
MARCH 1983 VOL.6 NO. 1

a quarterly bulletin

of the IEEE computer society
technical committee
on

Database

Engineering
Contents

Letter from the Editor

Letters from the Guest Editor

Some Characteristics of the

Japanese Computer Industry

V. Kambayashi

An Enhanced Relational Data Base System
for Planning and Management Information

Processing (PLANNER)
A. Makinouchi, M. Tezuka, and V. Kanda

AIM: Advanced Information Manager

M. Minami

Extended Data Management System

(EDMS)
K. Taguchi

OnIine Database Management System 17

K. Masamoto

Relational Data Base Systems
INQ and RIOS 22

K. Hara, 1. Gotoh, T. Miyazaki, K. Takeuchi,

and S. Mabuchi

Introducing ADABAS to the Japanese
Market

Y. Ishii

Overview of IMS/VS Fast Path Enhancement
. .

33

I. Takeshita

Database Management Systems for Very

Large Scale Applications 40

K. Suzuki and S. Ikeda

The Data Communication System for

Nationwide Banking System 45

H. Imamura

CADETT: Computer Aided Design and

Engineering Tool for Toyota 48

V. Sakai and V. Kuranaga

The Travel Reservation On-Line

Network System 53

-~

K.TsukigiandY.Hasegawa
—

- -— -

Heterogeneous Dis~ributed Database

System: JDDBS 58

M. Takizawa

Database Machine Activities in Japan 63

S. Uemura

2

3

5

9

13

29

Chairperson, Technical Committee

on Database Engineering

Professor P. Bruce Berra

Dept. of Electrical and

Computer Engineering
111 Link Hall

Syracuse University

Syracuse, New York 13210

(315) 423-2655

Editor-in-Chief,

Database Engineering

Dr. Won Kim

IBM Research

K55-282

5600 Cottle Road

San Jose, Calif. 95193

(408) 256-1 507

Database Engineering Bulletin is a quarterly publication
of the IEEE Computer Society Technical Committee on

Database Engineering. Its scope of interest includes: data

structures and models, access strategies, access control

techniques, database architecture, database machines,

intelligent front ends, mass storage for very large data

bases, distributed database systems and techniques,
database software design and implementation, database

utilities, database security and related areas.

Contribution to the Bulletin is hereby solicited. News

items, letters, technical papers, book reviews, meeting
previews, summaries, case studies, etc., should be sent

to the Editor. All letters to the Editor will be considered for

publication unless accompanied by a request to the con

trary. Technical papers are unrefereed.

Opinions expressed in contributions are those of the indi

vidual author rather than the official position of the TC on

Database Engineering, the IEEE Computer Society, or

organizations with which the author may be affiliated.

Associate Editors,

Database Engineering

Prof. Don Batory

Dept. of Computer and

Information Sciences

University of Florida

Gainesville, Florida 32611

(904) 392-5241

Prof. Alan Hevner

College of Business and Management

University of Maryland

College Park, Maryland 20742

(301) 454-6258

Dr. David Reiner

Sperry Research Center

100 North Road

Sudbury, Mass. 01776

(61 7)369-4000 x353

Prof. Randy Katz

Dept. of Computer Science

University of Wisconsin

Madison, Wisconsin 53706

(608) 262-0664

Dr. Dan Ries

Computer Corporation of America

4 Cambridge Center

Cambridge, Massachusetts 02142

(617) 492-8860

Membership in the Database Engineering Technical

Committee is open to individuals who demonstrate willing
ness to actively participate in the various activities of the

TO. A member of the IEEE Computer Society may join the

TO as a full member. A non-member of the Computer
Society may join as a participating member, with approval
from at least one officer of the TO. Both a full member and

a participating member of the TO is entitled to receive the

quarterly bulletin of the TO free of charge, until further

notice.

Membership applications and requests for back issues

should be sent to IEEE Computer Society, P.O. Box 639,

Silver Spring, MD 20901. Papers and comments on the

technical contents of Database Engineering should be

directed to any of the editors.

Letter from the Editor

This issue is devoted mainly to reporting the current status of commercial data
base and database application systems developed in Japan or developed elsewhere
but enhanced in Japan to meet the special requirements imposed by the Japanese
market. Since database journals and conferences in the United States and Europe
are not exactly inundated with papers from Japan, we felt that the topic may be of
substantial interest to the database community outside of Japan. Prof. Yahiko

Kambayashi of the Kyoto University, Kyoto, Japan, and I have jointly put this
issue together. In view of the communication and language difficulties that the
Pacific Ocean presented, I was very fortunate that Prof. Kambayashi served as

Guest Editor to edit this issue with me. It was he who drew up the list of corpo
rations from whom to solicit papers. Although for a number of reasons some of them

were initially reluctant, he prevailed upon all of them to submit papers. He had
to also perform the unpleasant task of dunning the authors (in a society where

dunning is particularly unpleasant) to meet the submission deadlines for the in!

tial, revised, and final versions of their papers.

I would like also to extend my special thanks to Dr. Yoshifumi Masunaga, who is

visiting IBM Research, San Jose, from Tohoku University, Seridai, Japan. He played
an important role in shaping the editorial direction of this issue by providing me

with helpful comments on several of the submitted papers and educating me on the
database activities in Japan.

As in the past, we will continue to devote each issue to one area of research rele
vant to engineering aspects of database architecture. We have chosen the follow

ing topics for the next four issues.

1. Highly Available DBMS: Dr. Dan Ries is putting together the June issue on this

topic.

2. Expert Systems. Dr. Adrian Walker (IBM Research, San Jose) has agreed to serve

as Guest Editor for the September issue on this topic. Submission deadline is May
1.

3. Automated Office Systems. Prof. Fred Lochovsky, who is visiting IBM Research,
San Jose, from the University of Toronto, will serve as Guest Editor on this topic
for the December issue. Submission deadline is August 1.

4. Statistical Database Management. Prof. Don Batory will be in charge of the
March 84 issue on this topic. Submission deadline is November 1.

Although we expect that each issue will consist mainly of papers that we will
invite from leading research/development groups in the particular topic chosen, we

will accept up to a few papers that are not related to the special topic and
include them in a separate section in any issue. Papers that are relevant to the

special topics should be submitted to the editor in charge of the issue and to me

(one copy to each). All other papers should be submitted to me.

1

Letter from the Guest Editor

Host of the articles contained in this special issue of Database Engineering have

never appeared in English before. I believe that we Japanese should be much more

active in publishing our research and development activities in English in order

to promote closer working relationships with our American and European colleagues.
The number of papers by Japanese authors that have appeared in English-language
journals and conferences has been a small fraction of papers that are published in

Japanese journals. I hope this issue will serve to trigger a more active partic

ipation by Japanese authors in the development and exchange of ideas with our

colleagues outside Japan. I am grateful to Dr. Won Kim for providing us with an

opportunity to report on our database activities.

Although Japants hardware technology is quite advanced, its software technology
has considerable room for improvement. Until recently, database systems have not

been widely used in Japan. It was mainly because of the high cost of processing
the Japanese language. This problem has largely been resolved now, and database

systems are being recognized as essential for improved productivity. Articles

contained in this special issue have been selected to acquaint the American and

European readers with a broad spectrum of database products developed in Japan,
the special requirements imposed by the Japanese market, and some database appli
cation and transaction-processing systems currently used in Japan.

I would like to take this opportunity to thank the authors who contributed arti

cles to this issue. They spent a lot of time preparing, revising, and re-revising
the papers in English. Because of the English problem that many of the authors

had, Dr. Kim had to work especially hard. He extensively commented and corrected

the first versions of all the papers and actually completely rewrote several of

the papers. His efforts considerably improved the technical contents and read

ability of the papers that appear in this issue. Without his enthusiasm and hard

work, this issue would not have materialized. I enjoyed assisting Dr. Kim with

the selection of papers and preparation of the issue.

I would like to also thank Dr. Hirotaka Sakai, current chairman of SIGDB of the

Information Processing Society of Japan, for his comments on the selection of con

tributors, and Dr. Yoshifumi tiasunaga, who visited IBM San Jose Research during
1982, for assisting me with communications with Dr. Won Kim.

I hope the readers will find this issue interesting and informative.

~ /

Yahiko Kambayashi

2

Some Characteristics of the Japanese Computer Industry

Yahiko Kambayashi

Department of Information Science

Kyoto University
Sakyo, Kyoto, Japan

Two major characteristics distinguish the Japanese industry from the American

industry. One is that the Japanese industry consists of several company groups,
each of which includes various companies providing a variety of services and pro

ducts, such as banks, trading companies, and computer companies. The other is the

life-time employment. Although the bond among the companies within a company

group has been weakening and life-time employment is no longer being accepted as a

fact of life, these two conditions characterize the Japanese computer industry as

well. The tendency for each company group to want its own computer company has

contributed to the establishment of four major companies that manufacture large
mainframes: Fujitsu, Hitachi, Nippon Electric Corporation (NEC), and Mitsubishi.

Fujitsu is currently the top computer company in Japan, and Mitsubishi is the

smallest of the Big Four. All four companies belong to different company groups.
All of them sell mainframes, office computers, super minicomputers, personal com

puters as well as ICs like the 64K memory chips. Fujitsu and Hitachi manufacture

Cray-like supercomputers and IBM-compatible mainframes.

Although it seems to be a widely held belief in the United States that the success

of the Japanese computer industry is largely due to the control and support from

the Japanese government, this author believes that competition among the companies
is the major reason. Also because of the life-time employment, worker resistance

to the introduction of computers and robots has been minimal, compared with the

American industry. This explains why the the computer market in Japan is so

large; the number of computers installed in Japan is second in the world.

Since the Constitution prohibits militarization of Japan, research support from

the military department is almost nonexistent. Most Japanese computer companies
receive support from Nippon Telephone and Telegraph Corporation (NTT) and the Min

istry of International Trade and Industries (MITI) through their research and

development projects.

NTT, which used to be a governmental agency, became a public corporation over 30

years ago. They have their own research laboratories and developed their own com

puters, called DIPS-ll series (Models 5, 15, 25, 35, 45, and VLSI version) for

electronic switching and computer-center services. Fujitsu, NEC, Hitachi and Oki

produce various communications equipments, and purchases from NTT are very impor
tant to these companies. Having both the computer and communications technologies
is indeed advantageous for Japanese computer companies. NTT also sponsors pro

jects to develop new systems. The projects usually involve more than one computer
companies. The INS (Information Network System) project it is currently undertak

ing is very influential for the future of computer applications in Japan.

In the past, MITI sponsored projects like VLSI development and pattern information

processing~ Currently, itsupports the fifth-generation computer project through
a newly formed research institute called ICOT (Institute for New Generation Com

puter Technology). It is the first long-range research-oriented project and its

scope includes database machines and knowledge-based systems. The project is open
to foreign researchers and companies. The main research laboratory of MITI is the

Electro-Technical Laboratory, which is located in Tsukuba, a new city consisting
of university and research centers. MITT also financially supports the Japanese

3

Information Processing Development Center (JIPDEC), an educational organization
for the Japanese computer industry.

Several years ago, in order to position the Japanese computer industry to effec

tively compete with IBM, MITI ordered the formation of three computer-company
groups: Fujitsu-Hitachi, NEC-Toshiba, and Mitsubishi-Oki. These groups are no

longer functional. The first group announced the N-series computers, M-160, 170,
180, 190, and 200, that are IBM-compatible. Since then, however, Fujitsu devel

oped the M-3xx series and Hitachi the M-2xx, which are not compatible with each

other. The NEC-Toshiba group has been dissolved, since Toshiba decided not to

make mainframes. In June 1982, Mitsubishi and Sperry-Univac entered into a joint
venture agreement. Since Oki is the parent company of Oki-Univac which produces
small and medium-scale computers for Univac-Japan, the Mitsubishi-Oki group

appears to be working with Univac.

Two important requirements characterize the Japanese computer market. One is the

Japanese language processing capability. The other is that users tend to require
their own customized software packages. Until recently, the Japanese have had to

rely on the English alphabet and the 46 Japanese phonetic symbols called Kana to

express Japanese sentences. One of the major reasons that have impeded a wider

use of database systems in Japan has been the inadequate Japanese language proc

essing which includes over 3,000 Kanji (Chinese) characters. This problem has

been resolved to a good extent. The reason why users require customized software

products is mainly that most Japanese employees stay in one company for life and

thus the way of doing similar jobs is not standardized across companies.

Foreign computer companies, with the exception of IBM, have had problems estab

lishing themselves in Japan. User surveys indicate three reasons. First, they
have weak sales networks. Second, the Japanese language processing capabilities
in their systems are in general not adequate. And third, they usually refuse to

provide customized software packages and instead insist on selling foreign-made
general-purpose packages. Further, because of the substantial discounts on Japa
nese computers sold to educational institutes, most computers installed in

Japanese universities are Japanese made.

The following shows the shares of the computer market in Japan that domestic and

foreign computer companies have for computers that cost not less than 30 million

yen (1$ = 230 yen). (The data are taken from the January 1983 issue of

Computopia.)

market share by sales

IBM (27.6%) Fujitsu (21.1%) Hitachi (16.6%) NEC (14.1%)
Univac (10.4%) Burroughs (4.1%) Mitsubishi (3.0%) NCR (2.0%)
others (1.1%)

market share by the number of computers installed

Fujitsu (29.0%) NEC (20.8%) Hitachi (15.7%) IBM (11.4%)
Mitsubishi (7.3%) Univac (6.6%) Burroughs (4.9%) NCR (3.4%)
others (0.8%)

IBM is very strong in the area of large computers, with 49.2% of computers costing
not less than 1 billion yen.

Acknowledgement: Dr. W. Kim rewrote an earlier longer version of this article by

extracting contents which appear to be of interest to the American readers. This

article only reflects the authorts personal view.

4

An Enhanced Relational Data base System for

Planning and Management Information Processing

(PLANNER)

Akifuini Makinouchi*, Masayoshi Tezuka*, Yasunori Kanda**

1. Introduction

PLANNER (Planning and management information system based on Easy Relational

data base) is a total system for planning and management. The System runs on

FACOM M—serjes main frames under OSIV/F4 or OSIV/X8 since late 1981.

PLANNER incorporates a flexible data base system in order to allow end user

to efficiently retrieve data for routine processing, forecasting and planning.
The data base system can handle diverse and voluminous information and has

facilities for supporting a powerful end user language that allows efficient

data base inquiry. It also provides facilities for processing, editing, and

analyzing data collected by end users in a trial—and—error fashion, as well as

capabilities for graphic display and mapping facilities to show related

geographical data.

2. The PLANNER System

The configuration of the PLANNER system is shown in Fig. 1. The system consists
of a command interface, a relational subsystem, and application subsystems. The

command interface distributes user commands to the relational subsystem or to

an appropriate application subsystem, according to whether it is a query or an

application command.

PLANNER is an open—ended system so that an application subsystem may be

integrated into it by using the ISRQ (Interactive Subsystem for Relational Query)
interface and/or the DSCS (Data Storage and Control Subsystem) interface. In

addition, the interactive PLANNER provides a facility that allows an application
subsystem to define and access application—specific data attributes through the

data dictionary shared with the relational subsystem.

* Software Laboratory, FUJITSU LABORATORIES, LTD.

1015 Kamiodanaka, Nakahara—ku, Kawasaki, JAPAN 044—777—1111

** Management Systems Development Dept., FUJITSU LTD.

1—17—25 Shinkamata, Ohta—ku, Tokyo JAPAN 03—735—1111

5

End user

Command interface

I
- ~ Application Subsystem

Rel~a&~ai~ I

~
User I

Su~sys tern L
______________ Statistical Graph Map

built-in

I I Data handling data display i application i
I I and analysis subsystem subs~~~j
I I editing subsystem

I subsystem

LL14~
Data Storage and Control Subsistent

I

L 11~ j

~to~lDa~Ba~
Fig. 1 PLANNER system configuration.

The relational subsystem consists of ISRQ and DSCS. ISRQ1) interprets and

executes the query language for the relational data base. The query language
contains commands to define or delete tables, indexes, and views, as well as

commands to retrieve, display, insert, delete, or update records.

DSCS supports both data organization and access methods. There are three

types of data organization; entry sequential, index, and hash.

An entry sequential table contains records stored in the order of their arrival.

Index and hash tables have a B*_tree structure, and, (key value, record value)

pairs are stored in the leaf pages of the B*_tree.

In PLANNER, indexes can be defined as access paths for the entry sequential

tables. Indexes are implemented in the index table supported by DSCS. The DSCS

interface provides facilities for table definitions, for scanning and fetching

tables, and for inserting, deleting, and updating records. DSCS provides I/O

management, a lock mechanism to support multiple concurrent users, and a log

facility for data base recovery.

3. Unified Language for End Users

The language supported by PLANNER is a unified one in that it allows end users to

interrogate a relational data base and to analyze the retrieved data. This

language is called QAL (Query and Analysis language).

6

Although QAL is a combination of two command languages for end users, it is

syntactically and semantically unified so that users perceive it as a single,
integrated language.

One part of QAL, called RQL, is also a unified query language for relational

data bases, with facilities to define or delete tables, to retrieve, insert, or

update records, and to grant access rights.

The other part of the language, AL, has many features which allow users to

analyze retrieved data, edit the results, and output them to a video display
terminal or a printer in graphic form. There are 25 commands in RQL and about

90 commands in AL.

3.1 RQL

RQL is syntactically and semantically similar to the SEQUEL II and QIJEL
languages2),3) with minor differences. RQL commands can be easily used by
non—professional users. Records retrieved from one or more tables using the

RQL GET command are places in a logical work area called temporary segment. RQL
provides data manipulation commands such as INSERT, DELETE, UPDATE as well as

set—operations such as intersection, difference, union, and append.
Views are retrieved like basic tables, but can not be updated.

3.2 AL

AL provides various facilities to allow users to handle specific data in

planning and management information. Some of the commands supported in AL are

explained here.

Commands for analyzing time—series data and for extended data handling

The COMPTS command calculates the difference or ratio of periodically collected

data. For example, it can compare data from one quarter of last year with

the data from the same quarter of this year. The TRTS command converts one kind

of time—series data (e.g. monthly data) to another kind (e.g. yearly data).
The GROUP BY function and the join operation have been extended for the RANK and

MERGE commands, respectively. RANK allows users to group records by value

ranges in a specified field of a table. MERGE is an extension of the join
operation, similar to the outer join operation.

AL also have array handling capabilities. The EXTRACT command generates arrays
from a table and the BIND command cenverts arrays to a table form.

Statistical analysis commands

AL statistical commands include STAT, CORR, CROSSTB and FACTOR. The STAT command

calculates fundamental statistical values such as maxima, minima, summations,
averages, counts, and standard deviations. The CORR command is used to calculate
correlation coefficient. The CROSSTB command classifies records in a table

according to value ranges on specified fields, counts the number of records in

each class, and displays them in table format.

7

Commands for displaying outputs in graphs and maps

Users can enter commands to display the results of analysis in graphs or maps.

Facilities are available for displaying many types of graphs (bar graphs, line

graphs, pie charts, and histograms), especially suitable for analyses of area

or time—series data. Map commands are divided into two general classes: one

for grid maps and the other for district maps. A grid map command refers to

grid tables and classifies grids according to data associated with the grid

(e.g. population in the grid) and plots a symbol for each grid on the map.

A district map command referes to tables in which the key field is a district

code (e.g., the population density of an area). On the district map, districts

are hatched differently to classify districts.

Acknowledgement

We wish to express our sincere thanks to Mr. Hayashi of FUJITSU LABORATORIES LTD.

and to Mr. Sunada of FUJITSU LTD. for their contribution.

We wish to express our sincere thanks to Dr. Kim for editing this PLANNER paper.

Re ferences

1) A. Makinouchi et al.: “The Optimization Strategy for Query Evaluation in

RDB/Vl,” Proc. 7th mt. Conf. VLDB, pp.518—29 (Sept. 1981)

2) D.D. Chamberlin et al.: “SEQUEL 2: A Unified Approach to Data Definition,

Manipulation, and Control,” IBM J. Res. Develop., pp.560—75 (Nov. 1976)

3) M. Stonebraker et al.: “The Design and Implementation of INGRES,” ACM TODS,

1,2, pp.189—222 (Sept. 1976)

8

AIM: Advanced Information Manager

Masahiro Minaxni

Software Division

Fujitsu Limited

1015, Kamikodanaka

Kakahara—Ku, Kawasaki, Japan

1. Introduction

In recent years, the amount and variety ol data processing has required more powerful

database and data communication(DB/DC) systems. The most important goals of DB/DC

systems are high efficiency, high reliability and ease of use and maintenance. AIM,

the DB/DC system for the Fujitsu FACOM M series computer, was developed to meet these

requirements. To achieve high efficiency AIM was designed as an integrated database

and data communication system to avoid the redundant overhead, the duplication of

functions between the DB and DC system and also between AIM and the operating system.

AIM supports multitasking, very fast access method dedicated to databases, optimal
buffer management, and resident database in virtual memory. For high reliability it

provides recovery/restart, dual file support. for both the log and database, and

shared database ‘management by multiple systems. Further, it provides functions to

improve productivity of design development, management and maintenance of application
systems, such as database design and application program development tools based on

the dictionary and debugging/testing tools.

In this paper, an overview of the system will be presented.

2. System Configuration

AIM consists of four major components as shown in Fig 1 The DcMS(Data Communication

Management sub—System) is the component which is responsible for handling messages

between terminals and application programs. D~MS supports message distribution,

message editing and tnessage communication between application programs. Thus, an

online application system can be easily implemented for small—scale systems and very

large—scale systems.

AIM

DB

DB

The ISMS (Integrity and Schedule Management sub—System) is the component which supports

integrity and reliability. It provides such functions as automatic log collection,

access control, recovery and restart and the command scheduler during online database

processing.

9

The DDMS(Dictionary and Directory Management sub-System) is the component which

manages all information related to AIM such as the data structures, terminals,

message structures, application programs and resources for recovery/restart. This

information is sotred in DD/D. It has a definition language called ADL(AIM

Description Langiiage) for this information.

DBMS (DataBase Management sub—System) is the component which provides the various

access facilities for the database. AIM has two DBMS5; one for handling structured

databases based on the CODASYL data model 1), and the other for relational databases.

The former is handled by DML(Data Manipulation Language)2), and the latter by AQL

(Advanced Query Language) wihch is similar to SQL.3) Both languages may be used in

the same application program, and both methods are managed by the same functions

for data integrity. These DBMSs are selected on the basis of the nature of the data

or the data processing requirements.
In this paper, the facilities of the DBMS for only the structured database will be

described.

3. Database Structure

A database is structured on four levels as shown in Fig 2 The logical level can be

expressed in the network form by combination of RECORDs and SETs.

The locative structure consists of the RANGEs in which the RECORD(s) are distributed.

The user can define locative information, such as the arrangements of RECORD(s), the

storage in a RANGE and its overflow pool and the blocking ratio(e.g. according to

access frequency) without being aware of the physical DASD attributes. The physical
structure consists of the physical DASD volume(s) where the data are stored.

The virtual logical structures are composed from the logical structure.

These logical, locative and physical strucutres are stored in the DD/D as the SCHEMA

and the virtual logical structures are stored in the DD/D as the SUB—SCHEMA. These

structures are managed by DDMS so that independence among levels can be established.

4. Relationships between records

Locative

Physical

Virtual logical structure

Logical structure

Fig 2. Data structure

10

The relationships between records can be established by means of the stored address

(pointer) in the control part of the records or by using(the key of) a common data

item between different record types. The former is called a physical concatenation,

and the latter a logical concatenation.

Two forms are used for the physical concatenation which indicates the hierarchical

relationship between the owner record and the member records, RING and LIST forms.

In the RING form, one or more member records are connected to an owner record in a

loop. In the LIST form, the owner record contains all of the pointers of the member

records related to the owner record. The LIST form is effective in managing time—

series data. The system supports the multidimensional (pointer array) management
for the LIST form.

The logical concatenation is a means of relating records belonging to different

record types according to the key values of the records. Logical concatenation is

not concerned with the actual addressed of the data, so reorganization of records

is simplified.

5. Access method enhancements

AIM provides two basic access methods. First is the direct access method which is

data storage or retrieval by the key of the data. This uses two techniques; one uses

hashing and the other an index. Besides these techniques, the inverted index may

be used so that certain data can be retrieved by the content of the data. Second is

the sequential access method. It uses the order in the SET between the RECORDs, or

the key sequence order in the index or the inverted index, or the stored order in

the RANGE.

The internal access method used in AIM is a high—speed DAM which is an enhanced

version of BDAM. This reduces both the path length of READ/WRITE instructions and

the number of I/O operations. The path length is shortened by the simplification of

BDAM and a dedicated basic IOS(I/O supervisor) driver. The reduction in path length

averages 50% compared to BDAN. The reduction in the nuxnber of I/Os is obtained by
accessing multiple blocks in a single read or write request. For example,there may

be several blocks(up to 9) to be written back to the DASD. At the end of a trans

action, these blocks can be written back to the DASD by a single write instruction.

6. Data integrity

AIM supports the following standard functions to guarantee data integrity.
. control Once a transaction starts, accessed data is exclusively controlled

until the transaction finished. When data access requests are made in the trans

action, the ranges, subranges or pages of the database to which the data belongs
axe temporarily locked. Upon termination of the transaction, the locks are released.

The detection and release of deadlocks and the restart of application programs are

carried out automatically.
. collection Various log buffers and log files are provided for prompt recovery
from various abnormal conditions. Before image data and after image data are

available as log data for recovery. The before image data is used for backout when an

application program terminates abnormally or a deadlock occurs. The after image
data is used for recovery processing of a dataset in the event of DASD or system
failures. The before image data is stored in a backout file(BOF) buffer provided for

each task and written out in a BOF when the BOF buffer becomes full during a trans

action. The after image data is stored in a task log buffer provided for each task

and moved to the history log(HLF) buffers coimiton to the whole system, when the task

log buffer becomes full or at the end of a transaction. Subsequently, the contents

of the HLF buffers are written out in the HLF. At this time, a high—speed temporary
log file(TLF) may be used to write out the data upon completion of a transaction to

11

reduce the overhead in writing to the HLF. The TLF is accessed at least once for

each transaction, and the reduction in TLF access time is important. In the TLF,

all blocks of the same track have the same key, so that the rotation latency to

write the after i~age data to the TLF is minimized. That is, when the after image

data is stored on the track of the TLF, any blocks of the track can be written.

•Recovery and Restart Processing Recovery processing differs depending on the cause

of the abnormal state. AIM uses log data to recover from crashes of the system, data

set and tasks and from deadlocks. The following data are secured on the DASD for

use in recovery processing.
•transaction process table(TPT), in which the transaction processing information for

each task is maintained.

•system checkpoint, for managing all the TPTs of the system.

•resident database checkpoint, in which the load/unload information for the database

is maintained.

. control Each AIM resource(e.g. a work station, message queue node, sub—

SCHEMA) is registered with the RACF(Resource Access Control Facility) which contains

the security information. Security checks are performed at message distribution to

the application program and at job initiation. Further, certain record types and/or

set types can be specified in PJDL with various constraints(e.g. no update) so that

sub—SCHEMA resources can be protected from unexpected access from application

programs.

Conclusioxt

Recently, the increase in the variety of requirements for DB/DC systems has become

considerable. Since late 1976, AIM has been improved to meet new requirements. The

system has been installed at approximately 1860 sites.

References

1) “CODASYLData Description Language Journal of Development, June 1973”, NBS

Handbook, 113, 1974.

2) “CODASYL COBOL Committee Journal of Development 1978”, The Secretariat of the

Canadian Goverment EDP Standards Committee, 1978

3) D.D. Chamberlin et al.: “SEQtJEL2: A unified Approach to Data Definition, manipu
lation, and Control”, ThM J.Res.Develop pp.560—575, 1976

12

Extended Data Management System (EDMS)

Kazuo Taguchi

Systems Engineering Department
Mitsubishi Electric Corporation

Tokyo, Japan
03-434-9838

1. introduction

EDMS (Extended Data Management System) is a general-purpose database management

system of Mitsubishi Electric Corporation which was first released in 1977. It

supports the network model of data and its data definition language (DDL) and data

manipulation language (DML) are based on the CODASYL DBTG proposals. EDMS offers

several special features, which include location mode INDEXED as the 4-th location

mode, multiple inverted indexes, data-item level password, checksum computation
for every page in the database, and data enciphering. However, this paper will

focus on some recent activities in extending EDMS. They include automatic gener
ation of DDL and DML, and a database engine for data manipulation.

2. automatic generation of DDL and DML

EDMS users have found that the CODASYL-based DDL and DML are difficult to learn

and that they need an inordinate level of experiences for a good design and manip
ulation of the database. For example, they have found it very cumbersome to have

to select the location mode of a group, define the set-selection mode and the set

order attribute for each set, in addition to defining the database item, group and

set. It became clear to us that casual users of EDMS needed some database design
aids. We believed that automatic generation of DDL and DML statements will sub

stantially enhance the flexiblity of EDMS for not only the casual users but also

the database administrator and application programmers.

This has led to our development of MADAM (Mitsubishi Advanced Design A1&rfor data

base management) as an extension to EDMS. MADAM provides two major functions that

facilitate database restructuring and reorganization. One function supports a

menu-driven operator interface to generate customized DDL for data definition.

Fig. 1 shows an example diagram similar to the Bachman diagram for expressing a

database schema. MADAM allows the user to define such a database-schema diagram
interactively on a CRT display and translates it into a sequence of DDL

statements.

Another function is the automatic generation of DML statements. The user of MADAM

may fill in system-generated menus to interactively specify the functions of a

data-entry program. Fig. 2 shows an example menu that may be used to define a

data-entry program for TEAMG in the schema diagram of Fig. 1. MADAM ger~erates a

sequence of DML statements corresponding to the menu the user fills in by insert

ing appropriate DIlL statements into skeletal COBOL programs stored in the system.

EDMS provides a casual-user interface, called IDP (Interactive Database

Processor). IDP and MADAM are integrated into a total interactive database proc

essing system, called TIDPS, to support the database users during the entire life

cycle of the database.

13

21 zz:zzzzzzzzza

10 200 z

* P~SITG z

* Ci

1111213*ZZS,S

I—I

12 zszizizzis~zz

20 s 100 &

* LEAGG z

I C *

&*ssl**zzi*iz

22 sszssizszs&ss

15 i 300 *

* TEANG *

* C *

z*zzzi*l*ziII

I

32 siz*z*zziiii~

300 s 400 *

410 420 * PLAYERG ~

I Vi

IV .ssszazziszI*

I I

33 &zzzz*zi*I*Ii

100 * 500 *

z REC~R0G I

a V *

&*IzIzzI*Ii*S

C Y.N

Fig.2 An example of a table to specify a data entry program

1. Program name

3. A — Passward

B — EDMS Buffer Size

4. Erea name and IS flag

5. Name of input data file

6. Name of DB copy file

7 — 15 Definitions

2. Comments

Data / Index

t-I~

R.LP.E

Selection of process Next Yes/No

Fig.1 An example of a diagram for DDL generation

zi*zIzSiz*lz1ZZZ*1 ?—9~—2~~ ~ ~

1 707~54 ~ 1FR~TEA 1 2 ~
3 A—) A2~—~ B—> EDIS ~7 ~9 110 I 0

4 i’J7Z L IS ~ :A ~AREA1 B

* 77(~ ~ 5 A ~JY-9~?i&~ 6 08 it.- 7?(& ÔA N9i’7

(COPY) LTEAMF] ~K8~—C~Y I
*

SEQ A~?~J~ B~—7/t~I C~—N~ ~“•“ s~ 74~L ~

7 1 FINOG LEAG~

8 2 STORE TEANG

9 3

10 4

11 5

12 6

13 7

14 8

15 9

I SI *122111111 *1* * * * *211112*211 * *1*1*1 & 1*1111 * Si

‘i:

G.II.LP.E

14

3. database engine

tlitsubishi has incorporated functional engines into its tIELCOM-COSMO 700/800
series computer systems. A functional engine is a high-speed wired logic which

performs frequently used program logic. As one .of the functional engines con

nected to the CPU, the database engine executes some EDMS functions. These func

tions include testing for data errors in a data page, retrieval of a record in a

page, and transfer of data from the EDMS input buffer pool to a work area in the

application program. Fig. 3 shows the performance improvement resulting from the

use the database engine. Fig. 3.a shows the CPU time for the execution of the EDMS

functions with and without the engine. Fig. 3.b compares the performance of three

application programs. Application program A retrieves 10,000 records sequential
ly, program B deletes 1000 records after retrieving them using hashing, and

program C deletes 2000 records after retrieving them using a primary-key index.

acknowledgements

I wish to thank Dr. Won Kim (IBM Research, San Jose), Prof. Y. Kambayashi (Kyoto
University, Kyoto, Japan) and Dr. Mizoguchi (Mitsubishi) for encouraging me to

write this paper and offering me many helpful comments on an earlier version of

the paper.

15

Fig.3(a) CPU time comparison
with/without engine

CPU time

(Io—Gsec)

5.0

3.0

2.o

1.0

in execution of ED~1S function

LI execution time

without engine

Fig.3(b) performance comparison for three application programs

.2

execution time

with engine

test record data

data error retrieval translation

CPU time

(see)
A

15

(l.o) lo

(~:5) 5

execution tifle

without engine

execution time

with engine

9.7

~3LI

ri

6.1

I

I
111
I

B C

16

CM~INE ~~TABASE MAN1~EMENT SYSTEM

Kazuaki Masamoto

Software Works, HITAGII, Ltd.

5030 Totsukacho, Totsukaku, Yokohama 244, Japan

1. Introduction

IXX)1II (Data Communication and Control Manager II) was developed to prcwide
advanced data base/data conirnunications capabilities for large scale computer

systems. The system can be used in fields which rejuire nonstop, quick
response and high traffic online operations. Production control system in

the steel industry is one of the typical application fields. The system is

also available for general purpose online processing in various kinds of

applications. The objectives of DCCMII is as follcMs:

1) To provide a DB/DC system with nonstop, high—performance,
operator—free operation, and quick recovery—restart capability

2) To relieve users of the annoying complexity of on—line processing
in areas such as multi—processing, re—entrant coding, handling
of remote devices, recovery—restart, etc.

ncaiII supports database back—up and restore processing during online

operation. And it also allcws system modification without stopping online

processing. The MPP (Message Processing Program) is executed in a single
task, multi—partitioned environment so that it can be coded as easily as

batch programs by using high level languages.

2. System Configuration

The system runs in a multi—partition environment under multi—virtual

operating systems. One partition, called the control partition, is reserved

for DCCMII control program, and the remaining partitions are used by MPP5

(See Figure 2.1).

An MPP is loaded into an MPP partition and executed when a corresponding
transaction is entered from a remote terminal. MPPs are expected to process
the transactions in single task operations in multi—partitions. Th~ issue

subroutine calls to get messages from terminals, to access database, and

to send replies to terminals. An MPP partition is serially reused by MPPs.

Re—entrant coding and multi—task processing are not r&juired for the MPP5.

In the control partition, DCCMII allocates a subtask corresponding to each

MPP partition in order to process those subroutine calls concurrently.
Since an MPP is executed in an independent partition from control program
and the other MPP5, the effect of an MPP failure is localized within the

partition, and the other programs can continue their processing with no

interference resulting from that failure.

DCG4II is configured with functional components which are divided into three

groups, LEVEL I, LEVEL II and LEVEL III. LEVEL I components support all

hardware dependent processing and the operating system interfaces.

17

DCCIII task control and common service routines are also included in LEVEL I.

LEVEL II and LEVEL III are transaction processing subsystems under LEVEL I.

LEVEL II components control input and output message flows. And LEVEL III

components support all application program related processing. An independent
database management program(DBM) resides in LEVEL I, and it is called by

MPPS via LEVEL III components. LEVEL I may be used by other subsystems.
File transfer programs and other terminal—handling user programs are included

in the subsystem.

3
•
DCCIII Message Processing

3.1 Message Routing

Messages received from terminals or application programs are inserted into

the corresponding queues for processing. The output messages to be sent

to terminals are queued on the corresponding logical terminals. A message

destined for an application program is called a transaction, and it begins
with a transaction code. The transaction code indicates the application

program to be scheduled to process the transaction. Transactions are

classified into several groups, and all the transactions in the same

transaction group are queued in a serial chain based on the time of receipt

by DCCIII.

Input messages are stored in virtual memory. C)itput messages may be stored

in virtual memory, a message queue dataset, or in both. Output messages

are classified into three groups; ir~uiry response messages, high priority

switching messages, and normal priority switching messages. A message

sequence number is given to each output message so that it can be identified

when it is required to be re-tranemitted. This can be applied to message

recovery processing between two computer systems at system restart.

Figure 3.1 shows the message queues.

Terminals

Figure 2.1 System Configuration

18

Logical
terminal

Application

p rogram

When an MPP partition is started, up to four classes are assigned to the

partition according to the initiation parameters. The partition classes

declare that the partition is available to the transaction groups which

belong to one of the classes assigned to the partition. The class assignment
to a transaction group is done at system generation time.

The classes are used to improve the processing capacity of the system by
balancing the amount of traffic, required memory size of MPP5, and so on.

Exclusive control is performed by DCQ4II. Hc~ever, if the same class is

assigned to transactions which update the same database record, those

transactions are put into the serial queue for that class, and serially
scheduled. Therefore, the database record is serially accessed, and the

overhead associated with exclusive control of the database manager can be

avoided.

When a transaction is chained in the input message queue waiting to be

processed, and an MPP partition is empty, the application program designated
to process the transaction will be loaded into the partition for execution.

Of course, the transaction class and the partition class must be identical.

If they are not identical, the partition is kept empty until transactions

of identical classes arrive. The transactions in the input queue are kept
waiting until an MPP partition with an identical class becomes empty.

4. t~ta Base

re~ supports two types of databases, MSAM and CHDAM. I1I9AM~ Main Storage
Access Method database, is a direct access database stored in main storage.
At system start up, the database is loaded fran an external device, and it

is saved in ~an external~ device at system termination. It gives fast response
and can be used for coriunon area or control tables between application
programs. Q1L~M, Customized Hierarchical Direct Access Method database,
is a hierarchical tree structure database using a VSAM EStS dataset. The

database structure and its access methods are simple and efficient, so DCG4II

can be used in high traffic, fast response, online database applications.

Fig. 3.1 Message Queues

3.2 Message Schedul~q

19

t~M is called by MPPs via DCCIII LEVEL III in the same manner as message

requests. It shares the system journal dataset, checkpoint dataset, and

other system resources with DCCMII. t~tabase update record information is

stored in the DCCMII system journal, and is given back to DBM when an MPP

terminates with a failure. t~M does backout processing on the database

which was updated by the MPP, according to the database update record

information.

PDMII* and A4~ are also available. They run in separate partitions
fran the DCCMII control programs. MPPs issue subroutine calls to access

those databases. Requests are given to those database control programs

directly fran the MPPs. Synchronization and transaction recovery are

performed by the DCCMII dependent partition control program which resides

in the MPP partitions. System recovery is performed by the DCCMII control

program, which requests the database control pro~rarns to backout or recover

the database. This function is available to other stand-alone database

control programs.

5. System Operation

5.1 Automatic Command Scheduling

DCCIII features the A(~ (Automatic Command Scheduling) function. The system
can be operated with f~er operator instructions, or even in operator—free
operations. The standard operations can be stored in the AC~ library, which

includes system start—up procedures, system stop procedures, and procedures
needed at specified intervals of system operation or at a specified time.

These requests are analyzed and processed by DCCMII when specified conditions

are satisfied.

5.2 System Re-confiquration

DCCIII supports dynamic allocation of system resourc~s so that the system
can be re—configured during online operation. N~i transactions, application
programs and terminals, for instance, can be introduced while the system
is running. EX?’en if the system terminates due to an unexpected hardware

error or power failure, DCCIII simulates the modifications during restart

processing by using the system journal, and the last configuration of the

system is guaranteed.

The testing of new application programs at a remote terminal during online

processing is available. The terminal operator declares that the terminal

is in testing mode, or specifies the programs to be tested, and enters the

corresponding transaction f ran the terminal. According to the specifications,
DCCIII processes the testing of specified transactions and restores the

updated system resources when the test is ended. The processing trace and

the input/output data of the application program can be saved during testing.

* FTh1II, Practical Data Manager II, is one of the most popular E8!’tS

provided by Hitachi, Ltd. It supports network structure oriented

database and limited hierarchical data structures.
** Al)!, Adaptable Data Manager, is a general purpose large scale Data

Base / Data Corrffnunication sytem provided by Hitachi, Ltd. The database

of AEtI is based on hierarchical data structures with logical
relationships between database segments.

20

DCO4II/NOF (DCCIII Non—binding Online Restart Feature) supports the

conversion of the current configuration and status of system resources to

the new version of DCCIII. DCC4II/I~~OF saves all the information of the

system into the DCCMII journal dataset at system termination. Since the.

control blocks and the record contents of new system is different fran

those of the old system, DCC4II/~)F interprets the saved information and

gives it in a new form to the new system at restart processing. DCCIIV~DF
allcMs for rapid installation of new versions of large scale online database

systems in few minutes.

5.3 Database Recovery during Online Operation

DCCIII supports online database backup and recovery functions. The backup
utility saves the current database during online processing, and the database

change accumulation utility accumulates all the database update records fran

the system journal dataset. When the database crashes and there is no way to

backout, the database recovery utility is used to restore the database using
the backup database and the database update journal records. It simulates

all processes of the online operation on the database, giving the same status

of the database at the end of the system journal. This is performed in a

batch environment. The database is returned to online processing without

stopping the online operation. firing database recovery processing, the

online processing of the transactions which access the database are postponed
until the database is recovered. The transactions which do not access the

database are executed without any interference (See Figure 5.1).

ansaction 1 ~]—~~] ----~2~2~ Ei—~~J B1—~<
error R~-sched’~ile

Transaction 2 ~ ~—~~

6. Current Status

The first version of DCCIII was released at the end of 1981. The practical
applications of nonstop online operation using DCCIII are scheduled for the

middle of 1983.

7. Acknowledqrnents

The author wishes to thank Dr. W. Kim, Dr. Y. Kaiubayashi, Mr. C. Rountreë

and Mr
• Y. Ueda for their very useful comments and suggestions that improved

the presentation of the peper.

Fig. 5.1 Database Recovery

21

Relational Data Base Systems

INO and RIOS

Kazuyuki Hara, Tatsuo Cotoh, Tsuyoshi Miyazaki, Ken Takeuchi and Shigeru Mabuchi

Nippon Electric Co., Ltd.

NEC Building, 33—1, Shiba Gochome, Minato—ku, Tokyo 108, Japan
Tel: Tokyo (03) 454—111

Introduction

NEC has developed two relational data base systems; INQ (INformation Query) and

RIQS (Relational Information Query System). INQ is a relational type data base

system with characteristic data structures, and RIOS is a relational data base

system of high degree of sophistication which has been developed as a sequel to

INQ. Ease of use for end users was emphasized most in RIOS. The end user

language (EUL) allows the user not only to obtain answers but also to edit them

to prepare reports and graphs. This paper describes the design concept common

to both systems first, and then the characteristics of each system.

It should be noted that such functions as concurrency control, data integrity,
data security, failure management, etc. of INQ and RIQS have been integrated
Into the operating system, and concurrent multiple updates, high responsiveness,
complete recovery and durability are guaranteed even for large data bases.

1. Design Concept

INQ and RIQS emphasize ease, flexibility and responsiveness in designing and

operating data base systems.

1.1 Ease of Design and Operation

In building a data base system, It is necessary to design and define a data base

structure and store data. A high level of knowledge of data base is required to

conduct such activities using conventional data base systems. In INQ and RIQS,

however, the structure of the data base is simply based on a table (which
defines a relation), and It is possible for programmers and end users to

directly design and define data structures of their own. Each table can be

defined with a knowledge not more than that required for preparing a sequential
file, and it is not necessary to consider the storage structure which is usually

very complicated. Tables can be defined in batch mode or interactively under

TSS, and it is possible to define them dynamically (see Figure 1).

Once a table is defined, the system automatically provides the user with the

access right as the owner of the table. It Is also simple to assign other users

with access rights to the table. It can be conducted interactively using a

guide for defining the access right as in the case of defining a table.

22

Fig. 1 Sample Table Definition in TSS (RIQS—EUL)

Table definition command and table

name are entered from keyboard.

A guide table

is displayed,

are entered.

A guide table for column definition

is displayed, and column names and

their definitions are entered.

The final table format is displayed
when all definitions are complete.
The table name (EMP) column is used

to enter data proessing operators
such as P (Print), U (Update), I

(Insert) and D (Delete).

Note: Information entered by end user from keyboard is indicated

by OCR font.

stored by using the insertion function provided as one of the query
It is also possible to store data at high speed using a utility
the system.

0

for table definition

and table attributes

pP TABLE’ NAME OWNER DB NAME —-

I. EMP HARA XYZ

~7
OP

I.

TABLE EVA/ViE OWNER DB NA

B/ViP tIARA XYZ

OP COL NAME LENGTH TYPE -—~

I. NAME 30 C ——

I. SALARY 10 0 —-—

I. DEP 20 C --—

Q

EMP NAME SALARY DEPT

j

Data can be

operators.

function of

23

Programming languages applicable to relational data bases are high level

languages such as COBOL, PL/I and FORTRAN and respective end user languages. A

set of records is manipulated by one instruction instead of one record

occurrence. This feature not only simplifies the logic of application programs
but also allows the use of relational operations which are not applicable on

conventional data bases.

End users often find it necessary to edit answers or express them in graphic
representation. It u~ually takes too much time to modify answers into input
data for some dedicated programs. RIQS is provided, however, with functions for

preparing business graphs along with powerful editing functions, and end users

can develop and operate application systems using the RIQS data base system.

1.2 Flexibility

The following functions are provided in order to minimize the impacts of changes
to the database.

(1) New columns can be added to an existing table quickly from a terminal

without disturbing existing data, and both new and old data become available for

processing. It is not required in such cases to modify existing programs and

queries (see Figure 2).

Fig. 2 Addition of a New Column to an Existing Table (INQ and RIQS)

SOFT 1
SOFT I Existing data

HARD I J

table

EMP NAME f SALARY DEPT Existing table format

~JONES 16000]
BETTY 7000

SMITE? 12000

A new column “AGE” is added to the existing

table, and then a new data of “JACK 30 ...“

is inserted.

I EMP I NAME AGE I SALARY I DEPT 1 Table format with new

AGE column

JONES - 16000 SOFT ~
BETTY - 7000 SOFT ~. ———— Data for old table

SMITH - 12000 HARD J
JACK 30 18000 HARD Additional data for new

(2) It is possible to combine existing tables through a common column (JOIN

function) into a virtual table. The virtual table thus obtained can be treated

just like a new table except that such a table is used only for retrieving

existing data. This function allows the user to process data on different

tables without creating a new table, as if they were on one table.

24

(3) Any columns, indexed or otherwise, can be used as search keys in retrieving
data. This feature allows to create a search pattern independently of the

storage structure of the data base.

(4) RIQS allows to define ADBS subschemas by tables of form of the virtual

table of the relational data base, and the user can retrieve data of network

structure directly through such tables.

1 .3 Responsiveness

One of the main objectives of a data base system~ is to allow the user to

retrieve necessary data speedily from a large volume of data. In the INQ and

RIQS systems, indices are dynamically generated for columns specified as search

keys. Such indices have a B—tree structure, and each index basically contains

the values of records for the column and the corresponding record sequence

numbers. When conditions are specified on two or more columns, for example,
their respective indices are searched, and the record sequence numbers are

converted for each index to a bit string consisting of is and Os corresponding
to TRUE or FALSE. A desired record is obtained by performing logical operations
on such bit strings (see Figure 3).

Fig. 3 Indices and Bit Strings (INQ, RIQS)

TABLE

name age salary dept

_____ _____________

JONES 29 :16000 SOFT

BETTY 30 7000 :soFT

35 12000 HAED

LJACK 30 ~l8OO0 ~HARD

Bit strings DEFT: If 1 0 0 1

AGE : Io 1 1 ii

x)

10 1 0 01

Thus, it is found that data (2) is a desired record.

INDEX

IDEPT HARD :3:4 (1) I

(2) I

(3)
(4)

QUERY: DEPT = “SOFI” and AGE � “30”

25

The software organization of RIQS is shown in Figure 4.

Fig. 4 RIQS Software Organization

RI S

—_-T~TionaFE~Ac~~1 Accesses a relational DB according to

request
• Control and maintenance of RDB

• Relational operations
• Automatic optimization
• Network structure access

L ~ DML I Used to access relational DBs from

A COBOL, PL/I or FORTRAN

NI

C }—~_EUL Used by end users to access relational

U 1 DBs from terminal (table format and

A (command format)

G I

E ~ Report Generator I Report preparation (title, editing)

Graphs (circular graph, bar graph,

histogram, etc.)

Directory Definition Usable in batch and TSS

and Maintenance Processing in the following units:

• User/Table/File/Access right/Query/
Index definition/etc.

U

T Relational DB Crea— Usable in batch and TSS

I tion and Maintenance . Creation and deletion of tables

L Generation and cancelling of indices

I

Access Path
Automatic path optimization

Evaluation

Journaling and
Volume and file recovery, etc.

Recovering

2. Data Structure of INQ

The relational data model has contributed greatly to the development of data

base management systems. From a practical point of view, however, there is

considerable bewilderment on the part of the user because many relations are

created to satisfy data normalization and it becomes difficult to determine

which relation to use. In order to resolve such problems at a practical level,
the relational data model has been extended as described below for INQ.

26

The first normalization of data evolves to the second and third normalization in

order to eliminate update anomalies. Problems caused by such evolutions include

the following:

(1)Same data appear in two or more relations due to division of relations, and

data must be updated in all such relations (see man# in Figure 5).

(2)When a relation is divided, programs which reference the relation must be

modified, compromising data independency.

In INQ, it is allowed to assign multiple values to one field. That is, INQ
admits unnormalized data structures to some extent. Thus, INQ is usable for

processing business data, descriptive data and statistical data containing
repetitive groups (see Figure 5; INQ is capable of handling both types of data).

Fig. 5 Example of Normalization

(a) Unnormalized data structure

EMP (man#,name,project#,projectleader,
JOB (date,title,SALA(month,salary)),
CHLD (childname ,age))

(b) Normalized data structure (3rd normal form)

EMP (man#,nanie,project#)
JOB (man#,title,date)
SALA (man# ,month ,salary)
CHLD (man#

,
childname ,age)

PROJECT (project# ,projectleader)

3. Functional Distribution in RIQS—EUL

Intelligence in terminal equipment has been improving rapidly, and it has become

possible to equip most terminals with graph processing capabilities. In order

to take full advantage of these functions of terminal equipment, RIQS—EUL
performs graph processing not on the host computers but on the intelligent
terminals. This arrangement offers the following additional advantages:

Reduction of load on the host computer due to distributed processing
• Reduction of data transmissions between the host computer and the

terminal

An example of circular graphing (RIQS—EUL) is presented in Figure 6.

27

Fig. 6 Example of Circular Graphing (RIQS—EUL)

SALES (TV)

,~r~-’\

(\~J~g~~:1gØ
ITEM 3? 1 ‘80

cj ‘80 20%

— ‘87 3.5%

I
PATTERN? 1:DS: D3:
COLOR? 3 1:BLE2 :BRN3:---

4. Concluding Remarks

The characteristics of relational data base systems are that the data structure

is simple and the data is manipulated in the unit of data set. Thus, it is

possible for end users to understand data access procedures and describe them by

themselves.

For INQ and RIQS, end user languages which allow end users to program by

themselves have been developed. The use of such languages allows to reduce the

overall amount of programming, greatly enhansing the program productivity.

It is planned to strengthen the following functions in order to make these

relational data base systems much easier to use:

o Improvement of end user languages to allow to respond to various

requirements of end users in a variety of fields (development of

functional routines for various fields)

o Distribution of host computer functions with the effective use of

capabilities of intelligent terminals (syntactic check and graphics)

o Automatic optimization of access path to guarantee a consistent level of

performance against the increase in the amount of data.

Note that the INQ and RIQS relational data base systems operate under the

control of the ACOS—2/—4/—6 operating system.

On terminal

0
TITLE? SALES (TV) I

SIZE? 1 1:1 2:2 3:3

COLOR? 2 1:BLE 2:GRN 3:

28

INTRODUCING ADABAS TO THE JAPANESE MARKET

Yoshioki Ishii

Software AG of Far East, Inc.

2—7—2 Yaesu, Chuo—ku, Tokyo

1. Introduction

ADABAS (Adaptable DAta BAse System) was initially designed and programmed in

1969 by P. Schnell* of Software AG, West Germany and Version 1 was completed in

1970. The performance and facilities of ADABAS have been enhanced extensively
over the years. In 1974- ADABAS was first installed in Japan, and now the num

ber of installations in Japan and the Far East exceeds 100.

No DBMS on the market other than ADABAS and some of the mainframers’ DBMS’s

(such as IDMS, System 2000 or M—204) has been successful in Japan. We believe

that it is mostly due to the fact that the vendors cannot provide satisfactory
technical assistance and consultation for the users, compared to Software AG

and the mainframers.

The present paper first describes the background of ADABAS development. Then

the software architecture of ADABAS is explained. Finally, our efforts to

develop additional facilities for ADABAS are described.

2. Background of Development

We consider it very important and interesting that the relational model and

ADABAS were developed quite independently, but ultimately shared the same basis.

The common basis is the non—procedural data search and data and program independ
ence. However, ADABAS fully utilizes the inverted index. The use of inverted

index technique is also very useful to enhance JOIN of the relational model.

Objectives of ADABAS

ADABAS was designed to address the following potential problem areas:

To enable the use of programs without modification, even if data type and

length are modified, the field ordering in records is modified, and new fields

are added to records thereby causing the record length and layout to change.
To reduce data storage space by removing null value fields, repetitions with

out values,trailing spaces of alphanumeric items, leading zeros of- numeric

items, etc.

To enable the entry of data longer than a predefined field length.
To enable the use of multiple direct access keys for a file.

To enhance performance of content searches on data which are separately
stored in many files (JOIN).
To reduce the use of sort and merge operations.

It was 1970 when Version 1 was completed, meeting these basic requirements.

* P. Schnell is president of Software AG, Darmstadt, West Germany.

29

3. Architecture of ADABAS

The architecture of ADABAS data base, its user interface, and the DBA features

are outlined in Fig. 1.

APPLICATIONS IN APPLICATIONS IN END USER LANGUAGES

HOST LANGUAGES

NATURAL! IADASCRIPT+J SOAR
ADA.BAS IADACOM J KMTJIE
COM

ZMANDS

DBA FACILITIES
ADANINT

~ HIGH I ADABAS
~ LEVEL

NUCLEUS DATA
< DML

DICTIONARY

~ ADABOMP

~ ~ r~ ~ UTILITY

SOARIR
TO~J ~G~J

CATION A.DABAS DATA BASE

Fig. 1. Overall Architecture of ADABAS

The ADABAS nucleus processes user commands for data base access and update.
The data is stored in a compressed form in DATA STORAGE. A collection of

uniform records is called a ‘file’. ADABAS can directly handle files (rela—

tions) which are not normalized. A relation of the relational model is a

special case of an ADABAS file.

The ASSOCIATOR is an access facility which facilitates access to the data in

the data base. It is composed of inverted indexes and coupling indexes (inter—

record relationship indexes).

ADABAS has two user interfaces. One is for the application user and the other

is for the DBA (Data Base Administrator).

The following two types of languages are provided for the application user:

a) End user languages ADASCRIPT+ (Interactive language),
NATURAL (Interactive programing language),

(self—contained type)
SOAR (Interactive IR language),
KANJIE (ADASCRIPT+ for a Kanji terminal).

b) Data manipulation languages ——— ADABAS commands, ADAMINT (Userview facility),
ADkBOMP (Bill of material processor),

(host language type)
SOAR (IR coimnands).

The DBA interface comprises the following facilities:

a) File loader —— Utility program to load a file.

b) DBA support utilities ——— Data base dump/restore, recovery, definition,

modification, creation and deletion of inverted indexes and coupling indexes.

c) Data Dictionary ——— ADABAS Data Dictionary.

30

4. ADABAS Enhancements in Jat~an

To meet customer demands in Japan, Software AG, Germany, added several new

facilities to A]DABAS. One of the most notable features is the “Parallel DumpT’.
It allows concurrent data update and DB D1ThIP, and guarantees data integrity at

the time of DB RESTORE.

Further, Software AG of Far East has developed ADABAS interfaces to Japanese
operating systems and TP monitors, and the optional capabilities described

below.

a) Online KANJI Report Writer KANJIE,
b) interactive IR Language SOAR, and

c) IMS/ADABAS BRIDGE.

The following sub—sections outline K.ANJIE, SOAR and IMS/ADABAS BRIDGE.

4.1 KANJIE

The ordinary terminal has been able to handle alpha—numerics only and for a

long time Japanese users could not use regular Japanese characters (Kanji,
Hirakana and Katakana) which we use. Japanese characters are expressed with 2

bytes/per character. Therefore, the interactive language based on such Japanese
characters can truly be called a natural language for the Japanese. That is

why we began to adapt the basic interactive language, ADASCRIPT÷, developed for

ADABAS to allow input and output in Japanese. This is KANJIE (KANJI Easy).

For the past few years, Japanese character (Kanji) terminals began to be instal

led at user sites. Roughly speaking, there are several thousands of Japanese
characters which are in daily use. Therefore, the keyboard of the Kanji ter

minals is a huge one and the outlook of it is quite different, and the end user

finds it difficult to use. In order to avoid such inconvenience, KANJIE adopted
a method to convert 1 byte phonetical Kana character input into 2 byte Kanji,
which we call Kana—Kanji conversion, and in this way the ordinary keyboard can

be used for Kanji input.

4.2 SOAR

SOAR (Set Oriented Architecture of Request) can serve as a powerful user—friendly
aid for developing information retrieval application systems.

SOAR supports several IR commands, which are activated by SOAR calls embedded

in host languages. We have also developed an interactive SOAR language.

Two types of the techniques are available for retrieving necessary information.
One is to utilize inverted indexes, and the other is to sequentially scan the

data and pick up qualified records. Although ADABAS commands are used for the

first type of retrieval, a new set of commands has been devised to support the

second type of technique. SOAR users can also save retrieved sets of records.
The saved set of ISNs (Internal Sequence Number = Tuple ID) can be manipulated
by means of several set operatio~s later on. ISN set created by executing SOAR

commands can be saved in the ISN FILE. The ISN FUSE is a system file stored in
the ADABAS data base, and is maintained by SOAR.

In the design of the ISN FU~E, we decided that, because of system overhead, the

contents of the ISN FThE should not always be updated by updates to relevant

31

data. Although the ISN FILE is not always updated by SOAR, users can easily

make its contents up to date. The key to this is the specification of construc—

tion rules for each ISN set in the ISN FILE. Then SOAR readily refreshes the

ISN set based on the construction rules, if the user initiates a conmiand for

refreshing the ISN set.

4.3 EMS/ADABAS BRIDGE

ThIS/A.DABAS BRIDGE was

developed in 1978, and

now it is utilized not

only in Japan but also

overseas. It is an

emulation module which

enables the user to

execute IMS application

programs on ADABAS as

illustrated in Fig. 2.

The DB converter reads

the IMS DB in the hier—

archical sequence and

dumps it to the sequential
file (see Fig. 3). Then

it is loaded to the

ADABAS DB by the ADABAS

file loader. In this

case, the data compres

sion function of ADABAS

performs an important

role.

_,
By adopting the BRIDGE,

the user programs need

not be changed at all.

The BRIDGE accepts the

DB CALL parameters of

IMS as they are. So, if

an error should occur,

it is converted to the

EMS error code and handed

over to the user program.

In this sense, this

BRIDGE has a complete
emulation function.

5. Concluding Remarks

The important factor to succeed in distributing software products in Japan is

to fully understand the users’ requirements and to continue enhancement to meet

them. In addition, and a more important unavoidable factor is to provide the

facility to fully handle the Japanese language. We endeavoured to fulfill these

requirements and succeeded, but all the Japanese vendors who simply imported

and tried to sell DBMS failed.

USER PROGRAM USER PROGRAM

DL

I

Fig. 2 IMS/ADABAS BRIDGE

Al A2 __~..._L___i j

Alj Bi 32

Al 31 ~LJ D

Al

~

31’ 32’ ZIIL
Al 31

Al Ii 31’ L..... L D

1

Al C
__

Fig. 3 Data Base Conversion

32

Overview of INS/VS Fast Path Enhancement

Toru Takeshita

Software Development Center, IBM Japan

1—114, Nisshin-cho, Kawasaki-ku, Kawasaki, 210 Japan

Telephone: 01414 — 201 — 2~4O5

1. Introduction

IMS/VS (Information Management System/Virtual Storage) is a general—purpose DBMS,
which is most widely used in the world. Its applications range from personnel
information to the real—time production control. However, its functions have

been so generalized that its performance is considered not to be satisfactory
for some realtime applications even on the highest MIPS machines available in

the commercial market. On the other hand, because of the increasing dependency
of industrial, business and consumers’ activities on the on—line computer system

the data integrity and system reliability and availability have become highly
critical factors of DBMS.

On-line banking systems in Japan are highly advanced in terms of the number of

transactions per second and sophistication of data storage and processing. They
will become even more so with the installation of the third generation banking

systems in the middle of 1980’s to provide more expanded customer services (in

cluding kanji and image data) with new offerings and management information for

better planning and control of resources. It is predicted that the transmission

volume to be handled by the DP center will reach as highly as 200 messages per

second in l98x.

Banks are no longer interested in developing and maintaining their own (so—called
Roll Your Own) huge on—line control program which may require hundreds of person

years to develop and which must be continuously modified and expanded as new re

quirements, new devices and new software functions come up. To find a common so

lution to this for a large number of banks has been no easy task. A number of

alternatives had been studied and proposed by the middle of 1980. The final

choice was to change and expand the functions provided by the INS/VS Fast Path,
which had been originally developed for simpler on—line banking applications in

North America and Europe, as well as to expand the INS/VS base by adding DASD

logging, 255 dependent regions (for concurrent execution of more application

programs), on—line changes (of data base definitions, programs, transaction

codes, display formats), etc.

The FP functions expanded by IBM Japan Software Development Center include the

extended hierarchical structure, deactivation of a physical block (control in—

terval) in error, updating multiple copies of the data base (more precisely data

set area), and data sharing at area and block levels.

This paper describes those new functions (called Fast Path Enhancement) which

have been developed in Japan (with support from IBM General Products Division’s

Santa Teresa Laboratory) as well as the original functions which were developed

33

in the first and second releases of the Fast Path feature of IBM IMS/VS. FPE

was originally intended only for Japan, but was announced world—wide in October,
1982.

Functions described in Sections 3, 14, 5 and 6 are those which were developed in

FP Ri & R2. And Sections 7, 8 and 9 contain new functions implemented in FPE.

2. Partial Overview of ThIS/VS Architecture

This section is intended to give some explanation of the IMS/VS structure and

terminology which are required to understand FPE.

IMS/VS is an IBM program product that runs under the OS/VS operating systems,

and is offered as a basic system with optional features. The basic system, the

Data Base (DB) system, provides facilities for defining, creating and maintain

ing IMS/VS data bases (hierarchical with logical relationship and secondary in

dex facilities), and for running user—written programs in the batch—mode to pro

cess the data bases. The features include the following:

Data Communication (DC) provides for the transmission of messages be

tween IMS/VS and remote terminals, and for the invocation of user—writ

ten programs to process incoming messages againt IMS/VS data bases.

• Multiple System Coupling (IVISC) provides for the routing of messages

between two or more IMS/VS systems that run in the same or different

CPUs.

•
Fast Path (FP) provides message processing and data base facilities

for high—volume, high—availability DB/DC applications. This was ini

tially developed for IMS/VS 1.1.14 which was released in 1977, and was

slightly expanded in 1978. The new/expanded functions implemented in

the latest release (1.3) of IMS/VS are collectively called “Fast Path

Enhancement (FPE)” in this paper.

•
DASD logging provides logging of transaction messages and data base

update information onto DASD devices. This has been developed as part

of IMS/VS 1.3.

Data Base Recovery Control (DBRC) manages resources for data bases,

logging and back—up, etc., controls back—up/recovery, authorizes the

use of data bases, and controls sharing of data bases. This is man

datory for multiple area data sets in DEDB and the shared use of DEDB.

In IMS/VS 1.3, MSC and FPE are integrated into the IMS/DC.

In this paper, “IMS/VS base” means IMS/VS DB and DC with DASD logging but with

out FPE, DBRC and MSC functions.

An on—line execution of 1MS/VS uses one or more operating system regions. One

of these regions, the control region holds the IMS/VS control program. The re

maining regions are called dependent regions, and are used for the user’s appli

cation programs. The latter are of three types~ message processing regions and

batch message processing regions both used in mS/VS base, and message—driven

regions used by FP - also called IMS/VS Fast Path Processing (1FP) regions.

34

INS/VS data base functions are provided by a set of program modules called DL/I

(Data Language/One). A data base can be accessed or updated by a DL/I call

statement. This has the following format if used in an application written in

PL/I:

CALL PLITDLI (no. of params, fn, DB, I/o area, seg. search arguments);
Terminals

1
__

MVS/SP

(~ivs
I Contro]. Region

I-
~
I

I

Storage DB

fer~,~j ((MsDB)
~

~
1MB/VS

Depend.

Region

IMS/VS Fast Path Fast Path

Depend. Depend. Depend.

Region Region Region

DL/I Routines’ DEDB Routines

cage ~Dae~t~
Log Queue

I (DEDB) Fig.2 Structure of DEDB
Data Set

Fig.l Flow of Data in IMS/VS base’and Fast Path

In Figure 1, the INS/VS base is without the portion to the right of the dotted

line.

Fig. 2 indicates the data base structure discussed in Section 7. In IMS/VS, a

segment is a minimum unit of data to be accessed by an application program. A

logical record consists of multiple segments, each

fields. A direct dependent segment is accessed by
first (PCF) pointer stored in the root (or parent)
ent segments are stored sequentially and linked to

chain.

A unit of data to be read from or written onto a data base by a physical I/O op

eration is a block, which is also called a control interval when VSAM (Virtual

Storage Access Method) is used. When a physical error occurs in the I/O opera

tion of a particular block in a DASD, FPE can make only this block inaccessible

by the application program, which can continue accessing other blocks in the

same DASD. To create this status is called block deactivation.

A Data Entry Data Base supported by Fast Path can consist of multiple VSM’I data

sets, each of which is treated by the operating system as a separated physical
file handled by VSAM. These data sets in the DEDB are called area data sets or

simply areas.

INS/VS DC provides three message processing modes: response mode, non—response

mode and conversational mode. In the response mode, the program must transmit

a response message to the originating terminal before another transaction is

accepted from that terminal. Fast Path has only this mode.

Fast Path application programs operate in the wait for input mode, which means

that they are pre-loaded in the main memory and initialized ready to process

messages upon receipt. They are interlocked when they attempt to retrieve from

of which

means of

segment.
the root

is made up of several

a physical child

Sequential depend—

segment by a LIFO

35

any empty queue.

Multiple execution of a FP application program may be scheduled concurrently in

to different regions. All executions are associated with a single load balancing

group, and retrieve transactions in FIFO sequence from the single transaction

queue that is associated with the group. The number of program executions is

determined by the system operator.

3. Expedited Message Handling

Expedited Message Handling enables fast message processing by allowing i) each

message to have only one segment or unit and a buffer to be associated with it

for I/O messages, 2) the terminals to operate in the transaction response mode

3) messages to be processed in wait—for—input mode, I~) multiple copies of the

same application programs to run concurrently, and 5) messages to be queued in

a FIFO order in a balancing group prior to transfer to a particular application

program.

An input message is stored in a buffer allocated to a particular terminal. Then,
it is queued in the balancing group associated with the application program, which

is to process it, The output message from the user program is stored in the ter

minal buffer to be transmitted to the terminal.

1MB vs DC functions

Processing Meg
in 1MB/VS queue FP input editing!
base routing exit routine

I Balancing Group 1 I Balancing Group 2 1

~YP Appi. Progr. ii JFP Appi. Progr.~ Progr. 2J

Fig.3 EMH Scheduling (example)

1~. Data Entry Data Base

The Fast Path feature has its own data base called DEDB (Data Entry Data Base),
which was originally designed for data entry—type applications. Its structure

had only two hierarchical levels and contained up to 8 segment types. One of

the dependent segment types can be sequential. Sequential dependent segments
are used for fast collection of detailed information and are useful in journal—

ing and auditing applications.

A DEDB can be partitioned into a maximum of 2~4O areas, (reaching as much as 960
GB as compared to ~4 GB in an IMS/VS HDAM data base,) each of which contains a

different collection of data base records. The data in a DEDB area is stored

in a VSAM (Virtual Storage Access Method) data set. Each area data set is di

vided into the root—addressable portion, the independent overflow portion and

the sequential dependent portion.

The unit of DEDB resource allocation within an area is called ‘control interval’.

A control interval can be accessed by only one application program at a time,
while the control intervals in the rest of the area are available to other ap—

plicat ion programs.

36

5. Main Storage Data Base

Most frequently accessed data can be stored in the Main Storage Data Bases,

which are ‘root—only, fixed—length record data bases’ loaded in virtual storage

at IMS start—up. An MSDB can be accessed by a DL/I call and also by a special

call, “field call”, which allows access to a specific field within a segment and

to change the value in that field independently of its current value.

MSDBs can be used for storing terminal control and statistical data (in case of

the terminal related data base), for storing various kinds of tables (in case of

the non—terminal related DB), for conversational processing work areas, and for

storing user checkpoint information to re—start a batch—type program.

6. Commit Processing

When several FP application programs access a data base concurrently, FP makes

it possible for them to read and update the data base and protect data integri

ty. This is done by preventing a program from accessing data that another pro

gram is updating until the updating program reaches a commit point. A commit

point indicates that the program’s data base updates thus far are valid; and

that, if the program were to terminate abnormally at some later point, the up

dates it has made to the data base thus far are valid, and should not be dis

carded.

If the program terminates before the next commit point, the updates the program

has made to the data base is discarded. A commit point is indicated by a call

to retrieve a new input message.

Commit processing is done in two phases. In the first phase, the MSDB to be up

dated is enqueued (locked) and the availability of the DEDB to be updated is

checked. In the second, input and output messages and data base update informa

tion are written out onto log data sets. After this, the updated information is

reflected into the IvISDB, and then requests to update the DEDB are made to the

IMS/VS Control Region (, where these are done asynchronously). The enqueued re

source (other than the VSAM control intervals to be updated) are dequeued and

transmission of output messages is requested. This completes the processing of

transactions in the dependent region, which can now start processing of the next

transaction.

7. DEDB Extentions

In FPE, the DEDB structure has been expanded to 15 levels and 121 segment types,
one of which can be sequential dependent.

Other extensions to DEDB include the physical child last pointer, which is per

formance option for the direct dependent segment type and provides direct access

to the last occurrence of child segment types, thus giving increased similarity
to HDAM (hierarchical direct access method) used in IMS/VS base. Also DEDB can

now have subset pointers to point to subsets of chained dependent segments.

8. Multiple Copies of an Area Data Set and Error Handling

The data in a DEDB is stored in a VSAM data set. The user can create as many

as seven copies of each area data set. They can reside on different devices,
and even on different device types. When an application program updates data

in an area, FPE updates that data in each of the area data sets. When an appli—

37

cation program reads data from an area, FPE retrieves the requested data from

any one of the available copies of the area data set. This capability is unique
to FPE, and does not exist in IMS/VS base.

If an error occurs while a DEDB is being updated, there is no need to stop the

data base or even the area. FPE continues to allow the application program to

access that area, and only prevents it from accessing the control interval in

error. If there are multiple copies of the area, chances are that one copy of

the data will always be available. If many errors exist in one copy of an area,

then it can be destroyed and a new copy can be created from existing copies of

the area, using an online utility. FPE does not stop the area (and make it un

available to application programs) until the number of write errors in one pro

gram exceeds ten.

There are two online utilities to create and maintain a multiple ADS (Area Data

Set) environment. DEDB Area Data Set Create Utility dynamically increases the

number of ADS per area as an alternative to Data Base Recovery Utility, and pro

vides an online migration tool when moving from one device type to another. It

operates concurrently with online processing. DEDB Area Data Set Compare Util

ity is to check for inconsistencies between multiple ADS. It also operates con

currently with online processing.

Fig.~ Multiple Area Data Sets in DEDB

9. Data Sharing

The data sharing capability which was implemented in IMS/VS Version 1 Release 2

has been expanded for DEDB as major function of FPE. There are two levels of

data sharing: area level and block level.

At the area level, IMS/VS systems share an area of the DEDB. In this case, ap

plication programs in each IMS/VS system can read the data concurrently, but one

IMS/VS system can update the data. Sharing ~s controlled by D~RC using RECON

(Recovery Control) data set.

At the block level, multiple INS/VS systems can update the data (different con

trol intervals in the same DEDB) concurrently. Write requests are serialized

and access to each block is controlled. The INS/VS systems can be running in a

maximum of two processors, connected channel—to—channel or via a communication

One DEDE (a max of 21~O areas)

Fig.5 Data Sharing at the block level

38

line using ACF/VTAM (a communication access method).

For block level sharing, both DBRC and IRLM (1MS Resource Lock Manager) are re

quired. DBRC authorizes the use of the DEDB area by the IMS/VS systems sharing

the data base. IRLM keeps data integrity during the access to a block by seri

alizing application program requests for the block and ensuring that two pro

grams do not access the same block for update at the same time. An enqueue ta

ble is associated with each IRLM. For a block to be accessed, IRLM creates a

resource lock name (ID) consisting of the data base name, area name and relative

byte address of the block. If it is not found in the enqueue table, the ID is

placed into it, and, at the same time, sent to the IRLM in the other system.

Upon receipt of an OK response, the access to the block from this IMS/VS system
takes place.

The data sharing facility is to potentially increase processing capability and

system availability by allowing multiple 1MB/VS subsystem in multiple processors

to share the same data bases.

10. Summary

The expanded Fast Path feature (FPE) consists of approximately 90K lines of code,

10K of which are written in PLS. It has over 14140 modules/macros, one third of

which have been borrowed without modification from the FP in IMS/VS 1.2.

FPE development has been an extremely complex project because of many changes

and expansions to existing highly sophisticated system program structure and

components and because of simultaneous development of major functions to be in

tegrated into the base system (IMS/VS 1.3) whose development has been going on

thousands of miles away across the Pacific.

The DEDB designed to enable high—speed processing with simplified hierarchical

data base structure and with the use of VSAI’4 improved control interval process

ing (icip) has been extended enough for banking and other on—line applications.

With the introduction of the area concept, a VLDB as large as 960 GB can be

built. An area can be added or deleted dynamically. A failure in an area does

not prevent the use of other areas. When an error occurs in the area data set,

only the particular control interval (physical block) in error is deactivated

(block deactivation) and other blocks can still be accessed.

With the integration of FPE into the 1MB/VS base, 1MB/VS is now emerging as a

powerful high—performance, full—function DBMS even to those application areas

where roll—your—own systems have been dominant.

Acknowledgement

As the manager of this project, I wish to express irry hearty thanks to all the

members of my team (M. Fukuda, A. Yamashita, P. Perner, et al) and other people
involved in this project in the IBM Japan SDC for their devoted efforts and con

tinued hard working as well as to a number of people of IBM General Products

Division Santa Teresa Programming Center, San Jose, Calif. for technical and

management support.

39

Database Management Systems for Very Large Scale Applications

Kenji Suzuki and Sajio Ikeda

Yokosuka Electrical Communication Laboratory

Nippon Telegraph and Telephone Public Corporation (NTT)
P.O. BOX 8~ Yokosuka, Japan

Introduction

WET is a public corporation which serves 40 million subscribers on its

telephone network. Non—telephone services have also been offered to the

public in recent years. NTT began data communication services in L968. DIPS

(Dendenkosha Information Processing System) has been developed for use as

NTT’s standard. computer system. This paper offers a look at database

management. systems implemented on the DIPS computer used for very large scale

applications.

Most of application systems on the NTT’s data communication services are

nationwide and have real—time database processing applications. Examples are

the Motor Vehicle Registration System and Social Insurance System. Trends in

database system scale for NTT’s data communication services are shown in

Fig. 1. As can be seen in this figure, the trends in database size and in

transaction rate are toward a larger scale and heavier traffic.

For the construction of very large database systems, DEThIS (DEndenkosha

Information Management System) and DORIS (Dendenkosha Online system for

Retrieval of Information and Storage) were developed as DBMSs based on the

CODASYL model TAKA~80).

Implementation for Very Large Databases

DEThIS is a general—purpose DBMS for real—time system use, and is suitable for

very large scale and heavy traffic applications such as nation—wide systems or

banking systems. DORIS is a DBMS for time—sharing system use, and is suitable

for high—speed retrieval applications such as information retrieval systems.
DEIMS and DORIS realization techniques are shown in Table 1. For DBMS

realization, the entries shown in Table 2 have been improved in order to allow

the construction of very large database systems.

To improve data independence, a multi—level database method is realized. This

method improves physical data independence, in the manner shown in Fig. 2.

The physical elements related to the performance and characteristics of

application systems may be changed without affecting existing application
programs and data structures.

To improve file efficiency, two techniques are used. One realizes the set

concept based on the CODASYL model. A pointer chain method is used for the

construction of network or tree structures, and a physical arrangement taethod

is used to reduce the file size for pointers if the access paths for the

records mostly conform with the tree structure.

40

The other technique is a data compression method for efficient storage of

large amounts of data. In addition to the general me±hods of null data

deletion and blank suppression, this method is realized by encoding character

string data in variable and fixed codes according to the appearance

frequencies of the characters. In a typical document database, this makes it

possible to reduce the file size by 40%.

To improve process efficiency, effective buffer management and exclusive

control methods are realized. There are two kinds of buffers: a system buffer

for shared index pages and a user buffer for non—shared data pages, where

pages are the basic unit of physical input or output. These buffers are

managed by a page substitution method called the LPJJ or Biased LRU method.

Concurrent accesses to the database is controlled by the DBMS. A page is the

unit of exclusive control besides the area as specified by the CODASYL model.

Deadlock is prevented by the DBMS.

Current Status

DE~S services started in January 1979, and are used by 7 database systems.
For example, the Motor Vehicle Registration System now has a database of 34

million automobiles that is being accessed by 81 offices throughout Japan. A

distributed database management function based on DCNA (Data Communication

Network Architecture) is under development suzu82J. The current version

supports several enhanced functions.

(1) A database organization and access control method with a page split
function is employed that is capable of efficient management of

rapidly growing tree structure data such as in a banking system
LSUZU8 1:1.

(2) A relational end—user language interface is implemented CHASH81]
(3) Japanese Kanji characters are accepted.

DORIS services started in December 1979. Information producers have so far

used this system to make on—line information retrieval possible for documents,
newspaper accounts, as well as economic and statistical databases. About one

thousand user terminals are in use at present. Two non—procedural type query
languages have been developed. One is for bibliographic category databases,
and has retrieval functions for logic, weight and thesaurus retrieval. The
other is for rion—preplanned retrieval from general databases. It provided a

relational interface. For Japanese data represented using the Kanji character
set, a Kanji data attribute has been added to the database definition language
specifications.

41

100

C

w

C-)

0

Figure 1 Projected trend in database system scale

for NTT’s data coinmunicatithi services.

Figure 2 Data independence improvement with multi—level databases.

10

1•

0.1

0.01~

o 1980
O 1985
~ 1990

Scale

Scale

Scale

0.1 1 10 100

Database Size (Gigabytes)

Data directory

42

Table 1 Realization techniques.

Technique DEIMS DORIS

sequential structure Sequential structure

Data structures Tree structure Tree structure

Database

definition

techniques

Network structure

Schetna/subschema Schema/subschetna

Data independence structure

Multi—level schema

structure

structure

Host language
interface

SYSL*

COBOL

SYSL*

COBOL, PL/].

Database

manipulation

techniques

Access

control

techniques

Non—procedural

language

Relational query Relational query

Logical query

Set realization Pointer chain

Physical arrangement

Physical arrangement

Retrieval

Definite

data value

retrieval

Index sequential
Direct

Inverted index

Index sequential
Inverted index

Indefinite

data value

retrieval

Logic
Weight
Relational

Data

relationship
retrieval

Set Set

Updates Any time and

immediate

Subsequent and all

together (Batch)

Data compression — Compression

Exclusive control Area unit

Page unit

Database unit

Buffer management User buffer

System buffet

User buffer

Reliability
Journaling
Rollback

Duplicating

Rollback

Database creation Database creation

techniques Reorganization
Statistics

Recovery

Reorganization
Statistics

* SYStem description Language developed for DIPS.

43

Table 2 Implementation of techniques oriented towards

very large data volume and high performance.

Objective Techniques Implementation DBMS

Data independence improvement Database construction

techniques

Multi—level database method DEIMS

Performance

improvement

File

efficiency
improvement

Set realization

techniques

Physical arrangement method DED’IS

DORIS

Pointer chain method DEIMS

Data compression
techniques

I

Variable coded method DORIS

j

Process

efficiency
improvement

Buffer management

techniques

System/user buffer method

Biased LRU method

DEIMS

Exclusive control

techniques

Page unit exclusive control

method

DEINS

Reliability improvement Fault processing

techniq~ies

Rollback recovery method DEIMS

References

HASH81J M. Hashimoto et al., “Time Sharing System Oriented Database

Management System,” Rev. E.C.L., NTT,, Vol.29, Nos.1—2, pp.16—31, 1981.

SUZU81) K. Suzuki et al., “A Database Control Function for Situations Where

Data May Increase Rapidly,” Rev. E.C.L., NTT, Vol.29, Nos.l—2, pp.l—15, 1981.

S13ZU82~ K. Suzuki et al., “Implementation of a Distributed Database

Management System for Very Large Real—time Applications,” COMPCON Fall,

pp.569—577, 1982.

CTAKABOTJ S. Takahira et al., “Very Large Data Amount and High Performance

Oriented Database Management Systems,” Rev. E.C.L., NTT, Vol.28, Nos.3—4,

pp.229—245, 1980.

44

The Data Communication System for Nationwide Banking System

Haruhiko Imamura

NTT Data Communication Bureau

17 Mon Bldg., 1-26-5 Toranomon,

Minato-ku, Tokyo, 105 Japan

The Data Communication System for Nationwide Banking Activities in Japan

was put into service in April, 1973, covering 87 banks as well as the Bank of

Japan. Most major banks which can have their own networks are not included in

the system. As the number of transactions processed by the system continued

to increase, a new system had to be developed which had processing capacity of

5 times the previous system. It was put into operation in February, 1979.

This system is capable of handling 3.4 million exchange messages per day.

The network covers all private banks and their branch offices throughout the

Country.

The number of participating banks increased from 87 banks and their some

8,000 branch offices to 701 banks and 19,500 branch offices. Data traffic is

expected to reach 3,400,000 messages daily by 1986.

1. System Configuration

The basic system configuration is shown in Fig. 1. This system consists

of a central computer center, terminal equipments and communication lines

necessary for connecting all the facilities. The central computer center is

located in Otemachi Telephone Office, Tokyo. It consists of 2 on—line systems

and one off—line system (which can also be used as an on—line system) for high

capacity and reliability. These systems use Dendenkosha Information Processing

System (DIPS)—l1, Model—30, and a single processor system at the beginning of

service. Each system can be upgraded to a tightly coupled multiprocessor

system for higher capacity and reliability.

2. System Features

In this system, as shown in Fig. 1, more than two terminal equipments of

the same category are provided at each bank. Each terminal equipment is

connected to one of the two on—line systems in the central computer center.

Such a connecting method has the following merits.

(a) Because the load is balanced between the two on—line systems, each can

furnish maximum processing capacity.

(b) If failure occurs in either system at the central computer center, the

other CPU is able to continue its operation. In the meantime, the failed CPU

can be replaced by the CPU of the off—line system.

(c) In addition, if trouble occurs in either the terminal equipment or the

communication circuits, it is possible to send messages via a second route.

45

Banking System Terminal Equipment Central Computer Center

Magnetic Tape Unit

Magnetic Disk Pack Unit

Magnetic Drum Uiiit

Line Printer

Electric Typewriter

Magnetic Tape Unit

Magnetic Disk Pack Unit

Magnetic Drum Unit

Line Printer

Electric Typewriter

Central

Process

ing Unit
Off-line System

Memory
Unit

Magnetic Tape Unit

Magnetic Disk l’ack Unit

Line Printer

__ Electric Typewriter

Fig. 1 System Organizatic~n

(d) A Relay Computer (J2092, J2095 in Fig. 1) has also been developed,
which is more compact and provides higher performance than the previous one

(J20l5). It can process 44 thousand messages per hour. And a new relay
equipment (TCP—l0 in Fig. 1), which has similar functions as the relay
computer and can process 2,000 messages, is being developed. The DT—1222 data

communication terminal equipment will be replaced by the TCP—l0 from September,
1983.

(e) For communication circuits, 9,600 bits/second, 4,800 bits/second and

2,400 bits/second lines are used between the Central Center and the Relay
Computers. High Level Data Link Control procedure was adopted for transmission

control.

3. System Usage

The system usage status for the first six months of 1979 is shown in

Table I. Table II shows expected transaction rates.

Table I

T~1I~°~~ February March April 1 May June July Total

Total Number of

Messages for the

Month (10,000

Messages)

889 1,484 1,382 1,582 1,566 1,616 8,499

Number of Messages

during Peak Day

(10,000 Messages)

133 101 102 122 105 127

341 338332

—

Total Operation
Time for the Month

(Hours)

192 338 313 1,854

Table II

Number of Messages during
Peak Day (Thousand Messages)

1979 1983 1 1986

I

j 1,400 2,300
~

3,400

Number of Messages during
Peak Hour (Thousand Messages)

320 I 530 790

I
From center to terminal: 178

From terminal to center: 158

Average Message Size

(Characters)

Central Processing Unit

Configuration
Single—

Multiprocessor
Processor

Processing Performance

(Thousand Nessages)
500 900

I

47

CADETT: Computer Aided Design and Engineering Tool for Toyota

1. Introduction

Yukio Sakai

Body Engineering Department

Yasuhiko Kuranaga
Information Systems Department-I

Toyota I’lotor Corporation
1-Toyota, Aichi Pref., Japan 471

The design and engineering work on car body structures requires a high level of

human intelligence, and for many years it did not seem amenable to

computerization. However, recent advances in computer graphics have made interac

tive use of computer systems possible for such applications. Under emerging needs

for new products, we at Toyota ~1otor Corporation have developed and implemented a

large-scale computer graphics system for the ‘body structural design’ process. As

shown in Fig. 1, the process is a major step in a car body development, from plan
ning to the manufacturing of stamping dies.

(CADETT Is APPLtED TO BODY STRUCTURAL DESIGN)

The system, named CADETT (Computer Aided Design and Engineering Tool for Toyota),
has many helpful functions for car body engineers. They may be classified into

two categories:

1. Design and engineering aids, which enable fast and accurate design and

drafting.

2. System management aids, which reduce the workload on DP department personnel.

CADETT is widely in use for the design and drafting of car body shell, inner trim,
garnish, etc., and it has contributed to substantially improved productivity and

quality of car body design and engineering work. This paper describes the CADETT

system as an example of a working CAD system which makes use of IBM’s IMS (Informa

(FIa.1) PROCESS OF CAR BODY DEVELOPMENT

48

tion Management System) and a relational database system called RIX (Relational
Interface Extension).

2. Outline of the System

Fig. 2 shows the hardware configuration of the CADETT system. Host computers are

two IBM 3081’s. Many IBM 3250 graphic displays are attached to each host for use

by car body designers and engineers. There are two drafting machines for produc
ing hard-copy drawings to check against the designs done on the screen and to com

municate information to users who do not have a CAD system.

<FIG .2> II&RDVARE CONFIGURATION OF CADETT

The software structure of the CADETT system is shown in

implemented largely in PL/I, and it consists of about

300,000 instructions.

(FIG. 3>

Fig. 3. CADETT has been

1500 program modules and

1BM3250

GRAPHIC

DISPLAYS

(MORE THAN
‘~ 100

DRAFTING

MACHINES / ~7 TABLET ~ZZ~ARD COPY

(*4) GRAPHIC SUBROUTINE PACKAGES

8OFT~ARE CONFIGURATION OF CADETT

49

The software structure of CADETT may be broadly classified into four areas.

1. User Interface: One user interface is the graphic displays from which the

users communicate with the Supervisor of the system. The Display Service function

provides a means of outputting the database contents and the result of computa
tions. The users can make full use of the functions of the graphic displays to

design, modify and store their drawings. Another interface is the hard-copy
units.

2. Functions: The functions of the system are indicated in the center of Fig. 3.

It is easy to add or delete functional modules and to maintain them. All programs

are classified into some nonoverlapping functional groups.

3. Menus: The Action Handling Language (AHL) has been implemented to process men

us that provide the users with a friendly interface to the functions of the

system. The separation of menu processing from the application functions has not

only reduced the system development time but also; perhaps more importantly, made

menu processing completely independent of the computation algorithms used in the

application functions.

4. Database Systems: At the bottom of Fig. 3 is shown what may be the most impor
tant component of the CADETT system. The intermediate and final drawings are

stored in the master database. Two types of software are needed. One is for stor

ing and retrieving the drawings. The other is for providing an easy means of modi

fying the drawings, since the designers create and change their designs often.

ItIS is used for the former function, and RIX for the latter.

3. Database Systems

Now we will describe the flow of data through the system. Fig. 4 illustrates the

data flow from a precedin~ process, through CADETT, to a succeeding process. The

preceding process is the styling design’ process of Fig. 1. The styling data is

transferred to the CADETT system by use of magnetic tapes(MT). The data is stored

in the Body Structure Database. Body engineers copy the original styling data

from this database to their own temporary data files(D/F), and do their design and

engineering work on assigned portions of the car body. Several engineers may work

on the same drawings. Manipulation of data in the temporary files is done by RIX.

r

DRAWINGS

—— — — —

(CADEfl SYSTEM)

<YIG.4) DATA BASE INAGE 01 CADITT SYSTEN

The result of body engineering, that is, the final Body Structure Database that

results from the engineering work, is rather complex and its hard copy, such as a

master drawing, is in effect an X-ray picture of the car body. Fig. 5 shows an

example of such a drawing, which was designed and drafted using CADEU. Note that

all data are 3-dimensional.

Once the design is completed for the whole car, the Products Database is created

containing data for each part of the car. Master drawings may be obtained using
data from either database, depending on the need:;. In the later stages of car body
development where drawings are the key data to work with, drafting of these draw

ings is very important. For other processes such as NC(numerically controlled)
cutting of master-model and stamping dies making where the process is

computerized, the drawings data are transferred by means of magnetic tapes for

loading on the NC cutters.

INS and RIX are used to manage the drawings data and geometrical data in the data

base. The relationship between INS and RIX is shown in Fig. 6.

GEOMETRIC

FUNCTION ~1~jJ~I~4

nix

(T

DISPLAY TUPLE

IIUNCT ION

‘Ms

4JdlA.D_ (D/B)

PAGE

<FIc.a>RELATIoNs~Ip BETWEEN IMS&RIX

DOOR INNER PANEL

51

II’IS is used to store and retrieve data from the database in 4K-byte pages. In par

ticular, the Body Structure Database is managed by IMS. HIS was chosen because of

its proven capability as a database management system. Its file-integrity fea

tures are very helpful to CADETF.

RIX is a database processing software developed by IBM Japan, and is only avail

able in Japan. It provides the users with work areas which contain drawings
retrieved from the INS database. RIX presents a tuple(record)-level interface to

CADETT’s geometric function and display function. It transforms a final drawing
into a simple tree structure and files it into the INS database.

Concluding Remarks

Ever since it became operational in 1979, the CADETT system has served to increase

productivity in car body design work. We credit much of its success to the use of

IMS and RIX and the friendly, conversational interface to the functions of the

system. We still have much work to do in refining the system and extending it to

other applications areas. Our plans call for extending CADETT to the design of

the engine, chassis, and other major automotive parts.

52

THE TRAVEL RESERVATION ON—LINE NETWORK SYSTEM

Koichi Tsukigi*
Yohtaro Hasegawa

Japanese National Railways

Chiyoda—ku, Tokyo 03(212)6311

1. Introduction

Present—day railroads face competition from other forms of transportation.
The development of airplanes and automobiles has significantly impacted

passenger transportation by railroads. But railroad transportation is more

economical and the primary means of passenger transportation in Japan is still

by railroads, since cities are within easy distance of each other.

The development of a train seat reservation system by JNR named MARS has been

sustained by the growth in passenger transportation operations of JNR and the

progress in computer technology in Japan.

In 1980
,

the on—line linkage of MARS with computer systems of major travel

companies (Japan Travel Bureau Inc. (JTB),Nippon Travel Agency Co.,Ltd. (NTA),

and Kinki Nippon Tourist Co.,Ltd. (KNT)) was completed. Recently, one more

system (Tokyu Tourist Co.,Ltd. (TTC)) has joined the network. The systems of

these travel companies are also on—line computer systems , mainly for selling
tourist commodities such as hotel accommodations. This computer network is

very large in scale and unrivaled in the variety of information processed.
Since domestic tours are sold as a commodity by each system, it offers a great

help to travellers.

2. Outline of MARS

Before the computerized reservation system was introduced
,

booking of JNR

trains had been handled manually. The first experimental system for seat

reservation was operational in 1960, when computer technology was rudimentary.
This system was called MARS 1(Magnetic electric Automatic Reservation System).
Since then

,
to cope with the rapid growth in the number of passenger seats

resulting from expansion of the Shinkansen (bullet trains), etc.
,

the MARS

system was replaced and improved step by step, expanding its services.

Presently MARS 105 handles 1,000,000 seat reservations per day. About 1,800

specially—designed terminals have been installed at 500 JNR stations and 450

travel company offices spread all over Japan.

Two more on—line systems for seat reservations were also developed. One is

a telephone reservation system ,
called MARS 150

, serving Tokyo area. The

other is a group and party reservation system, called MARS 202. Both MARS 150

and 202 are connected to MARS 105. These three systems provide fast and

convenient traveller services
,

and together they make up an integrated sales

management system.

* Author’s current address : Railway Technical Reserch Institute
,
JNR

Kokubunji—shi , Tokyo 0425(72)2151

53

2.1 MARS 105

MARS 105 has adopted a tandem configuration to process high volumes of

transactions
, more than 100 calls per second. As Fig.1 shows

,
MARS 105

consists of a front—end system, the Communication Computer subsystem (CC), and

a back—end system, the File Computer subsystem (FC).

:JNR I ARS~

oyo,

:Kunitachi Area
HITAC 8400

: MARS 105CC MARS105FGT~
I HITAC 8700 HITAC 8700

MARS1O5FC2J

HITAC

870Q1

note:

of chahne MARS 20~j
ARS:Audio Respons~”SystEm
RC:Relay Computer

Fig.1 Configuration of the travel reservation network system

The CC controls the communication network
,

the terminal status and traffic

flow to the FC. The CC itself is a tightly coupled multiprocessor system and

one operating system controls two processors that share a common main memory.

MARS 105 FC is composed of two single—processor systems ,
FC 1 and FC 2.

The FCs control the train and seat information files and process the main on

line applications for reservations. Both the CC and FCs operate under a

specially—designed operating system (RTCS
,
Real—Time Control System) and file

management system to obtain high performance and reliability.

2.2 MARS 150

The telephone reservation system ,
MARS 150, made it possible for customers to

reserve Shinkansen seats by use of touch—tone telephones. The inquiry data is

keyed in through a touch—tone telephone and the response is giving in human

voice by an audio response system. After that, tickets for the reserved seats

are issued from a terminal of MARS 105 using the reservation number included

in the voice response.

2.3 MARS 202

MARS 202 was developed for group and party passenger travellers. This system

provides information on seat availability over long periods and can reserve

up to 980 persons in one operation. Additionally ,
it can handle complete

package tours
, including hotel accommodations, cars, meals, etc. to meet the

growing demand for fast and easy holiday reservations. These functions were

improved by the system linking with travel companies.

bps

(Tokyo Area) ~32R~~T
9,60d

(Tokyo Area)

KNT (Tokyo):

(Osaka Area)

TTC

(Yokohama

~
~AcM2O0H~

54

3. On—line linkage of MARS with the travel companies’ systems

The travel reservation on—line network system links MARS with each of the

sales systems of the four major travel companies in Japan. The names of the

travel companies’ systems are “TRIPS III” for JTB
,

“QR III (Quick Response)

for NTA
,
“SYSTEM III” for KNT and “TOPS III” for TTC.

3.1 Purposes of linking the systems

(i) Expansion of the sales networks in the market

MARS has about 1,800 units of terminal equipment for reservations while JTB,

NTA, KNT and TTC have about 900, 200, 150 and 150, respectively. By linking
these systems ,

JNR’s ticket selling network is expected to have more than

3,000 terminal units.

On the other hand
,

200 units connected to MARS 202 are available to reserve

tourist commodities in each travel company’s system. As a result, the on—line

network system contributes to the expansion of both networks in the market.

(ii) Improved efficiency in selling integrated tour packages

Selling of train tickets alone is not sufficient to meet the increasing
demands for tourist commodities. If a variety of tour packages are sold

whose values are enhanced by such means as combining coupons for hotel

accommodations
, ship and bus reservations

,
etc. with JNR tickets

,
it would

greatly increase JNR’s marketing capability.

MARS and the travel companies’ systems provide facilities to efficiently
assemble the tourist commodities filed in their systems into a variety of

integrated tour packages.

(iii) Improved efficiency in settling accounts

In the past ,
JNR’s tickets were mostly sold manually by travel companies.

The companies spent a considerable amount of labor on account settlement

operations
,
because the number of JNR’s tickets comprised about 70 percent of

all that the companies handled and the volume of sales was very large.
The network system attempts to computerize these operations and improve
efficiency in settling accounts.

3.2 Operations carried out with the linkage

(i) Ordinary selling operation

The selling of JNR’s tickets through each travel company’s system is called an

ordinary selling operation. The company’s system is regarded by MARS as being
identical to its own terminal equipment and MARS processes booking and

cancellation of reserved seats. In addition
,

it is possible for MARS to sell

tourist commodities such as hotel accommodations in the companies’ systems.

(ii) Selling operation of planned packages

A planned package means a tourist commodity which is set in advance as a model

55

course. Various tickets required for the tour, such as reserved seat tickets,
fare tickets

,
hotel accommodation coupons and sightseeing coupons ,

are

combined in one set and sold as an integrated package.

The network system has made it possible to secure necessary commodities from

other systems on an on—line basis.

(iii) Information transmitting and checking operation

Information transmitting operation means to transmit data necessary for daily
operations to other systems on an on—line basis. These data include marketing
data, inspection settlement data and statistical data. As each system sells

various commodities in other systems through the network
,

the checking of

daily sales volume is one of the most important jobs. At the end of each

working day, it confirms the number of tickets and the revenue.

3.3 Network configuration

The configuration of this network system is illustrated in Fig.1. MARS is

linked with each travel company’s system via data relay computers by 9,600 bps
communication lines. For data communication control procedure ,

HDLC (High
level Data Link Control)—ARN was adopted. At the time JNR adopted HDLC

standardization work of ISO had not yet been completed. Therefore, JNR worked

out the details of the procedure and added some new functions for auditing
line conditions and daily operations.

3.4 Message flow control

This network system is a typical distributed processing system and it is

important for the system to control messages flowing in the network. The

control procedure was developed on the basis of the PST (PSeudo Terminal)
method which has been adopted by the linkage with subsystems of MARS.

The characteristics of flow control are as follows.

(i) Mutal independence of the operations peculiar to each system

Any trouble occurring in the network has no effect on the operations which are

not related to the linkage in question.

(ii) Securing uniqueness of messages

The control procedure prevents messages from being lost and screens duplicate
messages.

(iii) Control of flow quantity in the network

At peak time
,
MARS makes it possible to decrease the flow quantity in the

network.

(iv) Simple and quick recovery

The recovery procedure is simplified by using the PST method. The system in

which some trouble occurred
, may hasten to execute necessary and minimum

56

recovery procedure by itself. Then the whole system returns to normal by

gathering the recovery information transmitted from terminals and PSTs in

other systems.

3.5 Distributed data processing

MARS operates under a specially—designed file management system to obtain high
performance and each company’s system uses DBMS developed by its computer

maker to shorten the period for its development. The facilities of each local

system are incorporated into the over—all network as distributed functions.

In performing the ordinary selling operation ,
for example ,

MARS processes

booking of train seats and calculation of charge ,
while each company’s system

translates code information into printing images of tickets and issues tickets

for the reserved seats.

The selling operation of a planned package requires sophisticated and

distributed processing through the network. In this case, some course files

for planned packages are prepared in advance
, containing indices of

accommodations necessary for these packages. Fig.2 shows that a course file

is divided into parent and child parts related to commodities of each system.

Every time a request for selling the package enters the system ,
the

commodities indicated by each part of the course file are secured separately
in each system. Additionally ,

two more types of distributed processing for

the operation are provided for efficiency on selling.

Company’s system MARS

Planned package course file

(Parent—part) (Child—part) note: Course example

~TrainT1
1~L

Hi

Terminal of

Train

Train

~~e1

Fig.2 Example of a distributed processing
for selling a planned package

4. Summary

During the development of the on—line network system ,
it took a long time to

decide common specifications of the system an) debug its software
,

because

MARS and the companies’ systems had their own design targets. But nowadays
the system is operating very satisfactorily and the peak traffic volume

through the network totals more than 250,000 transactions per day.

57

Heterogeneous Distributed Database System: JDDBS

Makoto Takizawa

Japan Information Processing

Development Center (JIPDEC)

3—5—8, Shibakoen, Minato—ku,
Tokyo 105, Japan

Introduction

A distributed database system (DDBS) is a system which is composed of various

database systems (DBS’s) with semantically related data connected by communi

cation networks, providing users with one logical DBS service. SDD—l ROTH8O]
and Polypheme ADIB8O] are DDBS’s composed of homogeneous relational DBS’s.

JDDBS (JIPDEC DDBS) TAKI78—82], which has been under development since 1977,

attempts to integrate existing heterogeneous DBS’s. In order to realize a

DDBS, the heterogeneity and distribution problems of the DBS’s have to be solved.

Our approach to solving the heterogeneity problem is called the four—schema

structure AKI78,79]Fig.l]. Recently, DAYA82, DEVO82J have proposed simi—

lar concepts. By defining a common model view called a local conceptual schema

(LCS) over each local internal schema (LIS), i.e. existing DBS schema, the

heterogeneity problem is solved; this is called homogenization. The mapping
information between both schemas, called heterogeneity information (HI), is

generated and maintained at local sites. We adopt the relational model CODD

70] as the common model because of its simplicity and closure property.

The distribution problem is solved by defining a global relational view called

a global conceptual schema (GCS) over these local views (LCS’s); this is called

integration. In it, the mapping information between the GCS and the LCS’s,
called distribution information (DI), is generated. It is maintained in every

site. At this level, the DDBS can be seen as one logical DBS. The EXS is an

external schema defined over the GCS.

System Overview

JDDBS is composed of data modules DM1,. .. ,DM~(n>2) connected by a communication

network CN)Fig.2]. A data module (DM) is composed of six submodules; data

base system(DBS); local database processor(LDP); heterogeneity information(HI);
relational working storage(RWS); global database processor(GDP); distribution

inforination(DI). The DBS is an existing database system. The LDP is a rela

tional interface system over the local DBS, which translates the US into the

relational schema (LCS) and generates the HI. It also translates a relational

query into executable operations, e.g. COBOL DML’s, makes the CODASYL DBS exe

cute them, and returns the result as a relation in the RWS.

The GDP generates the DI from a GCS definition, decomposes a GCS query into

queries referencing LCS relations and executes them in cooperation with other

GDP’s through the CN. For performance reasons, every DM has a complete copy
of the DI.

The RWS is a file for storing relations, which plays the role of an interface

between LDP and GDP as well as that of a working file of the GDP. The GDP

performs relational operations on the relations in the RWS and transmits/re
ceives relations to/from the RWS.

58

specialization

homogenization

integration

HI: heterogeneity information

Dl: distribution information

LIS: local internal schema

LCS. local conceptual schema

query translation

query decomposition

DO: distributon description

GCS: global conceptual scnsma

EXS: external scheme

The LDP is a common relational interface system over the local DBS. At present

a CODASYL DBS is used. The LDP can translate a CODASYL schema (LIS) to a rela

tional schema (LCS); this is called a schema translation. Also, the LDP can

translate a relational query and update on the LCS into a COBOL DML program(this
is called query ranslationTAKI8O]), make the underlying CODASYL DBS execute it,
and return the result as a relation in the RWS.

Fig.3 shows a CODASYL schema representing organizations, their members and re

ports (ERL is a record type for representing relations between EMP and REP, which

we call a link type). The LDP translates it into an LCS as shown in Fig.4 by
converting record, set, and link types to B—, B—, and G—type relations, respec—

tively. Underlined attributes are the primary keys and attributes marked @,
called primary attributes, form the db—keys.

Relational LCS queries and COBOL DML programs differ in data structures (rela
tional vs. CODASYL) and access units (set—at—a—time vs. record—at—a—time). For

query translation, these two problems have to be solved. We have introduced a

non—procedural query on the CODASYL data structure. By describing the LCS query

The CN provides highly reliable communication among GDP’s in either one—to—one

or one—to—many (broadcast) mode. In JDDBS, the distributed query processing
based on broadcast communication is being implemented.

I

rr.OdeI

Fig.1 Four—schema Structure

Fig. 2 JDDBS Overview

Local Database Processor (LDP

59

L ORG I record type E—type

/ i~oname,...)
—~ set type ORG(@O,ONAME,...)

OE EMP(@E,eno,ename,...)
REP (@R,rno,rname,...)

B—type
OE (@E,@O)
OR (@R,@O)

G—type
ERL(@E ,@R,auth-no)

Fig. 4 LCS of Fig.3

with this CODASYL query, the difference in data structures is removed. This is

called structure transformation. For example, an LCS query against the LCS as

shown in Fig.4, “find members of JIPDEC and their reports,” can be written in

QUEL STON76] as follows;

range (e,EMP)(o,ORG)(r,REP)(er,ERL)(oe,OE)(or,OR);

g~ into R(r.rno, e.ename) where e.@E=er.@E and er.@R=r.@R and r.@R=or.@R and

or.@O=o.@O and o.@O=oe.@O and oe.@E=e.@E and o.onaine=”JIPDEC”; ——— (1)

In the CODASYL query, a join on the primary attributes is described by a pred
icate representing the owner—member relationship. For example, (e.@Eoe.@E
and oe.@0o.@O) is replaced by a predicate OE(o,e) where o and e are variables

ranging over record types ORG and EMP, respectively. The CODASYL query can be

described by a graph called a CODASYL query graph (CQG) whose nodes represent
variables and directed edges the predicates representing set types. The sym—

bols—+and----ii stand for target attributes and restrictions, respectively. Fig.
5 shows the CQG translated from query (1) above.

N (mo)
ER RE

e e r

~ confluent node

(ename) (mo)

Fig. 5 CQG
(ename.

Fig. 6 Access Tree (AT)

An access tree (AT) representing an access path is generated by searching all

CQG edges uniquely in depth—first order so as to minimize the number of record

occurrences accessed. The number of record occurrences is estimated by sta

tistics information of the underlying database, i.e. selectivities of items

and connectivities of set types. The statistics are dynamically tuned up by
the really accessed result of each program. Fig.6 shows an AT generated from

the CQG of FIg.5. Since a CQG may include cycles, more than one AT node may

be generated for a CQG node. Such AT nodes are called confluent nodes. In

Fig.6, o’ and o” are confluent nodes for a CQG node o of Fig.5. In our tree,

all confluent nodes for a CQG node are included in a subtree whose root is one

of them. They also imply identity predicates, e.g. o’=o” in Fig.6. In our

tree, every confluent node can check the identity by comparing a record occur

rence which the subtree root represents with record occurrences of the node.

Fig. 3 LIS

(rno,rname,..)

60

By searching in preorder the branches and nodes of an AT, representing set types

and record types, respectively, and generating COBOL DML’s corresponding to them,

e.g. find first
. .within..., find owner within

...,
a COBOL DML program is gen

erated. The program has to be executed by the CODASYL DBS. The LDP sends the

.JCL for compiling, linking, and executing the program using a network protocol
or the Fujitsu’s IPF facility.

The LDP has been operational on Fujitsu’s AIM on the M—17OF computer and Nippon
Electric Co’s ADBS on the Acos—700 computer since 1980. The current version

of the LDP can process pdatesTAKI82b], aggregates, and joins. The LDP on M—

17OF takes less than one minute to generate COBOL DML programs of a few thou

sands steps from LCS queries of only several lines. The LDP is coded in PL/I.

Global Database Processor (GDP

The GDP not only generates the DI from a GCS definition over the LCS’s but also

executes a GCS query issued by the user. It cooperates with other GDP’s

through the communication network (CN). A global conceptual schema (GCS) is

defined as a view over the LCS relations. This definition is stored in the DI.

A query on the GCS relations is translated into one referencing only the LCS

relations by query modification STON76]. Then the query is decomposed into

LCS queries, each of which references relations in one LCS, and the decomposed
queries are executed by the LDP’s. This is called initial local query proc

essing (ILQP). We note that the ILQP derives data as a relation from hetero

geneous data structures.

Then the query is processed in cooperation with other GDP’s. This is called

distributed query processing (DQP). Our DQP is based on the broadcast conmiu—

nication provided by a local area network like the Ethernet. Let us consider

a query consisting of equi—joins of relations Rl,... ,Rn at different DM’s on

attributes al,...,am. In our algorithm, first one projection iak](Ri’),
called a source, is broadcast from DM~, and every DM1 receives it and joins it

with Rj (Rj~Rja~=a~}Ri’). DM. broadcasts an acknowledgement (ACK~) piggy
backing a bit—map BMj of ja~} on Ri’ and status information, i.e. cardi—

nality of other join attributes, and waits for ACK’s from all other DM’s. On

receipt of ACKh with BMh, BMj ~- BMj A BMh. If all ACK’s are received, R1 is

reduced based on BM-j. A similar algorithm has been proposed independently by
KANB82]. paql whose size is the minimum is selected as the next source

based on the status information from every DM. That is, the DQP is controlled

in a completely distributed and dynamic manner. After applying this procedure
to every join attribute, the result relations are sent to the output DM.

The GDP is under implementation and will be operational in Feb. 1983. We also

plan to aplly our JDDBS to an office information system (OIS).

Acknowledgement

We would like to thank Dr. Won Kim for his helpful and instructive comments of

this paper.

61

References

ADIB8O] Adiba, M. et al.: An Overview of the Polypheme Distributed Database

Management System, Proc. of the IFIP, (1980), pp.475—479.

CODD7O] Codd, E. F.: A Relational Model of Data for Large Shared Data Bank,

CACM, 13(1970), pp.337—387.

DAYA82] Dayal, U. and Hwang, H. Y.: View Definition and Generalization for

Database Integration in Multibase: A System for Heterogeneous Distributed Data

base. Proc. Berkeley Workshop on Distributed Data Management and Computer

Networks, (1982), pp.203—238.

DEVO821 Devor, C. et al.: The Design of DDTS: A Testbed for Reliable Distri

buted Database Management, Proc. 2nd Syinp. on Reliability of Distributed

Software and Database Systems, (1982), pp.150—162.

KAM8823 Kambayashi, Y.: Query Processing in Distributed Database Systems,
The IBM MFCS Symp., (1982).

ROTH8O] Rothnie, J. et al.: Introduction to a System for Distributed Data

bases: SDD—l, ACM TODS, 5(1980), pp.1—17.

STON76] Stonebraker, M. et al.: The Design and Implementation of INGRES, ACM

TODS, 1(1976), pp.189—222.

TAX178] Takizawa, M. et al.: Resource Integration and Data Sharing on Hetero

geneous Resource Sharing System, Proc. ICCC, (1978), pp.253—258.

TAKI79] Takizawa, N. et al.: The Four—schema Concept as the Gross Architec

ture of Distributed Database and Heterogeneity Problems, Jounal of Information

Processing(JIP)(IPSJ), 2(1979), pp.134—142.

TAKI8O] Takizawa, M. et al.: Query Translation in Distributed Databases,
Proc. IFIP, (1980), pp.451—456.

TAKI82] Takizawa, N.: Distribution Problems in Distributed Databases —

Integration and Query Decomposition, Jounal of Information Processing(JIP)
(IPSJ), 5(1982), pp.139—147.

TAKI82b]Takizawa, M. and Noguchi, S.: Non—procedural Update Interface over

the CODASYL Database Systems, JIPDEC TR 11/82, (1982).

62

DATABASE MACHINE ACTIVITIES IN JAPAN

Syunsuke Uemura

El ectrotechn i ca I Laboratory
1—1—4, Umezono, Sakura

Ibaraki 305 JAPAN

(0298)54—5478

Research into database machines has been fairly active in Japan since

1975. There is an indication that a commercial database machine

developed in Japan will appear in the near future. The ADABAS database

machine and Britton Lee’s 1DM are already on the Japanese market.

In 1976, a national project called PIPS (Pattern Information Processing

System) organized a working group to study the database machine

concept. The Electrotechnical Laboratory of MITI, as the leader of the

working group, implemented an experimental database machine EDC in

1978. Salient features of the EDC include the use of magnetic—bubble

memory as database storage and a specialized multi—microprocessor
architecture for database applications. EDC II, a successor to EDC

with higher density, high performance magnetic—bubble chips

(256kb/chip, 300kHz) was implemented successfully in 1980. EDC II was

unveiled at the 8th IFIP World Computer Congress held in Tokyo in

October, 1980 UEMU 80].

At the same IFIP Congress, a data stream database computer was

introduced by Y. Tanaka of Hokkaido University TANA 80]. It is a

network of two primitive computing modules, namely, search engine and

sort engine. The search engine is a hardware implementation of a

binary tree search logic. The sort engine implements heap—sort. A

prototype with Il search engines and 1~ sort engines has been

implemented. Research efforts to extend the system architecture for

large databases are in progress TANA 82].

GRACE is a database machine under development at Tokyo University KITS
82]. It is a hashing based relational algebra machine especially
suitable for join—intensive applications. Sort is realized by Todd’s

sorting hardware Todd 78]. The design phase is being completed.

IQC (Information Query Computer) is a back—end database machine being
developed at NEC Corporation SEKI 82]. IQC can serve both as a

back—end machine for a centralized database system, and as a database

server for distributed database environment. IQC project is a

successor to NEC’s GDS (Generalized Data Subsystem) research HAKO 77].
A Japanese computer magazine reported that NEC will announce the

commercial IQC soon.

CADAM (Content—Addressable Database Access Machine) is an experimental
database machine designed and being implemented by OKI Electric

Industry Co. Ltd. HIKI 81]. CADAM is a back—end hardware with

conventional moving head disks, a disk cache memory and a set of

special—purpose processors. Their research plans include a network of

63

micro—computer based database machines.

ICOT (Institute for New Generation Computer Technology) is a newly

organized foundation for the research and development of the “fifth

generation” computer system. (Officially, the term “fifth generation”
has been replaced by “new generation”.) The overall configuration of

the new generation computer system includes a “knowledge base machine”

supported by a relational database mechanism (machine) with VLSI

technology MOTO 82]. ICOT’s research and development directions

envision database machines as part of a distributed function

architecture (along with high—speed numerical computing machines and so

on). The long range research schedule spans for ten years.

Research activities on database machine architecture are also underway
at Keio University, Hiroshima University, Yokohama National University,
Yokosuka and Musashino Electrical Communication Laboratories, Hitachi

Ltd. (intelligent disk, commercially available) and Toshiba

Corporation (back—end mini—computer, Todd’s sorting hardware).

References

UEMIJ 80] Uemura, S., Yuba, T., Kokubu, A., 000mote, R. and Sugawara,
Y. “The Design and Implementation of a Magnetic—bubble Database

Machine”, in Information Processing 80, North—Holland (1980)

TANA 80] Tanaka, Y., Nozaka, Y. and Masuyama, A. “Pipeline Searching

and Sorting Modules as Components of a Dataflow Database

Computer”, in Information Processing 80, North—Holland (1980)

TANA 82] Tanaka, Y. “A Data Stream Database Machine with Large

Capacity”, Proc. mt. Workshop on Database Machines, San Diego

(September 1—3, 1982)

KITS 82] Kitsuregawa, M., Tanaka, H. and Moto—oka, T. “Relational

Algebra Machine GRACE”, to be published.

SEKI 82] Sekino, A., Takeuchi, K., Makino, T., Doi, T., Goto, T. and

Hakozaki, K. “Design Considerations for an Information Query

Computer”, Proc. mt. Workshop on Database Machines, San Diego

(September 1—3, 1982)

HAKO 77] Hakozaki, K., Makino, T., Mizuma, M., Umemura, M. and

Hiyoshi, S. “A Conceptual Design of a Generalized Database

Subsystem”, Proc. 3rd mt. Conf. on VLDB (1977)

HIKI 81] Hikita, S., Yamazaki, H., Hasegawa, K. and Matsushita, Y.

“Optimization of the File Access Method in Content—Addressable

Database Access Machine (CADAM)”, Proc. AFIPS 1981 NCC, AFIPS

Press (1981)
MOTO 82] Moto—oka, T. (ed.) “Fifth Generation Computer System”,

Elsevier Science Publishing (1982)

TODD 78] Todd, S. “Algorithm and Hardware for a Merge Sort Using

Multiple Processors”, IBM J. Research and Development, 22, 5

(1978)

64

	40979_DataEngineering_Mar1983_Vol 6_No1.pdf

