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Letter from the Guest Editor

Onery C~timization is the topic of this special issue of Database

Enqjneeri~g Thirteen short papers from academic and industrial researchers

give an overview of current optimization research and state—of—the—art

optimizer impi ementat ions.

A number of trends are evident. ~ieries are becoming more varied and

complex, with high—level queries, nested queries, aggregate queries, and

groups of queries being considered. Target environments are also becoming
diverse and complicated, ranging from centralized mainframes to distributed

systems and database machine backends. Often, multiple data models are

present, both as user views and in actual storage structures.

In response, optimizers are getting ~narter. They are searching larger
strategy spaces which include many sophisticated strategies, modeling costs

more accurately, and detecting opportunities for common processing over

batches of queries. In distributed systems, their functionality may be

distributed. Overall, there is a better understanding of the internal

structure of the query compilation process.

The first three papers deal with optimizers in centralized environments.

The next five discuss distributed environments. Hevner and Yao’s paper also

touches on database machine backends and join processing models and hardwere.

Then come t~ papers on optimization of multiple queries. Kim’s paper also

comments on main memory buffer space and nested queries. The next paper

covers uniformity assumptions in cost analysis and batching queries, and is

followed by a paper on aggregate processing. The last paper presents a model

of a physical target machine for optimization, and compares the strategy
spaces of various optimizers.

One major omission is a useful tool for testing optimizers and evaluating
their performance —— a benchmark set of database schemas and a sample
relational query load against them, perhaps with associated population
statistics. I think many researchers ~uld appreciate seeing this kind of

information published, perhaps in Database Engineeri~

M~’ thanks to the contributors to this issue for their enthusiasm, good
ideas, and hard ~rk, and to t’bn Kim for his support and helpful suggestions.

David S. Reiner
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QUERY OFrIMIZATIa~ IN INGRES

Robert Kooi* and Derek Frankforth

Relational Technology, Inc.

2855 Telegraph Ave., Suite 515

Berkeley, California 94075

(415) 845—1700

1. Introd~tion

Relational TechrKlogy Inc., which markets the INGRES relational database

management system, is devoting a significant effort to query optimization.
Our research is focused on ts’~ areas, the I/O subsystem and strategies for

processing multi—variable queries. The goal of the I/O subsystem is to

minimize the time required to perform simple repetitive queries such as those

that might be found in a transaction processing environment. For

multi—variable queries we are developing techniques that will evaluate a

large set of query execution plans to find the least expensive strategy.

2. I/O Subsystem

The I/O system of INGRES is being changed to reflect the needs of transaction

processing type applications without significantly impacting the performance
of large queries. The major canponent of the n~ I/O system is a special
process called the kernel process (1<1’). The duties of the KP are as follows:

1) Maintain all locks, and handle all. multi—process synchronization.
2) Manage a global page cache that is implemented in shared menory.

3) Manage a cache of open relations and their descriptions.
4) Detect and resolve deadlocks. (planned)
5) Coordinate transactions with the system log. (planned)

The KP allows INGRES to set the locking strategy based on the expected number

of I/O’s that will be needed to cauplete the query on a per relation basis.

This allows page level locking for single record transactions, and for

multi—relation queries where the optimizer expects a low percentage of the

relation to be scanned. Relation level locking can be requested in the cases

where the w1-~le relation will be scanned. In this case the associated locking
and context switching to the KP is eliminated by opening up the relation in

the INGRES process and only allowing read access to all other users. When

page level locking has been requested and the KP notices logical sequential
read requests, it tries to start the next read before it returns the current

page, so that I/O delay time can be used to scan the current page, thus

minimizing realtime response.

When an open relation request is sent to the KP, it first checks to see if

page level locking has been requested. If so, the KP will handle all the I/O

requests for this relation. If the relation was used recently it is probably
open, and sane pages that belong to it might also be in the page cache. The

* Sane of the research reported here was originally xnducted for a Ph.D.

dissertation by Robert Kooi, which was supported in part by NIH USPHS

Grants 5MOl—RROO21O and 1P50 HD 11089 and NIAAA Grant AA03282.
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page cache is a section of mertory that is mapped into the address space of

every INGR~S process. The K? reads pages into the cache and then passes a

pointer to the page to the requesting process. This gets rid of the overhead

of copying pages around, which is one of the nost expensive operations in CPU

time at this low level in the system. The cache logic gives preference to

system catalog pages, then to ISP~M index pages, then lastly to regular data

pages. This part can be easily changed when new storage structures are added,

such as B—tree, and when system catalog accesses decrease when other planned

changes in I~RES are completed.

The expected gains on single record queries can be broken down as follows.

There is a cache of macro queries that are stored in parsed form and can be

executed, which result in CPU time savings of 45%. The relation descriptor
cache, and K? relation & page cache will cut the CPU overhead by 10—15% and

the realtime delay by 50%. The ability of the cache to delay writing dirty
pages, will cut the realtime delay by another 10%. So the expected CPU time

savings are in the 65—70% range, while the realtime response time will be

decreased by 60%. The cost of the KP is expected to be 5—10% in CPU time.

This translates into a 2—3 times performance improvement for single record

transactions.

~re changes are planned to enhance the overall performance of INGRES. The

additional expected performance increases for single record queries will

anount to about 15% CPU time improvement. These changes include: a dynamic
query compiler, enhanced user process ccmnuncations, and code reorganization
to allow precompiled queries to be saved and quickly activated.

3. Multi—Variable Query Optimization

We have developed a system that can estimate, for an arbitrary query, the

cost of a very large collection of query execution plans (QEP). The QEP
search space includes the following:

1) N—variable, equi—join, queries.
2) Reformatting (to hash, isam or sort) of relations.

3) Generalized index usage.

4) ISAM, hash, sort—merge and tid joins.

We riodel QEPs as binary trees where each node can be one of four operator
types: Join, Restrict—Project, Reformat and Disk—Resident—Scan. The leaves of

the binary tree represent relations or indexes (which are stored as

relations) and correspond to the Disk—Resident—Scan operator. Interior nodes

with t~ sons represent a Join operator, nodes with one son represent a

Restrict—Project or Reformat operator. This nodel can represent a very large
class of access strategies including nost of those in 1~)SE82], W(N76],
SELl 79] , BLAS76], SMIT75] and sane of those in YA079].

The binary trees are divided into “join” and “operator” trees. The

enumeration of QEPs consists of three steps: enumeration of join trees,

generation of operator trees from a given join tree and the evaluation of the

cost of the operator trees. A join tree is a binary tree where each leaf node

is a relation or index and each interior node is a join (with t~ sons). For

example, the join trees for a three variable query (relations Ri, R2 and R3)
with one potentially useful index (Il on Rl) include (a partial list):
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(1) X (2) X (3) X (4) X (5) X (6) X

/\ /\ /\ /\ /\ /\
/\ /\ /\ /\ /\ /\
X R3 X Ri X R2 X R3 X R2 / \

/\ /\ /\ /\ /\ /

/\ /\ /\ /\ /\ x x

Ri R2 R2 R3 Ri R3 X P2 X Ri /\ /\
/\ /\ / \ / \
/ \ / \ Ii Ri R2 P3

Ii Ri Ii R3

Notice that index usage is nodeled as a join, that an index may be joined
with a relation that it does not index (5) or to another index, and that the

results of intermediate join trees (P2 and P3 in (2)) are saved for use in

later join trees (6). N—way joins for N > 2 are not evaluated.

Fran a given join tree we generate operator trees by splicing in Reformat and

Restrict—Project operators in all possible canbinations. For example, join
tree (1) s~uld generate the following operator trees (a partial list):

x x x

/\ /\ /\
/\ /\ /\
X P3 X P3 X r-sort

/\ /\ /\ \
/\ /\ /\ \
Ri r—hash Ri r—isam r—sort r—sort P3

\ / \
\ \ / \
P2 P2 Ri R2

x x x

/\ /\ /\
/\ /\ /\

P3 X P3 X X P3

/\ /\ /\
/\ /\ /\
R2 r—hash rp r—hash r—sort r—sort

\ / \ / \
\ / \ / \
Ri P2 Ri P2 Ri

Heuristics on the placement of indexes, relations and reformat operators
reduce the number of possible join and operator trees, however the number of

possibilities is still large. This leads to the following heuristic: If the

anount of time spent on optimization so far is sane fraction k of the

estimated time to execute the query according to the best QEP so far, then

stop optimization and use that QEP.

In an operator tree (but not in join trees) the left son of a join node

represents the “outer” lCxDp of the join and the right son represents the

“inner” loop. The operation of the join operator depends on the structure of

its inner and outer inputs. For instance, if the inner is hashed or ISN4 then

for each tuple fran the outer relation, a hash or directory lookup is

performed on the inner. If both inputs are sorted then a sort—merge join is

performed. If the outer is an index on the inner, then a TID lookup is done.

4



Restrict—Project operators are applied to Leaf nodes in order to reduce the

anount of the relation that needs to be scanned. This happens when there are

range or exact value restrictions on keys of the relation.

The cost of an operator tree is based on the estimated number of disk

accesses required except for sorts where CPU time is factored in. This is

calculated using statistics about the distributions of attributes which are

held in systema catalogs. For each attribute in the database we have a choice

of keeping nothing, minimum and maximum values, or a variable—range
histogram. The accuracy of the cost determination depends on the accuracy of

the statistics for the attributes. An initial implementation of this rrv:xlel

K00180] was caTipared to an early University of California, Berkeley version

of INGRES (6.2/6) and significant improvements were found for t~ and nx)re

variable queries. It was found that minimum and maximum values provide a

significant improvement over having no information and that queries executed

according to QEPs found using histograms provided approximately a thirty
percent improvement in execution time over queries executed according to QEPs
found using minimum and maximum values alone. Canparisons with the current

version of INGRES developed at RTI are currently under way.

4. Future Extensions

Future s~rk on multi—variable query optimization will include extensions to

handle theta—joins, multiple—attribute keys, nested queries, INGRES’s

aggregate functions and autanatic updating of statistical information. We

also plan to allcM QEPs to be saved on disk to support query canpilation. A

byproduct of the query optimization is an estimate of the anount of time

required ~to process the query and the size of the Eesulting relation. We will

study how this can be used as the basis of a database design aid.

5. References
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1~)SE82] Rosenthal, A. and D. Reiner, “An Architecture for Query
Optimization,” Proceedings of AG4—SIG~OD, 1982.

SELI79] Selinger, P.G., M.M. Astrahan, D.D. Chamberlin, R.A. Lone, T.G.

Price, “Access Path Selection in a Relational Database Management
System”, Proceedings of Ac~v1—SIa~’IOD, 1979.

~4IT75] Smith, J.M~ and PIY.T. Chang, “Optimizing the Performance of a

Relational Algebra Database Interface,” Cam~unications of the AQ’1,
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~}~G76) Wong, E. and K. Youssefi, “Decanposition - A Strategy for Query
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QUERY PROCESSING IN UNWERSAL RELATION SYSTEMSt

Jeffrey D. UlIman

Stanford University
415—497—1512

I. Introduction

Universal relation systems are designed to present the user with a view of data that is a single (universal)
relation. Just as CODD7O] proposed the relational model to free the user from navigation in the physical

database, universal relation systems attempt to free the user from navigation within the concej~tual database.

However, because of the potential for ambiguity when the system is asked to infer the path or paths connecting
attributes mentioned in a query, the successful design of universal relation systems requires some subtle

mathematics and conceptual tools. Some of these ideas are described in SAGI81], SAGI82], KUCK82I, and

ULLM82a, b].
In this note we are concerned not so much with the technical details of supporting universal relations

as with the role that a strange form of query processing, called “optimization under weak equivalence” plays
in the implementation of such systems. We focus on System/U, an example of this type of facility under

development at Stanford. People who have contributed to the implementation and/or underlying concepts
for this project include H. Korth, G. Kuper, D. Maier, and F. Sadri.

II. Weak Equivalence

Two expressions are weakly equivalent if whenever the relations that appear as arguments of the expressions

are the projections of a single relation that is defined over all the attributes, then the expressions produce
the same answer. In contrast, the ordinary notion of equivalence, which we refer to as strong equivalence,

requires that the two expressions yield the same result for any relations as arguments, regardless of whether

the relations are the projections of a single universal relation.

Example 1: Consider a pair of relations R(A, B) and S(B, C), and the two expressions R and 7rAB(R >‘i S)~
Let R consist of the two tuples {01, 23 }, and let S = { 14}. Then R ~“i S = {014 }, and IrAB(R t~i 5) =

{ 01 } ~ R. Thus, 7rAB(R t’~i 5) and R are not strongly equivalent.

However, if R and S are the projections of one (universal) relation U(A, B, C), then we can prove that

R 7TAB(R >1 5). Intuitively, if there is a universal relation, the tuple 23 cannot appear in R unless there

is a tuple 3e in 5, for some value of c, whereupon 23c is in R t~i 5, and 23 would appear in 7rAfl(R t~i 5).
Thus, R and 7rA~(R t~i 5) are weakly equivalent, even though they are not strongly equivalent. LI

ifi. Tableaux

There is a convenient form for representing certain common expressions (including those built from relational

algebra operations like selection, projection, and join); in this form we can provide an optimization algorithm
that minimizes the number of “expensive” operations, principally joins. The idea originated with CHAN77I,
but assumed its most common notational form in A}1079a, b} and KLUG81]. In this form, we represent

expressions as in Fig. 1. On top is an (optional) header indicating the attributes that correspond to the

columns. Next comes the summary, an indication of which symbols form the result of the expression that

this tableau denotes. Finally come all the rows. Blanks in the rows are used to denote symbols that appear

nowhere else.ft In some circumstances, we also append certain constraints among symbols, e.g., a < b.

The meaning of a tableau is defined in terms of its effect on a (universal) relation over all the attributes.

Intuitively, the result of applying a tableau to some relation u is obtained by mapping the rows into the

tuples of u in all possible ways that do not map the same symbol to two different symbols. For each such

mapping, we list the value of the summary; the tuples so listed form the result of applying the tableau.

Example 2: Consider the effect of the tableau of Fig. 1 on the relation { 012, 314, 567 }. We could map both

f Work supported by AFOSR grant 80—0212.

~ We use the relational algebra notation of ULLM82b], where 1r~- stands for projection onto the set of attributes X, oc stands

for selection by condition C, and 1~’~1 stands for the natural join.

tt The reader may appreciate the similarity of the tableau form of expression to the form of queries in Query-by-Example (see

IULLM82bJ, e.g.). The summary of the tableau corresponds to placing P. in front of certain symbols in QBE.
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A II C

summary a b

(I) a b

(2) b c

Fig. 1. A tableau.

rows into tuple 567, which causes the summary ab to become 56. We (0111(1 map tIme first row to 012 and the

second to 314, which gives us summary 01. Note that this mapping assiglis a unique value to b. namely 1,
as all legal mappings must do. We cannot map the first row to 012 and the second to 567, since that would

attempt to map b to both 1 and 6. If we consider all possible legal mappings and accumulate the summaries,
we get the result of the tableau, {01, 31,56). LI

There is a simple way to minimize the number of rows of a tableau while preserving weak equivalence.
This minimization, while we shall not show it, has the effect of minimizing the nuniber of joins. We reduce

the tableau by looking for mappings, from all the rows into a proper subset of the rows, where the mapping
has the following properties.
1. No symbol is mapped to two or more different symbols.
2. Each symbol that appears in the summary is mapped to itself.

3. Aiiy constraints that hold on the original tableau’s symbols are implied by the constraints on the symbols
to which they are mapped.

If we find such a mapping, we may eliminate all rows that are not mapped onto by any row.

The above process is “finite Church-Rosser,” in the sense that we can apply any such mapping we see,

and still be guaranteed that after applying all the mappings we can, we shall wind up with the unique (up
to renaming of symbols) minimal tableau.

Example 3: In Fig. 1, we can map both rows to row (1). This has the effect of mapping a and b to

themselves, as we must by rule (2). Symbol c is mapped to the symbol represented by the blank in the first

row, and the symbol represented by the blank in the second row is mapped to a.

Since no row maps to row (2), we may eliminate that row, leaving the tableau of Fig. 2. While we

shall not show it, let us comment that where weak equivalence is concerned, Fig. 1 represents the expression
ITAB(R t~”z1 8) discussed in Example 1, while Fig. 2 represents expression R. The existence of the mapping
we found proves the weak equivalence of these two expressions. LI

A B C

a b

(1) a b

Fig. 2. Reduced tableau.

IV. A Universal Relation System

There is an important application of the weak equivalence idea and the reduction of tableaux that we

have just described. In “System/U,” a universal relation system being implemented at Stanford ULLM82a],
queries are interpreted as applying to one or more copies of a universal relation, and that universal relation is

constructed by taking the natural join of all relations in the database.t However, before answering the query,

we optimize this join by applying the tableau minimization algorithm discussed above. This optimization
has two beneficial effects.

1. By eliminating joins, the response to the query can be obtained more quickly.
2. Far more importantly, the elimination of join terms that are extraneous to the query provides the user

Technically, it. is only for the simplest databases that all the relations are joined to form the universal relation. In complicated
databases, the possibility of multiple paths among attributes is accounted for in System/U by replacing the universal relation

by the union of the maximal objects, which are, intuitively, the maxima! subsets of the relations in which navigation “makes

sense.” The maximal object idea is discussed in MAJE8I] and ULLM82a, b], while the notion of paths that “make sense,”
which we take to mean “have a lossless join,” is discussed in IAI-1079c].

7
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wit.h a more intuitive respolise. In partR’ular. t.he system does not eliminate a response just because

certain tuples fail to appear in the join because their values do not match values in the relations that

are extraneous to the query.

Example 4: Let us consider a database with attributes E. S, D, and M, standing for employee, salary,

department. and manager. respectively, organized into three relations, ES, ED, and DM. To find the

manager of Jones. we could write in ~ystem/U

retrieve (M) where E = ~Jones~

The System/U language is similar to QUEL (see ULLM82b]), but since all tuple variables range over the

universal relation, there is no need to declare them with range statements. Moreover, since many queries,
such as the above, require only one tuple variable, we use an attribute A by itself to stand for blank.A,

where “blank” stands for the default, or blank tuple variable.

In Fig. 3 we see the tableau representing the query in which the three relations ES, ED, and DM are

joined, and the selection implied by the where-clause and the projection implied by the retrieve-clause are

then applied. Notice how we take the natural join of relations by choosing one symbol for each attribute

(e for attribute E, and so on). For each relation we create a row that has these symbols in the columns for

those attributes the relation has and blanks elsewhere. Also, the selection clause is reflected by a condition

appended to the tableau; some conditions of the form A = B can be reflected by equating the symbols

corresponding to attributes A and B. Finally note how the projection of the retrieve-clause is represented

by the fact that only the symbols for the retrieved attributes appear in the summary.

ES D M

m

(1) e .s

(2) e d

(3) d m

e = ‘Jones’

Fig. 3. Tableau for sample query.

We can reduce the tableau of Fig. 3 by mapping rows (1) and (2) to (2), and (3) to itself. In so doing,
we map symbol s to the symbol represented by the blank in row (2), column S, which is legal. Note that

we could not, for example, map row (3) to row (2) because m, since it appears in the summary, cannot be

mapped to any other symbol. Thus, the minimum tableau weakly equivalent to Fig. 3 is the one shown in

Fig. 4.

E S D M

in

e d

d in

e = ‘Jones’

Fig. 4. Mininum-row tableau.

The tableau of Fig. 4 comes from the algabraic expression ~TM(c1E’JoneS’(ED t~i DM)).f In comparison,
the original tableau of Fig. 3 came from a similar expression that had the relation ES included in the join.
The two expressions are weakly equivalent, as they must be, but they happen not to be strongly equivalent.
We claim that the expression of Fig. 4 should be preferred to that of Fig. 3 for the following reason. The

differences occur when Jones has a department listed for him in the ED relation, and that department has

a manager listed in the DM relation, but we have no salary listed for Jones in the ES relation. Fig. 3 will

not produce a manager for Jones, because the join ES t~i ED ~‘~1 DM has no tuples for employee Jones.

On the other hand, Fig. 4 will produce the manager or managers of the department or departments Jones

works in.

f See ULLM82bJ for details about how we translate between tableau notation and ordinary relational algebra.
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We claim that the latter interpretation is with high probability the one that the user intended. It is

very unlikely t.hat the interpretation of Fig. 3, which is “print the manager(s) of the depart went(s) of Jones

unless we don’t have a salary for Jones, in which case print nothing.” is what the user intended. E

The reader should note that minimization under weak equivalence is es.sential for the transformation

from Fig. 3 to Fig. 4 to take place. Without using weak equivalence, we could not, produce plausible

interpretations of many queries over universal relations, for the reason illustrated in Example 4: missing
tuples in relations that are intuitively outside the path connecting the attributes mentioned in the query

(as ES does not serve to connect E with M) would cause information to disappear from he answer. It. is

also worth noting that for this reason we cannot simulate a universal relation system by an ordinary system
with a view facility. Even if we defined the universal relation to be a view consisting of the join of all the

relations, we could not eliminate these extraneous terms from the join in an ordinary optimization phase.
because such optimization would be performed according to the usual (strong equivalence) reduction rules.

Example 5: Let us briefly give another example of how System/U handles queries; this time we have a

situation where more than one tuple variable is needed, the old query about the employees t.hat earn more

than their managers. In System/U this query is

retrieve (E) where M = I.E and S > t.S

Here, we use attributes by themselves to correspond to attributes of the blank tuple variable, and we use

another tuple variable t, as well. Think of the blank tuple variable as representing the tuple in the universal

relation over ESDM that corresponds to the employee, while I represents the tuple of the manager, as an

employee. The clause M = t.E ensures that the employee attribute for tuple t will be the same as the

manager attribute in the tuple corresponding to the blank tuple variable.

Figure 5 shows the tableau that represents this query. Subscript 1 is used for attributes corresponding to

the blank tuple variable, and subscript 2 is used for attributes oft. The constraint M =t.M is represented

by using the same symbol in the M1 and E2 columns, while constraint S > t.S becomes ~~1 > s~ and is

appended to the tableau. We reduce the tableau by sending rows (5) and (6) to (4), and all other rows to

themselves. Note that we must send (5) and (6) to the same row, or else d2 would be mapped to\two different

symbols. Also, we cannot reduce this tableau further. For example, if we tried to map (4) t~, (1), (2), or

(3), the constraint s~ > 82 would not be implied by conditions on the symbols we mapped ~ and ~2 to. In

particular, ~2 would be mapped to the symbol represented by one of the blanks in the S2 column, and there

are no constraints involving any such symbols.

E1 S1 D1 M1 E2 S2 M2 D2

e1

(1) e1 s~

(2) e1 d1

(3) d1 m1

(4) m1 32

(5) m1 d2

(6) d2 m2

Sj > 3~

Fig. 5. Tableau asking for employees who make more than their managers.

The expression represented by the reduced tableau having only rows (1)—(4) of Fig. 5 is computed by
the following steps.

1. Take the natural join of ES, ED, and DM.

2. Take the equijoin of the result of (1) with ES, with M of the first equal to E of the latter.

3. Select for the condition that the first S component is greater than the second S component.
4. Project the result onto the first component (E).

Of course, this query must still~be subjected to ordinary optimization (using the strong equivalence
criterion) if it is to be implemented in an efficient way. However, the first stage, where we did tableau

reduction under weak equivalence, was essential for us to get the right expression in the first place. E1
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V. Summary of the System/U Query Interpretation Algorithm

l() ~.ziii1i!iia rile I he role’~ of opt itilizat ion ii nder weak and strong equivalence in a universal relation system,

let us list t lie steps of t he Sst em/t
-

algorit hmn. lie description we give is a simplification of the ;wt Intl

a I t~( )ri t I iii. 5~fl t-e Ii ere we t a 1k a bout relations, rat her t Ii an ~objeet s.” wli i eli arc t he fun damemi tai rd ationsli I

a miiomig alt rilimit es. regardless of whet her or not I hey correspond to relations.AIso. “maximal objects” are,

for our purposes, collect ions of relations in which we can find Unique shortest paths connecting attril)Imtes.

as. for cxaiiiple. the path from E to I) to ‘tI is the shortest wa to connect E and Al in Example 4. l~or

more details. see I. ‘LL\I82a. b].
I. For each tuple variable mentioned in the query, including the blank, assign a copy of the universal

relatiomi. Regin by writing down the expression that is the Cartesian product of all these universal

relat 10115 (as we did in Example 5).
2. \lodifv the expression of(1) by applying to It the selection and projection implied by the retrieve- and

where—cIa uses of the query.

3. ~‘Iml)stitIIte for the copy of the Universal relation associated with tuple variable t the union of all the

maximal objects whose attributes include all those attributes A for which t.A (or just A, if t is “blank”)

a~)~)ears iii the query.

1. Subsi it tile for each maximal object the natural join of all the relations in that maximal object.

~. Distribute the (‘artesian products. selections and projections over the unions, so we have a union of

terms each of which has a tableau.

6. Using the weak equivalence criterion, reduce each tableau in this union. The method of KUPE82] is

used.

7. Also tinder weak equivalence, use the technique of SAGI8O] to eliminate redundant terms of the union.

8. Apply optimization under strong equivalence to the resulting expression.
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1. The DBPL Project

The DBPL project at the University of Hamburg is centered around the

integration of database models and programming languages. The relational

approach to databases and Pascal—like prograimiing languages, both known

for their well—designed data structuring capabilities, have proven as a

framework particularly suitable for that integration effort.

The DBPL project evolved fran ideas resulting fran the design and

implementation of the database programming language Pascal/R SCHM77J,
SCHM8O] fran 1975 to 1979. The DBPL project has the objective to

investigate in more depth the issues of query optimization and

concurrency control in database prcgrainming languages. The main goal is

the design, implementation, and evaluation of language constructs that

support shared access to databases and query optimization for

calculus—oriented languages.

The DBPL approach is different frau other approaches to query

language design. Whereas most of the canton interactive query languages
are directed towards the novice user vASS82], database prcgranimtng
languages address the professional programmer who needs a powerful tool

for sophisticated database access and manipulation. We believe that the

hanogenecus extension of a programming language by apprcpriate data types
and operations sCHM77], SQ1M78] is a better way to support such a

prograrnii~r than providing subroutine calls or heterogeneous imbedding of

a query language in a programming language.

The usefulness of our approach is exai~lified by several successful

applications of Pascal/R. The system is used for teaching database

management courses, for database applications (50 Mbytes) in fishery
research BIOM81], for the developuent of database prograrruiing
methodologies Bi~D8l], and as a target language for very high level

languages like TAXIS at the University of Toronto, and the natural

language system HI½M-ANS at the Jniversity of Hamburg.

The DBPL project (principal investigator: Joachim W. Schmidt)
is supported by the Deutsche Forschungsganeinschaft (DFG)
under grant no. Schin. 450/2—1.
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2. Query Optimization in Pascal/R

A Pascal/R pr~ramner can query a database using a relation—valued

expression with a selection predicate. The predicate is a well—formed

formula of an applied many-sorted first-order calculus with existential

and universal quantifiers where the “sorts” are the ranqe relations to

which a tuple variable is bound.

In one—sorted predicate calculus, quantifiers can be moved over

terms in which the quantifier does not occur. This is used in all

algorithi~s for standardization and optimization of predicates. In the

many-sorted calculus, there are t’~o cases where the result of such a

transformation depends on whether the range relation of the quantified
variable is ~T1pty JARK81 J, JARK82]. Therefore, the runtime syst~ must

be able to change the standardized and optimized query before execution.

Many approaches to query optimization first translate a calculus

expression into a sequence of algebra operations and then optimize, this

sequence. In contrast, our strategies are described by transformations

of relational calculus expressions and only the transformed expression is

translated into operations ARK78J,ARK82J,KOCH79J. This high-level
approach allcMs for an extension and different interpretation of query

optimization algorithms. First, as we do not predetermine the evaluation

of subexpressions, parallel or concurrent evaluation is supported
tSalM79J. Second, we introduce the concept of extended range expressions
which allc~s a tuple variable to be bound to subrelations rather than

whole database relations IJARKB2]. The application of this concept leads

to predicates which can be evaluated more efficiently by avoiding
repetitive evaluation of identical subexpressions in the case of

existentially quantified variables and by reducing the nurriber of

ccnjunctions in the case of universially quantified variables. Finally,
the relational calculus interpretation of tree queries leads to an

extension of well—knc~n s~nijoin algoriti-nms to the cases of universal

quantifiers and inequality car~arison operators JARK82].

Th support this high-level approach, we introduced the language
construct “reference” JARKR1] which can be used to define intermediate

results like indexes or links. The advantage of having such a high—level
tool for database syst~n programming is that it allc~s the ccu~lete query
evaluation process to be described as a nested relational calculus

expression rather than as a sequence of operations.

~o extensions to the Pascal/R query optimization approach are still

being investigated. First, we want to simplify predicates prior to their

evaluation by analysing tautologies, contradictions, and id~npotency.
Second, the concept of extended range expressions will be generalized and

used for access path selection.
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3. Query Optimization Activities in the DBPL Project

The query optimization strategies in Pascal/R consider only one

query at a time. Presently, we are working ou extending the scope of

query optimization fran one statement to a set of statements. In

database prc~rarrining languages where concurrent access to databases is

supported by tools for the forrnulation of ca’npound database operations
kncMn as transactions, there are two lines of attack. First, we are

working on the simultaneous optimization of all queries contained in a

transaction, and secaid, we are investigating the idea of a shared query

optimizer that processes queries of all active transactions in parallel.

1~nother activity is the exploration of advanced access methods with

respect to their impact on query processing algorithms. We are

especially interested in multi-dimensional access methods, i.e., access

methods that efficiently support access over attribute ccinbinations,

range queries and (possibly) partially specified queries. We expect a

substantial simplification of query processing algoritlins fran the use of

those methods since the lcw-level tuple interface to the underlying
access method can then be replaced by a high—level set interface.

Finally, the design of a language construct called “selector”

IMALL82] for general access to selected parts of relations plays a

central role in the DBPL project. The definition of a selector

introduces a selector name and parameters, binds the selector to a

relation, and provides a selection predicate. Selectors can serve as a

relation—like description of access path to that part of a relation which

fulfills the selection predicate. Selectors provide high—level tools for

access path definition, maintenance, and use that fit particularly well

in a relational auery optimization system.

4. Current status of the DBPL Project

Query optimization and concurrency control algoritluns are being
in~plemented on a VAX-li under VMS. The implementation tool is the system
progranining language Modula—2 which our group moved fran a PDP-ll to the

VAX-li arid adapted to the VMS envirorinent K0a182 J.

Project participants in addition to the authors of this paper are

Winfried Lamersdorf, Peter Putfarken, and Manuel Reimer.
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Distributed Query Compilation and Processing in R*
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Introduction

R* is a prototype distributed relational database system being implemented for

research purposes at the IBM San Jose Research Laboratory WILL82]. Each site

in an R* network runs an extended version of System R ASTR76]. Objectives of

the R* project include providing users with a single system image of the DDBMS

for ease of use, and allowing autonomous control of participating sites for

availability.

R* users access the distributed database using the SQL database language
CHAN76]. Just as System R made SQL programs independent of details of the

physical storage of data, the single system image presented by R* will make SQL

programs independent of the location of data. The multi-site atomic

transactions provided by R* LIND79] are another important aspect of the single

system image presented to users.

Site autonomy means that local administrators and users can retain control of

data stored at their own R* site LIND8O]. R~ allows controlled and voluntary
sharing of data between sites, but individual sites must be able to perform
operations on local data even if they are not in communication with the rest of

the distributed database. Thus, there can be no central services, such as

deadlock detection or naming, in R*.

Query processing in R~ is complicated by the single system image and site

autonomy objectives, and by the non-procedural nature of SQL. A further

complication is introduced because R* compiles SQL statements into low level

programs. Compilation of database queries results in considerable performance
improvements compared with interpretive execution CHAN81].

Compilation in R*

Like System R, R* compiles SQL statements into low level programs called access

modules which make calls to the storage system to execute queries. Query

*Authors’ current addresses: Dean Daniels: Department of Computer
Science, Carnegie-Mellon University, Pittsburgh, PA 15213; Pui Ng:
Laboratory for Computer Science, Massachusetts Institute of Technology,
Cambridge, MA 02139

15



compilation verifies the rights of a user to access the requested data, selects

a strategy for processing the query, and generates the access module to

implement the strategy. In R* an access module is a distributed program, and

parts of an access module are stored, together with a record of the objects
(indexes and tables) on which they depend, in the databases at the sites which

will execute those parts of the query.

Compilation is a complicated distributed operation in R* and is described in

more detail in DANI82BJ. First, the site originating the query, called the

master, parses the SQL statement, performs catalog lookup to obtain schema

information needed for compilation, selects a global plan for query execution,
and generates a low level access module for the execution of its portion of the

query. The SQL statement and global plan are distributed to all other sites

participating in the query’s execution, which are called apprentices.

Apprentice sites also perform parsing, catalog lookup, access planning and

access generation. However, access planning at apprentice sites is guided by
the global plan supplied by the master. The global plan contains enough
information to coordinate the operations of all participants.

The distributed compilation strategy used by R~ supports local autonomy by

allowing each participant to check the SQL statement and independently generate

an access module$ for its portions of the query’s execution.- Any site in the

distributed database can be a global planner, so there is no reliance on

centralized services. Because global access planning is performed by a single

query participant, the query processing strategy selected is as efficient as the

strategy a centralized compiler would produce.

Access Planning

The R* global access planner selects a query processing strategy which minimizes

the total cost of executing a query. Query processing cost is estimated as a

weighted sum of the CPU, disk I/O, and communications operations needed to

execute the query. Consideration of local processing costs in addition to

communications cost is one useful and somewhat novel aspect of the R* access

planner.

To estimate the cost of a particular access strategy, the access planner applies
statistics about the tables referenced by the query to a query processing cost

model which is based on properties of the R~ storage system and join methods

SELI8O]. Using the model, the access planner selects an order of table

accesses, a method for joining each table to the intermediate query result, and

an access path (index) for each table.

When a table referenced by a query is remote, the access planner will consider

two different methods for accessing it. The first method considered is to move

the whole remote table to the desired site after performing local restrictions

and projections. Alternatively, if the remote table participates in a join,
then access requests containing join keys may be sent from the join site to the

table’s storage site and only records matching the join keys need be sent in

reply. This latter method is a dynamic semijoin. The multi-site join methods

used by R~ are extensions of the merge join and nested loop join used in System R

SELI79]. For a join of two tables from different sites the access planner
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considers performing the join at either table’s storage site, or at some other

site.

Recompilation

Compilation creates dependencies of the access module on internal database

objects. The validity of an access module depends on the access paths it uses,

the data objects it references, and the access privileges on the data objects.
As a result, database actions may invalidate existing access modules and require

recompilation (NG82]. In general, there are three types of database actions

that may lead to invalidation of an access module, corresponding to the three

types of dependencies.

In a distributed database environment, compilation may require the cooperation
of many sites. Hence recompilation may also be a multi-site operation.
However, there are situations in which recompilation can be done on a local

basis (local recompilation) even if the original compilation involved more than

one site. For example, if the access module is invalidated by dropping an

access path at a particular site, recompilation can be done by re-generating the

access module at the same site. Thus recompilation is kept local to the site

where the invalidation originates. Local recompilation is less expensive than

multi-site global recompilation and does not depend on the availability of other

sites.

When the access module is invalidated by dropping an access path, local

recompilation can always be used but on certain occasions it leads to

substantial performance degradation of the compiled code. By examining the

global plan generated in the original compilation and using heuristics, R~ can

identify those occasions and perform global recompilation. On the other hand,
if the access module is invalidated by changes in data objects (for example, a

table is migrated from one site to another), recompilation may require other

sites to participate.

Current Status and Future Plans

The R~ query compiler is currently being implemented. At present, the compiler
is operational for a subset of the SQL language. The access planner considers

all of the multi-site join methods mentioned above, and the access code

generator implements some of these methods. Access module dependencies are

recorded at each participant site, and global recompilation is currently used in

all cases. Local ~cornpilation is being implemented.

Future work on query compilation in R* will include the design and

implementation of support for replicated and partitioned tables, and for

protection views DANI82A]. Once operational experience is gained, it may prove

necessary to revise the access planner’s cost model or to extend its repertoire
of multi-site join methods.
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ABSTRACT

In this paper, we outline the current research on query
optimization in distributed database systems at the

University of Michigan. Specifically, we describe by
example our model for representing sets of values of

attributes generated while processing a query by a sequence
of semijoin operations. This model provides an efficient

methodology for deriving the estimates of the cardinalities
of these sets which are needed to compute the cost of query
processing. Further, we mention the intuitive ideas behind

our heuristics for deriving a sequence of semi joins.
Comparative results with the existing algorithms are

provided.

1. INTRODUCTION

The concept of distributed database systems has emerged
as a natural solution to the information processing problems
of geographically dispersed organizations. We consider a

distributed relational database system on a point-to-point
packet switching communication network. The data

transmission delay in such a communication network is

roughly proportional to the quantity of data transmitted.

In order to process a query which needs to reference

data from multiple sites, portions of the database at other

sites have to be transferred to the user’s site. Since the

data transfer rate between sites in communication networks

can be slow (WONG77], the minimization of the inter-site

data transfer can be of importance in processing a

distributed query.

The usual methodology for distributed query processing
(DQP) consists ~of reducing the referenced ~relations using a

sequence of semijoins (ssJ) after initial local processing.
The semijoin strategy involves the following tasks:
(1) Estimation of the size of the relation reduced by each

semi join of •a SSJ. Since it is usually assumed that the
reduction of a relation is proportional to the reduction

of the set of values of its attribute, this task is that
of estimating the reduction of the latter set.
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(2) Design of an algorithm to determine an optimal SSJ

which incurs minimal total inter—site data transfer.

We discuss these problems in the subsequent sections. For

simplicity, we assume that a relation is a unit of

distribution and consider conjunctive equi—join queries.

The earliest work in the area of DQP is by Wong
WONG77]. The semijoin strategy has been suggested in the

literature BERN81, CHIU8O, CCA8O, HEVN79a, HEVN79b]. Under

the assumption that the attributes are independent CHIU8O,
CCA8O, HEVN79a, HEVN79b], the reduction of relations by an

arbitrary SSJ cannot be estimated accurately. An improved
estimation method was introduced in BERNB1]. In Section 2,

we describe our own model deriving these estimates. We

think our model is simpler to implement. As far as the DQP

algorithm is concerned, the one suggested in BERN81] is

based on the hill-climbing technique with two enhancements

to the basic algorithm. In Section 3, we outline our

algorithm and give some comparative results.

2. ESTIMATION OF THE CARDINALITY OF A REDUCED RELATION

To explain our model by an example, let us consider

four relations: SUPPLIER (S#, S_NAME), CITY (C_NAME, S#),
SUPPLY (S#, P1/), and PART (P#, P_NAME). Assume that after

initial local processing, the remaining query is

FIND (SUPPLIER.S NAME, PART.P NAME, CITY.C NAME)
WHERE (SUPPLIER.S~ = CITY.S#) AND (CITY.S# = SUPPLY.S#)
AND (SUPPLY.P# = PART.P#).

For convenience we represent the attributes

SUPPLIER.S#, CITY.S# and SUPPLY.S# by al, a2 and a3,

respectively and SUPPLY.P# and PART.P# by bi and b2,

respectively. The equality relation partitions these

attributes into blocks ~1 = (al, a2, a3} and ~2 = {bl, b2}.
We represent the set of values immediately after initial

local processing of the attribute ai by Al for I = 1, 2, 3

and that of bi by Bi for i = 1, 2. The sets of values of

attributes change as semi join operations are performed. The

cardinality C(x) of an attribute c~, therefore, changes and

is equal to the cardinality C(X) of the set X which

represents its values at a particular instant. These sets

of values of the attributes form the elements of lattices.

For our example, all the sets initially reachable by
semi joins between attributes of the same block are

represented by the two lattices shown in solid lines in the

Figure 1. (The Di in the figure is the domain of the

attributes in the block ~i for i = 1, 2.) For example, the

semi join Si from a3 to al reduces the set Al to the set A1A3

which represents Al flA3, and the cardinality C(al) changes
from C(Al) to C(A1A3). Again, the semijoin S2 from b2 to bl

reduces Bi to B1B2 and changes the cardinality C(bl) from

C(Bl) to C(B1B2). The semi join S2, however, causes A3 to
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reduce as well, because the attributes a3 and bi are in the

same relation. This causes the initial lattice of the block

~1 to be exten ded as illustrated by the dotted lines in the

Figure 1. The new set formed is named A3A4 as it is also a

subset of A3. The semijoin S2, therefore, also reduces the

cardinality C(a3) from C(A3) to C(A3A4). As the semi joins
are performed the lattices grow.

The estimations of the cardinalities can now be stated

in terms of this model. If ~i and c~j are two attributes and

if the sets of their values at any point in time are Xi and

Xj respectively, then a semijoin from cxj to ai reduces the

cardinality of c~i to a new value Cn(~i) which is given by

Cn(cii) = C(g.l.b.(Xi, Xj))

We have shown that this value can be calculated from the old

value C(ai) by the following formula:

C(ai) x C(aj) = Cn(c~i) x C(l.u.b.(Xi, Xj))

A recursive algorithm is written to compute
C(l.u.b.(Xi, Xj)).
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If c~h is an attribute in the same relation as ~i, its

cardinality will also be reduced. Suppose C(ah) = ni. If n

and k are the cardinalities of the relation before and after

the semijoin, then the new cardinality Cn(cih) is given by

rn x (1 — (1 — k/n)’~”~) if n/rn < k

m x (1 — (1 — l/m)k) otherwise

This is our approximation to the formula given by
YA077]. The error is less than 0.5% for a broad range of

values of n, m and k. This is a closer approximation than

the one suggested in BERN81].

3. DISTRIBUTED QUERY PROCESSING ALGORITHM

The DQP problem is known to be NP-hard (HEVN79a].
Hence any realistic algorithm for determining a SSJ involves

heuristics. Our algorithm is no exception.

The total cost of DQP consists of the cost of moving
data to perform the semijoins and the cost of moving the

reduced relations to the user’s site for the final

processing. The direct benefit accrued by a semijoin is the

difference between the amount by which it reduces a relation

and the amount of data transported for its execution. A

semi join may not be directly beneficial at all or it may not

have significant direct benefit. However, it may cause

substantial benefits for the subsequent semijoins. That is

why the straight—forward hill-climbing technique does not

produce a good SSJ. Our algorithm uses a heuristic cost

function which helps search for such semijoins which can

generate indirect benefits.

The main feature of this algorithm is to select and

“visit” an unvisited block with the least value of a

heuristic cost function defined on the set of blocks until

no more unvisited block exists. By “visiting” a block we

mean that semijoins are scheduled which go from the

attribute with the smallest cardinality in the block towards

the one with the largest cardinality. After all the blocks

have been visited, the visits are reversed. Several control

features have been incorporated in the algorithm to increase

the robustness for random input data.

For simple queries HEVN79b], our algorithm produces
optimal solutions. For the example in (BERN81], our

algorithm and the algorithm in (BERN81] produce the same

SSJ. For the example in HEvN79b], the cost reported was

1324. We computed the cost of the same query using our

algorithm and the algorithm in (BERNB1]. The cost for the

SSJ with our algorithm was 502 and the cost for the SSJ with

the algorithm in BERN81] was 796.
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4. CONCLUSION

For a given initial database state, the cost of any

sequence of semijoins to process a distributed query can be

computed efficiently and effectively using the estimation
method outlined here. A block—oriented heuristic algorithm
has been developed to determine a low cost sequence of

semi joins. The algorithms developed are •being implemented
in PASCAL.
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1. Introduction

When a user query is submitted to a distributed database system, it usually
has to be associated with some particular instances of the distributed data

items (i.e., materializations), and broken into subqueries. These must be

distributed and scheduled properly in order to produce the final result for

the user. This paper sketches the initial transformations applied to user

queries on a distributed database system (DDBMS) called MICROBE. MICROBE is

operational at Laboratoire IMAG (University of Grenoble), on a local

broadcasting network of LSI 11 machines. This network is dedicated to

administrative and scientific applications.

Several techniques have been proposed for query processing, among which is

the translation of high—level algorithmic languages into some QUEL—like
internal form, on which the decomposition process is applied. This is the

case in the SDD—l project G00D79], where a query expressed in the

Datalanguage is translated into QiJEL statements, and further processed by a

static query decomposition algorithm. Similarly, query management in the

distributed version of the INGRES project dynamically decomposes QUEL
statements into one—variable subqueries to handle the distributed execution of

requests STON8O]. In both cases, however, the network of database computers

is homogeneous. This allows high—level QUEL statements to be processed

directly at the local sites.

A different approach has been implemented at Laboratoire IMAG for the

POLYPHEME project ADIB8O]. The query, expressed in a relational algebra
language, Is translated into a binary tree of operators. This technique was

proved very useful for the subsequent decomposition step, and particularly for

the implementation of a dynamic decomposition strategy NGUY82].

2. Query Optimization

The approach implemented for the MICROBE project combines the advantages of

the above proposals. User statements are translated into binary trees of

relational algebra operators and submitted to the optimizer. The optimizer
restructures the query tree with respect to the properties of the relational

algebra.

The query tree is restructured so that the data which is piped from each

operator to the next one is minimized, and so that the total number of

operations involved In the query is reduced. Restructuring Is with respect to

the relational algebra expression of the query, and does not take into account

the distribution of relations. Techniques inherited from artificial

intelligence are used for restructuring. They are related to the

transformation of grammatically defined arborescences and to natural language

recognition. The optimizer uses a set of catalogued transformation rules to
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produce an equivalent query tree from its input node configuration.

MICROBE is the only DDBMS known so far to implement such a systematic

optimization technique for user queries expressed in a high—level relational

language. The advantage of this approach is that the optimizer can be driven

by a set of simple transformation rules. These are applied to the query tree

during several recursive scans. The principle of optimization is to isolate

particular node configurations and apply the transformation rules where

appropriate.

3. Query Decomposition

Once a query tree has been optimized, it is submitted to the decomposer.
This module is in charge of the localization and fragmentation of the request
into local subtrees. These are dedicated dynamically (during query execution)
to particular execution locations at distributed database sites.

In previous proposals, the distributed execution strategy was entirely

planned prior to the execution of any of its parts. In contrast, MICROBE

relies on a dynamic decomposition strategy NGUY81b], NGUY82]. It does not

require statistics on the database (except for cardinalities and widths of

relations) or estimations of the size of the partial results produced by a

query. (This kind of information is indeed difficult to maintain accurately,
and costly to compute and retain, as shown in the usual static decomposition

algorithms.) The system attempts to minimize a given cost function of CPU

time and transfer costs of partial results NGUY81b].

Dynamic query decomposition was first proposed for the POLYPHEME project.
The designers of the distributed version of INGRES also implemented a dynamic

query decomposition algorithm, which they proved to be usually more efficient

than any static strategy.

The query decomposition process in MICROBE will be illustrated with an

example. The tree resulting from the translation of a request is optimized
via algebraic transformations. Suppose this yields the query tree of Fig. 1.

intersect

project (Name) project (Name)

join (SS=SS) select (Address=Grenohle)

project (SSvNAME) project (SS) STUDENT

STUDENT select (C=1)

REGISTERED

Fin. I Query tree to be decomposed.

3.1 Initial localization

The query tree is now ready for decomposition and distributed execution.

The decomposition algorithm attempts first to localize as many nodes in the

tree as possible. If the relations STUDENT and REGISTERED are located at

sites Si and S2 respectively, the lowermost monadic subtrees will be localized

and sent for execution at Sl and S2 immediately (Fig. 2).
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project c e) ~roiect (Name)

~
Fig, 2 Initial locali~atiori of ouer~ tree.

For the localization of the remining nodes (the INTERSECT, PROJECT, and

JOIN operators), a dynamically updated threshold value is used to anticipate,
whenever possible, the assignment of execution locations NGUY81b]. This

threshold is updated by a dynamic programming technique NGUY82J. In the

above example, if the volume of the result of the PROJECT (SS,NAME) on the

STUDENT relation is less than the initial value T0 of the threshold, the

result will be transferred to the execution site of the brother subtree

(PROJECT (SS) on SELECT (C1) on REGISTERED), i.e. S2. The JOIN operator will

therefore be assigned to site S2 for execution, as well as the PROJECT (NAME)

operator (Fig. 3).

The initial threshold value T0 is set to the average volume of the STUDENT

and REGISTERED relations. It is then updated according to a predefined
function. The new value T1 and every localization decision are broadcast to

all sites participating in the query, here Sl and S2.

The decomposition algorithm will subsequently wait for the first partial
result Ri of the INTERSECT node operands to complete. It will then be

possible to assign the execution location of the INTERSECT operator. If the

volume of Rl is less than T1, Ri will be transferred to the site of its

brother subtree. Suppose Ri is the result of the PROJECT (NAME) on SELECT

(ADDRESS=GRENOBLE). Ri will be transferred to S2. The INTERSECT operator is

therefore scheduled at site S2 for execution (Fig. 4).

select (Address6renoble)

3.2 Dynamic localization

i r~ terse c t

Si

S2

FiS. 3. Ouer~ tree after first decomposition step,
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ress=Grenohle)

FjS. 4 Final decomposition of ouer~ tree.

3.3 Further comments

No hierarchical partitioning of database sites is done for query

decomposition. All sites involved in the processing of a query, i.e. those

sites where the relations are located, run the same decomposition algorithm.
The initial query tree (Fig. 2) is first broadcast to all of them. Subsequent
decomposition decisions are taken only when an exclusive privilege is held,
implemented by a circulating token. This avoids conflicting decisions from

two sits localizing simultaneously a common father operator NGUY82].

It has been shown that this dynamic query decomposition algorithm is fully
compatible with a dynamic data allocation strategy in a multi—user DDBMS

NGUY81b].
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1. Introduction

Improving the performance of data retrieval operations in file pro

cessing systems and database systems has remained an Important goal
since the advent of computers. As improved computer techno1ogy and new

methods of viewing and structuring data have evolved over the years,

researchers have developed algorithms for data access optimization based

upon the new system environments. To make database systems more ava4l-

able to a wide range of users, relational query languages (e.g., SQL,

QUEL, QBE) are being employed as a userfriendly interface for data

access. Research today on query optimization is very active as evi

denced by the number of papers on this topic presented at recent data

base research conferences such as SIGMOD and VLDB. Query optimization
will remain a challenging research area in the future as new technolo—

gies, such as VLSI and networking, are used in database systems. New

application environments for database systems, such as office informa

tion systems and engineering databases, will also provide new research

impetus.

In this short paper, we overview our current research on query pro

cessing and optimization in the Database Systems Research Group at the

University of Maryland. We discuss our recent results in the areas of

query interfaces for database machines (Section 2), efficient join pro

cessing algorithms (Section 3), and query optimization in distributed

systems (Section 4). In each section we provide a brief discussion of

our future research directions.

2. Query Interfaces for Database Machines

Database machines have been proposed as hardware solutions to the

problems of efficiency and reliability in many database systems rDATA

al]. The objective is to offload database management functions from the

host computer to a specially designe1, dedicated back--end computer whose

sole function is to maintain the database and to process database

requests. A database machine interfaces with the front—end host computer

* Portions of this research are supported by NSF Grant

MCS8I—07047.
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through a high—level language interface. The major function of the host

computer is to translate end user queries into the database machine

language, send it to the database machine, receive results from the

database machine and organize and display the results to the user. Tn

principle we can deal with two separate, independent query languages in

the system, the user query, language and the database machine query

language, with the host computer providing the intermediate translation

step.

We have implemented a SQL—type interface !CHAM 761 for the IDM—500

relational database machine ~BRIT 801. Although both the query language
and the database machine are based on the relational data model,

discrepancies in their detailed operations made the implementation non

trivial. Based on this experIence we presented a design for a database

machine language interface in tLUO 821.

Database applications have many varieties. They differ in type of

operations and data models. A database machine cannot possibl.y support
all these access requirements directly. It is only feasible to provide a

basic set of operations from which other operations can be derived. This

set of operations must be complete, efficient, flexible, and extensible.

They also must be non—procedural in order for the query access paths in

the database machine to be used effectively. In view of these require

ments, we have chosen to base the proposed database machine language on

the relational data model. The advantage of the relational model is its

simplicity and high level of operation.

The user interface language must be adapted to the application
environment and the skill level of the user. We have investigated the

problem of supporting user query languages based on the relational,

hierarchical, and network data models. The translation from the user

query language to the database machine language provides a level of

implicit query optimization, since the database machine language is

designed to make the most beneficial use of the machines capabilities.

In particular, we have studied the office application environment.

The users of an office information system are expected to be non—

programmer professionals. The language that they use must be friendly

enough for non—specialists to learn and use with a minimum of training.
We have developed a screen’ oriented form query language rLUO 811. The

form data model HOUS 76] allows a natural format for business and

office information. In order to develop a simple user interface the idea

of query—by—example tZLOO 80] is applied to specify queries on forms.

Additional procedural constructs are then introduced to enhance the

capability of the language. The language is termed the Form Query
Language (FQL). FQL can be shown to translate quite easily into a data

base machine language ELUO 82].

3. Database Join Processing

In relational query processing, clearly the most complex operation
to optimize is the join. Since it is usually a time—consuming operation
that accesses a large amount of data, finding efficient join processing
strategies is an important method of improving database system
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performance. In YAO 79], a model of database query evaluation is

presented from which the access costs of query processing can be

analyzed and optimized. The optimization procedure decomposes an arbi

trarily complex query into two—variable sub—queries. Methods for decom

position are usually heuristic in nature (e.g., ~WONG 76]). An optimiza
tion procedure selects the least costly access strategy for each sub-

query by considering the detailed database storage structures and access

costs. Join processing strategies are formed by different combinations

of operation modules such as sorting, indexing, storage accessing, and

merging.

A number of software methods for the processing of two—variable

joins have been designed and implemented. Sort—merge techniques, nested

loop techniques, together with the use of indexes provide a wide range

of potentially beneficial join processing strategies (SELl 79, YAO 79].
These software approaches, however, have the limitations that large
optimization programs must be implemented, controlled, and maintained.

Our recent research has developed the design of a two—dimensional

join processor in hardware (TONG 81]. The join processor inputs values

from the join attributes on different dimensions of a matrix structure.

Comparators test equality at each matrIx intersection and the join
result is formed as output. We have compared this design with several

other proposed join processor designs rTONG 82]. The proposed join pro

cessors can be classified into three categories: (1) one—dImensional

array with pipelining, (2) one—dimensional array with broadcasting, and

(3) two—dimensional array. Our analysis shows that the two—dimensional

array approach has significant advantages in terms of both processing
speed and hardware complexity. In addition, the two—dimensional array

processor has a simple organization. The regularity of its design makes

It suitable for VLSI implementation. A small—scale experimental VLSI

chip has already been implemented. The experimentation of a more corn—

pleté join processor array is being planned.

Our future research directions include extending cost models of

two—variable joins to models that handle the analysis and optimization
of n—variable joins where n> 2. The benefit of using the extended

models for query optimization will be studied. The performance trade—off

comes from the additional cost and complexity of optimizing an n—

variable join versus the savings from reducing the number of decomposi
tions required to break a query into n—variable sub—queries. As an

extension we will also investigate the implementation of the n—variable

join strategies in VLSI architecture.

4. Query Optimization in Distributed Systems

Distributed query optimization continues to be a major research

effort in our group. In previous work we defined a cost model for query

processing on distrIbuted systems, developed optimization algorithms
that we proved derive optimal processing strategies in certain system

environments, and extended the optimization techniques into algorithms
for general query environments HEVN 78, HEVN 79a, HEVN 79b]. In rKERS

79] these optimization techniques are applied to a database allocated on

a star network and the performance is analyzed. Our recent research has
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extended this prior work in several ways.

We have developed an improved algorithm of polynomial complexity
for the optimization of general queries rAPER 821. Three versions of the

algorithm are presented; one for response time optimization and two for

total time optimization. The response time version is proved to derive

minimum response time processing strategies under the assumptions of our

cost model. While neither total time version can guarantee to derive

optimal total time strategies, an analysis shows that close—to—minimum

total times are found for most queries.

Recent surveys of distributed query research have led to qualita
tive and quantitative analyses of proposed algorithms for query optimi
zation. In (HEVN 82] a classification taxonomy is introduced. Algo—
rithms are classified based upon the order in which the following optim
ization decisions are made.

a) Materialization — The selection of specific data copies to process

the query.

b) Operation Order — The execution order of query operations as

represented by a directed access graph.

In tSACC 81] algorithms are compared by comparing query performance on a

common cost model. In both of these studies guidelines are given to

identify the distributed system enviroi~ents in which the different

algorithms perform most effectively.

A future direction will be to extend our research to the optimiza
tIon of database transactions. A transaction is a database application
program which guarantees to maintain the consistency of a given con

sistent database state !GRAY 81]. Distributed optimization of a transac—

t~on differs from distributed query optimization. Requests for dat~
retrieval are embedded within the procedural structures of aprogr~,
such as conditionals (IF—THEN—ELSE) and iteration (DO—WHILE). Particular

emphasis in a transaction must be placed on points at which data is

locked and unlocked and on commit points.

Our preliminary work on this question is reported in IHEVN 811
None of the query optimization algorithms are directly applicable for

transaction optimization because of the procedural constructs that limit

the range of optimization in a transaction. For example, queries within

a conditional statement may not be executed ma particular application
run. Therefore optimizing their execution together with queries outside

of the conditional may not be beneficial. Our proposed approach uses a

two—step data flow analysis to form an effective transaction processing
strategy. The goals of the optimization are to maximi~ze parallel pro—

cessing of data independent queries and to group data dependent queries
into units of potential optimization within the transaction,. A number

of interesting research problems include the best use of parallelism on

a network, the placement and storage of intermediate results during
transaction executIon, and the importance of recognizing common subex—

pressions in a transaction in order to minimize redundant processing tn

the system.
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1. INTRODUCTION

In this paper we describe ongoing research on query optimization at

Computer Corporation of America. This research is being carried out in

the context of MULTIBASE and the two ADAPLEX database management sys

tems. These are briefly described below.

The ADAPLEX LDM (Local Database Manager) and DDM (Distributed Data

base Manager) are systems that directly support a general—purpose data

base application programming language, ADAPLEX, which is the result of

embedding the database sublanguage DAPLEX SHIP81] in Ada.~~ A DIII query
is mapped into a strategy consisting of single—site queries that are

processed locally by the LDMs, and data movement commands for shipping
the results of single—site queries between sites.

MULTIBASE is a system that provides a uniform, integrated query

interface to a heterogeneous distributed collection of pre—ex.isting
databases. Database integration is accomplished by describing the sche—

mas of the local databases in a common data model, DAPLEX, and then

defining a global view tailored to the user’s application over these

DAPLEX representations; the view definition incorporates directives for

resolving differences between the local databases DAYA82a]. A user

formulates queries in DAPLEX over his global view. A global DAPLEX

query is first modified by the Global Data Manager (GDM) into a DAPLEX

query over the local schemas. It is then decomposed into single—site
DAPLEX queries that are shipped to the local sites. A Local Data Inter

face (LDI) at each site translates queries sent to it into queries (or
programs) in the data language of the local host system. The GDM merges
the results of these single—site queries into the final answer. The GEM

has an ADAPLEX LDM available to it for managing schema and view defini

tions, storing auxiliary data required for database integration, and

merging the results of single—site queries to produce the final answer.

*Thjs research was jointly supported by the Defense Advanced Research

Projects Agency of the Department of Defense (DARPA) and by the Naval

Electronics System Command (NAVELEX) under contract N00039—82—C—0226.
The views and conclusions contained in this document are those of the

authors and should not be interpreted as necessarily representing those

of DARPA, NAVELEX, or the U.S. government.

•~Ada is a trademark of the Department of Defense (Ada Joint Program
Office).
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The reader is referred to SMIT81, LAND82] for overviews of MULTI—

BASE and to CHAN81, CHAN82] for overviews of the ADAPLEX LDM and DDM.

2. QUERY PROCESSING IN THE LDM, DDM, AND MULTIBASE

One issue common to these three systems is the processing of DAPLEX

queries, albeit in somewhat different environments. DAPLEX is a high—
level procedural language. The processing of a DAPLEX query has two

main steps: decompilation and optimization. Decompilation transforms

the query into an enveloDe which is a non-procedural internal represen
tation of the data selection component of the query, and a post~rocess
•~,g program that formats and prints the retrieved data. The principal
advantage of’ decompilation is that it separately identifies the data

selection requirements of the query, which can then be subjected to

optimization. This allows for more optimization than is found in embed

ded relational query language systems such as PASCAL/R SCHM77] and

RIGEL IROWE79].

Optimization of the envelopes is performed at two levels: local (in
the ADAPLEX LDM and each MULTIBASE LDI) and distributed (in the ADAPLEX

DDM and the MULTIBASE GDM). At the local level, the objective is to

minimize local processing costs by proper access path selection. At the

global level, the objective is to minimize the amount of data moved

between sites and to exploit parallel processing at different sites.

Local and distributed optimization are described in the next two sec

tions.

3. LOCAL OPTIMIZATION

3.1 Optimization in the LDM

The LDM must support extensive optimization of single site ADAPLEX

queries. The LDM optimizer incorporates several extensions to rela

tional optimization techniques. Some of these extensions are required
due to the richness of ADAPLEX and the functional data model. Other

extensions could also be applied to relational languages embedded in

programming languages.

The richness of ADAPLEX has two main implications for the LDM

optimizer. First, unlike relational languages, ADAPLEX allows the user

to explicitly control the grouping of entities and the elimination of

duplicates. This grouping implies an order of performing joins. The

LDM takes advantage of the explicit grouping specifications to maintain

hierarchical temporaries. This use of hierarchical temporaries greatly
reduces the size of data that must be sorted, saved on disk, and passed
back to the user program. In addition, the LDM optimizer analyzes other

join orders, and will, if cost effective, normalize the temporaries
(into first normal form). Of course, the re—ordering and re—grouping
that may be required after performing these alternative sequences of’

joins must be included in the associated cost estimates.

Second, the LDM optimizer takes advantage of the explicit entity—
to—entity functions that can be Specified in the functional data model.

(For example, the “works—in” relationship may be represented by a func

tion from the Employee entity type to the Department entity type.) These

are implemented by pointers and serve as fast access paths for perform
ing joins of the two entity types between which a function is defined.

The LDM optimizer compares the costs of using and not using these fast

access paths.
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The LDM optimizer uses several additional optimization strategies
that could be exploited by more ambitious optimizers for embedded rela

tional queries. First, it attempts to optimize over several nested “for

each” loops in the query. Many embedded relational query language sys
tems such as PASCAL/R SCHM77] and RIGEL ROWE79] optimize the qualifi—
cation of one “for each” loop at a time. Optimization over several

loops allows the LDM to consider more join strategies, and can reduce

the communication and synchronization overhead between a user program
and the LDM. Second, the LDM uses a leveled hill climbing search stra

tegy for limiting the number of join orders that it considers. The user

can specify an optimization level, N; the optimizer enumerates join
sequences of length N at each stage of optimization. When N is one,
this strategy is very similar to the “greedy strategy” of INGRES

WONG76J. Finally, the LDM optimizer considers several strategies for

processing arbitrarily nested universal and existential quantifiers.

For details of decompilation and optimization in the LDM, see

RIES82].

3.2 LDI Optimization in MULTIBASE

MULTIBASE must interface with a wide variety of Database Management
Systems: some (e.g., CODASYL) have procedural, navigational data manipu
lation languages; others (e.g., ADAPLEX LDM and relational systems) have

high—level query languages. Because these systems differ substantively
in the level of direct control over access path selection that they give
to programmers, different optimization techniques are necessary.

High—level query language systems are themselves equipped with

query optimizers, and so MULTIBASE assumes that no optimization is

necessary in the LDI; the LDI need merely transliterate the DAPLEX

single—site query into a query in the local language.

Navigational systems, however, require a DML program to specify an

appropriate route through the database. The LDI usually has a choice of

programs, each of which specifies a sequence of access path traversals.
In DAYA82b] we describe an access path optimizer for navigational sys
tems such as CODASYL. We have identified a class of queries, the tree

queries, that can be effectively optimized. The LDI optimizer decom

poses the single—site query sent to it into tree queries, enumerates the

strategies for processing each tree query, estimates their costs,
selects the cheapest strategy for each tree query, merges these into an

overall strategy for the single—site query, and compiles this strategy
into a loop program in the host DML. The analysis is considerably com

plicated by the presence of quantifiers in tree queries.

4, DISTRIBUTED OPTIMIZATION

4.1 Optimization in the DDM

The DDM optimizer extends distributed query optimization techniques
used in other systems such as SDD—1 BERN81] and System R’ SELI8O].
Both SDD—1 and R* focus on conjunctive queries (i.e., queries involving
only selections, projections, and joins). SDD—1 ‘s strategy is to reduce
data by a sequence of semijoins, then ship the reduced data to a single
site, where the result is produced by joining. R’ and the DDM consider

mixed join and semijoin strategies. The main difference is in the han

dling of horizontally partitioned data. Consider, for example, the

query R tXI S, where R is horizontally partioned into Ri, R2; and S into
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51, 52. Both SDD—1 and R’ replace the original query by the union of

the four queries Ri ~ Sj, 1 .�. i,j �. 2. This is not always a good
strategy. The DDM will consider the options of first performing one or

both of the unions before the join (iee., the possibility of left and/or
right distributing the join over the union).

As with the LDM, additional extensions to the optimizer are neces

sitated by the richness of ADAPLEX: the presence of quantifiers, uni

directional outer joins, user control over duplicate elimination, etc.

The overall optimization technique is the following. First, local

ize selections. Then, enumerate join orders. For each join of horizon

tally partitioned entity sets, determine whether it is cost—effective to

distribute the join over the union. For each nonlocal operation,
select a site for performing the operation, and determine whether it is

cost—effective to do semijoin reductions before each join. Work is

currently in progress on developing a cost model, heuristics for stra-.

tegy enumeration, and heuristics for selecting copies of replicated data

to be used in processing a query. For details of DDM optimization, see

DAYA82c].

k.2 Global Optimization in MULTIBASE

The overall approach to global optimization in MULTIBASE is very
similar to that in the DDM. However, there are some differences.

First, instead of disjoint horizontal partitions, we may have overlap
ping data in two or more local databases. For example, two Employee
databases may contain data on overlapping sets of employees. In fact,
the overlapping data might be inconsistent. For instance, the salary
values of an employee may be different in two databases. In the

integrated global view, this inconsistency may be resolved by defining a

generic entity type Employee, whose Salary value is defined to be some

aggregate function (e.g., average or sum) of the Salary values in the

two databases. Now we have to be careful in localizing selections or

distributing joins over unions. For example, if the aggregate function

used to define Salary is “average”, then the selection of employees
based on their salaries cannot be done completely locally at the two

sites. We have derived a set of rules for distributing selections and

joins over unions for various aggregate functions. Also, the reduction

step considers the option of a “semiunion” reduction before performing a

union. In our example, the semiunion partitions the employees in a

local database into two subsets: those contained only in that database,
and those having corresponding records in the other database. For the

first subset, the selection can be performed locally; for the second

subset, the salary values must be retrieved to perform the aggregation
and selection in the GDM.

A second difference is that not all sites are powerful enough to

process joins, unions, semijoins, semiunions, quantifiers, etc. Missing
capabilities are compensated for in the GDM.

Finally, a global query may be posed over a global view that is

defined over several intermediate levels of views, each involving gen
eralization and aggregation. For these, query modification and global
optimization proceed recursively from level to level. We depart from

the usual approach to view processing, in which a query against the view

is first modified all the way down to the local schemas, and only then

optimized. To see why a different approach is necessary, consider a

view, Employee, defined by generalizing two overlapping subtypes,
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Employeel and Employee2. In the usual approach, a query against
Employee would be modified into the union of three subqueries against
Employeel —Employee2, Exnployee2—Employeel, and Employeel fl Employee2.
However, if Employeel and Employee2 are stored at separate sites, then

it would be inefficient to separately optimize and execute these three

subqueries. Our approach is to reduce (if possible and if cost—

effective) Employeel and Employee2 per the query’s qualification and

target list, then move them to the GDM, and partially materialize the

view. If Employeel is itself a generalization of overlapping subtypes
stored at separate sites, this procedure is applied recursively to its

subtypes.

For details of global optimization in MULTIBASE, see DAYA82dJ.
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Abstract

Research activity on query evaluation and optimization has been centered around

processing single queries. While a need for grouping queries for simultaneous

evaluation on a database has been recognized, very little has been proposed.
This paper discusses our ongoing research in that direction. The effect of

grouping queries is to reduce local processing at a node by minimizing access to

a particular relation. Similarly, data transfer across the nodes of a distri
buted database can be reduced. The result is enhanced system utilization. The

process of decomposition and optimization of multiple queries is under investi

gation, as well as the characterization of environments where this grouping can

be used effectively.

1. INTRODUCTION

The majority of present work on query processing and optimization pertains to

processing of queries expr~sse~ J,n high level, non—procedural languages for the

relational data model. See LKIWSOJ for references. Query processing systems, in

general, attempt to minimize the cost of processing a set of queries by minimiz

ing the cost of each query separately. Individual plans are generated fçr each

query and executed on the database in succession. However, as shown in LGRAN8O]
it should be possible to group a set of queries over a database and minimize the

cost of processing them as a unit. The commonality that exists among a set of

queries, in terms of access to relations, join/semi—join operations and data

transfers can be used to reduce the overall cost of their evaluation. Below we

outline the general problem of multi—query evaluation and other associated prob
lems and discuss results of preliminary investigations.

The main goal of query optimization has been to retrieve relevant data from a

database with as little local processing and data transfer across nodes as pos
sible. The criteria for optimization has varied widely in the literature, rang

ing from minimizing CPU time in centralized databases to parallel transfer of

information and queueing delays in distributed systems. Also database semantics
have been used to reduce queries tg semantically equivalent queries, which can

be evaluated more efficiently. See LKING81J for a detailed discussion and addi

tional references.

2. PROBLEM CHARACTERIZATION

Grouping a set of queries for simultaneous evaluation allows common intermediate
results to be computed and/or transferred only once. Joins and semi—joins
occurring in several queries can be carried out simultaneously, accessing rela

tions in common only once. This could substantially reduce the local processing
required. Common intermediate data for different queries can be grouped and

transferred once, saving substantial data transfer time In distributed data

bases. Some environments where grouping several queries for simultaneous

evaluation is meaningful and beneficial are:

— where transactions are submitted in a batch—processing environment;
— jn an interactive environment where queries come in at a steady rate

(queries within a small time interval can be grouped without having to

delay the response);
— where a database supports several external views (a single query may turn

out to be a disjunction of several queries on conceptual views, all of

which can be processed simultaneously);
— in deductive databases, deductive axioms applied to a single query may give

rise to several disjunctive queries, which can be grouped together.

Determining the utility of multiple query evaluation requires that several sub—

problems be investigated:

— determining the probability that the same relation name appears in a set of

queries;

1This work was supported by NASA grant NAG—1—51 and by NSF grant MCS—79191418.
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— estimating the optimum number of queries that need to be grouped for cost
effective plan generation;

— developing decomposition and plan generation algorithms for a set of

queries treated as a single unlt
— estimating intermediate result sizes for multiple query decomposition;
— characterizing processing environments where this kind of grouping is bene—

ficial~
— estimating the cost difference In optimizing a set of queries sequentially

and that of optimizing as a single unit;
— determining the overhead and bookkeeping involved in executing a single

plan for a set of queries and distributing the answers to the rightful on-.

ginators of the query;

Solutions to the sub—problems listed above will enable us to characterize the

problem 9f multiple—query processing in general. For a detailed discussion
refer to LCHAK82J. Development of’ good decomposition and plan generation algo—
rithms including intermediate estimation is a central issue In this investiga
tion. The effectiveness of the algorithm depends on the amount of common compu
tation that can be performed on the grouped queries. The analysis of this algo
rithm and its comparison with sequential execution of queries does not seem to

be straight forward. Intermediate bookkeeping required can be a deciding factor

for the utility of’ this approach in general. If bookkeeping Is prohibitive it

may vitiate any advantage In processing efficiency achieved. Theoretical compu
tation of the optimum size and the selection of queries for grouping does not

appear to be straight forward. The optimum size computation is the difficult

problem. However, in deductive databases the disjuncts derived from a goal
tend to have common computations and can ~e grouped without much analysis.

3. JUSTIFICATION FOE GROUPING QUERIES

In a preliminary investigation (cHAK82) we have considered a worst case situa
tion in which queries are considered independent. In this event we are

interested in determining whether there will be overlap of relation names for a

set of given queries. This overlap in relation names can be converted into com

mon retrieval operations and used to evaluate the set of’ queries efficiently.
We have considered a simple model and computed the probability with which the

same relation names appear in more than one independently generated queries
against a relational model. We describe below a probabilistic model and the

assumptions for computing the overlap probabilities.

Each query Is assumed to be in the algebraic form

~T ~q (Hi’ X R2’ X •.. X Rn’),

where ~r3fld d’ are projection an~ selection operators respectively T cpntains
the attributes In the answer relation; q i,s a predicate Un the r6rm of boo].ean

expression of simple clauses) and each RI is either a relation In the database

or, derived from union or dij’ference operations. The string (Hi’ X R2’ X ... X
Rn ) Is called the matrix of’ the query.

3.1 Definitions of Elements of the Probabilistic Model

Let DB be the database of interest.
Let N be the number of relations in the database DB.
Let qi denote the i—th query.

The physical length of the query q, denoted by Lq, is a positive integer count
of’ tne actuaj number of relation names present In the matrix of’ the query q.
Relation names are counted as many times as they occur.

The commonality among a set of’ queries is expressed in terms of the “overlapping
of relation names” and is defined as follows:

.A relation name Ri is said to belong ( to (in) the query q, denoted by
RI c q, if’ the relation name id appears in the matrix of the query q.

n queries qi, q2, ... , qn are said to one—overlap, it there exists at least one

relation name Hi C DB such that RI C ~Ffor 1 = 1 to n.

Similarly, n queries qi, q2, ... , qn are said to k—overlap if there exists at

least k relation names Ri R2 ... Ek, each RFC D~ for i = 1 to k and such

that RI c qj for I = 1 to ( anâ j = I to n.

n queries qi, q2, ... , qn are said to exactly k—overlap, if there exists
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exactly k relation names Hi H2 ... Rk, each Hi c DB for i= 1 to k and such

that Ri c .qJ for I = 1 to ~c an~ j f to n.

3.2 Assumptions about the Model

Assumptions about the elements of the model can vary according to the database

usage environment. Possible assumptions are:

(a) Relationships among queries: Queries can be assumed to be statistically
Independent of each other. Another possibility is to assume that the

queries are correlated In some specific manner.

(b) Length consideration of the queries: The physical length is used in all dis
cussions In this paper. Other lengths such as the unique length where only
distinct relation names are counted are also possible.

(c) Distribution of query lengths: The length distribution is an important tao—.

tor in overlap estimation. Though the length of the query can be arbi

trarily large theoretically, in practice queries tend to be small. The

gamma distribution with parameters a and B has the following properties:.
There is a reasonable probability that a query with a small number of rela

tions will occur, while for a query with a modest to large length the proba
bility drops to zero rapidly. This seems to be a good first approximation
for the query lengths. The values of a and B can be varied to approxi
mate realistic situations. The gamma distributjon is represented by

e~ (
~~3I

F(x) = ( for x>O

for positive integer values of B • The mean and the standard deviation are

B/a and4Wa respectively.

Based on the above assumptions the probability of k—overlap of n queries can be

computed. However Initially the probability of one—overlap has been computed for

two queries under the assumption that the queries are independent and the gamma
distribution approximates the physical length of the queries.

3.3 One-overlap Computation for Two Queries

Let the queries be qi and q2. Let there be N relations In the database. The

probability of one—overlap can be expressed by the following formula:

Prob (one—overlap) 1 — Prob (no—overlap)

The Prob (no-overlap) can be expressed as:

Prob (no—overlap) ~ ( ~ Prob (no—overlaplLl,L2,ml,m2) a

m Prob (ml,m2ILi,L2) ) * Prob (L1,L2)

under the constraint 1 < ml < Li and 1 < m2 < L2.

This formula expresses the no—overlap probability as the summation of the pro
duct of no—overlap probability for given lengths Li and L2, for queries qi and

q2 respectively and the probability of mi distinct relation names appearing in

qj. This is further summed over all possible length values to obtain the proba
bility of no—overlap regardless of the lengths Involved. ml and m2 ensure that

all queries of lengths Li and L2 are separated into mutually exclusive classes

so that their individual probabilities can be summed.

Aa noted previously, the gamma distribution is assumed to represent the length
distribution. It is shown in cHAK82] that the probability of no—overlap for a

specific value of Li and L2 is given by the formula:

Prob (no—ov~rlapILi,L2,mi,m2) * Prob (ml,m2ILl,L2)

~ ( a Ku * Mu

where k = mm (N,Li)
ri number of integer solutions of Xi+X2+ ... Xi = Li; 1 < I < k.
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Xii ways in which I distinct relation names can be
chosen out of N relations for the j-th solution.

Mu = multinominal coefficient for the j—th solution with
I distinct relations adding up to Li.

Figure 1. shows curves plotted with PrQb (one—overlap) along the Y-axis and ~
(a parameter of the gamma distribution) alpng the X-axis for different values of
N (the number of relations In the database) and a

• This Is only a representa
tive graph which has been drawn for different values of a

• The a and ~
values are significant in that they help adjust the distribution of the query
lengths for a given database. The Figure shows, for example a value of O.’I for
the probability of one—overlap for a database that contains ~en relations, for
the a value of 1 and ~ value-of ~. This means that ~O% of the time there
will be at least one relation overlap among two randomly selected queries on the
database. a and ~ va1ue~ suggest the average lengths of queries for which
this computation holds I. e., ‘~ in this case.

Let Ti -be the average time taken to execute the plan for a single query and T2
be the average time taken to execute a single plan for two queries. The

~xp~cted average time for evaluating 2 queries In these two cases are 2’Tl and
(O.6’2’T1 + O.~~T2) respectively. tf T2 P*T1 where 1 <= p <= 2 then the
expected average time to evaluate two queries is 2*Ti*(O.6 + O.2*~). If p is
substantially less than 2, there is an advantage. ~f p j~ as low as 1, then we
have the expected average time for two queries is 0.~’(2’TI) or a savings or
20%. If p Is 1.5 there Is a savings of 10%. We have considered a worst case
situation Where queries are independent of one another.

4. DECOMPOSITION OF MULTIPLE QUERIES

A general algorithm for decomposition and plan generation of multiple queries is
being developed. Queries which have overlapping relation names are grouped to
start with and a single query graph (called the super—graph) is constructed. A

super—graph or a multi—query graph can be thought of as the superimposition of
individual query—graphs. From this graph it is possible to generate a plan
exploiting the commonality among the queries. Below we illustrate the idea of a

super—graph with an example. Given the following database:
-

BOOKS (Title, Author, Pname, Lc no)
PiJBL ..gPname, Paddr Pcity)

—

-

BOHR çName, Addr, ~Ity Card no)
LOANS (Card_no, Lc_no, bate) —

and queries

Qi: List the books that have been borrowed before 1/1/78 and
Q2: Find the borrower s name and publisher’s name and city for all the books
borrowed before 1/1/74i.

The super—graph for Qi and Q2 is as shown in Figure 2. This graph is used to
generate a single plan for all the queries which make up the graph. The plan
generation using this graph facilitates proper grouping of common retrieval
operations. -

5. SU!Q4ARY

We have proposed an approach for reducing the cost of query evaluation on a

given database by grouping queries. Techniques applied to optimizing individual
queries, such as semantic Information, syntactic information and knowledge based
Information can also be applied. We believe that grouping queries is promising
in terms of the cost reduction possible in query processing..

Multiple query processing can be achieved at two levels. At the query level,
several queries can be grouped to start with and a single plan generated. This

paper provides a rationale Tor grouping queries as well as a formal justifica
tion. The discussion In section 3 Indicates that even in the worst case where
queries are Independent of one another, there can be a gain in grouping queries
for common retrieval. Secondly, parallel prçcesalng of several queries can be

achI~ved in a limited manner at a lower level (interface to the physical data

base). by grouping plans that are to be executed at that point. This can help
those cases where It Is difficult to group queries at the query level. A prel
iminary algorithm has been developed to generate a plan for decomposing a set of

queries.

We have described the problem of multiple query optimization in a general frame
work and discussed the results of preliminary investigation very briefly. More
research is needed in terms of decomposition and plan generation algorithms, and
the means to identify commonality among queries and group them. Estimation of
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reduotion in the cost ot processing using this approach has to be compared with
other optimization schemes to substantiate the approach.
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There are several areas of research in query processing which I believe will have

a large impact on the performance of database systems. They include global opti
mization of multiple queries, optimal use of main-memory buffer space to reduce

page I/Os in processing queries, and optimization of SQL-like nested queries.
This paper elaborates only on these topics. However, there are a few emerging
areas of research where a fresh new approach to query processing may generate some

important results. One of them is the management of statistical databases

BATE82], in which a typical query requires retrieval of a large volume of data

and correlation of various underlying relations (record types). Another is the

logical integration of heterogeneous database systems DAYA82], in which a query

expressed in some language must be translated and optimized into a semantically

equivalent query (queries) in another language.

1. Global Optimization of Queries

Optimizers in presently operational relational systems only attempt to minimize

the cost of processing a single query. The cost of sequentially processing a set

of n queries is simply the sum of the cost of processing each of the n queries.
The sequential processing of a set of queries is usually appropriate for an

online, interactive use of a database system. However, this approach may be high

ly inefficient for batch processing of queries embedded in conventional

high-level, algorithmic programming languages. Often, it may also be inefficient

for processing a set of queries which may be explicitly issued as a unit by the

user in interactive mode or which may be automatically triggered to check for pos

sible violation of integrity constraints when the user issues a data manipulation
statement (update, insert, or delete).

If the cost of processing a set of queries is to be significantly lower than the

sum of the cost of processing each of the queries, each subset of the queries which

references the same relation(s) must be processed simultaneously when the

relation(s) are fetched. A strategy which enables the simultaneous processing of

a set of queries requires global knowledge of the characteristics of the queries.
Global knowledge of both internal database characteristics (such as the size of

relations and available access paths) and query characteristics (such as the

relations and columns the query references and the expected size of the query

result) makes it possible to determine not only the subsets of a given set of que

ries for simultaneous processing, but also a near-optimal set of secondary indexes

and sorted copies of relations for processing the given set of queries.

A two-stage strategy for optimizing a set of queries and data manipulation state

ments based on preprocessing of queries is offered in KIH8Ob] as a first-cut sol

ution to this problem. The first (or compile-time) stage is a compile-time

analysis of the query and database characteristics. It consists of two phases:
Phase C.l and Phase C.2. Phase C.1 determines an optimal set of indexes and sorted

copies of relations, while Phase C.2 derives an optimal sequence of groups of que
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ries and data manipulation statements for simultaneous processing. Compile-time

analysis of a given set of queries makes use of query characteristics and the

access paths for processing each of the queries which a conventional single-query

optimizer has determined.

The second (or run-time) stage executes the program which contains the set of que

ries and data manipulation statements. This stage in general must also consist of

two phases: Phase R.l and Phase R.2. Each group of queries and data manipulation
statements selected for simultaneous processing is executed during Phase R.l in

the order determined during the compile-time stage. The results of the preproc

essed queries are stored on the disk and the initial program is modified to

replace all preprocessed queries with references to their stored results. Those

queries which require unique access paths, which other queries cannot also take

advantage of, may be excluded from processing during Phase R.l. During Phase R.2

the modified program is run in order to process such queries and to further proc

ess and output the results of the preprocessed queries.

During Phase R.l the main-memory buffer is partitioned into three areas: an input

area to hold the data pages that contain tuples of the relation(s) and secondary

indexes on the relation(s); a program area to hold all the procedures required for

processing a given set of queries simultaneously; and an output area to hold the

results of the queries until they are written to the disk.

The possibility of keeping the intermediate results (or temporaries) of a query

and using them in processing other ‘similar’ queries is explored in FINK82J.
This approach may be effective when a given set of queries consists of queries

that can be processed using the results of processing other queries in the set.

2 Optimal Use of Main-Memory Buffer Space

In KflI8Oa] a new method of scanning relations is presented which takes maximum

advantage of available main-memory buffer space. This method, called the

nested-block method, is superior to the nested-iteration method for computing the

product of relations, and can often outperform the merge join for computing the

join of relations. It is shown in KIM81J that the method is usually also superior
to the existing method of computing the division of a relation by another

relation. In order to demonstrate the performance enhancement that a systematic

use of main-memory buffer space may bring about, this new application of the nest

ed-block method is illustrated here.

The binary division of a relation of degree 2, R1(Cl, C2), by a unary relation,

R2(C2), yields a unary relation Rt(Cl). The quotient, Rt, can be obtained by

grouping the dividend, Ri, by the values in the Cl column, and extracting the Cl

values from each group of tuples that contain in the C2 column all the values of R2.

Since the dividend needs to be grouped by the values of the quotient column, sort

ing of the dividend relation has been suggested as a method for implementing the

relational division. The algorithm below provides a description of the use of the

nested-block method (in conjunction with hashing) for implementing the binary

division of Ri (Cl, C2) by R2 (C2).

Consider dividing Ri by R2, shown below. Assume that the values in the C2 column

of Ri and C2 column of R2 are drawn from the same domain. That is, the Cl column

of Rl is the quotient column for the division.
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Ri R2

Cl C2 C2

c x3 xi

b xi x2

a x2 x2

a x3 x3

b x3

a xl

a x2

b x4

c xi

b x5

1. Duplicates, if any, are removed from R2. -

2. An initially empty list is constructed for each C2 value in the duplicate-free,
R2’.

3. For each Ri tuple, if the C2 value matches a C2 value in R2’, the Cl value of

the Rl tuple is appended to the list for the C2 value of R2’; otherwise, the Ri

tuple is discarded.

4. After Rl has been completely scanned, each of the resulting lists of Cl values

is sorted and duplicates removed. The following three lists are obtained.

xl: a, b, c

x2: a

x3: a, b, c

5. Those Cl values of Rl that appear in every list belongs to the quotient of the

division of Ri by R2. This step in effect merge joins all the lists. This is

one more reason why each of the lists is sorted on step 4. For the present

example, only one value, ‘a’, is inserted into the quotient of the division.

The I/O cost of the nested-block method of computing the division of Rl by R2 is

expected to be just P1 + P2, where P1 and P2 are the size in pages of Rl and R2,

respectively. In contrast, the conventional, approach based on sorting requires
2*Pl~log P1 + 2*P2~log P2 + P1 + P2, where log is to the base m when an m-way merge

sort technique is used.

3. Optimizing SQL-like Nested Queries

One of the most interesting features of SQL is the nesting of query blocks to an

arbitrary depth. Nesting of query blocks makes it possible to generalize a simple
predicate of the form ‘column operator value’ to ‘column operator query’,
‘query operator query’. Without this capability, the power of SQL isconsider

ably restricted. In K1M82J a query nested to an arbitrary depth is shown to be

composed of five basic types of nesting. Four of them have not been well under

stood and their implementation in System R suffers from the use of the inefficient

nested-iteration method. Alternative ways of interpreting queries which involve

these types of nesting have provided the basis for the algorithms developed in

K1M82], which transform the queries to equivalent nonnested queries which exist

ing optimizers are designed to process more efficiently. The algorithms are also
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combined into a coherent strategy for completely processing a general query of

arbitrary complexity.

A nested predicate may cause one of four basic types of nesting, according to

whether the inner query block, Q, has in the WHERE clause a join predicate that

references the relation of the outer query block and whether the column name in

the SELECT clause of Q has associated with it an aggregate function (SUM, AVG,

MAX, MIN, COUNT). A division predicate yields a fifth basic nesting.

One difficulty which K1M82] does not fully address is the semantic ambiguity
associated with duplicate tuples that result from evaluating the inner query

blocks. Presently, in order to guarantee semantic equivalence of a nested query

and its nonnested counterpart, the nonnested form of the query must be processed

by first performing the projection and restriction operations on the relation cor

responding to the relation referenced in the inner query block of the nested

query.
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ABSTRACT

Nearly all cost analysis for query evaluation make several

uniformity assumptions for modelling data base contents and data

placement on devices. We describe how these assumptions often

lead to upper bounds on the true costs. We also discuss batching
queries to reduce the system workload, and we comment on our

current interests in query evaluation in distributed data base

environments.

1.. Implications of Uniformity Assumptions

Most of the analytic models used in data base performance evaluation are

based on the following assumptions concerning data base contents, data place
rnent on devices and user requests: i) The attribute values of the records of a

file are uniformly distributed over the domain of values of each attribute, and

attribute values of any two attributes are independent. We will call this the

uniformity and independence of attribute values in the file assumption. 2) The

likelihood that a block contains records qualifying in a query is the same for

any block of the file. We will call this the random. placement assumption. 3)
The user queries in a time period are uniformly distributed over all the attri

bute values. We will call this the uniformity of attribute values in queries
assumption.

These assumptions may be unrealistic in some actual data base environ

ments. Often data bases describe populations such as the employees of an

organization, the students of a university, the people under security surveil

lance. In contrast to the uniformity and independence of attribute values

assumption, populations tend to have only a few members with extreme attri

bute values, and the values of their attributes are often correlated. The ran

dom placement assumption may also be unrealistic in certain environments.

Consider an employee data base where new employee records are inserted at

the end of the file. In this data base, records that qualify in queries asking for

employees with high salaries, high responsibility levels and many years of

experience are more concentrated at the begining of the .file rather than being
uniformly spread over the blocks of the file. Such non-uniform distributions of

the qualifying records in a query over the blocks of a file may also occur in

clustered files as result of correlations and other dependencies among the clus

teririg attribute and the other attributes of the tile. Finally, the assumption of

uniformity of attribute values in queries may be unrealistic in certain
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environments because users may be more interested in a subset of the attri
bute values (for example high salaries). In tCHI~I81] we present evidence from
actual data base environments that these assumptions often are not satisfied.
However, these assumptions are easy to use in analytic models, and in some

cases they are approximately satisfied.

Since these assumptions are widely used in data base performance evalua
tion1 it is important that we understand the impact on data base performance
of uElng these assumptions when they are not actually satisfied. We have shown
that these assumptions lead to cost estimations that are often pessimistic.

Some of the results presented in CHRI82a] are the following: The block
access cost function is

ej) fQ+~(1_(1_p1Q)n)

where n is the number of records qualifying in a query Q,M is the number of blocks in

the file, f~ is the cost of accessing the indices, and P9is the probability that Q accesses

block i. This function has the property of being “Schur concave” 1~1AJtS79J. Schur

concave functions have some important majorization properties. As a result of being
Schur concave the above function acquires higher values as the probability distribution

becomes less skewed, and it maximizes for a uniform distribution .P~ ~ Thus the

random placement assumption is pessimistic. The difference in the cost can be high.

An analogous result has been shown for the distribution of attribute values.

For uniform queries over all the values of an attribute, the average block

access cost function is Schur concave with respect to the distribution of

records over the attribute values. Thus the more skewed the distribution, the

less the expected cost. The average cost is greatest for uniform distributions of

attribute values. Since it is well known that in many actual data base environ

ments skewed distributions of attribute values are common, this assumption is

also pessimistic.

Similar results have been obtained for the Independence of attribute

values assumption. Uniformity and independence of attribute values have also

been shown to be pessimistic when the cost function is the number of attribute

values which participate in a join (following a. selection).

These results have some important implications for data base perfor
mance. For performance predictors for data base designs, they suggest that

large errors may be introduced by using these assumptions. For relational

query optimization, these results imply that optimizers based on these assump
tions will choose exhaustive strategies (like sequential scan or sorting) more

often than necessary. For data base design, these results imply that exploita
tion of non-uniformity and dependencies of attribute values, non-random place
ment of qualifying records in the blocks of a file, and non-uniformity of queries
could reduce the overall system cost.
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2. Batching Queries

The number of users that access a common file at one time may be large.
From the systems point of view, batching of requests nearly always reduces the

work. Thus for overloaded sites batching of requests may be necessity rather

than choice. From the on-line user’s point of view, the desirability of batching
depends on its effect. In order to batch a number of queries a waiting period is

required. On the other hand, since the time required to process a batch of n

queries is less than the time required to process the n queries individually, and

because the load of the system decreases, the average response time may

decrease SHNE76]. This is more realistic in high activity environments where

the waiting period is short.

Batching of requests is easier and more profitable for sequentially
accessed files than for tree structures. When the levels of the tree are many

the probability that more than one requests refer to the same path is small and

therefore the profitability of batching decreases. Moreover, updates are

difficult to batch in B-tree organizations because as result of the update other

nodes In higher levels of the tree may have to be accessed SHNE76]. Batching
becomes even harder for multiattribute queries because a number of tree

structures may have to be accessed and the resulting pointers to be merged.

When the number of queries batched is very large, sequential scan of the

file is an alternative, possibly more profitable strategy. However, for on line

environments where the number of batched requests cannot be very large
without deterioration of responce tirn.es, sequential scan of a large file may be

an expensive strategy.

We have investigated an alternative approach CHR162b]. We use an access

file which is much smaller than the file itself as an access mechanism. The

access file contains abstractions of the attribute values of the attributes of the

file. The access file is sequentially scanned to provide pointers to the qualifying
records of the file. A superset of the qualifying records is retrieved and exam

ined for qualification before it is returned to the user. As a, result of the

sequential scan batching of queries becomes easy, and since the access file is

small, more profitable than the sequential scan of the whole file for a moderate

number of queries in the batch. Moreover, the system can make efficient use of

its buffers.

In this environment the parameters of the access file design depend on the type and

distribution of the user requests as well as on the data base contents. Closed form

formulae for the optimal choice of parameters have been derived. We have used a similar

access method in an environment where queries may refer to non-formatted data as well

TSIC82], CHRI82c].

3. Distributed Query Processing

We are also investigating some problems in distributed data base environ

ments. Our model is a star network environment with (partially ) replicated
data. Previous approaches examining query evaluation in this type of environ

ment have not considered queueing delays introduced in the communication

lines. However. queries submitted in a satellite may be processed in the satel

lite or in the central site depending on the communication delays due to
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queueing as well as on query type, data base contents, and speed of devices.

The performance model should take into account all these factors.
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1. Introduction

Since an increasingly important part of information processing today
involves the taking of counts, sums, averages, and other statistical or aggregate
quantities, we have been investigating the access path selection problem for

these statistical querios, The language we have been using is the “Abe” statisti

cal query facility being developed at the University of Wisconsin. The Abe query

language is powerful, yet simple. It is a pure relational calculus language with a

friendly full-screen user interface.

It turns out that the access patterns in computing a query having aggre

gates are virtually identical to those encountered in computing a simple join.
We use three scan procedures for computing aggregates: one is like a ifie (or
segment) scan; one is analogous to an index scan; and one is similar to a merg

ing scan. The first two types of scans combine to form a nested loops join.

The rest of this report is divided into two parts: The first part briefly
describes the Abe language, and the second part discusses Abe access paths.

2. Abe Background

Space limitations do not permit us to give an extensive description of the

Abe query language. We will give a brief introduction to the language and a few

examples. More examples can be found in KIug8l].
Abe (Aggregates by example) is a domain calculus language with aggregates.

It uses 2-dimensional tables as QBE does, but the methods for forming aggre

gates are more general, and the semantics are rather simple.

In more detail, an Abe query consists of a top-level query and some number

of subqueries in a tree structure. A top-level query or a subquery consists of an

output list, an optional condition box, and zero or more relation tables. An out

put list is simply a list of items. A condition box is a list of conditions, each con

dition being a pair of items connected by one of the operators ““, “�“, “<“,

“�‘, “>‘,, or “k”. A relation table for a relation R(A,B,C,...) is a table labeled ‘R’

having one or more rows and having columns labeled A.B.C.... An item

represents a single value and is used to fill in the above tables and lists. It is one

of the following four objects: a constant such as the number 10 or the string

“Joe”; a variable which is an identifier such as emTm.o (single underlining mdi

cates variables); or a fixed variable which is also an identifier such as deijno

(double uriderlmning iri~dicates fixed variables). Fixed variables only appear in

subqueries where some parent query has an ordinary variable of the same name.

Finally, an aggregate expression (or simply, an aggregate) is an aggregate func

tion (count, max, mm, aye, sum) followed by a column indicator (except for

count) followed by the name of a subquery.

This work was supported in part by NSF Grant MCS8102664
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Suppose we have the following relations:

division( dvname ,manager, budget)
department(dname, division, manager, budget)
employee(ename, salary. dept. seniority)

We could ask the following query:

How many divisions have more than 1000 employees and a budget less than

85000000?

This query would be expressed in Abe as in Figure 1. (each level is a separate
“screen” or “window” on the terminal):

top I~velt

condi t lonE

I I

output list

countC~IGDI~)

~IGDIV~

output list conditions

I count(DIVEMP~) > 1020

11 I 7

I
—

division dvnam. maoo9er bud~.t

-—

-________________

~

DIVEMP~

output list condition.

II II
I I I

I. I

departssnt dnoins division .onag.r

~52

e~pioyes s-~ama Tsoiary d.pt s.r~Iority r.cruiter ~J
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The rules for evaluating a query such as this one are briefly:

(1) Find a match for rows in the relation tables with tuples in the database.

Constants match only themselves. Variables match anything subject to the

condition that all occurrences of the same variable must match the same

value. Fixed variable matching is described in the next paragraph.

(2) Eualuate conditions in the condition box. Evaluate any aggregates by
replacing fixed variables in the subquery by the current values of the

corresponding ordinary variables.

(3) If the conditions are all true, generate an output list tuple.

(4) Repeat steps (l)-(3) until no more matches are found.

3. Abe Access Paths

In this section we give the basic ideas involving access paths for evaluating
queries with aggregates.

First consider the two main implementations for ordinary joins {SEU79]:
the sort-merge and the nested loops algorithms. To join relations R and S on

columns X and ‘1, resp. using a sort-merge, R and S would first be sorted on

their join columns if necessary, and then simultaneous scans would be made on

both relations, joining tuples in blocks having the same join column value:

R S

aS 2 g
b 0 5 h

c 5 On

d 4 4 p

e 3 Ok

q 0 3m

R S

b 0 On

SORT q 0 0 k
— ) e 3 2 g

d 4 3m

aS 4 p
c 5 5. h

Nested loops joins generally require an index on the inner relation. To do the

above join on R and S using a nested loops algorithm with S as the inner relation,
a scan is made on R, and for every qualifying tuple t in R, the X value of t is used

as an entry value into the index on columnY of S. The index gives the tuple ids

for all tuples in S having the same value in Y, and a scan returns these tuples.
They are concatenated with t and output:

NESTED LOOPS

There are two important points to understand in applying sort-merge and

nested-loops algorithms to access paths for aggregates: The first is that (at
least in Abe) aggregates are almost never computed by themselves; they are

always applied to some subquery and their values are used in a parent query in

the condition box or the output list. Thus we can consider an aggregate compu

MERGE

concat

enate

bOOn

bOOk

qO On

qOO k

e 33 m

d 44 p
aSS h

eS 5 h

R S

scan

enate
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tation as a binary operation of joining the subquery aggregate values to the

parent query tuples. The second point is that the access patterns for computing
aggregates are almost identical to those for computing ordinary joins. For

example, to compute the join of department with employee, we need to. for

every department tuple, access all related employee tuples and output the join
tuple. To compute the query which lists departments having more than 100

employees, we need to, for every department tuple, access all related employee
tuples and compute the count. Thus we have aggregate sort-merge and aggre
gate nested-loops algorithms. Pictures for these algorithms can be obtained
from the above pictures by replacing “coneatenat&’ by “accumulate”. For

example, for each department tuple, we access all related employee tuples and
increment a counter for each employee tuple.

Now we will briefly discuss when an aggregate sort-merge might be better
than an aggregate nested-loops, and vice versa. In general, a sort-merge is

better when a high percentage of the tuples in the specified relations will parti
cipate in the output. A nested loops is better when a small percentage of the

tuples in the specified relations will participate in the output. Consider the two

queries (expressed in English): Qi: List all departments and their employee
counts. Q2: List departments with budgets in the highest 10~ of department
budgets and their employee counts. If we used a nested loops to evaluate Qi.
employee pages would be accessed many times, leading to an ineflicient access

path. If we used a sort-merge for Q2, the work of sorting the employee relation
would be 90~ wasted since only 1/10-th of the employee partitions would be

selected. This has been known for some time for ordinary joins, but ithas not

been generally recognized that the same rules apply for computing aggegates.

Many details of the access procedures, their cost functions, and several

examples can be found in KLUGB2].

4. Current and Future Work

We are currently working on an implementation of access path selection

using these ideas. We still need to consider how ordinary joins interact with

aggregate computations. In the first example of this paper, there is a subquery
which is an argument to an aggregate and which itself contains a join. There

may be several ways to evaluate this query efficiently.
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Abstract

Relational query optimizers generally take a t~—step approach to

generating a data access strategy for a query. First, they develop a set of

possible join strategies( Second, they refine their strategies
by considering computation graphs showing data mov~nent, caching, sorting,
index creation, and join impl~nentations at the physical level(
Each optimizer has a characteristic strategy space —— the potential
J—strategies and P—strategies it considers to respond to queries.

We briefly characterize our 3—strategy space ROSE82a], and compare the

J—strategy spaces of different optimizers. We then describe a virtual machine

capable of supporting the P—strategies from all the optimizers we have seen

(except for operations on unnormalized objects). Finally, we comment on

efficiency issues in strategy space generation and searching.

~o—Level Strategy Spaces

Given a query, relational query optimizers generally take a t~—step

approach to data access strategy generation. First, they develop a set of

possible join strategies (information combination patterns). We may view

these strategies as being supported by a virtual machine called the abstract

join machine Second, perhaps interleaved with 3—strategy generation, they
refine their strategies by considering data mov~nent, caching, sorting, index

creation, and join impl~nentations at the physical level. We may view the

resulting computation graphs of operators( as being supported by
a virtual machine called the abstract physical machine ( Cost

models refer to the P—machine.

Each optimizer has a characteristic t~—level strategy space —— the

potential 3—strategies and P—strategies it considers to respond to queries.
The t~—level view makes it easier to give fairly uniform descriptions of the

set of strategies searched, explicitly or implicitly, by a given optimizer.

In ROSE82a], we suggest impl~nenting a query optimizer which allows a full

range of P—strategies for each join in a 3—strategy. Enhanc~nents to the

strategy space may occur at either level without affecting the other. Joins

involving indexes can be added at the J—strategy level, for example1 or a new

join impl~nentation or storage str~xture at the P—strategy level.

Achieving Leverage ~ Extending The Use Of Joins

In ROSE82a], the basic joinable data objects are tables collections of

identically structured first normal form objects accessed by the run—time

systan. Under this fairly abstract definition, not only relations but also

certain indexes, Codasyl set links, and other direct access structures (DAS’s)

may be regarded as joinable tables.
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We consider a nunber of sophisticated I~S processing techniques, which

greatly broaden the 3—strategy space searched, and reduce- lit) costs

substantially for some queries. 1\~o DkS’s may be joined (on value or pointer
fields) to produce an access list table which no longer supports keyed
access, but is a joinable entity. Thus an access list table may be joined
with an underlying table. A t~S may also be joined with a foreign table

(semijoin).

We recognize r~S’s which contain all fields required by the query from

their underlying tables, arE] may therefore be referenced instead of the

underlying tables. Such t1S’s (and access list tables) are called shadow

tables

Codasyl record types may also serve as tables. In ROSE82bJ, wa show how

Codasyl set memberships can be represented by set—based join predicates.
MANO82] uses a similar approach.) The link structure acts as a I~S which

supports the join. This approach allo~s the full range of join
implementations arE] access strategies in the P—strategy space to apply to

Codasyl set processing. It is also possible to use “artificial’t joins to

obtain a relational view of hierarchical data stored positionally without

explicit pointers (e.g. C~BOL records, PL/1 structures).

By extending its concept of a join to a variety of situations where

information is being combined, an optimizer can obtain more generality arE]

flexibility for little additional cost in code arE] complexity.

Comparing 3-Strategy Spaces Of Different(

Some factors which yield a large J—strategy space are allowing multiple
temporary results to exist, considering a large number of consecutive joins
before c1x)osing which join is to be performed first, arE] extending joins to

model sophisticated manipulations of t1~S’s arE] Codasyl set traversals. Of

course, larger strategy spaces are a mixed blessing, usually requiring nvre

time to implement, generate, arE] search, so there is merit in imposing
restrictions on them.

We will compare the 3—strategy spaces of several current optimizers. IBM’s

System R SELI79] considers implicit join trees whose left subtrees represent
successive accumulated temporary results, arE] whose right subtrees consist of

single relations joined in one at a time. Multiple temporary results cannot

exist. Since each left subtree always represents the outer loop of a join,
arE] each right subtree the inner, join implementations in a System R

P—strategy depend on the positions of operand tables in the parent 3—strategy.
In a sense, the t~ levels of the strategy space are not orthogonal. System R

also recognizes (but does not construct) shadow tables.

The University of California’s INQ~ES system t~X~G76] picks the cheapest
join to do first, processes that join, arE] then reexamines the remaining
joins. Wnile IN(~ES can in theory generate any possible tree, in fact it

generates very few alternatives with its “greedy” lookahead heuristic.

(Actually, the tuple substitution technique leads to a 3—strategy which is

acyclic but not a tree when one substitutes for a relation which participates
in more than one join.) INc~ES’s interpretive strategy allows more accurate

cost estimation than in System R, since the sizes of intermediate results are
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known, but System R considers entire access strategies before committing
itself to the first join. Join implementations in INQ~ES’s P—strategies are

not independent of their parent J—strategies, since a merge scan may be used

only for the final join. All preceding joins are done by tuple substitution,
which is equivalent to a nested loops implementation.

An interesting variation of the ING~ES heuristic appears in the AD\PLEX

design of Computer Corporation of America CHAN81]. A compile—time parameter
called the “optimization level” is set to a value n. The optimizer finds the

cheapest n joins and performs them first, regardless of whether the joins are

connected. Then all remaining sets of n joins are considered, and so on. If

n1, this is the ING~ES heuristic.

air optimizer design (ROSE82a] considers all join trees (i.e., allows

multiple intermediate results of arbitrary complexity), and incl~x]e~ certain

I~S’s and access list tables as joinable entities in J—strategies, permitting
semijoins and index intersections to be generated. The expanded INGRES

optimizer K00182] takes a similar approach to our design (the commercial

version no longer uses tuple substitution), although it does not dynamically
build new indexes or consider Codasyl record and set type processing.

A Simple But Powerful P-Machine

Recall that an optimizer’s P—machine is the abstract physical machine which

supports the operators appearing in P—strategy computation graphs. A

well—designed P—machine should support a small set of primitive operators.
The operators should be at a high enough level of abstraction to hide

unnecessary details of data access and manipulation from the optimizer.
However, they should be versatile enough and at a sufficiently low level to

express a broad range of access strategies, incltxllng, if required, strategies
for environments such as distributed systems, database machines, and systems
where data may be stored under several different data models.

In (ROSE82a], we define a P—machine which supports four operators on tables
—— scan, join, sort and create direct access structure( Tables

are collections of identically structured access records which are first

normal form data objects accessed by the run—time system. The operators take

tables into tables. The operators are partial (do not apply to every physical
state of every table), and some have several implementations, each with

different input requirements. The join operator inclix~es merge scan and

nested loops equijoins SELI79], and could also include other implementations
such as nested blocks KIM8O]. We regard these as different implementations
of the same operator, since they produce the same logical result in terms of

information combination, although the sort order and other physical attributes

of the result may differ.

Tables may be on dlsk (d), in main memory (rn), or in stream state (s)

(equivalent to tuple—by—tuple passage through a main memory buffer). The scan

primitive, used to move tables from one location to another, has t~x

implementations. Sequential scan moves tables to and from stream state

(d——>s, m——>s, s——>d, s——>m). Transitions between disk and main memory are

assumed to pass through stream state. t~s—scan uses an existing index, hash

table, Codasyl set link, or other L~S to bring a table into stream state

(d——>s, nt——>s). Here the E~S does not act as a table, but as a physical

58

I 11•1 I II I I II



access accelerator. There is no separate packaging of Select and Project
operators as in the relational algebra, because applicable predicates and

projections are applied (essentially for free) by the scan operator
(duplicates are not removed). In a distributed database, a version of the

scan operator ~uld be used for site changes.

Sort sorts its operand table (s——>s), and create—das caches its operand
table (s——>d, s——>m) and as a side effect creates a stream—state ~S on it.

Stream state is a convenient ~y for operators to interface, and saves the

cost of creating temporaries. In the expended INQ~ES optimizer (K00182], sort

and create—das are combined in a “Reformat” operator.

Except for manipulations of non first normal form data objects
(e.g. indexes in the design of YA079]), the P—machine described above is

capable of supporting the strategy spaces of all the optimizers ~ have seen

(CHAN81], (K00182], MAKI81], (SELI79], %i14G76].

Note that tables and the operators defined on them form an abstract data

stn.cture. Since certain flkS’s may be regarded as tables, the four primitive
table—manipulation operators apply to them as ~ll as to base relations. For

exanple, an index may be sorted on its pointer field to make access to its

underlying table more sequential.

Generating And Searching Strategy Spaces —— Efficiency Issues

A P—strategy is a computation graph, a directed, acyclic graph whose input
nodes represent tables available at the start of. the computation, and whose

interior nodes represent P—machine operators and intermediate tables. The

P—strategy space can be represented by superimposing all alternative

computation graphs for the query. I)iring superimposition, intermediate tables
which are equivalent with respect to future processing of the query are

combined.

This formulation permits the use of standard graph searching and

manipulation techniques by the optimizer. The most important of these is

cost—based pruning a form of dynamic programming which eliminates all but the

cheapest P—strategy path leading to each intermediate table. This enables us

to find the cheapest in a lange set of P—strategies without necessarily
generating them all.

Wnere J—strategies and P—strategies are generated in an interleaved

fashion, it is possible to delay investigating P—strategies for joins which

prodix~e relatively large intermediate tables, hoping to find cheaper
P—strategies involving ~naller tables. Intermediate table sizes may be

calculated from initial table sizes and predicate selectivities as

J—strategies are constrtrted.

Of course, the easiest ~y to limit the size and complexity of the

P—strategy space is to limit the size and complexity of the J—strategy space.
For example, joins of 1Y½S’s with another table may be restricted or bypassed
entirely, or the optimization level may be los~red in a ~—style optimizer
CHAN81].

A nunber of miscellaneous heuristics may help as ~ll. &laptive tuning

59



techniques REIN81] may be used to

spaces based on the characteristics

cost model parameters (such as the

resource utilization. Thresholds

optimization time than the current

execute

dynamically adjust the 3— and P—strategy
of the incoming query stream, or to adjust
CPU/ I/O cost tradeoff) based on current

may be set to avoid spending more

best P—strategy would require to actually

Summary

We have examined the common t~—step approach to relational query

optimization, where join strategies (3—strategies) are generated first, and

then refined into computation graphs composed of data movement, caching,

sorting, index creation, and join implementation operators at the physical
level (P—strategies). We may view P—strategies as being supported by a

virtual machine called the abstract physical machine (P—machine).

We briefly characterized our 3—strategy space ROSE82a], and

3—strategy spaces of different optimizers. We then described

capable of supporting the P—strategies from all the optimizers
(except for operations on unnormalized objects). Finally, we

efficiency issues in strategy space generation and searching.

compared the

a P—machine

we have seen

commented on
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Workshop Announcement On

Self—Describing Data Structures For Information Exchange

Time:

Location:

Sponsored by:

Program Committee:

The notion of a

information exhange

knowledge about data.

Data Structure (SDDS)

October 27 & 28, 1982

University of Maryland, College Park, Maryland 2O7~~2, USA

Department of Computer Science, University of Maryland

NASA, Goddard Space Flight Center, Greenbelt Maryland

Nick Roussopoulos, (Chairman), University of Maryland
Richard desJardins, Computer Technology Associates

Edward P. Greene, NASA, Goddart Space Flight Center

John Mylopoulos, University of Toronto

self—describing data structure is intended to be used as an

protocol as well as a model for managing large bodies of

Some of the most important properties of a Self—Describing
are briefly outlined below:

An SDDS captures its description in its body. The description must be such,
so that very little external (meta) knowledge is required to interpret the SDDS.

Restructuring of an SDDS is done via a set of disciplinary operators which quaran—

tee that the results of applying them on an SDDS is also an SDDS. The semantics

of the results and the descriptions of the derived SDDS are inherited from the

descriptions of the operands. The evolution of an SDDS is captured in its

description by including its derivation, i.e. the operand(s), the operator used to

derive the result SDDS, the time of derivation, and the name of the user. Thus,
from the SDDS description, one can follow its derivation and the derivations of

its ancestors to obtain a complete history of its existence.

A Self—Describing Model is a data description management tool for an SDDS.

It maintains data descriptions and their evolution through time. This is in con

trast to the conventional database models and management systems which only deal

with changes in the data values but not changes in the data (schema) description.
It also differs from a data dictionary system because the latter does not expli

citly model time, data description evolution, and deductive mechanisms for pro

perty inheritance of these descriptions.

For the first workshop on SDDS we have solicited position papers on

models and modeling primitives of SDDS and knowledge evolution,
deductive mechanisms for property inheritance,

management tools for knowledge about data descriptions and its catalog,

techniques for dealing with multiple views of’ the same data and the

descriptions of’ these multiple views,

techniques for modeling user—to—data dynamic relationships and integration
of’ views, etc.

For more information on the workshop program contact Nick Roussopoulos, Dept.
of Computer Sci., Univ. of Maryland, College Park, Md 2O7~42, Tel:3O1.-14514—~251,
~I5~~—2OO1.
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Call For Papers And Workshop Information

Seventh Workshop on Computer Architecture for

Non-Numeric Processing

Snowbird, Utah, March 6-9, 1983

Sponsored by: ACM SIGARCH, SIGIR, and SIGMOD

Computer Science Department, University of Utah

As the costs to design, implement, and maintain a

large scale system change from where hardware

costs predominate to where software costs do, it is

reasonable to explore computer architectures which

differ from the classic numerically-oriented machine.

Front end processors, performing protocol
translations, are now common in data

communications systems, and a variety of backend

processors for database and information retrieval

applications are available or currently under

development. New architectures are being developed
for robotics, searching and sorting, artificial

intelligence, highly available systems, workstations,
and text processing.

In the past, this workshop has been a primary
avenue for those engaged in research and

development of a variety of specialized non-numeric

systems to discuss their current activities and future

directions. It has proved invaluable to students

conducting research in computer architecture,

allowing them to present preliminary results of their

work, and receive comments and suggestions from

others in the field.

Registration information

The workshop will be held at the Snowbird Ski and

Summer Resort, located in Little Cottonwood Canyon
near Salt Lake City, Utah. Transportation is available

from the Salt Lake airport. The registration fee of

$300 includes double occupancy rooms for three

nights, breakfast, and the workshop banquet. The

remaining meals and any skiing expenses are the

responsibility of the participants. Rooms will be

available for check-in at 3:00 PM Sunday, March 6,
and the first workshop session will be held at 7:30 that

evening.
Because of severely limited space, attendance at

the workshop will be by preregistration only. Rooms

have only been reserved for the workshop
participants. If you wish to bring along family
members, you should contact the Workshop
Chairman or Snowbird as soon as possible. For

Workshop General Chairman:

Lee A. Hollaar

Department of Computer Science

University of Utah

Sa’t Lake City UT 84112

(801) 581-3203

those wishing to arrive on Saturday, rather than

Sunday, a limited number of rooms are available, at

an additional $45.

To register for the workshop, write the Workshop
General Chairman by January 1, 1983, indicating your
name and affiliation, mailing address and telephone
number, your interest and background in computer
architecture for non-numeric processing, and whether

you have submitted a paper. Include the appropriate
registration fee ($300 normally, $345 for early arrival).
Acceptances will be sent out on January 15, 1983,
and registration checks for those we are unable to

accomodate will be returned. Priority on registration
will be given to those submitting a paper for

presentation.

Instructions for Authors

We invite papers on current or proposed work in all

areas of specialized computer architecture for non-

numeric applications, such as: data communications,
information management and retrieval, workstations,

highly available systems, robotics, artificial

intelligence, searching and sorting, and text

processing. Presentations will last from 30 to 45

minutes, with half the time devoted to the presentation
of the paper and half to discussion. In addition, a final

session, to be organized at the workshop, will consist

of a number of short presentations for those wishing
to present or discuss a concept, but unable to prepare
a full length paper.

Authors should to submit four copies of their paper
to the Program Chairman by November 15, 1982.

Papers should be approximately 5000 words in

length, and include a short abstract. Consideration

will also be given to extended abstracts of about 1000

words; appropriate references and figures should be

included. All submissions will be acknowledged and

authors will be notified of acceptance by December

31, 1983. It is anticipated that the workshop
proceedings will be published as a special joint issue

of the newsletters of the sponsoring SlGs.

Workshop Program Chairman:

Roger L. Haskin

IBM Research Laboratories, K52-282

5600 Cottle Road

San Jose CA 95193

(408) 256-6353
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ANNOUNCING

General ChaIrman

H. J. Siegel
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C. M. W000side, Canada

Paul Pearson, England
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CONFERENCE LOCATION

Diplomat Hotel in Hollywood,
Florida near the international

airport at Miami. Beachfront resort

with tennis, goll. swimming.
shopping, and boating.

The 3rd

International

Conference on

DISTRIBUTED
COMPUTING
SYSTEMS

SCOPE

SPONSORED BY

~0IEEE COMPUTE SOCIETY

T,.,( NST~TUT( OF ELECTR~C~L ~NO £LtCT~O’’CS CMG,NEIa! I.C

in CooperatIon with

Information Processing

Society of Japan (IPSJ)
lnstitut National de

Recherche en Intormatique
et en Automatique (INRIA)

Miami/Ft. Lauderdale, Florida • October 1 8-22, 1 982

The scope of this conference encompasses the technical aspects of specifying, designing, implementing, and

evaluating distributed computing systems. In such systems, there is a multiplicity of interconnected processing
resources able to cooperate under system-wide control on a single problem, often with minimal reliance on

centralized procedures, data, or hardware. The location of computing resources may span the spectrum from

physical adjacency to geographical dispersion. The topics of interest include the following aspects of distributed

computing systems:

0 SYSTEM AND HARDWARE ARCHITECTURE,
INCLUDING SIMD

0 DECENTRALIZED CONTROL, EXECUTIVES,
AND OPERATING SYSTEMS

0 DISTRIBUTED DATABASES

0 LOGICAL AND PHYSICAL

INTERCONNECTION NETWORKS

0 SOFTWARE ENGINEERING AND

PROGRAMMING LANGUAGES

o SURVIVABILITY, RELIABILITY, AND FAULT

TOLERANCE

o SPECIFICATION, VERIFICATION, AND

VALIDATION

o DESIGN METHODOLOGIES

o VLSI-BASED SYSTEMS

o ANALYSIS, MODELING, AND MEASUREMENT

o COMPUTER COMMUNICATION

o APPLICATIONS, INCLUDING SIMULATION

The conference will include technical presentations, panel discussions, tutorials & exhibits.

TUTORIALS

Complementing the Conference there will be two full days set aside for

tutorials. The following have been tentatively selected:

“Pragmatic View of Distributed Processing,” by Ken Thurber

“Microcomputer Networks,” by Harvey Freeman

“Fault.Tolerant Computing,” by Vic Nelson and Bill Carroll

“Decentralized Control,” by Bob Larson, Paul McEntlre and John O’R.iley

PROGRAM COMMITTEE

Bob Arnold (Honeywell)
Geneva Beltord (U. Ill.)
Bill Carroll (U. Texas-Arlington)
Glenn Cox (General
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