
SEPTEMBER 1983 VOL. 6 No. 3

a quarterly bulletin

of the IEEE computer society
technical committee

Database
•

eeri
Contents

Letter from the Editor 1

Letter from the Chief Editor 2

Clarifying Some Issues in

Office Automation 4

M.M. Zloof

An Overview of the Architecture(s)
of the Xerox Star Office System 12

GA. Curry

The Visi On Operating Environment 21

W.T Colemann Ill

Document Processing in an

Automated Office 31

AL. Haskin

Imail—An Intelligent
Mail System 36

J. Hogg, M. Mazer,

S. Gamvroulas, and D. Tsichritzis

A Knowledge-Based Approach to

Supporting Office Work 43

EH. Lochovsky

Chairperson, Technical Committee

on Database Engineering

Professor P. Bruce Berra

Dept. of Electrical and

Computer Engineering

111 Link Hall

Syracuse University

Syracuse, New York 13210

(315) 423-2655

Associate Editors,
Database Engineering

Prof. Don Batory
T.S. Painter Hall 3.28

University of Texas

Austin, Texas

(512) 471-1593

Prof. Fred Lochovsky
K52-282

IBM Research

5600 Cottle Road

San Jose, California 95193

International Advisors

Database Engineering

Prof. Francois Bancilhon

INRIA

Domaine de Voluceau—ROCQUENCOURT

BR 105—78153 LE CHESNAY CEDEX

France

Prof. Stefano Ceri

Dipartimento di Elettronica,

Politecnico di Milano

P. za L. Da Vi,ici 32, 20133

Milano, Italy

Editor-in-Chief,

Database Engineering

Dr. Won Kim

IBM Research

K54-282

5600 Cottle Road

San Jose, Calif. 95193

(408) 256-1507

Dr. David Reiner

Sperry Research Center

100 North Road

Sudbury, Mass. 01776

(617) 369-4000 x353

Prof. Randy Katz

Dept. of Electrical Engineering and

Computer Science

University of California

Berkeley, California 94720

(415) 642-8778

Dr. Dan Ries

Computer Corporation of America

4 Cambridge Center

Cambridge, Massachusetts 02142

(617) 492-8860

Prof. Yoshifumi Masunaga

University of Information Science

Yatabe-Machi, Ibaragi-ken, 305~ Japan

Prof. Daniel Menasce

Department of Information Science

Pontificia Universidade Cätblica~
-

-- —

Rua Marques de Sao Vicerite

225-CEP 22453 Rio de Janeiro

Brazil

Database Engineering Bulletin is a quarterly publication
of the IEEE Computer Society Technical Committee on

Database Engineering. Its scope of interest includes: data

structures and models, access strategies; access control

techniques, database architecture, database machines,

intelligent front ends, mass storage for very large data

bases, distributed database systems and techniques,
database software design and implementation, database

utilities, database security and related areas.

Contribution to the Bulletin is hereby solicited. News

items, letters, technical papers, book reviews, meeting
previews, summaries, case studies, etc., should be sent

to the Editor. All letters to the Editor will be considered for

publication unless accompanied by a request to the con

trary. Technical papers are unrefereed.

Opinions expressed in contributions are those of the indi

vidual author rather than the official position of the IC on

Database Engineering, the IEEE Computer Society, or

organizations with which the author may be affiliated.

Membership in the Database Engineering Technical

Committee is open to individuals who demonstrate willing
ness to actively participate in the various activities of the

TC. A member of the IEEE Computer Society may join the

TC as a full member. A non-member of the Computer

Society may join as a participating member, with approval
from at least one officer of the TC. Both a full member and

a participating member of the TC is entitled to receive the

quarterly bulletin of the TC free of charge, until further

notice.

Membership applications and requests for back issues

should be sent to IEEE Computer Society, P.O. Box 639.

Silver Spring, MD 20901. Papers and comments on the

technical contents of Database Engineering should be

directed to any of the editors.

Letter from the Editor

This issue of Database Engineering has as its theme “Automated Office

Systems.” Six papers from universities, research labs, and development
labs are included. In line with the diversity of the research field, the

papers cover several diverse topics.

The first paper starts the issue by discussing some issues in office

automation and presenting a prototype office information system Office by
example (OBE). The next two papers present overviews of the architecture

of commercially available office information systems - Xerox’s Star and

VisiCorp’s VisiOn system. Both systems are intended to run on personal
workstations possibly connected to a local area network and/or a central

computer. Star represents one of the first commercially available

integrated office systems based on a personal workstation architecture.

VisiOn represents a more recent effort aimed at providing a hardware

independent office system. Haskin’s paper discusses document processing
in an automated office based on a prototype multi-processor office

workstation. The paper by Hogg et al. outlines a different approach to

electronic mail where the mail has some intelligence of its own built in.

The final paper presents an approach to supporting office work using
techniques from artificial intelligence. It leads into the next issue of

Database Engineering which will be on the theme of “Expert Systems and

Database Systems.”

A fact that will strike the reader immediately upon reading the papers on

commercial office systems is the limited use of database technology.
Perhaps this points to the inadequacy of current database systems for

handling the diverse types of data and applications found in offices. The

prototype office systems described by Zloof and Haskin incorporate
database technology as an integral part of the office system. One can

expect to see a greater emphasis on office database research and

development in coming years.

I would like to take this opportunity to again thank the authors who

contributed to this issue. I have enjoyed working with them and learning
about their research and development efforts in automated office systems.
I hope that the reader will find this issue both informative and

stimulating.

Fred Lochovsky

September, 1983

San Jose, Calif.

1

Letter from the Chief-Editor

It is a pleasure to announce that Fred Lochovsky has agreed to serve as an Asso

ciate Editor of Database Engineering. Presently, Fred is at IBM San Jose

Research on a year’s leave from the University of Toronto.

Fred has a diverse background in database and office systems. He has

co-authored two books with Dennis Tsichritzis, Database Management Systems and

Data Models He has served on program committees for SIGMOD, VLDB, SIGOA, SIGS

MALL and Berkeley Workshop on Distributed Systems. Also, he has been an editor

of Information Systems for the past 3 years.

Fred is filling the position vacated by Alan Hevner. I would like to thank

Alan for his services as an Associate Editor for the past two years. He put

together the December 1982 issue on Distributed Database Systems, and provided
valuabid input to~1~ésha~fngàf5uf ~dfrI~ildIi~c€1ohT

At the beginning of this year, I instituted an International Advisory Board and

invited Francois Bancilhon, Stefano Ceri, Daniel Menasce, and Yoshi Masunaga to

serve one year on the board. I am hopeful that these international advisors

will help us keep abreast of database activities outside of North America.

During the past two years. Database Engineering h~s changed from a newsletter

into a theme-driven, semi-magazine of invited papers. In recognition of this

achievement, IEEE Computer Society bound together Database Engineering issues

from December 1981 through December 1982 and published it as Database Engineer

ing, Volume 1 this past June.

I would like to acknowledge the following people for their contributions to

Database Engineering during the past two years. My first and biggest thanks go

to the Associate Editors, Don Batory, Alan Hevner, Randy Katz, Dave Reiner, Dan

Ries, and Fred Lochovsky. Without their enthusiastic and dedicated editing of

the 1982 and 1983 issues, Database Engineering would have folded shortly after I

agreed to become its Editor-in-Chief.

I am grateful to Profs. Michael Stonebraker and Gio Wiederhold for their

papers and encouragement. I believe that their support provided a measure of

stature and credibility to Database Engineering, particularly during its form

ative infancy.
I also wish to extend my thanks to Profs. Jane Liu and Bruce Berra, the past

and present chairperson, respectively, of ~the TC on Database Engineering; they
have always given me their full support and cooperation.

Our publication schedule for the near future is as follows. I will edit an issue

on Expert Systems and Database Systems fo~ December 83. Don Batory, whohas

moved to University of Texas at Austin, will open 1984, with an issue on Statis

tical Databases. Don has heen working closely with Dr. John NcCarthy of Law

rence Berkeley Laboratory, chairman of the 2nd Workshop on Statistical Database

Management, to put the issue together. Randy Katz, who is now at UC Berkeley,
will follow with an issue on Engineering Design Databases.

2

My final comments pertain to those who wish to join our TC or those who wish to

have announcements for conferences included in Database Engineering. All

requests to join the TC should be sent to the Computer Society office in Silver

Spring, Maryland or to Dr. Wing-Kai Cheng of Roim Corporation, mailstop 553,

4900 Old Ironside Road, Santa Clara, Calif. 95050. I will not handle such

requests.

If space permits, I will ask IEEE to include conference announcements and

calls for papers, under the following conditions. First, the announcements must

be given to me in camera-ready form. I will not provide secretarial services to

prepare camera-ready announcements. Second, the conferences must be relevant to

Database Engineering. Third, when space is limited, I will give higher priority
to conferences sponsored by IEEE. -

Won Kim

September, 1963

San Jose, Calif.

3

CLARIFYING SOME ISSUES IN OFFICE AUTOMATION

Moshe M. Zloof

IBM Thomas J. Watson Research Center

Yorktown Heights, New York 10598

ABSTRACT: In this short paper we first try to discuss and clarify some of

the issues in office automation, such as: What is office automation; why do

we need it; will it increase productivity; its potential drawbacks, etc. We

end with a short overview of the IBM OBE language as an example of a system
that unifies many office functions in one single style.

I. OFFICE AUTOMATION ISSUES

USERS OF OFFICE SYSTEMS

Before we can talk about office automation, we must first clarify who are the

off ice occupants.

People usually have various mental images of office occupants. To some,

offices are occupied by high-level executives with an army of secretaries and

assistants; to others, offices are occupied by clerks who do such mundane

tasks as filling out invoice forms; to others,. offices are occupied by
secretaries whose major task is to create, file and retrieve documents. In

this paper we will take a wider view and consider the entire spectrum of

white collar workers as occupants of offices. As a result, it becomes clear

that “office automation” started a long time ago, when establishments bought
their first computer and started automating (programming) such tasks

(applications) as payroll, order entry, accounting, etc. By doing so, the

clerks were freed from the slow and repetitive work they were performing
manually. The speed and the lower margin in error increased the productivity
of the establishment as a whole. In most cases, the clerks were retrained

for higher-level jobs that required more depth and responsibility.

As computers became more powerful and as the data processing department in

such establishments became more sophisticated, systems and applications
analysts continued to identify office tasks (applications) that could be

computerized, moving them from the individual offices or departments to the

centralized data processing department.

WHY DO WE NEED OFFICE AUTOMATION

What will remain in the offices, therefore, are: 1. Tasks that are ad hoc and

not repetitive. 2. Tasks that even in today’s technology are not very well

understood, for example, how can one formally write an algorithm by which an

executive arrives at a decision to enter a new business venture? 3. Word

processing tasks such as composing, editing, and distributing documents,
etc. It is clear such tasks cannot be computerized by the central data

processing unit, but the productivity of the people who perform these jobs
can be enhanced, and this is what is popularly referred to as “office

automation.” Since the type of ‘automation’ is individual to every office

and since it is a relatively new area for computers, there is much

controversy in the area.

4

WHY DO WE NEED INCREASED OFFICE PRODUCTIVITY AND HOW DO WE MEASURE IT

We need to increase office productivity primarily because of competition.
Due to international trade and to national competition, company profits are

becoming very marginal, thus any factor that increases this margin should be

welcomed. The problem of course is how to measure office productivity.
While it was relatively easy to calculate the savings in ‘hard’ dollars when

a clerical task was programmed in its entirety, it is not at all easy to

calculate the savings when high-level managers make better decisions because

computerized data were accessible to them. Such savings are sometimes called

‘soft’ dollar savings, that is to say, one cannot calculate it but there is a

‘gut’ feeling that money was saved, thereby increasing the productivity of

the establishment. Exactly because of lack of proper measurement tools,

high-level executives in many companies do not consider office automation a

hot issue to address, (in contrast, for example, to the urgency of automating
a production line).

POTENTIAL DRAWBACKS OF AUTOMATION

Another reason for some skepticism and fear on the part of the management
about office automation, and justifiably so, is the possibility of loss of

privacy, loss of control, or the necessity to do things differently from

the way they were done before automatiOn. The designers of office systems,

therefore, must attempt as much as possible (at least at the beginning) to

provide the office user the same mental image as the image of a manual

system. Furthermore, privacy should be honored and kept at least to the

degree it was kept in a manual system. As an example, let us look at the

process of sending mail. In a manual system you distribute mail through the

post office or through the in-house mail distribution system. The sender has

the option to send the mail either in a regular or in a registered fashion,

i.e., he/she is formally notified that the mail was received. But the sender

has no way of knowing whether the receiver actually opened the envelope and

read the mail. In many electronic mail systems, on the other hand, the

sender can be notified not only upon the receipt of the mail but also whether

the receiver actually “opened” and read the mail. That is to my mind an

infringement on the privacy of the receiver and such practice should be

avoided.

STRUCTURED VERSUS NON-STRUCTURED APPLICATIONS

It has been almost a tradition to divide the range of business applications
into “structured” and “non-structured”, classifying the structured as

belonging to the central data processing department while the non-structured

belongs to the office. What we are witnessing lately is that executives and

managers are not satisfied anymore with getting weekly or monthly reports
from the Data Processing Department, but rather they want to access and query

the central data base themselves. In other words, what is needed is

non-structured interfaces on top of structured DP applications. As this

trend continues, some of the structured applications will be programmed
entirely by office workers, pretty much the same way it used to be done

before computer automation.

5

The crisp separation between structured and non-structured applications are,

therefore, disappearing and as more flexibility is needed in the

applications, one may state that “the structured of today is the

non-structured of tomorrow”.

ARE THE HARDWARE AND SOFNARE TECHNOLOGY AVAILABLE AND REASONABLY PRICED

Many researchers claim, and justifiably so, that from a technological
viewpoint we are ready for the challenge of office automation, and no major
breakthroughs need be achieved. Rather what office automation requires is

the synthesis of various advanced technologies which up to a couple of years

ago were either not developed or too costly for a single person to afford in

an office environment. It is primarily because of the recent availability of

these technologies that office automation has become such a hot issue.

Let us now list some of the technological advances in hardware and software

that may participate as components to form an automated office system.

In Hardware

o Inexpensive high resolution terminals

o Inexpensive stand-alone quite high resolution printers
o Powerful, small, noiseless, and reasonably priced local

minis--the popularity of the personal computers is

just one example of such a trend

o Inexpensive storage devices

o Networks to communicate with host computers

In Software

o Easy to use small operating systems

o Small self-contained data base management systems

o Easy to use word processors

o Advances in speech storage synthesis and recognition
o High level user-oriented languages for users to

set up their applications

Most of the above technologies are here and available now. Still, the

remaining major challenging issue, to our mind, is that of the human

interface to an automated system and its psychological effect on the office

worker. Let us now briefly discuss these issues.

PASSIVE VERSUS ACTIVE USERS

Traditionally, application prbgrams were written and debugged by

professional programmers who ran them mostly in a batch mode. As the use of

computers became more interactive and moved into the hands of nonprogrammer

professionals, referred to sometimes as “end users,” system builders have

been constantly trying to simplify the interaction between the computer and

the user.

One approach is the very well-known approach of ‘Menu Selections’, i.e., the

programmers preprogram the application and provide the end user with a menu

6

interface, the selection of which will execute the appropriate modules of the

underlying programs. The advantage of such an approach is that the user is

required to have minimal knowledge about the system except making the

appropriate menu selections. The disadvantage of course is that the user is

limited to only those applications and consequently selections offered by the

menus. In this case the user is ‘passive’, that is to say, he is driven by
the system and has no control over it.

A different, more challenging approach is allowing the user to become

‘active’, i.e., he/she will ‘program’ his/her application directly with a

high-level easy to use language that requires very little training to master.

THE DO~1AIN OF FUNCTIONS

A key issue in developing such a language is the domain of facilities it can

cover. It is relatively easy to devise a simple and consistent language to

do basic operations, such as storage and retrieval of documents. However, it

is much more difficult to devise such a language to cover a wide domain of

functions, e.g., storing and retrieving documents, storing and retrieving
records in data bases, editing and formatting text, distributing documents to

various users, creating reports, etc.

What normally happens is that system designers start with a specific set of

operations, and they design and implement a consistent interface to provide
functions for these operations. But later, as the application expands and

more functions are added, if they are not in the initial design, it is very

likely that the “easy-to-use” aspect will be lost. Also, if the system is to

interface with another system to enhance its capabilities, it will be

difficult to maintain the original unified interface. (Imagine, for example,
using the letters U and D in one system, which stands for UP and DOWN, while

in another system, for UPDATE and DELETE.) System designers must therefore

not only design the initial set of functions but also anticipate the user

requirements that will follow after the system is in use for some time, which

is very difficult.

What we tried to do in our own research was to start from quite an extensive

and challenging set of functions and to design a consistent and simple
language for end users to learn and use, and that is how OBE came about.

II. SHORT OVERVIEW OF THE OBE LANGUAGE

OBE (Office By Example) (ZLOO82) is an experimental system being developed
and used at the IBM Thomas J. Watson Research Center. Here we will give a

very short overview of the language as an example of a system that tries to

unify in a consistent manner different facilities used in the process of

automating an office, namely:

o Word Processing : The ability to create, edit and

format documents

o Data Processing : The ability to create, modify and

query local data bases with access to

centralized data bases. And computa

7

tional power to operate on the data of

these data bases

o Electronic Nail : The ability to distribute documents and

reports to various people determined

from a condition on the data base

o Forms and Report : The ability to create forms and reports
and copy data into them from a data base

o Graphics : The ability to create various graphs
(pie-graphs, bar-graphs, etc), the data

of which are provided from the data base

One of the fundamental concepts in OBE (as in Query-by-Example (ZL0077,
ZL0075)) is the concept of two-dimensional programming, that is to say,

‘programming’ directly within images of two-dimensional business objects.
This approach makes OBE very unique and different from most of the other

approaches. I want to stress at this point that there are many systems which

have the appearance of two-dimensional programming, such as spread sheets,

etc., but to program them is still accomplished via entries in a single line

either on the top or on the bottom of the screen. This is not what we mean by
two-dimensional programming. What we mean is that the user enters

expressions anywhere within the business structure and the language must have

a two-dimensional parser to parse these expressions. To illustrate this with

some examples: Let us assume that an establishment has a file (table) called

sales, listing salesmen, their sales quotas and their sales to date as

follows:

L~ALES SALESMAN SALES QUOTA SALES TO DATE

a. Data Base Query:

To query this table for name of salesman whose sales to date are greater than

$50,000, the user ‘programs’ this query by displaying the skeleton of the

table on the screen and making the following two entries:

~SALES ISALESMAN SALES QUOTA SALES TO DATE

P. > 50,000

The command P. stands for ‘print’ or display. Thus, the user is asking the

system to display the salesmen’s names and their sales to date but only sales

to date greater than $50,000--specified by the entry > 50,000 in that field.

The users can also enter variables (Example Element) in the appropriate field

to further restrict the output. For example, the query: “Find the

salesmen’s names who exceeded their sales quota” will be formulated as

follows:

8

SALES SALESMAN SALES QUOTA j SALES TO DATE]
IP. I ~ I

Underlined stri.ngs of characters are considered variable (or Example
Elements). So the query will select records whose SALES TO DATE field values

are greater than the SALES QUOTA field values, which satisfies the

stipulation of the query. (Note that the choice of Q is arbitrary).

The above were just simple examples of the Query-by-Example language. The

entire language (ZL0077) is quite powerful and is “relationally complete,”
i.e., it has the equivalent of the following six relational operators:

selection, projection, intersection, union, difference, join.

b. Word Processing and Electronic Mail

To further demonstrate the power of the OBE language, let us assume that we

want to send congratulatory letters to all salesmen who exceeded their sales

quotas. This program will be accomplished as follows:

I SALES SALESMAN

N

I SALES QUOTA

Q

I SALES TO DATE I

I COMMANDS 7
S. LETTER TO N

In this program the salesmen’s names and their quotas (specified by the

Example Elements N and ~) will be copied from the data base table to the body
of the letters. The S. Command in the COMMAND box (which the user has to

display via a function key) instructs the system to send the letters to the

appropriate salesmen. (Note if, for example, five salesmen exceeded their

sales quota, then five letters will be automatically created and distributed

appropriately.)

While composing this simple letter, the user can use many OBE editing and

formatting features; thus, the user need not invoke a special editor, but

rather editing is an integral part of OBE.

LETTER

Dear N

Congratulations. You have

exceeded your quota of Q.

9

c. Forms and Reports

In (b) we copied example elements from a data base into text documents to

produce letters. The same concepts can be used to copy example elements from

a data base to templates of Forms or Reports. Here is an example of producing
invoices from orders:

CUSTOMER ITEM QUANTITYJ

G.~’j I

I QUANTITY UNI~1’ PRICE EXTENIJEIJ PRICEITEM

I

INVOICE

CUSTOMER: N

SUM.

-~-

This program produces an INVOICE for each customer. The quantity Q and the

unit price I are copied from the data base to the body of the INVOICE and

their totals are calculated accordingly.

d. Graphics

Simple graphics, such as bar graphs and pie graphs, are again accomplished by

copying example elements from a data base into the body of a graph template.
For example, if we want to display the salesmen, their sales quotas and their

sales to date in a horizontal bar graph, the program will be written as

follows:

r SALES SALESMAN SALES QUOTA SALES TO DATEI
it -~- j

In this example the system will copy every salesman’s name and draw

horizontal bars proportional to his/her sales quota and sales to date,

respectively.

IORDERS IPRICE ITEM UNIT PRICE 1
I

10

We hope that the above examples illustrate the flavor of the language. For

further details please refer to (ZL0082).

REFERENCES

1. M.M. Zloof, “Office-by-Example: A business language that unifies data

and word processing and electronic mail,” IBM Systems J., Vol. 21, No

3, 1982, pp. 272-304.

2. M.M. Zloof, “Query-by-Example: A Data Base Language,” IBM Systems J.,
Vol. 16, No. 4, 1977, pp. 324-343.

1~ ,t

3. M.M. Zloof, Query-by-Example, AFIPS Conf. Proc., 1975 NCC, pp.

431-438.

11

AN OVERVIEW OF ThE ARCHITECTURE(S) OF ThE XEROX STAR OFFICE SYSTEM

Gael A. Curry
*

Xerox Office Systems Division, Palo Alto, California

ABSTRACT: The Xerox Star (8010) is an office workstation integrated into a Xerox

Network Systems internetwork. This paper describes the architecture of Star in

brief, broad terms. As much as possible, independent architectural components are

treated separately; architectural descriptions for components are referenced

rather than being described extensively within this paper.

1. INTRODUCTION

For the purposes of this paper, “architecture” means the skeleton, or

framework, upon which the details of an implementation rely. The set of Star

architectural concerns addressed by this paper has been divided into four broad

areas: network systems, (generic) processor, workstation software, and workstation

user—interface. Archictectural features in one area often influence other areas,
so this is not a complete decoupling, but it is useful for presentation. This

decomposition is also used to organize Star development.
It is difficult for any one person to acquire a uniform perspective on a system

as large as Star. The author’s perspective is primarily from the vantage of the

workstation kernel (application support) In general and the Star document editor

in particular. This paper may be somewhat biased by that viewpoint.

2. NETI~RK SYSTEMS.

Star is unique among automated office systems in the relative completeness of

its network integration. The Star workstation (WS) user may manipulate public or

private facilities available on networks very nearly as easily as he manipulates
his own local resources. As much as practical, the Star user would like to see no

real difference between the use of local and remote resources.

The Xerox Network Systems (XNS) architecture is layered. In general, it

follows the ISO open systems interconnection (OSI) reference model zIMMBO]. The

ISO model separates communication into seven layers, whose concerns range from

physical qualities of the transmission medium to application-specific
communication.

The communication system underlying the XNS architecture is modeled after the

experimental Pup internet developed by Xerox PARC B0GG8OJ, which is similar to the

ARPA internet protocol POsT81]. The XNS architecture is open in permitting
Incremental, non-disruptive addition of new resources to the Internet. This

openness derives in part from the layered architecture, which insulates layers
from changes in other layers, in part from openness within each layer
individually, and in part from the ability to interpose gatewaysl between the

1gateways perform appropriate transformations so that communication can occur

*author now with Intel Corp., 5200 N.E. Elam Young Parkway, Hilisboro, OR, 97123

12

various XNS layers and corresponding foreign layers. Overviews of the XNS

architecture can be found in DALA81aI and DALA82I.

2.1. Ethernet

Ethernet is a packet-switched communications system for locally distributed

computing ystemssHoc82]. The shared communications channel in an Ethernet is

passive; each network station recognizes and removes the packets addressed to it.

Access to the channel is coordinated In a distributed way by the stations

themselves, using a statistical arbitration scheme.

Ethernet corresponds to the lower (i.e., physical, data link, and network)

layers of the OSI reference model. Star adheres to the Ethernet Specification as

jointly announced by Digital Equipment Corp., Intel Corp., and Xerox Corp.
EmE8o].

2.2. Internet

An internet is an interconnection of networks. Internets are useful partly
because of end-to-end cable length restrictions imposed by Ethernet (2.5 km), and

partly because of the desire to communicate across public data networks. The XNS

architecture uses 118-bit absolute internet host (processor) numbers, unlike most

other internetwork systems DALA81b]. Higher-level protocols permit convenient

internet communication wI-1rr82]. Internet transport protocols deal with internet

delivery of packet and packet sequences XERO81b]; they correspond to the

intermediate (network, transport, and session) layers of the OSI reference model.

Courier, a remote procedure call (RPC) protocol permits process—to-process
communication in terms of a convenient procedure call and return paradigm
XERO81a]; it corresponds to the presentation layer of the OSI model.

2.3. Network Services

Processors on the internet can be conveniently divided into two classes:

workstations and servers. Workstations are processors through which the user

directly interacts with the Star office system; servers are usually unattended

processors which run services. Services are programs which manage shared

resources on the internet; a service can also be a distributed program running on

several servers.

The clearinghouse service OPPE83] is a distinguished service which maintains

the association between names and locations of’ objects (e.g., workstations, file

servers, people, groups of people) within the internet. It, like some other

services, Is distributed and replicated; this increases efficiency, security and

reliability.
An open-ended set of other services also exist. A file service manages the

storage and retrieval of files from large, shared disks. A print service prints
documents on laser printers (usually). An electronic mail service provides for

the delivery of’ mail across the internet BIRR82]. An authentication service

establishes-~the~ legitimacy of service requests ISRA83]. PrbtO~Ols used to

control these services correspond to the presentation layer of the OSI model.

3. PROCESSORS

The XNS architecture permits different processor types to be connected to the

Internet. Indeed, the Star office system is often sold with a number of low-end

13

Xerox 820 and mid-range 860 workstations, as well as high-end Star (8010)

workstations; non-Xerox processors may also be connected to an XNS internet,
insulated by XNS protocols. Nevertheless, most of the work has been on the Star

Processor, called Dandelion, so the focus of this paper follows that route.

The Dandelion processor is a member of the class of Mesa processors. Both the

Star workstation and the servers (the 8000 series) currently sold with the Star

office system are Dandelions. This section deals with aspects of the Dandelion

which are Independent of Its specific use as a workstation.

3.1. Processor Hardware

The Dandelion consists of a microprogrammable central processor (Implemented
with bit-slice technology), a rigid disk (with 8MB or 21IMB formatted capacity), an

8-inch floppy disk, connections for user terminal and Ethernet, and optional
controllers for other devices. It Implements a 22-bit virtual and 20-bit real

address space; typical real memory configurations range from 512KB to 768KB.

3.2. Mesa Processor Architecture

Mesa, a modular, high level language, is the systems implementation language
for all 8000-series products. In order to decouple the language from particular
hardware, Implementations of Mesa assume a Mesa architecture machine EJOHN82].
This architecture has been implemented by firmware on various types of hardware

(Altos, Dolphins, Dandelions, Dorados) HAR.S82]. The architecture is designed to

support, but not execute directly, high level languages. It Is a stack

architecture with a flat virtual memory space of up to 232 16—bit words; pages are

28 words. There is no addressability protection aside from write—protectable
pages. Emphasis is on compact program and data representations and “light-weight”
processes. Procedure call (as well as process switch) is a special case of a

single control transfer primitive called XFER.

The Mesa instruction set is designed according to frequency of use; the major
emphasis is program and data compactness. Periodically, analyses of instruction

mixes are performed, and the instructIon set Is revised accordingly. This

approach, coupled with a stack architecture, tends to produce dense code SWEE82].

3.3. System Software

Even though aspects of system support such as language and operating system do

not determine workstation software architecture, they certainly influence It.

These components are summarized here for this reason.

3.3.1. Mesa Progranin.ing Language

Mesa is a modular, strongly-typed systems Implementation language. A

reasonably complete description of current Mesa can be found in MITC79] (it has

evolved slightly since then). An overview of the Mesa rationale and description
of Its major features can be found in GEsH77]. The Mesa language supports

processes and monitors with conditions LAMP8O]. The runtime support is provided
by the operating system, Pilot, which Is Itself wrItten In Mesa and uses Mesa

process support heavily.
Significantly, Mesa also supports the PRocEDuREdata type. Even though Mesa does

not support object orientation or subclasslng (see below) directly, the existence

of procedure values facilitates programming conventions which use these

programing practices.

14

3.3.2. Pilot Operating System

Pilot is the operating system for all 8000—series products - workstations and

servers. An overview of Pilot design considerations and tradeoffs can be found in

REDE8O], LAuE81]. Pilot is implemented entirely in Mesa. Its features include a

linear virtual memory, a large “flat” file system, streams, internet communication

facilities, concurrent programming support for Mesa, and miscellaneous support.
All protection in Pilot ultimately depends on the type-checking provided by Mesa.

This is a consequence of the design choice that Pilot should be an operating
system for a single user system, where errors are a more serious problem than

maliciousness.

Pilot’s file system and virtual memory system are closely coupled: virtual

memory is the only means by which (mapped) files can be written, and files are the

only backing storage for virtual memory.

3.3.3. File System

In addition to the flat file system which Pilot supports, higher level software

implements a more functional file system which supports filing both on

workstations and on file servers. It implements directories, file attributes as

required by the Star workstation user-interface, and access control.

The file system also supports structured files, files with several segments.
Higher-level “files”, such as record files or documents, are actually collections

of file segments with well-known segment structures.

14. b~RKSTATION SOFTWARE

The Star workstation (WS) software depends on Mesa, Pilot, and other

generalized components, but is much more heavily influenced by user-interface

requirements than these components. Even so, a good deal of the architecture

~ §14.2) has little to do with specific Star functionality.

14.1. Object Orientation and Subclassing

Object—orientation is a software design discipline which produces systems which

can be viewed as families of intercommunicating objects of different types. It is

a natural design approach for the Star workstaton software, given the object-
orientation of the user-interface; it continues the Smailtalk tradition GOLD83].
Pilot also has adopted an object-oriented approach.

Subciassing, which permits new object types to be defined r~on-disruptively as

specializations of old ones, has proven to be extremely useful. WS software uses

a generalized subclassing approach called traits cURR82], cURR83]. Mesa doesn’t

support subclassing per se, but conventions have been established supporting
object-orientation and subclassing.

14.2. General In~g1ng Support

Utility packages have been defined which support display manipulations. A

region package describes and supports operations on planar areas expressible as

unions of rectangles. A clipping and translation package supports these geometric
operations centrally. A window package supports multiple, overlapping ~iindows

(restricted by higher level software to prevent overlap).

15

A primitive imaging abstraction, called layout sche~, decouples applications
from containing and contained applications. Each schema represents a rectangular
patch which can paint and print itself, process pointing actions, negotiate with

surrounding schemas for screen real estate during size changes (due to editing),
etc. Most rectangular domains are specializations (in the subclassing sense) of

the schema abstraction; some domains choose to consider rectangular parts of

themselves as sub-schemas. Nothing has been published in this area.

11.3. Higt~er-level abstractions in the user-interface

Other packages provide systematic support for higher level abstractions in the

Star WS user-interface, such as window shells, property sheets, containers

(folders and filedrawers). Higher level abstractions are specializations of more

primitive abstractions (in the subclassing sense).

4.4. Documents

Documents are the primary focus of the Star WS user. Star documents integrate
many different document content types (e.g., text, synthetic graphics, equations,
tables) and are viewed and edited on the user terminal as they appear on the

printed page, including an accurate rendering of document layout. The Star

flexible page medel, where documents satisfy layout specifications only after

pagination, then stretch during editing, is important for performance in a what-

you-see-is-what-you-get editor. The format for Star objects is such that they may
be filed; internal format for Star documents is primarily as a filed object space.

Opening a document amounts mostly to mapping a file.

11.11.1. Text

Text is attributed with font information (varying in face, size, emphasis,
etc.) and with paragraph information (leading, justification, etc.). Star (as
well as the entire XNS architecture) is based on a 16—bit character space which

extends ASCII. Star text-processing software is multi—national in that wherever

English can appear, so also can European, Japanese, Chinese and Russian. Pseudo-

characters (e.g., frame anchors) can also exist in document text.

In order to be able to display documents quickly, in a what—you-see-is-what-
you-get manner, Star views document layout as part of the editable (or at least

filable) structure of a document, rather than as a property of the view of the

document. This makes the pagination edit slower, since layout is recalculated at

that time.

11.4.2. Other Document Applications

Frames are escapes from the text application in documents to other, non-textual

ones. The current set includes graphics LIPK82], equations, tables, and text.

These sub—applications have their own interesting architectures, but are not

discussed here.

4.5. Records Processing

Star is able to maintain local record etsPIJRV83]. These record files are not

shared databases (except inasmuch as they can be mailed). They do support many of

the same features of larger databases, including filtering and views.

16

The main design problem for the records processing facility was to provide
database-like functionality in a way which was both easy to use and well-

integrated with other records-like facilities in Star. Star record files are

closely integrated with documents, both internally and at the user-interface; the

basic idea is that record files and tables are alike in many respects.
The tactic of supporting private record files initially left Star without a

shared database facility. Until shared databases are fully integrated into the

Star network, a data capture facility will provide similar capability. Initially,
terminal emulation facilities are used to connect to a foreign shared database.

Then, the data which has been collected in “flat” textual form is extracted and

structured (via a data definition specification) for incorporation into Star

documents or record files.

~l.6. Other Desktop Applications

Other applications, such as remote filing, printing, and electronic mail, are

available as icons on the Star desktop. The current design views these as

specializations of the layout schema abstraction which understand specific
internet application protocols.

~I.7. Progr~nm~bllity

Star is programmable to some degree via a specialized programming language,
CUSP (for CUStomer Programming). CUSP contains primitives for manipulating the
Star environment in the same metaphor as the user himself would. Current versions
of CUSP support (document) field manipulations and desktop level manipulations
xERo83].

5. WORKSTATION USER-INTERFACE

Star’s user-interface (UI) is revolutionary. It represents a large design
effort of a different sort than the software, hardware, or network designs. It
has its own set of user-interface architectural principles, summarized in

MIT82a],SMIT82b]. The main design challenge of the Star UI was to find a small
set of UI primitives, which when interpreted by specific applications, gave the

user extensive control with low cognitive overhead. The design of the UI for
other areas is constrained by system-wide principles, but varies within those

bounds; see PURv83] for a discussion of the UI for Records Processing.
In addition to adhering to UI principles, the user—interface must exhibit the

right levels and kinds of functionality. Star tries to serve the professional
knowledge worker by automating his office functions. It provides extensive

support for document production, private record files, electronic filing, printing
and mailing SEYB81]. Internally, the Star architecture is basically open-ended;
new function is added by writing new Mesa modules which support the desired
extension. From an external vantage extension is more difficult, since the
extension vehicies~4e.g., network standards, -internal workstation interfaces, Mesa

itself) are not generally public.

6. SUMMARY

Many levels of architecture exist for the Star Office System. In some ways,
each affects the others. Star’s raison-d’être is to unify the many kinds of

17

function available in a networked environment through a consistent user-interface;

thus, certain requirements on lower-level architectures derive from user-interface

goals. In addition, however, certain requirements on the user-interface derive

from the realities of life in a networked environment.

Some part of the architecture of the Star office system is also determined by

development methodology and organization. The design must be decomposed so that

it can be developed reasonably. That decomposition is manifested in the

development organization; organizational boundaries then continue to exert an

architectural influence - even when (because of changing assumptions or better

insight) a different decomposition might be preferable. Another part of the Star

architecture is determined by compatability coninitments and by inertia (as a large

piece of software). However, it is difficult to quantify these effects; see

Hoas79], LAuE79I, HARS82], LAUE8 ii.
Star is a mature system (first released in October, 1981), but there is still a

lot to learn. Function, performance, and integration can be expected to improve
as we learn more about the right way to build Star-like systems.

7. ACKNOWLEDGE~1ENTS

It is impossible to properly acknowledge everyone who had a hand in formulating
some aspect of the architecture of the Star office system. Much of it is an

outgrowth of years of research and development at Xerox PARC. Much of it is an

outgrowth of the creativity and diligence of the Systems Development Division,
which took Star as its mission. And much of it is due to the vision of David E.

Liddle, who brought that organization to life more than seven years ago.

8. REFERENCES

BIRR82] Birrell, A.D., Levin, R., Needhani, R.M., Schroeder, M.D. Grapevine: An

Exercise in Distributed Computing. Comm ACM 25(1~): 26O-27L~ 1982 April.
BOGG8O] Boggs, D.R., et al. Pup: An Internetwork Architecture. IEEE Trans.

Comm. 28(~t): 612-62L~ 1980 April.
CURR82] Curry, G.A., Baer, L., Lipkie, D., & Lee, B. Traits: An Approach to

Multiple—Inheritance Subclassing. Proceedings of ‘82 Conference on

Office Information Systems. Philadelphia: ACM SIGOA: 1-9; 1982 June.

CURR83] Curry, G.A., Ayers, R.M. Experience with Traits in the Xerox Star

Workstation. Proceedings of ITT Workshop on Reusability in Programming.
Newport, RI: ITT Tech. Rept., 1983 September.

DALA81a] Dalal, Y.K. The Inforn~tion Outlet: A new tool for office organization.
Palo Alto, CA: Xerox Corporation, Office Products Division; 1981

October; OPD~T8 101$.

DALA81b] Dalal, Y.K., Printis, R.S. 148—bit Absolute Internet and Ethernet Host

Numbers. Proceedings of 7th Data Communications Symposium. Mex~ico City:
1981 October.

DALA82J Dalal, Y.K. Use of Multiple Networks in the Xerox Network System. IEEE

Computer magazine 15(10): 82-92; 1982 October.

EETHE8O] The Ethernet, A Local Area Network: Data Link Layer and Physical Layer

Specifications. Version 1.0. Digital Equipment Corp., Intel, Xerox.

1980 September.
GESH77] Geshke, C.M., Morris, J.H., Satterthwaite, E.H. Early Experience with

Mesa. Comm ACM 20(8): 51$O_553; 1977 August.

18

GOLD83] Goldberg, A., Robson, D. SMALLTALK-80: The Language and its

Implementation. Reading, MA: Addison-Wesley; 1980.
HARS82] Harsiem, E., Nelson, L.E.. A Retrospective on the Development of Star.

Proceedings of 6th International Conference on Software Engineering.
Tokyo: 1982 September.

HORs79] Harsiem, E., Nelson, L.E.. Pilot: A Software Engineering Case Study.
Proceedings of lIth International Conference on Software Engineering.
Munich: 1979 September.

1SRA83] Israel, J.E., Linden, T.A. Authentication in Office System
Internetworks. ACM Transactions on Office Information Systems.
1(3):193—210; 1983.

JOFLN82J Johnsson, R.K., Wick, J.D. An Overview of the Mesa Processor

Architecture. Proceedings of the Symposium on Architectural Support for

Programming Languages and Operating Systems. Palo Alto: ACM SIGPLAN,
1982 March.

LAMP8O] Lampson, B.W., Redell, D.D. Experience with Processes and Monitors in

Mesa. Comm ACM 23(2): 105-117; 1980 February.
LAUE79] Lauer, H.C., Satterthwaite, E.H. The Impact of Mesa on System Design.

Proceedings of L~th International Conference on Software Engineering.
Munich: 1979 September.

LAuE81] Lauer, H.C. Observations on the Development of an Operating System.
Proceedings of the 8th Symposium on Operating Systems. Asilomar, CA:

1981 December.

L1PK82] Lipkie, D.E., Evans, S.R., Newlin, J.K., Weissman, R.L. Star Graphics:
An Object—Oriented Implementation. Computer Graphics 16(3): 115~121~
1982 July.

M1TC79] Mitchell, J.G., Maybury, W., Sweet, R.E. Mesa Language Manual. Palo

Alto: Xerox, PARC; 1979; TR CSL793.
OPPE83] Oppen, D.C., Dalal, Y.K. The Clearinghouse: A Decentralized Agent for

Locating Named Objects in a Distributed Environment. ACM Transactions

of Office Information Systems 1(3):230-253; 1983.
POsT81] Postel, J.B., Sunshine, C.A., Cohen, D. The ARPA Internet Protocol.

Computer Networks 5(a): 261-271; 1981 July.
PuRv82] Purvy, R., Farrell, J., Kiose, P. Data Processing for the Noncomputer

Professional. ACM Transactions on Office Information Systems 1(1):3-214,
1983.

REDE8O] Redell, D.D., Dalal, Y.K., Horsley, T.R., Lauer, H.C., Lynch, W.C.,
McJones, P.R., Murray, H.G., Purcell, S.C. Pilot: An Operating System
for a Personal Computer. Comm ACM 23(2): 81-92; 1980 February.

SEYB81] Seybold Report. Xerox’s Star. 10(16); 1981 April.
sHoc82] Shoch, J.F., Dalal, Y.K., Crane, R.C., Redell, D.D. Evolution of the

Ethernet Local Computer Network. IEEE Computer magazine 15(8): 10-27;
1982 August.

SMIT82a] Smith, D.C., Harsiem, E., Irby, C., Kimball, R. The Star User Interface,
an Overview. Proceedings of ‘82 National Computer Conference. Houston:

1982, 515-528.

sMIT82bJ Smith, D.C., Irby, C., Kimball, R., Verplank, B., Harsiem, E. Designing
the Star User Interface. Byte 7(L~):2Z~2-282. 1982 April.

SWEE82] Sweet, R.E., Sandman, J.G.. Empirical Analysis of the Mesa Instruction

Set. Proceedings of the Symposium on Architectural Support for

Programming Languages and Operating Systems. Palo Alto: ACM SIGPLAN,
1982 March.

wH1T82] White, J.E., Dalal, Y.K. Higher-level protocols enhance Ethernet.

Electronic Design 30(8): 33—lfl; 1982 April.

19

XERO81a] Xerox Corp. Courier: The Remote Procedure Call Protocol. Xerox System
Integration Standard XSIS-038112. Stamford, Conn.; 1981 December.

xERO8lb] Xerox Corp. Internet Transport Protocols. Xerox System Integration
Standard XSIS-028112. Stamford, Conn.; 1981 December.

xERO83] Xerox Corp. 8010 Inforn~tion System Reference Guide. Xerox Office

Systems Division # 9R80376. Palo Alto, Ca.; 1983 December.

ZIMII8O] Zimmerman, H. 031 Reference Model - The ISO Model of Architecture for

Open Systems Interconnection. IEEE Trans. Comm. 18(L~): 1425_1432; 1982

April.

20

The Vlsi On Operating Environment

William T. Coleman III, VisiCorp
Scott Warren, Rosetta, Inc.

ABSTRACT

The Visi On system, a portable operating environment, was developed to

increase the effectiveness of personal computers in the office by providing a

system that integrates applications programs and presents a common, consistent

user interface. This paper provides a brief overview of the Vlsi On system,
discusses the design philosophy and methodology, and concludes with an

overview of the design of the major system components.

1.0 PROJECT PHILOSOPHY

The Vlsi On project represents an effort to produce an efficient, business-’

like, office-’ automation operating environment using the most appropriate
software and hardware technology. Our primary goal was to provide a

nonintrusive, problem solving system that supports the users’ limitations and

exploits their strengths.

The project was based on these three simple requirements:

— Appearance of multiple product actuation: To allow the user the

appearance of multiple product interaction with direct control over

their operation.

— Interproduct data transfer: To allow products to exchange data,
including metadata and semantic information if required, under user

control, but without the user having to perform any cumbersome

procedures.

— Ease of learning and use: To provide a supportive and intuitive user

interface that was consistent across all products.

Underlying these three requirements were the following six system objectives,
which helped shape many of the design decisions:

— High performance on third—generation personal computers: Initially

third—generation personal computers were defined as having a 16—bit

microprocessor, 256K or more main memory, a bit map display, and a

Winchester disk. High performance was required so that the

interactive graphics would appear reactive to the user.

21

— Consistent user interface: To reduce the level of difficulty
encountered by a user when learning a new application, it was

determined that a consistent model of interaction was required.

— Installable products: This objective was intended to allow the user

to configure the system with the appropriate application and modeling
tools required for the specific job.

— No limitation to product functionality: The environment must provide

a complete set of functions to avoid limiting applications software

in any manner.

— Compatible with vendor’s supplied operating system: This allows for

ease of portation across machines with similar operating systems and

for file exchange with programs running on the native operating

system.

— Portable with no change to products: A key benefit to application

development, this would allow programs to run on any host environment

that has the Visi On system.

2.0 DESIGN METHODOLOGY

The Visi On system was developed over a three—year period, during which it

passed through four distinct phases. During Phase I the external product

specification and the human factor specification were developed. Phase II saw

the development, test, and evaluation of a prototype. Phase III began with a

performance and usage analysis that resulted in respecification and redesign

of the system. Finally, the system was implemented and tested in Phase IV.

It is appropriate to discuss the details of Phase I to give a clear picture of

how the requirements and objectives were met.

Phase I consisted of two distinct projects that were conducted simultaneously.
One project, called Quasar, focused on determining an external product

specification; the other, called Nova, worked to define the human factors

specification. These two projects were run in parallel, with considerable

interaction, over a six—month period, concluding with an intensive two—week

review and analysis session that resulted in the initial specifications. This

work wa~ done by five people, including three from VisiCorp and two (Scott

Warren and Dennis Abbe) from Rosetta, Inc. The latter two are professional
consultants to VisiCorp for the architecture, design, and implementation of

the system.

TM

2.1 Visi On External Product Specification

Initially there was no bias for any specific metaphor or system after which to

model the Visi On system. To limit the problem, four different models were

chosen. These included a model that resembled the Xerox® Smailtalk system,

one that resembled the Xerox® Star system, one that was a virtual terminal

system with arbitrarially overlapping windows, and one that was simply a

split—screen presentation. A short 15—25 page specification was developed for

each model and evaluated in terms of the requirements, the objectives, and the

evolving human factors specifications. The outcome of the evaluations and the

human factors study discussed below resulted in the definition of a fifth

specification, which was used to build the prototype.

22

2.2 Visi On Human Factors Specification

The human factors specification, initially developed during Phase I, has

evolved into a standard that is embodied within the Visi On system and used

consistently within VisiCorp. It has resulted in a guide called “The

Designer’s Guide to Well—Behaved Products.” First a conceptual user and

product model was developed to provide a basis for evaluating any proposals
for user interactions. Once this was complete, a set of human factor design

principles were established. These principles were intended to provide a

framework that would govern interaction between product and user. These are:

1) The Guidedness Principle
2) The Display Inertia Principle
3) The Progressive Disclosure Principle
4) The Illusion of Direct Manipulation Principle

5) The Cognitive Load Principle
6) The Operation Optimization Principle
7) The Selection/Entry Principle
8) The Novice/Expert Principle
9) The Single/Multiple Activation Principle

10) The System Information Access Principle
11) The User Feedback Principle
12) The Consistency Principle
13) The Product Structuring Principle
14) The “What You See Is What You Get” Principle
15) The Principle of Least Astonishment

When these principles were established, atoms of interaction between the

product and user were defined. This resulted in a long list that was

evaluated to determine the basic interactions required by all applications so

that a consistent cross—product set of user interactions could be provided.
This resulted in 15 Basic Interaction Techniques (BITs), which are part of the

Visi On system. BITs provide all of the interactions between the user and

the system of a defined class, and do so in a stereotyped manner. They are

implemented in the Vlsi On system such that a user merely passes them a data

structure, the interaction is performed, and the appropriate results are

returned. These BITs are:

1) Prompt BIT

2) Command Menu BIT

3) Multiple—Choice Menu BIT

4) Line—Edited Input BIT

5) Keystroke Input BIT

6) Mouse Input BIT

7) List Input BIT

8) Form Input BIT

23

Option Sheet BIT

Multi—Media Input BIT

Confirmation BIT

Delay BIT

Error BIT

Window Header BIT

Sound Output BIT

3.0 OVERVIEW OF THE DESIGN PHILOSOPHY

The Vlsi On operating environment was designed to allow the user to work with

several products at once. With a pointing device known as a mouse, the user

manipulates windows and their contents on a medium to high resolution,

bit—mapped graphics display. The system supports consistent user interaction

across products by providing a set of highly structured basic interaction

techniques. Products running in the environment appear In rectangular windows

on the display. A typical screen display is illustrated in Figure 1. The

windows can vary in size and they can overlap. Interaction with the products
in these windows is done through a set of operations, known as VisiOps.

•___________

•‘(~Ijl~ ~i~i•ZCI~I!
2 1:
3 1’
4 1’

1975 1 1
__

2 ii

3
_______4

1976 1.
2

9)

10)

11)

12)

‘3)

14)

‘5)

Visi On(tM) Graph
_____________________ ______

741347523 4762 3477234182347923 ~8ø

LIV £WSiWIV

49 49.46875
2949.23438

(Draw a graph of the series.)

Edit series chart fw~r! 4nnotate overlay rescale e~

~w1l1~ ——

series replace add remove find interp

kCP~P~5 Ii!.~
119 t’rJ ~i

Services

start inst1

KELP CLOSE OPEN FULL FRAME OPTIONS TRANSFER STOP SAVE

Figure 1

24

TM

3.1 Visi On Structure

The Visi On system is designed as a set of nested abstract machines with each

successive “machine” providing an increasing level of function to the next.

This has been done in such a way as to isolate the successive layers from any

dependencies on the underlying host hardware and operating system. The system

architecture is presented in Figure 2. At the lower layer is the “host,”
which includes the hardware and operating system on which the Visi On system
and any other applications run. Above that is the VisiHost which includes

all of the machine—dependent code and provides the Visi On system with a

machine—independent Interface. The Visi On system, the highest—level virtual

machine, supports products by providing an interface known as the VisiMachine.

v
0 N

TM

SYSTEM ARCHITECTURE

User

or

ISV
Vi siCorp
Products Products

VisiMachine

_~i
Interface

Vi si~

Object (Comunicating
Oriented Sequential
Virtual Processes)
Machine

Native
VisiHost — Products
Interface

VisiHost

Abstract (Machine —

Data Dependent)

Host Operating System

Host Machine

• ISOLATION OF MACHINE DEPENDENT CODE

• LAYERED ARCHITECTURE

• REQUIRES: 16 BIT PROCESSOR, 256K RAM, BITMAP DISPLAY

Figure 2

25

3.2 The VisiHost Layer

The VisiHost is the lowest and most machine—dependent layer of the operating
environment. This layer interfaces directly with the host operating system

and hardware as appropriate, providing a consistent model of memory

management, screen management, and output devices to the Visi On layer. The

VisiHost, written in a combination of C and Assembly language, consists of

approximately 37K bytes of object code, a 12K data segment, and the host

operating system, all of which are always resident when the Vlsi On system is

running. The remainder of the memory is dynamically allocated as required by
VisiHost to Visi On code and data segments, and to product code and data.

The VisiHost can be modified to run on any target machine. The components of

this layer include:

— The segment component, which manages memory through a segmented
virtual memory architecture. This component also manages program and

process operation via user selection and invocation.

— The console component, which manages the computer’s screen through

high speed raster—graphic operations. It also manages the keyboard
via calls to the host operating system and the pointing device which

is integral to the design of the environment.

The VisiHost architecture is designed to be general enough to efficiently map

across a wide range of machines. It provides a macline—independent interface

to the Vlsi On system that includes all the required resources, and is

guaranteed not to change regardless of what physical host machine upon which

it is implemented. In this manner the VisiHost program can provide an

interface that will allow the Visi On System and Vlsi On Application Programs

to operate without source code changes on any physical machine. The virtual

machine provided supports virtual memory and concurrent processing. It

comprises 12 abstract data types. Each abstract data type responds to

messages and provides a specific type of service. The following basic types

are included:

PROGRAM PROCESS MEMORY SEGMENT

PORT RASTER DEVICE

FILE BACKGROUND FONT

MOUSE SOUNDMAKER KEYBOARD

The VisiHost program and the native operating system are the only software

components that must be resident at all times for the system to operate. This

will typically require 50—60K bytes of memory.

3.3 The Vlsi OnTM Layer

The Visi On system has two main features: (1) it is an interactive graphics

system that displays structured images and responds to the user’s pointing and

typing; and (2) it is an operating environment that runs many programs

concurrently in virtual memory, but allows each program to run independently

through a smart console that implements all of the standard user interaction

techniques.

26

The Vlsi On system has three main components: the user interface component,
the activities component, and the global menu component. The user interface

is a structured display that responds to the mouse and the keyboard by

generating user events for the attached processes. An activity (program) is a

process running on its own copy of the VisiMachine virtual machine. The

global menu provides a way of controlling the appearance of the user

interface’s display and activities themselves by use of the pointing device.

The Visi On system is implemented in the C Language and is partitioned into

virtual memory segments that are paged into and out of memory as required.
The Visi On system requires the residence of the VisiHost and the host

operating system.

As an interactive graphic system the Vlsi On system displays the structured

images of windows and responds to input via the keyboard and the mouse. In

this way it is the only component in direct contact with the user. It is also

the operating environment on which products execute concurrently. Finally, it

uses the VisiHost abstract data types to supply services to the products. In

providing all the interactions, the Visi On component is responsible for all

the synchronization (with the exception of the servicing done to update the

mouse and the processing of background tasks such as printing and

cominunicat ions).

Synchronization is done through the use of concurrent sequential processing to

pass control between the Vlsi On component and other activities. Thus when

the Visi On component determines that an activity requires service, a call is

made and the Visi On component does an immediate receive, thus blocking
itself for input. The activity, which is already blocked, receives control

and performs the required processing by implementing a method (much like the

Smailtalk Class concept) and returns by doing a send followed by an immediate

receive, thus blocking itself for input. In this manner the Visi On component

synchronizes all processing.

In implementing the VisiMachine interface, the Visi On component provides
two types of calls. First, it provides all of the basic system services

enhanced as virtual machine operations called VisiOps.Second, it provides the

15 Basic Interaction Techniques or BITs. For products to take full advantage
of the capabilities of the Vlsi On system, they not only must be modified to

utilize the VisiOps and the BITs, but they must also implement a method to

respond to specific interrupts. The interrupts requiring support are: Stop,

Help, Transfer, Scroll, Workspace, and Scripts.

3,4 The VisiMachine

The VisiMachine is the virtual machine that supports execution of programs

within the operating environment. It is the sum total of the operations and

services provided to these programs. The basis for the VisiMachine program

is the C Programming Language. Extensions to C in the form of C procedures
and data structures provide a machine independent interface to machine

services (for example, file operations and display output). In addition, the

VisiMachine supports and enforces the use of high level product operations

such as menu input, line edit input, help, and the like.

27

4.0 ACTIVITY DESIGN

An activity is a product written in the C Programming Language in such a

manner as to run on the VisiMachine. It has a model of operation of running
standalone in its own virtual address space.

This virtual “machinet’ provides an extended set of services in the form of

VisiOps and BITs that will not change regardless of the host system. Some of

the unique features of this virtual machine include:

Virtual screen: The activity has a VSCREEN that can be used in

either the text or graphics mode.

— Virtual devices: An enhanced GKS virtual device interface proi~ides
all of the input and output capability for graphics and for text.

— Enhanced file services: Includes the concepts of files, objects,
volumes, and a set of data types that support interproduct data

transfer.

Activity development uses the Vlsi ONTM Application Developer’s ToolKit,

including all of the tools to develop software that will take full advantage
of the capabilities provided by the Vlsi On system.

4.1 Activity Development

Activities (or Programs) are developed in a traditional manner using UNIX and

the VisiCorp ToolKit. The ToolKit includes the LanTech C Cross Compiler and

Cross Assembler, the VisiCorp Linker which supports the virtual page overlay

segment generation, the VisiMachine Simulator which runs under UNIX, several

special purpose “compilers” which produce Include Files compatible with the

basic interaction techniques implemented In Visi On, a download utility

capable of generating properly formatted diskettes, Visi On and VisiHost Test

Systems, all supported libraries, assorted utilities and all required
documentation. The developer uses these tools as would be done for the

development of any high—level language program for a high—level operating

system. Conversion of an already existing program requires recoding in C and

performing the required modifications to run efficiently on the VisiMachine.

4.2 Data Support

The Vlsi On system provides a concept of an object store which is supported i.n

the system Archive. The object store supports objects that are composed of

one or more files which are resident in hierarchical directories within

Volumes. Each object Is composed of one or more data types. The following
data types are supported:

NULL NUMBER

TEXT PICTURE

LIST RECTANGLE

TEXT RECTANGLE PRIVATE

The Visi On system further supports the Transfer operation by negotiating the

applicable data types between the source product and the destination data

product and performing the highest order transfer possible in context to the

28

current state of the source and destination activities.

4.3 Development Experience

VisiCorp has currently completed development of the following applications:

Vlsi On Calc
TM

— An advanced spreadsheet application

Visi On Word TM
— A graphic word—processing application

Visi On Data TM
— An interactive relation data base application

Visi On Graph
TM

— A business graphics application

Other efforts are currently in progress for several Communications and

Business Applications by VisiCorp and Independent Software Vendors. We have

found that the support provided by the Visi On system is extensive and allows

for more powerful applications to be developed on microcomputers than have

been done before the Visi On operating environment. It has also been possible
for us to complete complicated projects in less time than we were able without

the support services provided in the Visi On system.

5.0 Vlsi OnTM HARDWARE REQUIREMENTS

— Processor: 16—bit microprocessor (the initial version requires the

Intel 8086 or 8088 microprocessor). An Intel 8087 coprocessor is

highly desirable. A 4.77 megahertz or greater clock rate is

required.

— Memory: 256K bytes of random access memory completely available to

the Visi On system. Memory is a key performance factor — the

greater the amount of physical memory available, the better the

performance will be.

— Graphic display: Bit—mapped graphics with a directly addressable

screen map. The rater must be able to display at least 24 lines of

80 characters with a reasonably legible graphics font.

— Floppy disk: At least one floppy disk drive is required, either

locally or over a network, to install the software.

— Winchester drive: At least one 5—megabyte Winchester.

— Mouse: A pointing device with a resolution of at least 100 counts

per inch, and 2 selection buttons. Position deltas should be

available at least 18 times per second, and button state readable at

any time. The VisiCorp mouse requires a dedicated RS232C interface.

— Interrupts: The hardware/software must support an interrupt
structure. Specifically, parallel and serial I/O ports must be

interrupt driven, and an interval timer with the capability of

interrupting about every 50 milliseconds must be available to the

VisiHost program.

— Serial number: A readable serial number (provided in the standard

VlsiCorp mouse).
29

— Clock/interrupt timer: An interval timer with a resolution of about

50 milliseconds. In addition, a real—time clock or a second interval

timer with a resolution of at least 10 milliseconds is required.

6.0 CONCLUSION

The Vlsi OnTM system is a highly structured system, designed from the start to

provide a complete and consistent operating environment. This environment

goes beyond the services of traditional operating systems by providing a

consistent and supportive user environment that allows easy portation across

host machines. The technical requirements have proven successful. The

programs that have been developed are very effective, and the system has

proved to be portable in. as little as 30 man—days with no changes to the

products. It is now up to the marketplace to determine if the usage model

meets their needs.

ABOUT THE AUTHORS

Scott Warren, the president and founder of Rosetta, Inc., has served as

primary consultant for the architectural design of the system. He received

his Ph.D. from Rice University in 1976 and an MS and BS in Computer Science

from Rice University in 1974 and 1972 respectively.

William Coleman, group manager of product development at VisiCorp, is

responsible for development of Visi 0~TM Visi OnTM products and related

tools. He received an MS in Computer Science & Computer Engineering from

Stanford University in 1976 and a BS In Computer Science from the U.S. Air

Force Academy in 1971.

Vlsi On, Vlsi On Calc, Vlsi On Word, Vlsi On Data and Vlsi On Graph

are all trademarks of VisiCorp.

Xerox is a registered trademark of Xerox Corporation.

30

Document Processing in an Automated Office

Roger L. Haskin

IBM Research Laboratory
San Jose, California 95193

Introduction

Perhaps the most identifiable task in a conventional office is that of processing documents

- both highly structured documents such as business forms and more text-intensive ones

such as letters, memoranda, and reports HOGG81], LUM82], MAZE83], TSIC82],
ZLOO81]. Document processing involves both interactive tasks such as filling in forms,

reviewing mail, and composing text, and background ones such as formatting and printing
output, routing and distributing mail, and maintaining an audit trail. Current computerized
office systems often do very well at automating individual tasks, but office work is not

really composed of sequentially performed simple tasks.

A look at an average desktop shows that its owner normally has many tasks in progress

at various stages of completion. His attention is constantly shifting among these as his

own priorities dictate. Strangely, most systems are not tailored to this model of office

work. Normally only one task can be in progress at a time, and it is difficult to gracefully
suspend and resume it. Rarely is support provided for managing the electronic desktop

by using the computer to keep track of interrupted tasks so they can be resumed in progress

later.

Often a group of tasks performed by several individuals are really part of multi-step
procedures (e.g. getting approval for a purchase order and then placing the order).

Automating these procedures is often neglected, possibly because the systems use worksta

tions that were originally designed for stand-alone use ELLI82].

As part of the 925 Advanced Workstation Project at IBM San Jose Research, we have

been investigating the management and processing of computerized documents, and are

implementing experimental software to allow us to further this investigation. Our project
concentrates upon the two areas of desktop management and automated office procedures.
Our goal is to build an initial set of applications for processing various types of documents,
to integrate these under the control of a desktop manager, and to provide a facility to

allow defining and executing multi-step office procedures. We take advantage of features

of the 925 Workstation (multiprogramming, window management, speech digitization, and

• network environment) and host-based services developed at IBM San Jose Research (notably
the R* database system). This paper describes our goals, and discusses the work that

is currently in progress.

31

The 925 Workstation

The 925 Workstation SELI82] is a prototype to allow investigation of hardware and software

architecture for personal computers. It consists of up to three Motorola 68000 CPU’s

configured as a closely coupled multiprocessor. It has a 720x1024 pel monochrome bitmap

display, a local hard disk, a keyboard, and a mouse. It also has speech digitization hardware

and both digital and audio interfaces to two autodial/autoanswer telephone lines. Interfaces

also exist to connect to a 370 mainframe as a high speed terminal (3270) and to an

experimental 4-megabit token ring.

The operating system fully supports the multiprocessor architecture. All processors can

execute operating system tasks, and a task can communicate with other tasks without being
aware of where they are executing. A window manager provides screen I/O support for

all interactive tasks in the system. The support for multiprogramming in the operating system
is carried through to the window manager. All windows (even partially obstructed ones)

are updated in real time, allowing the user to view the progress of several simultaneously
executing applications. Windows may be manipulated (created, moved, or changed in size)
either interactively or under program control. Support for both line mode and full screen

I/O to windows is provided. The system also supports a small local database and can

access the local network using a datagram protocol TERR83].

Desktop Management

In addition to being larger than a terminal screen, a conventional desktop has other

advantages over a computer terminal. Several things can be viewed simultaneously, and

they can be re-arranged in any desired manner. We obtain much of this function on 925

using multiprogramming and the window manager. The user can switch from one window

to another to perform various tasks in any desired order, and can re-arrange the location

and size of windows on the screen as he would papers on a desktop. Perhaps more

importantly, though, when you put something on a desktop, in the absence of disasters

such as fires or spilled coffee, it stays put. A computerized office should exhibit this behavior

as well.

Our strategy for achieving this is for applications to be ‘persistent’, and to keep track

of them with a program called the Desktop Manager (Figure 1). The Desktop Manager
maintains a database of all tasks in progress. Each task (basically a document and a set

of instructions regarding what is to be done to it) is represented by a record in the database.

A task can be in two states: in the in-basket (inactive and without a window) or on the

desktop (having a window). Tasks are created either by user command or by other programs

(such as the Mailer) sending messages to the Desktop Manager. The Desktop Manager
interactive interface displays the list of tasks and allows the user to move them between

the desktop and the in-basket.

A user can stop working on a task in one of two ways: by moving it from the desktop
back to the in-basket (in which case its window goes away) or by entering another window.

In either case, the task checkpoints itself into the database. A task on the desktop can

be resumed simply by re-entering its window. A task in the in-basket can be resumed

32

by moving it back to the desktop. When the workstation is powered up, the Desktop Manager
is started automatically. It consults its database, and automatically restarts all tasks on

the desktop at their most recent checkpoint. This allows applications to appear to persist
across user sessions.

Procedure Automation

Procedure automation can be divided into two parts: a network service (the Procedure

Automaton) that executes the procedure and workstation software to help a person perform
his part of it.

In the workstation, procedure automation involves the Mailer and the Desktop Manager.
A step of a procedure is initiated when a piece of mail is received over the network from

the Procedure Automaton, consisting of a document and (coded) instructions for what task

is to be performed (e.g. ‘approve this expenditure’ or ‘review this report’). The Mailer puts

the document into the database, and sends the Desktop Manager a message telling it about

the new task. The latter enters the new task in its catalog and tells the user about the

new arrival. As with any other desktop activity, the new task can either be performed

immediately or deferred. When the user chooses to perform the task, the desktop manager

consults its catalog to determine what application to run and to obtain its parameters.

After the task is completed, the application sends a message to the Mailer, which then

mails the updated document and a completion notification to the Procedure Automaton.

Workstation Procedure Automation

Figure 1: Document Processing System Architecture.

33

The Procedure Automaton is a network service that executes office procedures and maintains

an audit trail that allows tracking the progress of work through the system. In their initial

form, office procedures are primarily lists of steps specifying who is to perform which

activity on what document. The Automaton, for each active procedure, mails messages

consisting of documents and processing instructions to the appropriate person and looks

for completion notifications. As the system matures, other areas will be addressed, including
procedure languages, procedures with parallel activities, authorization, and exception han

dling (e.g. what to do if a step cannot be performed).

Status

Several prototype 925 workstations are operational, as are the operating system, window

manager, and local database. A Document Database Manager also is operational, allowing
documents to be filed and retrieved from the local database. Prototypes of several of the

applications exist as well, in particular a simple form editor and a utility to allow new

forms to be defined interactively (both their database schema and their graphical layout).
A prototype Mailer also exists. Work has begun on the Desktop Manager and will soon

begin on Procedure Automation.

Acknowledgements

The 925 operating system and window manager are the work of Mike Goodfellow, Carl

Hauser, Thom Linden, Jim Wyllie, and the author. The prototype forms processing applications
were done by Mitch Zolliker and the author. The Mailer was designed and implemented

by Jeff Eppinger during a summer internship. The network communications subsystem is

the work of Sten Andler and Doug Terry.

References

ELLI82] Ellis, C. A., and Bernal, M., ‘Officetalk-D: An Experimental Office Information

System,’ Proc. ACM SIGOA Conf. on Office Information Systems, 1982, pp. 131-140.

HOGG81] Hogg, T., Nierstraz, 0. M., and Tsichritzis, D. C., ‘Form Procedures,’ in Omega
Alpha, Tech. Rep. CSRG-127, Computer Systems Research Group, Univ. of Toronto,

1981, pp. 101-133.

LUM82] Lum, V. Y., Shu, N. C., Tung, F., and Chang, C. L., ‘Automating Business

Procedures with Form Processing,’ in Office Information Systems (Naffah, N., ed.), North

Holland, Amsterdam, 1982, pp. 7-38.

MAZE83} Mazer, M. S., and Lochovsk,j’, F. H., ‘Routing Specification in a Message
Management System,’ Proc. 16th Hawaii mt. Conf. on Systems Sciences, 1983, pp.

566-575.

34

TERR83] Terry, D. B., and Andler, S., ‘The COSIE Communications Subsystem: Support
for Distributed Office Applications,’ IBM Research Report RJ4006, 1982.

TSIC82] Tsichritzis, D. C., ‘Form Management,’ CACM Vol. 25, 1982, pp. 453-478.

5EL182] Selinger, R.D., Patlach, A. M., and Carlson, E. D., ‘The 925 Family of Office

Workstations,’ IBM Research Report RJ3406, 1982.

ZLOO81] Zloof, M. M., ‘QBE/OBE: A Language for Office and Business Automation,’
IEEE Computer Vol. 14, 1981, pp. 13-22.

35

Imail — An Intelligent Mail System

John Hogg

Murray Mazer

Stelios Gamvroulas

Dennis Tsichritzis

Computer Systems Research Group
University of Toronto

Imail is an “intelligent mail” system. Whereas conventional mail

messages consist of passive text, “intelligent messages” (imessages)
are programs that are run by the imail receiving program. They are

capable of not only delivering information but also collecting it,
and may dynamically route themselves to additional stations depend

ing upon responses that they receive. This paper describes a proto
type imail system and indicates future directions of research.

_1... Introduction

An Office Information System (015) is a system consisting of hardware

resources and software facilities that supports the automation of certain

office procedures. An electronic mail system provides support for communica

tion among the (possibly geographically distributed) roles in an office

environment. Given that communication is extensively involved in most office

procedures, electronic mail systems have turned out to be indispensable com

ponents of Office Information Systems.

A role in an office environment is defined to be either a person or a

function (e.g., secretary). Communication among roles in the office has in

the past been carrIed out by means of passive messages. Traditionally, a mes

sage (i.e., a piece of text conveying some information) is created by a sender

and is shipped to a number of recipients. A message can only convey informa

tion; it cannot collect information. The message is considered to have car

ried out its task once the recipients have read It.

A message can also be viewed in a different way. It can be endowed with

Intelligence, that is, the ability to accomplish complicated tasks such as

collecting responses from recipients and routing itself to recipients accord

ing to predefined rules LVIT81].

The following example illustrates the use of intelligent messages. Sup

pose that a researcher with access to a mail system wishes to establish a

mailing list of other workers with an interest in his particular area. The

mail system may possibly be running on machines and even networks that the

sender is unaware of. The conventional approach would be to issue a broadcast

message to all users. This implies that the researcher already knows a super—

set of the persons he wants to contact. With an intelligent active mail sys

tem, however, the researcher can compose an imessage asking ~
interested jjj aommunicatin& .Q~, ~ subject ~1 ...?“. The response is col

lected. The active message can then go on to ask “.~Q. el~e ~~ know that

might .~. interested?” This response is also stored and this particular ses

sion is concluded. The active message forwards itself to any new addresses

from the list of names given. When all recipients have responded to the

36

questionnaire (or not responded within some time limit) and no new names are

left, the message terminates, returning its results to the original sender.

To start the process, the researcher need only specify a short initial list of

likely users.

This paper describes the design and implementation of a mail system
(hereafter called imail capable of handling intelligent messages. Within our

framework, an intelligent message (hereafter called an imessage is a program

(as opposed to text) and is run (as opposed to being read) by its recipients.

Imail presently runs in a centralized manner under the Berkeley UNIX*

operating system R1T78] on a VAX 11/780. In this configuration, the role of

addresses is played by the login j~ of the users’ UNIX accounts.

A language for imessage specification has been defined and implemented.
This specification could have been compiled directly to executable code or

interpreted each time an imessage was run. We chose to translate to an inter

mediate language (the UNIX “C shell” .g~. JOYSO]) and interpret this. .~, is

a powerful language with the constructs required for our purposes, and by
using it we avoided having to build a special interpreter.

The programs making up the Imail system are written in the C programming
language KER78]. The imaii language translator was written using the YACC

parser generator J0H75] and the LEX lexical analyzer generator LES75].

a. Imessa~es

An imessage is a oro~ram that is run by the recipient. This property
enables the imessage to accomplish anything that a program can’ do within the

limits of the specification language used. The creator of the imessage can

incorporate in it rules which will govern the interaction of the imessage with

its recipients at imessage running time.

Any response to a conventional message must be created by the recipient
and shipped to the sender manually, as a separate message. However, an imes—

sage can collect responses provided by its recipients, store them appropri
ately, and eventually make them available to its sender. The sender may
define arbitrary conversations between the imessage and its recipients.
Furthermore, a particular question incorporated into the imessage code may or

may not actually be posed to a particular recipient, according to the current

imessage state. Some factors that could potentially define the imessage state

are the identity of the current recipient, the path history, responses given
earlier by the present or previous recipients, or some external system state

determined by running a procedure. As more factors are used to determine the

imessage state, the imessage appears increasingly intelligent.

Response manipulation such as tallying or performing statistical tests

can either be done “on the fly” as each reply is received, or at the very end

when all recipients have been visited. The former approach allows the lines—

sage sender to know more about his or her results sooner, and thus to exercise

more control over where the imessage goes and what it does. Complicated

* UNIX is a trademark of Bell Laboratories.

37

processing, however, may be easier to do on the collected data. Imail allows

both possibilities. Within the body of an imessage script the replies given

by the recipient are all accessible, and the language allows simple arithmetic

expressions. However, all replies and other variables are also stored for

each imail session. Thus, when an imessage terminates, the data collected may

be processed in whatever manner the original sender desires.

Conventional mail systems require the sender to specify all of the reci

pient addresses at message sending time. This kind of routing is static in

the sense that the message will visit only a set of addresses that have been

explicitly specified by the sender beforehand. The message dies after reach

ing its initial recipients, and does not subsequently visit further users.

An imessage, however, can route itself dynamically~ i.e., in response to

its interactions with its recipients TS183], MAZ83J. Initially, the imes—

sage must be given at least one recipient address. After this, future desti

nations may be added as a result of an imail session. These destinations may

be “constants” specified by the initial sender when the imessage is created

but only •used as destinations if certain criteria are met during a session.

Alternatively, they may be responses given by a recipient and thus be unknown

to the sender. Several routing paths can be followed in parallel.

Upon satisfaction of certain conditions specified by the sender (called

termination conditions) an imessage is considered to have completed its tour.

At that time the imail system makes the responses collected from recipients

(available to the sender and cleans up the imail structures and data.

An imessage may terminate due to the execution of an explicit tltermjnatett

command or when no recipients remain to be visited. In addition, an error in

the execution of an imessage will automatically cause termination, and the

sender may externally kill it.

The present system retains a single copy of every imessage file. This

means that there are both security and coordination problems to be overcome

since imessages should be accessible only to one valid recipient at a time.

Coordination was solved using a simple lock so that only one recipient can run

an imessage at a given time. Security was obtained by a UNIX feature which

allows a user to access the imail files only through the imail program. Ade

quate security is very important in an imail system. Conventional mail is

passive and thus can do little damage. An imessage is a program and its con

tents are unknown to the recipient who runs it. If the code is handcrafted by

the sender instead of being generated (and certified harmless) by the system,

the recipient would be justified in being wary; another user with an unconven

tional sense of humour could send an imessage which deletes all the

recipient ‘
s files.

3.. Using linail

When the imaii receiving program is invoked a list of imessage headers

(giving the message subject, sender and date) is printed out and the recipient

can choose to run any of them. Imessages remain in the user’s mailbox until

they are run or deleted (thrown away) by the recipient or until the irnessage

is terminated elsewhere. When an imessage is invoked, a process is started up

that runs the imail script. The recipient sees a series of questions appear

38

on the screen. After each question an answer is collected; should it be

invalid (e.g.. “None” in response to a request for a number of logins), the

nature of the response expected is explained and another reply is requested.
At any point, the recipient may quit the session, in which case the fact of

quitting will be stored but the responses given up to that point will be dis

carded. The imessage will be placed back in the recipient’s mailbox and

remain there until it is run to completion, terminated or deleted. The alter

native of storing partial sessions was considered; however, it was felt that

allowing a recipient to “wipe out” an imessage session and start afresh would

be less intimidating.

.‘L. Creating Impil

Imessages are programs and must therefore be described using some program

specification language. This could be a menu system, which would have the

advantage of being comparatively easy for non-programmers to use. For ease of

implementation, however, we decided to use a small programming language. It

is simpler than most text editors, so learning how to use imail should not be

too difficult. On top of this language special—purpose imessages can be

implemented using a menu approach.

An imessage is made up of a series of questions (optionally preceded by a

sublect and initializations each followed by a g~ and associated actions

A subject is a line starting with the word “subject”. The remainder will be

displayed in the imessage header. A ~ is simply a line stating how many of

what type of response to accept such as ~ 1 number or “g~t. 2—3. logins or

~ words” Responses (and other variables) can only be words, numbers,

logins or text. Type mixing is not allowed. This makes it easier to avoid

errors at message reception time. Should a recipient give an incorrect number

of responses or type of response he or she will be given an explanation of the

kind of answer expected and reprompted for a correct reply.

Actions are a block of commands, some of which may be restricted by
tests A test is a pattern or a numeric expression such as “#3 < 10 & #3 >

5”. (“#3” is a response variable explained below.) The left side of a

numeric relation may be omitted in which case the response for the current

question is used.

An interesting feature of the imail language is the way that constructs

are separated. It was felt that block delimiters (“{. . .}“ or “BEGlI~. ..END”)
are not obvious to non—programmers or even programmers; it is generally
expected that programmers will indent their code to highlight control struc

tures. We do away with almost all delimiters and instead use indentation.

Each question is preceded by a line starting with “>“ and optionally contain

ing a label. The end of the question text is indicated by the next line

(beginning with ~ and specifying the type of response expected) starting
with a tab. Simple commands are indented one tab, as are test clauses.

Actions to be performed only if the test clause is true are indented two tab

stops.

Each ~t. causes the reply to be assigned to a response variable associ

ated with the question. If no label was given this response may later be

referred to by the absolute question number preceded by “#“, e.g. #j2; alter

natively the relative question number may be used, e.g. #—2. If the question

39

was labelled then the label name may be used instead (e.g. #address)

There are also local and global variables. The former may be initialized

at the start of an invocation but do not retain values between invocations.

They are thus analogous to variables local to a procedure invocation. Global

variables may be initialized when the imessage is created and exist for the

life of the imessage. Local variables are indicated by a leading “!“ and glo

bal variables by a leading “?“. The values of all variables, response, local

and global, are stored after each invocation for the sender to process as

desired.

The commands used in an action block are

with a keyword and the entire list is as follows:

terminate

next

simple. Each command starts

Print the remainder of the line, simply “text,”

print the following unindented lines.

Send the imessage to the following people. Arguments may be valid

logins or login variables.

Normally an imessage is not sent

already been run at. Resflip

imessage has previously been run

are given, all the stations

visited are shipped to again.
The full command is “set <vary> = <expr>”, where <vary> is a local

or global variable and <expr> is a variable or a simple arithmetic

expression. Later versions of imail may also allow string expres

sions.

Terminate the entire imessage (not just this invocation).

Skip over zero or more questions and proceed with the question

given as an argument. (For example, if “marital status” is “sin

gle”, skip over “spouse’s name”.) The argument may be an absolute

or relative question number or a question label.

We are also considering allowing calls to a library of imail routines in

a later version of the system.

~. j~ linpil Examole

A Delphi exDer~meitt is an iterative survey of experts to obtain a con

sensus answer. A question is asked and each respondent gives his or her

answer. The results of the survey are then tabulated and sent back to the

expert population. Knowing their peers’ views, the experts are asked to

answer the question again. This process is repeated until some criterion

(e.g. range or variance of replies) is satisfied. It is claimed that the

results of this type of prediction when given to a suitable body are surpris

ingly accurate.

The following imail script will perform a Delphi experiment
the inflation rate for the coming year. It is meant to be sent to

“experts,” say executives in a financial institution. Whenever

number of them have replied, a new average value and variance are

and those who have already responded are again sent the imessage.

variance becomes sufficiently small, the survey is terminated.

to predict

a number of

a minimum

calculated

When the

print

ship

reship

set

If the line is

back to a

ships to

by him or

that the

station that it has

a recipient even if the

her. If no arguments

imessage has previously

40

>

subject A Delphi survey of

set number

set number

set number

set number

set number

set number

= 0

?sum = 0

?sqsum = 0

?maxvar = 0.1

?itresps = 10

?avg = 8.0

what do you think the inflation

The last average prediction was

get 1 number

set ?sum = ?suin + #1

set ?sqsum = ?sqsum + #1 * #1

set ?n = ?n + 1

?n == ?itresps

set ?avg
set !var =

set ?n 0

set ?sum = 0

set ?sqsum = 0

reship
?var < ?maxvar

terminate

rate for next year will be?

?avg.

In this case a sub leot is specified. Several global variables are set

initially. These are used to record the number of recipients visited in the

last iteration of the survey and to calculate the variance of the responses

given. Each recipient is asked just one question: the inflation rate for the

following year. This response #j~ is added to a running sum, its square is

added to a running sum of squares, and the number of visits made is incre

mented. When the number of visits made becomes equal to the number required

for a survery iteration the equality test will hold true and the average and

variance will be calculated, while the running sums will be set to zero. The

imessage will then be shipped again to all recipients that it was originally

sent to. When the variance becomes less than some maximum acceptable level,

the survey will terminate.

This imessage must be given an initial list of destinations that contains

at least ? (i.e., ten) names. It is designed to be sent to more than

ten recipients. Then if several of them delete the imessage without running

it or merely postpone dealing with it for a while, the iteration of the survey

will not be delayed.

6. Concluding Remarks

linpil is an on-going project and we intend to do considerably

on both theoretical and practical aspects of the system.

more work

The imail language is still not entirely satisfactory. We originally

intended it to be simple enough for use by non—programmers, but complicated

imessages (such as the example Delphi experiment) require what can only be

referred to as “coding”. For future versions of the system the entire

language will be overhauled.

inflation rates

?sum / ?n

?sqsum / ?n — ?avg * ?avg

41

The next iteration of the system will be an extension to handle networks

of machines. This is a much more difficult proposition as a single copy of

the imessage is no longer sufficient and communication, coordination and con

sistency problems must be dealt with. This will require some theoretical

understanding and modelling of imessage interaction and we intend to do

further work in this area.

Once an imessage is sent off, the originator has no idea of where it is

or whom it has visited until it terminates. The next feature to be added is a

status querying facility that will allow the sender to inspect an imessage’s
history and the data that it has collected. At the same time, the imessage

may be pulled from some recipients’ mailboxes and added to others. The sender

will thus have an overriding control over the imessage’s routing.

At present, imessages only accept input from human message recipients.
This provides a very restricted window on the world. As mentioned earlier, a

library of imail routines may be a future imail extension. While some would

simply manipulate data obtained from recipients, others could use different

sources of information such as a database. Since imail is at present a close

analogue of conventional electronic mail, human action (i.e., running the

imessage) would still be required. In the long term, however, a system where

the imail is first handled by a station process could be envisioned. If no

human knowledge or explicit permission is required, an intelligent message

could then go from station to station interacti.ng with intelligent imail

handlers in order to extract information from multiple databases!

.L. References

J0H751 S. C. Johnson, Yacc ~ Another Compiler Compiler Comp. Sci. Tech.

Rep. No. 32, Bell Laboratories, Murray Hill, N.J.. U.S.A.

IJOY8O] W. Joy, ~ Introduction t~ ~ Shell UNIX Programmer’s Manual,

Vol. 2c. Department of Electrical Engineering and Computer Science,

University of California, Berkeley. U.S.A.

KER78] B. W. Kernighan and D. M. Ritchie, ~ ~ Programming Langua~
Prentice—hall, N.J., U.S.A.

LE3751 M. E. Lesk and E. Schmidt, j.~ - A Lexical Analyzer Generator Comp.
Sci. Tech. Rep. No. 39, bell Laboratories, Murray Hill, N.J., U.S.A.

MAz831 M. S. Mazer, .~ Specification ~ R~tings .j~.n .~. Message Management

System M.Sc. Thesis, Department of Computer Science, U. of Toronto.

R1T78] D. M. Ritchie and K. Thompson, .Ih~. UNIX Time—Sharing System Bell

Systems Technical Journal, Vol. 57, No. 6 (July—August 1978).

{T8183] I). Tsichritzis, “Message Addressing Schemes,” in Beta Gamma Com

puter Systems Research Group Technical Report No. 150, University of

Toronto.

VIT81] J. Vittal. “Active Message Processing: Messages as Messengers,” in

Computer Message Systems R. P. Uhlig (editor). pp. 175—195, North—

Holland.

42

A KNOWLEDGE-BASED APPROACH TO SUPPORTING OFFICE WORK

F.H. Lochovsky

IBM Research Lab’

5600 Cottle Road

San Jose, CA 95193

1. INTRODUCTION

The revolution in computer technology holds the promise of providing
cost-effective computer-assisted support for office work. In fact, many

individual computerized software tools that support office work have been

available for some time Borg83]. Some of these software tools, such as word

processing and records management, address mainly clerical activities. Others,

such as spreadsheet and chart plotting programs, address the areas of decision

support and problem solving. While each of these software tools is useful in

supporting specific aspects of office work, their overall effectiveness for

improving office productivity has been limited Clar83; Gold83; Loch83].

There are many reasons for this situation, including hard-to-use software,

limited functionality of the software, and lack of integration among the

software tools TsLo8OJ. However, one of the biggest obstacles to supporting
office work more effectively through the computer is the passiveness of current

office information systems with respect to the tasks carried out in an office.

The reason for this is that the bulk of the knowledge required to effectively

support office tasks resides entirely with the office worker.

This knowledge is essentially of two kinds. First is the knowledge required to

initiate and control office tasks, such as what needs to be done, when, and how.

Second is the knowledge that relates different office tasks and the parts of an

office task, such as the goals to be achieved and the steps required to achieve

those goals. Without such knowledge, office information systems can only

provide the software tools required to support some of the individual steps in

an office task; they cannot provide a means to integrate the goals and steps

themselves as part of the office information system.

In this paper, we outline an approach for supporting office work that

encompasses a wide range of office tasks from routine to non-routine and

automated to manual. In Section 2, we discuss the nature of office work,
examine previous research on office support and automation, and outline the

characteristics of an office support system. In Sections 3 and 4, we present a

design for an office support system that is capable of providing different

levels of support for office tasks. Our conclusions are presented in Section 5.

‘ This research was performed while the author was visiting from the Computer

Systems Research Group, Department of Computer Science, University of

Toronto, Toronto, Canada.

43

2. SUPPORTING OFFICE WORK

An office is not a single, homogeneous entity; rather a spectrum of office types

can be identified PaSp82]. At one end of this spectrum are offices that deal

with high volumes of transactions of usually standardized inputs and processing

procedures. At the other end are offices that deal with policy and professional
functions in which the focus is on selecting and meeting goals. We will loosely

refer to the work in the former type of office as “routine” and in the latter

type as “non-routine.”2 Host offices contain a mixture of these two types of

work as well as possibly other types of functions.

This wide variability in types of offices results in a corresponding wide

variability in office work. In addition, there is also variability in the way

that the office work is performed due to individual differences among office

workers. This makes it difficult to build a single, integrated office

information system for supporting office work, since this variability must be

taken into account and, in fact, allowed in the system. Despite these inherent

difficulties, it still may be possible to support office work by describing it

in such as way as to factor out the application and the people-dependent aspects

Barb83].

To effectively incorporate knowledge of office work into an office information

system, the nature of the knowledge must be considered FiHe8O]. Some of the

more important considerations are:

1. Office domain knowledge is open-ended.

For both new office tasks as well as existing ones, situations will arise for

which there is no a priori domain knowledge. In such situations, the system

needs to be able to both learn from and work symbiotically with the office

worker. It must provide facilities for capturing domain knowledge from the

office workers who know best what needs to be done and how. It also must provide

facilities for doing tasks cooperatively with the office worker, letting him

handle those parts for which its knowledge is incomplete.

2. Office domain knowledge evolves over time.

The way the office work is done and perhaps even the nature of the work may

change. The knowledge of the system will have to evolve to accommodate such

changes. Initially, the system may just be a repository of knowledge, taking no

active part in the office work. As office tasks become routine they can be

formalized and automated. Non-routine tasks will need to be done cooperatively

by the system and the office worker. A model of office work is required that is

abstract enough to allow office knowledge to change as the office work changes.

3. Office domain knowledge is often non-uniform and highly idiosyncratic.

2 The difference between the two types of work can be explained by an analogy

with cooking. In routine office work little creativity is required since

the “ingredients” and the “recipe” are given. It is thus simply a matter of

combining the “ingredients” according to the “recipe” to accomplish the

work. On the other hand, non-routine office work requires a degree of

creativity since only some of the “ingredients” may be known and there may

be no “recipe” for combining them to accomplish the work.

44

An office information system must be able to capture some aspects of this

non-uniform and idiosyncratic knowledge so that office workers can tailor the

system to their needs. Office tasks can often be performed in a variety of ways.
The method used may depend on the particular circumstances or on the person

performing the task. An office information system must permit multiple ways of

representing and performing the same task. This allows the system to tioptimizelt
the solution to the particular circumstances and does not force a rigid scheme

on the office worker. The model of office work must be able to capture very
specific domain knowledge, in addition to abstract domain knowledge.

Existing proposals for supporting office work do not adequately address these

issues. We briefly review these proposals which fall into two main categories.

1. The procedure automation approach views office work as primarily a data

processing activity and represents it procedurally

This approach attempts to structure the office work in terms of inputs, outputs,
and processing programs. The representation of office forms and their

processing is the main focus of this activity Fong83; LSTC82; SLTC82; HoNT81;
Zloo8l]. Stock control is an example of a task amenable to procedure
automation. It is assumed that the office tasks are well-understood and that

they can be completely automated. Office tasks that are non-routine or that

cannot be rigidly structured are not supported. This approach has been followed

mainly by researchers in the data base community.

2. The problem solving approach views office work as primarily a strategy
selection and/or definition activity and represents it descriptively

This approach attempts to structure the office work in terms of goals and

strategies. The structuring and use of the knowledge required to support
problem solving has been the main focus of this activity Barb83; Fike8lJ.
Itinerary planning is an example of a task for which the problem solving
approach has been tried Fike8l]. It is assumed that, while all aspects of the

office tasks themselves may not be well-understood, and thus cannot be

completely automated, the problem solving strategy is known (at least partially)
and can be described using the system’s representation capabilities. Office

tasks for which the problem solving strategy is not known or which cannot be

represented by the system are not supported. This approach has been followed

mainly by researchers in the artificial intelligence community.

While the preceding is the main difference between the two approaches, there are

some other important practical and philosophical differences. In the procedure
automation approach the data manipulated by the system are usually rigidly
structured and are managed by a conventional data base management system. The

manipulation of data bases is usually not addressed in the problem solving
approach. The knowledge base is assumed to reside in main memory or is managed
in an ad hoc manner (i.e., not by a data base management system). The

implementation environment in the procedure au~omation approach consists of an

application programming language (e.g., C~PL/l) and a data base management
system, while a LISP-like environment is used in the problem solving approach.

Although both approaches are useful and necessary for supporting office work,
each by itself is limited and not entirely adequate. The procedure automation

approach covers one part of the problem of supporting office work, admitting
only those office tasks that can be automated. The problem solving approach
requires that the problem solving strategy be represented for use by the system,
which may not always be possible. Neither approach addresses the problem of

45

supporting those office tasks that do not admit of some form of computer
processing.

An office information system should support the complete range of tasks found in

an office. For those tasks that are routine and highly structured, a procedure
automation approach may be most appropriate. For those tasks that are

non-routine and require user intervention, a problem solving approach may be

most appropriate. For other office tasks, merely a documentation and tracking
facility may be most useful. The objective should be to allow all types of tasks

to be included and not to limit the capabilities of the system a priori.

To support this objective, we believe that the appropriate way to view office

tasks is as plans for carrying out the office work FiHe8O; Sace751. Such a

viewpoint satisfies many of the requirements outlined above.

1. A plan can be described at various levels of detail.

At one level, a plan can be a strategy for accomplishing a task. At another

level, it may be a detailed procedure. The difference can be viewed as that

between how much work the system does versus the office worker in performing a

task. Both an abstract as well as a detailed representation is required for

office tasks. In this way, complete knowledge can be represented in a very

concrete manner, while partial knowledge can be represented abstractly within

the same environment.

2. A plan can be regarded as merely a guideline.

It describes one way in which the goal of a task can be accomplished; other plans
may also be appropriate for accomplishing the goal. Multiple plans can be

formulated to handle an office task or a plan can be reformulated as required.
The user could override the system’s plan altogether and accomplish the goal in

a way not specified to the system. In this way, office tasks can be tailored to

particular circumstances or office workers.

3. A plan can be used to communicate with office workers.

Plans can be understood in terms of strategies or procedures for accomplishing a

task. One can start with an abstract formulation (strategy) and fill in more

detail (procedures) as a better understanding of the task is obtained. This

allows a stepwise approach to be taken to capturing information about office

tasks.

3. THE USER’S CONCEPTUAL MODEL OF OFFICE WORK

We consider the work that is performed in an office to consist of various tasks

An office task can represent a routine task, non-routine task, or some

combination of the two. The precise definition of what constitutes an office

task will vary from office to office. It is sufficient for our purposes to

assume that, for a given office, the tasks in that office can be identified.

Each office task can be decomposed into zero or more subtasks These subtasks

may be further decomposed. Task decomposition results in a task hierarchy that

represents an office task. Each level of the task hierarchy specializes an

office task to a greater extent Hart77].

46

A task hierarchy can be viewed as an AND/OR graph Nils8O], and thus can be used

to show two aspects of the structure of office tasks. First, it can show the

components of an office task. In this case, the office subtask at the higher
level in the task hierarchy is completed when all of the component office

subtasks are completed. Second, it can show the alternatives available. In

this case, the office subtask at the higher level is completed when ~y of the

alternative office subtasks is completed. Composition of office subtasks is

distinguished from alternation by connecting the component subtasks with an arc

as in an AND/OR graph.

Associated with each task in a task hierarchy are two kinds of information. The

first kind is descriptive and documents such things as the goal of the task and

who is responsible for completing it. The second kind of information is control

information and documents such things as the conditions for selecting and

invoking tasks.

The leaf subtasks in a task hierarchy are special in terms of their meaning to

the user. They represent the steps required to perform an office task. An

appropriate collection of leaf subtasks represents an execution plan for an-

office task Sace75]. Because of the possibility of alternatives at each level,

many execution plans may be possible for a given task.

Associated with each leaf subtask in a task hierarchy is a procedure A

procedure is an executable description of how the subtask described by the leaf

node is to be implemented. A procedure may be executed by a person or by the

office information system, and thus represent a manual procedure or a

computerized (automated) procedure, respectively. If all the leaf subtasks in

an execution plan have automated procedures associated with them, then the

office task is automated (at least for this execution plan). Similarly, the

office task may be completely manual or a combination of the two.

The preceding conceptual model of office tasks is in line with our view that

office tasks can be considered as plans. The task hierarchy permits an office

task to be described at various levels of detail from abstract to concrete. By
allowing alternative subtasks in the task hierarchy, office tasks can be

implemented in several ways. Finally, a graphical representation of a task

hierarchy can be used to communicate the task representation to office workers.

4. THE SYSTEM’S INTERNAL MODEL OF OFFICE WORK

To support the user’s conceptual model, the off i~e information system needs to

keep various kinds of information as shown in Figure 1. In the following
subsections we discuss the two major components of the system’s internal

model—the task monitor and the data base system.

4.1. Task Monitor

The task monitor is responsible for maintaining the current status of the

execution of tasks, for selecting and scheduling them for execution, and for

interfacing with the data bases and the office workers.

The current status of each active office task is kept in an agenda BoWi77]. An

agenda consists of two parts: the execution history and the execution schedule.

The execution history indicates which subtasks have already executed, either

47

I Task I
I Monitor I

TI1IT~
I DBMS I

successfully or unsuccessfully.
execution of an office task and

execution schedule contains those

execution. It can be modified as a

by the task monitor.

This information is useful for tracing the

for determining why a task failed. The

subtasks that are •currently scheduled for

task executes either by the office worker or

When determining the execution schedule for an office task, the task monitor

consults the task and control data bases using the facilities of the DBMS. From

the task data base it obtains information concerning the possible subtasks to

add to the execution schedule. From the control data base it obtains selection

criteria for subtasks and invocation conditions.

The task monitor picks an office task to execute and consults the agenda for the

office task to determine which subtask to perform next. If the subtask is a leaf

subtask, its associated procedure, from the procedure data base, is executed

either by the system (automated procedure) or by the office worker (manual

procedure).

For a set of disjunctive subtasks (i.e., one of the subtasks must be completed),
each disjunctive subtask is assigned a priority. This priority can be obtained

from the control data base or can be calculated by the task monitor according to

the specification of the office task. The subtasks are then tried according to

the priority assignment.

For a set of conjunctive subtasks, it is assumed that all the subtasks can be

executed in parallel (concurrently) unless constrained to be executed

sequentially Sace75]. The task monitor consults the control data base to

determine if any constraints exist on the execution order of the subtasks.

Subtasks are ordered accordingly and then executed.

A subtask that has been invoked may fail In this case, an alternative subtask,
chosen according to the priority assignment, is executed. A subtask that fails,

may alter the execution schedule. It may add or remove subtasks from the

execution schedule or cause the priority assignment of untried subtasks to

I Task I
I Data I
I Base I

I Control I I Procedure I Office

Data I I Data I I Data

I Base I I Base I I Base

Figure 1. The system’s internal model.

48

change. If no alternatives remain to be tried in an execution schedule, then

the user is informed of the situation. He can examine the execution history to

determine why the task failed to complete and take remedial action.

The office workers interact with the office tasks via the task monitor. They
can examine the definition of existing office tasks, modify them, or add new

ones. They can also examine the agenda of office tasks and modify the execution

schedule. For those tasks requiring user intervention, the task monitor creates

a task message that is placed in the user’s task mailbox. The office worker can

examine this mailbox and work on those tasks he wishes. For tasks requiring
immediate attention, the office worker is sent periodic reminder messages to

handle them.

4.2. The Data Base System

The data base system provides facilities for structuring and accessing the data

bases. These facilities are used by the task monitor as well as by the office

worker in performing office tasks. The databases
as well as the operational data of an office.

The task data base stores information about the structure of the task hierarchy
and its associated descriptive information. This information is accessed by the

task monitor to determine the tasks ‘that can be selected for invocation. This

information is also used to provide e~cplanations to the user such as the purpose
of a (sub)task. A frame-like structure is used to represent the nodes in a task

hierarchy Mins75; Aiki8O; SmCl8O]. This representation consists of

descriptive slots and pointer slots to entries in the task, control, and

procedure data bases.

The control data base contains the selection and invocation conditions for tasks

and subtasks. The task monitor uses this information to select tasks and

subtasks and to schedule them for execution. The conditions are represented as

production rules DaBS77; Nils8O] and contain information about preconditions
and postconditions that must be satisfied for a (sub)task to be selected for

execution, to execute, and to complete.

The procedure data base stores the procedures associated with leaf subtasks.

Procedures are invoked by the task monitor according to the execution plan
obtained from the task data base and the control data base. If a procedure
represents an automated procedure, it is executed by the system. If no

automated procedure for a subtask exists, the user executes the procedure using
the facilities of the system. In this case, the user must achieve the goal of

the subtask independently and inform the system when this has been done.

The office data base corresponds to the conventional notion of a data base as it

contains the operational data of the office. This data may be structured (e.g.,
records) or unstructured (e.g., text, speech, or images) TCEF83].

5. CONCLUSIONS

In this paper we described an approach for incorporating knowledge of office

work in an office information system with the intent of more effectively
supporting office work. The level of support that can be provided will depend
on how detailed a description of the office task is given. The conceptual model

49

admits support for a spectrum of office tasks ranging from those that are fully
automated to those that are completely manual. There is no requirement that a

procedure be executable by the office information system. There is only a

requirement that the goal of the office task be achieved. This can be

accomplished by the system successfully performing the task, by the user

performing it and informing the system of its successful completion, or by some

combination of the two.

In current office systems, knowledge of the office work resides entirely with

the office worker. This limits the effectiveness of an office information

system as well as the productivity of the office worker. Since a great deal of

time is spent handling routine tasks, less time is available to devote to the

non-routine, and often challenging, tasks in the office. For routine office

tasks, initiating the task and sequencing the steps can be controlled by the

office information system. For non-routine tasks, the selection of appropriate
alternatives to investigate can also be supplied by the system. In addition,
this knowledge would then be available to all office workers, alleviating the

training problem. In this way, the office worker is freed from participating in

most aspects of routine office tasks and can be better supported in performing
the non-routine office tasks, improving his effectiveness and productivity.

REFERENCES

Aiki8O] Aikins, J.S., “Representation of control knowledge in expert

systems,” Proc. 1st Natl. Conf. on Artificial Intelligence pp.

121-123, 1980.

Barb83] Barber, G.R., “Supporting organizational problem solving with a

workstation,” ACM Trans. on Office Inf. Sys 1, pp. 45-67, 1983.

BoWi77] Bobrow, D.G., and Winograd, T., “An overview of KRL, a knowledge
representation. language,” Cognitive Science 1, pp. 3-46, 1977.

Borg83] Borgatta, L.S., “Chips oust clips,” IEEE Spectrum 20(4), pp. 42-47,
1983.

C1ar83] Clark, P.A., “The electronic office,” BYTE 8(5), p. 59, 1983.

DaBS77] Davis, R., Buchanan, B., and Shortliffe, E.H., “Production rules as a

representation for a knowledge-based consultation system,”
Artificial Intelligence 8, pp. 15-45, 1977.

Fike8l] Fikes, R.E., “Odyssey: a knowledge-based assistant,” Artificial

Intelligence 16, pp. 331-361, 1981.

FiHe8O] Fikes, R.E. and Henderson, D.A., Jr., “On supporting the use of

procedures in office work,” Proc. 1st Natl. Conf. on Artificial

Intelligence pp. 202-207, 1980.

Fong83] Fong, A.C., “A model for automatic form-processing procedures,”
Proc. 16th Hawaii Int. Conf. on System Sciences pp. 558-565, 1983.

Go1d83] Goldfield, R.J., “Achieving greater white-collar productivity in the

new office,” BYTE 8(5), pp. 154-172, 1983.

50

Hart77l Hart, P.E., “Progress on a computer based consultant,” Proc. 5th Tnt.

Joint Conf. on Artificial Intelligence pp. 831-841, 1977.

HoNT81J Hogg, J., Nierstrasz, O.M., and Tsichritzis, D.C., “Form

procedures,” in Omega Alpha Tsichritzis, D.C., ed., Tech. Rep.
CSRG-127, Computer Sys. Res. Group, Univ. of Toronto, March, pp.

101-133, 1981.

Loch83] Lochovsky, F.H., “Improving office productivity: a technology
perspective,” Proc. of the IEEE 71(4), pp. 512-518, 1983.

LSTC82] Lum, V.Y., Shu, N.C., Tung, F., and Chang, C.L., “Automating business

procedures with form processing,” in Office Information Systems
(Naffah, N., ed.), pp. 7-38, 1982. North-Holland, Amsterdam.

Mins75] Minsky, M., “A framework for representing knowledge,” in The

Psychology of Computer Vision (Winston, P., ed.), pp. 211-227, 1975.

McGraw i{iU, New York:~

Nils8O] Nilsson, N.J., Principles of Artificial Intelligence Tioga
Publishing Co., Palo Alto, CA., 1980.

PaSp82] Panko, R.R., and Sprague, R.H., “Toward a new framework for office

support,” Proc. ACM SIGOA Conf. on Office Information Systems pp.

82-92, 1982.

Sace75] Sacerdoti, E., “The non-linear nature of plans,” Proc. 4th Tnt. Joint

Conf. on Artificial Intelligence pp. 206-214, 1975.

SLTC82J Shu, N.C., Lum, V.Y., Tung, F., and Chang, C.L., “Specification of

forms processing and business procedures for office automation,”
IEEE Trans. on Software Eng SE-8(5), pp. 499-512, 1982.

SmC18OJ Smith, D.E. and Clayton, J.E., “A frame-based production system
architecture,” Proc. 1st Nati. Conf. on Artificial Intelligence pp.

154-156, 1980.

TCEF83] Tsichritzis, D.C., Christodoulakis, S., Economopoulos, P.,
Faloutsos, C., Lee, A., Lee, D., Vandenbroek, J., and Woo, C., “A

multimedia office filing system,” Proc. 10th mt. Conf. Very Large
Data Bases 1983.

TsLo8O] TsIchritzis, D.C., and Lochovsky, F.H., “Office information systems:

~cha11enge for the 80s,” Proc. of the IEEE 68(9), pp. 1054-1059, 1980.

Zloo8l] Zloof, M.M., “QBE/OBE: a language for office and business

automation,” IEEE Computer 14, pp. 13-22, 1981.

51

CALL FOR PAPERS (

Second ACM Conference on Office Information Systems
June 25-27, 1984

Toronto, Canada

In the rapidly emerging area of Office Information Systems, many ideas which were wistful research notions a few

years ago are today being realized in commercial products. A conference sponsored by the ACM Special Interest

Group on Office Automation will address office topics. The objectives of this conference are to provide a forum for

the presentation and discussion of both current office systems and future research ideas. Opportunity will be

provided for the informal exchange of ideas and for broad participation by attendees. Original, office related papers
that have not been previously published are sought. Topics appropriate for this conference include (but are not

restricted to) the following:

Communications Integrated Systems Implementation

local networks, global networks artificial intelligence techniques in the office

protocols office languages and procedures
PABX, CBX, etc. modeling and evaluation of offices

Technologies Human and Organizational Factors

video disks office ergonomics, social/organizational models

fiber optics societal impacts of office automation

satellite technology office practices and experience

Workstation Design Information Handling

hardware, firmware, software text, voice, graphics, etc

user interface design office databases

display systems calendars, spread sheets, tickler files

Distributed Systems and Services

electronic mail, conferencing systems, videotex

office support systems

office security, audit, encryption, control

Each paper will be reviewed by at least two program committee members and judged with respect to its quality and

relevance. A conference proceedings will be published and selected papers will appear in the ACM Transactions on

Office Information Systems. Authors will be notified of acceptance or rejection by February 1, 1984. The final

version of all accepted papers, typed on special forms, must be returned by April 1, 1984. All authors of accepted

papers will be expected to sign an ACM copyright release form. 5 copies of papers of up to 5000 words (20 double

spaced pages) with abstracts of approximately 100 words should be submitted by November 1, 1983 to:

Dr. Clarence A. Ellis

Xerox Corporation
3333 Coyote Hill Road

Palo Alto, California 94304

IMPORTANT DATES

November 1, 1983 Deadline for submission ofmanuscripts

February 1,1984 Notification of acceptance or rejection

April 1, 1984 Submission of final camera-ready paper

June 25-27, 1984 Conference date

52

	40979_DataEngineering_Sept1983_Vol 6_No3.pdf

