
MARCH1982 VOL.5 NO.1

a quarterly
bulletin

of the IEEE

computer society
technical

committee

on

Database

Engineering
Contents

Letter from the Editor 1

Research on File and I/O Systems at the University
of California, Berkeley 2

A.J. Smfth

Physical Database Research at the University of

Florida 5

D.S. Batory, S.Y.W. Su. SB. Navathe

DBDSGN—A Physical Database Design Tool for

System R g

S.J. Finkeistein, M. Schkolnick, P. Tiberio

Physical Database Research at the Lawrence

Berkeley Laboratory 12~

J. McCarthy, A. Shoshani

Physical Database Design Research at the

University of Maryland 16

SB. Vao and AR. Hevner

Systems and Techniques for Research in Physical
Database Design at the University of Michigan 22

T.J. Teorey, H. Aghili, R. Cobb, J.P. Fry,
0G. Severance, M.E. Wilens

An Overview of Physical Database Design Research

at the University of Minnesota 31

S.T. March, J.V. Carlis

Physical Database Research at Stanford 39

G. Wiederhold, S.J. Kaplan, 0. Sagalowicz

Database Design Research at the University of

Toronto 42

S. Christodoulakis, A. Garg, C.C. Gotlieb,
G.C. Magalhaes

Database Storage Structures Research at the

University of Waterloo 49

GI-1. Gonnet, PA. Larson, il. Munro, D. Rotem,
D.J. Taylor, F.W. Tompa

Announcements 53

Keyword Index 55

Chairperson, Technical Committee

on Database Engineering

Prof. Jane Liu

Digital Computer Laboratory

University of Illinois

Urbana, III. 61801

(217) 333-0135

Associate Editors,
Database Engineering

Prof. Don Batory

Dept. of Computer and

Information Sciences

University of Florida

Gainesville, Florida 32611

(904) 392-5241

Editor-in-Chief,

Database Engineering

Dr. Won Kim

IBM Research

K55-282

5600 Cottle Road

San Jose, Calif. 95193

(408) 256-1 507

Database Engineering Bulletin is a quarterly publication
of the IEEE Computer Society Technical Committee on

Database Engineering. Its scope of interest includes: data

structures and models, access strategies, access control

techniques, database architecture, database machines,

intelligent front ends, mass storage for very large data

bases, distributed database systems and techniques,
database software design and implementation, database

utilities, database security and related areas.

Contribution to the Bulletin is hereby solicited. News

items, letters, technical papers, book reviews, meeting

previews, summaries, case studies, etc., should be sent

to the Editor. All letters to the Editor will be considered for

publication unless accompanied by a request to the con

trary. Technical papers are unrefereed.

Prof. Alan Hevner

College of Business and Management

University of Maryland

College Park, Maryland 20742

(301) 454-6258

Dr. David Reiner

Sperry Research Center

100 North Road

Sudbury, Mass. 01776

(617) 369-4000 x353

Prof. Randy Katz

Dept. of Computer Science

University of Wisconsin

Madison, Wisconsin 53706

(608) 262-0664

Opinions expressed in contributions are those of the indi

vidual author rather than the official position of the TC on

Database Engineering, the IEEE Computer Society, or

organizations with which the author may be affiliated.

Membership in Database Engineering Technical Commit

tee is open to IEEE Computer Society members, student

members, and associate members. (Application form in

this issue.)

Letter from the Editor

This issue of Database Engineering is entitled “Directions in Physical
Database Research”. For the first time, status reports of significant re

search activities in files and physical databases have been assembled. The

universities and research labs that are represented in this newsletter were

invited to participate because of their long standing or recent contributions

in this field. Owing to time and publication limitations, not all institu

tions and major research projects on physical databases could be represented.

However, some of the most visible and significant projects, I feel, are

described herein.

Research in files and physical databases is highly diversified. Topics

range from theoretical to empirical studies of database performance; devel

opment of new file structures and database software to the development of

models that relate and simplify recognized database structures, algorithms,
and theories. Research on query processing and distributed databases, while

closely related to physical database research, is given only cursory emphasis
in this newsletter since they are the subjects of the September and December

issues of Database Engineering.

There are ten different status reports covered in fifty pages, each

report briefly describes several different projects. To maximize the utility
of this publication, an index to key terms has been provided at the end of

this newsletter. This index should facilitate the random accessing of

discussions on selected topics and should provide a useful cross—reference

of research interests.

I want to take this opportunity to thank again the contributors to this

issue. Without their enthusiasm, dedication, support, and very hard work,
this newsletter would not have been possible.

For those readers who care to comment on this issue, selected comments

will appear in the September issue of Database Engineering. Please direct

all letters to me.

It is my hope that the readers of this issue will find it as informa

tive as I have discovered it to be.

D. S. Batory

1

RESEARCH ON FILE AND I/O SYSTEMS AT THE UNIVERSITY

OF CALIFORNIA, BERKELEY

Alan Jay Smith

Department of Electrical Engineering and Computer Sciences

1415_6142_5290

The author and his graduate students have been involved in research

on a number of topics that can generally be covered under the subjects of

file and I/O systems. In this report we summarize progress and results

to date and sketch some future research plans. We also mention briefly
some related work by other researchers at UC Berkeley. Included are some

comments on our work on file migration, both hierarchical and across net

works, cache disks and I/O system optimization.

In most computer systems the volume of files that users would like

to have access to exceeds the capacity of the disk storage volumes avail

able. Traditionally, the user has been responsible for storing his per

sonal overflow on tape or other mass storage and recalling it when needed.

File migration is concerned with automating this function, so that the

system will automatically migrate inactive files to mass storage and will

restore them, either on demand or on anticipated demand, to disk storage.
There are a number of research problems connected with doing so. These

research problems concern issues such as the creation of efficient (low

miss ratio) algorithms for the selection of files to push to mass storage,
the placement of such files on mass storage (especially with regard to

fragmentation and compaction issues) and the selection of files (if any)
to prefetch. Such problems must be studied using either real file sys

tems or traces taken from real file systems, since file access patterns
are an empirical phenomenon and modeling efforts will accomplish little

unless they accurately represent the behavior of the real system. An em—

pirical study of the replacement algorithm problem has been conducted by
the author for one system SMIT81a—b]). Summaries of some of that work

also appear in SMIT81c] , SMIT82a~). No work has yet been done for the

fragmentation nor compaction problems nor for anticipatory fetching. We

plan to study these issues as well as to study data for additional sys

tems. (The author is very interested in obtaining additional file sys

tem trace data and would welcome any useable contributions.)

File migration can also be applied across distributed computer sys

tems. In such a system, files may be located at either a central file

server or at the devices attached to one of the CPUs. The issue then is

to determine at any given time whether a remote file access should cause

the file to be moved to the requesting CPU, whether the reads and writes

should take place remotely, whether the process should be moved or whether

some mixture of these schemes is appropriate. Research on this topic is

in progress by the author and one of his graduate students.

2

Just as cache memories cache the contents of main memories in the

CPU, cache buffers can be created which will retain the contents of por

tions of the disk resident file system. The idea is to cache tracks and

cylinders from the disk address space in a level of storage intermediate

between main memory and the disk; this storage can be made of CCDs, mag

netic bubbles or dynamic MOS RAM. The locus of such a cache can be in

the disk spindle, disk storage controller, the channel or at the CPU.

Such caching was first shown to be effective in SMIT78a]) and has since

been introduced in a number of commercial products. There are a number

of’ research problems associated with the design of such a cache including
those of’ cache location, capacity, block size, fetch and replacement al

gorithms, static vs. dynamic allocation, etc. A number of these issues

have been extensively studied (see SMIT82a—b]). Each of these problems
will be considered further in studies to be heavily based on file system
trace data. (The author is again very interested in obtaining additional

trace data and would welcome any contributions.)

The last topic of relevance to physical data base systems is the

consideration that the author has previously given to I/O system optimi-.
zation and I/O architecture. A survey on this topic has been published
in SMIT81d]) and an extensive bibliography appears in SMIT81e]).
Readers may find those useful as a guide to the principal results and

to the literature in the area.

There are other research projects at UC Berkeley which are also of

some relevance. We include here the large ARPA funded project under the

supervision, of Professor Robert Fabry to extend and improve the UNIX op

erating system. Among the goals of that project is to improve and opti
mize the file system. There is also the Ingres Database System project
led by Professors Stonebraker, Wong and Rowe which has been at times

concerned with physical file structures. Readers interested in these

projects should contact the researchers on those projects directly.

REFERENCES

SMIT78a Smith, Alan Jay “On the Effectiveness of Buffered and Multiple
Arm Disks”, Proc. Fifth Computer Architecture Symposium April
1978, Palo Alto, Ca., pp. 2142—2148.

SMIT78b Smith, Alan Jay “Directions for Memory Hierarchies and Their

Components: Research and Development”, Proc. COMPSAC Conference
Chicago, Ill., November, 1978,, pp. 704—709.

SMIT81a Smith, Alan Jay “Analysis of Long Term File Reference Patterns

for Application to File Migration Algorithms”, IEEETSE SE-7,
14, July, 1981, pp. 403—1417.

SMIT81b Smith, Alan Jay “Long Term File Migration: Development and

3

Evaluation of Algorithms”, CACM 2L1, 8, August, 1981, pp.

521—532.

SMIT81c Smith, Alan Jay “Algorithms and Architectures for Enhanced

File System Use”, presented at the Second International Sum

mer School on Computer Systems Performance Evaluation, Urbino,
Italy, June, 1980. Published in Experimental Computer Per

formance and Evaluation, ed. D. Ferrari and M. Spadoni, North—

Holland, 1981, pp. 165—193.

SMIT81d Smith, Alan Jay “Input/Output Optimization and Disk Architecture:

A Survey”, Performance Evaluation 1, 2, 1981, pp. 1014_117.

S~4tT81e Smith, Alan Jay “Bibliography on File System and Input/Ouput
Optimization and Related Topics”, Operating Systems Review
15, 14, October 1981, pp. 395~I.

SMIT82a Smith, Alan Jay “Optimization of I/O Systems By Cache Disk and

File Migration: A Summary”, to appear, Performance Evaluation

SMITB2b Smith, Alan Jay “Cache Disks”, in preparation.

4

Physical Database Research at the University of Florida

D. S. Batory, S. Y. W. Su, and S. B. Navathe

Department of Computer and Information Sciences

512 Weil Hall, University of Florida

Gainesville, Florida 32611

(9014) 392—52141

(9014) 392—2371

The University of Florida’s Database Research and Development Center

is actively engaged in a number of diverse projects in the database area.

In a recently completed study, a new approach to the cost/benefit analysis
of DBMSs was proposed as a way to simplify the problem of determining
which database management system, out of a number of candidate systems,
would best satisfy requirements and expenditure constraints for a speci
fied business application (JSU81a]). Projects on database conversion

(fSU8lb]), distributed databases CERI81J, NICK8O]), database machines

HONG81]), and the logical and physical modeling of scientific databases

SU81c]) are ongoing. Connected with some of these projects are studies

on physical databases. These studies are briefly summarized below.

1. Decomposition of Physical Databases

If there are any major goals in the area of physical database re

search, one is certainly the development of practical design and tuning
aids for commercial database systems. The need for such aids has long
been recognized; unfortunately, their realization still is probably years

away. A prime reason for the delay is the sheer difficulty in modeling
complex networks of interconnected file structures. Although the knowl

edge for constructing physical databases has been around for many years,

the theoretical underpinnings of this knowledge, fundamental to the de

velopment of design and tuning aids, are only now becoming better under

stood. Our work is aimed at a comprehensive and fundamental understand

ing of physical databases. The approach, some recent results, and

current investigations are described below.

Physical databases are large networks of interconnected files. To

describe them simply, the technique of physical database decomposition
has been introduced. Physical databases can be decomposed into a

collection of simple files and linksets. A simple file is a structure

that organizes the records of a single file. Classical simple files

include hash—based, indexed-sequential, B+ trees, and unordered files.

A linkset is a structure that connects records of one simple ~file to

another. Classical linksets include pointer arrays, inverted lists,
multilists, and ring lists. By specifying the structure of each simple
file and linkset, the structure of a physical database can be precisely
defined.

5

In a similar manner, decomposition can be used to simplify the de

scriptions of transactions (i.e., cornp]ex operations) on physical data

bases. Transactions can be decomposed into~--sequence of basic opera

tions on simple files and linksets. Once th~e basic operations have been

determined and expressions for estimating their execution cost have been

developed, the cost of processing a transaction can then be calculated.

With estimates of transaction performance, database performance can be

predicted. Such predictions are useful in determining, for example,

good database implementations and efficient query processing strategies.

Our approach has been quite successful in consolidating numerous

disparate works on physical database design and performance. Works on

batched searching, transposed files, index selection, dynamic hash-based

files, generalized access path structures, and differential files have

been related and extended (JBATO82a]). New techniques for determining

optimal reorganization points (not heuristically chosen points) for files

and techniques for predicting the perfornance deterioration of files

undergoing record insertions and deletions have been developed BATO82b],
BATO81a]). General descriptive and analytic tools for modeling and under

standing the behavior of transactions on physical databases have been

formalized BATO81b]); the use of special instances of these tools were

essential~ to recent work on query optimization and database design. And

last, but not least, our approach has been successfully used in modeling
of the physical structures of a commercial database system (ECASA81]).
Much of this work is now being extended.

A number of studies in addition to the above are just beginning.

Software modules for simple files and linksets are being written with

the view of developing powerful experimental tools for implementing and

testing physical database designs. This software will be integrated

with modules for monitoring and predicting database performance. These

monitors should provide the means by which the accuracy and validity of

underlying assumptions and approximations used in current models of

database performance may be tested. It is believed that such tests

are constructive first steps toward the realization of design and

tuning aids for commercial databases.

Finally, linear splitting is a recently discovered method for ac

commodating file growth in hash-based files SCHO81I). From the general
ized perspective that our modeling approach imposes, it seems clear that

linear splitting can be applied to any file structure that uses over

flow to accommodate file growth. Results of this investigation are

forthcoming.

2. Implementation of Scientific and Statistical Databases

Scientific and statistical databases (SSDs) are collections of flat

files that are characterized by large volumes of numeric data, a rela

6

tively static existence (i.e., they rarely experience record update,

insertions, or deletions), and hundreds of attributes per file. SSDs

maintained at Lawrence Berkeley Labs, for example, contain static census

data. It is quite common for census files to have several hundred attri

butes. However, there are some files that contain thousands of attributes

(see McCA81})). Because SSDs are usually static, operations of SSDs are

primariiy retrievals. Owing to its predominantly numeric composition, data

that is retrieved is often processed further by well-known statistical pack

ages, such as SAS or SPSS. Furthermore, unlike conventional databases,
users make frequent requests to access and process selected attribute data

for all records in a file. It is clear from this brief description that

conventional DBMSs are not well suited for SSDs. SSDs require unconven

tional means for storing and retrieving data.

Some of the most effective techniques for storing and processing
SSDs involve data compression and file transposition. Both facilitate

the reduction of the amount of data that needs to be accessed in order

to process retrieval requests. We have recently developed some general
techniques for storing and processing SSD files using a rather simple
compression scheme. (We have yet to consider the impact of file trans

position.) Unlike other data compression methods that require compressed
data to be expanded before data processing can be done, our method allows

file searches and most statistical processing to be done on compressed
data. This alone can result in substantial savings in data processing.
Moreover, the compression seems significant; in the few files we have

considered so far, the compressed files had one third the volume of the

original. A formal report on this work is forthcoming.

In addition to this, we also are developing a (logical) data model

that is suitable for specifying SSDs containing diverse data such as

n—dimensional matrices, time series data, graphs, maps, etc. An ap

proach using abstract data types is under consideration. We also intend

to investigate formal mappings between this data model and a model of

physical databases SU81c}).

This research is supported by the U.S. Department of Energy, contract

DE-ASO5-8 1 ER1 0977.

REFERENCES

BATO81a Batory, D.S. “B+ Trees and Indexed Sequential Files: A

Performance Comparison”, ACM SIGMOD 1981 pp. 30-39.

BATO81b Batory, D.S. “A Model of Transactions on Physical- Databases”,
submitted to journal publication, 1981.

BATO82a Batory, D.S. and C.C. Gotlieb, “A Unifying Model of Physical

7

Databases”, ACM Trans. on Database Syst. 1982.

BATO82b Batory, D.S. “Optimal File Designs and Reorganization Points”,

ACM Trans. on Database Syst. March 1982.

CASA81 Casas-Raposo, I. “Analytic Modeling of Database Systems: The

Design of a System 2000 Performance Predictor”, M.Sc. Thesis,

Dept. of Computer Science, University of Toronto, 1981.

CERI81 Ceri, S., S.B. Navathe and C. Wiederhold “Optimal Design of

Distributed Databases”, to appear as Computer Science

Dept. Technical Report, Stanford University, 1981.

HONG81 Hong, Y.C. and S.Y.W. Su “Associative Hardware and Software

Techniques for Integrity Control”, ACM Trans. on Database

Syst. September 1981, pp. LM6_14140.

McCA81 Mccarthy, J., et al. “The SEEDIS Project: A Summary Over

view”, Computer Science and Mathematics Dept., Lawrence

Berkeley Labs, University of’ California, Berkeley, 1981.

NAVA81 Navathe, S.B. and S. Gadil “An Approach to the Integration
of Views in the Logical Database Design Process”, working

paper, University of Florida, 1981.

NICK8O Nickens, D.0., T.B. Genduso and S.Y.W. Su “The Architecture

and Hardware Implementation of a Prototype MICRONET”, Proc.

Fifth Conference on Local Computer Networks 1980.

SCHO81 Scholl, M. “New File Organizations Based on Dynamic Hashing”,
ACM Trans. on Database Syst. March 1981, pp. 1914—211.

SU8la Su, S.Y.W., D.S. Batory, R. Elnicki, S.B. Navathe, A.

Olagunju and J. Parkes “A DMS Cost/Benefit Decision Model”,

National Bureau of Standards, Contract No. NB8OSBCAO14149, 1981.

SU81b Su, S.Y.W., H. Lam and D.H. Lo “Transformation of Data Tra

versals and Operations in Application Programs to Account for

Semantic Changes of Database Systems”, ACM Trans. on Database

Syst. June 1981, pp. 255—2914.

SU81c Su, S.Y.W., D.S. Batory, S.B. Navathe “Logical and Physical
Modeling and Design of Scientific and Statistical Databases

for Energy Research”, DOE Contract DE-A305-81ER10977.

8

DBDSGN--A PHYSICAL DATABASE DESIGN TOOL FOR SYSTEM B

S.J. Finkeistein, M. Schkolnick, P. Tiberio

IBM San Jose Research Laboratory
1408_256_7656

DBDSGN (ISCHK79], IFINK81]) is a physical database design tool devel

oped at the IBM San Jose Research Laboratory. Given a workload for the

relational database system System B (JASTR76J, fBLAS81J, fCHAM81]), DBDSGN

suggests which indexes should exist on each table, and which index (if

any) should be clustered. A workload consists of a collection of SQL

statements CHAM76]), with relative frequencies for them.

As an index selection tool, DBDSGN has the following distinguishing
properties.

- DBDSGN accepts any SQL statement, including joins involving any nuxn

ber of tables, updates and queries with subqueries.

- DBDSGN obtains its cost estimates from the System B optimizer,
rather than by using independent estimated costs.

— DBDSGN includes the cost of updating tuples and indexes in its

evaluations.

- Design. can be performed for any subset of’ the tables in the input
statements, and specific indexes may be required in any design.
However, the primary access path need not be specified In advance.

By running as an application program for System H, DBDSGN can ex

tract information about statements and their estimated costs In different

index configurations. We obtain this information by submitting state

ments to the System R optimizer without actually running the statements.

(The optimizer analyzes different plans for executing queries, and se

lects the plan with the smallest estimated cost.) Hence we need not

change the tool if we change the optimizer’s cost formulas. Also, we

know that the optimizer must choose the access paths indicated by DBDSGN

with the indicated costs. Normal operation of the optimizer, when we are

not doing physical design, Is not affected by DBDSGN’s requirements.

In System H, each table in a statement is accessed using some single
.access path, which maybean~ Index, or a scan of’the ~iiènt~In which the

table resides. We call physical configurations in which there is (at
most) one index per table atomic configurations and we call~ the costs

of’ executing statements In these configurations atomic costs Given

any configuration, there is a set of atomic configurations which are

subsets of it. . The cost of a query for a configuration equals the min

imum of the costs of that query over all subset atomic configurations.
For updates, this includes both tuple selection cost and tuple update

9

cost; the additional cost of updating indexes, which is sometimes sig
nificant SCHK81J), also must be computed.

We need not evaluate every atomic configuration for every statement.

An index on AGE, for example, will usually not help process a query that

does not mention AGE. For a given statement and table, some columns of

the table are plausible for indexing. The costs for implausible indexes

on a table must be nearly equivalent, no matter what other indexes exist.

For each table in the statement, we choose one representative implausible
column. Only atomic configurations in which all indexes are plausible
(or the representative implausible) need be evaluated. This significantly
reduces the number of configurations that we must consider, since only a

few columns are plausible for each table in most statements.

Costs are obtained by creating skeleton replicas of each table,
which have no tuples in them, and creating one index per replica. We

simulate atomic configurations by putting statistics in the system

catalogs that describe the actual tables. When we wish to simulate a

particular index, we also alter the system catalogs, entering a descrip
tion of that index. When we wish to simulate no index on a table, we

enter very large values for the number of leaves and levels for the

replica index.

Statistics for indexes may be supplied by the DBA or obtained

from the system. DBDSGN can build a re-usable statistics file by creat

ing Indexes one at a time, reading their statistics, and performing a

restore. A faster statistics generation tool, involving a small number

of passes through each table, has also been developed. When tables do

not exist the DBA must supply the statistics. The DBA may also want to

alter the statistics file, to reflect expected changes in the database.

We obtain costs for configurations in which there is only one index

on one table first, and apply heuristic criteria to eliminate impractical
indexes. This index elimination step further reduces the number of con

figurations which must be submitted for cost evaluation. Only survivor

indexes are considered in solution generation. Survivors are ordered on

a survivor list, according to a measure of overall benefit.

Simulating configurations is itself a significant expense, so when

ever we simulate a configuration, we submit all of the statements for

which the configuration Is plausible for cost evaluation.

Finally, in solution generation we consider a tree in which each

node corresponds to a physical design. No design can have more than

one clustered index per table. The root of the tree is the design in

which there are no indexes. Nodes at level k have a total of k survivor

indexes. Any particular set of indexes appears in only one node. (This
is accomplished by requiring that new indexes added to a node appear

later in the survivor list than any index already in the node.) The

cost of any design solution is evaluated using the atomic costs for plau
sible solutions. The user can specify a maximum amount of storage for

indexes, the number of solutions desired (N), and an expansion cutoff

10

level (EL). The tree is expanded, using breadth—first search, to level

EL, and we keep on].y the best N solutions. These are further expanded up

to EL additional levels, and this process continues until no more ex

pansion is possible. The best N solutions found are then displayed.

DBDSGN allows computed costs to be stored for re-use in later runs.

For example, we might want to run with different frequencies, or with

certain indexes required in solutions.

The cost of using DBDSGN is very small compared to the cost of ac

tually running statements on a large database many times. DBDSGN might
be used at initial physical design time, when tables are added, when

major updates have occurred, or when statements or their frequencies

change significantly. Our experience with DBDSGN shows that it is pos
sible to build a practical tool for index selection that recognizes all

costs of all statements, and uses the system optimizer as its cost

estimator.

REFERENCES

ASTR76 Astrahan, M.V. et. al. “System B, a relational approach to data

base management,” ACM Trans. Database Syst. 1, 2, June 1976,
97—137.

BLAS81 Blasgen, M.W. et.al. “System B: An architectural overview,” IBM

Syst. J. 20, 1, 1981, 41—62.

CHAM76 Chamberlin, D.D., et. al. “SEQUEL2: a unified approach to data

definition, manipulation and control,” IBM J. Res. Dev. 11,
Nov. 1976, 560—575.

CHAM81 Chamberlin, D.D., et.al. “A history and evaluation of SYSTEM B,”
Comm. ACM, 24, 10, Oct. 1981, 632—646.

FINK81 Finkeistein, S.J., M. Schkolnick, and P. Tiberio “A physical data

base design tool for relational databases,” To appear as an

IBM San Jose Research Report.

SCHK79 Schkolnick, M. and P. Tiberio “Considerations in developing a design
tool for a relational DBMS,” Proc. IEEE COMPSAC Conf. Chicago,
Nov. 1979, 228—235.

SCFiK81 Schkolniek, M. and P. Tiberio “A note on estimating the maintenance

cost in a relational database,” To appear as an IBM San Jose

Research Report.

11

PHYSICAL DATABASE RESEARCH AT THE LAWRENCE BERKELEY LABORATORY’

John McCarthy
Arie Shoshani

Building 50B Room 3238

Lawrence Berkeley Laboratory

University of California

Berkely, California 9~l72O

(~415) ~486—5181

This note summarizes two ongoing research efforts concerning physical
database design in the Computer Science and Mathematics Department at the

Lawrence Berkeley Laboratory (LBL). Section 1 describes an existing sys

tem (SEEDIS), and physical structures it employs for statistical databases.

Section 2 describes a research activity for efficient compression and access

of statistical data.

1. The SEEDIS Project

SEEDIS is a research and development project on Social, Eccnomic, En—

vironmental, and Demographic Information Systems McCA81]). The project

began nearly ten years ago to provide quick, low cost access to large
databases from the 1970 U. S. Census -— over ten billion individual data

values for some 300,000 individual geographic areas.

1.1 Computer Independent Binary Compression and Storage

In order to minimize costs a$sociated with storage, communication,
and reformatting of these very large databases as hardware evolved, the

SEEDIS project developed a computer independent binary format HEAL78]).
The “SEEDIS Compressed Format” is a relatively simple type of run-length
encoding for a standard “virtual machine” with two characteristics:

+ strings are stored in standard ASCII encoding

+ storage media is divided into 8-bit byte segments

The scheme currently provides for three basic types of data: alpha
numeric strings, integers, and floating point numbers. Each data value is

‘This work was supported by the Employment and Training Adminis

tration, U.S. Department of Labor, and the Applied Mathematical Sciences

Research Program of the Office of Energy Research, U.S. Department of Energy,
under contact W—72405—ENG-M8.

12

stored as a variable length sequence of 8-bit bytes, preceded by a single

byte containing a ~4—bit type code and a ~4—bit byte count. All string data

values are stored as ASCII character strings, integers are stored in signed

binary form within an integral number of 8-bit bytes, and floating point
numbers are merely two successive integers representing the exponent and

mantissa. Two other key features round out the storage scheme and provide
for data compression:

+ if a number has value zero, its byte count is zero and no data value

is stored,

+ a fourth data “type” indicates a repeat count of the data value which

follows it.

Using these conventions and its o~n read and write routines, SEEDIS

produces binary compressed tapes for both CDC 6000 and VAX 11/780 computers.
Since census data typically contains large numbers of small integers, as

well as repeating strings of zeros and suppression indicators (missing
data), SEEDIS compressed files typically require only about one third as

much storage as the raw data.

1.2 Hierarchical Tape Storage System

The tape—based General Storage System (GSS) developed by LBL Computer
Center staff GOK81]), has been an effective complement to the SEEDIS

Compressed Format. Each GSS tape has a hierachical directory structure

which resembles that of Unix RITC7’lJ). Users can access individual

files or sets of files using unix—like path name notation such as:

/70census/tract/calif/a1ameda/~

where * signifies any file belonging to this directory.

Thus terminal nodes are accessible much as they would be on a random

access device —- even though the underlying medium is sequential. Since

census and many other types of geographic data have a natural hierarchical

structure, representation on GSS is straightforward. GSS tapes are access

ible via a tape robot, so retrieval time is relatively fast (usually min

utes), and SEEDIS users need not even know that data are coming from tape.

1.3 Storage for Different Levels of Analysis

SEEDIS contains data for some sixty different types of geographic
levels, some of which overlap considerably. In order to permit analysis
across different levels without redundant storage for multiple levels,
SEEDIS contains cross—level reference files and multiple index files for

different levels which reference the same underlying physical data file.

For example, if a user references 1970 census data of the “1980 County”
level, access is made via a separate 1980 county index to the 1970 data,
but the county data records are the same save for counties whose boundar

13

ies changed between 1970 and 1980; for those few cases, additional records

are created by adding and subtracting smaller areas such as minor civil

divisions.

1.~ Current SEEDIS Development Areas

SEEDIS project staff are currently working on several physical data

base problems:

+ a non-procedural data definition language for specifying input and out

put formats, internal physical storage organization, and transformations

between different internal storage formats (e.g., transposition or partial

transposition);

+ development of caching mechanisms so that data and data descriptions
can automatically migrate from GSS tapes to disk files on a distributed

network of VAX computers;

+ implementation of calling sequences to provide transparent low—level

access to different compression and storage schemes, such as those out

lines below.

For further information, contact Fred Gey, Bob Healey, Harvard Holmes

or John McCarthy.

2. Compression Techniques For Statistical Databases

We describe here work in progress on techniques for compressing sta

tistical databases (SDBs). These techniques exploit certain characteris

tics of SDBs, in order to gain a high degree of compression while achieving
fast (logarithmic) access time.

There are two characteristics of statistical databases that we exploit.
The first is the repetition of a small set of data values, such as zero or

a missing data indicator. These values, which we refer to as “constants”,
may represent a large portion of the database. A standard way of removing
the repeating values from the data stream is by associating a count with

each sequence of repeating values. When these counts are left in the data

stream (a technique known as “run length encoding”), access to a particular
data value involves a sequential decoding of the data stream, a process

which requires a linear search time.

Our approach removes all counts from the data stream and stores them

in a header. The counts are modified to be cumulative, thus allowing the

header to be searched in logarithmic time. The header is used to form

the base level of a B—tree index into the database. This further improves
the access time by increasing the radix of the logarithmic search. In

addition, the technique can be extended to support the compression of mul

tiple constant values.
-

14

The second characteristic of statistical databases is their skewed dis

tribution of data values. Often the range of integer values for certain

attributes is large, requiring several bytes to represent them (typically
14 bytes each for integers). However, the distribution of values may be

skewed toward the lower end, making smaller values more likely. Compress

ing data values to their minimum byte length will reduce the storage re

quirements considerably. The header technique used for compressing con

stants can be applied to multiple-sized data values, by modifying the

count entries to include physical byte counts. Thus, a single entry in

the header can represent a substring of data values of the same size,
as well as a series of constants.

There are several applications for which it may be advantageous to

use a more simplified version of the compression scheme. In particular,
the version specifically designed for the case of single constant, single
size data achieves a header storage savings of 2.5 times that of the gen
eral scheme. The general version of the compression scheme and other in

teresting special cases are discussed more fully in EGGE8O], EGGE81]).

For further information, contact Susan Eggers or Arie Shoshani.

REFERENCES

EGGE8O Eggers, S. J. and A. Shoshani “Efficient Access of Compressed

Data,” Proceedings of the International Conference on Very
Large Databases 6, Montreal, 1980, pp. 205—211.

EGGE81 Eggers, S. J., F. Olken and A. Shoshani “A Compression Technique
for Large Statistical Databases,” Proceedings of the Interna

tional Conference on Very Large Databases 7, Cannes, 1981,
pp~ 142’4...434.

GOK81 Gok, D. “Gettape/Stotape System,” LBL Computer Center Publication

(machine—readable), WRITEUP subset GSS (revised June, 1981).

HEAL81 Healey, R. “BYTER and DBYTE,” LBL internal design document, May,
1978.

McCA81 McCarthy, J., et. al. “The SEEDIS Project: A Summary Overview,”
~

LBL PUB 142l~, September, 1981.

flITC714 Ritchie, D. Ii. and K. Thompson “The UNIX Time—Sharing System,”
17 Communications of the ACM 7 (July 19714), pp. 365—375.

15

PHYSICAL DATABASE DESIGN RESEARCH AT THE UNIVERSITY OF MARYLAND

S. Bing Yao and Alan R. Hevner

Database Systems Research Laboratory

University of Maryland

College Park, MD 207142

301 _14514_6258

1. Introduction

In this short paper we describe on—going projects related to physi
cal database design at the Database Systems Research Laboratory, Univer

sity of Maryland*. The research projects are divided into three areas:

storage structure design and optimization, query optimization, ~nd data

base design tools. In the following sections, we briefly summarize the

results obtained thus far in each area and state the future directions

for each project.

2. Design of Storage Structures

In previous research, we presented methods to optimally choose and

combine structures to form an index (IYAO75bJ) and algorithms to design
reduced indices using interpolation. In another model, we proposed a

new type of index structure that handles overflow using a combination

of splitting and chaining methods YAO77a]). B-trees and ISAM were

shown to be special cases of this model. Index organizations enhanced

by parallel processing and batching were reported in HWAN77]). In

order to minimize access conflicts and maximize concurrency, we designed
a locking procedure which requires the minimal amount of locking when

searching and updating an index structure LEHM81fl.

Recent database system implementations (e.g. System R and INGRES)

show that it is sometimes desirable to index several attributes at the

same time. We analyzed the performance of the classic doubly—chained-
tree structure KASE-177}). A superior structure based on multi-dimen

sional clustering was proposed in L10U77]). In order to model the

many designs in a common framework and develop uniform design methods,

a model for multi—attribute indices was presented in (EYAO76cJ).

Our present research in index design combines previously developed
structures into an efficient file organization. Since most index struc

tures (e.g., B-trees) suffer from the lack of control in physical storage

‘Research projects are supported by grants from NSF and DEC.

16

allocation and structuring, the new file structure is designed to opti

mize disk access and allocation. The basic design is a VSAF•~—Iike struc

ture enhanced with secondary indices, interpolation search, and concurrent

access paths. This file structure will be implemented on a PD? 11/1414 and

will be used as a basic component of an experimental database machine.

2.2 Database Reorganization

The performance of a physical database system will degenerate as a

result of insertion, deletion and restructuring operations. In order to

restore the efficiency of the system, periodic reorganizations are per

formed. This is a costly operation and makes the database unavailable

during reorganization. While it is possible to determine optimal reor

ganization points for minimal overall cost YAO76a]), it would be better

if database structures requiring little or no reorganizations were avail

able. Structures such as B-trees and VSAM appear to have this property,

but a closer inspection shows that they in fact perform dynamic reorgan

ization (after each insertion and deletion). In a multi-user system,

these reorganizations must be performed concurrently. This necessitates

the use of elaborate locking protocols BAY77]). Our concurrent B—tree

update algorithms LEHM81]) require only a minimal number of shared

locks for each update while they allow retrieval operations to proceed

without any locking. This makes it possible to perform concurrent B-tree

reorganization when the database is continuously operational.

We are working to extend the methods used in this approach and apply

them to other database structures. The result will be a collection of

concurrent reorganization algorithms. Some of the methods will be im

plemented and tested in the experimental database machine mentioned above.

2.3 Storage Structure Evaluation

Cost equations developed for storage structures have been very com

plicated (e.g., YAO77aI, YA079}). Different assumptions and different

levels of detail also make them difficult to be used in a comprehensive

design evaluation tool. Our present approach to design evaluation is

to consider only a subset of important storage structures. Since each

structure will be implemented in our experimental system, the cost equa

tions can be more accurately tuned. The objective is to develop a design
subsystem which will automatically select storage structures and dynamically

reconfigure tie system for optimal performance.

3. Query Optimization

A number of possible processing strategies are available for queries
on multiple files. Finding the optimal strategy is difficult since the

performance of a strategy is influenced by many parameters. Whil.e an

17

exhaustive search technique (ISEL79]) is too costly for small computers,

a heuristic approach W0NG76]) that ignores certain data characteristics

may miss good strategies. In YAO7~ih]), algorithms for two file queries

are systematically classified and compared using a query model. In YAO
79]), algorithms for more than two files are surveyed and classified as

special cases of a general model. This systematic approach has discovered

new algorithns that have good optimization potential. It also makes pos

sible the analysis and comparison of various processing strategies for

multifile queries. The objective of our further research in this area

is to develop an optimization algorithm that integrates effective cost

analysis methods into an efficient heuristic approach.

Query optimization in a distributed database system is an even more

challenging problem. A good processing algorithm should minimize both

the local data access time and the amount of network data tranmission.

We have developed optimal processing algorithms that minimize the total

data transmission time and the query response time for a special class

of queries HEV78]), HEV79]), HEV8O]). A collection of optimiza
tion algorithms for star networks are presented in KERS82]). We are

currently working on an optimization algorithm for network architectures

which consist of multiple processors connected by a local bus. The re—

suits of this research will be applied in the experimental database

machine project.

~. Database Design Tools

An integrated database design approach is shown to consist of sev

eral phases: requirement analysis, view modeling, yiew integration and

physical design YAC78aI). Inorder to provide a basis for logical data

base design, we developed the Functional Data Model and a Transaction

Specification Language HOUS7Y]). This model is extremely simple and

easy to understand; yet it is shown to be more general than most of the

semantic data models WADD79]).

A Database Design Tool (DDT) that is based on the Functional Data

Model is presently being developed. The system consists of three main

parts:

A. Logical Database Design System. The system contains several com

ponents:

1) A design requirement database which contains the data model

requirements represented in the Functional Data Model and

the processing requirements represented in the Transaction

Specification Language.

2) An interactive design integration component. A version of

the third normal form synthesis algorithm is implemented.
The algorithm is augmented by heuristic rules and reduces

18

the amount of interaction required from the designer. The

result is a machine and DBMS independent logical database

design.

B. Physical Database Design System. The components of this systen are:

1) A design evaluation component. The intermediate design re

sults will he evaluated on three levels:

a) Logical design level (output of A above).

b) Access path level - the estimation of access path

length after data grouping (into logical records or

segments) is performed.
c) Physical design level — the estimation of the number

of page accesses after considering indices, clustering,
and other access path implementations permitted by a

particular database system.

2) An interactive schema designer. Some output of the evaluation

system will be used to select physical database structures.

Heuristic methods similar to that used in (JSCHK79I) will be

employed.

C. Distributed Database Design System. In HEV8O]) we proposed a de

sign methodology to be used in an interactive design tool for dis

tributed systems. This design tool emphasized inter-nodal performance

aspects such as data transmission times and queueing delays. Analy
tic equations estimated the performance of the system design and al

lowed the user to iteractively make design changes.

We have presently completed a preliminary implementation of the logi
cal design tool (A above). This system (written in PASCAL on CDC 6500)

is presently being moved to UNIX and enhanced. Research on the other

subsystems is continuing. They will be developed and implemented on the

PDP 11/~ using UNIX.

REFERENCES

BAY?? Bayer, R. and N. Schkolnick “Concurrency of Operations on

B—Trees,” Acta Informatica 9, 1977.

HEV’18 Hevner, A. and S. B. Yao “Query Processing on a Distributed

Database,” Third Berkeley Workshop on Distributed Data Nanage
ment and Computer Networks August 29—31, 1978.

HEV79 }ievner, A. and S. B. Yao “Query Processing in Distributed Data

base Systems,” IEEE Trans. on Software Engineering SE—5, No. 3,

May, 1979.

HEV8O Hevner, A. and G. N. Schneider “An Integrated Design System
for Distributed Database Networks,” Proc. IEEE Fall COMPCON

19

80, Washington, D.C., September 1980.

HOUS79 Housel, B., V. Waddle and S. 13. Yao “The Functional Dependency
Model for Data Base Design,” Proc. Fifth International Confer

ence on Very Large Databases Rio de Janeiro, Brazil, October

1979.

HWAN75 Hwang, K. and S. B. Yao “Parallel Processing of Multiway Search

Trees,” Proc. Computer Graphics, Pattern Recognition and Data

Structures 1975, pp. 170—176.

HWAN77 Hwang, K. and S. B. Yac “Optimal Batch Searching in Muitipro
-

cessor Computer Systems,” Journal of ACM 214, 3, July, 1977,

pp. 1441—1454.

KASH77 Kashyap, R. I., S. Suhas and S. B. Yao “Analysis of the Multiple
Attribute Tree Database Organization,” IEEE Trans. on Software

Engineering SE—3, No. 6, November, 1977, pp. 1457.

KERS82 Kerschberg, L., P. D. Ting and S. B. Yao “Query Optimization
in Star Computer Net~rorks,”. Technic~1 Report DB-80—014,. Computer

Science, Purdue University, (to appear in ACM TODS).

LEHM81 Lehman, P. L. and S. B. Yao “Efficient Locking for Concurrent

Operations on B-trees,” ACM Trans. on Database Syst 6,14,
December, 1981.

L10U77 Liou, J. H. and S. B. Yao “Multi-Dimensional Clustering for

Database Organizations,” Info. Syst. 2, 14, 1977, pp. 187—198.

SAC81 Sacco, G. and S. B. Yao “Query Optimization in Distributed

Database Systems,” Working Paper MS/S ~81-O29, College of

Business and Management, University of Maryland, 1981.

SEL79 Selinger, P. G., et al. “Access Path Selection in a Rela

tiorial Database Management System,” Proc. ACM SIGMOD 1978

SCHK79 Schkolnick, M. and P. Tiberio “Consideration in Developing a

Design Tool for a Relational DBMS,” Proc. of COMPSAC 79 1979.

WADD79 Waddle, V~, Housel B. and S. B. Yao “View Modeling and Inte

gration Using the Functional Dependence Model,” Proc. CONPSAC

79, November, 1979, pp. 236—2414.

WONG76 Wong, E. and K. Yousefui “Decomposition — A. Strategy for Query

Processing,” ACM Trans. Database Syst. 1, 3, September, 1976.

YAO75a Yao, S. B. and A. Merten “Selection of File Organizations
Through Analytic Modeling,” Proc. Conf. on Very Large Data

bases September, 1975, pp. 255—267.

YAO75b Yao, S. B. “Tree Structure Construction Using Key. Densities,”

20

Proc. ACM 75 National Conf. October, 1975, pp. 337—3~40.

YAO76a Yao, S. B., K. S. Das and T. J. Teorey “A Dynamic Database

Reorganization Algorithm,” ACM Trans. on Database Syst. 1,2,
June, 1976, pp. 159—17~4.

YAO76b Yao, S. B. “Modeling and Performance Evaluation of Physical

Database Structures,” Proc. ACM 76 Annual Conference October,

1976, pp. 303—309.

YAO76c Yao, S. B. “A Model for Combined Attribute Index Organizations,”
Proc. Fifth Texas Conference on Computing Systems October, 1976,
pp. 127—130.

YAO77a Yao, S. B. “An Attribute—Based Model for Database Access Cost

Analysis,” ACM Trans. on Database Syst. 2, 1, March, 1977, pp.

L15_67.

YAO77b Yao, S. B. “Approximating Block Accesses in Database Organiza

tions,” Comm. ACM 20, ‘4, April, 1977, pp. 260—261.

YAO78a Yao, S. B., S. B. Navathe and J. L. Weldon “An Integrated Ap

proach to Logical Database Design,” NYU Symposium on Database

Design, May 18—19, 1978, pp. 1—111.

yAO78b Yao, S. B. and D. DeJong “Evaluation of Database Access Paths,”
ACM SIGMOD June 1—3, 1978.

YA079 Yao, S. B. “Optimization of’ Query Evaluation Algorithms,” ACM

Trans. on Database Syst. ~I, 2, June, 1979.

YA082 Yao, S. B., V. Waddle and B. Housel “View Modeling and Inte

gration Using the Conceptual Data Model,” (to appear in IEEE

Trans. on Software Engineerin~.

21

SYSTEMS AND TECHNIQUES FOR RESEARCH IN PHYSICAL DATABASE DESIGN

AT THE UNIVERSITY OF MICHIGAN

Toby J. Teorey
Houtan Aghili
Richard Cobb

James P. Fry

Dennis G. Severance

Michael E. Wilens

Information Systems Research Group

Graduate School of Business Administration

The University of Michigan

Ann Arbor, i~ichigan 118109

313—763-1100

313—763—3580

Physical database design research continues to evolve from simple

algorithms for designing record structures and access methods to the

more complex interactive systems for integrating the physical struc

tures of large centralized and distributed database systems. A number

of recently completed and on-going projects at the Information Systems

Research Group of the University of Michigan are concerned with the more

advanced techniques of physical design. These efforts include work on

a database designer’s workbench, a model for physical design called frame

memory, and differential files.

1. INFORMATION SYSTEMS RESEARCH GROUP

The Information Systems Research Group (ISRG) at the University of

Michigan is a formal association of faculty and students, drawn from the

Graduate School of Business Administration, College of Engineering, and

Department of Computer and Communication Sciences; and whose goal is to

develop new knowledge and extend existing principles for the development

of executive information systems. The purpose of these systems is to

support the information handling and decision making activities of’ man

agers through the use of computers. Research is conducted on all phases

of executive information systems including management requirements, sys

tem analysis, system design, and implementation as well as operational

aspects of internal control and auditing.

ISRG, formerly known as the Database Systems Research Group, began

22

in 1972 as an outgrowth of the Information System Design and Optitniza—
tion Systems (ISDOS) Project at the University of Michigan. Beginning
with a grant to study the theoretical foundations of stored—data defi

nition, ISRG research evolved to the development of a prototype Stored-

Data Definition Language Analyzer and generalized software for data

translation. In 197~4 the scope of research expanded to develop semi

automatic tools for database design. Several operational software pack

ages have since been completed to evaluate database designs for existing

large—scale systems, ranging from index sequential through CODASYL-like

network systems. In 1978 the research was expanded to include distri

buted data systems. Specific research topics have included modeling
database systems, distributed database design, and implementation of a

distributed system on mini—computers (IAGHI8O}).

Sections 2 through 1! describe some of the current research projects

specifically related to physical database design.

2. THE DATABASE DESIGNER’S WORKBENCH

Researchers: Toby Teorey, James Fry, Rick Cobb

The Database Designer’s Workbench (or “Workbench” for short) is a

graphics—oriented decision—support system which assists analysts with

the design of a computer database, from the initial specification of

the system’s requirements through its final physical structure. The

Workbench provides designers with a wide variety of design aids, or

“tools”, which can be used for developing design alternatives and then

evaluating their performance. These tools are part of’ a homogeneous,
graphically-oriented environment that allows a designer to use abstract

data representations, store incomplete designs, progress smoothly from

one design phase to the next, and iterate over previous design stages.
The objective of the Workbench is twofold. For the database design

practitioner, the Workbench will hopefully improve productivity and the

quality of design by making it simpler to explore alternative designs.
For the researcher, the Workbench is capable of monitoring an individual

designer’s use, thus leading to improvements in the database design pro

cess.

The Workbench supports the database design methodology described by

Teorey and Fry TEOR8O], TEOR82]). As shown Figure 1, the methodology
is composed of six separate steps, each of which has its own input re

quirements, design and evaluation techniques, and output. The basic

steps for centralized databases are 1—3 and 6; steps ~4 and 5 are specific
to distributed databases.

23

Step_1
GENERAL -

INFORMATION
REQUIREMENTS PROCESSING

REQUIREMENTS—
ANALYSIS

REQUIREMENTS

REQUIREMENTS

Step 2
SPECIFICATIONS

~
CONCEPTUAL

DESIGN

Step 3

INFORMATION
SIRUCTURE

CENTRALIZED OR
IMPLEMENTATION ~

DISTRIBUTED DBMS— DESIGN

CHARACTERiSTICS

GLOBAL DATABASE

Step
STRUCTURE

DATABASE
1

PARTITIONING

DATABASE PARTITIONOS/HARDWARE
CHARACTERISTICS Step 5

AND STATISTICS COMMUNICATION
SUBSYSTEM SPECS(AT EACH SITE)

NETWORK TOPOLOGY,
UNE C~PAC~TY.ETC.

DATABASE
ALLOCATION

SYSTEM OPERATION
PROCEDURE

DATABASE
DISTMBLJflON

Step 6 ACROSS THE NETWORK

DISTRIBUTED PROCESSING

DATABASE LOCAL PHYSICAL
REQUIREMENTS

DESIGN STEPS DATABASE DESIGN

PKYSICAL DATABASE
STRUCTURE

FIGURE 1
..

DATABASE DESIGN STEPS

24

The database design steps are not completely independent of each other.

A single pass through them all will not result in an optimal design be

cause there are many interdependencies, some of which result from the

biases of the designs themselves and which are inherent in design pro

cess. Hence, iteration is a necessary part of the design process.

Iteration within a major step also may be necessary to find an optimal
solution. Iteration across major steps is required when certain re

quirements are not met by any of the alternative designs at a particular

step, or if new requirements are added that require redesign. As an

example, if it is found that candidate physical database structures can

not meet response time criteria, new logical database structures, or

even new conceptual information structures may have to he considered.

The Workbench simplifies the process of redesign and evaluation.

The Workbench provides several advantages over both manual methods

of database design and presently existing automated tools. It enables

researchers and database administrators to design, experiment with, and

use new tools of their own. It encourages this by relieving the de

signers of some of the details involved in developing user interfaces,
input/output of design parameters, and storage specifications. The

graphic interface allows the designers to see the various structures

they are considering for their database throughout the entire design

process. Since database structures are easily modified graphically,
designers are encouraged to produce and consider more candidate struc

tures. Also, when the designer is progressing from one design phase
to the next and is faced with a set of possible structures to choose

from, the system’s graphical nature can significantly aid in the heur

istics of selection.

A demonstration Workbench has been implemented (in FORTRAN IV) on

the Michigan Terminal System (MTS) using an APPLE II microcomputer as

its user interface. This demonstration model has been useful both for

demonstrating the Workbench concept and for research on tool building,
but it is not robust enough for all the analytical tools.

The prototype Workbench currently being implemented on Multics also

uses an APPLE II as its graphics input/output device and command level

processor; Multics contains the algorithms, the tools, and the internal

diagram handler (IBELE81], JCOBB81]). The command level processing por

tion of the software is written in PASCAL, while the algorithms, tools.

and diagram handler have been implemented in MACLISP. Normal “command

line” interaction is possible through any Multics terminal.

Different tools have been proposed and are currently under develop
ment for both the demonstration and the Multics prototype Workbenches.

These include an access method evaluator, a secondary index selector,
and a clustering methodology for hierarchical and network databases

(ISCHK78], TEOR82]).

25

3. FRAME MEMORY SYSTEM

Researchers: Dennis Severance, Mike Wilens

The process of physical database design is driven primarily by the

need to satisfy user retrieval requirements with data access paths of

reasonable speed. Procedures previously developed to assist in this

process focus upon modeling a wide range of fundamentally different

data access paths and selecting an efficient combination of these

paths based upon estimated storage, retrieval, and maintenance costs.

Much of the complexity and computational overhead of these models is

associated with access path maintenance which occurs as database re

cords are added, deleted, and modified. Difficulties in analyzing data

base maintenance phenomena (e.g., record shifting, overflow chaining,
garbage collection, etc.) have caused a number of researchers to ignore
database maintenance costs in initial versions of their design systems.

A generalized model of secondary memory management, called frame

memory has been developed (JMARC81J). The concept evolved from the

modeling work as a means of simplifying model cost equations and speed
ing design evaluation by isolating and consolidating the effects of data

maintenance operations at a level below that of the data access paths.
Frame memory provides record storage retrieval and update services to

access path routines. The speeds and costs of these services can be es

timated accurately from frame design parameters and volume and volatility
characteristics of the records which are stored. Since these estimates

incorporate expected effects of maintenance phenomena, these effects need

not be explicitly modeled by performance equations for the data access

paths.

Frame implementations are described parametrically. As a result, a

variety of alternatives can be generated quickly and evaluated automatic

ally by a design system to select an efficient implementation for a given
problem. Although frame memories are not in use commercially, frame para

meters do translate approximately into traditional database design variables,
such as record blocking and file loading factors. And while frame memory
was devised initially as an abstraction to simplify a set of database de

sign procedures, the existence of these procedures now makes the frame

memory architecture a natural OS/DBMS interface for future systems.

A design methodology based upon frame memory exists to aid system
analysts in the design of physical databases CAHL8O]). It was devel

oped at the University of Minnesota and is overviewed briefly here. The

design approach is built upon an analytic model composed of (1) parametric
descriptions for components of a generalized database organization, (2)
cost equations which evaluate a proposed database design, (3) an analyst
interface which accepts arbitrary database designs for evaluation, an&

26

(~4) search procedures which automatically generate and compare thousands

of alternative organizations.

Ideally, the system will determine and output an optimal combination

of (1) frame implementations, (2) record segmentation, and (3) file struc

ture and search mechanism parameters. The design of each of these compon

ents is affected by characteristics of the others so that in order to

guarantee the selection of a globally optimal design, all combinations of

model parameters must be evaluated. Unfortunately, the number of possi
bilities is enormous and no computat.ionally tractable method of searching
the entire solution space is known. As a result, a heuristic based on

an optimization procedure was used. While no heuristic design procedure

can produce an optimal solution in every case, the designs generated by
this procedure are structurally simple and intuitively reasonable. Their

performance typically compares favorably with designs constructed by ex

perienced analysts, and since the model’s designs are selected in minutes

rather than days, at a minimum they provide a starting point for design
elaboration and a benchmark against which to compare the performance of

proposed alternatives. Alternatives, of course, can be submitted to the

system for rapid evaluation.

Ongoing research at ISRG is concerned with investigating novel stra

tegies for improving frame memory performance, improving the existing

design procedure, and automating the database implementation process.

Currently, the parametric model of frame memory is used for evaluation

only. That is, given a problem statement and a relatively small set of

heuristically selected frame implementations, alternative database designs
are evaluated for each implementation. The number of possible frame im

plementations is extremely large and a procedure to formalize initial

pruning of the solution space is under development. In addition, design

problems studied to date have assumed a homogeneous secondary memory en

vironment consisting of only moving head disks. Nevertheless, our model’s

characterization of secondary memory is sufficiently general to permit
consideration of alternative memory technologies without alteration of

the performance—measure interface to our design procedures. We plan, for

example, to investigate the impact of a bubble memory/disk storage/mass
storage memory—hierarchy upon existing database structuring practices.
The effect of a frame memory environment upon database backup, checkpoint

/restart, and concurrency management procedures is also being studied.

Operational software exists for the frame memory performance model,
the automatic file design optimizer, and a prototype frame memory system.
The software is written in FORTRAN IV and runs on both IBM 370 and CDC

7600 architectures.

27

~4. DIFFERENTIAL FILE DESIGN

Researchers: Dennis Severance, Floutan Aghili

There are two basic causes of data loss in online systems: (1)

partial completion of update operations caused by the program or system

failures which render parts of the database inaccurate or inaccessible,

and (2) physical destruction of storage media which renders all or part

of a database unreadable. For large databases with moderate or extensive

update activity, differential files offer an effective strategy for rapid

backup and recovery.

A differential file contains all new and modified records which would

otherwise have altered another file, called the main file. Since the main

file is never changed it can always be recovered quickly from its dump in

the event of a loss. Transaction reprocessing is required only in the

event of damage to the differential file. Since this file is usually small,
it can be backed up quickly and frequently to minimize the reprocessing
time. It can also be duplicated at reasonable cost as insurance against

physical damage to one of the copies.

While differential files offer a number of other operational advantages

SEVE76]), our current research at ISRG has focused exclusively upon their

value in speeding backup and recovery operations for online databases.

Specifically, these operations have been analyzed to establish the frequen
cies with which backups and mergings should occur for a given main file and

differential file. An analytic cost model for this purpose has been devel

oped; it is used to generate a series of tables which enable a designer to

quickly determine a near—optimal differential file architecture for a typ
ical operating environment AGHI81]).

5. SUMMARY AND FUTURE RESEARCH

Active research is continuing with the Database Designer’s Workbench

and its associated tools for both conceptual and physical database de

sign. Performance evaluation of distributed database systems will con

tinue as more analytic models are designed, implemented, and tested with

performance data from actual system implementations.

In addition to ISRG, other research groups are also active in database

research at Michigan. Under the auspices of the Systems Engineering Lab

oratory in Electrical and Computer Engineering, Irani and others are de

veloping models for data allocation and query optimization in distributed

database systems KHAB79]). Under the direction of Daniel Teichroew, per
formance monitoring of database management systems is under experimentation

28

in the ISDOS project (Industrial and Operations Engineering). Cooperative

efforts are maintained among these groups in many areas of database systems

research.

REFERENCES

AGHI8O Aghili, H., D. DeSmith and M. Grocock “A Distributed Database

Management System for the IBM Series/i: General Design and

Prototype Design,” Working Paper 80 DS 8.3, Database Systems
Research Group, Graduate School of Business Administration,

The University of Michigan, Ann Arbor, 1980.

AGHI81 Aghili, H. “Differential File Application and Analysis,” Ph.D.

Thesis, CICE Program, The University of Michigan, Ann Arbor,

1981.

BELE81 Belew, R. K., R. Cobb, J. P. Fry, and T. J. Teorey “The Database

Designer’s Workbench: An Overview,” Working Paper 81 DE 1.10,
Information Systems Research Group, Graduate School of Business

Administration, The University of Michigan, Ann Arbor, October

1981.

CARL8O Carlis, J. V. “An Investigation into the Modeling and Design

of Large, Logically Complex, Multi—User Databases,” Ph.D.

Thesis, University of Minnesota, 1980.

COBB81 Cobb, R., A. Garcia, L. Hourvitz and D. Meredith “Database

Designer’s Workbench: Design Specifications,” Working Paper
81 DE 1.11, Information Systems Research Group, Graduate School

of Business Administration, The University of Michigan, Ann

Arbor, October 1981.

KHAB79 Khabbaz, N. G. “A Combined Communication Network Design and File

Allocation for Distribution Databases,” Ph.D. Thesis, CICE

Program, The University of Michigan, Ann Arbor, 1979.

MARC81 March, S. T., D. G. Severance and M. E. Wilens “Frame Memory:
A Storage Architecture to Support Rapid Design and Implemen
tation of Efficient Databases,” ACM Trans. Database Syst 6,3
(September 1981, pp. ~4141~.l463.

SCHK78 Schkolnick, M. “Physical Database Design Techniques,” Proc

29

NYU Symposium on Database Design New York University, N.Y.,

May 18—19, pp. 99—109.

SEVE76 Severance, D. G. and G. M. Lohrnan “Differential Files: Their

Application to the Maintenance of Large Databases,” ACM Trans.

Database Syst 1,3 (September 1976), pp. 256-267.

TEOR8O Teorey, T. J. and J. P. Fry “The Logical Record Access Approach

to Database Design,” ACM Comp. Surveys 12,2 (June 1980), pp.

179-211; 12,14 (December 1980), pp. 1465.

TE0R82 Teorey, T. J. and J. P. Fry Design of Database Structures Pren

tice—Hall, Englewood Cliffs, N.J., 1982.

30

AN OVERVIEW OF PHYSICAL DATABASE DESIGN

RESEARCH AT THE UNIVERSITY OF MINNESOTA*

S. T. March J. V. Carlis

Department of Management Sciences Computer Science Department
612~373—14363 612—376—11592

University of Minnesota

Minneapolis, Minnesota 551155

This paper overviews the ongoing research efforts at the University of

Minnesota in physical database design. These efforts are being conduc

ted within the framework of A Database Design Methodology (ADDM) which

contains: (1) a multiple level descriptive model for expressing logical
database design problems and their physical solutions and (2) a man/

machine database design system (DBDS) which inputs a problem description
expressed in the logical level model and produces design solutions ex

pressed in the physical level model.

1. INTRODUCTION

The objective of physical database design is to produce data stor

age structures and accessing mechanisms which effectively and efficiently
support the information requirements of some community of users within

an organization LUM78]). In order to meet this objective, the infor

mation requirements must first be unambiguously specified for use in the

design process. The design itself must also be unambiguously specified
for implementation on the target computer system.

ADDM (A Database Design Methodology) supports a database designer
in the task of physical database design. It provides: (1) a multiple
level descriptive model for expressing logical database design problems
and physical database design solutions and (2) a man/machine database

design system (DBDS) for producing efficient database designs. A design
produced via the methodology consists of a set of records (types) de

fining the database schema and sets of algorithms and structures (i.e.,
file organizations) to store, access and maintain the data. This speci
fication is not dependent upon a particular hardware configuration or

database management system (DBMS) but is generic, using commonly avail

able file structures and searching techniques. In order to use the

methodology for a particular design problem, however, the types of

design alternatives considered by DBDS may be restricted to conform to

existing hardware and/or DBMS software configurations.

*Thjs work was supported in part by the David W. Taylor Naval Ship Re

search and Development Center under Research Contracts N00167-79-C—01110,
and N00167—80—C—0061 and PJOO167~81_C_O1Ol4.

31

2. THE MODELING CONTEXT

The database design methodology is based on a database model (see

CARL81a]) consisting of two levels: logical and physical. The logical
level is used to formally express the information requirements of the

user community (i.e., the problem) independent of the manner in which

they will physically be met. It provides a data model for the data re

quired for physical database design. It thereby guides the co].lection

of user requirements and helps to insure that these requirements are

appropriately described. The physical level is used to formally express

database designs (i.e., solutions) for implementation. It delimits the

set of possible database designs considered by the methodology and thus

permits the specification of a “solution space” for a particular design

problem.

The logical level of the descriptive model has been adapted from

Senko’s “infological model” in DIAM II SENK75]. It contains a simple

yet semantically rich conceptual data model (CDM) composed of’ entities,

attributes, relationships, and identifiers. This model is used to de

scribe the logical structure of the database. Logical database volume

is described by entity cardinality and attribute cardinality, length and

vocabulary size. User retrieval activities are specified as a set of

retrieval statements or queries each of which focuses on some of number

of entities (termed contexts). At each entity (context) the retrieval

is characterized by the entity instances selected, the descriptors pro

jected (attribute and/or relationship descriptors), the output ordering
and the relationship which is used to forward the context to the next

entity in the retrieval (if any). Update activities are specified by

entity insertion and deletion frequencies and attribute and relation

ship modification frequencies.

The physical level of the descriptive model views a database as a

set of interconnected file organizations where a file organization is a

set of algorithms and structures used to store, retrieve and maintain a

subset of the database (a dataset) residing permanently in secondary

memory. A complete physical database design consists of definitions for

its datasets (schemas and instances) and a file organization design for

each dataset defined.

The generalized model of a file organization (see IIMARC78aI,
MARC78b]) has three modular components: data records (see EISN76]
MAXW73], MARC77J, MARC81b]), access paths (see SEVE77J, DUHN78]),
and maintenance mechanisms (see MARC81aJ), each of which is a para

metric model capable of describing a wide range of implementation al

ternatives which are practical for that component. A complete file

organization design is defined by a collection of parameter sets —- one

for each modular component.

3. THE DATABASE DESIGN SYSTEPi (DBDS)

The database design system (DBDS) of ADDM takes advantage of’ the

32

computational power of modern computer systems to augment and support
the intuition and skill of a database designer. The DBDS consists of a

set of software procedures (approximately 10,000 lines of executable

FORTRAN code CARL6Ob], CARL8OCI) and a user interface through which

the designer controls the execution of the system. Input to the soft

ware is a statement of the information requirements of the user community

expressed in the logical level model; output is a complete database

design expressed in the physical level model and as a by-product of the

design process, a performance estimate for that design.

Figure 1 is a data flow diagram DEMA78]) which shows the major
activities of the DBDS and delimits the role of the designer and the

role of the software in the system. The designer formulates the problem,
exercises judgment and constrains the solution space as lead by intuition,

experience, and intermediate results produced by the software. The soft

ware suggests generic solution alternatives, optimally solves various de

sign subproblems and produces an efficient database design. Optionally,
the software may be used to evaluate the performance of specific designs

proposed by the designer.

The system includes a number of design heuristics as well as opti

mization and evaluation algorithms which are incorporated into the four

major modules (FORM, CONVERT, DESIGN, and SELECT) shown in the software

side of Figure 1. The operation of the design system is briefly de

scribed below:

1. FORM potentially useful database schemas. Each schema

defines a set of datasets. Optionally the designer may

add to or delete from the set of datasets heuristically
produced by the software or even completely specify a

single set of datasets (see CARL81d]).

2. CONVERT processing requirements expressed in the logical
level model to accessing patterns on the sets of data—

sets formed in (1). This effectively yields a set of

file organization design problems.

3. DESIGN an efficient file organization for each problem
from (2). Again, the designer may optionally constrain

the solution space or specify partial solutions or even

complete solutions for evaluation only (see MARC78a],
MARC78bJ).

I~. SELECT a set of file organizations which efficiently
meet the user information requirements. This mcdule

automatically selects the most efficient set of file or

ganizations from among those produced in (3).

Since there are many qualitative factors not considered by the soft—

ware which may have considerable impact on overall database performance,
the designer may subjectively evaluate the set of designs produced by
the system and/or perform sensitivity analysis by varying critical de—

33

Cons trai nts

Non Quantifial
Problem and

:nvlronment

racteri stlcs

Sel ec ted

Database Design
for Implementation

Analysis

Designs

FIGURE 1. DATA FLOW DIAGRAM OF THE ACTIVITIES OF THE DBDS

DESIGNER

Graphical
Narrati

Form

SOFTWARE

)bl em

Requl rement

Statemen

Database

i rements

Parameters

DESIGN

sign factors and iteratively executing the above modules prior to se

lecting a design for implementation.

14. CURRENT RESEARCH ACTIVITIES

This section briefly describes some current research efforts with

in the framework of ADDM aimed at improving the methodology and expand

ing its scope of applicability with respect to physical database design.

Research on conceptual data rnodei!ng, also within the framework of ADDN,

is underway (see IMARC81cJ).

14.1 Procedures to Aid in the Generation of Potentially Useful

Database Schemas

FORM relies on a set of structure-based heuristics and constraints

imposed by the designer to generate a set of potentia]ly useful database

schemas. For even medium sized problems it is essential that the de

signer judiciously constrain the generation of schemas or the problem

becomes computationally intractable. To aid in this process procedures

are being developed to assess the impacts of database activities as well

as data structure through the use of “similarity” measures and clustering

analysis.

4.2 Expansion of the Types of Partial Solutions Which May be Specified

by the Designer

It is likely that the human designer can make some storage decisions

for a given problem which may include design components not currently con

sidered by the DBDS software. New DEDS features will allow the designer

to: 1) cluster attributes; 2) absorb a subset of an entity’s descriptors

to form repeating groups representing only part of an entity’s descrip

tion; and 3) factor the problem into smaller problems with explicitly de

fined symbolic pointers crossing subproblem boundaries. A second set of

features will allow the designer to: 1) partition entity instances into

different datasets; 2) copy entity instances so that data is stored re

dundantly in different datasets; and 3) merge instances of different

entities into the same dataset. Together these features will enable

the DBDS to treat a wider variety of practical solutions.

14.3 Expansion of Access Paths

Access paths included in the DBDS are being expanded in two areas:

1) clustered data record retrieval and 2) directories to manage inverted

and multilist file structures. Because of the physical characteristics

of’ secondary storage devices, it is typically more efficient to access

data records which are physically grouped or clustered together than to

access data records which are physically distributed on the storage de

vice. Commonly used access methods such as ISAM and VSAM recognize this

efficiency and physically store data records according to the value of

the key data item(s). Directories for inverted and multilist file

structures can provide efficient support for a variety of retrievals and

35

they are commonly used in practice.

l4~14 Generation of an Integrated Access Path Solution Space

In order for the DBDS software to select an efficient set of access

paths for a given dataset and user activity, a space of potentially use

ful access paths must first be produced. The current procedure for pro

ducing this space heuristically generates potentially useful access paths

individually for each retrieval activity which must be supported. Poten

tial savings which might be realized by using a single access path to

support multiple retrievals must be recognized by the designer who may

then modify the solution space accordingly. While this may be a reason

able approach for simple database problems, the sheer volume of informa

tion which must be examined for realistic problems makes this approach
infeasible. Additional file generation procedures which recognize the

potential for sharing data access paths are in development. In addition,
the designer will be able to direct the DBDS in the generation of access

paths, e.g., to conform to generic access paths available in a particu
lar DBMS.

14.5 Analysis of Data Maintenance Mechanisms

One of the modular components of the generalized file organization
model used in the methodology is maintenance mechanisms. These are algo
rithms and structures which are used to manage secondary memory space for

data update operations. A parametric model of secondary memory manage

ment schemes has been developed (see fMARC81aI) and incorporated into the

methodology; however, the designer is responsible for selecting a set of

memory management alternatives for consideration. The number of possible
alternatives is enormous, putting a large burden on the designer and

making complete enumeration computationally infeasible. Therefore, pro

cedures are being developed to aid the designer in selecting a small set

of alternatives for evaluation.

~4.6 Algorithmic Improvements

Several of the DBDS modules contain optimization procedures for var

ious design subproblems. Efforts are underway to improve the algorithmic

efficiency of these procedures and where possible to develop new procedures
which will integrate multiple subproblems and thus more accurately model

database operations. In particular, the tasks of record formation and

access path selection are independently optimized; however, they are

clearly interdependent (see fMARC81b]). Procedures are in development to

integrate these tasks.

REFERENCES

CARL8Oa Carlis, J.V. An Investigation into the Modeling and Design of

Large, Logically Complex Multiuser Databases Ph.D. Dissertation,
University of Minnesota, December, 1980.

36

CARL8Ob Carlis, J.V. and S.T. March “A Computerized Database Design System

Version 5: Users Manual,” University of’ Minnesota, MISRC Technical

Report TR—81-02, November, 1980.

CARL8Oc Carlis, J.V. and S.T. March “A Computerized Database Design System

Version 5: System Documentation,t’ University of’ Minnesota, MISRC

Technical Report TR—81—03, November, 19b0.

CARL81a Carlis, J.V. and S.T. March “A Multiple Level Descriptive Model for

Expressing Logical Database Problems and Their Physical Solutions,”

University of Minnesota, MISRC Working Paper WP-81-1O, March, 1981.

CARL81b Carlis, J.V. and S.T. March “A Computer Aided Physical Database

Design Methodology,” University of Minnesota, MISRC Working Paper

WP—82—10, November, 1981.

CARL81c Carlis, J.V., G.W. Dickson and S.T. March “Physical Database

Design: A DSS Approach,” Proceedings of the Second Annual

Conference on Information Systems Boston, MA, December, 1981.

CARL81d Carlis, J.V., and S.T. March “A Database Design Methodology:

Forming Records,” University of Minnesota, MISRC Working Paper

wP—8i—1i, October, 1981.

DeMA78 DeMarco, T. Structured Analysis and System Specification Yourdon

Press, 1978.

DUHN78 Duhne, R.A. and D.G. Severance “Selection of an Efficient Combin

ation of Data Files for a Multiuser Database,” AFIPS Conference

Proceedings 1978 National Computer Conference Anaheim, CA

(June 1978).

EISN76 Eisner, M.J. and D.G. Severance. “Mathematical Techniques for

Efficient Record Segmentation in Large Shared Databases,”
Journal of the ACM 23, 14 (October 1976), pp. 619-635.

LUM78 Lurn, V. et. al. 1978 New Orleans Data Base Design Workshop IBM

Tech Report No. RJ255’4, IBM, San Jose, 1978.

MARC77 March, S.T. and D.G. Severance “The Determination of Efficient

Record Segmentations and Blocking Factors for Shared Data Files,”
ACM Trans. Database Syst 2, 3 (September 1977), 279—296.

MARC78a March, S.T. Models of Storage Structures and the Design of Data

base Records Based Upon a User Characterization Ph.D. Disser

tation, Cornell University (1978).

MARC78b March, S.T. and D.G. Severance “A Mathematical Modeling Approach to

the Automatic Selection of Database Designs,” Proceedings ACM

SIGMOD 1978, Austin, Texas, pp. 52—65.

MARC81a March, S.T., D.G. Severance, and Wilens, M. “Frame Memory: A

37

Storage Architecture to Support Rapid Design and Implementation

of Efficient Database,” ACM Trans on Database Syst 5, 3,

September 1981.

MARC81b March, S.T. “Techniques for Structuring Database Records,” Univ

ersity of Minnesota, MISRC Working Paper WP—82-09, November, 1981

(submitted to AC~ Computing Surveys)

MARC81c March, S.T., and J.V. Carlis, “An Overview of Physical Database

Design Research at the University of Minnesota,” Internal

Report, 1981.

MAXW73 Maxwell, W.L. and D.G. Severance “Comparison of Alternatives for

the Representation of Data Item Values in an Information System,”

Proceedings of the Wharton Conference on Research on Computers

in Organizations University of Pennsylvania (October 1973),

121—136.

SENK75 Senko, N. E. “Specification of Stored Data Structures and

Desired Output Results in DIAM II with FORAL,” Proceedings of

the International Conference on Very Large Data Bases Framingham,

MA, 1975, 557—587.

SEVE77 Severance, D.G. and J.V. Carlis “A Practical Guide to the Selec

tion of Record Access Paths,” ACM Computing Surveys (December

1977), 259—272.

38

PHYSICAL DATABASE RESEARCH AT STANFORD

Gio Wiederhold Daniel Sagalowicz
S. Jerrold Kaplan SRI International

Stanford University 1415_859_148140
~4 15—1497~0685

1. INTRODUCTION

The Knowledge Based Management Systems (KBMS) Project at Stanford

(supported by the Defense Advanced Research Projects Agency under con-

tracts MDA9O3-77-C—O322 and N39-80-G—0132) addresses the problems of

intelligent processing in large databases. The project is being di

rected by Stanford with cooperation from SRI International. Several

of the topics under investigation are concerned with physical data

bases, and are detailed below. In addition, the project is supporting
work on topics in logical data modeling, intelligent query processing,
database machines SHAW8O]), binding in information processing ‘~~fIED81]),
distributed databases. CERI81] , MYNO81]), and natural language access

to databases.

2. THE OPTIMAL DESIGN OF PHYSICAL DATABASES

A theoretical approach to the optimal design of large multifile phy
sical databases has been devised. The design algorithm is based on the

theory that given a set of join methods that satisfy a certain property
called separability, the problem of optimal assignment of access struc

tures to the whole database can be reduced to the subproblem of optimiz

ing individual relations independent of one another WHAN81aI), WHAN
81b]). Coupling factors are defined to represent all the interactions

among the relations. This approach not only reduces the complexity of’

the problem significantly, but also provides a better understanding of

underlying mechanisms.

This methodology for the design of’ the physical databases is also

extended to include the join methods which are not in the separable set

(we call these nonseparabie join methods). This is a heuristic exten

sion of’ the physical database design methodology based on the •theory of

separability. The basic design is formulated first, assuming that there

are only separable join methods, and then is extended to include nonsep—
arable join methods using heuristics. Work is in progress to extend the

results to network (etc.) databases WFIAN82)).

39

An improved formula for estimating the number of block accesses was

developed during this effort. This formula is used in database systems

when records are selected randomly and accessed in the order of their

record identifiers (TID). This formula is computationally much more

efficient than Yao’s exact formula and improves upon Cardenas’ formula

in terms of accuracy.

3. FILE ACCESS SYSTEM

A file access system that uses symbolic keys to access variable

length records based in PASCAL and supporting several host languages,

including PASCAL, INTERLISP, and FORTRAN has been developed and is now

being tested. The services that this system, named FLASH, expects from

the underlying operating system are limited to directory management for

named segments of secondary storage, and access to fixed size blocks or

pages of these segments. It is specifically designed to provide strong
and symmetric support facilities for databases, so that powerful data

base systems can become easier to implement than they are when using
conventional files; files are designed with only programmer’s needs in

mind. The underlying structure uses B+ trees for storage of both primary
and secondary keys. This system will be used to study various dynamic

storage and retrieval strategies. The experience of implementing FLASH

is already being used to better define an Input-Output package for the

ADA language ALLC8O]).

REFERENCES

ALLC8O Alichin, J., A. Keller, and G. Wiederhold “FLASH: A Language

Independent Portable File Access System”; Proceedings of ACM

SIGMOD Conference May 1980, pp. 151-156.

CERI81 Ceri, S., S. Navathe, G. Wiederhold “Optimal Design of Distri

buted Databases”, to appear as a Computer Science Dept. Techni

cal Report, Stanford University, November, 1981.

MINO81 Minoura, T. and G. Wiederhold “Resilient Extended True-Copy
Token Schema for a Distributed Database System”, Symposium on

Reliability in Distributed Software and Database Systems IEEE,
July 1981, Pittsburgh, Pa., pp. 1—12.

SHAW8O Shaw, D. “Knowledge-Based Retrieval on a Relational Database

Machine”, PhD Dissertation, Stanford University, Computer Sd—

ence Department report CS—80—823, September, 1980.

40

WHAN81a Whang, K., G. Wiederhold and D. Sagalowicz “Separability: An

Approach to Physical Database Design”; Proceedings of the

Seventh International Conference on Very Large Data Bases

Cannes, France, September 1981, pp. 320—332.

WHAN81b Whang, K., G. Wiederhold and D. Sagalowicz “Separability as

a Physical Database Design Methodology”; Computer Science Lab

oratory report CSL TR 222, Stanford University, November, 1981.

WHAN82 Whang, K., G. Wiederhold and ID. Sagalowicz “Separability as a

Tool for Partitioning the Physical Design of Network Databases”,

1982.

WIED81 Wiederhold, G. “Binding in Information Processing”, Stanford

University Computer Science report 81—851, May, 1981.

41

DATABASE DESIGN RESEARCH AT THE UNIVERSITY OF TORONTO

Stavros Christodoulakis

Anil Garg
C. C. Gotlieb

Geovane C. Magalhaes

Computer Systems Research Group

University of Toronto

Toronto, Ontario, Canada

1416—978_LM05
Lj 16—978—6025

A variety of research activities in physical databases is underway at

the University of Toronto. Each of these activities is detailed in the

following sections.

1. Improving the Performance of Database Systems

G. Magalhaes has taken an experimental approach to analyzing the per

formance of database systems MAG82]. A methodology for collecting data

on the behavior of large operational DBMSs was developed. It calls for

the reproduction of the environment and activities, as observed in an ac

tual on—line DBMS in a controlled (test) environment. Behavioral data is

collected during the reproduction.

The methodology has been applied to an operational system that used a

commercial DBMS. Five databases, having a combined size of about 200 mega

bytes, were chosen for study. The workload for a week period, was logged
and reprocessed in the test environment. The resulting data contains in

formation on: database definition and contents, transaction start time in

the actual system, resources consumed per database processing module (CPU

time, database and temporary storage I/O), system messages, selectivities

(number of times that data item values are printed or number of records to

be updated) and the identification of all database blocks in the order they
were referenced (called reference strings) This set of observations,
called the observation set is believed to be the first detailed account

of a large operational DBMS reported in the open literature.

T-he data in the observation set was analyzed in order tO characterize

the workload, its impact on the DBMS processing modules, and its reference

strings. The reference strings were analyzed with respect to locality,

sequentiality, and buffer management. Special transactions were analyzed
in order to find ways to improve their performance.

42

The data gathered proved useful for obtaining parameters which charac

terized each database. These parameters are useful for modeling and theo

retical studies, for improving the performance of a particular DBMS, and

for making general suggestions about improving database performance. A

principle conclusion is that the identified measurement tools and tech

niques should be embedded in a DBMS, because the effort needed to incor

porate the tools is not excessive, the overhead for having these techniques

capable of being switched on and off is not large, and the benefits gained

with this mode of operation are far greater than the costs for implementing

it.

2. Design of Database Performance Predictors

Database performance predictors are software tools that aid the se

lection, management, and refinement of database management software.

K.C. Sevick is examining several problems related to database performance

predictors. A general multilevel analytic model has been formulated and

important database design parameters and their interrelationships have

been analyzed SEVC 81]). The lowest level of the model is based on queuing

network models. Analytic techniques for transforming higher level param

eters into queuing network parameters have been derived. The outputs of

the queueing network model are device utilizations, transaction through—

puts, and response times. The application of these techniques in the de

sign of system specific performance predictors (like System 2000) have been

demonstrated (see ICASA81], BELL81J).

A next step in this research will be to implement a software package
based on these designs which, together with the THEsolver queueing network

solution package GRAH81]), is intended to provide a full prediction pack

age for System 2000 environments. Other aspects of the design of database

performance predictors involving higher levels of the model will also be

investigated.

3. Estimation of Selectivities in Databases

Analytic models that have been proposed for the study of many database

design and database performance evaluation problems require estimates of

the number of records that are qualified by a query, the average number

of records qualified by a set of queries, the number of blocks containing
records that are qualified by a query, and the average number of blocks

that contain records qualified by a set of queries. These estimates are

called selectivities S. Christodoulakis is pursuing research in this

area CHRI81a—d]). In order to estimate selectivities, the database

contents and the data placement on devices, as well as the queries issued

by the user population have to be modelled.

Common assumptions used for modelling database contents and data place

43

ment on devices have been carefully analyzed and the impact of these as

sumptions in database design have been formally examined. Methods for more

accurate modelling of database contents, data placement on devices, and user

queries have been proposed. The improved approximations of selectivities

take into account nonuniformities and correlations of attribute values as

well as nonrandom placement of the qualifying records among the blocks of a

file. Future research in this area will be both theoretical and experimental.

~. Multiple Key File Structures

Traditional file structures that provide multikey access to records,
such as inverted files, are composed of one or more file structures that

individually provide single key access to records. K.C. Sevcik is investi

gating multiple key file structures that enable records to be accessed

efficiently given one or more of their keys. Emphasis is placed on the dy

namic properties of these files and the symmetric treatment of the attrib

utes. These file structures should permit record insertions and deletions

and support both single value and range queries. One such structure, called

the GRID FILE, which has the above properties, has been designed and simu

lated NIEV81]). The heart of the GRID FILE is the grid directory which

is designed as a multidimensional array. The grid directory relates logi
cal file partitions (grid blocks) with specific storage locations (buck

ets). Initial results show that the number of buckets grows in proportion
to the number of records, and memory utilization remains around 70%.

5. Centralized and Distributed Concurrency Control

B. Galler is studying concurrency control mechanisms (CCMs) and their

performance GALLB2]). For the case of centralized databases, performance
of CCMs are assessed by analytic modeling. Equations are derived to esti

mate the waiting times at different points in the system in a way such that

the sum of the waiting times equals the total waiting time encountered by
a job. The set of equations can be shown to converge. The analytic model

produces good results when compared with a simulation of the same system.

For the case of distributed databases, a framework has been developed
in which all known distributed database CCMs can be cast in order to com

pare their performance. Owing to this unified approach, certain tradeoffs

become apparent and situations under which each CCM performs well or

poorly can be determined. In addition, if a system designer indicates the

characteristics of the system where a CCM is to be used, a choice among

candidate CCMs may be possible.

44

6. Index Organizations for Skewed Access Patterns

An index organization is being developed by A. Garg to support a file

that has the following characteristics:

— number of records in the file is about 6 million;

- the file has a growth rate of the order of 100,000 records

per month;

— the deletion of a record from the file is rare;

— extensive modifications to the nonkey information in the

record are performed, resulting in this information ex

panding in size;

— keys as well as associated data have variable lengths;

— the file must permit a browsable access, i.e., random

followed by sequential access (forward as well as backward);

- the file has access probability distribution as shown in

the figure below:

Prob. of

Access

Key Space

(Age of Record)

- the access probability is inversely proportional to the age

of the record, i.e., a record enters a file with a high

probability of access and slowly (over a period of one year

or so) falls into the low access probability region.

These characteristics are specific to the “Author, Title & Subject
Index” (ATS) of the University of Toronto Library Automation Systems
(UTLAS) which provides browsable access to bibliographic information on

author names, publication titles, or subjects as search keys. For an

index organization to be of general applicability, the following features

are also desirable:

—75%

45

- it should be able to handle any amount of deletions, i.e.,

perform well for an expanding, shrinking or even a stable

(in terms of size) file;

— new, old, or any mix of’ keys can constitute the two discrete

access probability regions.

A potential solution for the above problem will most likely fall into

any one of the following two major classes of file organization: tree

structures and hashing.

Among the well known tree structures, ISAM and B-trees are generally

good but they do not efficiently support a skewed access pattern. The

same is true of the various B-tree variants appearing in the literature

(Prefix B—trees, Digital B-trees, etc.). One of the exceptions to this

is a C—tree which is built taking into consideration access probabilities
of the keys.

A variety of potentially good hashing techniques has appeared in the

literature recently, namely, extendible hashing, spiral hashing, linear

hashing with partial expansions, trie hashing, etc. For a hashing tech

nique to be suitable for our purpose, it must be based on an order—

preserving hash function to facilitate sequential access.

In either case, a two—level structure appears to be a most appropriate
solution given the nature of the access pattern, with automatic (or trig

gered) migration of records from one level to another as their access

probabilities change over time (IGARG82]).

7. File Organizations for Messages

D. Tsichritzis and S. Christodoulakis are investigating problems of’

storage and retrieval in large files of messages. Messages consist of a

header and a body. The header contains formatted data representing the

most important characteristics of messages, e.g. origin, destination, etc.

The body is textual. An organization for these files should be able to

deal with a variety of messages in a flexible manner, to provide a simple
and uniform interface to the user, and to be efficient for a large volume

of’ messages. In addition, reorganizations should not be frequent (if re

quired at all), and messages should be retrievable on the basis of their

content.

To achieve these objectives, a file organization has been specified,

analyzed, and implemented. The user of the system specifies a filter

which restricts the attention to a manageable subset of messages.

Messages within the subset are obtained for a final check. The identifi

cation of relevant messages is done by sequentially searching a small

auxiliary file. Detailed performance analysis and integration of the

facility in a larger system is underway TSIC81]).

46

REFERENCES

BELL81 Bell, B. “Database System Performance Prediction: The first two

Levels of a Multilevel Modelling Framework”, M.Sc. Thesis, Un

iversity of Toronto, 1981.

CASA81 Casas—Raposo, I. “Analytic Modelling of Database Systems: The

Design of a System 2000 Performance Predictor”, M.Sc. Thesis,
University of Toronto, July 1981.

CHRI81a Christodoulakis, S. “Estimating Selectivities in Databases”, CSRG

report #136, University of Toronto, 1981.

CHRI81b Christodoulakis, S. “A Multivariate Statistical Model for Database

Performance Evaluation”, Proceedings ORSA/TIMS Symposium on Applied
Probability and Computer Science The Interface, Bocca Raton, 1981.

CHRI81c Christodoulakis, S. “Estimating Block Selectivities”, submitted for

publication, 1981.

CHRI81d Christodoulakis, S. “Implication of Certain Assumptions in Database

Performance Evaluation”, submitted for publication. 1981.

GALL82 B. Galler “Concurrency Control Performance Issues”, Ph.D. Thesis,
University of Toronto, 1982 (to appear).

GARG82 Garg, A. “Efficient Index Organization for Very Large Files with

Skewed Access Patterns”, (to appear) 1982.

GRAH81 Graham, G. S. and J. Zahorian “THEsolver user guide”, technical

note 18, Computer Systems Research Group, University of Toronto,
1981.

MAG82 Magalhaes, G. “Improving the Performance of Database Systems”,
Ph.D. Thesis, Department of Computer Science, University of

Toronto, 1982.

NIEV81 Nievergelt, J., H. Hinterberger and K. C. Sevcik “THE GRID FILE:

An adaptable, symmetric multi-key file structure”, presented
at ECI81, Third Conference of European Co—Operation in Informa

tics, Munich, October 1981.

47

TSIC8I Tsichritzis, ID. and S. Christodoulakis “Message Files”, Sub

mitted for publication, 1981.

SEVC81 Seveik, K. C. “Database Performance Prediction Using an Analytic
Model”, Proceedings of Very Large Database Conf. 1981, pp. 182—198.

48

DATABASE STORAGE STRUCTURES RESEARCH AT THE UNIVERSITY OF WATERLOO

Gaston H. Gonnet, Per-Ake Larson,
J. Ian Munro, Doron Rotem,

David J. Taylor, and Frank Wm. Tompa

Department of Computer Science

University of Waterloo

Waterloo, Ontario, Canada N2L 3G1

519—885—1211

The principal directions of the data structuring effort at Waterloo

are the development of (1) search techniques for database applications,
(2) storage methods that are particularly frugal in their memory require-.

ments, (3) representation and manipulation techniques to increase robust—

ness, and (14) tools to design and evaluate composite structures. A

central application for these approaches is the design of videotex data

base systems.

1. Search Techniques

Extensive research effort has been and continues to be directed at

investigating alternative representations and algorithms for index

structures. Typical of work in this area is that reported in Gonnet

and Munro’s “Efficient ordering of hash tables” GONN79fl and Gonnet,

Ziviani, and Wood’s “Analysis of 2-3 trees and B-trees” GONN81b]).

Wherever feasible, expected behaviour, worst—case behaviour, and

expected worst—case behaviour are investigated in order to understand

standard algorithms and to develop efficient alternative ones. In

general the analysis of structures is carried out along two directions.

First simulation is used to test algorithms’ practicality as well as to

develop hypotheses for anticipated performance. Once such hypotheses
are developed, there remains the task of proof or refutation. The sub

sequent analyses frequently rely heavily on the use of the Maple alge

braic.~anipulation system, developed by Geddes and Gonnet GEDD81]).

2. Compact Structures

The term “implicit data structure” has been proposed by Munro to

refer to a storage scheme under which the structural information is

implicit in the relative order of the data rather than explicit in

pointers (e.g., the scheme used for heapsort). Such structures are

suitable for placing data on secondary store (where pointer chasing is

expensive) as well as for organizing the records within a physicaL
block (where the storage overhead of pointers is detrimental). Munro

and Suwanda’s “Implicit data structures for fast retrieval and update”

49

nUNR8O]) provided implicit techniques for efficiently maintaining index

structures and for performing nultikey searches. More recent work by
Munro and Poblete has led to such structures which permit searches and

insertions in O(logtn) tine with no extra space.

It is well-known that the expected retrieval time for data is

strongly dependent on the relative probabilities of requests for

elements in a structure, which frequently will not only differ but will

also be unknown. Rather than approximating these probabilities by
storing the number of accesses to each element, a more space—efficient

technique is that of adapting the elements’ order incrementally with

each access (or set of accesses). Work on these self-organizing
structures is exemplified by Allen and Munro’s “Self organizing binary
search trees” ALLE79]), Gonnet, Munro, and Suwanda’s “Exegesis of self-

organizing linear searcht’ GONN81a]), and Matthews, Rotem, and Bretholz’s

“Self-organizing doubly linked lists” MATT8O]).

As a third related aspect, Gonnet and Larson are investigating
hashing organizations that minimize the number of probes to secon

dary storage while maintaining in main memory only a few bits per
bucket. Three approaches are being examined: What is the best method

that uses only one bit per bucket? How many bits are required to guar
antee retrieval in one probe? Is there a technique which by suitably
ordering the elements prior to insertion requires only one bit per

bucket in main memory and guarantees retrieval in one probe?

3. Robust Structures

As organizations become dependent upon computer systems, they be

come highly sensitive to failures in these systems. One approach to

reducing occurrences of failures is to make systems fault tolerant.

Thus Munro and Taylor are involved in developing data structures which

are tolerant of both hardware and software faults, as exemplified in

Taylor, Morgan, and Black’s “Redundancy in data structures” TAYL8O]).

One aspect of the work is the development of general techniques for

analyzing the robustness of data structures, for example, calculating
upper and lower bounds on the number of errors which can be detected and!

or corrected in a structure. Some commonly used data structures, in

cluding linear linked lists, binary trees and, most importantly, B-trees

have been examined in detail. The study of these structures has included

empirical investigations (with pseudo-random errors) as well as theo

retical analyses.

~. Composite Structures

The behaviour of many storage structures has been analyzed in iso—

lation, but there has been much less work devoted to studying the inter
action of superimposed structures. Tompa has developed a framework for

examining data structures at several levels of detail, and this has been

50

particularly formalized for the representational levels in Gonnet and

Tompa’s “A constructive approach to describing algorithms and their

data structures” GONN8O]).

Tompa and Rarnirez’s “An aid for the selection of efficient storage

structures” TOMP81]) describes several algorithms based on dynamic pro—

grarnming to create a composite structure from a set of compatible rep

resentations for the components. Taylor and Black are developing tech

niques for evaluating the robustness of such a composite representation.

The goal of current research is to investigate the practicality of these

ideas and to enhance them as necessary to build an integrated facility.

5. Videotex

•
One emphasis of the data structuring effort is the application of

its research to the design of videotex databases. Initial observations

are reported in Tompa, Gecsei, and Bochmann’s “Data structuring facilities

for interactive videotex systems” TOMP81}). Contributing to the state

of—the—art in videotex is dependent on direct access to a videotex server.

To this end, the CCNG/Telidon host software, running under Unix, was de

veloped by members of the Computer Communications Networks Group at the

University of Waterloo.

Gonnet, Manning, and Tompa are conducting research into the design,

analysis, simulation, and implementation of mnemonic page labelling

schemes, keyword access to Telidon data, data structures for interfacing
videotex data to external databases, and memory management schemes for

efficient page retrieval. Related research on distributed software is

also being applied to videotex problems where appropriate.

REFERENCES

ALLE79 Allen, B. and J.I. Munro “Self Organizing Binary Search Trees”,
JACM 25,14, (October 1979). pp. 526-535.

GEDD81 Geddes, K.O. and G.H. Gonnet “Maple User’s Manual”, U. of

Waterloo, Department of Computer Science, Tech. Rept. CS-81-25

(July 1981) 140 pp.

GONN79 Gonnet, G.H. and J.I. Munro “Efficient Ordering of Hash Tables”,
SIAM J. Comp 8,3 (August 1979), pp. ‘463—’478.

GONN8O Gonnet, G.H., and F.W. Tompa “A Constructive Approach to the

Design of Algorithms and their data structures”, Tech. Rep.
CS-80-147, Dept. of Computer Science, University of Waterloo,
(November 1980), 15 pp.

GONN81a Gonnet, G. H., J. I. Munro and H. Suwanda “Exegesis of’ Self

51

organizing Linear Search”, SIAM J. Comp 10,3 (August 1981),
pp. 613—637.

GONN81b Gonnet, G.H., N. Ziviani and D. Wood “Analysis of 2—3 Trees

and B-Trees”, CS—81—21, Dept. of Computer Science, University
of Waterloo, (June 1981) 30 pp.

MATT8O Matthews, D., D. Rotem and E. Bretholz “Self Organizing Doubly
Linked Lists”, Intern. J. Comp. Maths, A 8 (1980) pp. 99—106.

MUNR8O Munro, JI. and H. Suwanda “Implicit Data Structures for Fast

Retrieval and Update”, JCSS 21,2 (October 1980), pp. 236-250.

TAYL8O Taylor, D. J., D. E. Morgan and J. P. Black “Redundancy in

Data Structures”. IEEE Trans, Soft. Engg. 6.6 (November 1980),
pp. 585—602.

TOMP8O Tompa, F.W. and R. J. Rameriz “An Aid for the Selection of

Efficient Storage Structures”, CS—80—~6, Dept. of Comp. Sd.,
University of Waterloo, (October 1980) 26 pp.

TOMP81 Tompa, F.W., J. Gecsej, and G. V. Bochmann “Data Structuring
Facilities for Interactive Videotex Systems”, Computer 111,8
(August 1981) pp. 72—81.

52

SCOPE

The scope of this conference encompasses the technical aspects of specifying, designing, implementing, and

evaluating distributed computing systems. In such systems, there is a multiplicity of interconnected processing
resources able to cooperate under system-wide control on a single problem with minimal reliance on centralized

procedures, data, or hardware. The location of computing resources may span the spectrum from physical
adjacency to geographical dispersion. The lopics of interest include the following aspects of distributed computing
systems:

PAPER SUBMISSION

REQUIREMENTS

Five copies of the manuscript
should be submitted to the

Program Chairman by March 1,

1982. The conference language is

English and papers are restricted

to a maximum ot 20 double-spaced

pages including figures Each copy

must contain u 150 word abstract

and a title page with complete
mailing addresses and phone
numbers ol all authors. A

nubmismon letter muot accompany

the paper It should contain a

commitment to present the paper
at the conlerence it accepted. In

case ot multiple authors, an

indication ot which author is

responsible br correspondence and

preparing the camera-ready copy
Icr the proceedings must be

included. Authors will be notilied

ot acceptance by July t~ 1982 and

will be gives inotruclions tor final

preparation ot their papers.

Deadline tor receiving camera-

ready papers is August 1. 1982

TUTORIALS

In addition In papers, proposals br

one-day Iutnriats are solicited in

any ot the above areas. Such

proposals should be submitted to

the Tutorial Chairman by Dec. t6.

198t. The authors 01 accepted

proposals Will be asked to submit

complete tutorial texts within a

month.

OUTSTANDING PAPER AWARDS

The two best papers will receive

awards. All outstanding papers will

be considered for planned special
issues ot journals.

CONFERENCE LOCATION

Diplomat Hotel in Hollywood,
Florida near (lie international

airport 31 Miami. Beachf ronI resort

with tennis, golf, swimming,
shopping, and boating.

H. J. Siegel
Purdue University
School 01 Electrical Engineering
West Lafayette, IN 47907

Program Chairman

Carl C. Davis

Ballistic Missile

Defense Advanced

Technology Center

ATTN: BMDATC-P

P. 0. Box 1500

Huntsville, AL 35807

Tutorial Chairman

K. H. Kim

Computer Science Dept.
LIB 630

University 01 South Florida

Tampa, FL 33620

Exhibits Chairman

Edith W. Martin

Govt. Systems/CDC
Suite 520

5500 Interstate N. Pkwy.
Atlanta, GA 30328

Standing Committee Chairman

Charles P. Vick

Systems Control. Inc.

Awards Chairman

1. V. Feng
Ohio Stale University

Bob Arnold (Honeywell)
Geneva Belford (U, Ill.)
Bill Carroll (U. Texas)
Glenn Cox (General

Research Corp.)
Barry Gilbert (Mayo Clinic)
J. C. Huang (U. of Houston)
Robert Keller (U. Utah)
Annette Kryglel (Defense

Mapping Agency)
Bill McDonald (systems

Development Corp.)
Vlc Nelson (Auburn U.)
Peter Ng (U. Missouri)
Dan Sleworek (Carnegie-

Mellon U.)
Harold Stone (U. Mass.)
Ken Thurber (Architecture

Tech. Corp.)

Larry WIttI. (SuNYIBuII.)
Ken Batcher (Goodyear)

Bh.ret Bh.rgav.
(U. Pittsburgh)

Doug D.Groot (IBM)
Clarence 01... (Dept.

of Army AIRMICS)
Bob Heath (U. Kentucky)
Lana Kartash.v

(U. Nebraska)
Jack Llpovskl (U. Texas)
Mik. Llu (Ohio Slate U.)
John Mu.. (Belt Labs)

Chong Ham (Systems
Control, Inc.)

C. V. Ramamoorthy
UC/Berkeley

AzrIei Rosenfeld

(U. Maryland)
St.ve Smoli.r (Schlum

berger-Dolt Research)
Joe Urb.n (~. South

western La.)

Li SYSTEM AND HARDWARE ARCHITECTURE,
INCLUDING SIMD

LI DECENTRALIZED CONTROL, EXECUTIVES,
AND OPERATING SYSTEMS

Li DISTRIBUTED DATABASES

Li LOGICAL AND PHYSICAL
INTERCONNECTION NETWORKS

Li COMPUTER COMMUNICATION

Li SOFTWARE ENGINEERING AND

PROGRAMMING LANGUAGES

LI SURVIVABILITY, RELIABILITY, AND FAULT

TOLERANCE

Li SPECIFICATION, VERIFICATION, AND

VALIDATION

Li DESIGN METHODOLOGIES

Li VLSI-BASED SYSTEMS

Li ANALYSIS, MODELING, AND MEASUREMENT

Li APPLICATIONS, INCLUDING SIMULATION

Sponsored by

COMPUTER SOCIETY

TIlE INSTiTUTE or ELECTRICAL AND ELECTRONICS ENGINEERS ~.c

~In Cooparatlon with

information Proc.e.ing
Society of Japan (IP$J)

Instltut National de R.cti.rchs

d’Intormatlque et d’Autonnatique
(INRIA)

PROGRAM COMMITTEE

International Associate Chairpeople
Helmut Kerner. Austria Mariagiovanna Sami. Ifaty
C. M. Woodside. Canada Hideo Aiso, Japan
Paul Pearson, England J. Wilmink, Netherlands
Gerard Le Lann. France P. C. 1. Lee. laiwan
Herbert Weber. Germany Leah J. Siegel. U.S.A.

Additional Program Committee Members will be chosen by the International Associate Chairpeo~Ie.

It you wiSh to receive a copy of the Advance Program for the Third International Conference on Distributed

Computing Systems, clip and mail this coupon to: Harry Hayman. IEEE Computer Society. 1109 Spring
Street, Suite 202. Silver Spring, MD 20910.

NAME

EMPLOYER

STREET

CITY

STATE

ZIP

COUNTRY

53

Upcoming Issues of Database Engineering

June 1982 Topic: Database Applications for VLSI Design
Editor: Professor Randy Katz (608)262—0664
Submission Content: Status and summaries of

initial results of ongoing VLSI—database re—

lated projects.
Submission Deadline: March 15, 1982

September 1982 Topic: Database Query Processing
Editor: Dr. David Reiner (617)369-4000 x353

Submission Content: Summaries of new ideas

on centralized and distributed query pro

cessing.
Submission Deadline: June 15, 1982

December 1982 Topic: Research in Distributed Database

Systems
Editor: Professor Alan Hevner (301)454—6258
Submission Content: Status, opinions, and

future directions in distributed databases.

Submission Deadline: September 15, 1982

March 1983 Topic: Database Research Outside North America

Editor: Dr. Won Kim (408)256—1507
Submission Content: Summaries of database

research outside U.S. and Canada.

Submission Deadline: not yet specified

54

PHYSICAL DATABASE KEYWORD INDEX

ADDM 31

analysis of algorithms 49,50

analytic models 6,16—18,25,26,28,33,37,43,44

assumptions of analytic models 6,44

atomic configuration/costs 9

backup, checkpoint/restart, recovery 27,28

B—trees 49,50

cache buffers for disks 3

clustering 10,19,25,35

concurrency control mechanisms 16,17,27,44

concurrent reorganization 17

data compression 7,12—15

database design and evaluation packages 9—11,23,26—27,33,42—43

database implementation/software projects 6,12—14,19,26—27,33,40,46,51

database performance 6,18,19,26,33,42—44,51

database performance monitor 42

database workload 9,42

DBDS 31—34

DBDSGN 9—11

DDT 18

decomposition 5

descriptive models of physical databases 6,14,32

differential files 6,28

empirical studies 2,42

estimating number of block accesses 40,43

fault tolerant structures 50

file access patterns (empirical) 2,42

file locks 16,17

file migration 2,14

file systems 2,3

file/database statistics (empirical) 2,10,42

files for storing messages 46

FLASH 40

frame memory 26

GRID FILE 44

55

hash—based files

hierarchical databases

implicit data structures

index selection

index structures

inverted files

I/O system optimization/architecture

joins

linksets

linear splitting

logarithmic access

modeling data and queries

multifile databases

multikeyed file structures

multilevel model

multilist files

network databases

optimization techniques/heuristics

optimizer

plausible indexes

query optimization

queueing models

reference strings

relational database system

reorganization

run length encoding

SEEDIS

selectivities

self—organizing files

separability

simple files

skewed access patterns

statistical databases

storage allocation

System R

System 2000

transactions

transposed files

Videotex Systems

WORKBENCH

49—50

25

49

6,9—11 ,25

16,45,49

9—11, 35

3

9,18,39

5—6

6

14

43—44

5, 32, 39

16,44

43

35

5,25,39

6,10,17,18,27,33,35,36,51

9

10

17— 18

43,44

42

9

6,17

12,14

12

42,43

6,17,50

39

5—6

45

6,12—15

17

9

42,43

6

6,7

51

23

56

	40979_DataEngineering_Mar1982_Vol 5_No1.pdf

