of relation schsmes and

constraints) performs as expected under transactions and queries. Such

behavior is difficult or iir~ossible to determine analytically. As the

designer changes the design, RED1 will rronitor the consistency of scha~a

and transactions.

b) give the designer a set of analytical support functions on the meta data

base (sch~na) level.

The programming language Prolog CLOC81] is used for the implsmentation of the

tool. This sin~~plifies the programming of the tool, makes modifications of it

easy, and gives a natural connection to predicate logic.

1. Introduction

Systans for managing large scale databases under the relational model have

become comnercially available and therefore the value of design tools for the

relational model is obvious. RED1 BJOR83] is a tool which supports the user in

schana and transaction design. It contains a number of small procedures or

operations which are used in a free and interactive manner. The operations can

be divided into two categories, depending on their objective:

a) Operations which support a prototyping approach to database design. They
collectively provide the functions of a small scale DBMS. That is, the

DBMS is functionally fully relational (X)DDS2, DATE83], even if it is not a

*This work is supported by the National Swedish Board for Technical Developnent
(~).

—34—



‘true’ DBMS in terms of scale. By using these operations the designer can

define a database (in terms of domains, relations, constraints, transac

tions and views), and experiment with a small extension. The database

definition (schema) is itself represented relationally. RED1 is thus in a

sense self—descriptive.

b) Operations which are used to analyze properties of the schema and to sug

gest designs. For example there are operations for testing whether a rela

tion scheme is in a certain normal form (SAGI8O], and for synthesizing
relation schemes in third normal form BERN76]. These operations are

presently based purely on the analysis of database dependencies (functional

and multivalued).

The user defines relation schemes, transactions, data dependencies and

integrity constraints. He may also build the database extension. The same

query and data manipulation operations (relational operators) are used for

accessing schema definition, transaction definitions, currently defined depen
dencies, as well as the basic extension of the database being defined.

The programming language Prolog CLOC81] is used for the implementation of

the tool. Prolog is a small, interpretive, high level language, with a very

simple syntax. The interpreter is basically a mechanical theorem prover for a

restricted first order predicate calculus (Horn Clauses). This sirr~lifies the

programming of the tool, makes modifications and extensions to it easy, and

gives a natural connection to predicate logic. The last aspect is most apparent
in connection with the expression of constraints.

The database which the designer builds in RED1 is in general defined with

more precision than that which can be handled by today’s large scale relational

DBMS. Explicit constraints of many kinds (including dynamic constraints) are

allowed. Constraints are expressed in a restricted first order language, which

is similar to but not as terse as pure Prolog. The facilities of RED1 should

encourage the designer to experiment with different solutions, to “cut and

paste” relations. The analytic operations presuppose sane elementary knowledge
of relational theory (tJLLI~182, MAIE83], on the part of the designer.

2. Prototyping with RED1

The operations of RED1 operate on the system relations and user defined rela

tions which all are maintained in primary storage. The relations are

loaded/saved at the beginning/end of a session with RED1. A schema is created

by:

o Defining data types.
o Defining domains on data types.
o Défiñing attributes on domains.

o Defining relations on attributes.

o Defining constraints, transactions and views on relations.

—35—



Actually a strict bottan up approach is not required or recommended. The system
constraints and system transactions (1) of RED1 will ensure that the database
definition will not be left in an incomplete state.

RED1 has an integrity nirnitor which evaluates relevant constraints after a

transaction is completed. If an integrity violation occurs, the designer is

notified and either the database state is automatically reset to the state that

existed before the transaction, or another (presumably correcting) transaction

is automatically invoked. (2)

A data type defines how elements of a domain, defined on that data type, are

represented in the database. A domain, on the other hand, is an abstraction on

the level of the semantics the designer is trying to express. By making the

distinction between domain and data type we avoid confusing syntactic similarity
with semantic similarity, e.g., adding a person’s salary with his shoe size

should not be possible just because they are represented identically. It is our

experience that the number of data types needed is usually few compared with the

number of domains. RED1 has a few predefined data types which we think suffice

for the designer who is concerned with logical design. The distinction between

domain and data type also encourages the designer to create as many domains as

needed. Creating a new domain simply consists of deciding on a suitable name

and stating which data type it is to be defined on. The handling of data type
and domain definition in RED1 is based on McLeod ‘s approach (MCLE76, HAMM75].

Attribute names are global in the database. An attribute can appear in

several relation schemes, but can only be defined on one domain. An attribute

represents one ‘role’ for a domain in the database. (3)

Relations are defined by a relation name, the set of attributes included in

the relation scheme, and the subset of the attributes which is to be the primary
key.

Views, constraints and transactions are defined in terms of relations and

operations on these. Views and transactions can also be defined in terms of

previously defined views and transactions (operations) respectively. The

primitive (predefined) operations of RED]. can best be described as a combination

of the relational algebra and the relational calculus. Primitive operations can

(1) System—relations, constraints and transactions, could be called meta—

relations, constraints and transactions, i.e., they hold and operate on the

schema. An example of a system transaction would be “create relation”, which

would operate on system relations “relation,” “attribute,” etc. and involve

system constraints expressed over those relations.

(2) The risk of infinite recursion is avoided by letting the designer intervene

at each violation before a correcting transaction is executed. The designer
can then choose to back up instead of allowing the correcting transaction to

proceed.

(3) For an explanation of ‘role’ see DATE81] p. 86.

—36—



be added or modified by the designer, although this does require knowledge of

Prolog programming. All the primitive operations of RED1 are regarded as tran—

sactions by RED1 if they are used in isolation. More canplex operations can be

built by composition over primitive or complex operations, and named and stored

in the database. The composed operation when executed in isolation will then be

regarded by RED1 as a transaction, i.e., the unit of consistency.

3. Explicit Caistraints

A constraint is defined by:

o An integrity assertion

o One or more enforcement specifications
o For each enforcement specification, a violation action

The integrity assertion is a labeled statement which must hold in every con

sistent database state. In RED1 assertions are closed formulas of first order
logic. However they are expressed in a restricted way. To achieve goal direct—
edness, that is a procedural interpretation, and a simpler language, no explicit
quantifiers are used. Instead, quantification of variables is determined by the
context in which they appear. Variables always range over the domain of attri
butes in relations. Relation schemes correspond to predicates in the formula.
A simple example would be:

shipnent(partnum:X, suppoum:Y)

=>

part(partnum:X) & supplier(suppnum:Y)

which roughly states that “for every shipnent, the part and the supplier must

exist”. The variables X and Y would in this case be universally quantified.
Dynamic constraints, which are restrictions on allowable transitions between
database states, are expressed using dynamic relations With every defined

relation, RED1 associates two dynamic relations. Every tuple inserted into a

relation by a transaction is also inserted into one of the associated dynamic
relations. Every tuple deleted from a relation is inserted into the other asso

ciated dynamic relation. When the transaction is completed and integrity is to

be determined, the total change to the database is reflected in the dynamic
relations. Dynamic constraints are then expressed as static constraints on

dynamic relations. If no constraints are violated, the transaction can be
accepted and RED1 deletes the extensions of the dynamic relations. This idea is
obtained from Nicolas and Yazdanian (N10D78]. An example of a dynamic con

straint would be:

del_employee(unpno:E, salary:S) &

ins_thployee (empno:E, salary: Snew)

=> Snew > S.

which states that “the salary of an employee cannot decrease”.
-

—37—



An enforcement specification is a statement about when a constraint should be

evaluated. It would be very inefficient (even in a prototyping situation) to

evaluate all constraints after every transaction. A constraint should be tested

if and only if the transaction included operations which could have violated the

constraint. Enforceinents are specified by relating an operation (name), a rela—

tion (name) and a constraint (label) to each other. Whenever an operation
(primitive or composed) has been performed on one or more relations, all con

straints related to this operation and relation are added to a list of con

straints to be enforced after the transaction is finished.

To each enforcement specification the designer can associate a violation

action stating what RED1 should do in case of violation. The default action is

to back up and generate an error message consisting of the label of the con

straint which has been violated. The designer can optionally specify his own

error message, which may be more explanatory, or indicate that a certain opera
tion (correcting transaction) is to be performed.

4. Malyzing arxl Synthesizing Scheu~s

Independently of prototyping the database and transactions the designer can

analyze alternative relation schemes on a purely intentional level. RED1 has

operations for defining functional and multivalued dependencies by relating sets

of attributes with each other. A relation scheme can be tested to see if it

conforms to a certain normal form (2nd, 3rd, bcnf & 4th). Furthermore, it can

be determined if a particular data dependency logically follows from previously
defined dependencies. Given a set of functional dependencies it is possible to

mechanically generate a set of relation schemes in third normal form BERN76].

The designer can easily focus on a subset of the attributes and dependencies
defined so far that is considered iirVortant for the moment.

5. Concluding 1~ii~rks

RED1 is a tool for logical design of relational databases, which tries to

integrate analytical and constructive functions with a prototyping approach. It

is based on a small relational DBMS with an integrity monitor that aids the

designer both in creating a consistent design and testing proposed transactions.

However, RED1 has not yet been tested on any larger practical design problem.
Such a test may influence its future developnent. One such developt~ent would be

to provide automatic schema and application program generation for large scale

production DBMS’s, with the specified schema and transactions of RED1 as inpit.

References

BEIW6. P.A. Bernstein, “Synthesizing third normal form relations from func

tional dependencies,” ~CM ‘ Vol. 1(4) pp. 277—298 (Dec. 1976).

—38—



BJ~83. A. Bjornerstedt and C. Hulten, “RED1 A database design tool for the

relational model,” Report No. 18, SYSLIB, Dept. of Information Processing &

Computer Science, Stockholm, Sweden (March 1983).

~OC81. W.F. Clockskin and C.S. Mellish, Progranmin~ .jn Pro].oq Springer—
Verlag, Berlin Heidelberg (1981).

CX1D82. E.F. Codd, “Relational Database: A Practical Foundation for Produc

tivity,” coirinunications .Q~ .th~ ~4 Vol. 25(2) (February 1982). The 1981 ACM

~fliring Award Lecture.

D~L~81. C.J. Date, ~], Introduction t~ Database Systems third edition,
Addison—Wesley (1981).

1~IE83. C.J. Date, ?~a Introduction ~ Database Systems Addison—Wesley Systems
Programming Series (1983). Volume II

HN~75. M.M. Hammer and D.J. McLecd, “Semantic integrity in a relational data

base system,” Proceedings VLDB pp. 25—47 (Sept 22—24, 1975).

1’~IE83. D. Maier, Th~ Theory ~ Relational Databases Computer Science Press,
Rockville, MD. (1983).

?cLgl6. D.J. McLeod, “High level expression of semantic integrity specifica
tions in a relational database system,” MIT/LCS/TR—165, MIT, Cambridge
Massachusetts (1976).

NIW7B. J.M. Nicolas and K. Yazdanian, “Integrity Checking in Deductive Data

bases,” pp. 325—344 in Logic and Databases ed. H. Gallaire & J. Minker,
Plenum Press, New York and London (1978).

S~I8O. Y. Sagiv, “An algorithm for inferring multivalued dependencies with an

application to propositional logic,” Journal ~ JJ~ AQI Vol. 27(2) pp.
250—262 (April 1980).

UILM82. J.D. Ullinan, Principles ~ Database Systems Second Edition, Computer
Science Press, Rockville, Maryland 20850 (1982).

—39—



Ab. IRMA

An Automated Logical Data Base Design and Structured Analysis Tool

Robert M. Curtice

Arthur D. Little, Inc.

Acorn Park

Cambridge, Massachusetts

(617) 864—5770

Abstract

A brief description of the main features and examples of the outputs from
an automated tool are presented. The tool is an aid in logical data base
design and in structured systems analysis.

Introduction

ADL IRMA (Information Resource Management Aid) is a system designed to aid in
logical data base design, structured system analysis, and strategic systems
planning. It has been under development at Arthur D. Little, Inc. for more
than four years and has been successfully applied to more than a dozen
industrial and government situations. ADL IRMA operates on the IBM Personal
Computer (or compatible) and utilizes 128K bytes of memory and the graphics
option.

Logical Data Base Design Methodology

ADL IRMA is designed to support a particular methodology for logical data
base design, and to appreciate its features, a brief introduction to this
methodology is required. A more substantial and rigorous description of the
method can be found in CURT82].

By logical data base design (sometimes called conceptual design)~ we mean a

description of data which is free from any physical implementation
considerations or specifications. The intent is to define what the data is,
what it means, and how it is interrelated. The resulting logical data base
design does not imply implementation using Data Base Management Software.
The level of definition dealt with by the methodology is appropriate for data
modeling (in which case the design does not imply implementation at all), or
for the logical level design of an application’s data base or files.

As with most logical data design approaches, this method begins with the
identification of types of objects, called entities, about which data needs
to be recorded in a data base or file (or modeled in a data model). For
example: Employee, Vendor, Department, Part, Customer, Account, and Policy

is a ServiceMark of Arthur D. Little, Inc. Hereinafter

referred to as ADL IRMA.

—40—



are typical entity types. In our terminology, each of these entity types

becomes a “key” in a data structure chart, and is depicted graphically at the

top of such a chart in a box. Subordinate to each key, we will record the

elements of data which are about that entity.

Four types of data elements are permissible:

(1) The regular data element, which characterizes or describes the

key. It is depicted in an oval shape on the data structure chart.

(2) The multiply—occurring regular data element, for cases in which

more than one value of the characteristic may apply to one

instance of the key. This is depicted as a three dimensional oval.

(3) The associator data element, which serves to relate the key of

this chart to the key of another chart, or perhaps to itself. It

is shown in a box on the data structure chart.

(4) The multiply—occurring associator, used when the key may be

related to more than one instance of the related key, in the same

relationship. It is depicted in a three dimensional box.

There are three remaining fundamental aspects to the methodology. If the key
element may validly exist with no value of the subordinate element (regular
or associator) then we insert a small “o” in front of the element’s shape on

the chart to signify it as optional. Also, the elements subordinate to the

key may be arranged in a tree structure with the following interpretation:
Each node (data element) in the tree becomes a created entity type, with

subordinate data elements being “about” that newly created entity.

Finally, we always observe the reversal rule: If Key A relates to Key B

through an associator in A’s structure chart, then we must supply another

associator in B’s chart to relate B to A in the inverse relationship. This

not only provides a cross—reference of all associators, but forces the

designer to specify the one/many and optional/mandatory choices for the

inverse relationship.

All of these components of the methodology are exhibited in Figure 1 which

shows three keys in an oversimplified “toy” data base. The interpretation of

the first of these three data structure charts is as follows:

For each Part there must exist one and only one Name of Part. Each Part

may be related to none, one, or more than one Approved Vendor. For each

Approved Vendor which a Part does have, there must be one and only one

Vendor’s Part Number. Finally, each Part may be associated with one or more

Purchase Orders Issued for that Part, but some parts may exist with no

Purchase Orders Issued.

The methodology makes use of the concept of domain. We distinguish a data

element (each shape on a data structure chart) from a domain which is the set

of values or identifiers which a data element can assume. Thus Part (as a

key), Part Vendor Supplies, and Part Ordered are three distinct data elements

all defined over the same domain of Part Number.

—41—



A ‘TOY’ DATA BASE

~
PP~T

~

Figure 1

Example of Data Structure Charts

The reader may want to satisfy himself that an unambiguous interpretation can

be made for the remaining two keys in Figure 1. Also notice that each

associator (box subordinate to a key) does indeed reference a legitimate key,
and that all such associations are reversed (e.g. Part Vendor Supplies
reverses Approved Vendor). The element Vendor’s Part No. is subordinate to

both Part and Approved Vendor; as such it is a characteristic of a created

entity which is the idea of a Part as it is supplied by an Approved Vendor.

Finally, students of relational data base theory will observe that each

branch of the tree under a key forms a third normal form (but not first

normal form) relation, since the concept of functional dependency is imbedded

into the logic of data structure chart formation.

ADL IRMA as a Logical Data Design Aid

The heavy involvement of user personnel in the design process is central

to the way in which the methodology is applied. Thus the approach must be

explainable to non—data processing personnel in 15 minutes or less. The

actual design process is conducted in intensive working sessions during which

the data structure charts are initially prepared, and reviewed and modified

in iterative sessions. A major benefit of the ADL IRMA system is that it

permits entry and maintenance of all the data associated with a logical data

design, and can rapidly produce up—to—date data structure charts for use by
all design participants. A sample of the computer generated data structure

chart is shown in Figure 2.* In this output, note that the domain of each

element is explicitly listed and that a text definition of each data element

is also printed.

* This chart is drawn from the sample problem set forth in VANC82I.

—42—



I 1,
Manufacturer (MOOD) I

DOMAIN IS Nanefacturir Ni~ (001)
C A manufacturer in any ~ganization which

produces cars that Come wider the control
of the Registration Authorit~. All
manufacturers which have produced such
cars since the Registration Authority wan

formed are recorded in the data base.

/

l—-( Effective Date of Manufacturers Operation (MIlD)
I I DOMAIN IS Date (006a
I -~ A date on which the ~ubie~t sanufactver

began operations. No lore than five
manufacturers are permitted to be in

operation at the Isee tile. Note,
however, that a •anulacturer may cease

operation and ruuae at a later date.

/ ‘

I~~O~( Date Manufacturer Ceased Operations (M120)
I DOMAIN IS Date (006)

Date

upon which manufacturer ceased

operations and permission to operate
lapsed. A manufacturer lust not ocr any
cars when operation ceases.

1 Car Model Produced Ny Manufacturer (M400

DOMAIN IS Model Naae (003k

Identifies

all of the models of cars

which were produced by the sub ject
manufacturer during i~s operation.

——0-- Car Owntd by Manufacturer (M500}
DOMAIN IS Registration Nu~er (002)

I —~ References the cars which are owned by

the subject manufacturer. Cars which are

produced but not yet transferred to

garages are firmt registered in the name

of the Manufacturer.

I—O-< bate of Manufacturers Fuel Consumption Letter (M530)
/ DOMAIN IS Date (006)

——

Date of letter notifying manufacturer
that the cars produced by its operation
during the previous year had exceeded the

mani.ui fuel consumption value. This
letter is mailed •oeeti,e in January for
violations of the previous vear~n

acceptable fuel conmu.ption levels.
Figure 2

Data Structure Chart Output from ADL IRMA

Data structure charts can be immediately displayed on the monitor using
ADL IRMA. Modification to the specifications of a data element and the

structure is made in an interactive mode. Moving an element in the structure

automatically moves the entire sub—tree subordinate to that element. In

addition to the ability to easily modify the data structure charts and print
them, ADL IRMA produces a variety of other reports along with appropriate
error messages indicating a violation of the methodology. Among these are:

• A domain report which cross references all data elements

defined over each domain.

• An element report which flags errors such as an invalid

domain, or an associator which has no valid reference.

• A report and associated file which can be used to load

one of a number of DBMS data dictionaries on the mainframe.

—43—



ADL IRMA as a Structured Analysis Aid

The PC user may create a data flow diagram on the monitor and to print it

using a standard dot matrix printer. In order to provide sufficient room for

a complex diagram, four “windows” each slightly smaller than the monitor

screen may be utilized. Moving the cursor across the window boundary

automatically displays that window.

The basic operation of the system in this mode is to place the cursor at the

desired position on the diagram and press a single key to generate the

appropriate symbol for a process, datastore, external entity or data flow;

these are the basic primitives of structured analysis GANE79]. Then the

identifier of the process, data store, external entity or data flow is

entered; the system looks it up in its files, and if valid, places the full

name on the diagram. An example of the resulting diagram is presented in

figure 3.

Processes, external entities and data flows are described to the ADL IRNA

system prior to creating the diagram. Each datastore is equivalent to a

“key” as previously described. This approach integrates the structured

analysis support with the logical data design. Additionally, the data flow

descriptions can reference the data elements which appear on them; again data

elements are precisely those described during logical data design.

In addition to the data flow diagram itself, ADL IRMA produces a series of

reports about processes and data flows. If a key data element is referenced

as the source or destination of any data flows, then these are cross

referenced in the corresponding data element report.

Figure 3

Sample Data Flow Diagram Output

Product_Datal~ll
______________________

Sales OLjectioes(94391
Market HeedsL44~l /i~rbet “~

I Prots~cts ) Soles Perf. Forecastl443ll
Inquiries and OPdersl~4~s\(kk1PRDl —

Design Costs(~9j7l

Product CipabiIitiesl~l~l

Lahor OifersI4~4l Perf.~Pluns I Requests(112111
Lahor RequestsIIID9l 1 1 Oh.j.~ (asides 4 ~pprovalsI9lZ1l

Uesdor InsticesI~19i

,‘ Adois~,
Plan 4 Cootrol Custopier Psg&ntslIII?l

~ (4DMPLCJ J~

~tCustoi~r loooiceI~I

~jesdor Patiientsl~l2l

t,M~I Oi’~t,p gtuIiid~2ai

In eroal Orders(~l5l
fI~RODIJCT DESIGN

II lhrt I

V

Desi~ Data ,~Design
P( Products

(DL~PDDI

TecKaolo~aFttda~I

becjqn ~a~~ifieatiunl~I9I

4VaROP~U~D INt~ISTRI4L
DlVlSl~

LEVI1 1 hoTA ILC4I

anufactaning CestsI~32l

•

~iir~, Purchase OMersl~1l~
Deliver Productsj
(MFGPRDI

. ~
_______________ -

UeuJ~r Product Data(4~d9I

—44—



Experience with ADL IRMA

As previously mentioned, ADL IRMA has been utilized in more than a dozen

actual design and planning situations. The major benefit of the system is

the ability to maintain consistent documentation about a rapidly evolving
design, and the facility to easily modify specifications and obtain new

documentation (including graphics) with short turnaround. For example, if a

data flow appears on several data flow diagrams when its name is changed

once, then subsequent printings of each, diagram will reflect the current

name. Typically, both data base and data flow designs’ are intitially

prepared on flipcharts and entered into the ADL IRMA system by a

para—professional. Viewgraphs prepared from ADL IRMA output are then marked

up and used to modify the specifications in the system in an iterative manner.

A secondary benefit of the system is the checking and cross referencing that

it performs. These features help insure that the final design is consistent

and within the rules of both the logical data design and structured analysis

methodologies.

Finally, one of the interesting side benefits of the system is that it has

allowed us to build up a number of data designs in machine readable form

which cover a cross section of industries and data problems. From this “data

base” of data base designs, we are able to collect and analyze properties
across designs, which few people are likely to be in a position to think

about. Empirical data about the properties and statistical attributes of

data base designs are not well developed. We plan to report on the results

of these investigations in the near future.

References

GANE79I Gane, C. and T. Sarson, Structured Systems Analysis; Tools and

Techniques Prentice—Hall, Inc., Englewood Cliffs, NJ, 1979.

CURT82] Curtice, R., and P. Jones, Logical Data Base Design Van Nostrand

Reinhold, Inc., New York, NY, 1982.

VANG82] Van Griethuysen, J. (ed) Concepts and Terminology for the

Conceptual Schema and the Information Be.se International

Standards Organization, SO/TC97/SC5—N 695, March 15, 1982.

—45--



An Overview of Research in the Design of Distributed Databases

Stefano Ceri, Barbara Pernici, and Cio Wiederhold*

Dip. di Elcttronica, Politecnico di Milano, P.za L.da Vinci 32, Milano Italy; (2)236-7241
~
Computer Science Dep., Stanford University, Stanford CA 94305; (415)497-0785

Abstract

Distributed database design is viewed as consistmg of three phases, partitioned to mitlimize

their interaction. The initial and final phases relate strongly to traditional logical and J)hysical
database design. The second phase is itself subdivided into fragmentation an(l allocation tasks. We

report on methods appropriate to those tasks and their interaction, based on research work done

at Stanford, under the KBMS projectt, and in Italy, tmdcr the DATAID projectt.

1. Introduction

Several prototypes and commercial systems for accessing distributed (latabases have beeti tic—

veloped. RaJ)id growth iii their application is pre(liCtPd. Most operational apl)licat.ions have been

handcrafted, and appear difficult. to opt.inuze initially an(l maintain in the long term. The problem
of designing effective applications using these systems is thus l)ecoming more and more important.

2. Framework

The design of a database application in a Jlon(listributed ejiviroiiment is typically subdivided

into two (hist.iflct phases. The logical (ksign aims at. producing a representation (schema) of all

the data and their relationships required by the application. The physical (lCsigll aims at selecting
the physical storage structures which allow (‘fli(;ieI1t access to l;lie (lata. In this paper we (10 not

address ti w tech inques which are reqi iire I for these two phases, which arc describe 1, for ins taiice,

in ~Ccri 831 and Wied 831.
The design of a (lisLrll)utcd (lal,al)ase application inserts a phase, called (li~4tril)Ilt,ion design,

betwecit tin’ logical and physical pi lases. Distril )l Iti( )li (i(’sigIi al IllS itt, (](‘t.Vflllill Ii ig l.li(’ (I istti l)Ut,iOil

of the data to the sit;es of 1,1w dist.ril)ut;ed (iat,al)asv. Two l)ussil)le apj>roachics exist;:

a: Top-Down Approach.
This itpproacli is typical of a distributed (lat.al)itse system which is (leveloped front scratch.

An integrateti (lat,al)ase schema which models all the data of the (list;ril)ut,e(l aJ)1)iicaLion is initially

designed; the schema is then partitiollc(l into several siibschemas, one at each (latal)ase site, and data

arc distributed accordingly. Iii 1)articlllar, g1ob~tl data objects (relations) lmloiiging It) the integrated
sdieiiia jtt(’ d(’cOniI)OScd into fragiiieiit.s, au(l li’agiiiciits are tlieii asslglIe(1 to l.hie Slll)Schl(’IIlaS at; the

thlfereiit sites. Fragment;al;ion is au I uiiport.aiit. as per I of ii istril )lI ted (iatal)ascs, 1 )ecal.Ise it allows

the user It) write j~rograiuis which list’ glol ~aI data Oi)ject.$ and are lritlisI)itr(’l)I. 1.1) lata (Iist.rll)iLt,iOIL

auth iraglulclltdd.Ion, whjilt’ 1,1w systcuii controls the pI~t(~t’1uleI1t. of fragtiiviits in the niost; ellicient way.

Top—down (lislril)Iit.iOU tiesigit is therefore (lccomposc(l into two pl~ses:

al: The design of fragmeñtatio~n. The goal of this subphase is to (let;erluline fragments
as “units of data distribution”, i.e., portions of global data objects which can (:ollvefliently be

(listributc(l. The design of fragmentation requires an umiderstaiidi.ng of the properties of global

t spon8orcd by l)Altt’A contracts N3g-82-C-25 and N39-84-C-211.

1 spoiisored by the National Itesearcli Council

—46—



data objects and of the applications which use them; therefore, the design of fragmentation can be

regarded to be the logical phase of the distribution design.

a2: The allocation of fragments. The goal of this subphase is to determine the sites where

fragments should be allocated, possibly by replicating fragments over multiple sites. Allocation of

fragments aims at the optimization of the distril)uted database performance, and can tliciefore be

considered a “physical” decision.

With this approach, distribution design follows the logical (lesign of the global schema, and the

physical design at each site follows, in turn, the design of data distribution., as shown in Fig. 1.

LOGICAL
C global

DESIGN
schema )

ii
DISTRIBUTION DESIGN

I DESIGN of FRAGMENTATION

~

I

I DESIGN of ALLOCATION I

______

ii
PHYSICAL DESIGN
C at each site )

Fig. 1: Phases in the Design of a Distributed Database

b: Bottom-Up Approach.
This approach is typi(;al of (listribute(l datai)ases which are (leveloped as an aggregation of

pre~existing databases. With this approach, scitemas rcpresent;mg the portion of data stored at

each in(hvidilal site coiist,itirte the starting point;, an(l (listril)ution design consists in i(lefltifyiflg

tire data which are cOl111ii()il to the (listinct schciitas, an(l giving tli(’111 a corimion i~eJ)rcS(’iitatiOti.

The integration j~roccss 5110111(1 solvo’ “contlicts”
, i.C., (hiIh’1~(’1it rCl)rCS(’UtatiOil~ of the saimie data

111 (1i!k’rClit scliviuas. in tins i~ai~cr, we C0IIc(’lltL~ate on (lie t.01)—dOWli J)j)rO~tchI; the l)OttOfli—11I)

al)l)roacll was sliulied in Daya 82], ain(l (lie mtegratiomn ol (lllfei•(’Jit schreinas iS (lescril)o’d in IT~U 83],

Nava 82], all(l INava 84b].

3. Design Problems

In this section, we reView the design I)rol)IenlIs winch ariSe in the tOJ)—dOWii approach; in the

iiext tWo sections, we will indicate the al)proachcs olevelopeol to the solution of each individual

l)rol)lemlI, aml t;o tire imltcgral.R)1n of all time soiiitioii methods within a single framework.

Let its assiiiiic ~ relational 1110(1(1 for the global schema. With tire relational model, two

types of fragi iein(ations arc possible:

a: Horii~onta1. t~raginicirts are subsets of the t111)h’s of a global relation. Each liorizotital

fragment of a same global relation has Lime same relation schema..Each fragment is associated

with a predicate (called “quahihication” ) which indicates the distinguishing property possessed by

the Inipies of that !ragmnent. In this paper we assume (lisjoint fragments, amid therefore also time

prcohcatcs SlioIJl(l be (lisjomt. Ilorizontal fragments caim be defined froimi global relations using

selectiomis and semi—joins (see Ceri 841).

I): Vertical. Fragmemits are defitied by projecting global relations over siIl)sets of their

attributes. In order to mmiake the projection lossless the key attribute or a tuple identifier is included

—47—



within each fragment. A vertical fragmentation can be nonoverlapping, whcii each nonkey attribute

belongs to one and only one vertical fragment, or overlapping, when some nonkey attributes belong
to two or more vertical fragments.

Mixed fragmentations are built by combinmg liorizoiital and vertical fragmentation. The number of

fragments becomes rapidly greater than the number of relations in the database. Correspondingly,
the problem of optimal design becomes even less tractable on a quantitative basis. Overlapping or

replicated fragments increase complexity further.

In the allocation of fragments, two alternatives can be considered:

a: Nonreplicated allocation

Here each fragment is allocated to one site. A nonrephicated allocation is required if the system
does not support data replication. The optimization criteria which is primarily used for solving
this problem is the maximization of processing locality of applications.

Capacity constraints within the sites are commonly ignored. This assumption is certainly valid

whenever (hstril)uted transactions arc a small fraction of the load submitted to a site.

b: Replicated allocation

here a fragnient is allocated to one or imiore sites. In this case, the degree of replication
of each m(lividual fragment is a varial)le of the problem. Update of replicated (lata has stringent

requireniemits if global consistency is to be niaintamcd. Typically, the L)enefit of rej)lication is higher
if the ratio between retrieval and up(late accesses to the fragment is high. If update is infrequent

capacity constrainl;s may become limiting.

Replication may have the auxiliary benefit of redundancy, which can allow recovery after loss

of (lata within one site Apers 84], Mino 82]; this additional benefit is hard to assess. If replication
is to be usc(l to this end, then a minimum replication factor may be initially established.

Giveit the al)ove classification of problems, the top—down approach to distribution design con

sists of solving for each relation the following in(livi(lual design problems: liorizomital partitioning

(H). vertical partitioning (V), non redi indant, allocation (A), red lmn(lamit allocation (II). In current

practice R is often a post—process on the allocation prohm;cd by A. This leads to sufficient, b~~t

(1()(’S imot giiaramitee optimal results.

4. Solutions to In(livmdual Desigü Problems

iii the past two years, we have couccuutrated on (lie soliitioii of 5011K’ coinbin;ttiouis of time al)OVe

(lesigmi prohknis. TIme cx Ircimie complexity of the muatheniatical 11 models required for solving the

prol)Icms has led to tIme (leVelo1)lfl(’ult of heuristic approaches.
Iii Ceri 83] an analytical model was presented for sciectimig amnoiig alterna(;ive horizontal frag—

niemitatiomis of global ol)jeCtS. Users specify alternative fragmentation criteria, and also in(hiCatc

for each fragirient a single prcferrc(l allocation si(;e in case t;he fragunemitation criterion is sekCte(1

by (lie sohuttiomi IIlethO(l. Time solution is produce(l by a linear iliteger program; in the solution,
(‘adi relation is ci th1(’T fragIIIclI((’(l with Ihi(’ b(’st J)( )SSi I )l(’ fm~gi I1(’1l(~LtjoIi or Stoi(’(I whole at one site.

Thus, (lu’ 1110(1(1 SOIV(’s the 11 —I— A prol)lclns. lien rist.ics are ~Ull(’( I iii order to generate replicated
allocations starling from (lie nonrephcatc(l soIultu)mI, thus solving the II + A + It problem.

In Nava 84a] several algorithms are shown for the vertical ~iartitionmg of relations in different

design contexts. The l)asic method used by all algorithms is based on the notion of affinity among
attributes, which measures time conimnomi usage of any two attributes. Using affinities, attributes

arc clustered together, amid algorithiums then (leterilline the best vertical partitioning by considering
all clusters. One heuristic algorithm is (leveloped for the vertical partitioning of relations with

noItrc(luudant. allocatioti, solving time V + A prol)lduI. Another algorithm is used for generating

replicated allocations starting frommi the mmonrephcatcd solution, thus solving time V + It problem.

—48—



In Sacc 83] the problem of distributing the database on a cluster of processors was considered.

The motivation of such an architecture is increasing performance, availability, and reliability. The

problem differs from the standard distribution design problem, because the applications need also

to be allocated to processors; thus, an object to be allocated can be either an application or a

fragment. The model must now (:onsider capacity constraints for the CPUs, processors’ I/O, and

network conununication. The definition of fragments is an input for the solution method, which

produces a nonrephcate(l allocation of objects -- fragments and applications — thus solving the A

problem. The solution uses two well-known heuristics in a novel combination: a greedy algorithm

combines pairs of objects based oim maximal benefit, and the combination is then allocated to sites

using a first-fit bin-packing heuristic.

5. Integration of Solution Methods

Our current research interest is in the integration of several solution methods within a single

framework. However, the solution of design subproblenis is hampered l)y their extreme compu—

tational complexity (N-P completeness), as shown in Aper 84] and in Sacc 83]. Thus, simple

merging of our algorithms and solution spaces woIll(l l)e coniputationally unfeasil)lc for problems
of realistic sizes.

The complexity of models is imot fictitious; it is due to the intrinsic complexity of the overall

design problem and the quantity of ol)jects. TI ie numbers of sites, relations, applications, horizontal

fragments, vertical fragments, and copies of fragments consi(lered in a J)articular (lesigmi problem

can be rather large, and each of these imiimbers has a potential for generating a conhl)inatorial

eXph)sion of the solution space.

We envision the development of an environimiemit of tools winch are able to solve partial prob

lems, under the control of an expert database (lesigner. The experience of time designer will be

primarily useful iii selecting the order of evaluation and iterations of individual problems (e.g., H

+ V ± A + R is a likely Coflhl)iflatioll), and in interpreting time results returned by each tool. In

general, the following precc(lrnce relations 1101(1 betweeim the evalnat;ioii of I)roblemns:
A<11. H,V<A,R

TIme (lesigner Call (leci(le to repeal (lesign stel)S based oii the feedback of i~revious c(nupiltatioIls.

Moreover, time designer will l)c al)lc to give the tool mdicalioits wimiclm miiight reduce t;lie (lunen—

sions of the desigmi space (for instance, by ]im(licatilig sonie promilisimIg initial fraguiemitations an(l

allocations). Solutions which violate eal)acily or coiiiiiion—sense constrauits (~U1 also he avoi(led.

The uiajor goals of such au (‘nVirounieImt would be:

a. To include tools fom. the sohition of each of time design i)roi)1(u115 we defined (IT, V, A, 11).

b. To allow for exchangeability of design methods and algorithms.

c. To have a COIllfl1OI1 basis of (‘Vat tialion of cxecmit.ioii strategies over (listribut;cd databases,

used 1 y all the tools. This eval ii at;ion of exec ii tion strategies mi gli I; 1) e su bstit uted by the i use of

LIre optimizer of one parlici ular (I islrtl)n ted database syst;ein.

We have started working towar( Is such au (‘liv irol ii l(’I it by nu utli liii g the arci ii ter (ii re of the (lesign

systemim, an(l (lesigtrmg ami(i iun~)leIiieuitiuIg Solui(’ J)ortioums of it. A similar approach is also assumed

imm a project con(hllcLed at the Comumput;er Corporation of America, (leserib(’(l ill Ileimi 841.
In order to accomuphishi goal b almvc amid to accoimioilate the use of our previous solution

algorithms, I;hie architecture of tIme systeimm iriust; he very lno(hular. Time design systeimi should provide
functions for (les]gmming time fragimiemmtatiomm, For selecting and allocating fragmiients, for perforimmiimg

(h11(’~Y optimization, ium(l for evalutatuig an execution strategy. These fummctioiis are shown iii Fig. 2.

Tools aiid solution models sII( )uIl(l not miecessarily 1w in ()Jle—to—ollC correspon(leilce with these

fumicl;ions. Tlums, for instance, lime algoritliuits described in Ceri 83] amid in Nava 84a] COVe!’ both

—49—



fragnieiitation and allocation design; we do not plan to decompose those algorithms in order to

obtain a more layered software architecture.

As shown by Fig. 2, the tool environment should also be capable of performing a query opti
mization function. This is necessary: in order to evaluate a specific fragmentation and allocation,
it is required to know the query execution strategy that will be developed by the optimizer of

the actual distributed database system. lJnfortunatly, this requirement compromises the general
ity of the tool environment, because very many different approaches exist to query optimization.
Moreover, the optimization should be relatively efficient, even if suboptirnal, because it has to be

repeated for each candidate solutiomi produced by the fragmentation and allocation design and for

each considered query and update transaction.

I FRAGMENT DESIGNER 1<
I (HorVorboth) I

~ logical fragments

FRAGMENT ALLOCATOR 1<
I (A or/and R) I

~ physical fragments

QUERY OPTIMIZER I

EVALUATOR I

Note:.
The estimate of cost

might be used either by
the fraguieiit allocator

for testing several
alternative allocations
of the same fragments, or

by the fragment designer
for testing different

fragmentations.

Fig. 2. Fimct,ionalities to be Provided by a Design Tool for Distributed Databases

In tS;t~ 831 LIJ(’ (i1i~1y optimizer was outside of the design systemit, since the actual R* optimizer
was to be nsed. In such an arch:itect;ure the cost of rej)eate(I evaluation is high so l;liat four tactic~

were (OI1Si(l(’r(~d. Greedy allocation was driven l)y selecting the pair of O1)jccts winch l)enehtted imiost

from placing tln’ni at the sanie node. Minimal query evaluation cost is obtained by computing the

Oi)ject2 l)elieIuts for all pairs only once. The l)(’nefits for the seie(:te(l pair versus all other ol)jects are

added to estimate l)enefit values f~• the next object allocation. This technique leads to imprecision
as the allo(:ation is progresses. Time best approach, full benefit; reconiputation throughout the

i teratioi IS, re(Jmures Oi)jOCt5 eWLlUatiOIis.

Tln~ lower—level function in Fig. 2 consists in providing ~ui evaluator for a specific query cx—

(‘cli Lu ni st-rat(.gy oii a spec ilk data list rii)(Ition inn! allocation. The eval i tator sin )1Il(l 1)0 able to

indicate $l)Ccilically the costs which are (lime to the execution of the query, in terms of CPU, I/O,
an(l messages re(luired; it 5110111(1 alSo l)(’ I)OSSi1)le t;o m(licatc the (list;ril)ut;ion of CPU an(1 I/O costs

to the various sites, and of t.ransunssion costs along the various links.

We have recently designed and imnpleluenLc(l aim evaluator for distributed database applications.
The oval tiator uses an algebraic representatiomi of queries, which caim mclu(le selection, projection,
Join, aII(i Union ol)erations. it also consi(iers up(latcs, with Up(latc specifications which apply
directly to tuples of fragments. The evaluator receives as input (;he description of tile (1ll(’ry in

ternis of an operator graph, similar to an operator tree but with tile additional capability of using

access strategy over

I~ physical fragments

—50—



the result of an expression more than once. It produces as output a detailed description of CPU,

I/O and transmission costs. Each fragment is described by giving its profile; profiles include the

cardinality (number of tuples) and, for each attribute, the size (number of bytes), the number of

distinct values, and the minimum and maximum value. In order to evaluate the profiles of relations

produced at each operation, we used the formulas from Ceri 84).
After comnpletmg the evaluator, we started integrating the vertical fragmentation algorithms

described in Nava 84a] within the new environment. The analytical formulas used by the vertical

partitioning algorithm are replaced by calls to the new evaluator. The vertical fragmentation

algorithm produces at each iteration a possible vertical fragmentation and allocation; in order

to provide an interface between the vertical fragmentation algorithm and the evaluator, which

evaluates specific execution strategies over a distributed database, we have designed a small query

optimizer, which transforms the queries over global relations into queries over fragments, and then

allocates each operation of the queries over fragments to the most convenient site; we are currently

implemnentmg the query optimizer. This experiment will allow us to test the vertical fragmentation

algorithms with more accurate cost evaluations, and at the same time will give us insight on the

practical)ility of our approach towards the integration of distribution (lesign tools.

Acknowledgments
Sham Navathe, from the University of Florida, Ciuscppe Pelagatti, from the Politccnico di

Milano, and Domnenico Saccá, from C.R.A.I. (Cosenza), have contributed to our past work.

6. References

Aper 84] P. Apers and G. Wiederhold: “Transaction Classification to Survive a Network Parti

tion” ; Stanford Universil;y, sul)mrlitte(l for l)~ll)licaIiOI1, 1984.

Bati 83) C. Batini, M. Lemizerini, and M. Moscarini: “Views Integration”; in Ceri 83a].

Ceri 82] S. Ceri, M. Negri, and C. Pelagatti: “Horizontal Partitioning in Database Design”;

Proc. SIGMOD Conference, June 1982.

Ceri 83a] S. Ceri (ed.): Methodology and Tools for Database Design; North Holland, 1983.

Ceri 831)] S. Con, S. Navathe, and C. Wiederhold “Distribution Design of Logical Database

Schicimias” ; iEEE ‘1~aijsactioiis on Soitware Engineering, Vol. SE—9 no. 4, 1083.

ICcri 84] S. Con ami(l C. Pelagatti: Distributed Databases: Principles and Systems; McGraw—Hill,

1084.

Daya 82] IJ. Dayal and II. Y. Tlwang: “View Definition and Gciieralizat;ion for Database Imitegra—

tioji iii Miillibase: A System for I Leterogeneotis Databases” ; Pi.oc. Sixth Berkeley Conf. on

1)1st ribii led Data M;wageiuezit and Coznpii (er Networks, 1082.

Mimmo 82] T. Minoiira aII(l C. Wiederhol(1 “Resilient Extended True—Copy Scheme for a Distri—

l)ute(l 1)atabase System”; IEEE Thus, on Sofl;warc Engineering, Vol. SE—8 No. 3, May

1982.

Nava 82] S. B. Navathe ;unl S. Gadgil: “A Methodology for View Integration in Logical Database

Design” ; Proc. 8th VLJ)B Con1k~renee, Mexico City, Sept. 1082, pp. 142- 164.

Nava 84a] S. B. Navallie, S. Ceri, C. WiNlerliold, aiL(l J. I)ou: “Vertical Partitioning Algorithms

for Database Design” ; to appear iii ACM—TODS, vol.0 iio.4, I)ec.1984~

(Nava 84b] S. B. Nava!lic, T. Sasimidliar, and it. ElMasri: “Relationship Merging in Schema

Integration”; Proc. 10th VLDB Conference, Singapore, Aug. 1984.

Rein 84] D. Reiner, M. Brodie, C. Browii, M. Chulemiskas, M. Fniedell, D. Kramlich, .1. Lehman,

and A. Rosenthal “A Database Design amid Evaluation Workbench” Prehmiiiary report,

SPOT coiifereiice, Götcborg, Sweden, Aug. 1984.

Sacc 83] D. Sacc~ and C. Wiederholil: “Partitionmg iii a Cluster of Processors”; IBM Rcpdrt

RJIII7G, ext. abstract iii Proc. 0th VLDB Conf~rence, Florence Italy, 1083, pp. 242-—247.

Wicd 83] C. Wie(lcrhol(l: Database Design 2nd ed.; McGraw—IIill, 1983.

—51—



Current Research in Database Design at the University of Minnesota

Salvatore T. March John V. Carlis

Sunder Mendu Diane Beyer
Frashant Palvia * Karen L. Ryan

Michael Prietula **

Dzenan Rid~anovic
Management Sciences Computer Science

(612) 373—4363 (612) 376-4592

School of Management Institute of Technology
University of Minnesota

Minneapolis, MN 55455

0. ABSTRACT

Research in database design at the University of Minnesota is organized
into three major areas: abstraction, optimization, and implementation.
Efforts in each area are briefly described and directions for future

research are discussed.

1. INTRODUCTION

Databases are formally defined and logically controlled collections of

information that are of interest to people within an organization. The

effective development of organizational databases requires a three phase

process:

1. Abstraction: the determination and documentation of the

information, processing and performance requirements of the

database

2. Optimization: the design of the logical and physical database

structures that best accomplish these requirements, and

3. Implementation: the creation of computer code to accomplish the

design and meet the requirements on a target computer system.

In the following sections we describe research efforts at the University
of Minnesota aimed at supporting each of these processes. Since the

Optimization process has historically received the most attention in the

literature! we begin with research aimed at supporting this process in

Section 2. In Section 3 we treat the Abstraction process and in Section

4., the Implementation process. Finally, in Section 5, we present a

summary and directions for future research.

2. SUPPORT FOR DATABASE DESIGN OPTIMIZATION

Given a formal description of the informational, functional, and

performance requirements for a database (presumably obtained during the

Abstraction Process), the Optimization Process seeks to determine a

physical database design that most effectively meets those requirements.
The ~term “optimization” is~not~ str-i~etly used in t~he~-mathematical sense

of maximizing or minimizing a given and fixed objective (e.g., minimize

computer resource usage) since there are a number of complex and

conflicting design objectives and many nonquantifiable factors.

Rather, the process selects “the best” design as a compromise among such

factors as operating efficiency (which can be mathematically optimized),

design flexibility, simplicity, and development effort.

* Present Address: Temple University, Philadelphia, PA

** F’resent Address: Dartmouth College, Hanover, NH 03755

—52—



In (MARCB25 CARLSa) we describe A Database Design Methodology (ADDM)

that focuses on supporting the Optimization Process. The methodology is.

based on a multileveled descriptive model (CARLB4) that defines database

design problem parameters (e.g., logical data content and user

activities) in its logical level and database design solution parameters

(e.g.5 record and data structures) in its physical level. The logical
level uses an Entity—Attribute—Relationship data model to describe the

logical data strL(ctures and a FORAL like language (SENK75) to describe

user activities on the logical data. The physical level uses a generic
file organization model to parametrically define supported database

record structures as well as inter and intra file access paths. The

model supports record segmentation and aggregation (MARCB3a) and a wide

range of data access paths (MARC83b).

Database designs are produced interactively in ADDM. The human designer

inputs the design problem (expressed using the logical level of the

descriptive model) and interacts with the software to establish

constraints on the solution space (e.g.~ to confine consideration only
to those physical design alternatives permitted in a specific DBMS).

The software utilizes both heLristic and analytic procedures to g~nerate
and search the solution space and produce an efficient database design
(CARL83b). The software can also be used to perform sensitivity

analysis on various problem and solution parameters.

Current research efforts are aimed at:

1. expanding the scope of problems to which this approach can be

applied5
2. improving the human interface to the software5 and

3. analyzing the sensitivity of database design parameters to

variations in the problem parameters.

As initially developed1 ADDM was limited to the design of a centrally
stored and maintained database. It did not directly support data

redundancy1 data distribution or the analysis of backup and recovery

policies. These are the major area of functional capability currently
under investigation.

March and Scudder (MARC84) analyzed the interactive effects of record

segmentation and backup and recovery policies. Segregating data items

that have high update frequencies (e.g.5 current balance5 project

assignment) from those that have low update frequencies (e.g., name,

sex) can significantly reduce the backup and recovery costs. Such cost

savings must, however5 be weighed against possible retrieval cost

increases due to such an arrangement of data items. March and Scudder

developed and analyzed heuristic procedures to select an efficient

combination of record segmentation and backup and recovery policies.
Potential cost savings of up to 40 percent were demonstrated over

earlier heuristics that did not consider the interactive effects of

record segmentation and backup and recovery. Cost savings for a

particular database depend on data item lengths, update and retrieval

patterns and frequencies and hardware characteristics.

Mendu (MENDB5) is addressing the problem of data allocation in a

distributed database environment. Distributed databases offer increased

reliability (e.g., “failsoft” capability), faster access to data,
reduced communications costs and better overall responsiveness to user

needs as compared to centralized systems. The provision of these

behefits depends on the effective design of the database, of which data

allocation is a critical component. Past research on data allocation

~as focused, for the most part, on building mathematical models to

—53—



allocate entire files to the nodes in a network. Users, however.,

typically require subsets of files rather than entire files. These file

subsets utilize both vertical (record instance) and horizontal (data

items) selection criteria. Frequently the location of a user request
correlates strongly with the file subset required (e.g., information

about customer account balances for customers in the northwest sales

region may be nearly exclusively requested by people located in the

northwest sales region). Hence, the allocation of (horizontal and

vertical) file subsets rather than whole files can lead to significant
savings in system operating costs. The change in the unit of allocation

from files to file subsets has impacts on other design areas such as the

management of the network directory and the implementation of security
mechanisms. Both analytic and heuristic algorithms will be developed
and tested to efficiently allocate file subsets based on a

characterization of user access patterns and network characteristics.

While data allocation is a significant problem in distributed database

design, the efficiency of any data allocation is dependent on the way in

which queries are processed. Similarly, the solution of this “Query
Optimization” Problem is dependent on the data allocation. ~pproaches
to distributed database design have, traditionally, solved one or the

other of these problems assuming that the other was fixed. Beyer is

investigating the relationships between these problems with the goal of

developing heuristic procedures to be imbedded within the ADDM framework

to aid a designer in solving the combined problem.

Falvia (F~LV84) developed and tested very fast heuristic procedures that

produce efficient physical record structures given a problem as defined

in the logical level model. He also analyzed the sensitivity of

physical record structures to variations in the problem parameters. His

analysis includes such factors as: the number of entities in the logical
data structure; the number, frequency, retrieval proportions and degree
of conflict for retrieval activities; access and storage costs;
pagesize; data access methods (dependent on the availability and use of

buffers to hold intermediate results) and pointer types. While the

complete results are contained in (FALVS4), Palvia generally concludes

that the structure of database records are most sensitive to the method

of data access used and to the activities on the data. In addition,
Palvia formulated a simple subcase of the general physical database

design problem as a non—linear, zero—one integer program. Efforts are

underway to optimally solve this formulation and to apply this approach
to the more general problem.

Prietula (PRIEB4) analyzed the reasoning processes employed by people as

they go about designing physical database structures. He studied both

experts and novices and developed a model of human reasoning for

database design. He concludes that people use a number of different

types of strategies and heuristic procedures to configure database

designs. In addition, he suggests that humans rely more on qualitative

r~easoningrather than quant-i-tative reasoning when ~des~igning datab~ases.

Th~ implications for database design arethat tools aimed at supporting
database design must be flexible enough to accomodate different design
strategies and heuristics and that quantative output is insufficient to

insure adequate support for database design.
~

. SUPPORT FOR D~T~B~SE ABSTRACTION

Before a database can be built to effectively meet the needs of its

community of users, these needs must be determined and documented. The

database literature has focused primarily on developing formalisms in

—54—



which such requirements could be specified rather than on the process of

specifying them. Research efforts at Minnesota are addressing both

i S5UE5.

Databases, no matter how efficiently designed, are of little value

unless they contain the correct information and are appropriately
organized. Flory, March and R’idjanovic (FLORB4a) have developed a

framework for developing the information resource within an

organization. They proposed a two dimensional grid which was used to

characterize existing database design methodologies. The first

dimension delimits four development levels: Corporate Requirements,
Application Requirements, Logical Database, and Physical Implementation.
The second dimension differentiates the means o-f development for each

level: Models. Methods and Tools. They established goals and objectives
for each level and argued that existing methodologies tend to focus on

one level only. As a result the process of mapping from one level to

another is not well facilitated by any methodology. This is

particularly evident at the Corporate Requirements level where planning
models are developed but often do not impact the databases or systems
that are implemented.

Current research aimed at resolving this problem includes using MIS

Analysis methods (such as Business Systems Planning (BSP)~ Critical

Success Factors (CSF) and Means/Ends Analysis as described in (WETHB3))

to establish an overall “Information Architecture” and to establish the

g].obal database requirements. Semantic data modelling principles
(BROD84) can then be used to develop an “abstract” conceptual data

model. Refinement of the conceptual model is accomplished using more

rigorous and formal data models (FLOR84b) that can then serve as the

input to the Optimization Process as described above.

Support tools for building semantic data models are nearly nonexistent.

Data dictionaries and tools like F’SL/PSA (TEIC77) can serve as

containers for the model, but they provide no support for building the

model. Similarly, tools to support the building of the formal data

models needed for the Optimization Process are also lacking. While

mjcrocomputer graphics packages can support the drawing of such data

models, they lack the intelligence to support the process of creating
the well formed structures. The Functional Dependency Model (FDM)

developed by Flory and March (FLORS4b) addresses this issue by providing
a mathematical definition of “well formed” data. Algorithms can then be

developed to support building data models, not merely drawing them.

A global characterization of user activities is often used to build a

data model for a database application (i.e.. data dynamics); however, it

is typically not until after the data model has been built that a

detailed specification of the retrieval and update patterns is

developed. This detailed specification of activities is often more

difficult to develop than the data model. Ryan and Carlis (RVAN84)

present a procedure that analyzes a data model and automatically

suggests representative query sets f~r the database. Rather than having
the users specify their queries, these representative sets of queries

can be validated or perhaps modified by the users. Having concrete sets

o-f queries for an application reduces the burden for the user and

increases the probability that a good characterization of the retrieval

patterns will be obtained.

4. IMPLEMENTAT ION

Implementation is the production of computer code to accomplish the

—55—



database design and meet the user requirements on some target computer

system (including DBMS software). Productivity in this area has been

less than spectacular. Fourth generation languages based on relational

database management systems promise order of magnitude increases in

productivity (CODDB2) for simple queries, but they offer only slight
improvement over third generation languages for transaction processing,
a critical area for database systems.

An approach to increased productivity suggested in the Software

Engineering literature is the utilization of reusable software

components —— generic procedures that define a collection of high level

building blocks from which a particular system can be configured. In

fact, database management systems may be considered to be a collection

of such components at a primitive level.

Rid~anovic is developing a ta>~onomy of generic business database

functions, and a corresponding library of generic procedures. This

effort will focus on maintaining database integrity while supporting
transaction processinq activities (including input validation, e>~ception

handling, and update propagation). Three applications from different

business areas will be developed to test and improve the library of

generic procedures. Results from this effort will be analyzed with

respect to reusability among different business areas. Finally, a

controlled experiment will evaluate the impact of these generic

procedures on the productivity of system developers.

5. SUMMARY AND FUTURE DIRECTIONS

Research efforts are underway to develop and evaluate tools to support
three database design processes: Abstraction — the determination and

documentation of database requirements, Optimization — the design of

effective and efficient physical database structures, and Implementation
— the production of code to implement the designs.

Future research efforts will continue in these directions with increased

emphasis on the human engineering of the resultant tools. Frietula

(PRIEB4) has laid the groundwork for new research in this area by
analyzing and developing a model of human reasoning processes in

physical database design. There are aspects of database design which,
at this time, are best left to a human designer. Thus, the tools must

be able to both support and adapt to the ways “people think’ about those

aspects of database design.

~. REFERENCES

E4RODB4 }3rodie, M. L. and Rid~anovic, D., “On the Design and

Specification of Database Transactions1” in On Conceptual

Modelling: Perspectives from Artificial Intelligence,
Databases, and Programming Languages, Springer—Verlagq 1984.

CARLB3a Carlis, J. V. and March, S. T., “A Computer Aided Database

Design Methodology,” Computer Performance, December 1983.

CARL83b Carlis, 3. V., Dickson, G. W., and March, S. T.
, “Physical

Database Design: A DSS Approach,” Information and Management,
Vol. ~, No. 4, August 1983.

CARL84 Carlis. 3. V. and March, S. T., “A Descriptive Model of

Physical Database Design Problems and Solutions,” Froc. Data

Engineering Conference, IEEE, Los Angeles, April 24—27, 1984.

—56—



CODD82 Codd. E. F., “Relational Database: The Key to Froductivity,”
CACM, Vol. 25, No. 2, February 1982.

FLORB4a Flory, A., March, S. T., and Rid~anovic, D., “A Framework for

the Development of the Information Resource,” University of

Minnesota Working Paper 85—01, August 1984.

FLORB4b Flory, A. and March, S. T., “The Functional Dependency Model: A

Unified Approach to Information System Development,” Working

Manuscript, University of Minnesota, May 1984.

MARCB2 March, S. T. and Carlis, 3. V., “An Overviei~ of Physical
Database Design Research at the University of Minnesota,” IEEE

Database Engineering Newsletter, IEEE Computer Society, Vol. 5,

No. 1, March 1982.

MARCB3a March, 5. T., “Techniques for Structuring Database Records,”

Computing Surveys. Vol. 15, No. 1, March 1983.

MARCB3b March, S. T., “A Mathematical Programming Approach to the

Selection of Access Paths for Large Multiuser Databases,”
Decision Science, Vol. 14, No. 4, Fall 1983.

MARC84 March, S. T. and Scudder, G. D., “On the Selection of Efficient

Record Segmentations and Backup Strategies for Large Shared

Databases,” ACM Transactions on Database Systems. Vol. 9. No.

3, September 1984.

MENDB5 Mendu, S., An Investigation into the Unit of Data Allocation

for the Design o-F Distributed Databases. Ph.D. Dissertation,

University of Minnesota, expected June 1985.

PALV84 Falvia, P.. An Analytical Investigation into Record Structuring
and Physical Database Design of Generalized Logical Data

Structures, unpublished Ph.D. Dissertation, University of

Minnesota, April 1984.

PRIEB4 Frietula, M. 3., An Investigation of Reasoning Methods Used in

Physical Database Design Problem Solving, unpublished Ph.D.

Dissertation, University of Minnesota, expected December 1984.

RYANB4 Ryan, K. L. and Carlis, 3. V., “Automatic Generation of

Representative Query Sets,” Proceedings 1984 Trends and

Applications Conference, Making Database Work, National Bureau

of Standards, Gaithersburg, MD, May 23—24, 1984.

SENK7S Senko, M. E., “Specification of Stored Data Structures and

Desired Output results in DIAM II With FORAL,” F’roceedings Very

Large Data Base Conference, Framingham, MA. 1975, pp. 557—587.

TEIC77 Teichroe~, D. and Hershey, E. A., “PSL/F’SA: A Computer Aided

Technique for Structured Documentation and Analysis of

Information Processing Systems,” IEEE Transactions on Software

Engineering, Vol. 3, No. 1, January 1977.

.WETH83 Wetherbe, 3. C. and Davis, G. B., “Developing a Long Range
Information Architecture,” Proceedings National Computer

Conference, Anaheim, 1983.

—57—



RESEARCH ON FORM DRIVEN DATABASE DESIGN

AND GLOBAL VIEW DESIGN

Michael V. Mannino t and Joobin Choobineh ~

t Database Systems Research and Development Center

Computer & Information Sciences Department
University of Florida

Gainesville, FL 32611

CSnet: manninoeufl

~ Department of Management Information Systems
University of Arizona

Tucson. AZ 85721

ABSTRACT

We are currently investigating two non—traditional approaches to

database design. Form—driven database design is the derivation of a da

tabase schema from a collection of docUments or forms. Global view

design is the problem of defining, the objects and mappings in a global
view which is a view of more than one database. In this short paper.

we discuss our results and on—going work on both of these topics.

1. FOF~S1 DFUVEN DATABASE DESIGN

We define a form as any standardized set of data variables. A form

schema is the definition o,f the form fields and their constraints. A form tem

plate is a particular representation of a form typo on a given medium. A form

schema is medium Independent whereas a form template is medium dependent.
The same form schema may have form templates on a video screen, paper. and

even voice. This definition of a form is quite broad and fits well into the

current research in the area of office automation (TSIC82J.

Forms are attractive as a primary input to the database design process for

several reasons. First, forms are formal models and do not have the ambigui
ties of natural language requirements. Second. a form model is a data model.

By studying and analyzing a form and its relationships to other forms, many data

dependencies and mappings can be discovered. Third. many forms contain

instructions about filling out the form which provide additional information about

an organization’s data. Fourth. forms are easy to understand and are widely
used in most organizations. Users should be able to-participate in the database

design process through the definition of their forms.

Our research approach involves the definition of a form model and the

investigation of intra— and inter—form analysis (CHOO84J. Our form model permits
a hierarchical grouping of form fields. The grouping is indicated by form field

embedding and cardinalities which indicate the number of occurrences of form

—58—



fields. The cardinality of a form field can be 1 (1 value per form), set (col

lection of unique values), or bag (collection of values with duplicates). We

also specify the domain and origin (input, display, computed) of each form

field. In Figure 1, all form fields have a cardinality of one except for

PRODUCT-NO which is set—valued. LOCATION which is set-valued within

PRODUCT-NO. BIN-NO which is set-valued within LOCATION, QUANTITY which is

bag—valued within LOCATION. and WEIGHT which is bag-valued within LOCATION.

Alternately. WEIGHT and QUANTITY could be considered as single—valued within

BIN-NO.

lntra—lorm analysis converts a form schema into an extended Entity—
Relationship diagram. We first partition form fields according to their cardinality
and embedding level. All top level single—valued t.elds are placed In one group

which is named with the form name. Each top—level, set—valued form field is

placed in a separate group along with any embedded form fields. We then use a

rule—driven dialogue to establish entity types and relationships. cardinalilies. and

some functional dependencies. In the Shipment form, we have the following
lorm field groups:

SHIPMENT group: DATE OF AUTHORIZATION. INVOICE NUMBER.

NAME. ADDRESS. SALES ORDER NO., TOTAL. AUTHORIZED BY.

CARRIER

SHIPMENT-LINE group: PRODUCT-NO. LOCATION. BIN-NO. QUANTITY.

WEIGHT

Figure 2 shows a possible Entity—Relationship diagram that represents the

form. The top—level, single—valued fields are split into four entity types: CUSTO

MER. SHIPMENT. CLERK, and CARRIER. This splitting can be accomplished by
collecting functional and multi—valued dependencies or by asking for the the entity
types. The rest of the Entity—Relationship diagram is more difficult to derive. It

is possible to consider the SHIPMENT—LINE group as a single entity type. but the

designer would likely indicate that it should be decomposed into PRODUCT.

WAREHOUSE. BIN, and SHIPMENT-LINE. This is because the designer can

recognize that PRODUCT—NO. LOCATION, and BIN—NO represent entity types.

The use of pure intra—form analysis usually requires redundant user interac

tion. To reduce the user interaction, knowledge gained from analyzing previous
forms is utilized in analyzing the current form. The user interaction may be sig
nIficantly reduced if previously analyzed forms contain similar information. For

example. if NAME and ADDRESS are grouped together as the result of the

analysis of another form, they can be immediately split into a separate group
without user interaction.

Inter—form analysis involves form flow and incremental design. The form

flow shows Ihe relalionship between form fields across all forms. The form flow

analysis can resolve many synonym and homonym differences and ensure that

each form field has an origin (i.e.. is an input field on some form) and a des

tination (i.e.
.

is a display field on some form).

The conceptual schema can be incrementally designed by integrating form

schemas. Forms can be analyzed in groups where each form in a group Is

closely—related to the others. Two forms are closely related ii they have many
form fields in common. The incremental analysis of forms allows the identifica

tion of conflicts in requirements. attributes of a form field group on one form

which are entity types on other forms, additional attributes for entity types and

—59—



SHIPMENT AUTHORIZATION

DATE OF

AUTHORIZATION f 12-12-83
SHIP TO:

INVOICE

NO. f 580

SALES

ORDER NO. L 153

AUTHORIZED

BY L anyclerk

Figure 2: One Possible ER D~gram for the

Shipment Authorization Form

NAME ABC Stores

ADDRESS Any
New

Street

York, N.Y. 20000

WAREHOUSE

PRODUCT-NO. LOCATION BIN-NO. QUANTITY WEIGHT

PlO TUC 2 18 180

3 8 80

P20 TTJC 8 10 50

PHE 4 10 50

8 5 25

TOTAL —— — 385

Figure 1: Shipment Authorization Form

CARRIER I ACME

1:1)

invno

sales—orderno

total

1 ineno

wgt

qty

binno -prodno

—60—



relationships. and entity generalizations.

Alter the conceptual schema design is complete. the mappings to materialize

the forms are defined. If a form schema includes updatable fields, the lorm’s

underlying mapping must either produce an updatable view or the designer
resolves the ambiguities. This is the general problem of view updates where the

database system restricts the type of view mappings and possibly permits the

designer to resolve ambiguities where the mapping is outside of this range.

Most of this work is currently in progress. Our form model is complete and

we are now investigating intra—form analysis. A detailed investigation of inter—

form analysis will follow.

2. GLOBAL VIEW DESIGN

In recent years. there has been an increasing interest in uniform access to

heterogeneous. distributed databases, while preserving investment in existing
software and hardware EGLIG84. LAND82]. An important element of heterogene
ous database technology is the global view which is an integrated view of multiple
databases. A global view consists of a set of global schema objects and a

mapping from the global objects to the underlying local objects. The design of

large-scale global views can be difficult because of the number of global
objects, the number of global to local mappings. and the complexIty of the map

pings.

To address the difficulties of global view design. we have developed a

methodology LMANN84a.b) which consists of four steps. In the first step. the

local schemas are translated into equivalent schemas in a common or unifying
data model. This resolves differences merely due to the different local data

models. We use the Generalized Entity Manipulator (GEM) LZANI83I as a common

or unifying data model. GEM supports generalization, entity—valued attributes.

set valued attributes, and surrogate primary keys.

In the second step. assertions are defined and analyzed about entity types
and attributes in the local unifying schemas. The entity types are partitioned
into identification—independent and Identification—dependent groups. Within each

group. the designer identifies the entity types that can be generalized. Then.

for each generalization group. the designer makes assertions about the semantic

equivalence and range of meaning of attributes. Assertions can be made about

individual attributes, groups of attributes, and functions of an attribute. We have

devised an algorithm to check the consistency and completeness of the entity and

attribute assertions. The major part of the algorithm is to transitively derive

omitted attribute assertions including the range of meaning.

In the third step. entity types in each generalization group are merged. We

have devised an interactive merging algorithm to assist the designer with the

merging process. The merging algorithm connects two entity families at a time

where an entity family is a set of entity types related by generalization. The

designer indicates where to connect the two entity families and the merging algo
rithm removes unneeded parts of the local entity families, connects the local

entity families, and assigns attributes to the global entity family as indicated by
attribute assertions.

In the fourth step. the format and mappings of the global attributes are

defined by the designer using a collection of conversion operators. Our conver

sion operators include data type converters, arithmetic formulas, concatenation

and substring. table lookups (actually GEM queries), and database procedures.

—61—



These operators can handle differences in names, data types. lengths. scales.

groupings, and codes. Combinations of differences can be handled by nesting
conversion operators. We are currently studying rules to aid a designer in

defining global attribute formats and mappings. These rules may possibly be

incorporated into an expert system.

The major thrust of our on—going work is to implement the methodology. In

one project, we are developing a graphical schema merging editor. The editor

will graphically display the entity families of interest and then connect them as

indicated by the designer. The designer can see alternative merging possibili
ties by placing the result of a merge operation in a window. Our initial imple—
mentation will be to merge a pair of entity families. Later, we plan to extend

this to N schemas at a time and to incrementally merge two schemas at a time.

In a second project. we are developing an expert system for converting from

an INGRES schema to a Generalized Entity Manipulator (GEM) EZANI83) schema.

The conversion can be trivial because GEM is compatible with the data definition

language of INGRES. However, our effort focuses on the hidden semantics in

the INGRES schema. For example. a group of three relations may represent a

set of entity types related by generalization. We are investigating the conversion

of the following hidden semantics: 1) generalization. 2) physical database design

options that affect the conceptual schema such as vertical partitions and denor—

malization. and 3) referential integrity. We hope to extend this work to different

relational database systems and to different classes of database systems (e.g.
CODASYL. IMS).

In a third project, we have developed a global view definition language
LKARL84I. The global view definition language can be used instead of the design

methodology or in conjunction with the methodology. For example. the designer
could initially use the methodology to design a global view and then make

changes to the generated view definition statements instead of using the metho

dology again. Implementation of the language is planned.

Future work is planned in the areas of updatable global views arid complex
objects. We need to extend the previous work on updatable views to global
views. We foresee changes to steps three and four of our methodology to sup

port the design of updatable global views. Complex objects are an important
data modelling feature in design data management such as CAD/CAM. We fore

see extending GEM and our methodology to support complex objects. We would

like to support the design of global views with complex objects materialized from

more than one database.

ACKNOWLEDGEMENTS

We thank Dr. Stanley Su and Dr. David Reiner for useful suggestions on

earlier versions of this paper.

REFERENCES

CH0084 Ct’ioobineh. J. Form Driven Database Design. Ph.D. DIssertatIon.

Dept. of Management Information Systems. University of Arizona.

1984. (in preparation).

GLIG84 Gligor. V. and Luckenbaugh. G. ‘Interconnecting Heterogeneous
Database Management Systems. IEEE Computer 17. 1 (Jan. 1984).

—62—



33-43.

KARL84 Kane. C. A Global View Definition Language, Masters Thesis. Com

puter and Information Sciences Dept. . UniversIty 01 Florida. August

1984.

LAND82 Landers. T. and Rosenthal. A. An Overview of Multibase. in Proc.

2nd Intl. Symposium on Distributed Databases. H. J. Schneider (ed.).

Sept. 1982. Berlin. F.R.G.. pp. 153-184.

MANN84a Mannino. M. and Ellelsberg. W. Matching Techniques in Global

Schema Deslgn. In Proc. Intl. Conf. Data Engineering (COMPDEC).

IEEE. Los Angeles. CA. April 1984. pp. 418-425.

MANN84b Mannino. M. and Ellelsberg. W. A Methodology for Global Schema

Design. UF—CIS Tech. Report TR—84—1. Computer and Information

Sciences Dept.. University of Florida. Sept. 1984. submitted for pub

lication.

TSIC82 Tslchrltzis. D. Form Management. Communications of the ACM 25.

7 (July 1982). 453—478.

ZANI83 Zaniolo. C. The Database Language GEM. in Proc. ACM SIGMOD

Conf, San Jose. CA. pp. 207—218.

—63—



A Prototyping Approach to Database Applications Development

Antonio Atheno and Renzo Orsini

Dipartimento di Informatica, Untversità di Nsa

Corso Italia, 40- 56100 Pisa, Italy

Abstroct

Several research projects are presently in progress to implement an integrated environment of tools

to support the database design process. The conventional approach is based on the principle that the

design process produces a non executable specification of the application. An alternative approach,
cafled the operational approach, is presented, based on recent trends in software engineering: it

assumes that the conceptual design should be made with an high level, executable language to

implement rapidly a prototype of an application. The approach will be briefly motivated and a

description will be given of the database designer’s workbench Dialogo that is currently being
implemented.

1. INTRODUCTION

Several research projects are presently in progress to implement an integrated environment of

tools to support the database design process ALBAB5aI, ATZE82], CERI83J REIN84J, 1E0R821.
There is a general consensus on the proper phases of the process and on the decisions to be made

during those phases. This conventional approach to database design is pictured in Figure 1. The main

assumptions upon which almost all the proposals are based are:

• The goal of the process is to design a reasonable structure of the database that will allow an efficient

implementation of the applications during the implementation stage, which however is not

considered as part of the design process, but it is seen as a separate stage. In other words, the

proposed tools support the design process, but not the database life cycle.

• The attention of the database workbench designers is mainly focused on tools for data analysis, view

integration, schema mappings and physical design. Other important issues that should be considered

in the design stage are often underestimated: constraint specification and verification, transaction

specification and dialog specification. These issues have been considered by many authors, but for

the time being the tool—builders are not offering specific solutions for them.

• Conceptual design Is considered a fundamental step of the design process, and it must be independent
of the DBMS used in the implementation stage. A great deal of attention is given to a graphical
notation to visualize the information content of the database, but the proposed tools usually are not

based on an executable conceptual language.

This paradigm has a strong analogy with the conventional “software life cycle”, which has been

followed in the field of software engineering, and it presents the same drawbacks that have beer

pointed out by software designers EBALZ83]:

• The tools supporting the design process are of limited interest once the applications have been

implemented. In particular they can not be used to maintain the released information system,
which has been implemented in a target language not contemplated during the design process.

• Users have no means of ensuring that the specified system matches their intent before a first

release of the implemention is operational. This compounds the maintenance problem.

This work was supported in part by the consiglio Nazion&e delle Ricerche, Progetto Fmehzzato

informatica, Obiettivo DATAID, and in part by the Ministero della Pubblica Istruzione.

—64—



INFORMAL
INFORMAL

REQUIREMENTS
REQUIREMENTS

DAT ABASE

DESIGN

NON EXECUTABLE SPECIFICATION

DECISIONS i~At~~1
AND PHYSICAL

RATIONALE
MAPPING

SCHEMA AND PROGRAMS

~UNINC

Fig. 2 Operational Paradigm

To overcome these difficulties a new approach to software development is gaming popularity among

practitioners and academicians in the software engineering and information systems fields: an

operation&, or prototyping, approach to software development (Fig. 2) ALAVB4], BUDD84I,

ZAVE84].
The basic assumption of this approach is that, during the design phase, computer specialists give

an implementation independent, executable (operational) specification of the system to be

implemented. The operational specification is a prototype, an early version of the system that exibits

the essential features of the future operational system, except for the resource requirements and

performances.
The first advantage of this approach is that users can experiment with the prototype to determine

whether or not it matches their requirements. Such prototypes are expected to improve the users’

perception of their needs, and so the resulting systems are more responsive to those needs. A second

advantage is that computerized tools can be designed to support the transformation of the prototype

into an efficient, system dependent implementation. A third advantage is that the main result of the

design phase, the prototype, is not discarded once the system is operational, but will be used to

perform maintenance of the applications.
In our opinion, the operational approach is also relevant to the database field. The natural stage to

introduce prototyping capabilities is at the conceptual level, by providing en executable, high level

language to specify data, constraints, operations, and dialogs ALBAB3aI, 0BR183). Investigations

are required to define which features a language should have for these purposes and how to embed this

tool in a system to support the database life cycle. We are presently engaged in a project, called the

Galileo Project, to design and implement a database designer’s workbench based on this approach,

where the language Galileo is used for prototyping ALBAB5b]. Wedo not claim that Galileo is the best

langu~e for this s~pe, b~ause it is still a re~arch topic to isolate the right language features.

However, the language is sufficiently expressive and DBMS independent to be considered as 8 candidate

PROTOTYPE

SCHEMA

Fig.1 Conventional Paradigm

—65—



to experiment. Another reason why we are using Galileo is that the language is almost operational and

it can be used on real applications to test its features and to investigate the architecture of the

database designer’s workbench, called Dialogo.
The next section presents an overview of the Galileo Project and the language Galileo. Section 3

briefly describes the architecture of Di&ogo. Section 4 contains the summary and comments on the

current status of the projet. A more detailed description of the implemented tools appears in

ALBAB5c].

2. THE 6alileo Project
The goal of the project is to design and implement en interactive integrated system to design and

prototype database applications. The language supported by the system is Galileo, specifically designed
to deal with the different aspects of complex database applications. The system will support also a non

executable version of the language, Gelileo/R, to document user requirements. Both the languages are

intended to be used by experts, when detailed descriptions must be given. However, for high level

descriptions of the database structure, graphical notations and interactive interfaces are provided to

communicate with casual users. The underlying assumption is that the system should allow users to

give specifications at different levels of detail, using a single set of abstraction mechanisms; the more

the user becomes familiar with the capabilities of the tools and with the problem to solve, the more he

should be able to give a detailed description of the specifications. In other words, requirement

specification and conceptual design should not appear as two Isolated worlds, but only two different

levels of description that can be transformed into each other once the user becomes more expert. Of

course, the less detailed the specification, the less possibilities there are to verify it.

2.1 The 6alileo Language
We assume that the goal of the conceptual design is the implementation of a working prototype that

exibits the essential features of the final product. Therefore a great deal of attention has been given to

the design of a high level programming language that supports adequate abstraction mechanisms for

database applications. The language should also allow the definition and test of the prototype in a small

fraction of the time required to make the same prototype with languages available in commercial

DBMSs. Here is an overview of the language.
Galileo is an expression language: each construct is applied to values to return a value.

Galileo is an interactive language: the system repeatedly prompts for inputs and reports the results

of computations; this interaction is said to happen at the top level of evaluation. At the top level one

can evaluate expressions or perform declarations. This feature, which is not present in other

conceptual languages, allows the interactive use of Galileo without a separate query language.
Galileo Is higher order, in that functions are denoteble and expressible values of the language.

Therefore, a function can be embedded in data structures, for instance to model derived properties of

entities, passed as parameter and returned as value.

Galileo is a safe language. Every denotable value of the language possesses a type. Besides predefined

types, type constructors exist to define new types, from predefinedor previously defined types. They
are: tuple, sequence, discriminated union, array, function and abstract types. In defining abstract

types, it is possible to restrict the set of possible values with assertions and to inherit the primitive
operations of the representation type. In general, any expression has a type that can be statically

determined, so that every type violation can be detected by textual inspection (static type checking).
Although any statically detectable error could also be detected at run—time, the language has been

designed to be statically type checkable for the following basic reasons: firstly, programs can be

safely executed disregarding~any information about types; secondly,-the language offers considerable

benefits in testing and debugging applications, since the type—checker detects a large class of common

programming errors without the need of executing progrems, while errors at run—time could be

detected only by providing test data that cause the error to be raised. In fact, static type checking is

considered an example of consistency checking extremely useful to detect frequent semantic errors.

For database applications the above benefits are certainly valuable, but static type checking does not

prevent dynamic testing for assertion enforcement. However, the type-checker is still useful to

provide information to the translator to produce specialized testing code.

Galileo has type inheritance. If a type I is &~ubtype of a type 1’, then a value of I can be used as

argument of any operation defined for values of I’, but not vice versa because the subtype relation is a

—66—



partial order. Type hierarchy is important to incorporate the generalization abstraction mechanism

of semantic data models into a strongly typed programming language ALBAB3b].
Galileo has control mechanism for failures and their handling.
Galileo supports the abstraction mechanisms of semantic data models: classification, aggregation

and generalization. Classes are the mechanism to represent a database by means of sequences of

modifiable, interrelated objects, which are the computer representation of certain facts of entities of

the world that is being modeled. Class elements possess an abstract type and are the only values which

can be destroyed. Predefined assertions on classes are provided and, if not otherwise specified, the

operators for including or eliminating elements of a class are automatically defined.

Galileo supports modulorization as another abstraction mechanism to partition data and operations
into interrelated modules. Therefore, a complex schema can be structured into smaller units. For

instance, a unit may model a user view or a description of the schema produced by a stepwise
refinement methodology ALBA83c}.

Galileo has a process mechanism to model user activities and dialogs with the system as long term

transactions which can proceed in parallel and interact by message passing.
Galileo has a form oriented interface to input or to display database objects.

3. THE Dialogo SYSTEM.

Dialogo is an environment for the development of complex, interactive information systems. While

its current scope is towards the production of prototypes, in the future it will be extended to deal

efficiently with large quantities of data in secondary memory, and so to develop applications

programmed in Galileo on graphics workstations. Besides tools designed to support prototyping, other

tools will exist to collect Oalileo/R definitions, to transform them in Galileo, and to translate the

Galileo design in a DBMS language.
To control the designers activities, the system keeps track of the alternatives investigated and of

the “derived” relationships between the products of the various stages of the development, such as

designer’s produced schemes or results of design analysis tools. A “project tree” is used to give an

overall view of the project, tocontrol different versions, to inspect theancestors of adesign, andso

on. This idea is borrowed from the DDEW system, being implemented at CCA REIN84].

Dialogo is intended to be used mainly by expert designers, although a simple graphical interface

will be provided for end users, to let them interact with the system both to verify the designer’s
work, and to check the prototypes behaviour. However, graphics is also relevant for designers, since

there Is an increasingly and widespread convinction about the importance of user-friendly Interfaces

in all the software systems used by humans. For these reasons, the system is designed to offer a

uniform graphical interface to all its users, and it is implemented in a graphics workstation with a

high—resolution screen and a “mouse” as a pointing device. This approach is not new, and a notable

example in the database design area is the DDEW system REIN84J. A preliminary version of Dialogo
was described in ALBA83aJ.

3. 1 System architecture.

The system’s kernel is the “project database”, shared by all the systems components. This

database is in effect a collection of databases. Its overall structure is a tree, representing the project
tree. The ncs~s of such a tree are the meta databases of the various schemes produced automatically or

manually during the design phasis, in all their different versions, and the databases created during
the execution of the prototypes.

Another fundamental component of the system is ~he graphical editor. In fact, it is the only

component seen by the user, in the sense that it provides a double function: an homogeneous way to

interact with the project database, and mechanism to activate the other tools of the system. From

these points of view, some of its functions are similar to those performed by the Macintosh~

operating system.

Through a graphical representation of the project tree and of the databases, the user can inspect and

modify the project database. The basic operation is the “opening” of ar~ icon representing some kind of

data, which pops—up a new window on the screen, showing a portion of the interested data, which can

be of graphical or textual nature or a mix of these. Due to the higly structured kind of data in the

database, this sel~tion will continue typically for several levels. When the user wants to change

something in the actual window, he must not change the environment: simply he will use the

—67—



appropriate (graphical or textual) modifying functions of the editor. Windows can be scrolled in any

directions, with scroll bars, and resized and deleted with corresponding tabs at the corners of the

window. The command language is provided by menu mechanisms. A pull-down menu in a fixed area of

the screen will contain global commands always accessible. Pop-up menus come out in response to

particular user’s actions, typically to the push of a mouses button, and are appropriate to the

context in which the user is currently working. This kind of command language is used both to invoke

and to dialogate with the tools of the system.
The system provides also tools to input schemas, to analyse and execute prototypes, and to map from

conceptual to logical designs. All these tools, invoked by the user via the graphical editor, access and

manipulate the project database through a set of Galileo interfaces (abstract types with appropriate

operators). They will be listed in the next section. Finally, to develop Galileo programs before the

graphical interface is operational, there are tools to input a schema with traditional textual editors.

3.2 Functional components.
A first set of tools is standard for any software development system based on a programming

language: a) semantic analysers and type—checkers for the control of data and programs definitions;

b) interpreters and compilers for the execution of Galileo prototypes; c) interactive monitors and

debuggers, to trace a program execution and to inspect graphically its data, with the possibility of

intervening during the execution.

Another set of tools is addressed more directly to the database design process: a) report generators,
both batch-like, to produce summary and cross—reference tables, and interactive, to show

graphically data relationships, connections between data and programs, etc; b) tools for the

specification and verification of user requirements in Oalileo/R, with type checking facilities,

although limited by the possibility of inserting natural language specifications intermixed with

formal specifications; c) report generators for user requirements and their relationships with the

prototype; d) tools for the translation of Galileo definitions into the language of a specific DBMS, for

the logical and physical design phase.

4. CONCWSIONS

An overview of the Galileo Project at University of Pisa has been presented. The project is finalized

to the implementation of an experimental database designer’s workbench for graphics workstations,

based upon en operational approach. The implementation of the workbench is in progress on a Sun

Workstation and on a Vax 11/780, both running UNiX”1 Berkely 4.2. The implementation is carried

out in Pascal in cooperation with Systems & Management SpA., and our efforts are presently on the

implementation of Galileo. The following tools are in the testing stage: a) an interactive compiler for

Galileo. In the present implementation, the management of persistent data has not yet been included,

but two functions, save and restore, are provided to save and restore the current state of a working
session on a specified file; b) a syntax driven editor of Galileo programs. The editor and the compiler
are presently two independent tools; c) an integrated syntax driven editor and interpreter,

implemented at Systems & Management SpA.. The implementation reflects the kind of architecture

we have in mind for the final system, but it does not make use of graphics CAPA85].
The following tools are not yet operational: a) a graphical editor for requirement specification and

analysis in Galileo/R; b) the metadatabase to collect information on projects in progress; c) a form

oriented interface to input end display objects of a database described in Galileo.

Since the graphics workstation has been acquired only recently, the graphical interface has not yet
been designed, but this aspect will be one of our mein~ concerns for the near future, together with the

integration of editor, interpreter, compiler, and project database. Next, the inclusion of mapping

tools, from the prototype in Galileo to specific DBMS languages, will be considered.

—68—



SELECTED BIBLIOORAPHY

ALAVB4] Alavi, M., “An Assesment of the Prototyping Approach to Information Systems
Development”, Comrnunicetions of TheACM27, 6,556-563, 1981.

ALBA83a] Albano, A.,and R. Orsini, “Dialogo: An Interactive Environment for Conceptual Design in

Galileo”, in Methodology and’ Tools for DelaDase Des/on, S. Cer I (ed.), North

Holland,Amsterdam, 229-253, 1983.

ALBAB3b) Albano, A., “Type Hierarchies and Semantic Data Models”, 14CM 5/go/on 83

Symposium on Programming Language issues in Software Systems, San

Francisco, 178-186, 1983.

ALBA83cI Albano, A., 11. Capaccioli, ME. Occhluto, and R. Orsinl, “A Modularization flechanism for

Conceptual Modeling”, Proc. 9//i mit Con! on VLDB, Florence, Italy, 232-240,
1983.

ALBA85] Albano A., V. De Antonellis, and A. Di Leva (ads.), Computer Aided Database Design,
North—Holland, Amsterdam, 1985 (to appear).

ALBA85b} Albano, A., 1. Cardelli, and R. Orsini, “Galileo: A Strongly Typed, Interactive Conceptual
Language”, AC/I TODS, 1985 (to appear).

ALBA85cJ Albano, A., and R. Orsini, “A Software Engineering Approach to Database Design: The

Galileo Project”, in Computer Aided Dotoiiose Design, Albano A., V. De Antonellis,
and A. Di Leva (ads.), North-Holland, Amsterdam, 1985 (to appear).

ATZE82J Atzeni, P., C. Batini, V. De Antoriellis, M. Lenzerini, F. Villanelli, and B. Zonta, “A

Computer Aided Tool for Conceptual Database Design”, in Automated Too/s for

Information System Design, H.J. Schneider 8nd A; Wasserman (ads.), North

Holland, 85-106, 1982.

BALZ83] Belzer, R., T.E. Cheatham, and C. Green, “Software Technology in the 1990’s: Using a

New Paradigm”, Computer, 39-45, 1983

EBUDD84] Budde, R., K. Kuhlenkamp, L. Methiassen, and H. Zullighoven (ads), Approaches to

Prototyping, Springer-Verlag, Berlin, 1984.

CAPA85) Capaccioli, M., and F1.E. Occhiuto, “A Workbench for Conceptual Design in Galileo”, in

Computer Aided Database Design, Albano A., V. De Antonellis, and A. Di Leva (ads.),
North—Holland, Amsterdam, 1 985 (to appear).

ECERIB3J Carl, S. (ad.), MeThodology end Too/s for Do/abase Design, North-Holland,
Amsterdam, 1983.

REIN84] Reiner, D., M. Brodie, 6. Brown, M.Chilenskas, M. Friedell, D. Kramlich, J. Lehman, and

R. Rosenthal, “A Database Design and Evaluation Workbench: Preliminary Report”,
Intl. Con! on Systems Deve/opment end Requirement Specification,
Oothenburg,Sweden,Aug. 28-30, 1984.

TEOR82} Teorey, TJ.,end ft Cobb, “Functional Specification for a Database Design and Evaluation

Workbench”, Working Paper 82 DE 1.15, Information Systems Research Group,
Graduate School of Business Administration, University of TI ichigan, 1 982.

ZAVE84J Zave, P., “The Operational Versus the Conventional Approach to Software Development”,
Communications of t/ieACM27, 2, 104-118, 1984.

—69—



A CAUSAL APPROACH TO DYNAMICS MODELING

V. De Antonellis(*), B. Zonta(**)

(*) Istituto di Cibernetica, Università degli Studi di Milano

Via Viotti 5 — 20133 Milano (Italy)
(**) Consiglio Nazionale delle Ricerche — Milano (Italy)

Abstract

This paper summarizes the results of a research devoted to the specification of

dynamic properties of database applications. The concepts of event and procedure
have been introduced. Petri Nets have been adopted to represent formally them,

and methodological steps for their modeling in the design process of database

applications have been defined.

1. Introduction

In the design of a database application, four phases /CERI83,LUMV78, NAVA8O/ are

usually distinguished: requirements collection and analysis, in which users

information needs are identified; conceptual design (view design and integra
tion), in which information needs are expressed in a formal language; logical

design, in which the conceptual schema is translated into a DBMS—processable

schema; and physical design, in which physical optimizations are performed.

In particular, the aim of conceptual design is to obtain a formal, integrated,
and DBMS independent description of the relevant concepts of the object system

to be automated. Such a description has to involve both static and dynamic

aspects. For the description of static aspects, several data models with related

languages have been proposed in literature /ALBA85,CHEN76,ELMA79,HAMM81,. . .1.

For the dynamic aspects, there are various proposals concerning modeling single

operations (transactions) on data classes. Less attention has been given to the

equally important problem of modeling application dynamics: sets of operations,
and their precedence relationships (i.e., the organization activities).

The ISO report /ISOT81/ identifies three approaches to modeling dynamic aspects:

state—oriented, command—oriented, and interaction—oriented approach. In a

state—oriented approach, the after—states which may be reached from a given
before—state are described by means of rules. The rules can be expressed by
sentences from the predicate logic. There is no interest in the commands

performed to transform one state into the next one. In a command—oriented

approach, on the contrary, the main interest is in describing allowed command

sequences, which cause permissible actions which change a permissible state into

another permissible state. Rules are expressed in conditional sequences of

commands. Both state—oriented and command—oriented approaches formulate which

changes are permissible and concentrate on. the description of rules and

constraints. Some sources refer to them using the terms ‘definitional’ and

‘procedural’ approaches respectively. Finally, an interaction—oriented approach
describes the interaction between the application and the environment, and the

causality of the changes in the application. The concepts used are: operations,
events, and synchronization.

—70—



Our research /BERT83,DEAN8O,DEAN81/ addresses the specification of dynamic

properties of database applications using an interaction—oriented approach. We

analyze the behavior of the object system (i.e., the activities to be automated)

and formalize it into procedures against the database using the Petri Net

formalism /PETR8O/. Other similar approaches /BARR8O,ROLL83,TARD8O/, differ from

ours in various aspects. In /BARR8O/, nets are used to express only the control

flow of procedures, with knowledge about them expressed in production rules. In

our approach, nets express also knowledge, as a consequence of the adopted

methodology, in which the description of the knowledge acquired on events is

constitutive of the net building itself, from the first step to the last step.
Unlike /ROLL83,TARD8O/, in which Petri Nets constitute only a starting point for

peculiar modeling formalisms, our approach exploits the original Condition—Event

interpretation of Petri Nets with its syntactic and semantic capabilities, and

the related simulation rules.

2. Relevance of Dynamics Modeling

Application dynamics modeling results in a clear and unambiguous representation
of the way in which the activities to be automated must be executed. Specifi

cally, operations and causal dependencies/independencies between them are

identified, and the related conditions are described. This representation, if

expressed in a formal language, highlights the design choices, allows the

discovery of inadequacies and inconsistencies, and suggests alternatives. In the

conceptual design, it allows to check the completeness and consistency of the

data and operations schemata (i.e. to test whether all the operations are

defined in the operations schema, and all the data that are needed to execute

the operations are adequately represented in the data schema). In the

logical/physical design, it provides guidelines in choosing optimization
parameters. Furthermore, such a formal representation, approved by experts and

designers, can be made automatically executable. In this way, operations are

executed according to their causality relationships, keeping track of the

execution ‘iter’.

In our approach, the activities are formalized into procedures by means of Petri

Nets which have a well—defined syntax and a sound basic interpretation. Petri

Nets have been proved easy to comprehend and use in the phase of conceptual
design. Furthermore, their capability to represent causal dependencies/indepen—
dencies by means of structures of ‘sequence’, ‘conflict’ (mutual exclusion) and

‘concurrency’ (parallelism), can be exploited in the phases of logical and

physical design (i.e., when optimization choices on data structures and opera

tions are made /BALB84/).

3. Causal Model of Procedures

A procedure consists of a set of operations and precedence relationships between

them. Precedence relationships are expressed by means of conditions which hold

before (or after) the execution of an operation. The causal model is based on

the notion of event. An event is a change of conditions from those which hold

before (pre—conditions) the execution of an operation to those which hold after

(post—conditions) such an execution. An event is described by means of its

pre—conditions and the operation which makes the change (post—conditions are

left implicit in the semantics of the respective operation). A procedure is a

‘texture’ of events which expresses their mutual dependencies/independencies.

—71—



To illustrate our procedure modeling method, let us consider as an example the

dispatch of an order by a customer and the order handling by the involved

enterprise. We can distinguish two activities. That of the customer who sends

the order, and waits for the answer from the enterprise; then, in the positive

case (the required items are available) he receives the items and the bill, and

pays the bill. That of the enterprise, which receives the order and checks item

availability. If the items are available, the enterprise prepares the shipment

together with the bill, and sends everything to the customer, waiting for

payment; otherwise, the enterprise informs the customer, provides for repleni

shment, and put the order into the backorders.

For these activities, we can define two procedures, “customer” and “enterprise”,
each of them composed by a number of events. An example of event, for the

enterprise, is: when an order arrives (preconditions), check—availability

(operation which makes the change), availability has been checked (postcon—
ditions).

Features of procedures are the following. The execution of procedures can be

carried on concurrently. See for example the procedures “customer” and

“enterprise”. The customer can prepare to receive the arriving items, and start

an advertising campaign in order to promote sales, concurrently with the

enterprise, which has to prepare the bill and the items. Note that also

operations within the same procedure may be concurrent, as for example item

preparation and bill preparation. Procedures can interact according to a

synchronous or asynchronous communication protocol. In fact, it is possible that

a procedure needs information from another procedure, or that a procedure starts

another one. Communication is synchronous if a procedure sends a message to

another and cannot proceed until it answers. For example, the procedure
“customer” cannot proceed, after having sent the order, until the procedure

“enterprise” answers. Asynchronous communication is also possible, that is, if a

procedure sends a message to another one and proceeds without waiting for an

answer. In our example, this happens when the enterprise sends the positive

message to the customer. In fact, after sending the message, the enterprise

begins preparing the items and the bill without waiting for a confirmation by
the customer. Since not all the aspects of the activities can be automated,

procedures communicate with users, who provide information which cannot be

obtained automatically. Each procedure can have multiple instances, some or all

of which may be In execution at any instant. The behavior of an instance depends
on events, that is, on change of conditions as a consequence of the execution of

operations.

4. Methodological Steps in Modeling Procedures by Means of Petri Nets

Petri Nets are the language adopted to represent procedures. The net

interpretation adopted here is essentially the original C(ondition)—E(vent)

interpretation, both in the structural. gnd the dynamic. aspects. Specifically,
transitions (graphically, bars) represent operations; places (graphically,
circles) represent conditions; an arc from an (input) place to a transition

defines a pre—condition of an operation, while an arc from a transition to an

(output) place defines a post—condition. A marker in a place (graphically, a dot

in a circle) indicates the holding of the corresponding condition. If all the

input places of a transition are marked, and if no output place of its is

marked, that transition Is enabled (i.e., it can fire); after firing, the

markers disappear from the input places and a marker appears in each of the

output places of the transition.

—72—



In our interpretation, the firing of a transition corresponds to an event

occurrence (i.e., to a change of conditions because of the execution of an

operation). Labels naming conditions and operations are related to the

corresponding elements of each net. Figure 1 shows the net of the procedure
“enterprise” (for simplicity, one assumes that the arrived orders refer to items

present in the catalogue of the enterprise).

DONE

Fig. 1 Net of the procedure “enterprise”
(unlabelled elements represent conflict or concurrency structures)

The methodological steps which allow the formal specification of procedures

starting from the user requirements have been defined within the DATAID—1

methodology /CERI83,DEAN81/ and are here summarized.

Requirements collection and analysis:

User requirements regarding the object system to be automated are translated

into a restricted natural language (synonyms are eliminated, pronouns are

replaced by the corresponding nouns, restrictions are imposed on the use of

articles, quantifiers, plurals, and so on). In particular, requirements
descriptions for events are extracted. Since, at this level, it is already
possible to recognize events which share the same preconditions either in

conflict or in concurrency, such information is preserved into major units,
called event—blocks. For each event or event—block, details and classifications

of its conditions and operations are described in a form. Specifically, two

types of conditions are distinguished according to whether they hold as a

consequence of operations performed within or outside the same procedure. The

WHEN order-arrives

check—ava lability—
- for-order

—for~-ba c k orde I

-bi II

DONE

)rders

send—to—customer
DONE DONE

—73—



first are expressed by IF plus the name of the corresponding operation, the

latter by WHEN plus a message or time reference. Operations are expressed by

imperative verbs followed by complements. Multiple conditions/operations for one

event are coordinated according to their mutual relationships by AND, OREX, OR,

and by means of parentheses (forming hierarchies). The events are then collected

and coded in a glossary, together with: references to activities to which they

belong; involved data and operations; and, possibly, information about prece

dence relationships between events of the same activity.

Conceptual design:

By means of the association grammar /DEAN81/, each event—block is related to the

corresponding Petri Net graph, whose elements are labelled with conditlon/

operation expressions. Activity by activity, these graphs are composed in

structures of sequence, conflict and concurrency according to rules which

exploit the identity or the equivalence of labels. The composition results in a

texture of events which shows the reciprocal causal dependencies/independencies.
The final graph represents the way in which the activity to be automated must be

executed, that is, the corresponding procedure. Finally, the defined procedures
are coordinated through communication links which represent message exchanges
between them.

Logical and physical design:

Formal procedure specifications are used in the logical and physical design

phases. Causal dependencies between operations provide guidelines in choosing

logical and physical parameters. In particular, a flow analysis of the Petri

Nets representing procedures is performed in order to derive the operation
activation frequencies /BALB84/.

5. Conclusions

The aim of our research is to model database procedures in terms of events and

to execute the modeled procedures against a database /BERT83/. For modeling
procedures at the conceptual level, we have developed a methodology and a

computer—aided system, INCOD—E /ATZE82/. For automated operational support, we

have designed an interactive system for the execution of procedures, IEHS

/BERT84/. Our goal is to obtain an integrated work environment for procedure
design and execution. We are currently investigating problems related to the

interface between the two systems. Such an interface should allow the designer
to generate a net description using the incremental facilities of INCOD—E, to

make such a description executable, and to execute it using IEHS. The systems
are currently being implemented in a UNIX environment with the INGRES relational

database management system.

Bibliographical References

/ALBA85/ Albano,A., Cardelli,L., Orsini,R., “Galileo: A strongly typed,
interactive, conceptual language”, to appear in ACM TODS, 1985.

/ATZE82/ Atzeni,P., Batini,C.,, De Antonellis,V., Lenzerini,M., Villanelli, F.,

Zonta,B., “A computer—aided tool for conceptual database design”,
Proc. of the IFIP WG 8.1 Working Conf. on Automated Tools for

Information Systems Design and Development, New Orleans, 1982.

—74—



/BALB84/ Balbo,G., Demo,G.B., Di Leva,A., Giolito,P., “Dynamics analysis in

database design”, International Conf. on Data Engineering, Los

Angeles, 1984.

/BARR8O/ Barron,J.L., “Dialogue organization and structure for interactive

information systems”, TR—CSRG—108, CSRG, University of Toronto, 1980.

/BERT83/ Bertocchi,R., De Antonellis,V., Zonta,B., “Concepts and mechanisms for

handling dynamics in database applications”, 7th ICS, ACM European

Regional Conf., Nurnberg, 1983.

/BERT84/ Bertocchi,R., De Antonellis,V., Zhang,X.W., “An interactive events

handling system, 1st Intern. Conf. on Computers and Applications,

Peking, 1984.

/BROD83/ Brodie,M., Silva,E., “Active and passive component modeling: ACM/PCM”,
in Information System Design Methodologies: a Comparative Review

North Holland, 1983.

/CERI83/ Ceri,S.(ed), Methodology and tools for database design North Holland,
1983.

/CHEN76/ Chen,P.P.,”The entity—relationship model: toward a unified view of

data”, ACM TODS, Vol. 1.1, 1976.

/DEAN8O/ De Antonellis,V., Degli Antoni,G., Mauri,G., Zonta,B., “Extending the

entity relationship approach to take into account historical aspects
of systems”, in E—R Approach to Systems Analysis and Design P. Chen

ed., North Holland, 1980.

/DEAN81/ De Antonellis,V., Zonta,B., “Modeling events in database applications
design”, Proc. mt. Conf. on Very Large Data Bases, Cannes, 1981.

/ELMA79/ El—Masri,R., Wiederhold,G., “Data model integration using the

structural model”, Proc. ACM SIGMOD, 1979.

/HANM81/ Haninier,M., McLeod,D., “Database description with SDM: a semantic

database model”, ACM TODS, Vol. 6, 1981.

/ISOT81/ ISO TC97/SC5/WG3, “Concepts and terminology for the conceptual
schema”, 1981.

/LUMV78/ Lum,V.Y.,et al., 1978 New Orleans Database Design Workshop, IBM Report
RJ2554 (33154).

/NAVA8O/ Navathe,S.B., et al., “Information modeling tools for database

design”, Data Base Directions Fort Lauderdale, Florida, 1980.

/PETR8O/ Petri,C.A., “Introduction to general net theory”, in Lecture Notes in

Computer Sciences n.84, Springer—Verlag, 1980.

/ROLL83/ Rolland,C., “Database dynamics”, DATA BASE, Vol. 14, n.3, 1983.

/TARD8O/ Tardieu,H., Nanci,D., Pascot,D., “Conception d’un système
d’information”, Les Editions de l’Organisation, Paris, 1980.

—75—



DESIGNING DATABASE UPDATES*

Sharon Salveter

Douglas E. Stumberger

Boston University Computer Science Department
111 Cummington Street Boston, MA 02215

(617) 353-8927

ABSTRACT

Natural language database access requires support of both query and update capa

bilities. Although a great deal of research effort has been expended to support natural

language database query, little effort has gone to support update. We describe a model

of action that supports natural language database update. and the implementation of a

system that supports the model. A major goal of this research is to design a system that

is easily transportable to both different databases and different DBMSs.

1. Introduction

Database access includes both query and update. in order to access a database, an end-user has

traditionally had two options. He could learn the database structure and the DML required by a particu
lar database, and formulate the access request himself. Alternatively, he could explain his request to a

programmer who then writes the DML. Both options have serious drawbacks. In the first, it is not

always reasonable for a possibly naive user to learn a formal DML and database navigation strategies. in

addition, because of database integrity constraints and view update problems. users are often prohibited
from writing transactions that update the database. The second option places a level of administration

between the user and the database that is generally cumbersome, and which is inappropriate for a user sit

ting at. a terminal in his office. Such an approach is particularly inappropriate for personal databases.

In order to avoid these impediments to database access, it is desirable to support natural language
database access. Although a great deal of research effort has been expended in support of natural

language database query IHARR77, DAME78, W00D76, KAPL79, WALK78, WALT78], and at least

one commercial system is available IHARR79I. little effort has been expended in support of natural

language database update, as noted by Wiederhold WIED81]. in this paper, we describe a system that

supports natural language database updates that are admissible for a given database. An additional goal
is to design a system that is easily transportable both to different databases and DBMSs.

2. The Update Problem

Previous research ISALV82} has shown that it is not possible, in a natural manner, to extend natural

language query systems to support update. In order to support natural language database query, a coni

puter system must be able to represent a stative correspondence between database states and real world

states, as shown in Figure 1. This stative correspondence logically connects~dat,abase objects with real

world entities and relationships. The stative correspondence is not adequate for supporting natural

language database update. In Figure 2, we see that when some action in the real world causes a state

change from RWS1 to RWS2, we must execute a DML sequence to change the database state from DBS1

to DBS2. Given an update command that describes a real world action we need to find a DML sequence

that will accomplish the corresponding change in the database. We need to specify-what is to be modified

This research is partially supported by NSF grant IST-8214622.

—76—



Real World States Database States

RWSI -~ — > DBSI

RWS2 < — > DBS2

RWSn < - > DBSii

Stative

Semantic Description <=====~============> Database Definition

Correspondence

Figure 1

Real World State - Database State Connection

RWS1 < — > DBSI

Active

Action I <============= ====> DML

Correspondence

1• I
RWS2 < — > DBS2

Figure 2

Real World Action - DML Sequence Connection

and how to make the modification. We need to connect active verbs, such as “hire” and~ with

structures that dictate DML sequences that perform the corresponding database update. We need to

represent an active correspondence between natural language descriptions of actions and DML sequences.

3. System Overview

Our research has resulted in a formal language for specifying what real world actions mean with

re8pect to a particular database, and a system that executes it. The formal structure that links natural

language update commands to DML sequences is called a veriigraph. The verbgraphs are designed in tan

dem with the database. During the database design process, the design staff analyzes a real world enter

prise and creates a database scheme that is an appropriate formal model of that enterprise. A critical

consideration in designing a good database scheme is how the database will be used. That is, what types

of queries will be addressed to the database, what kinds of update transactions will need to be performed,

and what. consistency con traints must be satisfied. Our approach provides the design staff with a formal

language for specifying update transactions*, just as the DDL of a DBMS is a formal language for specify

ing database schema. The formal representation can then be processed by our system, just as a DBMS

interprets the DDL to create and maintain a database instance. Our system facilitates formal and sys

tematic capture of domain-specific database knowledge, which heretofore resided only in a programmer’s
head.

The overall architecture of our transportable system is shown in Figure 3. The parser embodies

domain-independent general linguistic knowledge. From the natural language update command it pro

duces a caseframe representation ICHAR78I. Briefly, a caseframe is a collection of named slots, such as

AGENT or OBJECT, which can be instantiated. We are currently using simulated output. of the RUS

parser !B0BR781. Program Update embodies domain-dependent knowledge. It takes the formal

Although we have not yet implemented query capability, there is no theoretical impediment.

—77—



NL---> Parser --->Caseframe---> LProgram Update --->DML---> DBMS --->Result

Figure 3

Domain-independent Natural Language Database Access Architecture

caseframe representation as input, links linguistic elements to database objects and updates, and produces
a. DML sequence that represents what the natural language command means with respect to this database.

We are using the INGRES DBMS HELD75}. Actually, we are not tied to a particular DBMS, as Figure
3 implies. Our system produces a representation in a formal intermediate language (IL) that can be

translated into the DML of a given DBMS. Thus, the overall architecture looks like Figure 4.

NL---> ~~--->Caseframe---> Iipdate)--->1L---> Translatorj--->DML---> )DBMS]--->Resuit

Figure 4

Transportable Natural Language Database Access Architecture

An IL-to-QUEL translator has already been written !ASSI84J. Thus our attention is limited to the nature

of the caseframe-to-IL conversion. The architecture of this component is shown in Figure 5.

Caseframe > Control I I
I Prograrnj Verbgraphs I >IL

Database >j I I

Figure 5

Caseframe-to-Intermediate Language Translator Architecture

Because the IL-to-DML translation is a well-understood problem, and not of further interest here, we

sometimes speak of the IL as the language that actually updates the database. The verbgraphs are a set

of structures that represents what various natural language update commands mean with respect to this

dalabase; they must be specified for each database. The control program directs execution of the verb-

graphs; it need never be rewritten. This design is analogous to expert systems where domain-dependent
information is represented in production rules. There, the control program is domain-independent; it con

trols selection and execution of productions.

4. The Verbgraph

A natural language verb may have a number of different senses. A sense of a verb roughly

corresponds to the different definitions that might be given in a dictionary. For example “run?, has a least

the three senses: a person moving quickly, a machine operating, and a person campaining for public office.

in our scheme, a verbgraph represents a single verb sense. Thus one verbgraph might represent the “hir

ing” action, regardless of how the update is specified in natural language. A given verb sense may have a

number of variants. For example, hiring faculty may require different database actions than hiring secre

taries. A~verbgraph represents-all-legal variants of an action, and is also used to determine which variant

is specified in the natural language command. The set of verbgraphs for a database is the repository for

several kinds of information (constraints and default values may eventually be supported by some ideal

DBMS):

1. Linkage of Linguistic constructs to database objects and updates. (Use the AGENT case as the value

of attribute NAME in EMP, “hiring” results in insertion into EMP.)
2. Constraints on the database. (Maximum of 40 students in a course.)

—78—



3. Default values. (All courses are 4 credits, unless otherwise specified.)
4. Parameterized IL update commands that. will utimately comprise the update transaction.

5. Database retrievals that. may have 1.0 be performed in order to process the update request.

6. Questions to ask the user if insufficient information is specified in the natural language command.

7. Templates for t.uples to be inserted into, deleted from, or modified in the database.

A verbgraph is composed of a tree and a blackboard. as shown in Figure 6a.

\TERBGRAPH <name> NODE <name> BLACKBOARD

node guard variables

node prerequisites IL

node actions retrievals

blackboard questions

Figure 6a Figure 6b Figure 6c

Verbgraph Node Blackboard

Figure 6

The Verbgraph

The tree controls instantiation of the blackboard, which contains objects that wil] ultimately determine

the IL sequence. The tree has at most two levels*. There is a distinguished root node and an arbitrary

number of leaf nodes. Each node contains a guard, a boolean expression. The root node has guard true.

A variant is defined by the accumulation of all the nodes in the tree whose guards evaluate to true for a

given input. The order of execution of the leaf nodes is unimportant. When the control program executes

a verbgraph. it evaluates the guards of all nodes, selects all nodes whose guards evaluate to ~ and exe

cutes each node in turn. Node execution may cause access to the casefrarne, the database, the user, or the

blackboard. When all the chosen nodes have been executed, the blackboard wil] contain a correct IL

sequence that will update the database. It is important to note that that no update action is taken on

the database until all selected nodes have been executed, at which time the IL is translated to DML, and

executed by the DBMS.

The Blackboard

The blackboard, shown in Figure 6c, is a common repository of information that. any node can

access. It is composed of four types of information: variables, parameterized IL update commands, IL

database retrieval commands, and questions that may be asked of the user. Variables are of two kinds,

tuple and local, which are instantiated during node execution. A tuple variable is bound to a relation and

is composed of fields that correspond to the attributes of the named relation. The other kind of variable

is a local variable. The blackboard IL component is a set of labeled JL sequences. Each sequence consists

of parameterized IL update operations, which were specified during verbgraph design. An IL update com

mand may cause insertion, deletion. or modification of zero or more tuples in the database. During node

execution, the label of an IL sequence may be “checked off.” The checked off sequences will comprise the

transaction to be translated into DML. The three types of IL updates are insert, delete, and modify. The

forms are:

A two-level tree simplifies our control strategy. We could allow N-level trees, as discussed in JSALV84j.

—79—



<retrieve-label>

insert. <tvar> into <relname> take <attrset> from ~set>

<interval>

delete <tvar> from <relname> where <boolexp>

modify <tvar> from <relname> where <boolexp> assign sattrspecs>

Here we are not concerned with the particular semantics of these statements. It is only important to note

their flavor: a pseudo-DML with a high-level insert commands that can cause the insertion of many

tu pies.

The retrieval component of the blackboard is a Set of labeled IL retrieval commands. They are

retrievals that may have to be performed against the database to determine the correct variant of a verb

sense, instantiate blackboard variables, or process the insert command.

It may be the case that. that. the natural language update command did riot contain sufficient infor

mation to complete processing: it may be impossible to determine the variant, or the variant may be

determined but the required data incomplete. The questions component of the blackboard is a place for

specifying canned natural language questions to be asked of the user.

The Tree

The blackboard stores information needed by the tree. However, the control program does not

directly access the blackboard: it selects a set of nodes and executes them. The nodes are responsible for

ensuring that the correct. IL transaction is constructed. It is in the tree, then, that linguistic objects are

linked to database objects, real world actions are linked to database updates, database integrity con

straints are specified, and the blackboard objects are manipulated. Conceptually, the root of the tree

represents what is true for all variants of this verb sense, and each leaf represents that which is the case

for some aspect of a variant. (Recall that a variant is defined by t.he root and all leaves, or aspects, whose

guards evaluate to true. The tree is specified by a series of node definitions, as shown in Figure 6a. One

node is the distinguished root, the remaining nodes are the leaves. The format of a node is shown in Fig
ure 6b. A node consists of three parts: guard, prerequisite, and action.

The guard determines whether a node is selected for execution. Guards test caseframe values.

Because a variant is determined by information in the natural language sentence (and therefore the

caseframe). the guard can only compare caseframe values against constants, caseframe values, and results

of retrievals on the database. The prereqviszte component indicates those caseframe slots that must have

values before node execution is to proceed. If any specified caseframe slot does not have a value, a black

board question is asked of the user, and processing is suspended until the caseframe slot is instantiated.

Actions are the crux of the node. They perform a wide variety of functions: instantiate blackboard

variables, ask the user for more information. “check off” blackboard IL, retrieve database values, specify
default values, and specify database integrity constraints. An action is either a checkoff or an assignment.
The various forms are best~ illustrated by example. A checkoff is the simplest action. The statement

check (A3) causes the blackboard IL sequence labeled A3 to be checked off on the blackboard; it will be

part of the final IL transaction.

The basic function of an assignment is to instantiate a blackboard variable. The value may be:

- a constant: t.X := 5

- a system variable:
-

t.X := clock time

- a blackboard variable: ti.X := t2.Y

• a caseframe value: t.X := cf//location
- a default value: t.X := cf//duration default(lhour)
If the caseframe slot, named duration has no value, use 1 hour.

- the result of a database retrieval: t.X := RI

RI is the label of a blackboard retrieval that returns a single value.

- required to be in a range of values: t.X := cf//location in Ri # Q8
Ri is the label of a blackboard retrieval, Q8 of a quest.ion. If the cf//location value is in the result of Ri,

—80—



then use it. Otherwise, ask question Q8 and wait for a response.

- required to be in a range of values if it exists, otherwise a default is used:

LX := cf//location in RI ~ Q8 default (R2)
If cf//location has a value and it is in Ri, then use it. If it has a value but. it is not in Ri, ask Q8 and

wait for a response.

If cf//location does not have a value, use the default, which is the result of executing blackboard retrieval

labeled R2.

A formal description of the verbgraph language, a more complete description of the system, and

illustrative examples can be found in 1SALV841.

5. Concluding Remarks

A prototype of this system is implemented in C on a VAX 11/780 running Berkeley UNIX. We

expect the full system to be completed in 1985.

We plan to implement a toolbox for verbgraph specification, which will include a structured editor.

We will also provide an interactive verbgraph debugger, which will allow the verbgraph designer to test

the correctness of the verbgraphs. He will be able to test which verbgraph nodes evaluate to true for a

given input or class of inputs, step through instantiation of blackboard variables and IL checkoff, and

query the consistency of verbgraph components.

We also need to address the complex problem of run-time interaction with the user. For example,
the user may supply additional information that changes which node’s guards evaluate to true. We pro-.

pose to design our end-user interaction package so that minimum reprocessing is necessary, while allowing
maximum flexibility. An important design criterion is to avoid forcing the user to restate information

that has been given previously.

Acknowledgments

Michael Siega] participated in the verbgraph design. Thomas Schutz assisted in the implementation.

References

ASSI84] Assiff, S. Intermediate Language to QUEL Translation. BU CS Dept Masters Thesis, 1984.

BOBR78J Bobrow, R. The RUS System. BBN Report ~878, 1978.

CHAR76J Charniak, E. and Y. Wilks, Computational Semantics, North Holland. 1976.

IDAME78I Damereau, F., The Derivation of Answers from Logical Forms in a Question Answering Sys
tem. American Journal of Computational Linguistics, microfiche 75, 1978, pp. 3-42.

~HARR77J Harris, L., Using the Database itself as a Semantic Component to Aid the Parsing of Natural

Language Database Queries. Dartmouth College Mathematics Department TR 77-2, 1977.

HARR79] Harris, L., Experience with ROBOT in 12 Commercial Natural Language Database Query
Applications. Proceedings of the International Joint Conference on Artificial Intelligence,
Tokyo, 1979, pp.365-368.

HELD75, Held,G., M. Stonebraker and E. Wong, INGRES - A Relational Database Management System.
Proceedings of the 1975 National Computer Conference, 1975.

KAPL79I Kaplan, S.J., Cooperative Responses from a Natural Language Database Query System. Stan

ford University TR HPP-79-19, 1979.

SALV82~ Salveter, S. and D. Maier, Natural Language Database Updates. Proceedings of the 20th

Annual Meeting of the As8ociation for Computational Linguistics, Toronto, 1982, pp.67-7g.
ISALV84I Salveter, S., Natural Language Database Update. BU CS Dept TR#84/0O1.
FWALK78J Walker, D., understanding Spoken Language. American Elsevier, 1978.

IWALT75] Waltz. D., Natural Language Access to a Large Database: An Engineering Approach.
Proceedings of the International Joint Conference on Artificial Intelligence, 1975.

IWIED8I) Wiederhold, G., S.J. Kaplan and D. Sagalowicz, Research in Knowledge Base Management
Systems. SIGMOD Record, 7, S, April 1981, pp.26-54.

1~’OOD76J Woods, W. et. al, Speech Understanding Systems: Final Technical Report. BBN Report
#3~8, 1976.

—81—



CALL FOR PAPERS

EJ~ The 4th International Conference on

ENTITY-RELATIONSHIP APPROACH

PPROACH October 28-30, 1985 Chicago, Illinois

Major Theme: The Use of ER Concept in Knowledge Representation

Sponsored by: IEEE Computer Society in University of Illinois
TC on Database Engineering cooperation Louisiana State University
TC on Machine Intelligence with Purdue University
TC on Office Automation

This conference will bring together researchers and practitioners to

exchange ideas on the concept of entity relationship and its

Conrerence Chairm2n applications on knowledge representation. Papers on both the
KS. Fu

Purduc University
principles and the pragmatics of ER approach in knowledge

Program Committee Chairman representation are solicited.
Jane \V.S. Liu

University ol illinois Major Topics of Interest Include, But Are Not Limited To:
Tutorial Chairman

Robert Carison

illinois Institute ol Technology
• Expert and Knowledge Based Systems

1.ovnl Arrangement Chairman • Natural Language Processing
Adarsh K. Arora

Gould Inc.
• Learning and Knowledge Acquisition

Conrerence Treasurer • Memory and Database Models
Gerald F. Dcjong
University oF Illinois • Extension of Entity-Relationship Models

Publicils Chairman • Management Science Models
Kathy Davis

Northern Illinois University • Semantics of Entity-Relationship
Steering Committee Chairman

• Database Design Tools
Peter P. Chcn

Louisiana State University • Data Dictionary and Directory
Program Committee Members

• Database DynamicsAda rsh K. Arora USA

Carlo Batini Italy
Don Batory USA Special Invitation:
Bruce P. l3erra USA

Vuri Breitbart USA Several sessions on business arid industrial practices will be organized.
David Cohen USA

Gerald F. Dejong USA Practioners are invited to submit papers that describe the use of ER
Elizabeth N. Fong USA

Robert Fraley USA approach in system maintenance and enhancement projects, projects
A.L. Furtado Brazil

A. JayGoldstein USA
using 4th generation laiiguages and project leadership, and

Udai Gupta USA experiences in training nonexperts to understand the ER approach.
Leslie Haze!~on USA

Yahiko Kambayashi Japan To Submit Your Papers:
Won Kim USA

Wang Tok Ling Singapore
Vicent Lum USA

• Five copies of double-spaced manuscript should be submitted by
Hector Garcia-Molina USA March 15, 1985 to the address listed below:
Martin Model! USA

J. Mylopoulos Canada Dr. Jane W.S. Liu
Peter A. Ng USA

Ross A. Overbeek USA
1304 W. Springfield Avenue

D.S. Parker USA Department of Computer Science
Neil Rowe USA

Hirotaka Sakai Japan University of Illinois
Peter Scheucman USA Urbana; Illinois 61801
Gerhard Schitlncr Germany
Stefano Spaccapietra France • Notification of acceptance or rejection will be sent to authors by
John F. Sowa USA

T.C.Ting USA June 14, 1985.

Julius T. Tou USA • For inclusion in the Conference Proceedings, the final, camera-ready
Ben Wah USA

LX. Zhang China manuscript of each accepted paper must be received by the Program
Rodney P. Zimmerman USA Committee Chairman by August 9, 1985.

Important Dates:

Submission Deadline: March 15, 1985 Acceptance Notification: June 14, 1985

Final Version Due: August 9, 1985 Conference Date: October 28-30, 1985

—82—



THE INTERNATIONAL FEDERATION

F ~ FOR INFORMATION PROCESSIN~

IFIP Working Group 8.1 Working Conference on

ENVIRONMENTS TO SUPPORT INFORMATION SYSTEM

DESIGN METHODOLOGIES

Bretton Woods, New Hampshire USA; 4-6 September 1985

Call for Papers

The environment in which information system design methodologies are applied has a strong effect on the

design process. Environment, in this sense, refers to a variety of different topics, including:

• the hardware and software facilities available to the information system development organization,

including workstations, software tools, and networks;

• the management and structure of the information system development organization;

• the staffing and skills of the information system development organization;

• the ancillary support services, e.g., telecommunications, available to the information system

development organization

There is an ecology of environments, since changes in any of these areas may affect the• other areas.

Improvements in the development environment can have a beneficial effect on the development process

and/or on the developed product.

We seek papers that address one or more of these areas, with emphasis on the observed impact of

environmental changes on the use of a methodology or on the results of its use. We are especially interested

in papers that discuss the following topics:

• integrated software development environments containing tools explicitly oriented to a methodology;

• the hardware environment, such as a design workstation, to support the development process;

• the communication environment, such as the use of electronic mail and computer networks;

• the quality assurance environment, involving software or organizational procedures to evaluate the

development process or its products;

• the physical work environment for information system developers;

• evaluative data on the impact of environmental changes.

Submitted papers should not exceed 6000 words in length and should not have been published or submitted

for publication elsewhere. Four copies of the paper should be submitted to the Program Chairman to arrive

by 15 February 1985. Authors will be notified of acceptance or rejection by 1 May 1985. Proceedings will

be published by North Holland and authors will be expected to sign a copyright transfer agreement. Camera

ready copies of the final papers will be due by 15 June 1985.

General Chairman Program Chairman Program Committee

Prof. Anthony I. Wasserman Prof. Peter C. Lockemann S. Berild (Sweden)

Medical Info Science Institut für Informatik H.M. Blanken (Netherlands)

Room A-16 Universität Karlsruhe R. Brooks (USA)

U. of Calif., San Francisco Zirkel 2 M. Mantei (USA)

San Francisco, CA 94143 USA 7500 Karlsruhe 1 M.FI. Penedo (USA)

Federal Republic of Germany C. Rolland (France)

1 + (415) +666-2951 49+ (0721) 608-3968

—83—








	40979_DataEngineering_Dec1984_Vol 7_No4.pdf

