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Letter from ~ Edit~

This issue of Database Engineering focuses on highly
available systems. The first five articles are from com

mercial vendors who market fault—tolerant computer sys
tems. The next three articles describe specific systems
that were built for applications which required a high
degree of availability. The final article on this topic
presents some new research directions for maintaining sys
tem availability. This issue also includes one general
interest paper from Germany on database programming
languages.

More and more end users of automatic teller windows,
on—line reservation systems, and word processors are

becoming dependent on the continuous availability of
interactive computer systems. System failures, which can

shut down these or other applications, thus have an

increasing impact on the day to day operations of both
companies and individuals. Tandem Computers Incorporated
recognizing the serious impact of such failures has been a

pioneer in the development of fault—tolerant systems. (An
overview of the Tandem’s approach to fault—tolerance can

be found in the December 1983 issue of Database Engineer
.jjig and is not repreated in this issue.)

Since Tandem’s success, numerous other companies are

developing fault—tolerant hardware and software systems.
This issue contains overviews of the systems provided by
Auragen, Computer Consoles, Stratus, Synapse, and Syntrex.
Each article describes a different architecture and

operating system approach to maintaining high availabil
ity. The articles also describe how specific types of
failures are handled.

The next three papers describe how high availability
is maintained for specific distributed applications. A

paper from Bell Labs describes the redundancy and transac
tion processing of a system to support the Direct Services

Dialing Capability. A paper from Bank of America
describes a large bank teller support system and presents
some impressive availability statistics. A paper from
Philips Data Systems then describes the transaction
mechanisms they support to allow continuous processing
even though some of the updates have to be delayed.

The final paper, from UCLA, describes how the relia
bility and thus availability of systems can be increased

through direct operating system management. of distributed
and replicated name spaces and general distributed tran
saction mechanisms.
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I would like to thank the contributors to this issue.
It is clear that there are many approaches to increasing
system availability. I suspect that sometime in the not
too distant future continous operations in the presence of
a small number of failures will become the norm of what is
expected from computer systems. I trust that the readers
will find the overviews of the different approaches as

interesting and informative as I have.

Future Issues

Database Engineering will continue to devote each
issue to a special topic. The topics of the next four
issues are described below:

1. Expert Systems. Dr. Adrian Walker (IBM Research, San

Jose) is the Guest Editor for the September issue.

2. Automated Office Systems. Prof. Fred Lochovsky (visi
tor at IBM Research, San Jose from the University of
Toronto) is the Guest Editor of the December issue.
Submission Deadline is August 1.

3. Statistical Database Management. Prof. Don Batory
will be the editor of the March, 1984 issue. Submis
sion deadline is November 1.

4. Engineering Design Databases. Prof. Randy Katz will
be the editor in charge of the June, 1984 issue on
this topic. Submission deadline is February 1.

Papers relevant to these special topics should be submit
ted to the editor in charge of that issue and to Dr. Won
Kim, our Editor—in—Chief. As space is available we will
also accept a few general interest papers for each issue.
These papers should be sent directly to Dr. Kim.

Daniel R. Ries
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The Auragen System 4000

Richard Gostanian

Auragen Systems Corporation
Two Executive Drive, Fort Lee, NJ 07024 (201) 461—3400

The Auragen System 4000 is an expandable, fault—tolerant multi—

micro—processor designed to provide a foundation for a wide variety
of high availability applications in the transaction processing,
comunications and office automation arenas. The wide applicability
of the system is due to a combination of a novel architecture, the

implementation of a highly enhanced version of the UNIX operating

system, the addition of a full—function relational database manage

ment system and the inclusion of a rich complement of productivity
tools and user—oriented application development aids.

Detailed discussions of each of these features can be found in

1]. Our purpose in this note is to briefly describe the most im

portant aspects of the Auragen approach to fault—tolerance.

I. Fault—Tolerant Design Goals

The essential ingredient of all fault—tolerance is redundancy——
in both hardware and software. The amount of redundancy, and where

to employ the redundancy, is largely determined by the number and

the types of failures to which the system is designed to be immune.

In general, failures come in three flavors:

a) permanent physical failures such as shorted connectors,

burnt out chips, etc.

b) transient component failures due chiefly to temporary
environmental disturbances, and

c) operational mishaps such as data entry errors, the use

of erroneous software, etc.

Failures of type c) are the hardest to deal with and are best

handled by software. The easiest case is when mishaps occur in con

nection with the storage and retrieval of information from large
files. Here there are a number of well—known recovery techniques,

involving the use of redo and undo logs, which have proved to be

quite robust, and require no special hardware to implement. Vari

ations on such techniques have been incorporated into AURALATE,
the Auragen relational D~MS~ and wUl be discussed later. Unf-~ortun—

atly, however, the general problem of providing automatic recovery

from operational mishaps is very difficult to deal with in a syste

matic manner, and really falls outside the realm of fault—tolerant

computing as practised today.

Instead, designers of fault—tolerant computer architectures have

UNIX is a trademark of Bell Laboratories
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sought largely to cope with physical failures. In the case of the

Auragen system, the main goal has been to produce a machine with

continuous, or nearly continuous, availibility despite the inevi

table occurances of physical failures. This goal has been achieved

by designing an architecture which

1) provides survivability through any single hardware

failure,
2) enables users to repair failures (i.e. change faulty

boards) while the system is running and

3) enables users or field engineers to expand and recon

figure a system without having to shutdown and subse

quently sysgen again.

Except for possibly the requirement that users be able to repair
and reconfigure systems themselves, none of these features are new;

what is new is the ways in which they have been implemented.

II. Hardware Organization

An Auragen system is a loosely coupled configuration of between

2 and 32 clusters, interconnected by two 16 megabyte/sec shared

buses. Under normal circumstances, in the absence of a bus failure,
the two buses behave as a single 32 megabyte/sec bus.

The clusters themselves are tightly coupled multiprocessors con

sisting of their own memory, power supply, battery backup, several

different kinds of intelligent I/O controllers and 3 MC68000’s. One

of the 68000’s is used exclusively for performing operating system

functions, while the other two are used to process user tasks. All

peripherals are dual ported and are always attached to two separate
clusters —— although peripherals need not be attached to each clus

ter. Discs, which have higher survivability requirements than other

peripherals, may optionally be configured to operate in mirrored

pairs.

This organization has enough hardware redundancy within a two

cluster system so as to be able to continue operating after any

single hardware failure. Systems with three or more clusters can

survive some types of multiple hardware failures.

III. Operating System Support

The Auragen operating system, AUROS, is a significant enhance

ment of UNIX System III. From the outside, it looks exactly like

a superset of System III, in that it supports all the standard UNIX

facilities and interfaces, in addition to some new and very user

friendly capabilities at the command level.

Internally however it is entirely different from System III.

Among the many enhancements are

a) a demand paged virtual memory system allowing virtual

addressing up to 32 Mbytes per process,
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b) extensive interprocess communication facilities employ

ing both messages and shared memory,

c) a distributed process structure In which all I/O

services have been split off, from the kernel and

placed into separate server processes for mulitprocess—

ing efficency,
d) automatic load balancing among clusters, and

e) a fault—tolerant mode of operation based on the automa

tic creation of backup processes in foreign clusters.

This last feature, which is described more fully in the next sec

tion is what gives the Auragen system its unique character in the

fault—tolerant marketplace. Indeed, because fault—tolerance is im

plemented at a very low level
,

i.e. entirely within the AUROS ker

nel, any program which will run under UNIX System III, will run on

the Auragen system in a completely fault tolerant fashion —— with

out any special action on the part of the user.

IV. Fault—Tolerant Implementation

Prior to the mid 1970’s, virtually all fault—tolerant computers

employed duplicate components, either as standby spare parts, or in

a majority voting type of configuration, whereby the duplicate com

ponents would simultaneously replicate each other’s actions. The

types of machines built using these early approaches were invariab

ly special purpose systems intended mostly for military, space and

telephone switching applications. The major disadvantage of such

designs was one of cost; at least three or four times the number of

components needed to build an equivalent non—fault—tolerant ma

chine were required to build one of these systems —— but unfor

tunately no extra computing power could be derived from the dupli
cate components.

In the mid 70’s, Tandem Computers 2] pioneered an approach to

fault—tolerance which partially solved the problem of wasted dupli
cate resources. The Tandem design, which was aimed specifically at

the commercial transaction processing market, involved creating an

inactive process, P—bak, for each active process P. P and P—bak

would live in different processors, so that if a failure should oc

cur In P’s processor, P—bak would immediately be activated in its

processor. Since, in the absence of failures, P—bak does not exe

cute, this scheme allows all the duplicate hardware to be used for

non—redundant work most of the time.

The Auragen design began with the conviction that the- Tandem ~ap—

proch was the most cost effective of all approaches to fault—toler

ance, but that the Tandem implementation was less than optimal in

at least two ways.

First, the data portion of P—bak had to be kept almost exactly

up to date with P’s data space. This was done by having P send a

“checkpoint” message to P—bak everytime P did an I/O. Although
P—bak did no processing upon receipt of the checkpoint message, a
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very significant amount of message traffic, and thus processor

activity, was generated in the process of handling the checkpoint—

ing mechanism.

The second shortcoming of the Tandem approach was that the crea

tion and awareness of P—bak, as well as the sending of the check—

pointing messages, was entirely the responsibility of the program

mer. This made the writing and testing of fault—tolerant programs

significantly more difficult than the development of non—fault—

tolerant applications. Tandem recently remedied this situation

somewhat by providing tools which would automatically do the

checkpointing for the programmer. Those tools however, are quite

disappointing in that they only handle a limited class of applica—

tons, and their use generates significantly more checkpointing
overhead than the amount which would be generated by a clever pro

grammer doing his own checkpointing.

To remove these two shortcomings, Auragen developed a technique

strongly analogous to the roliforward type of recovery employed

by many database management systems. A full description of the

method is given in 3], but the basic ideas are as follows. Instead

of having P checkpoint its data space at the occurance of every

I/O, AUROS arranges to have all messages received by P simultan

eously deposited in a message queue at P—bak. Only after P has

processed some system defined number of messages will P—bak’s data

space be synchronized with that of P. After the synchronization
is complete, all the messages queued at P—bak are discarded and

the whole process is repeated.

If a failure should occur which causes the activation of P—bak,
then P—bak will begin execution at the point of its last synchron
ization. Since the message queue at P—bak contains all the messages

sent to P —— between the time of the last synchronization and the

failure —— P—bak can easily redo all the work done by P within

that interval, and continue on from there. Of course some care has

to be taken during the rollforward phase to insure that P—bak

does not redo any work which P has done that is already reflected

somewhere else in the system. A clever technique to handle this has

been devised, and Is fully described in 3].

The whole procedure of queuing messages, synchronizing the

P—bak’s with the P’s and initiating recovery upon fault detection

is entirely handled by AUROS. Fault detection Itself is Implemented
by a variety of hardware and software methods. These include parity

checking, power level monitors, watchdog timers, background diag
nostics and very careful checking of system call parameters.

The scheme of having a completely inactive P—bak, Infrequently

synchronized with P, clearly trades off a somewhat longer recovery

time —— 5 to 10 secoonds on a system—wide basis —— for significant

ly higher system performance during normal processing times. Since

permanent failures which bring down clusters are relatively rare

events —— maybe 5 or 6 times a year —— and since transient failures

will generally require recovery for only single processes, this
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tradeoff seems highly desirable.

V. Database Management

As UNIX itself offers little in the way of sophisticated data

management services, it was necessary for Auragen to build a number

of such facilities on top of AUROS. Among the facilities provided
are a multiuser B—tree—based ISAM —— intended for use with the

Auragen supplied COBOL —— and, more significantly, a full func

tion relational database management system, AURALATE. As an upward

compatable extention of IBM’s relational product SDL/DS, AURALATE

supports an impressive list of functional capabilities.

For a full description of AURALATE, the reader should refer to

1] and the references contained therein. Our interest in AURALATE

here is concerned solely with AURALATE’s recovery mechanisms, which

as we shall see, have interesting performance consequences.

As with most sophisticated DBMS’s, AURALATE employs an optional
redo log of after images (intended for roliforward recovery from an

old copy of a database after a media failure) and a mandatory undo

log of before images (used to support both transaction backout, and

warm restart after any non—media failure). The proper maintainance

of such logs on most systems requires expensive commit processing.

In general, various write—ahead—log and buffer flushing proto

cols are needed to insure that sufficent information for recovery
is contained in the appropriate disc files, rather than in system

buffers, which after a failure, must be assumed to be corrupt. Spe

cifically, these protocols have the effect of degrading performance
by causing disc writes at every commit point, rather than buffering
the writes for defferal to a later time.

On a system such as the Auragen, where fault tolerance has al

ready been implemented at a level much lower than the DBMS, it

turns out that commit processing need not require write—ahead—log
and buffer flushing. This is because there are only two ways for a

transaction (or AURALATE itself) to abort; either because of some

external cause (hardware failure), or through some fault of its

own (operator abort, illegal memory access etc). In the first case

the transaction’s backup will take over in a foreign cluster and

continue as if nothing had happened, so in effect the transaction

does not abort at all. In the second case, the abort signal will

be trapped and the apppriate transactions backed Out before close—

down. Thus only in the second case is a restart necessary, but no

special action ne~ed be taken by th~ restart~proced~re.

In this scenario, the undo log is used only to support trans

action backout —— and in a very inexpensive manner. Skeptics
who believe that failures may cause the loss of main memory, can if

they wish, enable the expensive type of commit processing. Hope
fully, after some experience with the system, they will regard it

as unnecessary.
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Another unnecessary luxury is the redo log, if the mirrored disc

option is used. Since the redo log requires additional disc writes,
whereas writes to a mirrored disc are essentially free, once again
we see that a low level implementation of fault—tolerance can pro
vide some performance benefits at higher levels.

VI. Performance

A single 8 Megahertz 68000 costs about $60 and has about 25% of

the raw computing power of a VAX 11/780 4,5]. If you put 7 or 8

68000’s together in the proper way, an impressive amount of perfor
mance is potentially achievable. Part of the significance of the

Auragen accomplishment is a demonstration of precisely this fact.

At the time of this writing (May 1983), the System 4000 is about

3 months away from being subjected to detailed performance testing.
All preliminary indications, however, very conservatively suggest
that a two cluster Auragen system will run about one and a half

times as fast as a VAX 11/780 within a transaction processing en

vironment. (Comparatively configured, the Auragen will cost about

one half as much as the VAX.) Similarily, we expect a 10—15

cluster system to provide the transaction processing power of

a large IBM mainframe at a fraction of the cost.

Some of this impressive price/performance capability is due to

the availability of cheap LSI components. Much of it, however, is

due to the distributed multiprocessor architecture of the system

coupled together with the way the operating system has been split
into a large number of small processes.

It should be emphasised however, that although an Auragen system

is completely distributed —— and that, for example, clusters can be

configured to serve as front or back ends to other clusters, and

that programs can be downloaded into terminals —— at the user level

all that is seen is a single system running a single copy of AUROS.

VI. References

1] Auragen Systems Corporation, System 4000 Overview, Fort Lee,

NJ, 1983.
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4] Hansen, P., Linto, M., Mayo, R., Murphy, M., Patterson,D., “A
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Transaction Processing in the PERPOS Operating System

J.C. West, M.A. Isman, S.G. Hannaford

Computer Consoles, Inc., Rochester, N.Y.

1.0 INTRODUCTION

PERPOS is an operating system developed by Computer Consoles, Inc.

(CCI) for a new family of general-purpose computer systems based

upon the Perpetual Processing architecture. These are expandable,
fault-tolerant systems designed for on-line transaction

processing. The basic architecture has been in use since 1976 in

special purpose telephone industry applications. These new

systems combine many of the architecture concepts from those

previous systems with a set of new general purpose features. They
feature, in addition to fault-tolerance, UNIXTM_compatible
transaction processing supported by a shared global file system.

This architecture consists of three basic types of components
having distinct functional roles as application processors,
coordination processors, and front-end processors* which are

interconnected through a local network. A system may be

configured with a variable number of components operating as

distributed front-end processors and a pool of application
processors that dynamically share the work load and provide fault
tolerance.

The multiple components of these systems are logically coupled by
a specialized communications interface to operate as a single
functional entity, yet each is a separate, independently running
computer.

This paper focuses on the system features which provide the

multi-processor, fault-tolerant, transaction processing
environment. The system is not limited to these features; it can

support many other application models including typical dialogue-
oriented interactive sessions and loosely coupled distributed

processing. Different combinations of the same system features
determine these other models; they are, therefore, indirectly
described, but not otherwise elaborated upon.

* These names for the system components are used to clarify
issues central to this paper. They are not intended to supplant
the names used in other literature from CCI concerning the

Perpetual Processing system.

9



2.0 SYSTEM ARCHITECTURE

The system architecture consists of a high-bandwidth local network

(Data Highway) which interconnects ~ pool of application
processors, distributed front-end processors, and redundant

coordination processors, as shown in Figure 1. Each application

processor is directly connected to each of the mass storage units.

This arrangement allows the application processors to be

functionally interchangeable and independent of each other and to

run in parallel, sharing the single global file system. Except
for this multi-ported disk interface, no unique hardware

requirements are dictated by the architecture.

The application processors (AP) normally execute the main body of

the user’s application. The front-end processors (FEP) provide a

variety of functions, including terminal device handling,
transaction generation, and foreign network interfaces. The

interprocessor coordination controller (ICC) serves as a central

coordination and synchronization point for the system.

FIgUre 1

SYSTEM ARCHITECTURE
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2.1 Multi-Ported Disk Subsystem

The disk subsystem is conceptually the center of the architecture.

The primary function of the other components when running a

typical transaction application is moving data between disks and

terminals, doing a surprisingly small amount of processing in

between.

Perhaps the most unique attribute of the mass storage subsystem is

the handling of replicated disk areas. To gain flexibility and

save disk space, the redundancy of stored data is handled on a

partition basis, rather than on a volume basis. The number of

copies and their physical placement may be determined by the level

of performance and fault tolerance required by each application.
Read accesses are optimized by using the first available copy
while data consistency is guaranteed by handling write accesses as

write-to-all copies.

The use of more than two replications of a data area is primarily
a performance feature for data inquiry oriented applications.
Sufficient data replications can allow each application processor

independent and simultaneous access.

2.2 Application Processors

Application processors are autonomous, each functioning
independently of (but in cooperation with) the other system
components. Even though these processors operate independently,
they function as parallel processors running the same application.
Load balancing is provided by a feature of the protocol used as

part of the transaction interface between the front-end processors
and the application processors. The front-end processors
distribute transactions to the application processors based on

application configuration and flow control information.

2.3 Coordination Processors

The system includes two coordination processors. At any given
time one is the active coordination processor and the other is a

warm standby. This standby is the only system component not

actively sharing in the application tasks.

The active coordination processor is the central point for

synchronizing global operations in the system. Global operations
are typically resource request~ Wh~ichcánnot be arbitrated within

a local component, or system status changes which must be

coordinated between multiple components. The largest percentage
of these operations are data base locks used to synchronize
concurrent access of a file by two or more application processors.
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2.4 Front-end Processors

The system architecture permits a variety of front-end processors.

Ranging in functionality from simple terminal concentrators to

distributed application processors, they differ from application
processors primarily in that FEPs have no direct access to the

global data base, whereas APs have no direct access to terminals.

In other words, front-end processors are functionally

distinguished from the application processors in that they

generally perform tasks which are not penalized by being separated
from the global file service.

In a typical transaction application, front-end processors support
such functions as screen formatting, sending transaction messages

to the application processors, receiving the replies, and

assisting in recovery process from some system faults. This

separation of “front~end” and “back—end” processing (the back end

is the pool of application processors) improves system modularity,
reliability, and dynamic load balancing.

2.5 Data Highway

The application, coordination, and front-end processors are

interconnected by a duplex communications network. These dual

cables are in simultaneous use to enhance both the performance and

the reliability of the system. Based on a distributed packet
switching scheme using a CSMA/CD protocol adapted from Ethernet

1], the network implementation, which uses off-the-shelf

technology, is well suited to the architecture because of its

distributed control properties and high bandwidth.

2.6 Comparison with other Architectures

The Perpetual Processing architecture is a hybrid of centralized

server and distributed processing approaches. It provides direct

access to the file system with a central point of concurrency
control and recovery as in a centralized server environment. On

the other hand, it has the modularity and flexibility of a

distributed architecture; in addition, it provides reliability
features typically lacking in either centralized or distributed

systems.

This architecture also differs from most other fault-tolerant

systems. General-purpose fault-tolerant systems often consist of

a series of interconnected pairs of computer components where the

primary is used for application tasks and the backup comes into

use only if the primary fails. In such systems, operations run

redundantly on the backup or alternatively the primary may

“checkpoint” information needed to assume control to the backup
after each non-retryable step in the transaction execution 2].

12



The checkpointing approach allows the backup to do other tasks,
but generates a high level of communication overhead. The

redundant execution approach requires specially designed non

productive hardware.

These other. fault-tolerant systems generally utilize fully
distributed architectures since they already rely on distributed

processing concepts to implement primary and backup computers.
This architecture leads to performance limitations, especially for

large data base oriented applications.

The PERPOS approach to processor fault handling is to use standard

transaction recovery techniques 3] 4] to backout partially
complete transactions (when needed) and to restart them on another

processor. Recovery is simplified by the central data base and

central lock server architecture (see the section on concurrency

control and recovery) and automated by the front-end processors.

This design causes minimal system complexity and overhead while

providing fault-tolerant execution.

3.0 TRANSACTION PROCESSING FEATURES

Traditional definitions of transaction management include

scheduling, resource management, concurrency control, and error

recovery functions 4]. The last two are associated with

maintaining data consistency and usually are closely related to

the data base management features of the system. These will be

treated separately below.

3.1 Process Control

Transaction management has often been implemented in the form of

entirely new facilities built on top of a general-purpose
operating system, duplicating the operating system functions of

process control and recovery management. We have combined process

management and transaction management to avoid this duplication
and provide some generalized new features of distributed process

control that effectively exploit the system architecture.

The PERPOS transaction execution environment consists of a network

of sender and server processes distributed across the front-end

and application processors. This approach is conceptually similar

to a number of distributed data base proposals 4] 5] 6] 7].
The transaction senders are typically responsible for the~- human -

~ifltêfface functions and the servers for data base update or

inquiry functions. In PERPOS these processes are not constrained

from utilizing any of the other features available on the system.
They become senders and/or servers primarily by how they are

invoked and the communication scheme that ties them together, not

by following special programming rules.
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Transaction server processes are allocated by a transaction

initializer (daemon) in each application processor. They may be

allocated when a message is received for that particular server or

may be pre-allocated and execute many transaction instances to

reduce allocation and deallocation overhead.

Transaction program allocation, message distribution, and many

transaction management functions are controlled by a central

transaction description table. This table describes how

applications are to be distributed among the application
processors (they can be unbalanced if desired), how messages are

to be parsed and distributed to each program, and how the

processes are to be allocated (pre-allocation, concurrency level,

recovery class, etc.). An administrative utility allows on-line

modification of this table.

The program interface to transmit or receive a transaction message

consists of standard ‘read’ and ‘write’ system calls. Library
sub-routines permit both sender and server programs to structure

transaction messages to include text and data areas, screen format

descriptions, field attributes, and other application-specific
information. Filters are also available to strip all but the text

from a message, so that UNIX commands which expect a stream of

characters may be used directly as transaction server programs.

This interface design allows standard UNIX language compilers,

program development tools, debuggers, and even off-the-shelf

programs to be used for application development, yet provides the

special process control, performance and recovery attributes

needed for on-line application processing.

The key feature developed for this sender/server separation is the

communications scheme which connects the two components. This

scheme is also fundamental to achieving the load balancing and

fault tolerance objectives. It reliably delivers messages from

any terminal in the network to one of the appropriate server

processes on any of the application processors. This many-to-many

terminal-to-process interface for transactions is distinctly
different from the one-to-one interface of a UNIX ~!login~! session

(which is also supported). The layered protocol which

accomplishes this communications scheme automatically compensates
for newly added components, components lost due to a fault, or

changes in work load on the running components.

3.1 Concurrency Control and Recovery

In addition to the process control functions described above,
transaction management is typically responsible for concurrency

control and error recovery. These are closely integrated with the

data base management facility to provide deadlock resolution and

to prevent system crashes or aborted transactions from violating
data base consistency.
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We agree with Stonebraker 81 that the most desirable approach to

achieve internal parallelism of data base access and yet avoid

duplication of operating system facilities for scheduling and

multi-tasking is to use a process-per-user instead of the sIngle-
run-time-server DBMS model. For the DBMS to be distributed into

user processes requires improved management of the operating
system buffer pooi, an efficient central lock table, and efficient

task switching. Actually, providing these facilities in PERPOS

was the only practical solution to supporting a general DBMS since

the single-server DBMS approach has inherent conflicts with the

multiple application processor architecture.

The notion of “atomic” transactions 4] 6] has so far been the

key to ensuring the consistency of a database in the face of

concurrent operations. A transaction is a series of data base

actions (e.g., read or write a record) which corresponds to a

single change in the real world. The “atomic” property of

transactions is provided by keeping track of all data base changes
and undoing or redoing changes after a fault so that the effect of

the transaction is all-or-nothing. Accomplishing this all-or-

nothing execution requires atomicity at both logical and physical
levels. The physical level consists of managing writes to all

copies of a replicated data area and updating the file system’s
internal data structures to maintain consistency; the PERPOS

kernel handles these tasks transparently to the application.
Logical level atornicity ensures that multiple physical requests
(e.g. ‘read’ and ‘write’ system calls) are treated as a single
atomic operation; it is provided by the DBMS, file-access method

libraries, or directly by application programs.

Implementing atomicity at the logical level is much easier in this

system architecture than in other distributed processing systems.
Neither the data base nor the locks are distributed, which means

most complex deadlock and “commit” protocol issues can be avoided.

The single global data base allows most applications to use

single-process transactions. A single process need not use two-

phase commit protocols or other schemes to get all processing
sites to agree unanimously on committing the transaction.

Moreover, a centralized lock scheme using the coordination

processor prevents “global deadlocks,” where transactions in

different nodes are waiting on each other to free separate local

locks.

Perpetual Processing applications can, therefore, use single-
machine concurrency control and recovery schemes. Also, since the

front-end and coordinat-ion processors ~are not affected by an

application processor failure, they are available to facilitate

simplified, automated recovery. In effect, an application
processor failure is handled in the same manner as a transaction

abort. The data base locks remain set in the coordination

processor (one of the requirements for atomicity) so that the data

are unchanged by other transactions. When the front-end processor
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is informed by the network control logic that an application
processor has failed (or that a transaction has aborted), it

initiates the recovery procedure.

This recovery procedure differs for different types of

transactions. Transactions fall into three general classes:

repeatable, automatically recoverable, and manually recoverable.

In strict atomicity theory a transaction is “repeatable” if it

will reproduce the original output if rerun 4]. A transaction

which does not update any stored data is repeatable without

recovery. A transaction is “recoverable” if it holds exclusive

use locks on any data it changes and share locks on any data it

reads until the commit point. In plactice, transactions can be

made recoverable or repeatable using many techniques.

Recovery is automatically provided for transactions that use the

system DBMS or file-access methods. The front-end processor is

responsible for initiating recovery transactions, when necessary,

and for resending lost transactions after a transaction abort or

application processor fault. These recovered or resubmitted

transactions will naturally migrate to other application
processors due to the communication interface design.

Strictly following these atomicity rules is not always necessary.

Transactions which are not atomic can also be very useful for

certain applications. For example, in an application where

transaction sequence is not important, the use of share locks on

read data could be dropped. Concurrency can be increased and

locking overhead reduced by not holding read locks until the

commit point or by not using read locks at all. In some

applications (e.g., word processing) the data is less sensitive,
and small inconsistencies can be corrected manually. In this

case, delaying the updates until a commit point is reached is not

necessary. This approach is usually used only on a copy of the

data, so the original is still available as a failback. Note that

regardless of the degree of logical level atomicity used, physical
level atomicity is always mandatory because inconsistencies in the

file system structure would generally cause a system outage.

3.3 Performance Features

PERPOS supports a number of features geared toward allowing
critical applications to obtain their needed system resources.

Basic time-sharing “fair” scheduling algorithms may not be

sufficient for some transaction processing applications. In order

to allow a wide range of transaction processes with different

response requirements to execute concurrently, memory-residency
options and extended user-process priorities are provided. Key
processes can be locked in memory and run before any time-sharing

type process if the system administrator desires.
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Data base access performance can be optimized using contiguous

pre-allocated files and features which control kernel buffer pool
management. Execution speed can be further increased by using an

initial stack-size designation to prevent run-time stack growth
handling. With proper use of these and other features, high
priority transactions can avoid most common causes of operating
system overhead and contention with lower priority tasks.

4.0 USER VIEW

PERPOS provides a UNIX-compatible user interface and program

execution environment. The popular UNIX operating system is

widely known and needs no further description here 9]. It is a

flexible, adaptable system. Achieving UNIX compatibility within

our distributed architecture did present some interesting
challenges. The key design tasks were in providing user

transparency for transaction management, data replication,
multiple concurrent application processors, and distributed front-

end processors.

The user view of the system is a single machine environment. That

the system consists of a network of many application processors

and front-end processors instead of a single machine is made

transparent by the transaction and virtual terminal interfaces.

Transaction sender and server programs communicate through a

facility much like a UNIX pipe, while a login session interface

reads and writes a stream of characters just as in a single

processor UNIX.

Data replication is another feature made transparent to user

programs. Reference to a logical disk partition through the file

system automatically will allow a read-from-any- or a write-to-

all-physical-copies. Transparent device access logic uses

standard file system path names for peripherals, just like a

single machine. Moreover, peripherals on any front-end or

application processor are accessed with the same path name from

any component. In addition to simplifying the user view, this

virtual device interface provides system reconfiguration
flexibility and makes process migration much easier as a component
failure recovery technique.

Of course the actual system architecture is not hidden from system
administration programs. An interactive extent (i.e., disk

partition) maintenance utility is provided to print or modify
logical/physical extent control information (extent name,

location, onhine/offline/error state, etc). Another utility may
be used to introduce new extents or bring them up-to-date and

online. Similar interactive utilities are available for network

maintenance (examining and modifying component state information)
and transaction processing application maintenance (transaction
description table modification).
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5.0 CONCLUSION

The development of PERPOS started in June 1980 and has included

from 6 to 15 implementers. The PERPOS system has been running in

the development lab on PDP 11/44 application processors since mid-

1982. It was then ported to Motorola 68000-based processors and

has been operational as a full system since December 1982. Future

plans include incorporating many additional hardware developments,
including higher performance processors, additional networking
interfaces, and collapsing the same system functionality into

fewer components.

This system is unique in that it has fault-tolerant features that

do not rely on special hardware and which actually improve, rather

than distract from, system performance for certain applications.
The architecture provides productive redundancy where every

processor is handling an active processor load (no checkpointing
or process pairs) and the read-from-any logic makes use of all

copies of a replicated database.

Perhaps the most outstanding feature is the user transparency of

many aspects of the architecture and operation. To users this

system appears the same as a typical single process UNIX computer.
The Perpetual Processing features are hidden under standard

program interfaces and administrative utilities. Even new

features, like transaction processing, have very few semantical

differences from a standard UNIX environment.
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A FAULT-TOLERANT TRANSACTION PROCESSING ENVIRONMENT

Peter S. Kastner

Stratus Computer, Inc.

The Stratus/32 multiprocessor, fault—tolerant system for commercial

applications supports on—line transaction processing, batch process

ing, word processing and interactive program development. It uses a

combination or hardware and software that provides continuous pro

cessing ot user programs during computer failure without check

point/restart programming at the user or system level. Central to

the system’s fail—safe operation are processing modules, each o~

which has redundant logic and communication paths, logic and CPU

boards and main and disk memory. Twin components operate in paral
lel with each other; when one fails, its partner carries on.

Architectural Overview

The Stratus/32 processing modules are connected via the StrataLINK

high—speed coaxial link. Each processing module consists of memory,
two Motorola Corp. 68000 CPUs, at least one disk and various periph
eral controllers and devices (Fig. 1)

.
Both 68000 CPUs are visible

to the operating system, and each executes its own instruction

stream using a shared memory.

Fig. 1. A Stratusl32 system consists of as many as 32 processing modules connected by a high-speed coaxial link. The modules can be

located anywhere within an office building or can be adjacent to each other.
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Each processing module can be configured as fully redundant, par

tially redundant or non—redundant. The degree of a module’s redun

dancy determines the module’s resistance to hardware failure. A

fully redundant module can withstand failure of essentially any com

ponent in the module without performance or data loss and without

user program interruption. Multiple modules are used only to

achieve greater system capacity; they never serve as backup for

other modules.

Stratus’s distributed virtual operating system (VOS) runs in each of

the processing modules. All modules are equal and can operate inde

pendently, but through the use of transparent local networking soft

ware, VOS makes the entire set of processing modules appear as a

single computer system to programs, programmers and application
users.

Although each peripheral device is attached to a processing module,
VOS makes all devices available to programs running in any module.

Similarly, a program running in a module creates processes to run in

the same module or in others. An interactive terminal user can cre

ate processes to execute commands or to run programs in any module.

The users need not be aware of the module they are using. Likewise,
batch jobs can run anywhere in the system.

All VOS service requests have a uniform interface that is inde

pendent of the processing module on which the work will be per
formed. For example, a request to open a tile has the same form and

arguments regardless of where the file resides. VOS examines the

file name, looks in a device table to determine the module that owns

the device and performs the requested operation or makes a network

request over the StrataLINK to the VOS running the owning module.

The requesting program does not see the network request. Conse

quently, user programs are unaware of the location of files or de

vices and see the multiple—module network as a single virtual—com

puter system (Fig. 2).

Fig. 2. The Stratus/32 virtual operating system (VOS) makes all processing modules appear as part of a single virtual system in which a/l

devices. files and system resources are accessible as if it were a single computer.
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Examining the Hardware

A processing module includes one or more cabinets that contain a

complete computer with a logic—board chassis, dual power supplies,
peripheral devices and terminal port. A single cabinet holds a

fully redundant module consisting of two 143M—byte disk drives, a

magnetic tape, l6M bytes of memory, redundant CPU boards and a set

of redundant peripheral controllers (Fig. 3).

Fig. 3. A Stratus/32 processing module can contain 16M bytes of

memory, a full set of redundant controllers, two 1 43M-byte disks, a

tape drive and two software-visible CPUs. (Additional disks and

tapes are held in adjacent cabinets.)

A high—speed bus with a 125—nsec. cycle time is central to

processing—module organization. The bus —— virtually two Duses op

erating in parallel —— has two sets of data and control—logic paths.
Each .Logic Doard that can be attached to the bus can detect its own

failure and shut itself down. It can also run with a redundant

board that continues to operate in the event of its partner’s fail

ure. Neither logic board is primary, and neither is aware of the

other. The pair of boards appears collectively to other system com

ponents as a rail—safe entity.

Redundant

Redundant

disks

I.
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The self—checking technique used by each type of board differs
slightly, but generally involves the uses of two sets of logic on a
board. Each set performs every operation in parallel with the
other. When data are to be sent to the bus or to a device, the re
sults produced by the two sets of logic are compared. If identical,
the result is sent onto the bus or to the device. Dissimilar re—
suits indicate a board failure, and no data are sent. In this case,
a red LED on the board is lit, and an interrupt signal is sent on
the bus. Until the board is tested and logically reconnected by
maintenance software, it remains off—line. The board’s redundant
partner continues to operate, and no other component of the system
is aware of the failure (Fig. 4).

Fig. 4. Self-checking disk controller. Two sets of logic operate in

parallel with each other. If their results differ, a warning light goes on,

and no data are sent until the situation is corrected.
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The CPU board contains two complete sets of logic and is self—check

ing. Four Motorola 68000 processors provide each board with two

processors visible, to the operating system (Fig. 5)
.

A redundant

partner CPU board ensures continuous processing in the event ot a

failure ot a CPU board. At a component price of approximately $100

for each 68000, this is a cost—effective solution to continuous pro

cessing that was not practical until the availability ot VLSI tech

nology.

Fig. 5. A single Stratus/32 CPU board contains four Motorola

68000 processors that provide two software-visible processors. The

board is fully self-checking and contains redundant virtual/physical

address-translation maps.

Redundancy is achieved by using a pair of logic boards of each logi
cal entity in the system. Each board is attached to both halves of

the bus, and both boards operate in parallel, performing identical

operations. The output of both boards is placed on the bus at the

same instant and is guaranteed to be identical.

Memory is auplicated in a redundant system so that N megabytes of

program—visible memory is implemented using 2N megabytes of physical
memory with N megabytes attached to each of two memory controllers.

When data are written to a given memory location, both memory con

trollers respond and write the data into their memory. When data

are read from memory, both controllers respond and read from their

memory.

The controllers and the memory are synchronized and appear to the

rest o~ the system as a single logical entity. Memory subsystems
are not paired with CPUS, bus halves or other system components.

Memory is implemented from 64K RAMs and is packaged on 2M—byte
boards. It has a 375—nsec. read—cycle time and is four—way inter

leaved.

The memory system can be dynamically reconfigured to be redundant or

non—redundant. This allows a module to use all available memory
when full redundancy is not needed. Reconfiguration can occur on

line without affecting running programs.
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Disks cannot run completely synchronized with each other; they re

quire help from the operating system to provide continuous pro

cessing. Each aisk can be configured to have a duplicate. The mir

ror disk is attached to a separate controller to protect from con

troller failure. When a program writes a record to a redundant

disk, the operating system writes records to the disk and to its

mirror. When a program reads from the disk, the operating system
reads from the disk that is not busy or whose heads are best posi
tioned to read the record. If a read error occurs, the record is

read tram the other disk.

StrataLINKS, like disks, cannot run synchronized. However, the op

erating system has sufficient software error detection to run dual

StrataLINKS as separate parallel links until one fails. Failure at

a link is detected, and data are retransmitted aver the other link

without affecting users of the link.

A failure_sc~narjo

When a logic board or an attached peripheral device fails, it puts
itself otf—line, lights a red light on the board and transmits an

interrupt to the operating system. Maintenance software in the sys
tem tests the failed board to determine if the failure was transient

or hard. In either case, the failure is noted in a hardware—failure

log file, and selected terminals are notified of the failure. If

the board passes the maintenance—software check, it is resynchro—
nizea with its redundant partner and put back on—line, and its red

light is turned off. If the board fails the software check, it re

mains otf—line, and a red light on the system control panel is lit.

A maintenance software process automatically calls the Stratus na

tional service center and passes a data packet containing site and

failure information when hard failures occur. Stratus service peo—

pie Know within a minute of customer failures.

A failed oaard can be replaced in a running system by a nontech

nical person without special tools and without affecting any userts

program. VOS dynamically reconfigures itself when a board is added

or removed trom the system.

Transaction Processing

The Stratus/32 transaction processing encompasses several products.
Included are:

VOS File System
StrataNET

Transaction Processing Facility
Forms Management Facility

The Virtual Operating System (VOS) File System manages all the in

put, storage, and output of users’ data. Its flexible file organ
izations make access easy and efficient from any processing module

in any system within a geographically distributed Stratus network.
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Data are accessed without regard to physical location or storage de

vice. Files are organized in a directory structure by disk within

processing module. Data objects can be located from anywhere in a

network ot systems by explicitly using the module/directory
pathname, or by using a user—defined link to the explicit pathname.
There are also a number of features which locate objects implicitly.
VOS manages the global file system and controls the allocation,

placement, and recovery of disk space. The input and output mecha

nisms are designed to provide maximum efficiency for interactive

transaction applications.

Data security is very important in a distributed application and

Stratus provides data security as an integral part of VOS. Each

file has an access control list consisting of pairs of user IDs and

associated access rights (execute, read or read/write). Access

rights can be specified by user or group of users and are enforced

by the VOS File System. Access—control lists provide file security
without embedding passwords into programs. The lists operate on the

basis of people or groups who access the file; consequently, they
are easy to administer and use. Security is provided regardless of

what program or system commands are used to access files.

~tr ataNE..T

StrataNET, the Stratus networking software, permits two or more

Stratus nodes to run as if they were a single system. Just as users

ot individual processing modules of a system have access to their

entire system, users of a networked system have access to the entire

network without any network—oriented requests or commands. Normal

file operations and inter—process communication operate
transparently to the user’s program. File and directory access con

trol apply to requests across the network. StrataNET has its own

security options that allow the system administrator to permit, per
mit after network password check, or deny incoming requests on each

system node.

Transaction Processing Facility

The Stratus Transaction Processing Facility (TPF) simplifies appli
cation development and provides fast response in a high volume on

line transaction processing environment. Development is simplified
because TPF provides all the system tools and structures required to

develop transaction processing applications. The application pro

grammer is tree to concentrate on application programs. Application
programs can be writen in cOBOL, PL/l, BASIC, FORTRAN, or Pascal.

All language features can be used, including I/O statements. Fast

response is achieved with multi—tasking, multiple transaction

servers, and the use of a large program address space.

TPF orfers functions specialized to meet the demands or on—line

transaction processing. It coordinates the receipt and delivery of

messages for an application communicating with hundreds or termi—
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nals, and initiates a user processing routine upon receipt of a mes

sage trom a terminal or device. TPF monitors the progress of each

user routine, and provides for the parallel execution of multiple
transactions.

Terminal handling requester processes and application server

processes can reside anywhere within a system or anywhere within a

network of systems. An application developed to run on a single
processing module can easily be run on several modules with no

change to the programs. (Figure 6)
.

TPF provides for the orderly
growth of applications —— without the need to reprogram or even to

recompile —— by flexibility in the use of message queues. There are

message queues for communication between a server and the

requesters. A single queue can connect any number of servers with

any number ot requesters. Queues can be redirected dynamically by
changing the pathname of the queue to point to another module on the

same or different system.

ii’F 0t4 F-~kLT~E’LE bL~L~4~

TPF provides complete file protection for transactions, including
transactions that involve updating data on multiple computer systems
within a network. This protection ensures data integrity regardless
of extended power failures, communication line failures, system
software failures, application program errors, and operator errors.

The file protection features of TPF simplify the server program de

sign D~ providing the functions that maintain data consistency and

integrity during transaction processing. START, COMMIT and ABORT

transaction commands ensure data consistency and integrity. START

marks the beginning of a transaction, and COMI,UT marks the end.

When COMMIT is issued, the file updates are guaranteed to be com

pleted by VOS regardless of failures due to any cause. The ABORT

transaction results in all files being restored to their pre—START
state. Since data can reside on a single processing module or can

be distributed over many processing modules and systems, these com

mands provide data integrity independent of its physical location.

TPF and VOS ensure that the data remain consistent in the unlikely
event of a tailüre.

if-p

Figure
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A two—stage commit process first writes all updated records to disk

and sets a “Phase I Commit” flag in the file header. The original
disk image is also preserved in the file. All nodes involved in

the commit must report a successful completion of phase I before VOS

authorizes the second phase, which actually commits the updates.
Should a hardware or software failure occur during the two phases,
the restart salvage disk process will detect the “Phase I Commit”

flag and take the necessary recovery steps. Because two, mirrored

disks are used, even a disk failure can be sustained.

Conci usi~i

Stratus Computer uses hardware to detect failures before incorrect

data can corrupt processing and databases. Redundant hardware aj.—

lows the Stratus/32 to continue processing without performance loss

in spite of a component failure. System software in VOS, TPF and

StrataNET ensures that transaction processing in a networked envi

ronment occurs with an assurance of data integrity.

The synergy of hardware—based fault tolerance and high data integ

rity system software creates an efficient and friendly transaction

processing environment.
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THE SYNAPSE APPROACH TO HIGH SYSTEM AND DATABASE AVAILABILITY

Stephen E. Jones

Synapse Computer Corporation
801 Buckeye Court

Milpitas, CA. 95035

INTRODUCTION

The Synapse N+1 (TN) is a computer system oriented to online transaction

processing which emphasizes database integrity and functionality, system

availability, and modular growth across a wide performance range. This paper

gives a brief overview of the hardware and software, then highlights the

approach to achieving high availability. This approach involves five key

concepts:

* Redundant Hardware Components — There is a least one more of each

component than is required for satisfactory operation, hence the name

N+1. These components are not ‘extra’, but in full use at all times.

* Automatic Failure Detection and Reconfiguration — The hardware and

software can detect a failed component, reconfigure the system
without It, and continue without operator intervention.

* Fail—safe Database Storage — The DBMS assures that the database will

always be consistent following a failure and that committed data will

not be lost.

* Application State In Database — This fail—safe storage is used by the

system Itself to maintain the state of the online application

systems.

* Online Database Maintenance — The application does not need to be

taken of fline in order to do database backup or reorganization.

THE HARDWARE

The hardware architecture is designed to optimize performance,
expandability, availability and concurrency.

Mu]~tiple Ha~dwa~e Components
-

Basic to the N+1 approach is that there is at least one more of each

hardware component than Is necessary for acceptable system operation. The

system has multiple processors, buses, memory boards, power supplies, disk

controllers, disks, etc. so that no single hardware failure will render the

system Inoperative. Secondary storage may be mirrored on a logical volume

basis, which may be all or part of a physical volume. Disk drives are sealed

Winchester—type units for higher reliability. Systems are configured with

multiple paths to disks or tapes and will automatically use a secondary path
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in the event of a failure.

Tight.lry Coupled AFehiteet~uIa

The basic architecture is tightly coupled, centered around the Synapse

Expansion Bus (TM). The Expansion Bus is actually two independent buses with

an aggregate data transfer rate of 64 megabytes/second. Up to 28 processors

may be attached to the bus. They may be either General Purpose Processors

(GPP’s) or Input/Output Processors (lOP’s), each of which Is Motorola 68000

based. GPP’s execute user programs and the majority of the Synthesis (TM)

operating software from shared memory. lOP’s each manage up to 16 device

controllers or communications subsystems. Unlike the GPP, the lOP executes

operating system software from its own 128 Kbyte local memory. lOP’s have DMA

capability to shared main memory.

One problem that multi—processor systems have had In the past Is bus or

memory contention. Synapse has solved this problem with a sophisticated

memory caching scheme. Each GPP has a two set associative cache of 16K bytes.
Modifications to the cache are not written through and requests for memory

owned by another cache are satisfied between processors without going to

memory. This mechanism allows a full complement of CPP’s to be added to a

system without degradation.

The tightly coupled architecture provides high performance due to

superior sharing - of resources such as memory and processors. Basic queuing
behavior in the system is single queue, multiple server whereas behavior in

loosely coupled systems is more correctly modeled by serveral single queue,

single server systems. The tightly coupled architecture also provides simpler
hardware redundancy. Removing a failed GPP, for example, from the system is

trivial since all CPP’s can uniformly access all memory and 41 peripherals.

Con•figur~able and Rxpandable

Since GPP’s, lOP’s, and memory modules are very independent, systems may

be configured to the optimal mix of processor, I/O, and memory capacity. Each

processor, controller, and megabyte of memory is physically a 15” x 17” board.

There are a total of 64 slots in a single N+1 system cabinet. The system may

be grown simply by adding boards. Additional processors are totally
transparent to user software. They are simply added to the resource pool

managed by the operating system.

THE SOFTWARE

In this section we briefly describe the levels of system software, termed

System Domains, from the hardware out to the user.

System Levels ~Deains~

Monitor— At the lowest level is the Monitor which is stored in ROM. This

code controls hardware self—test and system booting.

Kernel Operating System (KOS) — The KOS is the next layer. Its major
functions are memory management, physical I/O, process/processor scheduling,
and system reconfiguration.
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Database (DB) — Directly above the KOS is the Database domain. This software

implements the transaction model, provides fail—safe storage through logging
and recovery code, supports the relational data model, and provides a B*_tree

access method.

Extended Operating System (EOS) — Above the DB code is the Extended Operating

System. This layer uses the DB mechanisms to provide a named object system.
This is a hierarchical directory name space for all system objects, e.g~

files, tables, devices, forms, etc. The EOS also provides device independent
:1/0.

Transaction Processing (TP) — Above the EOS, is the Transaction Processing
domain. This includes a screen access method and menu system, transaction

thread management, and application restart.

User — Above TP is the user domain. This is where the Command Language
Interpreter and application programs execute.

The Proease Medal

The process model was designed to optimize the production Transaction

Processing application which is very overhead intensive. Much of its time is

spent satisfying requests for system services, such as I/O or database

accesses. Thus special emphasis was placed during design on minimizing the

overhead required to change context in order to get such a service. The

processor has 16 Mbytes of direct addressability in a segmented addressing
scheme. Each of the system domains has a one megabyte segment of

addressability for its. code and another one (or two) for data. Thus

requesting a system service is a jump to a different virtual address within

the same process. The Cross Domain Call and its associated return take a

total of 100 MiCROseconds. This compares with six to ten MILLIseconds for an

interprocess call, a technique used in many minicomputer operating systems.

The Applieatiea Madel

Synapse has integrated software into the basic system which is normally
associated with add—on transaction processing monitors. The purpose is to

improve the system performance and to simplify the writing of transaction

processing applications. Application systems are built of program units which

are small, separately compiled program modules. Each typically receives a

screen of input, processes it, and displays another screen while terminating.
Thus while terminal operators are viewing screens, there is very little

process state and no program state. The TP subsystem provides the mechanisms

to combine multiple Program Units into a single Application Unit and to

provide control of process flow from one Program Unit to the next. The TP

subsystem optionally checkpoints the process state and screen contents between

these units. Thus in the case of a failure, terminals are returned to their

latest screen. In a small percentage of cases, one screen may need to be

reentered.
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DATARAS~ ORIENTATIQN

The Synapse DBMS plays a central role in the system, including its high
availability requirement. The basic approach is to keep critical information

in database which provides a fail—safe storage. The database functionality
was a necessary component of the Synapse system for the customer. However,
Synapse’s DBMS is unique in that it resides at a very low level within the

operating system and is used extensively by higher levels of system code.

Synapse made it a basic, low—level component for several reasons:

* Performance — DBMS’s often incur a large amount of overhead due to

being built on top of a file system. Synapse has optimized the OS

design for DBMS usage.

* Integrity — The database system provides a fail—safe storage. To do

this with acceptable performance, coordination with low—level

physical I/O is required.

* Simplicity — Higher levels of the operating system use the database

functionality, greatly simplifying their design.

A few points regarding DBMS functionality:

— Relational — It differs from most other currently available

relational systems in its low level, production orientation. The

data manipulation lnterf ace is through language extensions in Pascal

and COBOL. Syntax is similar to file I/O in each system plus a

construct to provide the select operator.

— Assertions — Relational domains are separate system objects which may
have integrity assertions associated with them. When adding or

modifying tuples, if attributes are drawn from domains having
assertions, they will be checked.

— Transactions — All database activity falls within a per—process

transaction. Commit and Rollback statements in the programming
languages terminate a transaction and implicitly mark the beginning
of the next. Write—ahead log techniques are used to implement
transactions GRAY1]. The log files are mirrored to protect from

disk failures.

— Concurrency — Degree three transaction consistency is the default

GRAY2]. Physical locking with escalation is done on tuple, page or

table granularity. Lock modes are exclusive or shared. Locks are

Implicitly placed when data is touched and freed at end of

transaction. Deadlock detection is done by maintaining wait—for

graphs.

— B*_tree indexes — Indexes are physically separate from data. Index

traversal is highly concurrent and deadlock free. Selection

expressions are evaluated on the data page. Index keys may be

composed of multiple, non—adjoining attributes of different data

types.
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— Dynamic backup — Relations may be backed up while being modified. At

restore time, changes that were being made during the backup are

rolled out using the same logging u~chanism that implements
transaction rollback.

HANDLING FAULTS

Having briefly described each major component of the system, we can now

walk through the basic approach to handling faults. The following steps

describe the events which occur in a ‘worst case’ failure scenario. This is

one that will cause a complete system restart, as opposed to less critical

failures which may be dealt with without restart.

1. Fault is detected. This may be by parity or other internal hardware

checks, or by an access violation. The memory system provides 2Kbyte

granularity in address mapping with read, modify and execute modes. Access

violations for processes executing in user domain are process fatal. There is

an addressing mode for system domains termed ‘covered’ which is read—only for

system data structures. If an access violation occurs in a system domain

while in this mode, it is process fatal. A process fatal error causes the

process (and its current transaction) to be aborted and restarted. An access

violation occuring in an uncovered system domain is due to hardware

malfunction or software logic error and is system fatal. For system fatal

errors, we proceed to the following steps.

2. KOS marks the failed component. If the fault is due to an internal check,
the KOS knows the failed component. This information is recorded in

non—volatile memory for use during restart.

3. Begin reboot. The KOS halts the system to begin a reboot scenario.

Memory is not trusted.

4. Hardware Self—test. The monitor conducts self—test of each unit in

parallel. There is extensive self—test code for verifying each component.

5. KOS initializes.

6. Reconfiguration. The KOS reconfigures the hardware if there is a failed

component. Accesses to I/O devices are rederived around failed components.

Interleaving of memory will be modified if a memory contrpller has failed.

7. DB initializes. At this point the Database recovery system will restore

the database tables to a consistent state. This is done by undoing all

uncommitted transactions and redoing all committed transactions whose

modifications had not made it out to the disk.

8. EOS Initializes.

9. TP initializes. The TP system has maintained state in the database on

each application currently running in the system. This information is

essentially for each terminal: the person operating it, the current screen,

the contents of the variable fields on that screen, and the next program unit

to execute. TP will create a process for each terminal, set its state, and

start it.
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10. Applications continue. All incomplete transactions have had their

effects removed, so applications simply run again from the input resupplied by
the IT system. For most applications there is no special logic for dealing
with restarts. At this point all processes are continuing normally.

Once the system Is back up, failed boards can be swapped without time pressure

and new boards added without affecting the system.

SUMSMAR’~

The Synapse approach provides protection from a broader class of failures

than most other fault—tolerant approaches. A hardware—based approach attempts

to anticipate all possible types of failures and provide compensating design
to provide continuous operation. This is really an unbounded problem. The

approach is effective for many types of failures, but leaves the system just

as vulnerable as conventional systems for failures that fall outside the

failures handled by the design. ~Jithout a transaction—based DBMS, the

database may be quite inconsistent when the system comes up. This could be

disastrous in a transaction processing application and is specifically
addressed by the N+1 system.

The Synapse approach is based on database transactions and deals with

human, software, and environmental failures in addition to simple component
failures. The hardware architecture is tightly coupled which yields excellent

performance, configurability and expandability. The transaction processing
software provides users simplicity and ease of use in developing online

applications.

Note: Synapse, N+1, Expansion Bus, and Synthesis are trademarks of Synapse

Computer Corporation
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A RICHLY RELIABLE SYSTEM

FOR DISTRIBUTED WORD PROCESSING

Neil B. Cohen, Scott Henderson, Chak Won

Syntrex, Industrial Way West, Eatontown, N.J. 07724

1. INTRODUCTION

Syntrex is an office automation company that has designed highly
reliable computer systems for word processing applications. In this paper we

will describe some of the characteristics of our fully redundant file server,

known as Gemini.

2. SYNTREX SYSTEM OVERVIEW

Syntrex builds an intelligent stand—alone word processing terminal

called Aquarius. The terminal supports standard word—processing functions such

as text editing, printing, a spelling check package, communications software

etc. The terminal connects to several standard typewriters and fits easily on

a secretary’s desk.

Users can connect up to 14 Aquarius terminals in a small cluster system
called emini3,5,61. Gemini consists of a central file server which manages a

file system that can be shared by all 14 Aquarii. Gemini is a fully redundant

system. It provides users with an “Always Up”” environment in which to work,
in addition to allowing file sharing, and larger storage capacities than one

can get with stand—alone, floppy disk systems.

Gemini systems can be connected via an thernet—like4] interface to

form SYNNET. Users can access documents across the network in a manner that is

totally transparent to the application programs.

The software that runs on a stand—alone word processor is the same

software that runs on Gemini and Synnet, so customers can upgrade their

systems without having to learn new operating techniques.

3. OPERATING SYSTEM

The Syntrex Operating System (SOS) was developed for the Aquarius. SOS

is a sophisticated message switched operating system. We assume that the

reader is familiar with standard operating system concepts such as kernels,

messages, processes, tasks, etc. These will not be defined in the text that

follows. The process and interrupt structure of SOS is similar to that of

hoth21, where system control relies upon teams of processes to perform

specific functions. We have also relied heavily on the concept of a

ink1,3,71, which is used for inter—process communication, and will be

described below.

Many features of the operating system, such as the process scheduler, or

the memory management routines have been implemented in different ways at

different times during the past three years. The inter—process communication

mechanism, which makes this operating system as useful as it is, has undergone

only minor coding improvements during that time.
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Processes communicate by sending messages to one another. The messages

are routed from process to process by the SOS kernel(s). A message consists of

a message header, followed by an (optional) message body. The header contains

information about the link on which the message was sent, an (optional) reply
link (see below), the message type, and the length of the message body.
Certain pre—defined message types exist for use with well—known processes

(such as open a file, write a record, create a new process, etc.)

Messages are sent over links. A link is a capability for one—way

communication over a channel between two processes. It is important to note

that a link is unidirectional

When the kernel is told to send a message on a link, it compares its own

machine id with the machine id of the destination process. The Aquarius
terminal is given a machine id at the time the operating system is started. If

the destination process is located on the same machine, then the message is

queued directly to the destination. If the machine id is different, then the

kernel places the message on the queue to Gemini. The communication line

protocol will transmit the message to Gemini, where it will be routed to its

destination machine. The kernel in the destination machine then queues the

message to the destination process. It is important to realize that the

communicating processes remain unaware that they are located in different

machines.

When a process creates a new link, it is said to own the link. Ownership
of a link may not be transferred. The owner of a link will receive any message

sent on the link. Until given away, the owner process also holds the link.

The holder of a link can send a message on the link. Subject to having the

appropriate permissions, the holder of a link may give the link away to

another process, thus allowing that process to send a message to the link

owner. The holder of a link cannot determine the identity of the owner. This

helps ensure that there are no hidden dependencies between processes which

would make networking difficult.

The distributed nature of the operating system has allowed applications
(such as the editor) to be developed without regard to whether the data files

are located on a local floppy disk, the local gemini unit, or on a remote

gemini located elsewhere. Users have a single, consistent method of accessing
files which does not change as the customer expands from a stand—alone

terminal to a network of clustered systems.

4. GEMINI

4.1. Overview

Gemini was designed to meet a number of different goals. Primary among

them were automatic information backup and minimal customer down—time, as well

as ease of use for the customer.

Our user community is extremely non—technical. Procedures such as

backing up disks are foreign to normal office operation, and are often avoided

or forgotten by users of automated systems. Gemini’s automatic real—time
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backup alleviates this problem, protecting users against the loss of

information and at the same time providing a measure of protection against
lost work time due to a down system.

It should be noted that the system is not designed to keep a fully
redundant system operating at all costs, or to connect Gemini units together
to provide load sharing or further redundancy (a la andem5,7]). Rather, the

system is designed to continue operating without backup in the face of any
single failure of hardware or software. This allows the customer to continue

to do useful work until such time as a service person can get to the site to

repair and restore the damaged half of the system.

Figure 4.1 shows the hardware used in a Gemini. Each half of the system
contains a 14 inch Winchester disk drive (this may be expanded to 4 drives per

side), a disk controller (DC), an Aquarius Interface board (Al), a block of

memory that is shared by both the DC and the Al, plus power supplies, battery
backup unit, and phone connection.

The software is designed so that one side of the Gemini is designated
“Master”, and the other “Slave”. Messages from an Aquarius are received and

processed simultaneously by the master and the slave. Output from the Gemini

is sent to the Aquarius by the master only. The slave monitors the

communication line while the master is transmitting, and then prepares to

receive the next Aquarius message. At any instant, the slave is prepared to

take over from the master if a failure occurs.

Communications between the Gemini and the Aquarii take place over 14

high—speed, synchronous communications lines. The link level protocol Is a

(slightly) modified version of DLC3,6]. The frame types referred to below

are standard HDLC frame types. For example, RR’s are used to acknowledge the

receipt of IFRAMES (data packets). RNR’s are used to implement flow control

when necessary.

4.2. Master/Slave Relationship

The master/slave relationship is built into the software at the lowest

possible level of the Al. The individual disk controllers do not know if they
are operating as master or slave, or even if they have an active partner at

all. They simply respond to messages asking that disk blocks be read or

written. The operating system in the DC is essentially the same as that of the

individual Aquarius.

The Al is responsible for ensuring that identical messages are being
processed on each half of the system. For example, when a message from an

Aquarius is received, the master and slave decode the message, and send the

(HDLC) frame type to their partner. They compare the frame type they actually
received from the communication line with the information from their partner.
If the two sides agree, then the frame can be processed. If they don’t agree,
the frame must be discarded. For Aquarius to Gemini transmissions, the only
way the master and slave are likely to disagree is if one side receives the

frame correctly, and the other side has a CRC error. This is a possible, but

rare occurrence.
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The knowledge of the simplex/duplex master/slave state of the machine

is handled on a strict need—to—know basis. Consider a system running in

simplex (one half active) mode when a message is received from an Aquarius. As

above, the protocol handler decodes the frame type and “sends it to the other

side”. The routine that handles the actual master/slave communications is the

only one that knows that the “other side” is not active. So this routine takes

the information and pretends it has just been received from the “other side.

When the routine returns, the protocol handler discovers that the “other side”

has in fact received the same type of packet, and the frame can be processed.

Transmissions from the Gemini to the Aquarius require that the two

halves synchronize themselves properly. Since the disks operate independently,
it is possible that one disk will respond to a request more quickly than the

other (for example, one side may read a block, while the other finds a

marginal disk surface and has to retry several times). When the protocol

handler in the Al prepares to transmit, it must compare the frame type it

wants to send with the frame that its partner has. If the frames are the same,

the master initiates the transmission. As mentioned above, the slave does not

transmit messages; it monitors the master’s transmissions. If the master side

dies, the slave will start transmitting (since it now becomes the de facto

master). When the master and slave disagree on the type of packet to send,

they settle the question by means of a “lowest common denominator” routine.

For example, if the master wants to send an IFR.AME, and the slave wants to

send only an RR, the lowest common denominator is an RR. The master will defer

the transmission of the data frame for a while, allowing the slave Al to get

the data from its disk controller. Eventually, both the master and slave will

have data to transmit, and it will be sent to the Aquarius. Another example

would occur if one side runs out of buffers due to a backlog in the disk, and

the other side does not. The blocked side will try to send RNR (flow—control)

messages, while the other will be sending RR’s or IFRAME’s. The lowest common

denominator in this case is the RNR, resulting in the temporary f low—

controlling of the Aquarius.

4.3. Error handling

Many different types of errors can occur with a system such as Gemini.

Some result from errors in applications programs, some from communications

line failures, hardware failures, and still others from external events (power

failures, people tripping over cables etc.) The system is designed to recover

completely where possible, to continue operatixi~ on one side in the face of a

single, non—recoverable error, and to shut down gracefully when necessary.

The Gemini can do nothing about errors in applications programs.

Rowever, we have found that almost any error that occurs in an application

program running on Gemini can be duplicated on a stand—alone Aquarius. Such

errors do not affect the operating condition of the Gemini.

Standard HDLC recovery procedures are used to re—transmit missed or

garbled link level messages. The system keeps a log of errors (all errors, not

just link level errors) on the disk. If too many recoverable errors occur, the

system will make a “trouble brewing” report to the service center (see the

Service Genie~, below).
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In the case of a serious failure of either the master or the slave, the

“bad” side is turned off, and the •good” side continues to run. Aquarius

applications are not Interrupted. The customer Is not informed of the failure.

Instead, the Syntrex Service Genie~N places a phone call to the nearest Syntrex
Service Center, and reports the failure. The service center then will contact

the customer to arrange a convenient time to come out to repair the damaged
half of the system. During the time between the failure and the repair, the

users have no automatic backup of their work.

The Service Genie is designed so that it will continue to place the

phone call at regular intervals until it gets through to the Service Center.

This avoids the problem of two systems calling simultaneously, and one getting
a busy signal.

The system must protect itself against several different classes of

errors. First, the physical hardware may fail. These errors usually can be

detected by software. They include parity errors, bad disk drives,
communication chip failures etc. When this happens, the bad side logs an error

on the good side (a panic message), and shuts itself down. The good side will

continue to run, and will place the Service Genie call. A second class of

failures are catastrophic program failures. This would include such things as

freeing an unallocated message buffer, accessing non—existent memory, etc.

These normally represent “Impossible conditions” and are caught by very

defensive programming. Again, an error message is sent to the good side, and

the system switches over to simplex operation. Service personnel may read the

error logs on both the master and slave in order to determine the cause of a

particular failure.

Some errors will pinpoint the location of the failure almost down to the

chip level, while others can only indicate a general failure of a side or a

board (for example, “DC has gone inactive” gives no indication to the service

person as to ~ the DC shut off, but it does tell him/her which board should

be replaced. The defective board can be returned to the service center for

analysis, while the customer is back up and running in duplex).

A third class of errors are so—called •soft” program errors. These

include communication line errors (bad crc, bad address etc.), expiration of

timers etc. In most cases, the software will recover from these errors.

However, too many errors may indicate marginally functional hardware. If too

many errors occur in a small period of time, the system places a “warning”

phone call to the service center. The system will continue to run in duplex
mode, even after the Service Genie call.

For some failures, it is not possible to decide whether the master or

the slave Is the side that is broken. For example, If the two sides agree that

they want to send an IFRAME to an Aquarius, but one side’s message is 50 bytes

long, and the other has a 512 byte message, then obviously the disks have

returned different data. The system can not operate in duplex mode if the

disks are different, so one side has to be turned off, but there is no way of

knowing which message is the correct one. In cases such as this (In itself, an

“impossible situation”) the slave is arbitrarily declared bad, and the master

continues to run. The master will place the Service Genie call. Of course, if

the master is the bad side, it is possible that further failures will occur,

resulting in the complete shutdown of the system.

39



Powerfail is an external event that causes both sides of the system to

shut down. The Gemini is equipped with battery units that allow It to survive

for several minutes after the power fails. During this time, files are closed,

and the system ensures that both disks are properly synchronized. When the

power is restored, the system can be turned on, and it will run properly in

duplex mode. The powerfail is noted in the error log on both sides of the

system.

Finally, there is one potential flaw that must be addressed. At one of

the first customer sites, someone carelessly knocked the phone off the hook;
when a failure did occur, the Service Genie could not make its call! The

system ran for several days in simplex mode before anyone noticed that there

was a problem. To rectify this, the system is now designed to place an “I’m

Alive” call from both the master and the slave on a regular (once per week)
basis. The service center keeps track of when these calls are expected.
Failure to receive a call indicates a problem that must be investigated.

5. SUMMARY

Syntrex has built an easy—to—use, highly reliable office automation

system. The system can be upgraded as needed from a stand—alone system to a

small cluster to a network of clusters with a minimal impact on the customer,

and with the best possible protection for the customers’ information that we

have been able to build.
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DATABASE MANAGEMENT STRATEGIES To

SUPPORT NETWORK SERVICES

D. Cohen, J. E. Holcomb, M. B. Sury

Bell Laboratories

Holmdel, New Jersey 07733

1. INTRODUCTION

The Bell System Telecommunications Network is rapidly evolving in

new directions to take full advantage of the emerging Stored Pro—

gram Controlled (sPc) Network technology. The SPC network is

comprised of electronic switching systems, operator systems and

distributed databases interconnected by a data network (Common

Channel Interoffice Signaling, ccis). The SPC Network offers

opportunities to support many new potential customer services such

as expanded 800 1) and Direct Services Dialing Capability (DsDC)

2].

As observed in 2], these services are based on a distributed

architecture with two key network components: the Network Control

Point (NCP) which is a database management system and the Action

Point (ACP), which is a call processing system.

The basic components of a network service are described in the fig

ure below. When a call is made from a local office to a customer

of such a service, the call is routed to an ACP.

TE~MIMALI
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The special sequence of digits dialed will control routing, and is

actually the address of a unique record maintained within the net

work which contains call processing instructions. The ACP

transmits the dialed address and a request for instructions,

through the CCIS network to the NCP that maintains this customer

record. The NCP returns the related response through the CCIS net

work. The ACP routes the call according to instructions received

from the NCP. Since the service depends on the NCP, NCP reliability
and recovery strategy are critical aspects of the design.

The following section describes the database administration stra

tegy for the proposed DSDC services. Section 3 describes the

redundancy built in for reliability and survivability. Section 4

shows how DSDC services are supported with the use of Distributed

Database Management concepts such as multicopy updates, concurrency

control, audits and recovery.

2. DATABASE ADMINISTRATION

The database of customer records is maintained by a set of NCPs

that are distributed geographically across the nation to meet per

formance, reliability and survivability needs. According to partic
ular market forecasts, NCP capacity, and performance requirements,
several NCPs are required to provide service. To meet the reliabil

ity objectives, redundant hardware and duplex processing are used.

In particular, the NCPs are built using 3B—2OD~ processors 3).
Each NCP maintains four on—line copies of the customer record data

base, and the copies are stored on separate disk drives to satisfy
reliability and capacity needs.

Survivability considerations result in a mated architecture, where

each NCP is assigned a mate at a different geographic site. Copies
of each customer record at an NC~ are also stored at its mate. One

of the two NCPs that contain copies of a customer record, is desig
nated as the primary for that record. If an NCP fails in spite of

its redundant hardware, its mate will take over responsibility for

handling ACP call processing requests. The geographic distribution

of the •primary and mate NCPs reduces the probability of their

simultaneous failure due to destruction.

Under normal conditions, the entire call processing load associated

with a customer record would be handled by the corresponding

* The 3B-20D is a product of Western Electric Corporation.
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primary NCP, while the mate would be used only as an on—line

switchable backup.

Besides Call Processing, NCPs would support also customer record

updates. An administrative system called the User Support System
(uss) would be employed to create new customer records and to

modify existing ones. Using terminals connected to the USS, custo

mers of DSDC services could build their records in a customized

manner to suit their business needs. The USS would transmit

through an Operations Support Network (OSN), each record to the NCP

designated as the record’s primary.

The primary NCP would be responsible for coordinating the update of

its own copies and those stored at the mate NCP. Updates to the

four local copies of a customer record and those at the mate are

handled by the NCP operating system in a way transparent to the

customer, so that it appears externally as if there was a single

copy at a single NCP site. In the following discussion, the update
of local copies at an NCP site will be considered as a single step
of the update algorithms.

3. REDUNDANCY

3.1 Reliability

The NCP databases form a critical element of the network architec

ture. Failures which disable access to a customer record result in

service interruption to that customer. So, the NCPs have to be

highly reliable and available. To meet these objectives, the NCPs

are built using 3B—20D processors 3]. The processor provides
built in error detection, correction, and recovery features to

ensure a smooth system operation.

As the term “duplex” implies, there are two identical processors in

a 3B—20D. Of these, one is “active” and the other is “standby” at

any given time. Each processor has a central control unit which has

direct access to its own main memory, and to the disk system of

both the processors, and indirect access to the other processor’s
main memory. During normal operations,the active processor

automatically and continuously updates the standby processor’s main

memory. Thus, if the active processor fails due to either a

hardware or a software error, the standby is ready at all times to

take over as the active unit. And one processor can be tested,
serviced or reprogrammed while the other is in operation. The

input/output processor, the disk file controller and the communica

tion links between a primary NCP and its mate are also duplicated.
A detailed description of the 3B—20 processor is found in 3].
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3.2 Survivability

To meet the survivability needs of the service, each customer

record is stored at two geographically separated NCPs. Under nor

mal conditions, the call processing load is split between the two

NCPs by an appropriate distribution of customer records. For a

particular customer, call processing would always be handled by the

corresponding primary NCP. The split can be modified by changing
the primary designation of a subset of customer records from one

NCP to another, using a network management transaction. If an NC?

fails in spite of its redundant hardware, call processing associ

ated with customer records for which it has been designated as pri

mary, is transferred to its mate through the CCIS network. This

operational NC? will process calls related to both the customer

records for which it has been designated as the primary before the

failure, as well as those for which the failed NC? has been the

primary.

4. TRANSACTION PROCESSING

The NCP databases are required to support network services. This

section shows how the database concepts for multicopy updates, con

currency control, audits, and recovery are implemented to support
DSDC services.

4.1 Multicopy Updates

Customers may initiate changes in their service and activate them

directly. Updates could be submitted from multiple sources and con

currently 24 hours per day. The coordinating site concept 4,5,6]
was chosen to support these inultisource, multicopy updates. This

requires all changes, independent of their origin, to be forwarded

to the primary NC? associated with the record. The primary NC? acts

as the coordinating site and is thus responsible to propagate the

changes to the copies at the mate. The primary NCP also would

verify the transaction for consistency and for authorization, and

would log the transaction on disk. If the authorized transaction

is valid, the primary NCP would acknowledge the user. This ack

nowledgment would represent a commitment on the part of the system
to complete the transaction even in the case of system failures.

At this point the change would be forwarded to the mate NCP, where

it would be implemented and activated. Activation of an update
means that calls would be processed based on the updated version of

the record. The primary NCP would activate the update only after

it received an acknowledgment from the mate on the successful com

pletion of the update. Once the update is activated at the primary
Nc~, the system would create an entry in its completed update
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transaction log.

Under normal conditions, the update algorithm would activate the

change first at the mate NC?, and then at the primary NC? to reduce

the possibility of an “update disappearance.” An update is said to

“disappear” if some calls are processed using a version of the

record which reflects the update while some later calls are pro

cessed using an older version of the record which is not affected

by this update. Such a disappearance effect is seen if the primary
NC? were to activate an update first, process some calls, and sub

sequently fail before the same update was performed at the mate

NC?. In this case, a switch to the mate for call processing would

result in. the update disappearance since the mate NCP would be pro

cessing calls based on the older version.

If communications fail between the primary NCP and the mate NCP,
then each NCP would activate the changes without waiting for the

mate’s acknowledgement and would store in a special history queue
all the transactions completed since the failure of the communica

tion link. Since neither NC? is down, the CCIS network would con

tinue sending the call processing messages to the appropriate pri
mary NC?. Similarly, the USS would continue sending customer

record updates to the appropriate primary NCP. When communications

between the NCPs are restored, the NCPs would exchange history

queues.

4.2 Concurrency Control

In DSDC services there would be a need to support concurrent mul—

tisource updates of customer records and to assure that updates
occur without interfering with each other and that they occur in

the order intended by the user 7]. Different users (e.g., custo

mers, operations support personnel, etc.) may concurrently submit

update transactions related to the same customer record. Con

currency control would be implemented by a locking mechanism at the

primary NCP. After an update has been validated and accepted by
the primary NCP, the customer record being updated would be locked

at the primary NCP so that further updates (to that record) are not

processed until the lock is removed. The record would stay locked

at the primary NC? until the update is activated at the primary and

the completed transaction logged. This means that under normal

conditions, the lock stays until both the primary and the mate are

updated. The locking mechanism would enforce the same order of

updates at the primary and the mate NCPs. The locking information

would be kept in a system lock table, so that in the event of a

system failure, this table could be used by the recovery process to

identify abnormally terminated update transactions and to restore

database consistency 8].
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4.3 Audits and Synchronization

In spite of careful design and testing, database inconsistencies

may occur. Besides various routine audits on the database, demand

audits would be used whenever database inconsistencies are

suspected. Audit failures would be reported to the recovery

mechanism.

A data inconsistency related to a customer record may be between

the on—line copies at the primary site, or between the on—line

copies at the mate site, or between the primary and mate copies.

Synchronization transactions issued by operations personnel through
the support system, would synchronize the contents of all on—line

copies of the customer record at the two NCP sites. This could be

used to correct update disappearances.

4.4 Recovery Procedures

The main objectives of the recovery process are to restore service

as soon as possible and to minimize permanent loss of data It is

also important to eliminate recovery dependencies between the sites

of the network. With the exception of major catastrophes, a site

should be able to recover by Itself, and restore service.

To meet the above objectives, three levels of failures are identi

fied and separate recovery procedures are designed for each. In a

first level failure, the failed NCP has enough data available on—

site to recover to the pre—failure state. Recovery tools include a

roll—forward process 8) using an off—line backup copy and a com

pleted update transaction log. In this case, the update function

at the failed site would be suspended and would not be transferred

to the mate during the primary’s failure.

In a second level failure, an NCP would not have on—site enough
data needed for reconstruction. If the off—line copy had been des

troyed, a database copy would be created at the mate site and tran

sported to the failed NCP site. If the transaction log alone had

been destroyed, then the transaction log at the mate site would be

transported to the failed site, where it would be used along with

the (local) off—line backup copy to reconstruct the database. In

this case, the update function would be switched to the mate during
the primary’s failure.

In a third level failure, all on—line and off—line at both primary
and mate sites would have been destroyed. In this case, the data

base of customer records at the support system would be used for

recovety.
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If an NC? fails its call processing function would be transferred

to its mate NCP. If the update function is not transferred to the

mate, then the failed NCP can resume call processing soon after

recovery. This is because no changes would have been made during
the failure to the records for which the failed NCP is the primary.
On the other hand, if the update function is transferred to the

mate NC?, then the failed NCP cannot renew call processing immedi

ately •after recovery. This is because the database at the

recovered NCP would not include the effects of the recent updates
which were received and activated at the mate NC? during the

primary’s failure. A special history queue of updates would be

prepared at the mate site of all transactions completed since the

failure. Once the primary NC? has recovered its database, the pri
mary NC? would first apply the updates from the history queue in

the mate, and then renew service.

5. SUMMARY

The SPC Network employs many current database techniques to provide
a reliable vehicle for customers in constructing services they
desire. This paper described how high availability and high relia

bility could be supported in the distributed database environment

of the network services by using standard database techniques, such

as multicopy updates, concurrency control, audits, and crash

recovery.
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Experience with a Large Distributed Banking System

J. Robert Good

Bank of America

Systems Research 3438

Box 37000, San Francisco, California 94137

System Overview: The Distributive Computing Facility (DCF), automates the tel

ler function for Demand Deposit Accounts (i.e. checking accounts) and Savings De

posit Accounts at Bank of America. The system, which has been operational for

over five years, provides inquiry and memo posting functions to the ten million

account database. Updates are “memo” in that the system does not replace the flow

of paper instruments (e.g. checks and deposit slips) which is still the basis for

updating the true account ledgers. The ledgers are maintained by batch accounting
systems using tape-resident account masterfiles. Every morning condensed files

produced by these batch systems are loaded onto the DCF system replacing the files

from the previous day.

There are about 1100 branches of Bank of America in California, each with an aver

age of one Programmable Control Unit (PCU), one administrative terminal and eight
teller terminals. The branches are supported by leased lines which hub into one

of two data centers in Los Angeles and San Francisco. The overall network scope

is: 10,000 terminals, 1,120 Programmable Control Units (PCU), and 115 communi

cation lines (2400 BPS FDXSDLC) with PCUs multidropped up to 14 per line.

Each data center houses a DCF cluster which provides the transaction services

against half of the statewide account data base and supports half the terminal

network. Each DCF cluster is comprised of eight DCF Modules connected by a local

network. The Module itself is a local computer network comprised of four GA

16/440 minicomputers and is the basic unit of transaction processing in the sys

tem. The DCF clusters are linked with a pair of 9600 RDLC lines to allow any

terminal to gain access to any account. Both clusters have the same hardware con

figuration including 40 disk spindles where the database resides.

The typical input message is about 20 characters and the response 120. The trans

action processing profile is simple and not resource intensive. The mix between

inquiry and update transactions is: 60-70% inquiry (3 disk reads), and 30-40% up
dates (3 reads, 1 replace).

The statewide transaction load is divided approximately 55% in Los Angeles and 45%

in San Francisco. The Los Angeles volumes are: 390,000 transactions per average

day, over 500,000 transactions per peak day, 84,000 transactions per peak hour,
and 30 transactions per peak second

DCF Module: Two of the four processors are communications frontends called Mes

sage Handling Processors (MliPs) and the other two are database backends called

File Management Transaction Processors (FMTPs). Figure 1 shows the module config
uration. The four processors communicate over a 1.2 megabits per second communi

cations bus called the intra-module link. The protocol is SDLC multi-point
contention and there is no master station.

Each module also contains a line printer, a TTY, four tape drives and eight disk

spindles of 64 megabytes each. The printer, owned by one of the MHPs, is used as a

hardcopy log of all status messages originated by any of the processors. The TTY
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is used as an emergency system console and for maintenance. It is switchable to

any of the four processors. Each NHP owns two tape drives for message logging.
These tape drives are switched to the F1’ITPs for data base load and unload. The
disks contain a portion of the data base, the program libraries for MHPs and

FNTPs, and control files. Notice that the MHPs have no disk, so they are IPL’d
from an FIITP through the intra-module links.

The module is configured such that the aver

age load can be handled by half the hard

ware. Every component has a backup normally
sharing the load equally. Backup components

automatically assume full processing load

when a failure occurs.

During normal operation, one MHP/FNTP pair
works on half the module’s lines and data

base, the other pair working on the other

half. There is a watchdog timer on each

processor. If the processor does not reset

the timer periodically, the timer turns the

processor off and notifies the peer (MHP or

FNTP). If the failed processor is an MHP,
the peer NH? assumes responsibility for the

module’s full complement of lines. If the

failed processor is an FMTP, the peer as

sumes control of the full module database.

The T~iHPs recognize an FMTP failure when mes

sage communications are unsuccessful. After
a preset interval, the MHPs will assume the inaccessible FHTP is down and begin
sending all messages addressed to this module’s FMTPs to the single survivor.
When a processor is re-IPL’d, it automatically recovers its regular share of

equipment and transaction load.

Any work in progress on a failed processor is lost. This simple recovery philoso
phy is acceptable because a transaction updates at most a single file record.
There is no automated message recovery. The terminal users provide the message
recovery by submitting a query for an account in the case no response is received,
and resubmitting the account update if necessary.

DCF as a Network of Modules: The previous discussion described the hardware and

general function of a module. The data and external lines are partitioned over as

many modules as necessary to control the network and meet the transaction process
ing requirements of peak message traffic. t~Iodules are connected with a redundant

pair of communication buses identical to the intra-module network described above.

However, the inter-module network is distinct from each module’s four node in

tra-module network in that only MHPs are connected.

The determinant of the number of modules is the processing rate of the FMTP and the
number of applications. A NH? can handle approximately 50 messages per second and

up to 16 lines in normal mode, or 32 during peer failure operation. An FNTP can

only handle about four messages per second. Currently the account database and
the external lines are partitioned across five modules in each cluster. There is
also one module for a DCF cluster management application and two spare modules for

expansion in each cluster.
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Programs operating in the IBM batch environment use a control file to produce dai

ly database load tapes for each FMTP after the batch ledger posting systems com

plete. Also on the tapes are routing tables and line/station tables for the

related MHPs. These become part of the MHP resident software after the next IPL

and inform each MHP as to the PCU configuration and database distribution. The

latter table maps a particular branch number to the FMTP which has the database

for that branch. Mapping is clearly necessary to properly route messages.

DCF Cluster Management: A DCF cluster presents a single system image to the op
erations staff without introducing a single point of failure. This capability was

implemented because 32 or more independently operated computers could present a

difficult operational problem. A special application called the Network Oper
ations Center (NOC) was developed as well as unique hardware to provide remote

processor IPL and status display.

The NOC is a set of software developed to provide computer operator console func

tions. There is a dedicated DCF module where the full set of input and output
functions reside. Each processor in the cluster (MHPs and FMTPs) has a set of exe

cution routines that execute commands entered at the NOC. Commands are entered on

terminals connected to the NOC FMTP’s for execution on any processor. The com

mands are interpreted by the NOC FMTPs and put into a standard internal form. They
are sent through the NOC module’s intra-module link to the NOC MHP for routing to

the target processor, command responses are routed back to the NOC FMTP and dis

played on the originating terminal. In situations where a processor generates a

message to the operator, it is logged on the respective modulets printer and a

copy is forwarded to the NOC module for action/information. The switchable TTY

configured in each module serves as an operator console when the NOC is down by
switching it to an MHP. A subset of NOC command input and output formatting rou

tines is present in each MHP.

Remote IPL and status display capability was developed for all processors to allow

processor IPLs from a single remote panel. Each processor also has software con

trolled display lights on this panel to indicate normal mode, hard stop, and in

tervention required conditions. Unique IPL RON controllers were fabricated for

each FMTP and MHP which provide: normal IPL, backup version IPL, and full memory

dump. These functions can be activated either from the remote panel or local to

the respective processor. In the case of the MHP, the full memory dump goes to

tape, with FMTP to disk. There are several additional options for normal and

backup IPL on the FMTP. There is normal IPL from program libraries which takes

about three minutes. A normal and backup IPL from a memory image is also provided
which takes 10 seconds. The library load is only used when new software is intro

duced.

External Network Management: The external network covers the state of Califor

nia and involves the facilities of over 50 independent phone companies. It was

clear that to provide the required availability extensive diagnostic equipment was

necessary to pinpoint problems. This led to the development of the Network Con

trol Center (BANC). Sophisticated telecommunications diagnostic equipment allows
network technicians to diagnose problems in the external network. Racal-Milgo T-7

optioned modems provide a side band diagnostic channel which is automatically used

by a DEC PDP 11/45 to monitor the line and modem condition. The PDP 11 provides
commands that can be transmitted on this side band to exercise or change the sta

tus of remote modems.

With respect to the control of the 1100 PCUs, it was decided not to put secondary
storage on the PCUs and instead to provide the ability to load them through the
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network from a central database of PCtJ programs. This was done due to the cost of

the floppy disk drives (1100 is a large multiplier) and by the need to control the

version of the software that was in each PCU. A special application was developed
for every module with external lines. This application resides in the FMTPs and

can load any number of PCtJs concurrently. The line loading caused by the amount of

data transmitted, however, necessitates a limit during peak transaction loads. A

PCtJ can be booted by an IPL button on the unit or invoked by an operator command.

Typical Message Flow: Figure 2, shows Northern California Branch 200 and illus

trates message flow. The Branch contains a PCU which is one of the drops on a line

connected to MHP AM1 in the San Francisco data center. The following examples as

sume a teller in that branch is negotiating a check drawn a Bank of America branch.

AM1 is continually polling the PCU

in branch 200. ~ihen the teller en

ters the transaction and presses the

send key, the PCU responds positive

ly to the next poll and sends in the

message.

The message has been mapped by the

PCU onto a standard DCF message for

mat and the target application has

been identified. AM1 stamps the

message with its ID, the line ID,
and the PCU ID for use later in

routing the response. AM1 selects

the appropriate application routing

algorithm. For Demand Depost Appli
cation (DDA) messages, the account

number being debited is separated
into its component parts: branch

number and account number within

branch. The routing table mentioned above is indexed to identify the location of

the necessary branch data. Two cases will be discussed:

Case 1: This occurs if the check is drawn on Branch 200, and the data for branch

200 is on San Francisco Module A as shown. AM1 does input routing, determines that

the data is on AF2 and sends the message to AF2 on the intra-module link. AF2

queues the message and when next-on-queue, the DDA software is brought into memo

ry, memo reduction in balance for the account is effected, and the response to the

teller is sent back to AM1 on the intra-module link.

Case 2: This occurs if the account being debited is domiciled in branch 800. The

data for this branch is on HF2 in Los Angeles. The input message routing algorithm
of AM1 yields the Los Angeles center ID. AIll’s inter-center routing table yields
the inter-module link address of BM1 which has one of the inter-center links to

Los Angeles. This is a two entry table, containing BM1 and Hill. After each in

ter-center routing action ocurs in Au, the entries are flipf lopped to attempt to

evenly load both paths to Los Angeles. BM1 is then sent the message over the in

ter-module link. Bill goes through the same input routing process as Au, and fur

ther discovers that it has the link to the Los Angeles center, so the message is

sent over the inter-center link.
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BN1 in Los Angeles then performs the same input routing as the previous two t.IHP’s.

HF2 is identified as the target FMTP, and it receives and processes the message as

described above.

When HF2 has processed the message, the response is returned to HM2 through the

intra-module link. HM2 does response routing based on the originating MHP ID

(SF-AM1), discovers it belongs to San Francisco and accesses the inter-center

routing table to make the appropriate routing decision to transmit the response

back to AM1.

In any of the above flows, a single processor or link failure will not affect the

sucessful transmission of the message unless a processor fails while that message

is in transit and before being sucessfully transmitted to the next point. The

paths chosen for transmission clearly would be different if one of the links or

processors mentioned above were down. If both paths to a target are down, an error

message is returned to the teller. If both paths are down preventing a response

from being returned to its origination point, the message is discarded after being
logged to the NOC. If an intercenter link is down, the MHP with the down line will

forward a message to the other gateway MHP. If both lines are down, the second

gateway to get the message will recognize this situation and dispose of the mes

sage as described above based upon whether it is an input or response message.

Software: The operating software was specially constructed by Bank Staff in a

joint development with the vendor. The FMTP has extensive software error handling
logic. This was developed because application software and disk-related system

support functions reside there. All of these were identified as much more likely
to change than the MHP software. The FMTP handles two types of errors: Recovera

ble and Non-recoverable.

Recoverable errors are those that can be associated with a particular message.

These types of errors are defined to be those occuring when the software is not op

erating in interrupt handling state. Examples are stack overflow or underf low,

protection violation, or invalid request for supervisor services. The occurance

of this type of error causes diagnostic information to be captured and the message

to be discarded.

A Non-recoverable error is defined to be one which occurs during interrupt handl

ing or a recursive error condition generated by the inability to recover from a

suspected recoverable error. When such an error occurs, a memory dump is taken

and the processor halted. This causes an automatic switchover of disks to the

surviving FNTP and a switchover notification message to be sent to the NOC.

FMTP switchover processing occurs when a processor fails and the peer must assume

responsibility for all the disks. This involves handling the interrupt from the

System Safe Controller of the failed FMTP, initializing the disk controllers that

are now to be managed by the survivor, reading in the file control blocks and high
level indices, and preparing for application access of these files.

Switchback processing occurs after a failed FMTP has IPL’d and is requesting re

sponsibility for its normal complement of disks prior to resumption of transaction

processing. After the restarting FMTP has IPL’d itself by accessing the disks

through the dual ported controller, it sends a message to the survivor requesting
responsibility for its disks. The restarting FMTP then opens its complement of

files and begins normal transaction processing. MHPs detect that the restarting
FMTP is available for processing when it begins to respond to its ~tItm alive” mes

sages which all processors exchange on a regular basis.
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Operat~ona~ Experience: The system is very successful from a performance, avail

ability, and operability standpoint. Using representative data from the peak hour

in Los Angeles (10:00 a.m.): 87% of transactions receive a response within 3 sec

onds (as measured at the PCU), 99% of transactions receive a response within 6

seconds, FMTP database load takes less than one hour.

Because of the distributed nature of this system, the scheme for calculating the

availability statistics warrants some explanation. The duration of unavailabili

ty of any component is recorded by the operations staff. The unavailability of a

duplicated component does not affect the user, so does not affect the computed

availability numbers. When both prime and backup components are unavailable, the

user is affected. The availability statistics reflect the severity of the outage

as well as the duration. For instance, the DDA data is distributed over 40 disk

spindles in each center. The data is not duplicated. If a spindle is unavailable

for 40 minutes, 1/40th of the database is down. Central site unavailabity for

that outage is one minute. If a DDA module is unavailable for 40 minutes (both
MHPs or both FMTPs), 1/5th of the database is unavailable. The central site una

vailability for that incident is eight minutes. The monthly figures are then

figured by taking these weighted unavailability statistics and dividing by the

committed minutes of operation for the month to yield the monthly statistic.

End user unavailability is the central site unavailability plus the network una

vailability. Network unavailability is average PCU unavailability due to PCU

problems plus average PCU unavailability due to line problems. Using Los Angeles
statistics for the first seven months of 1982, DCF delivered 99.96% central site

availability and 99.64% end user availability. The causes of the end-user per

ceived unavailability are: 50% due to line problems, 39% due to PCU problems, and

11% due to central site problems

During the first seven months of 1982, the Los Angeles data center averaged 63

line problems per month. These took an average of 287 minutes to resolve. There

were 54 PCU failures per month averaging 260 minutes of outages. 266 teller and

139 administrative terminals failed on average per month. These numbers represent
the number of times vendors were called to resolve problems. The trouble calls

from users to the network technicians average well over 2000 per month. The net

work technicians are able to resolve about 50% of trouble calls themselves. They
are able to do this in large part because of the Network Control Center (BANC).

The contribution of central site unavailability to overall unavailability is quite
low (11%). The month of June in 1982 was analyzed in detail because it appeared
fairly representative. The following central site failures were recorded: 23

failures, 128 minutes of component unavailability, 6 minutes average to fix with

only five failures visible to users because of redundancy and automatic backup
This resulted in 30 minutes of module unavailability for the month which was re

corded as 6 minutes of central site unavailability (30 minutes I 5 modules in the

cluster).

Conclusions: The system is highly available and central site unavailability con

tributes very little to the overall system unavailability. If any improvements
were to be made, attention to the communication line unavailability would have the

best potential for improvement. Several design features of DCF have clearly had

a beneficial impact on availability:

1. Redundancy Redundant components with automatic switchover reduces the visi

bility of failures to end users.
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2. Granularity Spreading the load over multiple modules also reduces the im

pact of a total module failure.

3. Rapid IPL The ability to IPL the FMTPs in 10 seconds creates situations in

which an IPL is the first thing done when strange things happen, not the last.

The above features must be set in the context of a system having no message integ

rity. Processor failures cause message loss. The system does not have a 24 hour

operating requirement, allowing hardware maintenance, software maintenance, and

testing to occur at off-hours.

A significant factor contributing to centralsite availability is the stability of

the software, with less than three changes being made per month. These are mostly
MHP table changes reflecting a change in terminal, line, or PCU configuration.

Very few software caused outages are visible to users. This is somewhat deceptive
however. During the initial conversion of the system, the availability was con

sistently over 99% even when the software was very failure prone. This was a

result of the granularity, rapid IPL capability plus the fact that most errors

were FMTP application software failures of the recoverable variety where processor

shutdown did not occur.

The overall conclusion to be drawn is that a network of minicomputers have been

effectively used to support a large terminal based application in place of a more

traditional mainframe approach. The Distributive Computing Facility is setting
the standard within Bank of America for the operability and availability of online

systems.
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Distributed Database Support

I. Aaro, J.G. Holland *)

Philips Data Systems
Jarfglla, Sweden

Apeldoorn, Netherlands

1. Introduction

In a traditional real—time system all data reside in a central database

and transactions operating on the database are handled completely
within one central computer. By a transaction we mean a sequence of

operations which transfer the database from one consistent state to

another one. This sequence is atomic, that is, itis executed

completely or not at all.

More formally expressed a transaction defines both a success—unit (it
is executed completely or not at all) and an integrity unit (the data

it uses is not accessible by other transactions). It is the

responsibility of the programmer to define where in a program a

transaction starts and ends. The transaction handling system of the

DBMS will then guarantee that the transaction is executed properly.

In a distributed system data reside in many computers and the execution

of a transaction in such a system usually means that data in many

different computers have to be accessed. That is, the transaction

processing Is distributed and it is the responsibility of the network

data manager to guarantee that a transaction is executed completely or

not at all. This can be a tricky problem in the general case. However

we have found that by splitting a transaction into a main transaction

and one or more secondary transactions which cooperate according to

certain rules, the transaction control can be simplified. It becomes

especially simple if all real time updating of the database is replaced
by so called delayed updating. Delayed updating means that the database

is updated after that the system has signalled to the user that the

transaction has been completed. The network datamanager in the nodes

involved will guarantee that the requested updates really are done. The

delay before the database is updated can vary from just some

milliseconds to batch update during the night (application
defined).
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L. Zwanenburg in Apeldoorn and Jarfglla for their valuable

contributions in the discussions on distributed processing.

57



2. Architecture
-

In our model a distributed database system consists of a set of nodes

which are interconnected via public and/or via local networks. The

relevant nodes in such a system can be classified as:

— terminal node

handles one or more workstations and executes dialogue—oriented

parts of transactions. This node type has no local database.

— database node

contains a local database and all software needed to handle it.

Data in such a database can be accessed from other nodes. No

workstations are directly connected to a database node.

— complete node

include both terminal node and database node capabilities.

Networking nodes, e.g. gateways, are notregarded in this paper. We

assume that high level transmission services up to the transport level

of the OSI reference model are available at each node.

The above node types can be combined to form different types of

distributed database system structures. Moreover, the architecture

permits one computer to hold more than one node. For example, one

computer can hold one or more database nodes where each such node is

an independent unit. Each node has a unique logical name, own data

etc. The node names are globally known and are used to address the

nodes.

From an application programmerTh point of view the distributed

database consists of a set of logical databases. Logical node names

are used as references when an application process in one node wants

to access data in another node. To find the proper node name, the

requesting process can use a locate function. This function will

either consult directories or execute a user defined algorithm to get
the proper node name.

The application programs are structured into Main Transaction Programs
(MTP5) and Secondary Transaction Program (STPs) and these cooperate to

execute transactions.

MTPs are front—end programs and the execution of such a program is

initiated by a user. The execution of a MTP takes place in a terminal

node or in a complete node. MTPs handle the man—machine dialog,

processes information and accesses the database, both local and non

local databases can be accessed. A non local access means that a

command message is sent to that node which holds the data requested.
An answer message will later return the results.
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STPs are back—end programs which are executed in nodes containing
local databases. The execution of such a program is initiated by a

command message sent from a MTP or another STP. Normally a STP
performs some processing of data before the answer is sent back.

When the execution of a NT? or a STP starts, a Main Transaction (NT)
or a Secondary Transaction (ST) is created. The execution of a

transaction means that one MT and zero or more STs are executed. MT is
responsible for the execution of the transaction and it will
coordinate the execution of the involved STs. When the NT is finished
the transaction is also finished from the userTh point of view.

However, the transaction need not to be finished from the systemTh
point of view at that moment. In next section we will further develop
these concepts.

Software architecture

The software architecture is shown in the figure below:
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terminal node database node

Every local database is self contained and Is managed by a local DBMS,
which handles among other things local database accesses, access

conflicts within a node and recovery within a node. The DC SW

implements the network independent transport services defined in the
OSI reference model (layer 1, 2, 3 and 4). MTP and STP are the

application program discussed previously.

NDM (Network Data Manager) is the new component and this administers
all non local database accesses and it will guarantee that the

distributed database remains consistent. NDM belongs to the session

layer in the OSI reference model and communicates with NDMs in other
nodes via the DC SW. Locally it communicates with the DBMS. The

following functions are handled by NDM. 1) access to data in other
nodes. This includes support for addressing of nodes and support for

message handling. 2) distributed transaction handling to guarantee the

consistency of the distributed database. 3) access conflicts between
nodes. 4) recovery which involves many nodes. 5) locate support to

find in which nodes data are stored.
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3. Distributed transaction handling

The notion transaction is defined in the Introduction. In a non

distributed sytem the end user interaction and the database processing
will in general proceed in parallel. The database reflects the most

current situation, that is, it is in accordance with the most recent

transaction.

In a distributed system the Network Data Manager is responsible for

the execution of the MT and the related STs. MTs and STs can cooperate
in many different ways. We have found that a great deal of

applications can be handled with three types of cooperation. For each

cooperation type we have defined a ST type. The ST types are:

sub transaction

A ST of this type is always executed simultaneously with the

invoking MT and forms with respect to transaction commitment and

cancellation one integrated transaction, that is

— database modifications generated by the sub transaction will

only become definitive after commitment by the MT at the end

of the MT.

— a premature cancellation of the MT (by itself or by the

system) also cancels the sub transactions.

So the functions “COMMIT” and “ROLLBACK” having a MT as

subject will extend their scope such that also the sub

transactions executed or under execution in other nodes will

be involved in the functions.

When a sub transaction has finished its task it will get the

status ready—to—commit. A sub transaction in ready—to—commit
state can only be committed or rolled—back by the invoking MT.

This ST type is used for real time updating of a database.

side transaction

A side transaction is — like a sub transaction — a ST which is

executed simultaneously with the invoking MT. The difference is

that when it has finished its task all database modifications it

has generated are definitive. NDM gives no support in the

revocation afterwards by the MT.

Although this fact restricts the usage of a side transaction,
there is still an Important area where It can be applied
successfully, namely for for inquiry of a database. An inquiry
never needs rollback and therefore can be performed as a side

transaction.

The advantage of a side transaction is that its control requires
less internal transmission of control information and

consequently it has a better throughput and responsiveness.
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delayed transaction

A ST of this type runs independently of the invoking MT and it is

never executed simultaneously with the MT. Invocation calls for

delayed transactions will namely be effectuated only after the MT

has terminated normally. Cancellation of a MT implies
cancellation of the invocation requests for delayed transactions

done by the MT. It is because of this fact that the delayed
transaction will not be able to return output Information to the

MT.

NDM guarantees that invocation calls for delayed transactions are

forwarded to the right destination nodes and that the requested

delayed transactions really are executed completely. The

guarantee Is valid even if there are times problems with the

physical communication lines or if an involved computer crashes.

If for some reason a requested delayed transaction cannot be

started or finished in a proper way a system failure has happened
and NDM will take care of this and send a message about the

incident to an operator at some network control center.

Delayed transactions may themselves also invoke other delayed
transactions e.g. in the node of the originating MT (post

processing).

By considering a transaction as a MT and one or more STs of different

types we assume that application system design can become simpler.

Only in those systems where real time update Is a necessity are STs of

type sub transaction required. We believe that many applications
handle only transactions which consists of side transactions and

delayed transactions.

Side transactions are used for querying the database and delayed
transactions for updating the database.

The advantages of this approach are:

short response time. The user has not to wait until all updates
really are done.

— works also in offline situations.

— small overhead In NDM for recovery purposes.

priorities can be assigned to queries and updates. There are also

possibilities to postpone updates during peak hours.

The drawback of this approach are:

— the values in the database are not completely up to date. The

updates are not done immediately.
— the distributed database can be inconsistent for some time.

However it will converge to a consistent state gradually.

These drawbacks have little importance in applications where the risk

for access conflicts is small and/or where it does not matter if the

data are absolutely up to date: for example in banking systems It does

not matter If the balance of an account becomes negative, many

reservation systems accept overbooking.

61



4. Restart

To be able to restart after a local database crash, back—up copies of

the local databases have to be taken regularly. A back—up copy at one

node can be taken independently of the other nodes in the network. A

back—up copy can be taken when a local database is In a consistent

state. This happens when all MTs, sub transactions and delayed
transactions in a node are completely finished. By closing a node for

new updating transactions a local database will soon enter a

consistent state. Normally this happens quickly, however if a node

contains sub transactions in a ready—to—commiC State and the

invoking MTs are in other computers and these are down, it can take a

long time before a consistent state is reached.

The restart procedures must cover the following error situations:

— line failure

— local database crash

— error in after—image log
To be able to recover from these error situations NDM must contain

some extra overhead. The amount of overhead needed for delayed
transactions is rather small because delayed transactions have only a

local scope. However the overhead needed to handle recovery of sub

transactions is both complicated and extensive.

Moreover a distributed database system must also be able to restart

after many coincident errors. The normal restart procedures work well

if one or many line errors occur and/or one or many local databases

crashes at the same time. This is also valid for different

combinations of line errors and errors in the after image logs.

However, if a local database and its after—image log are damaged at

the same time a catastrophe has happened, that is, it is not possible
to restart with information available locally. This situation also

arises when a node is totally destroyed because of fire, sabotage
etc. To restart from such a situation information stored in other

nodes is needed. Special restart procedures must be used and these

often require manual participation. The restart front a catastrophe is

simplified very much if only delayed transactions are used for

database updates.

5. Conclusions

Dividing a transaction in a Main Transaction (the user oriented

process) and Secondary Transactions (the database processes) will help
to develop secure and ~reliabl~ dlstribut&d systems. In addition the

use of only delayed transactions for updating will make transaction

processing much simpler. In that case local COMMIT and ROLLBACK

happens, and this simplifies restart and recovery. Only the secure

execution of the local delayed transactions must be guaranteed.

In how many applications is real time updating a user requirement?
We believe that many applications can be developed with only the use

of STs of type delayed for distributed database updates.
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Distributed Data Management Issues

in the LOCUS SysLem*

Gerald J. Popek and Greg Thiel

University of California at Los Angeles

1. introduction

The LOCUS project at UCLA has taken the view that issues in distributed computer
operation should be primarily addressed at the operating system level, so that all clients:
data bases, transaction processors, language systems, and application software can take

advantage of the solutions. Accordingly, LOCUS, a Unix compatible. distributed operating
system operational on an Ethernet of VAX computers at UCLA, provides a very high degree of

network transparency, both for the file system and tasks. A global name facility, supported
by partial replication, is provided. High reliability features such as support for replicated
files across the network, nested transactions, and graceful partitioned operation are all

present. ‘A LOCUS bibliography is given at the end of this paper.

However, the best test of a distributed operating system results from its use by applica
tions. For example, one expects the existence of network transparency plus operating sys
tem reliability features would make it feasible to obtain considerable distributed data

management functionality merely by running a single machine data base system in a

LOCUS-like environment. (Parallel processing of an individual query would have to be added,
of course.) But a test of this stategy is necessary.

In pursuing this approach to distributed data management at UCLA, a number of data
base issues related to distribution have surfaced. In this note, we wish to comment on three
of them: name spaces, the relationships among transaction mechanisms, and multilevel

logs. We turn to these now.

2. Distributed Name Spaces
The distributed file system component of an operating system must provide a distri

buted name space supported by at least partially replicated catalogs. The name space of a

data base management system is similar to a file system name space. if the underlying dis

tributed operating system (DiOS) provides a global and transparent name space, together
with extensive replication and recovery support after partitioned operation, as found in

LOCUS, then substantial advantage may be obtained by an appropriate mapping of the distri
buted data base management system’s (DDBMS) name space onto the DiOS’s name space.
This section indicates how that mapping can be done.

Consider the nature of the DDBMS name space. it should be global and transparent,
using partial replication for the supporting catalogs, in order to provide flexibility and ease

of use {PopekB3J. The strongest motivation for replication support for a global name space
is the flexibility it provides when combined with transparency. When a transparent, global
name space is provided, applications can easily move from being centralized to being distri
buted, if, in addition, the name space is compatible with a centralized DBMS (CDBMS) then

the applications of the CDBMS can be directly transported to the DDBMS and run without
modification.

Two considerations suggest it should also be hierarchical in nature. in a large distri
buted system, name collisions at the data base level could be frequent (for example, many
erri.ployee data bases). A hierarchical name space would avoid this problem. Further, if the

DDBMS supports partitioned relations*, a hierarchical relationship among them is natural.

‘This research has been supported by Department of Defense contract DSS-MDA-903-82-C-

0189.

Partitioned relations provide, in norm~i operation, the ability to store portions of relations

at diferent sites, and yet have the data base system ma3ce their composition transparent to

the user.
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One critical aspect of a distributed system’s name space is the affect of a failure on the

support mechanism. A user should see minimum adverse affects after a failure. Consider a

catalog replicated at two sites and the affect of a communication failure between the sites.

Catalog operations on the two catalog copies must be able to continue independently and a

catalog merge algorithm must be able to make the two copies consistent when the failure is

corrected. The partitioned operation concept is this view that functions can continue to be

provided in spite of failures and the underlying system will make things “right” when the
failure is resolved. In LOCUS, partitioned operation and merge is provided as an integral
part of the directory system used to support the name space.

2.1. DDBMS To DiOS Name Mapptng
The D1OS’s name mechanisms can provide most of the name support if the DDBMS’s

name space is directly mapped to the DiOS’s name space. For example, the directory
recovery procedure would perform the merge and conflict detection of the DDBMS’S name

catalog required after network reconnection. In this way the DDBMS does not rebuild much
of the functions of the DiOS. Also, with one common mechanism, functionality and perfor
mance improvements are shared by both “users’.

The alternative is for the DDBMS to build its own name space within files of the DiOS. In
this case, the DDBMS must duplicate many of the functions provided by the DiOS: replication
of the appropriate entries, partition merges of the catalogs, etc. On the other hand, perfor
mance tuning is DDBMS specific. The catalog could look much Like a normal relation, for

example. Representation of the hierarchy may be confusing when displayed in this fashion,
however.

There are other DDBMS tables, such as protection catalogs, which also share common

characteristics with the naming facility. They benefit in a similar fashion from use of the

underlying system directory management facilities.

2.2. DiOS Requirements

Mapping the DDBMS’s name space onto the DiOS’s name space places several require
ments on the DiOS’s name support mechanism..

First the user needs to be able to associate some variable length data with each direc

tory entry in order to store the catalog information. The user must be able to change the
data (update the catalog information) and the system must be able to detect conflicting
updates (that result from partitioned operation, for example). Lastly, the DDBMS must be
able to specify a particular entry easily. For this purpose there should be a directory entry
identifier equivalent to a tuple identifier, as if the catalog were a real relation. The DDBMS
can then have tuple identifiers for all relation and catalog tuples and. only be concerned at

the access method level about representation.

2.5. A Proposed Mapping

Given the DiOS functions proposed above, the DDBMS name space can be supported in
the following manner.

For each node in the DDBMS hierarchy there will be a directory in the DiOS file system.
The children of the node will be entries in the directory. in addition each entry will contain

any additional data describing the child nQde. AlL other- catalogs will -be -maintained irr~a~

~hil~d~iirè~tTóry wiih~uples being directory entries in their directory. The catalog’s inforrna
tion will be stored in the user supplied data of the directory entries that comprise the cata

log. in order for the recovery mechanism to perform properly the name of a directory entry
must be a unique key for the catalog.

We assurDe the relational model for thscus~ion purposes.
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A case study is presently being completed to test this view of distributed data management. The single machine Ingres database system is being integrated into the distributed
LOCUS environment, using a name map quite similar to what has just been outlined
Thiel83J.

3. Transactions in a Distributed Environment

It. is becoming the conventional wisdom that the atomic character of transactions in dis
tributed environments, especially in the face of failures, will be increasingly important.Nested transactions have been suggested as a natural consequence of assembling independently developed software packages, and as a way to limit the efTect of intra-transaction
failure. A commonplace example would be a program X, itself a transaction, that involves an
existtng database function, uses a prepackaged transaction-processor for another service,and performs some of its own updates directly to the underlying file system. Assume thatboth the DB and TI’ are bu.ilt to perform their functions atomically.

3.1. The Problem

Currently available transaction mechanisms are inadequate as tooLs to support such anenvironment. First, it is typical in virtually all available systems today that the transaction
facility is implemented in the application package: the data base system, the transaction-
processor, etc. The interfaces to these functions that are made available to clients (peopleorprograms) are simple:

Begin.Iransactjon
Ab orL..transac tion

En&jransactjon

are typical. This approach makes it impossible in general to construct the program X mentioned above and assure its atomicity. The reason is illustrated by the code fragment below.

X BEGIN TRANS DE

BEGIN TRANS TI’

F~E WRITE

END TRANS DB

END TRANS

Failure between the two END TRANS calls means that the DB transaction completed while theTP transaction aborted. (Note that properly nesting the called transactions does not solvethe problem either.)

Further, of course, it is the responbility of X’s recovery software to undo its own. file
updates. This amounts to building another transaction mechanism. Its decision to completeor abort also cannot be synchronized from the available interfaces.

3.2. Possible SoluUon~

There are several approaches to this problem of assembling nested transactions. First,if an inverse operation exists for each transaction (e.g. DEBIT/CREDIT. CREATE/DELETE), orif an UNDO log is retained, and it is possible to determine which transactions completed and
aborted, and recovery mechanisms can be run. immediately upon resumed operation, (sothat the results of apparently completed transactions have not yet been seen), then the
completed transactions can be undone. In a distributed envrionrnent however, it is difficult
in general to fulfIll this last requirement.
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Second, one could require that the functional interface to each transaction mechanism

be altered to give finer control. At least a PREPARE command must be made available,
whose semantics are the familiar internal step of the two phase commit protocol. Then it is

possible to compose transactions by having the parent transaction PREPARE all of the parti
cipants before completing any of them. It is still the responsibility of the application pro
gram X to implement its own transaction mechanism, to make sure that all participant tran
sactions are PREPARED before ENDing them, and to record sufficient information in its log
so that recovery operates correctly.

Lastly, one could provide a full nested transaction in a basic distributed operating sys
tem. All application packages would use it in the standard simple way, and the mechanism

is built once. This is the approach taken in the Locus system. While the mechanism is

extensive (approximately 7000 lines of C code for two phase commit, mtra and inter transac

tion synchronization, version stacks and associated control software) the mechanism exe

cutes surprisingly fast, primarily imposing a cost at the end of the parent transaction that is

just a few times greater than that required to close all resources anyway. This approach is

very attractive if one can accept a. homogeneous distributed operating system base. Other

wise, the other options need to be considered.

3.3. Multi-Level Logs
Transaction implementations typically involve extensive use of logs and supporting

fadilties. Many applications create objects which are log-like for reasons other than transac

tion support. Therefore, a log type could be considered as a reasonable facility to be pro
vided by the underlying system. When the transaction support is provided by the OS then

the generalized log type provided by the OS would permit all the OS’s applications to use this

object type for any log-like activities. Since a DBMS represents one major class of OS appli
cations it is reasonable to expect that database related applications may well be able to take

advantage of a log object type. Therefore we are ex~rninir1g a multi-level log mechanism.

As an example, consider a three level software system composed of a operating system
kernel, a DBMS and a editor built on top of the DBMS. At the operating system level many

types of asynchronous and synchronous events may be logged: configuration changes,
software failures, device errors, two-phase coordinator commit points, etc. At the DBMS

level more data needs to be logged, including software failures, usage data, partitioned
operation information and catalog recovery information. The editor may keep a keystroke
file or information in order to provide the user with an undo function. Such logging facilities

are being investigated as part of the LOCUS based distributed database effort.

4. Conclusion

Repeatedly it appears that one can profitably avoid solving the same problem at multi

ple levels in computing systems. To do so however requires understanding the tasks to be

accomplished at each leveL so that commonality and restructuring can be accomplished.
Each of the approaches raised in this note is an attempt to develop this commonality.
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I. The Database Programming Languages (DBPL) Project

The DBPL project at the University of Hamburg is centered around the

integration of database models and programming languages. It is

motivated by the insight that most of the interfaces used to access real

databases are not stand-alone data sublanguages but complex programs

requiring the functionality of a high-level programming language and of a

database model, both integrated into a unilingual and homogeneous

framework (SCHM77]. SCHM78L The relational approach to databases and

Pascal-like programming languages, both known for their well-designed
data structuring capabilities, have proven as a framework particularly

suitable for that integration effort.

The usefulness of high level database programming languages has been

demonstrated by several successful applications of the database

programming language Pascal/R (SCHM80I. It is used for teaching database

management courses, for database applications (e.g.. 50 Mbytes in fishery
research BIOM81]), for the development of database programming

methodologies tBRODB1), and as a target language for very high level

languages like TAXIS at the University of Toronto. and the natural

language system HAM-ANS at the University of Hamburg.

The DBPL project evolved from ideas resulting from the design and

implementation of Pascal/P from 1975 to 1979. The project has the

objective to investigate in more depth language constructs and execution

models for essential database programming problems. In particular,
issues of query evaluation and transaction management as well as their

mutual interaction are addressed. The project takes a high level

approach in the sense that it emphasizes the development 0f high level

language constructs together with their transformation and evaluation

over representational issues. A notion central to our approach is that

of a selector for relation variables providing abstract access to

subrelation variables. The concept of a selected relation variable is

used to essentially support query evaluation as. -well a-s transaction and~

integrity control.

The DBPL pro)ect (principal investigator: Joachim W. Schmidt) -

is supported by the Deutsche Forschungsgemeinschaft (DFG)

under grant no. Schm. 450/2-1.
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2. The Selector Concept

Since, in practice, several users contribute to the data integrated
into a relation, individual users often do not require access to full

relation variables. In the following, we sketch the notion of a selector

(MALL82] that provides access to selected parts of relation variables.

The uniqueness of key values within a relation provides a basis for

selecting and altering individual relation elements. Let us assume that

the relation, relk, has a key composed of the two attributes ki and k2.

In Pascal/R syntax the statement

IF SOME r IN relk (<r.kl,r.k2) <kvl,kv2))

THEN relk :~ C <.
. ,kvl, . .

,kv2, ..)

ELSE relk :~ C
. . ,

kvl
, . . ,

kv2
, . .

> 3;

replaces (:&) the value of the relation element with the specific key

value, <kvl,kv2>, by a record <.
.
,kvl,..kv2, ..). or inserts (:~i a new

element, if an element with this key value does not exist. The above

statement is equivalent to the assignment
relk :~ C EACH r IN relk: NOT (<r.kl ,r.k2> <kvl ,kv2>)

,kvl.. . ,kv2, .
.> 3;

If we switch from the set-like perception of relations taken so far

to an array-like or table-like view, the above statement can be

interpreted as an assignment of the record <..,kvl,..,kv2,..) to the

relation element identified by its key value, (kvl,kv2>. We identify a

relation element by means of a so-called element selector and write,

e.g., relk(kvl,kv2]. Assigning a record variable, rec, to a selected

relation element, relktkvl ,kv23 :~ rec. is defined to be equivalent to

the following conditional assignment:

IF <rec.kl,rec.k2> <kvl,kv2>

THEN relk (EACH r IN relk: NOT(<r.kl,r.k2> <kvl,kv2)), rec]

ELSE (exception);

The notion of an element selector can be generalized to selectors

denoting arbitrary subrelation variables. This is achieved through the

concept of a selector generator that allows for the definition of

selectors based on arbitrary selection predicates. The above element

selector, for example, is equivalent to the definition

SELECTOR sk (kfl:kltype; kf2:k2type) FOR rel: relktype;

BEGIN EACH r IN rel: <r.kl,r.k2) <kfl,kf2> END;

which introduces a selector name, parameters, a formal base relation and

a selection predicate. The notation relk(kvl,kv2] is therefore

equivalent to elksk(kvl,kv2)] selecting the relation relk through the

selector, sk, with the key value, <kvl.kv2>, as actual parameter.

In its most general form, a selector is based on an arbitrary
selection predicate p

SELECTOR sp (...) FOR rel: reltype;

BEGIN EACH r IN rel: p(r, . . .
) END;

and the assignment relk(spt . . .
:~ rex is equivalent to

IF ALL x IN rex (p(x, . .

THEN relk :~ (EACH r IN relk: NOT p(r,
. . .

)

EACH x IN rex: TRUE]

ELSE ~exception);
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A predicative notation for the selection of subrelations is of high
value for the definition of access rights and integrity constraint3 as

well as for the definition of generalized access paths (permanent

selectors). Sections three and four describe how the strategies for

query evaluation and transaction management applied in the DBPL project
take advantage of selectors.

3. Query Evaluation

From a database programmers point of view, a query is a

relation-valued expression based on a selection predicate. The predicate

is a well-formed formula of an applied many-sorted predicate calculus

with existential and universal quantifiers where the “sorts” are the

range relations (relation expressions) to which element variables are

bound.

A general evaluation procedure for relational expressions performs

the following steps JARK82a];

(1) It applies logical transformations to the expression that

- standardize the expression (e.g., transform into prenex normal

form) in order to simplify subsequent transformations,

- simplify the query (remove redundancy) to avoid double work, and

- ameliorate the query (e.g., apply the range nesting method as

described below) to streamline the evaluation and to allow

special case procedures to be applied.

(2) It maps the transformed expression into alternative access plans.

(3) It chooses the cheapest access plan and executes it.

This procedure provides the framework for our research activities in

query evaluation JARKB2b].

The recognition and adequate processing of special classes of

expressions plays an important role in our approach to query

optimization. We have identified syntactic properties of a class of

quantified queries, so-called perfect expressions ()ARKB33, lending

itself to particularly efficient evaluation. Perfect expressions include

quantified tree queries and certain classes of cyclic queries. We have

developed range-nesting techniques that, given some perfect expression,

produce an equivalent (range-) nested expression, which subsequently

controls a stepwise execution of the evaluation procedure (inner nestings

first). At each evaluation step a subexpression is evaluated that is at

most as complex as

EACH r IN rel: SOME/ALL x IN rex ( p(r,x) )]

where rex denotes an already evaluated inner expression and where p(r,x)

stands for a conjunction of dyadic terms. Certain combinations of

comparison operators and quantifiers, e.g.,

(EACH r IN rel: ALL x IN rex ( r.A < x.A )]

give rise to further simplification of a single step, e.g..

(EACH r IN rel: r.A < MIN(rex,A)]

ancL~so contribu~te to-a ‘cheap’ evaluation of quantified queries that are

usually perceived as being rather ‘expensive’.

The method can be improved further by explicitly making use of

permanent selectors. Prior to its evaluation, any subexpression can be

checked if it is equivalent to some selector predicate, for which the

corresponding selector is supported by an access path. If so, a
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subexpression, (EACH r IN rel: p(r. .
.)], can be replaced by the

equivalent selected variable, rel(sp].

Advanced access methods are explored with respect to their

usefulness for our approach to query processing. We are especially

interested in multi-dimensional access methods. i.e., access methods that

efficiently support access over attribute combinations. Such access

methods directly implement various classes of conjunctive

intra-relational queries, such as point queries, range queries and

partially specified queries. Thus, they are the prime candidates for the

support of permanent selectors.

Finally, we are working on extending the scope of query optimization

from one expression to a set of expressions. In database programming

languages where concurrent access to databases is supported by language

constructs for the formulation of compound database operations

(transactions), there are two lines of attack. First, we are working on

the simultaneous optimization of all expressions contained in one

transaction (vertical scope extension), and second, we are investigating
the idea of a shared query optimizer that processes expressions of a set

of active transactions simultaneously (horizontal scope extension). Both

approaches have specific coordination requirements with respect to

concurrency control (e.g., minimizing the chance of transaction backup).

Furthermore, they differ in the set of viable architectural alternatives

for their implementation (e.g., vertical scope extension can be

implemented by linking a completely separate query optimizer to each

transaction, whereas horizontal scope extension always requires some sort

of synchronization). In addition to a substantial improvement of overall

performance we expect to achieve further insight into the complex

interdependencies of query evaluation and transaction management.

~. Transaction Management

In addition to concepts for data selection, a database programming

language has to provide linguistic support for transaction definition. A

transaction is a compound database operation that transforms a database

from one consistent state into another. In EREIMB1) and (MALL82], •the

procedure concept of high level programming languages has been extended

to a transaction concept by adding the semantics that transactions are

executed either entirely or not at all.

A set of transactions can be executed in parallel if no transaction

changes a (selected) relation shared with another transaction. It is the

responsibility of the concurrency control component of a database system

to make sure that a (selected) relation variable with the access right,
WRITE, is imported exclusively, i.e., by only one transaction at a time.

Since selected relation variables, as introduced in section two, are

variables in their own right, transactions can import them and can

operate concurrently on non-overlapping partitions of the same relation.

In the DBPL project, we investigate two types of predicative

approaches to concurrency control. The (predicate) locking method avoids

conflicts between parallel transactions a-priori by guaranteeing the

dlsjointness of (selected) relation variables before the database is

accessed. ~irco the disjointness test is purely based on access
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intentions (predicates) locking of predicates has the disadvantage that,

in general, more conflicts are signaled than may actually occur.

An alternative method analyzes conflicts a-posteriori when the

actual data changed by parallel transactions are known. The test for

disjointness consists of querying these data by the predicates defining

the selected variables that are imported by the transaction to be

analyzed. An execution of a transaction is conflict-free, if and only if

the query against the data changed by the transactions that completed

during its execution produces an empty relation.

Since the performance of pure a-priori approaches as well as of pure

a—posteriori approaches is acceptable only under extreme - pessimistic

resp. optimistic - assumptions about the transaction load, we are

experimenting with combined methods that are adaptable to changing load

profiles. Another motivation for combined methods is the insight that

concurrency control and query optimization require coordination. We are

working on a basically a-posteriori transaction handler that schedules,

however, ‘read-only’ transactions due to a-priori principles. In that

case the query optimizer can simultaneously eva]:uate queries of read-only

transactions without risking that any of these transactions has to be

restarted because of a conflict.

5. Current status of the DBPL Pro~ect

The design of the database programming language DBPL has been

completed using Modula-2 as its algorithmic kernel MALL82], tSCHM83].

Language compiler, query optimizer and concurrency manager are being

implemented on a VAX-li under VMS in Modula-2, which our group moved from

a POP-li to the VAX-il and adapted to the VMS environment K0CH82].
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DISTRIBUTED PROCESSING

AND DATABASES

Tutorial: Distributed System Design

Burt H. Leibowitz and John H. Carson

Concentrates on design methods for distrib

uted computing systems, providing both an

immediately useful design approach and a

framework for future research. A “baseline”

design approach, uniting known procedures,

techniques, and computer aids, is described

and used to guide tutorial topics. This tutorial

is structured according to the baseline design
activities as if they were completely generic
to all levels. Level-related differences are dis

cussed where deemed important. Specific

chapters cover analysis, partitioning, alloca

tion, and synthesis. Contains 23 reprints.

267 (ISBN 0-8186-0120-5): October 1979,

414 pp. NM, $20.00; M, $15.00

Tutorial: Distributed Control

(2nd Ed.)

Robert E. Larson, Paul L. McEntire,

and John 0. O’Reilly

Divided into five chapters with two appendi

ces, this tOtoriál di~cUssés the theory aväil

able for decentralized control and indicates

how that theory can be applied to distributed

computing systems. The basic concepts are

explained in detail and are illustrated by nu

merous examples. This tutorial contains ex

tensive original material, 28 reprinted articles,

an annotated bibliography, and author and

subject indices.

451 (ISBN 0-8186-0696-7): October 1982,
394 pp.

Tutorial: Distributed Data Base

Management

James B. Rothnie, Jr., Philip A. Bernstein,

and David W. Shipman

This tutorial presents an overview of both re

lational and distributed data-base manage

ment systems and discusses other data base

related subjects such as retrieving dispersed
data from distributed systems, the concur

rency control mechanism of distributed sys

tems, query processing, a solution to the

concurrency control problem for multiple

copy data bases, multi-copy resiliency tech

niques, and centralized and hierarchical

locking. Contains 10 reprints.

212 (ISBN 0-8186-0116-7): October 1978,

206 pp. NM, $14.00; M, $10.50

Order books with your membership

application and receive member ratesi

Tutorial: A Pragmatic View of

Distributed Processing Systems

Kenneth J. Thurber

Based on a series of seminars dealing in part
with the meaning of distributed processing
and introducing overall concepts in distribut

ed systems, this books utilizes a top-down

approach, beginning with the overall concept
and working toward implemented hardware

structures. Its main purpose is to illustrate the

problems and promises, while keeping the

reader informed of the pitfalls and progress.

The tutorial is organized into eight sections,

each consisting of a discussion of the main

issues in the category of interest and a set of

reprints selected to illustrate the major

points.

299 (ISBN 0-8186-0134-5): May 1980, 616

pp. NM, $28.00; M, $21.00

W~M

DATA BASE MANAGEMBIT
IN ThE 1980’s

Tutorial: Data Base Management in

the 80’s

James A. Larson and Harvey A. Freeman

This tutorial addresses the kinds of data base

managernenLsystems (DBMS).~that- will be

available through this decade. Interfaces

available to various classes of users are de

scribed, including self-contained query lan

guages and graphical displays. Techniques
available to data base administrators to de

sign both logical and practical DBMS archi

tectures are reviewed, as are data base

computers and other hardware specifically

designed to accelerate database manage

ment functions.

Tutorial: Distributed Processing
(Third Edition)

This tutorial presents an introductory overview

of distributed processing. Three major areas of

distributed processing are defined: points of

use systems; resource sharing networks; and

multiple processor systems. Characteristics,

examples, benefits, and trade-otis are present
ed for each area. Presents technological is

sues involving processors, communications,

intercomputer coupling, executive software

structures, system architectures, component

selection, and allocation of functions and

data files to multiple processors. Several

case histories are discussed to provide in

sight into design issues, cost effectiveness,

and management problems. Contains 56

reprints.

363 (ISBN 0-8186-0132-9): revised April

1981, Third Edition, 640 pp.

NM, $25.00; M, $18.75
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authoritative and popular
Tutorials on Networks

Harvey A. Freeman and Kenneth J. Thurber

This tutorial describes the interconnection of

microcomputers into networks. It is the first

tutorial exclusively devoted to systems or

networks of microcomputers. Commercial

users, research laboratories, educational in

stitutions, and the military have all been at

tracted to the network approach. The 31

reprinted papers are the best currently avail

able in the field. Five sections cover: the ori

gins of microcomputer networks, techniques
and issues relating to interconnecting net

works, network operating systems, descrip

tions of currently available commercial

microcomputer networks, and case studies

of networks and approaches.

395 (ISBN 0-8186-0136-1): December 1981,

288 pp. NM, $20.00; M, $15.00

Tutorial Computer Networks

(3rd Edition)

Marshall Abrams, Robert P. Blanc, and

Ira W. Cotton

The most recent revision of IEEE Computer
Society’s most popular tutorial covers the

areas of network topology, communica

tions media, network technology and its ef

fect on network performance, resource

sharing requirements and techniques, and

new approaches to network performance

measurement, access, and management.

Specific examples illustrate concepts and

terminology to enable novices to easily un
derstand specific topics.

297 (ISBN 0-8186-0104-3): 1980 Revision,

520 pp. NM, $20.00; M, $15.00

Tutorial: Local Computer Networks

(2nd Edition)

Kenneth J. Thurber and Harvey A. Freeman

Forty reprints in this tutorial lead up to an

entirely new section on example LCN pro

ducts. Thirty-eight of these papers are divid

ed into sections by LCN type in both

distributed processing and system enhance

ment contexts. Additionally, the text includes

two introductory papers and an editorial over

view for each of the sections.

368 (ISBN 0-8186-0142-6): June 1981, 371

pp. NM, $20.00; M, $15.00

Tutorial: Office Automation Systems

Kenneth J. Thurber

This tutorial explores the frontiers of office

automation. It examines current technol

ogies being proposed for office automation

functions and the state of the art in these

technologies. It concludes with a hypotheti
cal office system design, which attempts to

structure the functions of an office in a hierar

chical fashion. Primarily intended for manag

ers, system analysts, programmers, and

other technical personnel who are interested

in the future of office automation, local net

works, office equipment, and distributed

systems.

339 (ISBN 0-8186-0152-3): December 1980,

902 op. NM, $14.00; M, $10.50

An important topic
in the eighties!

Tutorial: The Security of Data in

Networks

Donald W. Davies

Presenling the major advances in the appli
cations of cryptography since the mid-seven

ties, this tutorial covers the main components
from which a secure data network can be de

signed and describes some of the potential
weaknesses of such a system. Techniques to

keep data secure from “line-tapping” are ex

plored as well as ways to develop and evaluate

the security of networks. Tutorial includes 22

reprints, extensive original work, an annotated

bibliography, and subject index.

366 (ISBN 0-8186-0146-9): August 1981,

242 pp. NM, $20.00; M, $15.00
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(available Only to IEEE members) U $6.50 U $13.00

Tolal amount remitted with this application:

(Make checks or money orders payable to IEEE. Mail to the IEEE Computer
Society, 10662 Los Vaqueros Circ)e, Los Alamilos, CA 90720.)

IEEE members in Region? (Canada) and 8 (Western Europe and the Mid-East) may
deduct $6 from full-year rates, $3 from half-year rates. IEEE members in Regions 9 and
10 may deduct $13 from full-year rates, $6.50 from half-year rates. ACM members who

join both the IEEE and the Computer Society may deduct $5 from full-year rates, $2.50
from half-year rates.

Hardcopy bulk air option for members in Regions 8-10: Western Europe, Latin America
(including Mesico(, and the Far East.

Add the following amount(s) for two-

week delivery for COMPUTER, IEEE

Computer Graphics & Applications,
and IEEE Micro, and two- to sia.week Western Europe All Other Areas

delivery for Transactions: Half-Year Full-Year Half-Year Full-Year

COMPUTER 0 $7.00 0 $14.00 0 $26.25 0 $52.50

IEEE Computer Graphics &

Applications 0 $3.50 0 $7.00 0 $13.25 0 $26.50

IEEE Micro 0 $2.25 0 $4.50 0 $8.75 0 $17.50

Transactions on Computers 0 $4.75 0 $9.50 0 $17.50 0 $35.00

Transactions on Computer-Aided
Design of Integrated Circuits

a,rdSystems 0 $1.50 0 $3.00 0 $5.75 0 $11.50

Transactions on Software

Engineering 0 $3.25 0 $6.50 0 $11.75 0 $23.50

Transactions on Pattern Analysis
and Machine Intelligence 0 $3.25

Journal 01 Oceanic Engineering 0 $1.00

Journal of Solid State Circuits U $4.25

Proceedings of the IEEE 0 $7.25

“Western Europe” includes Albania, Austria, Belgium, Bulgaria, Cyprus, Czechoslo

vakia, Denmark, Finland, France, East Germany, West Germany, Gibraltar, Greece,
Greenland, Holland, Hungary, Iceland, Ireland, Italy, Liechtenstein, Luxembourg, Malta,
Monaco, Norway, Poland, Portugal (and Azores), Rumania, Spain (and Canary Islands),
Sweden, Switzerland, Turkey, United Kingdom, USSR, and Yugoslavia. “All other areas”

includes all other countries outside the U.S., Canada, and Mexico.
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