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Letter from the Chief-Editor

This issue is about expert systems and database systems. As the issue

focuses on a topic which straddles two different disciplines, it has

turned into the most voluminous issue in the history of Database Engineer
ing. An expert system is generally defined to be a computer program which

uses explicitly represented knowledge and inference procedures to solve

problems in some specific domain which have traditionally depended on

human experts. As I suspect many of the readers of Database Engineering

may not be familiar with expert systems3 I wanted this issue to first of

all serve as a brief introduction to expert systems and then to indicate

how database systems may be made more intelligent by either connecting
them with expert systems or by augmenting them with some expert system

techniques.
The first three papers are intended to introduce some fundamental

aspects of expert (knowledge-based) systems. The “Short Introduction to

Expert Systems” by Clifford, Jarke and Vassiliou provides an overview of

the architecture of expert systems and outlines directions of current

research. In “Knowledge Engineering and Fifth Generation Computers,”
Furukawa and Fuchi, leaders of Japan’s 5th generation computer project,

provide a rationale for their choosing a Prolog-based logic programming

language as the basis of the next generation of computer systems and then

give an overview of the Fifth Generation Computer project in Japan. Par

saye gives a brief introduction to the Prolog language and indicates the

relationship between Prolog and relational databases in “Logic Program

ming and Relational Databases.”

The next three papers were selected to provide some concrete examples
of expert systems, including two of the best-known expert systems current

ly in use, Ri and Prospector. ~IcDermott, in “The Knowledge Engineering
Process,” first discusses the steps involved in constructing expert sys

tems and then relates them to the Ri computer configuration assistant sys

tem. In “A Review of the Prospector Project,” Reiter provides a summary

of the outstanding features of the Prospector geological exploration
assistant system and discusses what has been learned from the project.
An Orthodontic Case Study Instruction System Based on a Relational Data

base System,” by Kanamori, Sugawara, and Masunaga, describes an

instructional system which, due to the domain of expertise it addresses,
does not have the conventional inference capabilities. This is a

non-invited paper.

The question of how database systems may be made more intelligent is

addressed in the next four papers. Vassiiiou, Jarke, and Clifford outline

a research project in expert systems and describes some architectural

alternatives in bridging expert systems with database systems. In “Basic

Decisions about Linking an Expert System with a DBMS: A Case Study,”
Lafue cautions that the choice of an implementation language for expert

systems depends on applications and that sometimes it may be better to

extend expert systems into database management systems. Then

Stonebraker, Woodfill and Andersen describe how an existing relational

database system may be made more intelligent by incorporating a rules sys

tem. Another proposal for making database systems more intelligent is to

make use of the semantic knowledge about the data. The results of this

line of research are summarized in “Applications of Artificial Intelli

gence in the Knowledge-Based Management Systems Project” by Wiederhoid,

Hilton, and Sagalowicz.
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It has been a pleasure to work with the authors who contributed to this

issue. The cooperation I have received from them, who I realize are hor

rendously busy, has been truly gratifying. I owe special thanks to Dr.

Adrian Walker, Prof. Yannis Vassiliou, Prof. Gio Wiederhold, and Prof.

Michael Stonebraker for providing me with leads to the authors who con

tributed papers to this issue.

Our publication schedule for 1984 is as follows. Don Batory will open

1984 with an issue on Statistical Databases. Randy Ka~z will follow with

an issue on Engineering Design Databases. Then Dave Reiner will do an

issue on Operating System support for Database Systems.

Won Kim

October, 1983

San Jose, Calif.
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A SHORT INTRODUCTION TO EXPERT SYSTEMS

Jim Clifford, Matthias Jarke, and Yannis Vassiliou

Computer Applications and Information Systems •Area

Graduate School of Business Administration

New York University

It is a generally accepted view among researchers in Artificial

Intelligence that the 1980’s will witness a tremendous upsurge in the

number of successful applications of Al expertise to real-world

systems. High on the list of the technologies that are expected to be

applied in the marketplace are expert, or knowledge-based, systems.
The formation of a number of expert system companies, often in close

collaboration with major academic Al research centers, attests to the

growing belief in the economic viability of this technology transfer.

Although there is yet to be developed a formal theory of what

constitutes an expert system, there are some general features that can

be identified.

An expert system (ES), by definition, is a computer system which

attempts to act like a human expert in some limited application
domain. For decades people have certainly been building computer
systems that have attempted to be expert in their field of application
-- no one has purposefully (unless maliciously) built a system that

was intended to bungle its job! There are perhaps two aspects to an

expert system that distinguish it from more traditional computer
systems: overall architecture, and method of development.

An expert system architecture consists of two interacting
components: a “knowledge base” and an “inference engine.” The

knowledge base contains all of the information that a human expert
would normally need to carry out the desired task. This knowledge
base itself is usually divided~ into two sub—components, the first

containing specific, or “ground” facts (e.g., “Mary Smith is 35 years

old”), and the second containing more general principles, rules, or

problem-solving heuristics (e.g., “If a person is single then that

person has no spouse”), which come from accumulated empirical
observations or technical knowledge of the domain. An important
feature of ES’s is that both of these knowledge bases are stored

declaratively in some assertion language, and not buried somewhere in

computer code. This means that the knowledge incorporated into the

system is easily accessed by the users, and potentially more easily
modified or extended. The second component in an ES is a general
purpose inference engine that is capable of making decisions from,
answering questions about, and determining the consequences implied by
the knowledge that is built into the system.
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The other unusual aspect of expert systems is the manner in which

they are constructed. The architecture of an ES in a way dictates the

often—quoted motto of ES researchers that “in the knowledge lies the

power.” What this slogan means is that the knowledge base component of

an ES contains all of the domain-specific information for the

application. In practice, because of the declarative nature of this

knowledge base, and the power of the Al languages that have been

developed for these systems, this has led to an Incremental approach
to ES development. Working in small teams of about 3 people,
consisting minimally of the domain expert, a programmer, and a

knowledge engineer, a small prototype ES is developed, usually in a

matter of 2 or 3 months. The system isthen successively refined in a

process of examining its behavior, comparing it to that of the human

expert, and correcting its reasoning processes by modifying Its

knowledge base. This process continues until the system performs at a

level of expertise that approximates that of the human expert. At

this point the system is ready for evaluation in the field. However,
just as a human expert never stops developing or expanding his/her

expertise, the ES is structured to facilitate continued growth and

expansion of its capabilities.

In this short paper, some basic aspects of the structure and

range of expert system applications are addressed, and directions of

current research are indicated. Other comprehensive references on the

subject are: Barr and Feigenbaum 1982, Buchanan 1981, Davis 1982,
Duda 1981, Gevarter 1982, Hart 1982, Hayes-Roth 1981, Hayes-Roth et

al 1983, Michie 1980, Nau 1983, Stefik et al 1982L

1.0 ARCHITECTURE OF EXPERT SYSTEMS

For a long time, artificial intelligence has concentrated on the

development of procedural techniques and representations such as

heuristic search methods and problem transformation techniques. These

have proven too general to solve real world problems in specific
domains. Therefore, the focus has shifted to the representation and

use of domain knowledge to guide search processes more efficiently.

The observation that human domain experts use domain knowledge as

well as meta-knowledge (knowledge about the scope of one’s knowledge
and knowledge about how to use one’s knowledge) efficiently has led to

the idea of extracting knowledge from a human expert into a knowledge
base The knowledge base is therefore at the heart of’ any expert
system. It is a storehouse of knowledge in the form of specific facts

and general rules, or in frames of reference that structure the

expert’s experience and expectations.

To exploit the knowledge, an inference engine is required that

relates a problem description to the stored knowledge in order to

analyze a certain situation (e.g., in medical diagnosis) or to

synthesize a solution for a specific problem (e.g., a computer
configuration). Such an inference engine can be a pattern matcher,
theorem prover, or network search mechanism customized for one expert
system, or it may exist already in the compiler of a corresponding
knowledge representation language such as OPS-5 Forgy 19801, Prolog
Kowaiski 1979], or EMYCIN van Melle 1979]). Even in the latter
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case, some additional control mechanism may be required to cut down

the number of inferences to be made.

The third major component of an expert system contains a number

of user interfaces for various purposes. The two most important seem

to be an interface for knowledge acquisition through which the expert
or an intermediary can insert, update, and check knowledge in the

knowledge base, and an interface through which end-users can get
consultation from the expert system. As a windfall profit, the stored

expertise can sometimes be made available to train new human experts.

2.0 KNOWLEDGE REPRESENTATION AND INFERENCE PROCEDURES

The knowledge base may require the description of facts about

specific objects, relationships, and activities; of classification

and generalization hierarchies; of general relationships between

object and activity classes; and of meta-knowledge about the scope,

importance, precision, and reliability of the stored knowledge. Just

as database research has developed multiple representations for

specific facts, many techniques exist to represent the more general

knowledge required for expert systems.

A “good” knowledge representation should support the tasks of

acquiring and retrieving knowledge as well as of reasoning. Factors

that have to be taken into account in evaluating knowledge
representations for these three tasks include:

1. the naturalness, uniformity, and understandability of the

represéntat ion;

2. the degree to which knowledge is explicit (declarative) or

embedded in procedural code;

3. the modularity and flexibility of the knowledge base;

11. the efficiency of knowledge retrieval and the heuristic power

of the inference procedure (heuristic power is defined as the

reduction of the search space achieved by a mechanism).

Below, four major knowledge representation techniques and their

related inference mechanisms will be briefly reviewed. A thorough
examination of knowledge representation is given in Mylopoulos 1980].

2.1 Production Rules

Rules Davis, Buchanan, and Shortliffe 19771 have been the most

popular form of knowledge representation in expert systems.
Chandrasekaran 1983] points out three interpretations of the function

of rules in expert systems. First is the interpretation of rules as a

programming language A rule typically has the form

if X then Y.

It can be used in computations in different ways. On one hand, In a
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data-driven or forward chaining approach, one can try to match a given
situation to the condition X in order to infer a possible action Y.

On the other hand, one can try to “prove” a hypothesis Y by
establishing the preconditions X through further analysis (backward

chaining). Combinations of both methods are also sometimes used.

Both approaches require a pattern matching process, perhaps
combined with unification (substitute constants or other variables for

variables in the pattern to be matched) to identify the applicable
rules in a given problem situation. If there is more than one of

those, one has to be selected for further processing first. Control

structures for rule application can be distinguished by their

flexibility of rule choice into irrevocable (“hill—climbing”) or

tentative, and by the sequence of analysis in depth-first with

backtracking or breadth—first with parallel graph search Nilsson

1980].

Secondly, rules can be used as description tools for

problem-solving heuristics, replacing a more formal analysis of the

problem. In this sense the rules are thought of as “rules of thumb,”

incomplete but very useful guides to make decisions that cut down the

size of the problem space being explored. These rules are input to an

expert system by the human expert, usually iteratively and perhaps by
means of an interactive program that guides and prompts the expert to

make this task easier, and perhaps does some limited consistency
checking.

Finally, rules have been proposed as in some sense a simulation

of the cognitive behavior of human experts. By this claim, rules are

not just a neat formalism to represent expert knowledge in a computer
but rather a model of actual human behavior.

A problem with rule-based techniques is the organization of the

stored knowledge in a way that permits efficient yet transparent
control over the search processes inside the knowledge base. There is

currently no satisfactory formal solution to this problem but a number

of ad-hoc programming tricks have been developed.

2.2 First-Order Logic

Precise knowledge can be stated as assertions over objects that

take the form of first-order predicates with functions and equality
Kowalski 1979]. Logic has the advantage of offering a sound and

complete set of inference rules. It is also purely declarative and

therefore allows multiple uses of the same piece of knowledge. For

inference purposes, predicates are usually transformed in a

quantifier-free normal form called clausal form.

As an illustration, Prolog’s McDermott 1980, van Emden and

Kowalski 1976] inference procedure is based on the resolution

principle Robinson 1965]. In order to prove a theorem in clausal

form, its negation is added to the set of knowledge clauses or

“axioms”. If the thus augmented conjunction of clauses can be shown

to be contradictory, the theorem has been proved.
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A major problem with general first-order logic as a knowledge

representation is again the difficulty to express control structures

that efficiently guide the use of a large knowledge base. To reduce

such problems, practical tools such as the logic programming language

Prolog use the subset of definite (Horn) clauses rather than full

first-order logic. Furthermore, these clauses are interpreted in a

procedural way similar to backward chaining in production rules,

leading to a more efficient search process while reducing somewhat the

generality of interpretation possible in a nonprocedural

interpretation.

2.3 Networks

Semantic networks Quillian 1968, Brachman 1979, Schubert 1976]
seem to be more popular in other Al applications (e.g., natural

language processing) than in expert systems. Nevertheless, a number

of expert systems rely on network formalisms, among them very large
systems such as INTERNIST Pople 19831, Prospector Hart et al 1979],
and SOPHIE Brown et al 1981]. Networks are a natural and efficient

way to organize knowledge. Nodes describe objects, concepts, or

situations whereas arcs define the relevant relationships. Reasoning
corresponds to network traversals along the arcs or to pattern
matching of problem descriptions and subnets. A large number of exact

and heuristic mechanisms exist for these tasks. The disadvantages of

this approach stem from the lack of formal semantics making
verification of the correctness of reasoning very difficult.

2.L~ Frames

Much knowledge is based on experience and expectations adapted
from previous situations and general concepts to a specific problem.
Frames Minsky 1977, Schank 1972, 1975, Bobrow 19771 provide a

structure to such experiential knowledge by offering so-called slots

which can be filled with type descriptions, default values, attached

procedures, etc. Frames are a very general and powerful
representation form. It may be difficult, however, to specify their

meaning precisely as well as to implement them efficiently.

2.5 Multiple Knowledge Representations

It should be clear by now that no one of the knowledge
representation methods is ideally suited for all tasks. In very

complex systems using many sources of knowledge simultaneously (e.g.,
speech recognition Erman et al. 1980]), the goal of uniformity may
have to be sacrificed in favor of exploiting the benefits of multiple
knowledge representations each tailored to a different subtask.

Similar to the interdisciplinary cooperation of several human experts,
the necessity of translating among knowledge representations becomes a

problem in such cases.

The need for translation also occurs when an expert system is

interfaced with other software systems, e.g. database management
systems.
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3.0 USER INTERFACES

There are at least three distinct modes of Interacting with the

expert systems that are now being developed: consultation, knowledge
acquisition, andtraining. Of course not every system allows these

three types of interaction, nor is this interaction always facilitated

by means of automated tools. Nevertheless the basic expert system
architecture that has emerged has shown itself to be capable of at

least these modes of interaction. In this section we will give a

brief overview of these three Interaction types.

3.1 Consultation

The primary mode of interaction is the consultation session,
wherein the expert system is used to solve the problem for which it

was constructed. There are really two forms that this interaction can

take. In the simplest case some member of the user community, not

necessarily the expert, presents a problem to the system and requests
that the system apply its expertise to generate a solution. Assuming
it is capable of understanding the problem statement and then of

solving the problem, the system responds to the user with the solution

and everyone is happy.

If the user is unhappy with the solution, uncertain as to its

validity, or desirous of an explanation of “why” or “how” the system
has reached its conclusion, the user can typically enter into a second

form of the consultation mode of use and request an explanation of the

steps that the system has followed to achieve the generated result.

In most cases this explanation takes the form of’ a formatted

presentation of the chain of rules that were activated by the

Inference engine in reaching the solution. This explanatory

capability is a major advantage over more conventional systems, and is

facilitated by the architectural feature of a clear separation between

the knowledge base and the Inference mechanism.

3.2 Knowledge Acquisition

A second form of interaction with the expert system is the

knowledge acquisition process, wherein the knowledge and heuristics

used by the human expert in the problem-solving task are transferred

Into the knowledge base of the expert system. This dialogue is the

least understood process in
-

the expert system paradigm. In most

systems this interaction is not automated, but rather is mediated by a

“knowledge engineer” Feigenbaum 19801 whose job it is to (a) pick the

brains of the human expert for the knowledge, principles, and

heuristics used to solve the problem at hand, and (b) translate this

communicated information into the form(s) required by the

representation language(s) within which the expert system is being

implemented.

There are very few guidelines available for how to facilitate

this process. It is generally recognized that this is a long and

tedious process, requiring good conceptual and communication skills,
considerable patience, and experience. Moreover, it is this knowledge

acquisition process which is iterative, continuing throughout not only
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the development of the system but during all of its useful life. On

the other hand, this is another touted advantage of expert systems
over conventionally engineered systems -— the ability to grow and

learn, thereby providing the opportunity to continually improve
performance. While this expandability is certainly enhanced by the

isolation of the knowledge base, it is clearly not always a simple
task to expand the limits of a system’s expertise.

Much research is currently being devoted to techniques for at

least partially automating the knowledge-acquisition process. Such

systems as AGE Nh and Aiello 1979], KAS Duda et al 1979], TEIRESIAS

Davis and Lenat 1982], EXPERT Weiss and Kulikowski 1979],
HEARSAY-Ill Erman et al 1980], etc. have all attempted to provide a

framework within which the system can guide the expert in

communicating his/her expertise to the system. Much work remains to

be done in this area, both in the development of automated tools for

the existing paradigms of problem solving, and in the more basic

research into the understanding of the very nature of human

problem-solving strategies and abilities.

3.1! Training

A final form of interaction with the expert system occurs when

the system is used as a training tool to teach new human experts the

problem-solving skills embodied in its knowledge base. Relatively few

systems have been used in this mode. However, such systems as SOPHIE

Brown et al 1981] have demonstrated that the existence of a clearly
formulated, central repository of’ expertise provides a solid

foundation for the development of such computer-based teachers as a

fortuitous side-effect.

1!.O CURRENT STATUS - A POTPOURI OF EXPERT SYSTEMS

There is as yet no well-developed theory of problem-solving
techniques, no theory of problem space complexity comparable, say, to

a theory of database query complexity. Moreover, or perhaps partially
in consequence, the development of expert systems is still more of an

art than a science. It is therefore difficult to find a concrete

opinion held about these systems by a reputable researcher in the

field whose opposite is not held by another researcher equally as

reputable. Nevertheless, a consensus is beginning to emerge as to the

characteristics of problem domains appropriate for the technologies
that exist today. Recent surveys of expert systems Davis 1982,
Gevarter 1982, Nau 1983] have emphasized a number of characteristics

to look for in a problem domain before considering it as a candidate

for current expert system technology, and have identified a number of

considerations involved in the development of such a system.

Foremost among these characteristics are the selection of an

appropriate domain, and the availability of a human expert. The most

successful domains seem to be those wherein the expertise is based on

experience of associations, rather than causal links or use of

structural information. Equally important is a close collaboration

and active participation of the human expert throughout the entire

system development process. Other considerations frequently mentioned

9



are: the necessity for an experienced “knowledge engineer,” the

efficacy of a quick (3 months?) development of a first system
prototype to test the feasibility of the initial problem—structuring
ideas, and an average development time of 5 years, regardless of the

number of people on the project.

In Table 1, examples of expert systems are presented. As can be

seen, expert systems have been built for several domains, which

include Medicine, Geology, Chemistry and Physics, Mathematics, and

Computers (both software and hardware). Among these, Ri, Macsyma, and

the Dipmeter Advisor are widely used in commercial environments.

Prominent researchers in the area (e.g. Davis 1982]) see future

expert systems departing from simple rules and uniform knowledge
representations, to causal models employing multiple representations
that concentrate on the understanding and description of “structure”

and “function”.

1L1 Expert Systems and Database Management

There have been several research efforts to combine expert system
technology with that of database management systems. Historically,
knowledge-based techniques were first applied at the query language
level (e.g., natural language). Systems like RENDEZVOUS, LADDER and

KLAUS Haas and Hendrix 1980] have successfully employed
knowledge-bases to disambiguate and process English queries to and

about databases. In addition, formal specification languages like

TAXIS Mylopoulos et al 1980] have been proposed for the design of

databases and, more generally, information systems. Knowledge-based
technology may also be used in such database topics as, query

optimization King 1981], transaction management (e.g., constraint

maintenance), and data representation Jarke and Vassiliou 1983,
Vassiliou et al 1983].

A more recent research topic is that of coupling ESs with DBMSs.

To date the applications that have been chosen for expert systems have

had the property that their knowledge base of rules has been

relatively small (around 1000 rules is common) and their base of

specific facts has been considerably smaller, usually data pertaining
to a single problem case and obtained interactively during system
execution. In almost all cases, then, these knowledge bases have been

implemented directly in main memory. The work of Kunifuji and Yokota

for the Fifth Generation Computer project, and that of Vassiliou,
Jarke, and Clifford (accompanying articles in this special issue)

attempt to apply the ES paradigm to a problem characterized by the

existence of a large database of specific facts which the expert must

access in order to perform successfully. These research efforts are

based on the logic formalism of Prolog (described in the article of

Parsaye of this issue). A critisism of this formalism is presented in

the accompanying article by Lafue. In addition, the latter article

examines the question of whether an existing database system should be

employed for the expert system’s database access requirements, or a

new system must be built.

10



I I I I I
SYSTEM I FUNCTION I DOMAIN I REF I SOME UNDERLYING PRINCIPLES I

______

I
_________

I
_______

I
___

I
________________________

I
I I I
I Casnet Consulting Medicine 66 Production rules. Causality. Semantic neti
I Internisti Consulting Medicine 50 Forward/backward chaining. Frames. I
I KMS I Consulting I Medicine I 52 I Conditional probabilities. I
I MDX I Consulting I Medicine I 8 I Hierarchical, subproblem formation.

I Mycin I Consulting I Medicine I 59 I Backward chaining. Exhaustive search.

I Puff I Consulting I Medicine 133,1191 Backward chaining. Exhaustive search. I
I AQ11 I Diagnosis I Plant I 9 I Multiple—valued logic.
I I I Diseases I I I
I Dipmeter I Exploration I Geology I 111 I Causality. I
I Advisor I I I I
IProspectorl Exploration I Mineral I 16 I Backward chaining. Semantic net. I
I Ri I Configuration I Computer I 31 I Forward chaining. No backtracking. I
I I I I I Subproblem formation. Pattern match.

I EL I Analysis I Circuits I 60 I Forward chaining. Backtracking.
I I I Constraint propogation. I

I SOPHIE I Troubleshoot I Electronics I 5 I Multi-knowledge representation. I
I Molgen I Planning I DNA Exper. I 36 I Forward/backward chaining. I

I I Hierarchical, subproblem formation. I
Macsyma I Manipulation I Math I 113 I Pattern match. I

I AM I Formation I Math I 311 I Forward Chaining. Generate, test. I
I Dendral I Generation of I Chemistry 21,351 Forward Chaining. I
I I hypotheses I I I Generate, test. I
I SYNCHEM2 I Organic Synth. I Chemistry I 23 I Multi-representation. Subproblem I
I I I I I formation I
I Hearsay I Interpretation I Speech I 1 I Forward/backward chaining. I
I I I Recognition I I Multi-representation. I
I Harpy I Interpretation I Speech I 37 I Forward chaining I
I I I Recognition I I I
I Crysalis I Interpretation I Crystallo- I 17 I Event Driven. Generate, test.

I I Igraphy I I I
I Noah I Planning I Robotics I 511 I Backward chaining. Subproblem formation.I
I Abstrips I Planning I Robotics I 55 I Back-chaining. Hier. sub—problem I
I I I I I formation I
I VM I Monitoring I Medicine I 19 I Event Driven. Exhaustive Search. I
I Guidon I CAl I Medicine I 10 I Event Driven. I
I
__________________

I
_____________________________

I
_______________________

I
_________

I
_____________________________

—~

I

TABLE 1: Representative Expert Systems

11



References

1. Balzer, R., Erman, L.D., London, P., and

“HEARSAY-Ill: A Domain-Independent Framework for

Proc 1st Natl. Conf of the Amer. Assoc.

Intelligence Palo Alto, 1980, PP. 108-110.

Williams, C.,
Expert Systems,”
for Artificial

2. Barr, A., Feigenbaum, E.A., The Handbook of Artificial

Intelligence Volume 2, William Kaufmann, Inc., Los Altos, CA, 1982.

3. Bobrow, D.G., and Winograd, T. “An Overview of KRL, a

Representation Language,” Cognitive Science Vol. 1, No.

pp. 8L~-123.

Knowledge
1, 1977,

14• Brachman, R. “On the Epistemological Status of Semantic

Networks,” Associative Networks: Representation and Use of Knowledge

~y Computer N.y. Findler, ed., Academic Press, 1979, pp. 3-50.

5. Brown, J., Burton, R, deKleer, J., “Pedagogical
and Knowledge Engineering Techniques in SOPHIE

Intelligent Tutoring Systems Sleeman et al (eds),
1981.

Natural Language
I, II, and III”,
Academic Press,

6. Buchanan, B.C., “Research on Expert Systems,” Stanford University
Computer Science Department, Report No. STAN-CS-81-837, 1981.

7. Chandrasekaran, “Expert Systems: Matching Techniques to Tools’t,
Artificial Intelligence Applications for Business (W.Reitman, ed.),
Ablex, to appear 1983.

8. Chandrasekaran et al., “An Approach to Medical Diagnosis Based on

Conceptual Structures,” Proc. Sixth Int’l Joint Conf. Artificial

Intelligence 1979, pp. 131~_1i~2.

9. Chilausky, R., Jacobson, B., and Michalski, R.S.

of Variable-Valued Logic to Inductive Learning
Diagnostic Rules,” Proc. Sixth Annual Int’l Symp.

Logic 1976. Tokyo, Aug., 20-23, 1979, pp. 6~5—655.

“An Application
of Plant Disease

Multiple-Valued

10. Clancey, W.J., “Dialogue Management for Online Tutorials”, IJCAI

6, 1979, pp.155-161.

11. Davis, R., “Expert Systems: Where are we? and Where do we Go

from Here?”, Massachusetts Institute of Technology, Al MEMO No. 665.,
June, 1982.

12. Davis, R., and Lenat, D.B. Knowledge-Based Systems in Artificial

Intelligence New York: McGraw-Hill, 1982.

13. Davis, R., Buchanan, B.,
a Representation for a

Artificial Intelligence Vol.

and Shortliffe, E. “Production Rules as

Knowledge-Based Consultation Program,”
8, No. 1, 1977, pp. 15~145.

12



111. Davis, R., et al., “The Dipmeter
Geological Signals,” Proc. Seventh

Intelligence 1977, pp. 1030-1037.

Advisor: Interpretation of

Int’l Joint Conf. Artificial

15. Duda, R.0., Gaschnig, J.G., “Knowledge-Based Expert Systems
of Age,” Byte Vol. 6, No. 9, Sept. 81, pp. 238-281.

Come

16. Duda, R.0., Gaschnig, J.G., and

PROSPECTOR Consultant System for

Systems in the Micro-Electronic ~Z!’
Press, Edinburgh, 1979, pp. 153-167

Hart, P.E., “Model Design In the

Mineral Exploration,” in Expert
D. Michie ed., Edinburgh Univ.

17. Engelmen, R, Terry, A., “Structure and Function of the CRYSALIS

System”, IJCAI 6, 1979, pp.250—256.

18. Erman, L.D., et al., “The Hearsay-LI Speech-Understanding System:
Integrating Knowledge to Resolve Uncertainty,” Computing Surveys Vol.

12, No. 2, June 1980, pp. 213-253.

20. Fahiman, S.E.

Real-World Knowledge

21. Feigenbaum, E., Buchanan, G.,
Problem Solving: A Case Study
Intelligence ~ D. Meltzer and D.

Press, 1971, pp. 165-190.

22. Forgy, C.L. The OPS5

Carnegie—Mellon University, 1980.

23. Gelernter,
Boivie, R.H.,
Explorations of

_______

Relations in a

Dept., Stanford

21L Gevarter, William, B., “An Overview of Expert Systems”, National

Bureau of Standards Report, NBSIR 82—2505, 1982.

25. Haas, N., and Hendrix, G.G., “An Approach to Acquiring and

Applying Knowledge”, Proceedings of the First National Conference on

Al, Stanford University, 1980, pp.235-239.

26. Hart, P.E.,
_____

Newsletter No.

27. Hart, P.E., Duda,
Consultation System
International, Menlo

R.O., and

for Mineral

~ Calif.,

Einaudi, M.T.

Exploration
1978.

A Computer-Based
Tech. Report, SRI

28. Hayes-Roth, F., “Al The New Wave - A Technical Tutorial for

Management,” (AIAA—81-0827), Santa Monica, CA: Rand Corp., 1981.
R&D

19. Fagan, L.M. “VM: Representing Time-Dependent
Medical Setting,” Ph.D. dissertation, Comp. Sd.

Univ., Stanford, Ca., 1980.

NETL A System for Representing and

MIT Press, Cambridge, Mass., 1979.
Using

and Lederberg, J. “Generality and

Using the DENDRAL Program,” Machine

Michie, eds., Edinburgh University

User’s Manual Tech. Report

H.L., Sanders, A.F., Larsen, D.L., Agarwal, K.K.,

Spritzer, G.A., and Searleman, J.E., “Empirical
SYNCHEM,” Science v.197, 1977, pp.101fl-1O’~9.

“Directions

79, Jan. 1982,
for

pp.

Al in the Eighties,”
11-16.

Sigart

13



29. Hayes-Roth, F., Waterman, D.A., and Lenat, D.B. Building Expert
Systems ,Addison-Wesley, Reading, MA, 1983.

30. Jarke, H., Vassiliou, Y., “Coupling Expert Systems with Database

Management Systems”, Artificial Intelligence ~pp1ications for Business

(W.Reitman, ed.), Ablex, to appear 1983.

31. King, J.J., “Query Optimization by Semantic Reasoning”, Rep.no.
CS—81-857, Computer Science Dept., Stanford University, 1981.

32. Kowaiski, R.A., Logic for Problem Solving North-Holland, New

York, 1979.

33. Kunz, J.C., et al, “A Physiological Rule-based System for

Interpreting Pulmonary Function Test Rules”, Stanford Memo HPP-78-19,
Stanford University, Computer Science Department, November, 1982.

3i4. Lenat, D.B. “AM: An Artificial Intelligence Approach to

Discovery in Mathematics as Heuristic Search,” Ph.D. dissertation

Memo AIM-286, Al Laboratory, Stanford Univ., Stanford, Ca., 1976.

35. Lindsay, R.K., et al., Applications of Artificial Intelligence
for Organic Chemistry The DENDRAL Project New York: McGraw-Hill,
T~o.

— __

36. Martin, N., et al., “Knowledge-Base Management for Experiment
Planning in Molecular Genetics,” Proc. Fifth Int’l Joint Conf.

Artificial Intelligence 1977, pp. 882-887.

37. Lowerre, B.T., “The HARPY Speech Recognition System,” Ph.D.

dissertation, Cornp. Sci. Dept., Carnegie-Mellon Univ., Pittsburgh,
Pa., 1976.

38. McDermott, D. “The PROLOG Phenomenon,” Sigart Newsletter No.

72, July 1980, pp. 16—20.

39. McDermott, D., “Ri: A Rule Based Configurer of Computer
Systems”, Artificial Intelligence 19(1), September, 1982.

~4O. McDermott, J., and Steele, B, “Extending a Knowledge-Based System
to Deal with Ad Hoc Constraints,” Proc. Seventh Int’l Joint Conf.

Artificial Intelligence 1981, pp. 82L~_828.

111. Michie, Donald, “Knowledge-based Systems,” University of IL at

Urbana-Champaign, Report 30-1601, June 1980.

L~2. Minsky, M. “A Framework for Representing Knowledge,” The

Psychology of Computer Vision P.H. Winston, ed., McGraw-Hill, New

York, 1975, pp. 211-277.

113. Moses, J. “Symbolic Integration: The Stormy Decade,” Comm

ACM, Vol. 111, No. 8, 1971, pp. 5118-560.

14



Mylopoulos, J. “An Overview of Knowledge Representation,” Proc.

- Data Abstraction, Databases and Conceptual Modeling June

1980, pp. 5-12.

115. Mylopoulos, J., Bernstein, P., and Wong, H., “A Language Facility
for Designing Database Intensive Applications”, ACM, 5, 1980,
pp. 185-207.

116. Nau, D.S., “Expert Computer Systems”, Computer February, 1983,
pp.63-85.

117. Nil, H.P., and Alello, N., “AGE (Attempt to Generalize): A

Knowledge-BasedProgram for Building Knowledge-Based Programs,”
Proceedings of the Sixth International Conf on Artificial

Intelligence (IJCAI—79), Tokyo, Aug., 20—23, 1979, pp. 6’45~655.

118. Nilsson, N.J. Principles of Artificial Intelligencej Tioga,
Palo Alto, Calif., 1980.

ZIg. Osborn, J., et al., “Managing the Data from Respiratory
Measurements,” Medical Instrumentation Vol. 13, No. 6, Nov. 1979.

50. Pople, H., “Knowledge Based Expert Systems: The Buy or Build

Decision”, Artificial Intelligence Applications for Business

(W.Reitman, ed.), Ablex, to appear 1983.

51. Quilllan, M.R., “Semantic Memory”, in Semantic Information

Processing M. Minsky (ed), 1968, pp.227-270.

52. Reggla, J., et al., “Towards an Intelligent Textbook of

Neurology,” Proc. Fourth Annual Symp. Computer Applications in

Medical Care 1980, pp. 190-199.

53. Robinson, J.A., A Machine Oriented Logic Based on the Resolution

Principle, JACM 1965, Vol.1, No.11, pp.23-Ill.

511. Sacerdoti, E.D., “Planning in a Hierarchy of Abstraction Spaces,”
Artificial Intelligence Vol. 5 No. 2, 19711, pp. 115—135.

55. Sacerdoti, E.D., A Structure for Plans and Behavior American

Elsevier, New York, 1977.

56. Schank, R.C. “Conceptual Dependency: A Theory of Natural

Language Understanding.” Cognitive Psychology Vol. 3, No. 11, 1972.

57. Schank, R.C. Conceptual Information Processing North-Holland,
New York, 1975.

58. Schubert, L.K. “Extending the Expressive Power of Semantic

Nets,” Artificial Intelligence Vol. 7, No. 2, 1976, pp. 163—198.

59. Shortliffe, Computer Based Medical Consultation: MYCIN New

York, American Elsevier, 1976.

15



60. Stallinan, R.M., and Sussman, G.J. “Forward Reasoning and

Dependency-Directed Backtracking in a System for Computer-Aided
Circuit Analysis,” Vol. 9, Artificial Intelligence 1977, pp.

135-196.

61. Stefik, M., et al., “The Organization of Expert Systems: A

Prescriptive Tutorial”, XEROX, Palo Alto Research Centers, VLSII—82—1,

January 1982.

62. van Emden, M.H., and Kowaiski, R.A., “The Semantics of Predicate

Logic as a Programming Language,” J. ACM, Vol. 23, No. 1~, 1976.

63. van Melle, W. “A Domain-Independent Production Rule System for

Consultation Programs,” Proc. Sixth Int’l Joint Conf. Artificial

Intelligence 1979.

6~4. Vassiliou, Y., Clifford, J., Jarke, M.., “How does an Expert

System Get Its Data?”, NYU Working Paper CRIS#50, GBA 82-26 (CR),
extended abstract in Proc 9th VLDB Conf. Florence, October 1983.

65. Weiss, S.M., and Kulikowski, C.A. “EXPERT: A System for

Developing Consultation Models,” Proc. Sixth Int’l Joint Conf.

Artificial Intelligence 1979, pp. 91~2_91i7.

66. Weiss, S.M., et al., “A Model-Based Method for Computer-Aided
Medical Decision—Making,” Artificial Intelligence Vol. 11, No. 2,

1978, pp. 1~I5-172.

16



Knowledge Engineering and Fifth Generation Computers

Koichi Furukawa, Kazultiro Fuchi

institute tor New Generation Computer Technology

1. Overview of the fifth generation computer project
Our fifth generation computer project ltas the primary objective of

establishing knowledge information processing technology. In our view.

knowledge technology technology consists of a wide range of technologies

centering around knowledge engineering. For instance, it includes develop

ment of programming language and systems suited to knowledge engineer

itig. Also included are man-machine communication technologies using
natural languages. graphics and images.

The second objective of the project is to provide a drastic solution for

the software problems. The productivity of software has been improved at

a much slower rate than that of hardware. with the result that software

accounts for a predominant proportion of the system cost. The project
is aimed at solving this problem by entirely rebuilding computer science

and technology upon new programming concepts such as logic program

ming and object oriented programming.
As an essential basis for achieving the two objectives, we chose a Prolog

based logic programming language 2]. This is because both knowledge
information processing and program modularization require a powerful
list processing capability and flexible data structure healing capability. As

a language with these capabilities, we chose Prolog, skipoing Lisp.
It is not easy to prove that one language is better than any other

language. because there it no standard for measuring languages.
It is also difficult to convince people who believe that their favorite

languages are the best. Nonetheless, we will try to give a technical justifi’
cation for our choice of Prolog instead of Lisp.

Let us consider a short example of list processing. namely, appending
~ lists. The following is a Lisp program for the job.

(DEFUN APPEND(XY)
fCOND (NULL Xl Y)

(1 (CONS (CAR X)

(APPEND (CDR X) Y)))))

where (DEFUN <name> <arg’list> <body>). defines a Lisp function with

name <name>. arguments <arg’list’, and body <body>.
A corresponding Prolog program is given below:

append 1] ] ,
Y. Y).

append( U1V]. Y. U 1W] I: — append (V. Y. W.)

Let us give a brief explanation of the Prolog syntax. Character strings

starting vvith a small letter such as append are constants and those starting
with a capital letter such as “U”. “V’ are variable. IV] is a list whose

head is U’ and the rest is V. J represents an empty list. “a: —j3.” is a

sentence which means dechaeatively. “if 13 then a”. and procedurally: “to

achieve a- solve 13”. “a.” is the abbreviation of ‘a : — true.” and means that

“a always holds”.

Let us compare Prolog append with Lisp APPEND. The correspondence
is shown below.

Lisp APPEND Prolog append

Two sentences

U IV]
U

V

W

U 1W]

That is. a conditional sentence in Lisp .orresponds to mutlipe sentences

in Prolog in each case. In Prolog operations on list structures sre visually
represented by patterns. Note that the same form a 13] is used for cutting
out elements from a list, namely as U = (CAR XI. V = (CDR Xl, in the

case of U IV] and used for list construction, the same as (CONS U WI. in

the case of U 1W] .

As can be seen front this example. Prolog simplifies
list processing operations to a great extent. It if said thai it took three

months to discover this program after Prolog was developed. At that

point in time Prolog started to evolve as a general-purpose list processing
language.

Whatever its descriptive benefits may be, a programming language
has little value if its execution speed is slow. A Prolog processing system

was developed in Marseilles. France in 197! 3], but it was useless because

of a very slow execution speed and frequent memory overflow. It was with

the advent of DEC 10 Prolog, developed by David Warren et al. ]4] ,
that

this language began to attract attention. A Prolog interpreter and compiler
were prepared from 1976 to 1977. The interpreter achieved a performance
improvement of one order of magnitude over the Marseilles version and

the compiler improved in performance by another order of magnitude.
The execution speed of the compiler matched that of Lisp. This back.

ground may be considered a reason for our choice of Prolog. But there are

other, and more important, reasons.

First. Prolog is superior in list procesaing description as illustrated in

the example of append. Of particular importance is that it is possible to

use undetermined variables as Win append U IV]. V. U 1W]): — append
(V, V. W). This feature permits describing infinite structures and provides
slse basis for implementing Concurrent Prolog. which has parallel pro

gramming capability 5] .

Functional programnsing languages such as Lisp
achieves this ability based on the concept of delay evaluation but lack she

ability to describe infinite structures.

Second. Prolog has an automatic backtracking mechanism, a powerful
control mechanism for trial and error. Though something like a double-

edged sword. this is parsicstlarly suised for describing problems calling foe a

search for solutions in the field of artificial intelligence.
Third. Prolog does nor require any specisl gadgetry to achieve database

capability. Lisp achieves database capability by using property lists

attached to atoms. Prolog requires no such contrivance. It can create a

database (of course, a small-scale database in main memory) in the same

form as other Prolog sentences.

There are several other reasons. Prolog offer broad opportunities for

sophisticated treatment of programs ittcludiiig ainipliflcstion of pfogr~m

debugging 16] and synshsesis. increased flexibility of module integrasion in

modular programming 7], 8] .
and ease of optimization and partial

execution of programs 9], 10] .These will help to solve various software

problems — the second objecdtive of the project.
In addition to the foregoing technical reasons, attention should also be

paid to how rapidly research and development efforts revolving around

Prolog or logic programming languages are advancing and expanding in

scale.

COND

X

(CAR Xl

(CDR Xl

(APPEND (CDR Xl V)

(CONS (CAR X)

(APPEND (CDR Xl Y))
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The fifth generation computer project is atmed at developing a new

programnting language as an extended version of Prolog and developtng a

computer dedicated to that language. And we hope thts computer will be

tlse prototype of general-purpose computers of sIte 1990s. The language

will be higlsl~ flexible. and we think only the flexible is worthy to be

called “general’purpose.”
To give a total picture of the fifth-generation consputer project. it ts in

ordcr to touch on the hardware aspect of the project. It incorporates Isigls

ly parallel computer architecture and VLSI technology. The htghly parallel

computer architecture is one of the few promising ways avatlable to

achieve a quantum jump in performance. but so far it has been thought of

as Isardly fit for general-purpose computers matnly because of its low

compatibility with programming languages. One of the reasons for our

selection of a logic programming language for the project ts that we

thought it would solve this problem. In the words of R. Kowalski. the

logic programming langjage is the missing link between knowledge infor

mation processing and highly parallel computer architecture. Overall

relationships of these are as shown in Figure 1

2. The role of the fifth generation computer in knowledge engineering

Knowledge engineering is viewed as having great potential for growth.

but is not yet past the stage of an experimental laboratory system.

Feigenbaum pointed out that to ‘isake it an industry-level system. it is

mandatory so enhance its software quality and to develop dedicated

hardware with a sufficient processing speed. or about 100 times the

speed of existing Lisp machines.

We believe oar projected fifth generation computer can be an excellent

tool that meets these requirements. For one thing. a highly parallel

inference computer if developed will sufficiently meet at least the process

ing speed requirement.
Since it takes a considerable time to develop a full-scale highly parallel

inference computer. we have to fill site gap somehow. Among she develop

ments planned for the first three years of the project is a sequential

Prolog machine. The performance of this machine will be about two

orders of magnitude lower than that of the parallel inference computer

and roughly equal to that of Prolog Compiler on PEC 2060.

Anya’ay. we can reasonably expect that even within she existing

framewark of technology, a performance improvement of at least one

order of magnitude will be brought by the advance of device technology

in a few years. The question is how to meet the other requirement of

improving the software quality. This is not as simple a proposition as it

may look. It has been the biggest challenge to software er’gineering and

remains yet to be fundamentally solved even there.

Incictentally. as stated earlier, one of the major objectives of the fifth-

generation computer project is sc provide a drastic solution for software

problems: and to achieve this objective, we chose a Prolog-based logic

programming language to form the core of the project. The fact so far

revealed by research in knowledge etigineering is that she production

system can be used as a software tool and that the future progress of

knowledge engineering will require research and development work on the

approach of making a model of a real world after the style of sienulatton

languages and distributing problens solving capability to each system

component. and programming systems for that purpose. Furthermore, it

is important that such systems should be developed in a conceptually

well-organiced form to ensure an adequate level of programming efficiency.

Aisother question is whether these technological requirements can be

met by logic programming languages. The prospects are encouraging. judg’

ing from she numerous experiments so far conducted with Prolog. Mico

guchi ci al II]. developed expert systems based on Lisp and Prolog.

respectively, and compared the systems. According to their findings.

Prolog required about one fifih of the program coding volume required by

Lisp. which means Prolog achieved a software productivity improvement

of about one order of magnitude over Lisp since program development

time is roughly proportional to coding volume. This fact has more impli’

cations than tlsat. One is that ideas can he demonstrated immediately.

So far. it has often been the case that when there was a good idea, the

tremendous difficulty involved in its programming brought the progress of

research on it to a standstill. But Isis problem iv eased by the reduction

in program developnsent time.

The reason why Prolog allows such efficient programming is. in a

nutshell. tlsat it matches tlse human thought process better than other

languages. Some people may think slsat a programming language is some

tlsing like a mass of special codes. Bus in fact. it is a sort of full.fledged

language. If one learns a programming language sufficiently one becomes

able to think in that language. And this is true of an assembler language.

Fortran. Lisp or Prolog. The only difference among these programming

languages is that each of them has a different forte as a tool for thinking.

The rensoter from sIte consputer and the more abstract a programming

language is. the better is matches the human ilsoughi process. In this sense

we miglst say Prolog is closer so human language than any other program’

ming languages.
The remaining major challenge is how to implement distributed prob’

1cm solving with a logic programming language. Distribused problem

solving depends heavily on a programming technique called object-oriented

programming. With this technique. thinking centers around “objects” on

computation and programs are regarded as describing behaviors of the

objects. In the context of distributed problem solving, each component

of a system to solve problems is an “object” and each associated problem

solving machine is considered to simulate the behaviors of the object. In

a computation method like this. the capability of communication between

objedts plays a very important role. just as very close communication is

needed when people work together.

The authors group and others have recently bern conducting active

research on object.oriensed programming in a logic programming language.

and are working out a basic methodology 112]. 131.

3. Concluding remarks

Knowledge information processing technology has great potential for

opening up new computer applications. And the fifth-generation computer

project is aimed at making this a reality as one of its objectives, It is one

of several possible approaches. but we believe it offers the greatest possibil

ities and is of the best quality, technologically.

The greatest challenge to us in pursuing this approach in the years

ahead is so disseminate this new culture. At the starting point of this

movement, we need so implement a high-quality Prolog processing system

on an existing commercial computer and make is available to çneryone.

Already. some Prolog processing systems have been developed. but their

use. though gradually increasing. is not yet in full swing. It is also expected

that a rasher powerful sequential Prolog machine will appear as an inter

mediate result of the Fifth Generation Computer Project in Japan.

As for knowledge engineering pet se. there will be a growing need for

cooperation between computer scientists and other experts in the fields

concemed. That is. an inter-disciplinary approach will be a must.
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Introduction

Two significant developments in computer science in the past

decade have been Relational Databases and Logic Programming.
Relational databases were invented in the U.S. in the early

1970s, just as logic programming in Prolog was independently

evolving in Europe. This paper discusses the language Prolog and

its relation to relational databases.

Prolog

Prolog is a simple yet powerful language invented at the

University of Marseille in the early 1970s. It is a declarative

language whose design includes a relational database. Prolog com

putes relations, just as Lisp compute functions.

The origins of Prolog go back to Robert Kowlaski’s ideas on

programming in logic and to the work of Alain Colmerauer on

natural language understanding. Colineraire had been working on

natural language grammers in Marseille during the 1960s, while

Kowalski worked on logic programming in London. Following
Kowalski’s visit to Marseille in 1970, Coirneraure defined Prolog.

Prolog is a symbolic language based on pattern matching and

IF—THEN rules. A Prolog program is simply a collection of these

rules. Prolog uses an internal relational database to store such

rules, and then applies them by pattern matching.

Prolog treats programs and data uniformly and thus combines

programming and querying very effectively. It can thus be used

as a relational query language as well as for general purpose

programming.

A Brief Review of Prolog

The basic building blocks of Prolog programs are clauses. A

clause in Prolog Is a predicate name, called a functor, with some

argu~rnents. For instance

20



father( john, mary).

square(3, 9).

are clauses, where ‘father’ and ‘square’ are functors and ‘john’,

and ‘mary’, 3 and 9 are arguments.

Arguments may be constants or variables, and conventionally,

non—numeric constants are denoted by lower case letters, while

variables must start with uppercase letters, e.g. as in

father(X,mary).

In Prolog clauses can be asserted to be true, in which case

they are included in the Prolog “database”. The Prolog database

contains all facts which are asserted to be true. For instance,

assert(father(john, mary)).

will include father(john,mary) in the database and

retract(father(john, mary)).

will remove it.

In Prolog, clauses are used to make sentences. A sentence in

Prolog may be a simple unit clause, such as father(john, mary),
or it may involve the conditional construct denoted by “:—“, and

better understood as “if”.

For example, the conditional sentence

parent(X, Y) :— mother(X,Y).

means that “for all X and Y”, parent CX, Y) is true if mother(X,
1) is true. Thus essentially “A :— B” means that A is logically
implied by B.

Clauses on the right hand side of a “:—“ can be joined
together by “and” and “or” constructs denoted by “,“ and “;“
respectively, as in

parent(X, Y) :— mother(X,Y); father(X,Y).

which means: “for all X and Y”, parent(X, Y) is true if either

mother(X, Y) Is true “or” father (X, Y) is true.

Let us make two simple technical notes here. First that sen~

tences in Prolog must end with a period. Second that due to the

universal quantification above, the range of each variable in

Prolog is essentially a sentence, i.e. two occurances of the same

variable name within two sentences are totally unrelated. The

Prolog compiler will internally rename variables to avoid con—

filets.

Variables on the right hand side of a conditional which do
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not appear on the left hand side are existentially quantified.
For instance the sentence

grandfather(X, Y) :— father(X, Z), parent(Z, Y).

means that “for all X and Y”, X is the grandfather of Y if “there

exists” some Z in the database, such that X is the father of Z

and Z is a parent of Y.

In Prolog, conditional clauses may be stored in the database

just as data are, i.e. programs are really treated as data in a

database. This uniform view of both programs and data as items in

a high level database is perhaps the major reason for the

elegance of the Prolog programming style.

Once one has adopted this database view of programming, one

may naturally wonder about queries to the database. Simple

queries may relate to simple facts such as: “Is father(john,
mary) true in the database?”, ~ihich may simply require a look up

in the database. However, one may also ask more complex queries.

We generally refer to an attempt to answer a query in the

Prolog database as an attempt to satisfy a goal (or to prove a

goal). For instance, in the example above “father(john, nary)” is

the goal, and it can be satisfactorily proved if father(john,

mary) has been asserted in the database.

One may also try to prove goals with variables, in which

case Prolog will try its best to find a match for the variables

to satisfy the goal. For instance, an attempt to prove “father(X,

mary)” will succeed provided that the condition CX john) is

true. Note that this is not an assignement (Prolog is assignment

free), but a binding of a variable to a value as in pure Lisp.

Such bindings are discarded upon the completion of the query.

Now, how about conditional clauses? Since the interpretation

of the conditional construct “:—“ is that t.’ne right hand side

logically implies the left hand side, the validity of the left

hand side can be established by proving the right hand side. This

new goal may itself in turn be part of a conditional clause,...,

and so on. Thus execution of programs in Prolog essentially con

sists of attempts to establish the validity of goals, by chains

of pattern matching on asserted clauses.

To prove a goal Prolog searches its database for a clause

that would match the goal, by using the process of unification

Robinson 65). If a conditional clause whose left hand side

matches the goal is found, Prolog tries to satisfy the set of

goals on jhe right hand side of “:-“ in a left to right order. If

no matching clause can be found, failure will be reported.

It must be noted that Prolog includes no explicit negation

symbol, and negation is essentially treated as unprovability,

i.e. the failure to establish a goal from a set of axioms Clark
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79]. This closely resembles the closed world assumption Reiter
78].

If Prolog does not succeed in establishing a goal in a chain

of deductive goals at a first try, it will backtrack i.e. go to

the last goal it had proved and try to satisfy it a different

way. For instance, suppose that we have the sentences (or pro—

gram)

parent(X, Y) :— mother(X,Y); father(X,Y). (*)
grandfather(X, Y) :— parent(Z, Y), father(X, Z). (**)

and that the following facts have also been asserted:

father(john, mary).
father(paul, john).
mother(jennifer, mary).

Then to prove “grandfather(X, mary)”, by using (~) and (~)
above, first the goal “parent(Z, mary)” will be tried. This in

turn will result in an attempt to prove “rnother(Z, mary)” and

will succeed with (Z = jennifer). Then, going back to the “grand
father” clause again, the next goal in the conjuntion should be

proved. So “father(jennifer, Y)” will be tried and will fail. At

this point Prolog will go back (i.e. will backtrack), discard the

assumption (Z jennifer) and try to prove “parent(Z, Y)” again.
This time (Z john) will result, after trying “father(Z, mary)”.
The eventual binding (Y paul) will be returned after trying
“father(X, john)”.

Let us note that in the grandfather “program” here there are

no explicit input or output parameters, i.e. one may either

invoke grandfather (X, mary), or grandfather(paul, Y). This style
of declarative programming inProlog can often be used to great
advantage to develop software very rapidly. Prolog programs can

often be run both forwards and backwards.

On one hand, the series of steps taken by the Prolog com

piler in proving a goal essentially amount to deduction. On the

other hand an attempt to prove a goal “father(X, Y)” can also be

looked at as a procedure call to the predicate father. Thus the

use of the term “logic programming” is quite apt here.

Calls in Prolog can also be recursive, as in

connected(X, Y) :— edge(X, Z), connected(Z, Y).

which dea~s with connectivity in graphs described in terms of

edges. The Prolog compiler Warren 77] uses tail recursion optim
ization to great advantage in such cases.

Now, for expression evaluation. In the author’s opinion, one

of the most inconvenient features of symbolic languages such as

Lisp has been the relation between quotation and evaluation. The
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Prolog approach to evaluation is exactly the opposite of Lisp,
i.e. evaluation does not take place until it is forced to. This

is specially relevant to arithmetic expressions and removes the

need for quotes. Thus (2 + 3) can be evaluated to 5 when the need

arises, by using the Prolog infix operator “is”, i.e. “X is (2 +

3)” binds X to 5. However again note that this is not assigne—
ment.

Many more examples of Prolog programs, and a more detailed

description of’ the language and its use may be found in Clocksin
& Mellish 81].

Relations and Logic

Relational databases are based on relations. Prolog is based

on predicate logic. Expressing the semantics of the relational

model in terms of predicate calculus Gallier & Minker 78] can be

used to demonstrate the essential connection between Prolog and

relational databases.

This connection can also be seen with simple examples by

viewing each relation as a predicate which asserts the truth of

facts. For example consider the relation “father” which includes

the tuple <john, mary>. In Prolog one can assert the truth of an

instance of the “father” predicate. The Prolog equivalent of the

tuple from the “father” relation is thus father(john, mary).

The correspondence between “data” in relational databases

and Prolog assertions is thus quite evident. However, this

correspondence can even be extended to the semantic level. The

fact that both Prolog and relational databases are subsets of

first order predicate calculus suggests a resemblence between

logic programming and the relational model, but in itself is

inadequate for stating~ The reason for equivalence

lies in the characterization of the semantics of relations in

terms of relational dependencies.

Logic and Dependencies

The semantics of the relational model is often expressed in

terms of relational dependencies Gallier & Minker 78]. The

first dependencies to be discovered were the functional deperiden—
cies invented by Codd in 1972, and later axiomatized by Armstrong

Armstrong 711]. Later, Zaniolo and Fagin independently invented

multivalued dependencies for decomposition fZaniolo 76] Fagin
76).

The years 1976 to 1980 saw the invention of many other

dependencies Paredeans 78], Sagiv & Walecka 79], Parker & Par—

saye 80], (Sadri & Uliman 80], etc. This was because no group of

dependencies was found which could adequately describe the seman

tics of the relational model.

In the fall of 1979, Ronald Fagin discovered an interesting

24



set of dependencies which captured all of the previously postu
lated dependencies and which very naturally expressed the seman

tic of the relational model. He called these the “implicational
dependencies” Fagin 80].

Fagin noticed that implicational dependencies were a subset
of first order logic whose properties had previously been studied
by Alfred Horn Horn 51]. This subset of first order logic has
been known to logicians as Horn clauses since the 1950s*.

What Fagin did not realize at the time was that implica-.
tional dependencies, i.e. Horn Clauses, are exactll the sentences
used by the language Prolog and can thus be executed as a pro

gramming language. Similarly, the logic programming community
was neither involved nor interested in relational dependencies
until the early 1980s.

Finally, with the avilability of the DEC—10 Prolog compiler
in the U.S. and the growing database interests in Europe a rnerg—
ing of the views on logic programming and relational databases

began in the early 1980s Dahl 82], {Parsaye 83]. Today the

interest in logic programming and relational databases is growing
very rapidly.

Implementations

Based on the previous semantic evidence, it seems plausible
to assume that one can add a relational database system to Prolog
with great ease. In the spring of 1983, in association with D.S.

Parker and P.E. Eggert, we undertook the task of putting these

ideas into a commercial database system called ~!axwell at Silo—

gie, Inc.

Maxwell includes full features of the relational model but

manages the storage of not only “data” but “knowledge”, i.e.

rules of inference on secondary strage devices. It is thus the

first “knowledge base” management system to be implemented.

In implementing Maxwel, we became aware of many subtle

implementation issues which needed very careful treatment. As

one might have guessed, these issues were not obvious at the sem

natic level! The implementation was first prototyped in Prolog
itself and than rewritten in C, under Unix. Details of this

implementation effort may be found in Eggert, Parker & Parsaye

~ As a very technical aside, let us note that the basic

property of Horn clauses which makes them useful and

interesting is that they are the maximal subset of

first order logic which admits “typical models” or

“functionally free algebras” Tarski 36]. In the

context of’ the relational model, Fagin called these

“Arr~strong relations”. In higher order logic, Parsaye
81] discusses “relatively free algebras”.
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814].

Our experience showed that adding databases to Prolog is

indeed possible, but involves many delicate implementation
subtleties which if not observed can degrade performance. The

need for the careful selection of algorithms in such system can

not be over—emphesized.

Some Future Directions

Relational databases and Prolog are moving fast towards a

common destination. This holds true both in terms of functional

ity and performance.

Processing deductive natural language queries in Prolog is

now a well—tested practicality (Warren & Pereira 82]. Similarly,

many relational databases are now adapting natural language query

systems. Today Prolog compilers are achieving impressive execu

tion speeds even on medium and small sized machines.

One of the main advantages of Prolog’s uniform approach to

data and knowledge is in the development of expert and knowledge
based systems, particularly in applications where the expert sys

tem needs to access a database, e.g. as in fBluin 82].

With the selection of Prolog as the language at the core of

Japan’s Fifth Generation Computing Systems project FGCS 81],

powerful computing systems combining logic programming and rela

tional databases are likely to be forthcoming in the near future.

Combining the deductive powers and the ease of use of Prolog

with the data management capabilities of large relational data

bases results in powerful computing environments Ohsuga 82].

Such environments will dominate computing in the 1980s.
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The Knowledge Engineering Process

John McDermott
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1. Four stages in the life of a knowledge engineer
During the past fifteen years, Artificial Intelligence researchers have explored techniques for

bringing large amounts of domain knowledge to bear in solving ill-structured problems. The process

of building a knowledge-based system (or expert system as they have come to be called) ordinarily

consists of the following four stages:

• Task definition

• Initial design

• Earnest knowledge extraction

o The aftermath, technology transfer

If a knowledge-intensive problem has been identified, the first stage in building a system to assist in

solving the problem is to delimit its task; since solving knowledge-intensive problems is often a

communal endeavor and since the problems are ordinarily not cleanly bounded, there is frequently a

real issue of determining just what role the expert system is to play. Once the task has been defined,

the developer must create an initial design for the s~’stem on the basis of the expected characteristics

of the as yet uncollected domain knowledge; the trick here is to figure out how that knowledge can

best be exploited to guide the system’s problem solvng behavior. Once there is a design, the

knowledge extraction process will have a focus; thus the skeletal system implicit in the design can

begin to be fleshed out with knowledge. At some point, long before the system has become expert in

its task, it will be able to provide useful assistance; at that point issues arise of how to continue to

develop the system in an operational environment.

1 .1. Task definition

In order to appropriately delimit a task, it is necessary to define the role the expert system will play

relative to others who perform complementary.tasks. U there is a large amount of knowledge that is

relevant to some problem, then it is often the case that the required expertise is distributed among

several people. Each individual’s role is defined both by his or her area of competance and then by a

level of competance within that area: When an expert system is developed to assist with some

problem, the first question that has to answered is whether the system will assume an existing role or

1This paper borrows heavily from the material in McDermott 801 and McDermott 831.
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carve out some new role. How that question is answered will have a strong impact both on how

knowledge acquisition is handled and on how transfer to an operational environment is carried out.

1.2. Initial design

The stage in building an expert system that is least well understood is that of creating an initial

design. What sets an expert system apart from other computer programs is that it is able to perform

its task because it can br;ng large amounts of domain knowledge to bear at each step; this knowledge

gives the expert system its problem solving power. But in order for an expert system to be able to

exploit its knowledge, the knowledge must be represented in such a way that all of it that is relevant at

any step is immediately available to the system. The principal problem in developing an expert system

is in determining how to represent the knowledge so that it is always available when needed. In order

to extract knowledge from experts, it is first necessary to understand how that knowledge is going to

be represented; but without already having that knowledge, it is not clear what has to be represented.

At present, all we can do in this circumstance is fall back on general arguments for represebtational

adequacy. In the future, we will hopefully have enough of an understanding of the representational

demands of a wide variety of task types that the particular representational demands of some new

task will be clear on the basis of the similarities of that task to one or more of those task types.

1.3. Knowledge extraction

All of the expert systems that have been developed to date have acquired their knowledge over a

long period of time. In the typical case, a relatively small but central fraction of the domain knowledge
has been collected by a knowledge engineer interacting over a period of a few weeks or months with

a domain expert. This knowledge has been used to build a novice system that can behave

appropriately in commonly occurring situations, but that is almost total insensitive to special

circumstances. Knowledge is then extracted from an expert by asking the expert to observe the

behavior of the novice, point out mistakes the novice makes, and for every mistake, indicate what

knowledge the novice is lacking or has wrong. Over a period of months or years, this process

uncovers enough of the domain knowledge so that the novice grows to be an expert. Variations in

this process occur depending on the source of the expertise. If a system is to assume an existing role

(ie, if there are human experts who perform the same task), then the source of the knowledge is those

who play that role. If the system is to carve out a new role, part of the knowledge acquisition problem

is identifying the sources of knowledge.

1.4. Technology transfer

A human expert does not stop acquiring knowledge of his domain at some arbitrary point in his life;

there is always room for him to become more expert. Likewise, the development of an expert system

is never finished. Thus expert systems have no need for maintainers, but they do always need

developers even after they have moved to an operational environment. This need poses a problem

since the current demand for people with some background in artificial intelligence far exceeds the

supply. If expert systems are to have an appreciable impact on industry, ways must be found to

provide a significant number of people with an understanding of Al techniques.

Since 1978, Carnegie-Mellon University and Digital Equipment Corporation have been
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collaborating on the development of a number of expert systems. Ri, the first of these systems to be

developed, is a computer system configurer McDermott 82, McDermott 81]. Since Ri is now almost

five years old and has been used for much of that time by Digital’s manufacturing organization, it can

serve as a good example of the four stages. The next section of the paper describes Ri ‘s task. Then

in the third section Ri’s progress through the four stages is discussed. For discussions of other

expert systems which may help to broaden the picture presented here, see Feigenbaum 77] and

Stefik 82].

2. Computer System Configuration

2.1. The task domain

Digital differs from most computer manufacturers in the degree of flexibility it allows its customers

in component selection; rather than marketing a number of standard systems, each with a limited

number of options, Digital markets processors with relatively large numbers of options. One of the

results of this marketing strategy is that many of the systems it sells are one of a kind, and

consequently each poses a distinct configuration problem. A computer system configurer has two

responsibilities: he must insure that the system is complete (ie, that all of the components required for

a functional system are present), and he must determine what the spatial relationships among the

components should be. Because a typical system has 100 or so components which have a large

number of different possible interrelationships, a significant amount of knowledge is required in order

to perform the configuration task competently.

Before the advent of Ri, the configuration task was performed by people Of varying degrees of

expertise at various points in the order processing pipeline. Each order was examined at least twice

by people known as technical editors. The first examination was to insure that the order was

complete (ie. that the particular set of components on the order were sufficient for a functional

system). The second examination, though concerned with completeness, also had the purpose of

specifying what the relationships among the components should, be. Because the technical editor’s

task is fairly tedious, it is not a position that engineers aspire to; thus the people who have this job

tend to have fairly weak engineering backgrounds. A technical editor can, however, call upon an

engineer who understands computer system issUes whenever he encounters a problem that is

beyond his competence.

2.2. Ri’s capabilities

Ri is implemented in OPS5 Forgy 81]. OPS5 is a general-purpose rule-based language; like other

rule-based languages, OPS5 provides a rule memory, a global working memory, and an interpreter

which tests the rules to determine which ones are satisfied by the descriptions in working memory.

An OPS5 rule is an IF-THEN statement consisting of a set of patterns which can be matched by the

descriptions in working memory and a set of actions which modify working memory when the rule is

applied. On each cycle, the interpreter selects a satisfied rule and applies it. Since applying a rule

results in changes to working memory, different subsets of rules are satisfied on successive cycles.
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OPS5 does not impose any organization on rule memory; all rules are evaluated on every cycle.2

OPS5’s two memories have been augmented, for this application, with a third. This memory,

the product description data base, contains descriptions of over 4000 components. Each entry iii the

data base consists of the name of a component and a set of forty or so attribute/value pairs that

indicate the properties of the component that are relevant for the configuration task. As Ri begins to

configure an order, it retrieves the relevant component descriptions from this data base. As the

configuration is being generated, working memory grows to contain descriptions of partial

configurations, results of various computations, and context symbols that identify the current subtask.

Production memory contains all of Ri’s permanent knowledge about how to configure

computer systems. Ri currently has 2800 rutes that enable it to perform the task. These rules can be

viewed as state transition operators. The conditional part of each rule describes features that a state

must possess in order for the rule to be applied. The action part of the rule indicates what features of

that state have to be modified or what features have to be added in order for a new state that is on a

solution path to be generated. Each rule is a more or less autonomous piece of knowledge that

watches for a state that it recognizes to be generated. Whenever that happens, it can effect a state

transition. If all goes well, this new state will, in turn, be recognized by one or more rules; one of these

rules will effect another state transition, and so on until the system is configured. English translations

of two sample rules are shown in Figure 1.

It is usual, when discussing an artificial intelligence system, to distinguish the matching of

forms and data from search; for example, in discussing the amount of search occurring in a resolution

theorem prover, the unification of clauses is considered to be part of the elementary search step. But

Match is also a method for doing search in a state space Newell 69]; it is analogous to methods such

as Hill Climbing or Means-ends Analysis, though much more powerful. The characteristic that

distinguishes Match from other Heuristic Search methods is that in the case of Match the conditions

(tests) associated with each state are sufficient to guarantee that if a state transition is permissible,

then the new state will be on a solution path (if there is a solution path). Thus with Match, false paths

are never generated, and so backtracking is never required. Match is well suited for the configuration

task because, with a single exception, the knowledge that is available at each step is sufficient to

distinguish between acceptable and unacceptable paths. The subtask that cannot always be done

with Match alone is placing modules on the unibus in an acceptable sequence; to perform this

subtask, Ri must occassionally generate se’Leral candidate sequences.

The fan.in and fan-out of Ri’s rules provide a measure of the degree of conditionality in the

configuration task. The fan-in of a rule is the number of distinct rules that could fire immediately

before that rule; the fan-out is the number of distinct rules that could fire immediately after the rule.

The average fan-in and fan-out of Ri’s rules is 3; about a third of the rules have a fan-in of 1, and a

third have a fan-out of 1. The graph of possible rule firing sequences, then, has about 2800 nodes

(one for each rule); each of these nodes has, on the average, three edges coming into it and three

20PS5’s cycle time, though it is essentially independent of the size of both production memory and working memory Forgy

82], depends on particular features of the production system (eg, the number and complexity of the conditions and actions in

each production); the average cycle time for OPS5 interpreting l~1 is about 50 milliseconds on a VAX-i1/780.

33



ASSIGN-UB.MODULES-EXCEPT.THOSE-CONNECTING-TO-PANELS-4

IF: The current context is assigning devices to unibus modules

And there is an unassigned dual port disk drive

And the type of controller it requires is known

And there are two such controllers

neither of which has any devices assigned to it

And the number of devices that these controllers can support is known

THEN: Assign the disk drive to each of the controllers

And note that the two controllers have been associated

and that each supports one device

PUT-UB-MODULE-6

IF: The current context is putting unibus modules in backplanes in some box

And it has been determined which module to try to put in a backplane
And that module is a multiplexer terminal interface

And it has not been associated with any panel space

And the type and number of backplane slots it requires is known

And there are at least that many slots available

in a backplane of the appropriatetype
And the current unibus load on that backplane is known

And the position of the backplane in the box is known

THEN: Enter the context of verifying panel space for a multiplexer

Figure 2-1: Two Sample Rules

going out. It should be clear that unless the selection of which edge to follow can be highly

constrained, the cost (in nodes visited) of finding an adequate configuration (an appropriate path

through the rules) will be enormous. It is in this context that the power of the Match method used by
Ri becomes apparent. When Ri can configure a system without backtracking, it finds a single path

that consists, on the average, of about 800 nodes. When Ri must backtrack, it visits an additional N

nodes, where N is the product of the number of unsuccessful unibus module sequences it tries (which

is rarely more than 2) and the number of nodes that must be expanded to generate a candidate

unibus module configuration (which is rarely more than 300).
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3. Building Ri

3.1. Task delinition

Several factors influenced the initial definition of Ri’s task. First, it was simply assumed that Ri

would perform the task that the technical editor responsible for specifying the relationship among

components performed. A system which simply checked for completeness would have been of use,

but at that time, Digital’s primary concern was with finding a way to insure consistency among

configurations. Second, the possibility of developing a system that could reason like an engineer

when encountering a previously unencountered problem was never considered; as a result, Ri’s

knowledge turned out to be the surface knowledge of the technical editor, rather than the deeper

knowledge of the engineer. Third, since a technical editor is ordinarily responsible for a single system

type (eg, a PDP.l1/44, a VAX-ii/780), it was assumed that Ri’s initial task would be to configure just

a single system type. But it was not at all clear which system type was the right one to start with. The

alternatives were either one of the PDP-l 1 systems or the VAX-i 1/780. The main reason for favoring

a POP-i i was that configuration was more of a problem for the POP-il systems. The main reason for

favoring the VAX-ii/780 was that it was easier to configure, primarily because the number of

supported components was, at that time, so much smaller. ft was decided that the initial task should

be VAX-ii/780 configuration. As it turned out, this was a fortunate choice since it allowed Ri to

become a good novice configurer more quickly and as a result gain increasing amounts of

cooperation from those people who had knowledge it needed.

3.2. Initial design

After we had some understanding of what was involved in the configuration task at an abstract

level, but before we had more than a few examples of the knowledge technical editors have in their

heads, we made two basic design commitments which implicitly defined the structure that Ri would

have. One of these was to encode the domain knowledge as situation/action rules; the other was to

view the configuration task as a collection of loosely coupled subtasks. Each of Ri’s rules defines a

situation in which some particular configuration step is required. Since a rule is applied only when

the descriptions in working memory satisfy the condition part of that rule, Ri’s rules do not specify

sequences of steps to be performed, but rather specify the possible steps without committing in

advance either to particular steps or to the sequence in which the steps should be performed. Ri

relies on this characteristic of rule-based systems in two ways. (1) Because there is so much

variability in the steps required for configuring different systems, enumerating all possible sequences

of steps would be an almost impossible task; encoding knowledge in rules permits each small piece of

situation-specific knowledge to recognize when it is relevant and thus dynamically discover the

appropriate next step. (2) Because the knowledge that Ri needs in order to become an expert

configurer can only be acquired over time, new knowledge must be continuously assimilated; since a

rule defines the type of situation in which it is relevant, rules do not interact very strongly and thus

adding new rules is straightforward.

To say that the configuration task can be viewed as a collection of loosely coupled subtasks means

that each piece of configuration knowledge can be associated with a particular subtask. When the

nature of a task allows such partitioning of knowledge, issues of control are ordinarily easier to

resolve. Because rule-based systems are data-driven, it can happen that rules which are satisfied but
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have no relevance to the subtask currently being performed are applied before (or even instead of)

rules that bear on the cUrrent subtask. We decided to avoid this problem in Ri by including, in the

condition part of each rule, a description of the particular subtask that the rule is relevant to. When a

rule (relevant to a particular task) recognizes that some subtask needs to be performed before the

current task can be completed, that rule asserts a description of the subtask which needs to be

performed.

3.3. Knowledge extraction

After one week’s interaction with a Digital engineer, it took about three months to develop an initial,

primitive version of Ri. This novice version had about 250 situation/action rules; this amount of

knowledge enabled Ri to configure very simple VAX-1i/780 systems without making any mistakes.

Over a period of about five months, expert configurers observed Ri’s performance and indicated

what knowledge Ri was lacking; this knowledge was encoded as rules and added to Ri. A total of

about one man-year was spent in getting Ri to the point where Digital could formally evaluate it. At

750 rules, Ri’s performance was fairly impressive; the experts concluded that ~t had almost all of the

knowledge it needed, so it began to be used by Digital to configure all VAX-il /780 systems. Ri now

has more than 2800 rules. Some of this additional knowledge was required to enable Ri to configure

systems other than the VAX- 11/780. But much of it is knowledge that was simply overlooked by the

experts. The experts did not think to supply this knowledge until Ri tried to configure systems which

could not be configured correctly without it. Because some of this knowledge is very rarely needed, it

has taken several years to uncover some of it.

3.4. Technology transfer

As Ri was being developed at CMU, little attention was paid to the question of who at Digital was

going to maintain and continue to develop Ri once it moved to Digital. Ri moved to Digital in January

of 1980, and a small group of programmers was given the responsibility of seeing that Ri ‘s potential

was realized. For about a year, the people at CMU who had developed Ri provided a significant

amount of assistance. But by the end of 1980, the group at Digital had became sufficiently familiar

with Ri and with the Al techniques it embodies to be able to proceed without additional assistance

from CMU. During the past three years, the people at Digital have extended Ri from a 1000 rule

system to a 2800 rule system.

The number of people who have worked directly on Ri has, over the past three years, remained at

about ten. Three of these people are engineers who are responsible for identifying the configuration

knowledge Ri lacks on the basis of mistakes it makes and for adding new product information to the

data base. Four of the people are programmers; the engineers tell them what configuration

knowledge Ri is lacking and they determine how to represent this knowledge in the form of rules.

The other three people are Ri’s interface to the user community. Considering that none of these

people had any background with Al when they began their jobs, they have accomplished a great deal.
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A Review of the Prospector Project

by
John E. Reiter

Syntelligence, Inc. *

I. Introduction

This paper summarizes the Prospector project, a ten-year effort at SRI International to develop

techniques and tools to assist with decision making problems in mineral exploration and in other

areas1’ 2, 3, 4, 5, 6, 7, 8, 9, 10, ii, 12, 13• During that time, the project has shifted from being a pure research

effort to being largely concerned with the transfer of the technology to various other organizations. It

seems appropriate at this time to step back and review the project, not only to describe some of the

important features of Prospector but also to summarize what has been learned.

II. The Design of Prospector

The Prospector system is a well-known example of a class of programs that have come to be known as

expert systems. The phrase expert system’ has been applied to so many different programs that there is

considerable confusion about its meaning. For us, an expert system is a computer program that uses

explicitly represented knowledge and computational inference procedures to solve problems normally

requiring significant human expertise.

The goal of Prospector is to play a role analogous to that of a human consultant who must deal with

problems that can be characterized as diagnosis or classification problems; that is, given a set of (possibly

uncertain) case-specific data, produce a set of possible explanations that summarize or interpret that data.

Although Prospector has been primarily developed for geological applications, the system is for the most

part domain independent.

A. Inference Networks

The knowledge base that Prospector uses to interpret a set of data largely consists of a set of plausible

inference rules of t.he form:

IF E TI-LEN (to some degree) H,

where E is a proposition that represents some piece of evidence and 1-I is a proposition that denotes an

hypothesis. E is sometimes called the antecedent of the rule and H the consequent. A particular piece of

evidence E can be on the left hand side of any number of rules, and a particular hypothesis H can be on

the right hand side of any number of rules. Also, rules can be chained together by allowing H to be on the

right side of one rule but also on the left of one or more other rules (thus blurring the distinction between

evidence and hypothesis).

One can view a collection of propositions and rules as an inference network by representing propositions

as nodes and rules as arcs directed from evidence to hypothesis. The set of nodes with no out.going arcs

represent top-level hypotheses. The nodes with no incoming arcs represent external evidence for which

information is potentially acquirable from some information source. The remaining nodes are called

intermediate hypotheses. The problem, then, is to acquire evidence so that one can establish a top-level

hypothesis.

‘This paper was begun when the author was affiliated with SRI International. The author’s current address is 800 Oak

Grove Avenue, Suite 201, Menlo Park, CA 94025.
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B. Methods for Handling Uncertain Information

In general, the truth or falsity of a top-level hypothesis cannot be established with complete certainty.

Thus, I’rospeet.or associates a subjective probability value with every proposition to measure the degree to

which it is believed to be true. As in Bayesian decision theory, it is assumed that in the absence of

evidence any hypothesis It has an initial or prior probability P(H). Let E’ denote the observations made

by the user. If E’ completely confirms the proposition E (i.e. the posterior probability P(’ElE’~) = 1), the

posterior probability P(l-IIE’) is equal to the conditional probability P(If]E). If E’ completely denies E

(P(EIE’) = 0), P(HIE’) is equal to the conditional probability P(l-Ij~-...~E), where ~ denotes the negation of

E. If E’ neither suggests nor denies E (P(EIE’) = P(E)), then P(H!E’) = P(H).

Numerical values for P(H), P(E), P(HIE) and P(HI’—.E) are subjective estimates supplied by the expert,

and if applied in a pure Bayesian f rmulation, they may produce inconsistencies. Duda et al.’ discuss

solutions to this problem. The solution adopted in Prospector is to define the general formula for P(I-IIE’)

as a piecewise linear interpolation using the three fixed points described above.

From the user’s viewpoint, Prospector expresses degree of belief through the certainty measure

introduced in the MYCIN system14. This certainty value C(1-JlE’.~ measures the degree to which observed

evidence E’ changes the probability of the hypothesis H from its prior value P(H). C(HIE’) is a number

between -5 and +5, where -5 corresponds to H being definitely false, +5 corresponds to H being definitely

true, and 0 corresponds to the no-information case where P(H!E’) = P(l-I). Between these endpoints,

there is a one-to-one linear relation between certainty and probability.

The main advantage of employing certainties is psychological. People often feel uncomfortable

estimating probabilities, yet they are willing to say whether a piece of evidence increases or decreases the

probability of a proposition with respect to its prior value. Thus, certainties are particularly useful for

talking about relative probabilities.

So far, we have discussed measures of belief for simple propositions. It is often useful to consider

propositions which deal with numeric quantities (for example, ‘the age of the rock’). To handle such a

proposition, Prospector allows one to construct a numeric input node that describes a partition of the

range of the numeric quantity into a set of intervals, and to specify a variable strength rule which has a

conditional probability value for each of the intervals in the antecedent node of the rule. Procedures for

coiriputing l’(HJE’) for the consequent of a variable strength rule are outlined in Duda et al3.

We have thus far discussed the effect of a single piece of evidence on an hypothesis. In the case of

multiple rules affecting a single hypothesis, the assumption of conditional independence of the evidence is

made, resulting in a simple method for computing the posterior probability of the hypothesis. This

method, which is based upon Bayes’ Rule of probability theory, is described in Duda et al1.

Prospector also allows evidence to be combined using the logical combinations of negation, conjunction,

and disjunction. The formula for negation is the classical one:

P(’---EIE’) = I - P(E~E’).

Unfortunately, for conjunctive combinations

E = E1 and E2 and
...

and E~

and disjunctive combinations

E =~ E1 or E2 or
...

or E~

one needs to know the entire joint probability P(E1,E2 E~~E’), not just the conditional probabilities

P(E~IE’). The assumption of statistical independence leads to simplified formulas, but, in our experience,
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the results are usually too pessimistic for conjunction and too optimistic for disjunction. Prospector’s

heuristic solution uses the following formulas from the theory of fuzzy setst5:

conjunction: P(EIE’) = mm {P(E~IE’)}, i = 1, 2 n

disjunction: P(EIE’) = max {P(E~IE’)), i = 1, 2.
...,

n.

By combining multiple rules and logical combinations, one can capture relations between evidence and

hypotheses that are much more complex than either extreme.

C. Context

It. sometimes happens that one proposition refers to another, and one cannot meaningfully talk about the

fornaer in isolation. For example, one usually cannot consider a property of some object before the

probable existence of that object has been established. Even when isolated reference is meaninglul, it is

often the case that an expert cannot provide strong rules unless the existence of some special situation has

been established. To handle such situations, Prospector allows any proposition E1 to be designated as a

context for another proposition E9 (in inference network terminology, a context arc links E1 to Efl). The

context is considered to be satisfied if the final posterior certainty value of E1 falls within a range specified

by the expert. lithe context is not satisfied, Prospector in effect ignores proposition E2. Since the context

arc forces E1 to be investigated before E2, the context mechanism goes beyond the representation of

factual knowledge into the area of control.

D. Semantic Networks

The meaning of the proposition represented by an inference network node can be encoded using a simple

text string; e.g.: ‘a rhyolite or a dacite plug is present.’ However, there are advantages to a more

explicit encoding of the meaning. In Prospector, this can be done using a set of n-ary relations; e.g.:

COMP-OF El (OR RHYOLITE DACITE)

FORM-OF El PLUG.

The first relation encodes the fact that there is an entity El composed of rhyolite or dacite; the second

that El is in the form of a plug. If the elements of these relations are considered nodes and the relations

expressed among them arcs, we can view sets of relations as a semantic network~~ which expresses the

meaning of inference network nodes.

Semantic networks are used in conjunction with a taxonomy (another type of network which expresses

subsct-supcrset relations among the domain concepts referred to in the semantic networks) to detect

whether two inference network nodes are semantically equal or whether one is a subset of another. This

procedure is performed by a part of Prospector called the Mat cher’0’ 17 lithe Matcher detects either of

these cases, Prospector can make inferences which are not explicitly encoded in the inference network, and

it can also check for certain inconsistencies which might be produced by inferences.

E. Modes of Use

Prospect.or supports four primary modes of use: consultation, batch, off-line, and compiled.

Prospector is most often used as a consultation system with which the user conducts an interactive

dialog, providing information on a specific situation to be analyzed. During a consultation, the system

uses a mixed-initiative strategy to gather information. In a~tecedent mode, the user can tell the system

about those aspects of the situation which he considers important. He does this using very simple English-

like statements. The user’s statements are translated to semantic networks which are processed by the

Matcher in the manner described above. In consequent mode, Prospector chooses the top-level hypothesis

which seems most appropriate to consider, then chooses the question (external evidence node) which seems
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most likely to confirm or deny that hypothesis. This series of decisions, called the control strategy, has

been described in detail by Duda et at.2 and Reboh’°. Another important component of the consultation

system is the explanation system, which at any time can provide the user with an easy-to-understand

description of the conclusions which have been reached, along with information supporting those

conclusions.

The batch mode of Prospector is normally used for testing knowledge bases. In this mode, the user’s

answers to Prospector’s questions are stored on a disk file. At some later time (perhaps after

modifications to the knowledge base), this file can be used by Prospector as the source of answers.

Prospector also supports off-line data collection through the abi!ity to generate a questionnaire which

lists all questions in a knowledge base. This is primarily used to collect a set of test cases which are used

to quantify the quality of a knowledge base.

The compiled mode was developed to provide geologists with an ability to process graphical data. Using

a digitizing tablet, the geologist traces the geological features requested by Prospector. After some

preprocessing, each feature is encoded as a 128 x 128 array. Prospector is then run using point (1,1) from

each feature array, then point (1,2), etc., to produce an array of scores for the top-level hypothesis, which

is then color-coded and displayed on a graphics device. Arrays for lower-level hypotheses can also be

computed and viewed to provide a type of explanation system. The map-processing system uses inference

networks that have been compiled to simple machine-language instructions, thus reducing computational

demands by four orders of magnitude.

ifi. The Design of Hydro

The 1-lydro system is an extension of Prospector designed to assist users of a large hydrological

simulation model in estimating values for input parameters” 12• The fundamental task performed by the

Hydro software is the estimation of numeric quantities under conditions of uncertainty.

A. Basic Knowledge Representation

After several attempts at representing an uncertain numeric value using very simple schemes, the

method settled upon is the use of a discrete probability distribution represented as a set of interval-

probability pairs. Each interval is described by a lower bound and an upper bound, and its associated

probability measures the likelihood that the value actually falls in that interval.

B. Value Networks

The knowledge base structures which manipulate distributions are referred to as value networks. The

types of nodes in value networks are tables, formulas, alternatives, and the numeric input node discussed

in Section ll.B.

‘l’able and formula nodes take one or more distributions as input and produce a single distribution as

output. A table node with n inputs contains an n-dimensional table, where each entry in the table is an

interval in which the output value is guaranteed to lie, given the combination of input intervals

corresponding to the indices of the entry. A formula node is similar to a table node, the difference being

that entries are computed using an analytic function stored with the node.

An alternatives node takes two or more- distributions as input and produces one distribution as output

by “multiplying distributions; that is, the probability of each interval in the output distribution (before

normalization) is the product of the probability of that interval based on the first input distribution, then

based on the second, etc. Thus, alternatives nodes can be thought of as computing the conjunction of

distributions.

Numeric input nodes are used as external evidence nodes for value networks. Also, the output of table,
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formula, and alternatives nodes can be fed into a numeric input node (in this case it is not treated as an

external evidence node), which can then be connected to inference network nodes using variable strength

rules (section 1I.B).

W. Knowledge Engineering Efforts

The process of constructing a knowledge base is often referred to as knowledge engineering. Several

substantial knowledge engineering efforts were undertaken during the Prospector project.

In the geological domain, twelve prospect-scale models (a model is an inference network with one top-

level hypothesis) were developed, each encoding a particular class of mineral deposits. These models

contained a total of 1566 inference network nodes and 1065 rules. In addition, twenty-t.hree regional-scale

models totaling 1683 inference nodes and 1370 rules were developed. Not all of these models have been

developed to the point where they are ready for formal evaluation. However, systematic tests of mature

models showed that they matched experts’ evaluations of prospect sites to within a few percent5’ ~.

Moreover, a prediction of molybdenum mineralization in an area near Mount Tolman in the northwestern

Unit.ed States that was made using one of the three map-based prospect-scale models has been

substantially confirmed by subsequent exploration13.

V. Knowledge Engineering Tools

The magnitude of these knowledge engineering efforts necessitated the construction of software tools.

The most developed of these tools is KAS’°, an interactive system for constructing, inspecting, editing,

and testing knowledge bases.

Several other useful packages were also developed. The Probs program allows one quickly to test the

effects of one level of rules on an hypothesis8. Another package of routines produces evaluation reports

which compare Prospector’s results using sets of input data to experts’ evaluatk;ns of that data9. A

network display package allows the display of inference and value networks on a graphics device18.

VI. Conclusions

The Prospector project has demonstrated that it is possible to build large knowledge bases that can

demonstrate a high level of decision making competence. Of course, knowledge bases must undergo

thorough testing and tuning in order to achieve this. Nevertheless, the fact that knowledge engineering

efforts have in many cases quickly produced reasonable results indicates that the techniques and tools

employed provide a natural and effective way to encode judgmental knowledge**

As others have noted, the rule-based approach provides a convenient way to express knowledge in small,

modular units. It is not sufficient, however, to view a rule base as an unstructured collection of rules to

which one can casually add or subtract. Viewing a set of rules as an inference network, on the other hand,

provides a more structured, global picture of the rules. To an extent, the inference network approach

promotes •structured prograrnming of rule bases.

It is clear that a variety of mechanisms are needed to express the expert’s knowledge accurately. A

primary requirement imposed by the geological domain is an ability to deal with uncertainty in both input

data and in knowledge bases. A fruitful approach has been to be guided by the large body of work that

has been done in probability theory, but to depart from it as necessary whenever efficiency or

expressibility problems were solved more satisfactorily by other methods. For example, fuzzy logic

combinations and the context mechanism were added to Prospector to improve expressibility. Semantic

networks were used not only to increase expressibility but also to provide an efficient means of processing

“It is worth noting that early in the project some people felt that the judgmental knowledge of exploration geologists was

unencod able.
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(implicit) rules that do not involve uncertainty. The design of value networks was guided by probability

theory, but several approximations were made in the interest of computational efficiency.

Also, it is clear that the knowledge acquisition tools built to assist in the laborious process of

constructing knowledge bases are very important; however, experience in knowledge acquisition is at least

as important. Knowledge bases built in the later phases of the project were constructed more than ten

times faster than earlier ones.

Once encoded, knowledge bases can be used in a variety of ways. Prospector supports interactive,

batch, off-line, and compiled modes, but others (e.g. tutorial) are conceivable and will certainly be

developed as the need arises.

Obviously, Prospector has many limitations, If one takes an extreme view of the goals of expert system

research, one may conclude that success will not be achieved until all the problems of artificial intelligence

have been solved. This is a needlessly pessimistic conclusion. The primary goal of expert system research

is to provide tools that exploit new ways to encode and use knowledge to solve problems, not to duplicate

human behavior in all its aspects. Therefore, the following discussion of Prospector’s limitations will be

restricted to a few of the issues that directly impact this more modest goal.

A basic problem with the Prospector approach is that it is restricted to unidirectional inference; that is,

a change in the certainty of an hypothesis has no effect on the certainty of its supporting evidence,

although there are cases when expectations about the evidence should be changed. Also, Prospector does

not handle mutually exclusive and exhaustive hypotheses properly; in particular, it will not reach a

conclusion by ruling out alternatives unless rules are explicitly included for this purpose. In addition, even

with KAS and other tools the process of building knowledge bases can still be very difficult. For example,

assigning prior and conditional probabilities is by no means easy, and the assumptions on which the

system is built sometimes force artificial adjustment of these values. Another basic problem is that

Prospector is convenient only for encoding shallow heuristic models; it does not seem appropriate for

causal or functional models (such as a nuclear reactor simulator or a model of traffic flow). Also, since

Prospector is a research product, the current implementation suffers from the expected problems of speed,

reliability, and portability.

In spite of these shortcomings, experience with Prospector and other expert systems shows that expert

system research can lead to the development of high-performance programs. Equally important is the

field’s impact on the systematization and codification of knowledge previously thought unsuited for formal

organization. Improved approaches to formalizing and managing knowledge are certain to be of

importance to a wide variety of scientific and economic endeavors.
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AN ORTHODONTIC CASE STUDY INSTRUCTION SYSTEM

BASED ON A RELATIONAL DATABASE SYSTEM

Y. Kanamori, J. Sugawara
School of Dentistry, Tohoku University, Sendal 980, Japan

and

Y. Masunaga

University of Library and Information Science, Ibaraki 305, Japan

Abstract: This paper describes the design and implementation of an expert

system for use by students in orthodontics in studying cases. The system is

based on a relational database system from which knowledge about past

diagnoses and treatments is retrieved. Because of the very long period of

treatment (e.g. two to ten years), the diagnosis logic has not yet been

established in orthodontics. Therefore, an instruction system based on a

knowledge/data base is essential.

1. Introduction

We define an expert system as a system which can simulate human

expertsl 1,5,6/.
In orthodontics, it is very important to train students to diagnose cases

based on the morophological characteristics of craniofacial skeltons. Such

training is essential, because usually it takes two to ten years to treat

cases, and therefore it is impossible for students to see the validity of

their treatments in a two—year training course.

One of the characteristics of our orthodontic case study instruction

system is that it is based on a knowledge base in which all valid and invalid

past diagnoses and treatments are stored as orthodontic knowledge. The reason

for this is that the logic of orthodontic diagnosis has not yet been

established, and therefore a valid treatment in the past becomes the basis of

treatment for a new patient.
Therefore, our system differs from other systems like MYCIN/1/. MYCIN is

based on a firm diagnosis logic, so that its knowledge base consists of a set

of rules and inference rules.

Other characteristics of our system are as follows: Since the system
maintains an image (skull line drawings) database, it displays images to

instruct students rather than just giving descriptive information. The system
does not diagnose the input case. Rather, it infers the validity of the

diagnosis andJor treatment plan proposed by a student by comparing it with

analogous cases stored in the knowledge database.

2. System Overview

Figure 1 shows the overall architecture of our system.
Students may interact with the system in terms of three types of data:

(a) result of a case analysis, (b) diagnosis, and (c) treatment plan. That

is, a student may want to know (c) by showing (a) and (b) (we call this type—i
interaction), or know the validity of his treatment plan, i.e. (c), by showing
(a), (b) and (c) (we call this type—2 interaction). Of course, other types of

46



interactions are possible. However, these are not so significant from

orthodontic point of view.

The expert system interprets the input. First, the system analyzes type—a
data so that it can identify into which of nine possible categories (this
classification has been established already in orthodontic research/2/) the

given case falls. This becomes the basis of information necessary to retrieve

analogous cases.

Both the knowledge base (KB) and the database (DB) are organized as

~tab1es. A table named DIAGNOSIS(CASENO., SEX, AGE AT DIAGNOSIS, BONE_AGE,
DENTAL AGE, BODY HEIGHT, CASTDATANO., ORTHOPANTOMO, HORIZONTAL FACIAL TYPE,
VERTICAL FACIAL TYPE, FACIAL SYMMETRY, X RAY FILM NO.) is stored in KB, while

a table named FEATURE(XRAYFILMNO., GONIAL ANGLE, CHIN ANGLE, ...,

BODYLENGTH, . - -, Fl, ..., F8O) is stored in DB. Eleven other tables are

stored in JiB.

To retrieve analogous cases from DB, QUEL—like relational database

language has been implemented. Therefore, the core system translates a

student’s input into a relational query expression to retrieve analogous
cases. If a type—i interaction is initiated by a student, the system shows

every treatment ever done by specifying the type—a and type—b input. If a

type—2 interaction is initiated, the same action as for a type—i interaction

is first taken, and then the retrieved data is compared with the type—c input.
If at least one case is retrieved which has an analogous treatment plan tagged
as good, the system replies success to the student. It is difficult to define

which two treatments are analogous Our proposal is to use a two—dimensional

treatment plan. It is a diagram indicating a plan of when and what treatments

will be done. An example of this diagram is shown in Figure 2.

Core system:

Analysis of user’s requests,

Retrieval of analogous cases, :
.

Students

Comparison of user’s input with the !

retrieved data,

Instruction generation to students.

IIIIIIIIIII~IIIIIIIIIIII~IIIIIIIIITI~II
Knowledge base (KB): Database (DB):
Cases with diagnoses, Morophological characteristics of!

treatments and ! ! craniofacial skeltons of cases

evaluation of the

treatments !

4’

Link:
1~

Image base (IB):
I Skull line drawings

Figure i. An overview of the system
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Orthodontic

appliances

Chin cap

Lingual arch

_______________________________________

Age
5 6 7 8 9 10 11 12 13 14

Figure 2. A sample of two dimensional treatment plan

Since it is very effective to show skull line drawings of analogous cases

directly to students, we have yet another type of database (Image Base, IB).
In lB skull line drawings are represented as a collection of x—y coordinates

of points. Of course, the (relational) DB and the lB are linked together.
Among application programs, a program which can overlap certain skull line

drawings to show the growth of a skull with certain reference points fixed is

very useful. We have already implemented this function.

3. An Example Interaction with Students

Example A student has a case of a boy who received his first

examination at age nine. By inspection, the case seems to be anterior

crossbite and deep bite. The student initially arrives at the following
diagnosis and treatment plan.

Diagnosis The case falls into the skeletal class III, and is short face

and deep bite.

Treatment plan During the first treatment period, a lingual arch will

be used as an orthodontic appliance for correction. Next, a chin cap will be

used. The student draws a two—dimensional diagnosis plan (or its equivalent)
for the system (see Figure 2).

Then the student asks the expert system whether his treatment plan is

valid (note that this is a type—2 interaction). The system behaves as shown

below:

(1) It retrieves analogous cases (as orthodontic experts do in their

brains). A case is analogous to the given one if the sex of the case is male,

the first examination age is between eight and ten, the case falls into

skeletal class III, the case is short face and deep bite, a lingual arch and a

chin cap were used, and in order to ensure the data significance, the

treatment was continued for more than five years, and improvement was

recognized.
(2) It selects cases with stable prognosis from the cases retrieved on

the previous step. The instruction given to the student is as follows: For

each case retrieved, the system shows the overlapped skull line drawings to

show the growth of the skull (by using the application program mentioned

above), together with the two—dimensional diagnos-is plan applied to the case

and the validity of the plan.
(3) It selects cases with unstable prognosis The system takes the same

action as above in order to instruct the student on the errors of the

diagnosis and corresponding treatment plan.
(4) It processes requests from the student. For example, the student

may want to see certain cases again, or if the student is riot satisfied with

the instructions given by the system, he will ask the system to relax the
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conditions the system adopted. For example, the student may want to relax the

age of the cases to be between seven and eleven, or want to see cases which

used other orthodontic appliances than a lingual arch and a chin cap. The

system then will show other cases so that the student can compare his

treatment plan with other types of treatment, and may finally understand the

validity of his treatment.

4. Status and Future Plans

The following functions have already been implemented:

(1) A relational database management system, which runs on a TI 990/20

(Texas Instruments Inc.) mini—computer system, has been implemented on US DX1O

using PASCAL. This system supports a QUEL—like data manipulation language.

(2) A variety of application programs has been developed. The

application programs involve the relational DB and the image base.

(3) Orthodontic data has already been organized as a relational

database/3/. It has thirteen relations in third normal form. Three relations

contain information about skull line drawings, and others are for diagnoses
and treatments. The relation named DIAGNOSIS is the knowledge base (KB) of

our system.

(4) In order to build skull line drawings database (IB), programs for

processing input skull line drawings are necessary. We have already

implemented an image processing system for this purpose/4/. This system also

runs on TI 990/20, and is implemented in FORTRAN 77. A facsimile input is

provided for the system.
Our future plans include the following:
(1) Implementation of the core system (Fig.1) on top of our relational

database management system. PASCAL will be used as the implementation

language.
(2) Facial and oral color photographs are sometimes essential in case

diagnosis and treatment planning. However, these data have not yet been

integrated into the database. We plan to use optical disks to store these

data, and integrate the disk data management system into the present

relational database system. Integration will be done by homogenizing the

heterogeneous data at the relation level.
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*
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1.0 INTRODUCTION

The purpose of our current research in expert systems and

databases is to evaluate the potential for the use of expert systems
in a business environment. The first major objective of the project
is to develop a working, prototype expert system in an actual

functional area of business. A second major objective is to

investigate in general the possible advantages of combining an expert
system with a relational database management system.

In this paper, the major components of the project are described.

Emphasis is placed on the database management system--expert system
interaction, where implementation is underway. First, the selected

application is described. Second, the implementation strategies and

tools are presented. Finally, more general research topics and the

current project status are addressed.

2.0 APPLICATION

The first component of the project is the business application
which is to be supported by the expert system. In selecting an

application, the following criteria were used:

* This work is carried out as part of a joint research study being
conducted with the IBM Corporation. The project researchers from New

York University are: H. Lucas (project manager and coordinator),
J. Clifford, M. Jarke, W. Reitman, T. Sivasànkaran, E. Stohr,
Y. Vassiliou, and N. White.
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1. Expertise exists and is available.

2. The business problem is faced by an organization, rather than

an individual.

3. There is a sufficient amount of data needed in decision

making to justify the use of a database management system.

11. As in many typical business problems, the invocation of

operations research and computation models is required.

5. The task of the application is non-trivial, yet well-bounded

and easily expandable.

After considering several candidate applications, the decision

was made to develop an Expert System (ES) for customizing insurance

policies - an ES that meets the criteria set forth.

There are two major reasons why there exists a scope for such an

ES. First, insurance companies sell only standardized products and

therefore may not offer special benefits uniquely needed by a

customer. It is not that companies cannot make adjustments on an

individualized basis, but it is the amount of time, effort and the

expertise that is required in computing the premium and assessing
feasibility that discourage them to sell policies on a customized

basis.

Second, forming the right benefit mix is more of an art than a

science, exercised by able insurance agents. Capturing their informal

rules into an expert system can be helpful to agents, and can result

in better customer satisfaction and increased sales.

The expert will be assisting the insurance sales agent while

recommending policies to a customer. For this it should be able to:

- generate unique mixes bf benefits and compute premiums,
- assess feasibility,
- present the result and explain the reasoning process,
- allow for modifications of the reasoning process.

The knowledge base of this expert system includes formal rules

(from actuarial science, finance, insurance law), and informal

heuristic rules (e.g. generation of policies, typical customer

requirements, identifying legal and corporate constraints). A large
amount of factual knowledge (database) is necessary (customer data,
tables for mortality, interest, etc.).

A small demonstration prototype has been built which shows the

feasibility of the application but currently still lacks the

interfaces to a commercial DBMS and to a mathematical subroutine

library.
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3.0 IMPLEMENTATION TOOLS

The expert system is rule-based Nau 1983]. The programming
language Prolog Kowalski 1979] was selected for the implementation of

the ES. A large relational database system that can be accessed

through SQL Chamberlin et al 1976] is used. Interfaces to the expert
system for knowledge acquisition and consulting sessions will be

implemented in ILlS - a program for developing language processors

Sowa 1981]. The hardware configuration includes an IBM 1431i1 running
under VM/CMS..,

1L0 DBMS--ES INTERACTION

The interaction between the two systems can be viewed in two

complementary ways: Enhancing an ES with DBMS facilities, and

enhancing a DBMS with ES techniques and features.

Z~.1 ES Enhancements With DBMS Facilities

In a rule-bas& expert system, the “inference engine” uses a set

of rules (the knowledge base and a collection of specific facts

( to simulate the behaviour of a human expert in a

specialized problem domain.

Expert system databases are typically conceptually complex (i.e
deal with many entities and relationships), but differ from commercial

databases in that they tend to be smaller in terms of actual data

occurrences. On the other hand, expert systems for business

applications may require time-varying subsets of very large databases.

Four strategies for establishing a cooperative communication

between the deductive and data components of an expert system have

been identified Vassiliou et al 1983]. The spectrum of’ possible
enhancements of an expert system with data management facilities is

essentially a continuum.

Starting from elementary facilities for data retrieval we

progress to a generalized DBMS within the expert system, to a ‘loose’

coupling of the ES with an existing commercial DBMS, finally, to a

‘tight’ coupling with an external DBMS.

Expert system designers may opt to choose one configuration over

another depending on data volume, multiplicity of data use, data

volatility characteristics (how frequently data is changed), or data

protection and security requirements. Regardless, in a careful design
these enhancements are incremental, allowing for a smooth transition

from a less to a more sophisticated environment.

The first stage in the development, elementary data management
facilities, is almost automatic when Prolog is used.
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The implementation of a generalized DBMS in Prolog reduces the

need for detailed data handling facilities in each part of the ES

leading to the second stage of the development.

Having this generalized DBMS implemented, it becomes feasible to

interface effectively with existing external databases, typically
managed by separate commercial DBMSs.

Loose coupling (stage 3) implies the existence of a communication

channel between the external DBMS and the ES, and the ability to

extract a snapshot from the existing database and storing it as an ES

database. This is a static process, occurring before the ES session.

This stage reaches its limits where the set of database data is not

known in advance, or is so large that only parts of the data can be

stored in the internal database at any given time.

Tight coupling, then, refers to a more dynamic use of the

communication channel between the two systems. The consequence of

such dynamic use is that the external database becomes an “extension”

of the ES database. This fourth stage of development presents the

most challenging research issues. There is currently a working
implementation Vassiliou et al 1983] that is based on an amalgamation
of Prolog (the ES-language) with its meta-language (the reflection

principle of {Weyhrauch 19801).

Research topics under investigation for ‘tight’ coupling include

the translation of Prolog statements to SQL queries, an optimization
of Prolog goals before this translation, the control primitives of the

communication channel’s use, and the exploration of other strategies
for implementing the coupling of an ES with a relational DBMS.

11.2 DBMS Enhancements With ES Techniques And Features

When compared to requirements for advanced business applications,
such as decision support for managerial users and office automation,
current DBMSs display several weaknesses. For instance, DBMSs have

been criticized for not supporting high-level languages, query

languages that allow for “easy” and “intelligent” use of the database.

This inability is often attributed to the absence of reasoning
capabilities and deduction mechanisms from DBMSs. In addition, no

support of operations performed in the context of other operations, of

a certain application, or of a specific user, and no support of

complex operations (e.g. mathematical computations) directly in the

query language, are offered in current DBMSs. Finally, DBMSs can only
enforce very simple integrity constraints, thus the accuracy of the

database is often suspect.

At New York University, we are exploring how expert system
technology can be used for some of these DBMS problems. We are

employing a two-stage approach Jarke and Vassiliou 1983].
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Intelligent Database Use refers to making query languages
functionally more powerful without making them more difficult to use.

The ES supports intelligent database use by allowing one to state

general horn clause rules (possibly with recursion) in addition to

simple relational queries. Features that can be supported this way
include:

- definition of generalized views with parameters
- query languages with deductive capabilities
- concepts of higher-level data models

- interaction of database and mathematical models

This stage can easily be added to an existing DBMS if ‘tight’ coupling
mechanisms are available. One example of data model extensions under

study in our group is the inclusion of time concepts Clifford and

Warren 1983].

Intelligent Database System Operation refers to safer and faster

execution of read and write transactions. Our approach is to use the

inference engine of the ES to implement transformation strategies such

as proposed in Jarke and Koch 1982, 1983]. Although these strategies
work on a high-level query representation, their most efficient

implementation will require changes to the DBMS itself. Two areas of

applying rule-based methods can be distinguished:

- An ES for write transaction execution (consistency
checking, referential integrity, etc.).

- An ES for query evaluation (evaluation of complex
queries with quantifiers and aggregates, logic-based
query simplification, semantic query evaluation,
recognition of query context, etc.).

5.0 CONCLUDING REMARKS

Our discussion shows that both directions of interaction between

databases and expert systems are closely related. For example, the

translation of ES goals to DBMS queries would greatly benefit from a

query optimization ES on top of the DBMS. Therefore, we expect a

major advantage from researching these questions simultaneously. The

ultimate goal is an advanced decision support system that integrates
database management, model management, and expert system technology in

a single architecture.
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I. Introduction

It has been recognized that expert systems (ES’s) and Data Base Management Systems
(DBMS’s) could benefit from one another: see, for example, fReiterl983J. The existence of

common interests in the two fields should be no surprise. Their nature is such that they have

both developed from their tender years a strong interest in data/knowledge modelling and in

inference making supported by that modelling. Data models have been developed in databases,
and knowledge representation systems in Al. To the extent that data models include relationships
between data and procedures within the management of data, they show important similarities

with knowledge representation systems. The two approaches, however, have not necessarily
placed their emphasis on the same aspects. In Al, for instance, inference, making has been on

the forefront and data with variable structure has been considered more important than data

with efficient storage and access. In constrast, DBMS’s have assumed more voluminous and

more permanently structured data.

It is precisely based on these different viewpoints that exchanges between the two fields can be

expected to be fruitful. For instance, A! techniques could be used to augment the reasoning
which can be made about databases (DB’s), or to provide them with more natural language
interfaces. It seems clear too, that increasingly, ES’s will need to manage large amounts of

data. This is needed for many realistic applications, e.g., in CAD where the nature of ES’s is to

generate large amounts of data LafueI983], for supporting acceptable justifications of the ES’s

conclusions or for supporting attempts at machine learning.

This paper discusses basic decisions about the linking of a particular ES to a DBMS. It con

cerns both inference making and data management, although it emphasizes the latter. The

starting point of the discussion is the claim often made in the recent past that there is an obvi

ous way to unify ES’s and DBMS’S, namely using PROLOG. or, more generally, logic program

ming. This claim is generally justified by the fact that logic programming offers both an infer

ence engine and a natural connection with the relational data model Coddl9lOI. The case dis

cussed in this paper, however, shows an example of an ES for which this claim does not hold,

simply because the inference that is needed is not that of logic programming.

Data management considerations center around the choice between connecting the ES to an

existing- DBMS, ~ building -a~bridge between-the knowledge representation system it uses and

an existing DBMS, vs. extending its knowledge representation system into a DBMS. These

considerations are discussed both from a data modelling perspective and from a systems and

efficiency perspective. From a data modelling perspective, the choice is beween the relational

data model (as the most advanced among the data models of widely available commercial

DBMS’s) and the data model of the knowledge representation system used by the ES. This
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model is richer than the relational one and some of its salient features are presented. The alter

native of translating this model into the relational one in order to hook up with an existing
DBMS would be justified mostly as a way to cut down efforts and complexity and if it does not

cause too much inefficiency. It turns out that particularities of our case would in fact increase

inefficiency and not necessarily reduce complexity.

The next section introduces the context in which these choices arise. Then, inference making
considerations are presented. The discussion of DBMS alternatives follows, both from a data

modelling and from an efficiency viewpoint.

2. The Context

Schlumberger is engaged in the acquisition and interpretation of geophysical measure

ments made in boreholes, or wells, aimed at producing oil. These measurements are made by
tools which are lowered into the boreholes, and are recorded as logs. The interpretation of

these logs is aimed at determining the formations traversed by the boreholes, e.g., their geolog
ical and geophysical characteristics.

Such interpretation is (partly) based on a number of programs. One of these programs is an

ES, called the Dipmeter Advisor, which derives from conductivity measurements made down a

borehole a description of the geology around the borehole Davisl9Sl], Smithl983b]. The

Dipmeter Advisor is rule based. It is written in Interlisp and runs on Xerox 1100 Workstations.

Other programs have been written in Fortran and currently reside on VAXes under VMS.

The notions of geology and geophysics manipulated by these programs are often embedded in

rules or in executable code. Furthermore, these programs are generally d~coupled from one

another, when in fact, they often manipulate related notions and could use each others findings
in a cooperative manner. It was therefore decided to provide them both with more and better

structured information (deeper knowledge) and with broader information about other measure

ments and interpretations (broader knowledge). This led to a system which monitors the access

to various log files and the control of various programs. These accesses and activations being
driven by models of log interpretation, this system can be seen as a log interpretation advisor.

The files are stored on VAXes under VMS and the programs execute either under VMS or on

the Xerox 1100 workstations. The monitoring is done on the Xerox 1100 workstations.

The basic tool to support this inflation of information and programs to control is an object-
oriented language called STROBE ISmithl9S3aJ, Schoenl983I. It resembles other such sys

tems developed either in Al and then called knowledge representation systems (e.g., UNITS,

Loops BobrowI9SlJ), in databases and sometimes referred to as semantic data models (e.g.,
SDM McLeodl9S2J, TAXIS IMylopoulosl98o]), or in programming languages (e.g.,
SmallTalk EGoldbergl983]). Basically, it encapsulates into objects data and procedures pertain

ing to the same semantic entities. It also encourages the organization of objects into hierarchies

in which an object can be the generalization and/or the specialization of other objectss. For

instance, an object for employee is a specialization of an object for person and a generalization
of an object for secretary. An object inherits the attributes of its generalizations. For example,

a secretary has a salary because s/he is an employee and employees have a salary. In STROBE,

an object can have several generalizations. Attributes can also be used to implement arbitrary

relationships between objects as in Abrial’s model Abriall9l4] or Entity-Relationship based

data models Chenl9l6J. STROBE is written in Interlisp for the Xerox 1100 workstations.

More will be said about STROBE’s data model later.

STROBE objects are used to represent programs and their executions, files of log measurements

and a number of notions pertaining to log interpretation, e.g., classification of geological

features, descriptions of wells, of tool characteristics. Some objects are generated as the system
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is modified, not as it is used. This is the case, for example, of objects representing interpreta
tion programs or geological classifications. Such objects correspond to a database schema.

Other objects are generated as the system is used and correspond to a database extension.

Examples of such objects are those for program executions, for files of measurements, for

instances of geological features or for the manifestations of these features in individual wells.

It has been decided to keep dynamically generated objects as a history of automatic log interpre
tation because it is necessary in order to explain the results of intepretations of individual wells,

and, more generally, to improve interpretation methods. Another important reason is to sup

port the modelling of oil fields which can only be done with information from several wells.

The number of objects to keep is such that it requires database facilities.

3. Inference

One emerging approach to linking ES’s and DB’s stems from the resurgence of first order

logic and the advent of logic programming Gallairel978], Gallairel98ll, LKowalskil979].
This is exemplified by the rising popularity of PROLOG LColmerauerl983]. See, for instance

(Vassilioul983], IParsayel983l, Zaumenl983]. The conceptual basis for this is that the logic
statements of PROLOG. i.e., Horn clauses, can be considered either declaratively or procedur

ally.

Considered declaratively, they express queries or integrity constraints about a database, or even

the database itself. That database can be seen as a relational database. It consists of statements

sometimes referred to as facts, which are degenerate clauses of the form ~>P. Queries are

degenerate clauses of the form P~> and can either be open formulas, i.e., containing free vari

ables, or closed formulas. Treated procedurally, queries are goals to be proved or refuted with

theorem-proving techniques, e.g., resolution’s unification and top-down depth-first search with

backtracking as in PROLOG. The proof of an open query returns the instantiations of its free

variables in the current database. The proof of a closed query returns a boolean value.

Integrity constraints, or assertions, or rules, are clauses, i.e., of the form P,Q,R->S. Procedur

ally, they are used to guide theorem-proving as follows: since a rule can be read as “S if P, Q
and R”, then in order to prove S. it suffices to prove P. Q and R.

The apparent appeal of logic programming as the tool to unify ES’s and DB’s is that it comes

with an inference mechanism and naturally connects to relational databases. On the other

hand, this strength can also be a weakness to the extent that it is imposed. This may be the

case when the type of inference provided by a logic programming system and that needed by an

application do not agree, or when the relational data model is not an obvious choice.

Logic programming, as implemented in PROLOG, is top-down (or backward) inference mak

ing, i.e., it aims at proving goals. It does so by trying to refute goals, traversing databases of

facts and rules and looking for inconsistencies between facts and instantiations in the rules of

the goal refutations and of their implications. In addition, PROLOG imposes its top-down
search strategy, i.e., depth-first with backtracking, although it also offers ways to restrict back

tracking.

In constrast, log interpretation is based on bottom-up (or forward) inference. The Dipmeter
Advisor’s inference engine, for instance, is forward chaining. It searches facts and rules and

when a match is found or deduced between facts and the antecedents of a rule, an instance of

the rule’s consequent is generated and included in the database. It infers the presence of geo

logical features from the recognition of patterns of signals. Like signal processing in general,

log iuterpretation is data-driven. Its aim is the generation of plausible conclusions from a mass

of possible ones. The number of possibilities would make attempts to prove or refute the pres

ence of every single one prohibitively expensive.’

* In reality, human log inlerpreters tend to mix a bit of top-down inference in (heir interpretation. For in

stance, they sometimes form some hypothesis based on weak evidence, and then look for signal patterns

confirming this hypoihe~i~.
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It should be underlined that this mismatch between logic programming and log interpretation

does not at all imply a general repudiation of logic, logic programming, top-down inference, or

PROLOG, but only a recognition that different types of inference may have different places and

roles in the marriage of an ES and a DBMS. For example, logic programming’s top-down infer

ence can be used in query evaluation.

& The DBMS Alternatives

There are basically two ways to conceive the connection of a DBMS to a given ES: take an

existing DBMS and build the bridge between the two, or develop a new DBMS to suit the ES.

If one is interested in general-purpose DBMS’s, then relational DBMS’s are likely candidates

since they respond to some of the obvious deficiencies of earlier DBMS’s and are becoming

widely available commercially. The success of the relational data model is largely due to its

simplicity and generality. However, this is not necessarily sufficient if there is an alternative for

a richer data model and if the connection to an existing relational DBMS is awkward.

This section discusses the alternatives from two view points: (i) data modelling and (ii) systems

programming and efficiency. From the former view point, we compare the knowledge

representation system in which the ES is implemented, STROBE, with the relational model.

From the latter view point, we discuss some implications of linking the ES with a particular
relational DBMS, INGRES (Stonebrakerl976j, Ingresl982J, and we contrast them with the

alternative of basing a DBMS on STROBE’s object oriented features.

4.1. Data Modelling Considerations

In general, it is fair to say that STROBE offers a richer data model than the relational

model. Below, the salient data modelling features of STROBE which are not explicitly part of

the relational model are presented, and their possible mapping into the relational model is dis

cussed.

4.1.1. Fow~ Levels of Data Representation

Whereas the relational data model offers three levels of data representation (i.e., data

bases, relations and attributes), STROBE offers four levels of data representation: knowledge

bases which are collections of related objects, which in turn have slots (or attributes), which in

turn are further described by facets. Typical facets of a slot are the slot’s value and its data type

(eg., integer, pointer to another object, bit map, ..). The user can add any facet, for example,

to specify the types of objects the slot can point to, or the minimum and maximum number of

such objects, or to specify the units in which the value of a slot representing a dimensioned

quantity is expressed.

There are two kinds of STROBE objects: classes which can be instantiated, and individuals which

cannot. A class can have a progeny made either of other classes or of individuals. A collection

of STROBE classes corresponds to a database schema, and a collection of individuals to a data

base extension.

Transforming a STROBE schema into a relational one would mean compressing the four levels

of STROBE into the three levels of the relational model. Conceptually, the STROBE facets are

the missing level in the relational model and the analogy is naturally drawn between objects and

relations on one hand, and between slots and attributes on the other. However, if one wants to

keep the facet information in a relational schema, the compression of STROBE classes into
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relational schemas would result in a decomposition of objects into relations. This is especially
true if the relational normalizations are respected. For example, a M x N relationship between

two objects implemented with one slot in each object would become a relation with the facets of

(he two slots as attributes.

4.1.2. Generalization and Inheritance.

There are two kinds of things an object with generalizations (or classes) can inherit from

its generalizations: (i) a set of attribute definitions, and (ii) default values for these attributes.

STROBE handles both with the notion of class. The slots of a class need not have values. If

they do, their values are inherited by their progeny as default values.

Inheritance of attribute definitions exists in the original relational model only from a relation to

its tuples, not really from one relation to another. For instance, in order to implement the fact

that employee is a specialization of person, one could explicitly add an integrity constraint stat

ing that any employee tuple must correspond (e.g., have the same social security number) to

exactly one person tuple. Not only is this done outside the data structure, but it is not

sufficient to go down the generalization hierarchy, e.g., ~o know that a person can be an

employee, or an employer, or unemployed, ...
(unless a class and its whole progeny are stored

in the same relation). The absence of this property has long been recognized as a major hin

drance, and a proposal has been made to remedy it Smithl977J. However, this proposal

requires the addition of an operator to the relational algebra and has not been implemented in

available relational DBMS’s.

The inheritance of default values basically requires the data model to allow constructs with a

variable number of attributes. Attributes which have a default value in a generalization only

need to appear in the specializations of this generalization where the default value is overrid

den. This contradicts the (conceptual) model of relations as tables.

4.1.3. Uniform treatment of actual and virtual data.

In STROBE, facets can either contain data or executable code, such as a procedure name

or a Lambda expression (since STROBE is written in Interlisp). This facility allows smooth

integration of data and code in objects, thus hiding from the user whether data is actual or vir-\

tual. Furthermore, the access mechanism is the same in both cases. The contents of facets are

accessed by sending them messages. A message is sent to the facet of a slot of an object. If a

facet contains some data, that data is returned. If it contains a procedure name or definition,

that procedure is executed and its value returned. This can be used to retrieve or recompute

data, to perform checking, or to take arbitrary actions.

It is also possible in STROBE to have the code stored in one facet of a slot automatically

activated before or after another facet of that slot is accessed or updated. This corresponds to

triggers or alerters Bunemanl979J, In STROBE, the automatic activation of procedures

attached to data can be specified to take place before or after that data is accessed or updated,

and several procedures can be pipelined as a result of such an event.

4.1.4. User-defined data types.

STROBE slots can be of any user-defined data type. A data type is in fact implemented as

an object whose main purpose is to contain the definition of the operations and integrity con

straints for the data type. This is not generally provided by relational DBMS’s, but is left to the

programming language within which query languages can be embedded. In such environments,

generic operations, i.e., operations of the data model’s Data Manipulation Language, are

defined and performed under the DBMS’s control, whereas application-dependent data
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operations are performed under the programming language’s control. This issue of dual

environment and control is revisited in the next section.

4.2. Systems and Efficiency Considerations

STROBE currently lacks most of the secondary memory management facilities tradition

ally offered by DBMS’s, such as file management, concurrency control, protection and crash

recovery. Moreover, the only DBMS for the Xerox 1100 workstations we know of at this point

is still experimental and runs under Mesa Catteltl983]. An alternative to extending STROBE

into a DBMS would consist of using a DBMS running on VAX under VMS, since as1mentioned

earlier, our ES accesses files and activates programs under VMS on VAXes from Interirsp-D on

Xerox workstations. We shall briefly investigate this possibility by using INGRES as an exam

ple, and contrast it with making STROBE into a DBMS.

The scenario for accessing data in INGRES from STROBE would resemble the following. Sup

pose a query language has been designed, possibly embedded in Interlisp, which produces

queries in INGRES’ query language, QUEL. Since STROBE manipulates objects and INGRES

manipulates relations, this would first require mapping STROBE schemas into relations, and the

translation into QUEL would use this mapping. Queries are sent to VMS and submitted to

INGRES as standalone queries. They are interpreted and executed by INGRES
.
The results

are sent back to the workstation and transformed back into STROBE objects. User-defined

operations, either datatype operations or procedures attached to data, are then applied to the

results. This still leaves many questions raised by STROBE data model unanswered: How is

STROBE generalization of classes represented in~ How are default values handled?

How is the activation of procedures contained in facets handled?

A major drawback of this alternative is the particularity observed earlier about embedding query

languages into programming languages that operations on data are performed differently

depending on whether they are application dependent or generic (i.e., provided by the DBMS’s

data model and therefore, application-independent). Generic operations would execute under

INGRES control, and application-dependent operations under Interlisp/STROBE.

One consequence of this dual execution environment is that the execution of generic database

operations would be interpreted whereas application dependent operations could be compiled.

The interpretation of data accesses is often justified by considerations of data independence: it

allows data to change without affecting the code accessing It. Interpretation is therefore gen

erally recommended in case of frequently changing data. In case of stable data, however,

significant increase in speed of execution can be gained by compiling data accesses. A

compromise, similar to System R’s approach, consists of compiling data accesses, but whenever

their data changes they are flagged as outdated, and recompiled at the first attempt to execute

them. This would be impossible in our case due to the forced interpretation of QUEL queries

The inconvenience of dual execution control would be all the more regrettable that the object.
oriented nature of STROBE is an invitation to treat all data operations, generic or not, in a uni

form manner. Generic database operations would be attributes of a high level object represent

ing the class of objects stored on secondary memory. Every object susceptible to be stored on

secondary memory would be a specialization of that high level object and, consequently, would

inherit the generic database operations. It would then have the option of refining these opera

tions and/or of adding its own. Also, the object(s) containing the generic data operations

would encapsulate both the external representation and the internal representation of the data

model. The external representation would consist of the availability of these operations, and

the internal representation would consist of their implementation. It would make it easier to

change the data model implementation without affecting its users.
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In summary, the connection between STROBE and INGRES does not appear natural. This is

hardly a surprise. If Stonebraker in a retrospective on the design of INGRES thinks that

attempting to glue together C and QUEL is “rather like interfacing an apple to a pancake”

Stonebrakerl98O], then what kind of an interface would the one between STROBE and QUEL
be?

Note, however, that this does not necessarily preclude some relational implementation for

STROBE databases. Such an implementation could be useful, especially in order to keep open

communications with the outside world. For instance, it is probable that many database

machines will be based on the relational model, since it is the most common of the set-oriented

data models. Relational database machines will implement relational algebra operators, that is,

lower level operators than for instance, QUEL. One reason INGRES does not fit our plan is

that it would not be a backend machine, but a backend DBMS, with all the implied overhead

and duplication of efforts and the imposition of a fixed query evaluation strategy. The coupling

of an ES on a Xerox workstation and a backend database machine could resemble the architec

ture described in Kelloggl983].

5. Conclusion

This paper illustrates a case of selecting a DBMS for an ES. Two (related) aspects were

discussed: inference making and data management. First, this case was presented as an exam

ple where the unification between databases and ES’s offered by logic programming would not

necessarily work because logic programming’s top-down inference is not an obvious approach.

Then, the DBMS alternatives were presented as hooking up with an existing DBMS vs. extend

ing the ES’s knowledge representation system (STROBE) into one. For the fnrmer alternative,

relational DBMS’s in general, and INGRES in particular, were considered. The question was

addressed both from a data modelling viewpoint and from a systems and efficiency viewpoint.

It was felt that STROBE has some desirable data modelling features which should be kept. The

mapping between STROBE and the relational model is not straightforward (although feasible).

However, the connection between STROBE and a relational DBMS such as INGRES would be

acceptable only if it does not get too complicated by systems issues and slowed down by incon

sistencies between the two systems. This is apparently not so. A major source of trouble

would be the fact that data operations would execute in different environments depending on

whether they are generic or application-dependent. Alternatively, the object-oriented nature of

STROBE is viewed as an opportunity to treat all data operations uniformly.

In conclusion, it was decided to extend STROBE into a DBMS. This solution is in line with the

continuing efforts towards richer data models. It also agrees with proposals to implement

DBMS’s in object-oriented languages, e.g. Baroodyl98l]. Finally, it is consistent with other

attempts to extend existing programming languages into DBMS’s. See, for instance, the

approaches consisting of making Algol’s or Ada’s heaps permanent IAtkinsonl982], 1Hall1983].

In particular, making Ada’s heap permanent is to be contrasted with the attempt to combine

Ada with an existing DBMS (Daplex) SmithI98I]. In general, we see this approach as an

opportuniy to study the potential contributions of data organization to enhance inference.
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ABSTRACT

This paper contains a proposed implementation of a rules system in a rela

tional data base system. Such a rules system can provide data base services

including integrity control, protection, alerters, triggers, and view processing.
Moreover, it can be used for user specified rules. The proposed implementation
makes efficient use of an abstract data type facility by introducing new data

types which assist with rule specification and enforcement.

I INTRODUCTION

Rules systems have been used extensively in Artificial Intelligence applica
tions and are a central theme in most expert systems such as Mycin SHOR76]
and Prospector DUDA7B]. In this environment knowledge is represented as

rules, typically in a first, order logic representation. Hence, the data base for an

expert system consists of a collection of logic formulas. The role of the data

manager is to discover what rules are applicable at a given time and then to

apply them. Stated difTerently, the data manager is largely an inference engine.

On the other hand, data base management systems have tended to

represent all knowledge as pure data. The data manager is largely a collection of

heuristic search procedures for finding qualifying data. Representation of first

order logic statements and inference on data in the data base are rarely
attempted in production data base management systems.

The purpose of this paper is to make a modest step in the direction of sup

porting logic statements in a data base management system. One could make

this step by simply adding an inference engine to a general purpose DBMS. How

ever, this would entail a large amount of code with no practical interaction with

the current search code of a data base system. As a result, the DBMS would get
much larger and would contain two essentially non overlapping subsystems. On

the other hand, we strive for an implementation which integrates rules into

DBMS facilities so that current search logic can be employed to control the

activation of rules.

The rules system that we plan to implement is a variant of the proposal in

STON82], which was capable of expressing integrity constraints, views and pro
tection as well as simple triggers and alarms for the relational DBMS INGRES

~TON76]. Rules are of the form:

on condition

then action

The conditions which were specified include:

the type of command being executed (e.g. replace, append)
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the relation affected (e.g. employee, dept)
the user issuing the command

the time of day
the day of week

the fields being updated (e.g. salary)
the fields specified in the qualification
the qualification present in the user command

The actions which we proposed included:

sending a message to a user

aborting the command

executing the command

modifying the command by adding qualification or

changing the relation names or field names

Unfortunately, these conditions and actions often affect the command

which the user submitted. As such, they appear to require code that manipu
lates the syntax and semantics of relational commands. This string processing
code appears to be complex and has little function in common with other data

base facilities. In this paper we make use of two novel constructs which make

implementing rules a modest undertaking. These are:

1) the notion of executing the data

and

2) a sequence of QUEL commands as a data type for a relational data base sys
tem

The remainder of this paper is organized as follows. In Section II we indi

cate the new data types which must be implemented and the operations
required for them. Then in Section III we discuss the structural extensions to a

relational data base system that will support rules execution. Lastly, Section IV

and V contains some examples and our conclusions.

II RULES AS ABSTRACT DATA TYPES

Using current INGRES facilities FOGGB2, ONGB2, STON82a] new data types
for columns of a relation can be defined and operators on these new types
specified. We use this facility to deflne several new types of columns and their

associated operators in this section.

The first data type is a QUEL command, e.g.

range of e is employee
replace e(salary = 1.1*e.salary) where e.name “John”

The abstract data type facility supports an external representation such as

that above for a given data type. Moreover, when an object of the given type is

stored in the data base it is converted to an internal representation. QUEL com
mands are converted by the INGRES parser to a parse tree representation such

as the one noted in Figure 1 for the qualification “where 13. + employee.salary =

100”. Consequently, a natural internal form for an object of type QUEL is a

parse tree. Each node in this parse tree contains a value (e.g. 13.) and a type
(e.g~ floating point constant).

The second new data type which will be useful is an ATTRIBUTE-FUNCTION.

This is a notion in the QUEL grammar and stands for anything that can be

evaluated to a constant or the name of a column. Examples of attribute func

tions include:

13.
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RETBOOL

+ -F4EQ -+

+---F4PLUS---+ 100.

F4VAR

1~

The Parse Tree for the Qualification
Where 13. + employee.salary = 100

Figure 1

1.1*employee.salary +20

newsal

The external representation is the same string format used for objects of type

QUEL; the internal representation is that of a parse tree.

Two other data types of lesser significance are also needed, a TIME data

type to contain a time of day value and a COMMAND data type to contain a value

which is one of the QUEL commands.

Current built-in INGRES operators (e.g. ~‘, /, +. etc.) must be extended for

use with attribute functions. In addition, two new operators are also required.

First, we need a function new() which will operate with integer data types. When

called, it will return a new unique identifier which has not been previously used.

Second, we require a partial match operator, ~, which will operate on a variety
of data types and provide either equality match or match the value “‘.

III INGRES CHANGES

We expect to create two rules relation, RULES 1 and RULES2, with the follow

ing fields:

create RULES1(
rule-id = i4,

user-id = dO,

time = time,

command = command,

relation c12,

terminal = c2,

action = quel)

create RULES2 (
rule-id i4,

type = dO,

att-fnl attribute-function

operator c5,
att-fn2 = attribute-function)

For example, we might wish a rule that would add a record to an audit trail

67



whenever the user ‘Mike’ updated the employee relation. This requires a row in

RULES1 speciñed as follows:

append to RULES1(
rule-id = newQ,
user-id = “Mike”,
command = “replace”,
relation = “employee”.
action = QUEL command to perform audit)

If additionally we wished to perform the audit action only when Mike

updated the employee relation with a command containing the clause “where

employee.name = “Fred” we would add an additional tuple to RULES2 as follows:

append to RULES2(
rule-id = the one assigned in RULES1

type = “where”

att-fnl “employee.name”
operator =

att.fn2 “Fred”)

We also require the possibility of executing data in the data base. We pro

pose the following syntax:

range of r is relation

execute (r.field) where r.qualification

In this case the value of r.field must be an executable QUEL command and

thereby of data type QUEL. To execute the rule that was just appended to Ri we

could type:

range of r is Ri

execute (r.action) where r.user-id = “Mike” and

r.command = “replace” and

r.relation = “employee”

When a QUEL command is entered by a user, it is parsed into an internal

parse tree format and stored in a temporary data structure. We expect to

change that data structure to be the following two main memory relations:

create QUERY1(
user-id = dO,

command = command,
relation = c12,
time = time,
terminal= c2)

create QUERY2(
clause-id = i4,

type = dO,
att-fnl = attribute-function,

operator = c5,

att-fn2 attribute-function)

If the user types the query:

range of e is employee
retrieve (e.salary)

where (e.name = “Mike” or e.name = “Sally”)
and e.salary > 30000
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then INGRES will build QUERY 1 to contain a single tuple with values:

QUERY 1

user-id command relation I time terminal

current-user retrieve employee current-time current-terminal

QUERY2 will have four tuples as follows:

QUERY2
clause-id type ~JI att-fnl operator att-fn2

ld-x ~j target-list

id-y where

employee.sala~y~
employee.name

= ~J~mployee.saIary
= Mike

id-y where employee.name Sally
id-z where employee.salary > 30000

Notice that QUERY 1 and QUERY2 contain a relational representation of the parse
tree corresponding to the incoming query from the user. The where clause of

the query is stored in conjunctive normal form, so that atomic formulae which

are part of a disjunction have the same clause-id, while the atomic formulae and

disjunctions in the conjunction have difTerent clause-ids.

Then we execute the QUEL commands in Figure 2 to identify and execute

the rules which are appropriate to the incoming command. These commands

are performed by the normal INGRES search logic. Activating the rules system
simply means running these commands prior to executing the user submitted

command. After running the commands of Figure 2, the query is converted

back to a parse tree representation and executed. Notice that the action part
of a rule can update QUERY1 and QUERY2; hence modification of the user com

mand is easily accomplished. The examples in the next section illustrate several

uses for this feature:

range of ri is RULES 1

range of r2 is RULES2

range of qi is QUERY1

range of q2 is QUERY2
retrieve into TEMP(rl.id, rl.quel) where

rl.user-id ql.user-id and

rl.command ql.command and

rl.time ql.time and

r1.terminal~ ql.terminal

range of I. is TEMP

execute (t.quel) where t.id < 0 or

(t.id = r2.rule-id and

set(r2. all-but-rule-id by r2. rule-id)
= set(r2. all-but-clause-id by r2. rule-id

where r2. all-but-rule-id q2. all-but-clause-id))

Rule Activation in QUEL
Figure 2.

The set functions are as defined in HELD75]. The conditions for activating a

rule are:

(i) its tuple in RULES1 matches the Luple in QUERY1
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and either

(ii) each tuple for the rule in RULES2 matches a Luple in QUERY2.
or

(iii) there are no required matches in RULES2

(represented by rule-id < 0).

The second condition provides appropriate rule activation when both the user

query and the rule do not contain the boolean operator OR. However, a rule

which should be activated when two clauses A and B are true will have two tuples
in RIJLES2. This rule will be activated by a user query containing clauses match

ing A and B connected by any boolean operator. Under study is a more sophisti
cated activation system which will avoid this drawback.

The commands in Figure 2 cannot be executed directly because set func

tions have never been implemented in INGRES. Hence, we turn now to a pro

posed implementation of these functions.

Suppose we define a new operator “i” to be bitwise OR, and “bitorQ” to be an

aggregate function which bitwise ORs all qualifying fields. Then if we add the

attribute ‘mask to RULES2, and give each tuple for a particular rule a unique
bit, the following query is correct:

range of t is TEMP

execute (t.quel) where t.id < 0 or

(t.id = r2.rule-id and

bitor(r2.mask by r2.rule-id)
= bitor(r2.mask by r2.rule-id

where r2. all-but-rule-id q2. all-but-claus c-id))

This solution will be quite slow, since the test for each rule involves processing a

complicated aggregate. A more efficient solution involves generating masks for

all rules in parallel and writing special search code as follows:

range of ri is RULES 1

range of r2 is RULES2

range of qi is QUERY1
range of q2 is QTJERY2
retrieve into TEMP(rl.id, rl.quel, mask = 0) where

rl.user-id ql.user-id and

rl.cornmand ql.command and

rl.time ql.time and

r1.terminal~’ ql.terminal

range of t is TEMP

foreach q2 do begin
replace t (mask = t.mask r2.mask)

where t.id = r2.rule-id and

r2. all-but-rule-id q2. all-but-clause-id
end foreach

execute (t.quel) where Lid < 0 or

(t.id r2.rule-id and

bitor(r2.mask by r2.rule-id)
t.mask)

Since the value of “bitor(r2.mask by r2.ruleid)” remains constant, the perfor
mance of this algorithm can be further improved by including the value of

“bitor(r2.mask by r2.ruleid)” in RULES1 and copying it into TEMP as the

“acceptmask”. The third query would then become:
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execute (t.quel) where t.id = r2.rule-id and

Lacceptmask t.mask

Notice the case where there are no tuples in RULES2 for a particular rule is han

dIed withan acceptmask of zero.

Either a variable length abstract data type “bitstring” or a four byte integer
can be used to store the mask. The abstract data type solution has the advan

tage of allowing an unlimited number of conditions for specifying rule activation,
while the four byte integer solution has the advantage of simplicity and speed,
but can only represent 32 conditions.

N EXAMPLES

We give a few examples of the utility of the above constructs in this section.

First, we can store a command in the data base as follows:

append to storedqueries (id = 6,

quel = “range of e is employee
retrieve (e.salary)
where e.name = “John”)

We can execute the stored command by:

range of s is storedqueries
execute (s.quel) where s.id = 6

The following two examples will pertain to the query:

range of e is employee
replace e(salary = salary*1.5) where e.name = “Erika”

To represent this query INGRES will append the following tuples to the QUERY1
and QUERY2 relations:

QUERY 1

user-id command relation time terminal

current-user I replace employee current-time current-terminal

QUERY2
clause-id type att-fnl operator att-fn2

id-z target-list employee.salary employee.salary*1.5
id-x where employee.name = Erika

Suppose we want to implement the integrity contraint to insure that

employee salaries never exceed $30,000. Using query modification STON75] we

would add the clause ‘and employee.salary*1.5 < 30000”. to the user’s

qualification with the following rule:

append to RULES1(
rule-id = newQ, (call it id-y)
user-id *, (matches any user-id)
command = “replace”,
relation = “employee”,
action = “range of Q2 is QUERY2

append to QUERY2(
clause-id = id-x,

type = “where”,
att-fnl Q2.att-fn2,
operator =
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att-fn2 ‘30000”)
where Q2.att-fnl = “employee.salary”)’

append to RULES2(
rule-id = id-y,
type = “target-list”,
att-fnl = “employee.salary”,
operator = “=“,
att-fn2 =

Consider a transition integrity constraint that specifies that the maximum

salary increase is 20%. This means that the new salary divided by the old salary
must be less than or equal to 1.2. This can be achieved by appending a single
tuple to El:

append to RULES1(
rule-id = newO,
user-id =

command = “replace”,
relation = “employee”,
action = “range of Q2 is QUERY2

append to QUERY2(
clause-id = id-x,

type = “where”,
att-fnl = Q2.att-fn2/Q2.att-fnl,
operator =

att-fn2 “1.2”)
where Q2.at.t-fnl = “employee, salary”

As a last example of an integrity constraint, consider a referential con

straint that a new employee must be assigned to an existing department. Such

a rule would be applied, for example, to the following query:

append to employee (name=”Chris’, dept = “Toy”, mgr = “Ellen”)

The corresponding tuples in QUERY2 would look like:

QUERY2
clause-id type att-fnl operator att-fn2

id-z target-list employee.name = Chris

id-z target-list employee.dept = Toy
id-z target-list employee.mgr = Ellen

Implementation of the constraint requires checking that the department given
in the target list of the append appears in the department relation. This is

accomplished with the following rule:

append to RULES1(
rule-id = newO,
user-id =

command = “append”,
relation = “employee”,
act-ion “range of Q2 is QUERY2~ -

append to QUERY2(
clause-id = id-z,

type = “where”,
att-fnl = “depLname”,
operator =

att-fn2 = Q2.att-fn2)
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where Q2. at.t-fn 1 = employee. dept’

Lastly, protection is achieved primarily by making use of the RULE I rela

tion, which pertains to the query ‘bookkeeping” information. Suppose we

wanted to ensure that no one could access the employee relation after- hours

(after 5PM and before 8AM). The following tuple would be added to the Ri rela

tion:

append to RULES1(
rule-id = newQ,
user-id =

time = “17:01 - 7:59”,
command =

relation = “employee”,
terminal =

action = “range of Qi is QUERY 1

range of Q2 is QUERY2
delete Qi
delete Q2

If the query meets the conditions, the action removes the tuples in QUERY1 and

QUERY2 and thereby aborts the command.

V CONCLUSIONS

This paper has presented an initial sketch of a rules system that can be

embedded in a Relational DBMS. There are two potentially very powerful
features to our proposal. First, it can provide a comprehensive trigger and
alerter system. Real time data base applications, especially those associated
with sensor data acquisition, need such a facility. Second, it provides stored
DBMS commands and the possibility of parallel execution of triggered actions.
In a multiprocessor environment such parallelism can be exploited.

There are also several deficiencies to the current proposal, including:

a) Rule specflcation is extremely complex. This could be avoided by a language
processor which accepted a friendlier syntax and translated it into the one in
this paper.

b) The result of the execution of a collection of rules can depend on the order in
which they are activated. This is unsettling in a relational environment.

c) Rules trigger on syntax alone. For example, if we want a rule that becomes
activated whenever John’s employee record is affected, we trigger on any query
having “employee.name = John” in the where clause. However if the incoming
query is to update all employees’ salaries, this rule would not be triggered.

d) Commands with multiple range variables over the same relation, so called
reflexive joins, are not correctly processed by the rules engine.

e) Aggregate functions have not yet been considered.

f) As noted earlier, boolean OR is not treated correctly.

We are attempting to resolve these difficulties with further work.
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Introduction

The Knowledge—Based Management Systems (KBMS) Project* is a research program largely funded by

DARPA to investigate innovative approaches to improving the management of large databases. Rather than

attempt to build complete systems, we have concentrated our attention on promising areas of research in

which we can develop new techniques and prepare effective demonstrations.

We hope that demonstrating the effectiveness of our approaches will cause industry to furter develop

these techniques. We believe that the university environment is not well suited for building prototypes of

complete systems. We look forward to having database systems in modular form, allowing some of our tests

to be performed in a more realistic setting. We describe here only a homogeneous subset of the projects that

have been carried out Wiederhold 83b] since the program’s inception in 1977.

Knowledge About Data

Underlying the notion of presenting knowledge about data in a formal mariner is the realization

that a database and its semantics have a far greater longevity than do any of the programs using that

database. The project focuses upon utilization of the semantics inherent in the data — with the objective of

representing that semantics accurately and utilizing it to make the database system more effective. Increased

effectiveness means 1) making it easier for rioncxperts to use and 2) attaining a high system responsiveness

and performance. We cannot afford the luxury of having the semantics of a database known only to the

tThis research has been supported mainly by the Defense Advanced Research Projects Agency under Contracts MDA9O3-77-

C-322, N39-80-G- 132 and N39-82-C-250. Work on the RX project was funded by the National Library of Medicine and the

National Center for Health Services Research. Work in natural.language interaction has been partially supported by NSF.

Computer facilities were partially provided by the Division of Research Resources of NIH. The views and conclusions contained

in this document arc those of the authors and should not, be interpreted as representative of the official policies, either expressed

or implied, of any agency of the U.S. government.

tI’ermanent affiliation: Department of Mathematics, University of California, Davis.
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programmers and contained only within the code of the programs; the knowledge must be represented so it

can be properly disseminated and manipulated as the need arises.

These requirements will vary over the lifetime of the database. In the initial phases of its existence

usage will consist mainly of data collection and the creation of simple reports. Many database applications

do not go beyond this stage. Database managers often consider the successful production of regular reports

for subsequent analysis by middle management as sufficient justification for existence of the database.

However, once a large data collection exists, it is a valuable repository of extensional knowledge. This

knowledge can be accessed effectively only if there are tools that enable domain experts to use the system

without requiring detailed intensional knowledge of the database structure. Database utilization must

contend with a formidable obstacle if its only results appear in the form of reports that are scanned by

intermediaries. Yet a database structure that is designed to be optimal during initial use will probably be

inadequate for the later stage, when enough data will have been collected to make the database genuinely

useful for information retrieval and planning.

To partition the problem into subproblems that can be dealt with profitably, we distinguish various

types of semantics. Our principal distinction is that of domain versus structural semantics. We expect

structural semantics to be largely invariant, whereas domain semantics can change drastically and, in fact,

can be modified by users as the need arises.

Structural Semantics

Structural semantics is the relatively stable semantics of the database, typically the descriptions in

the schema, and extensions based on other knowledge about the data which may be employed in database

design. This knowledge, because of its permanence, can also be used to determine the physical structure of

the database.

Structural semantics is related to the functional, inultivalued, extension, and inclusion dependencies

now employed in database theory (Armstrong 80], Casanova 82], Ullnian 82]. However, our structural

semantics has a somewhat broader scope, since we include also rules for dynamic constraint maintenance

in the definition. These permit actions to be specified when requested update and delete operations might

violate the database constraints; whereas dependency theory concentrates on the definition of correct states

before and after transactions. Thus, structural semantics provides guidelines to the actions carried out by

the program that executes those transactions.

We observe that transactions which manipulate many database elements are more frequent and also

niore important than simple queries. Observe that in order to obtain information from a database many

data are collected, aggregated, and used to draw inferences. In order to understand such computations

we must go beyond the retrieval of simple facts and typically involve significant subsets of the data. This

observation strengthens our concern with performance criteria for databases. We hence require from the

model that it permits us to collect knowledge which will help in the physical design of the database. This

means that the model should capture much of relevant logical knowledge, but permit tcansformations so

that ninny implementation alternatives can found and an optimal one can be chosen. Note that, in order to

do physical design, we need a model that is independent of physical notions.
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The primitive connections of the structural model used to define this semantics are the ownership

(1:M), the reference (N:1), the subset (1:1 partial), and identity (1:1 complete). The definition of reference

constrains insertion of references to requiring a referent, and deletion of the refeItnt while there exist (N

> 0) references. • The definition of ownership also constrains the insertion of members, but forces deletion

of all the M members with an owner. More complex relationships (N:M) and other partial relationships

are constructed by combining these primitives Wiederhold 79,83a1. Structural semantics is used initially in

database design; where it can help specify the transaction programs as well as the data structures to be used

for reliable implementation of the semantics.

if a database implementation is known to maintain the structural semantics, this semantics can be

profitably exploited. Such integrity may be based directly on the implementation structure, or may be based

on constraint rules or procedures attached to the database. For instance, most hierarchical structures enforce

the ownership connection. If the database system is inadequate, and all of our systems are lacking some of

the required constraint maintenanace capabilities, then it falls on the programmer to enforce the constraints.

The structural model is then used as a formal specification method.

Today progammers implement databases and their application semantics in an ad hoc way. Since people

re smart, they are often correct, but some transactions may permit erroneous actions: Will all inventory

entries have a correct current supplier reference? Will they all have part~-type numbers appearing in the

approved list? If that can be guaranteed, through the datastructure if possible, then the inventory total

will be equal for either a supplier-based query or a parti-type-based query. Few databases, other than

those used in examples to find the manager of the toy department, will be able to pass that filter.

The limited knowledge contained in traditional databases is stored in the schema. Building a

‘knowledge-based front-end to enhance traditional databases means expanding the capability of the schema.

Alternatively, when the schema is not easily changed (as is olten the case), it means building what amounts

to a coprocessor for the database schema program. We look forward to having database management systems

which are either expandable in that sense, or which are composed of replaceable modules.

Structural semantics can be used specifically for the following purposes:

1. Update verification. The formal constraints of the model provide a basis for verifying that the current

update does not violate the specified interrelatlonal dependencies. Use of a general model rather than

distinct rules helps in assuring completeness of coverage. Example: A statement to insert a new inventory

record can avoid the explicit subquery ...
WHERE part.suppliertname = supplier.s~-name.

2. Simplified query processing. This is made possible by using the knowledge embodied in the structural

model. Since the connections among relations are known, it is not necessary for the user queries to

specify all the joins to be performed. Only if multiple connections exist between query objects is path

verification necessary. Even in such cases only the connecting attributes have to be named explicitly

ElMasri 81]. Example: Find weight of part X can be processed, although the weight of a part is

actually given in the referenced part~type entry.

2. Simplified transaction processing. if the structure of the database is automatically maintained by

reference to the model, the transaction programs will not have to check for structural error conditions.

Retrieval transaction can be optimized and be assured of identical results. Example: Find Total (value)
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of inventory can become Find Total( Total(value) of inventory by part~-type, which may be

more efficient of good access paths for part~-types exist.

To make proper use of structural semantics, we have to guarantee that all updates will satisfy the constraints

that have been defined Keller 81]. Maintaining the integrity of the database requires that updates be checked

carefully. The validation of updates, however, is viewed as satisfying the constraints not only of the model,

but, more importantly, of the underlying semantics of the database as well — so that users will not have

to contend with an inconsistent database during subsequent query sessions. We have shown that use of a

model, triggered by attempted changes to attributes involved in connections, can guarantee that the specified

constraints are satisfied. It is well known that the cost of correcting an error during an update when the

pertineiit documents and the information to be entered are available is but a fraction of the cost of correcting

the database days or even years later when retrieval results fall behind expectations.

The information imbedded in the structural model can also indicate when a query has been asked

inappropriately. An example of a query with an implied but false assumption is:

How many widgets were delivered to the receiving department in New York yesterday?

The formal equivalent of this query becomes:

SELECT deliveries.number WHERE

deliveries.part4-type = ‘Widget’ AND

deliveries date = 10CT1983 AND

deliveries.depl-number = departments.number AND

departments.name = ‘Receiving’ AND

departmente.location = ‘New York’.

The system’s response will be erroneously none — because the receiving department is actually in New

Jersey.

This question does not fail at the level of acceming widgets, but at the level of accessing the list

of departments. Feedback about such a failure (Requested department not found.) can help the user

rephrase the queries and not come away with erroneous information Kaplan 81].

We do not believe that the formal queries are convenient for the users when many relations are involved.

This means that implied assumptions can enter formal queries as well as the more concise knowledge-based

ntural language queries.

Views

The problem of handling database updates is complicated by the observation that the updating user has

only a limited view of the entire database and hence cannot be expected to understand all the ramifications

of an update. In today’s practice most database updates are being performed by clerical personnel handling

programmed transactions. Although the latter are programmed to preserve the consistency of the database,

they typically lack an underlying model. llcre too, our research here employs two approaches: algorithms

and the application of artificial intelligence techniques.
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In the algorithmic approach, we arc developing methods to minimize update ambiguity and to enumerate

the remaining database states that can satisfy an update request Keller 82]. In static views the alternatives,

not all of them obvious, can be presented to a database administrator for selection.

In dealing with updates in natural language, the user’s view must be assumed to be restricted to

the information he has previously obtained from the database. Given that limited view, the ambiguity

increases and heuristic techniques must be used to determine the most reasonable update. Here the candidate

transformations which can satisfy the updates are ranked based on a minimal effect on structures not in the

users’ view Davidson 821.

In both approaches the number of possible alternatives is limited by the constraints of the structural

model.

Domain Knowledge

Stable structural knowledge is complemented by domain knowledge. Although there are many types

of domain knowledge, we shall not undertake to classify theni here but shall limit ourselves to some useful

examples. Domain knowledge can vary over time and can be changed directly by the users of the database

or indirectly through a learning mechanism. Since this type of knowledge can be altered, it cannot be bound

to the database structure. In most implementations we would expect domain knowledge to require a higher

level of interpretation. at query time. Since it is less precise, it can also be more powerful. We do not have

to deal with that knowledge in the same rigorous fashion needed for structural knowledge.

An example is the knowlege that ‘oil is carried in tankers’. This statement is true only to a certain

level, like a frequently used syllogistic example. in artificial intelligence postulating that “birds fly”. These

statements disregard logically important, but quantitatively minor facts, as the oil carried in barrels on

freighters and the existence of penguins. The utilization of this deliberately restricted knowledge, however,

can be extremely effective. A query requesting the amount of oil imported by the United States in

1982 can thus be processed by simply scanning through the indexed list of tankers and noting whether

they used U.S. ports during the year. The precise answer to the query on the other hand, would necessitate

checking through every bill of lading for all ships to determine what they carried King 81].

Of course, domain knowledge can also be used to reduce the number of alternatives for updating. The

notion that employees are more easily reassigned than departments, for example, reduces the number of

alternatives when an employee is assigned to a new location.

Focus Knowledge

A form of domain knowledge, which is triggered by the current activity on the database, rather than

by the content of the database, can be used to improve the focus of the presentation of data. We use focus

knowledge, for instance, to suggest related data to the user. When the focus is transportation then a

query to the inventory will retrieve all attributes in the query path which are of type location or time.

The same query, within a focus of purchasing will include all attributes of type money. Our suggestions

have been been based on explicit task models, but one might also build task models by tracking the activities

of experts.
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If we know the type of task involved, the suggestion is implemented by letting the screen display all

relevant information in respon~e to a query. For instance, in a naval rescue mission, not only should the

obvious data on the lifeboats and medical supplies be presented, but also the time and fuel available to reach

the rescue point.

An Application of Knowledge to Data Analysis

Associated with tasks may be common analytic procedures. Knowledge about procedures is needed to

perform the appropriate data analysis. The expert who knows the procedures is~ rarely present when a user

explores the database. Rules can be used to select statistical methods appropriate to the data. Furthermore,

knowledge about the application can serve as a basis for including all known relationships among the data

in an analysis model.

Content analysis requires large collections of well maintained data. We have available to us a large

database of rheumatolgy patients. Many years of operational use were required to get to this stage. In

this research we have developed tools that use artificial intelligence techniques to assist in the processing

of time-oriented data. A frame-based model is used to capture knowledge about the medical domain. This

model can assist in combing the database for unexpected time-lagged correlations and report such events as

prospective hypotheses. If analysis of the finding appears warranted, a statistical model is built that includes

all possible covariates given in the knowledge base.

The appropriate statistical tests are selected by applying a collection of rules that use the descriptions

of the data from the database schema and the conditions that are satisfied by the statistical procedures. If

the findings turn out to be significant, they are added to the knowledge base for use in another iteration of

hypotheses generation and testing. This approach to knowledge generation complements the familiar but

less formal approach taken by expert systems Shortliffe 73,79].

This approach has been demonstrated by using a small subset of the time-oriented rheumatology

database (ARAMIS) Fries 79]. The statistical methods now available are limited to multi-variate regression.

Tentative hypotheses were generated and automatically tested for statistical significance. Several verified

hypotheses could be added to the original loaded knowledge base Blum 82].

Summary

This brief summary on the use of semantic knowledge in database systems should illustrate the great

variety and depth of problems we can seek solutions to by combining knowledge and data. We always make

the assumption that, while our database can be extremely large and change rapidly, the underlying semantics

we find so useful is relatively much smaller and changes only gradually. By achieving adequate coupling

of the database with intemisional knowledge, however, we can help make the database more accessible to

planners and decision-makers Davidson 1980].

In principle, the major objective of this work is to codify the knowledge that is now distributed among

the many programs used to access most databases. Since we expect the databases to outlive both the

programs and the availablility of the programmers who did the original codification, it is essential that we
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move up to new levels of knowledge management if we want to be able to handk the valuable data resources

we acquire.
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W. Kim, D. Batory, A. Hevner, R. Katz, and

0. Reiner

This compendium binds together the first five

issues of a quarterly nev~letteon ~atabase

Engineering. The book contains issues on

the status of research and development in

database machine architecture, physical de

sign of databases, engineering design data

bases, query processing, and distributed

database systems.

488 (ISBN 0-8186-0488-3): Database Engi

ieering, Volume I,. May 1983, 302 pp.

NM, $25.00; M, $15.00
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— Tutorial: Data Base Management in

the 80’s

James A. Larson and Harvey A. Freeman

This tutorial addresses the kinds of data base

management systems (DBMS) that will be

available through this decade. Interfaces

available to various classes of users are de

scribed, including self-contained query lan

guages and graphical displays. Techniques

available to data base administrators to de

sign both logical and practical DBMS archi

tectures are reviewed, as are data base

computers and other hardware specifically

designed to accelerate database manage

ment functions.

369 (ISBN 0-8186-0369-0): September1981,
472 pp. NM, $25.00; M, $18.75
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G. Parikh and N. Zvegintzov

Software maintenance, the work done on a

software system after it becomes operation

al, consumes at least half of all technical and

management resources expended in the

software area. This tutorial supplies a sys

tematic overview of software maintenance-

what it is, how to do it, how to manage it, and

what are the areas of current research. This

tutorial features 31 papers by thirty-seven

leading authorities. A comprehensive anno

tated bibliography and full indexes to names

and topics build this tutorial into an indis

pensable reference for practitioner and re

searcher alike.

453 (ISBN 0-8186-0002-0): April 1983, 360

pp. NM, $32.00; M, $18.75
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Selected Reprints on VLSI

Technologies and Computer
Graphics

Henry Fuchs

This compilation of reprints is intended for

professionals interested in the intersection

of and the relationship between computer

graphics and VLSI. Two major areas are

represented: The graphical aspects of VLSI

design and the impact of VLSI computing

structures on graphics hardware.

This book contains 56 reprinted articles that

are divided into eight sections. The sections

cover the following topics: Mask level lay

out; symbolic layout; floorplanning, place

ment, and routing; artwork analysis; al

gorithms for layout synthesis and analysis;

CAD systems and related graphics issues;

and image analysis.
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Tutorial: Robotics

by C. S. G. Lee, A. C. Gonzalez, and K. S. Fu

The purpose of this tutorial is to present and summarize the fundamental concepts
and theory of robotics from current literature. In 9 chapters, this book covers the

fundamentals of robot arm kinematics, dynamics, control, trajectory, planning,
sensors, robot vision, robot control languages and machine intelligence. Providing a

brief review of some of the mathematical tools used in robotics, the tutorial includes

concepts and theory at a mathematical level that requires a good background in

vectors, matrices, kinematics, and dynamics of rigid bodies. Basic concepts are

explained at the beginning of each chapter, followed by reprints from various

journals which explain the underlying theory.

chapters: Introduction and History of Robotics • Robot Arm Kinematics • Deriving the Robot Arm

Dynamical Model • How to Design Trajectories Between Two Points in 3.Dimensional Space • Servo

Control Mechanisms • The Use of Contact Sensors • Survey of Principle Techniques Used in State-of-the-
Art Industrial Computer Vision Systems • High Level Programming Languages Used in Process Control .

Basic Techniques and Methodologies in Artificial Intelligence

515 (ISBN 0-8186-0515-4): 584 pp., November 1983 NM, $39.00; M, $24.00

Tutorial: Software Design Techniques (4th Edition)

by Peter Freeman and Anthony I. Wasserman

Now in its fourth edition, this popular tutorial and best seller has been revised and

expanded to reflect the latest developments and ideas in the field. Intended for both

beginning and experienced designers, analysts, and managers needing a broad

introduction to software engineering methods, this tutorial reflects the rapid changes
that have occurred in such areas as software specification and design by

incorporating new materials found to be of exceptional interest to a wide variety of

audiences. Naerly half the articles in this book did not appear in the third edition,

published three years ago. For continuity and use in professional and university

courses, the tutorial retains the structure of previous editions.

Sections: Introduction • Analysis Techniques • Specification Methods • External Design • Architectural

Design Techniques • Detailed Design Techniques • Design Validation • Software Development

Methodologies • Bibliography

514 (ISBN 0-8186-0514-6): 736 pp., November 1983 NM, $32.00; M, $20.00

Tutorial: Local Network Technology

by WI/jam Stallings

Few other innovations in data processing and data communications have been so

widely discussed and eagerly anticipated before reaching maturity as that of local

networks. Intended for a broad range of individuals interested in local networks, this

tutorial explores the key issues in the field under broadly defined categories of

technology and architecture, network types, and design approaches. Focusing on

common principles underlying the design and implementation of all local networks,
the tutorial gives the reader sufficient background to judge and compare local

network products while describing such elements as: critical design considerations

and alternative approaches to meeting user requirements, what to look for in the way

of network services and performance, and trade-offs to consider.

Sections: Introduction • Local Area Networks • High-Speed Local Networks • Digital Switches and

Computerized Branch Exchanges • The Network Interface • Performance • Internetworking • Design
Issues • Glossary • Bibliography

517 (ISBN 0-8186-0517-0): 320 pp., November 1983 NM, $32.50; M, $20.00
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