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Letter from the Guest Editor

This issue of the Database Engineering Newsletter is devoted

to the topic of Design Data Management, i.e., how to apply tradi

tional database system techniques to the new applications area of

the design environment. We have reports of current research from

five groups in Academia and Industry: Boeing Computer Services,
I.B.M. Research at San Jose, Stanford University, U.C. Berkeley,
and the University of Wisconsin—Madison.

The papers fall into three categories. The group from Boeing
describe their design environment and its data management

requirements, from the viewpoint of the CAD applications builder.

The papers from I.B.M. and Wisconsin describe systems to support
design data being built by database people. The remaining two

papers, from Stanford and Berkeley, address the question of

whether conventional database systems can provide adequate per
formance for CAD applications. Interestingly enough, the two

groups come to very different conclusions!

In reading these reports, one is immediately struck by two

common themes: support for hierarchically constructed design
objects (e.g., “composite objects”, “complex objects”, “ragged
relations”, “design hierarchy”), and the pervasive need to keep
accessing costs “reasonable.”

All of these papers are snapshots of works—in—progress. We

are just beginning to understand the problems and how they map
into database system structures. We are far from solving all of

them. Design data management is beccming an important area of

database research as we enter the mid—1980s.

Yours truly,

J~1
Randy H.

Madison, in
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Engineering Data Management Activities

Within the

IPAD Project

H. R. 3ohnson

D. L. Bernhardt

Boeing Computer Services

Seattle, Washington

ABSTRACT

In this paper we summarize the research and development in engineering data base

management systems by the IPAD project at the Boeing Company.

1.0 Introduction

In 1976 NASA awarded the Boeing Company a contract to develop IPAD (Integrated
Programs for Aerospace-Vehicle Design). The specific goal of IPAD was to increase

productivity in the United States aerospace industry through the application of

computers to manage engineering data. The contract included a requirement for Boeing
to form an Industrial Technical Advisory Board (ITAB) to guide the development of IPAD

i] .
Members of ITAB represent major manufacturing (aerospace and other) and

computer companies. NASA, Boeing, and ITAB have worked together since that time to

analyze engineering design methodologies; to establish requirements for integrated,
computer based systems for managing engineering data, and develop software to

demonstrate these concepts. Results have included development of the RIM and IPIP

data base management systems and a network facility for mu1ti-~st intertask

communication. IPAD documentation and software is in the public domain. ee2] for a

comprehensive discussion of IPAD objectives and products.

2.0 Requirements for Engineering Data Management

Early in the IPAD contract, the engineering design process was analyzed and a number of

requirements for engineering data management were identified. This work was

documented n3 , 4]. The following briefly summarizes these requirements.

Some of the more obvious requirements included: a FORTRAN interface; support for

scientific data types for both scatar and non-scalar (large matricies) attributes; selection

and projection of data with respect to specific elements in matricies; support for

defining and manipulating geometry data and interfacing this with design drafting and

graphic display systems.

Multiple levels and styles of data description are required to provide for differing data

requirements and for data independence to support a variety of users in a dynamic
environment. Specifically, the network and relational data models are required.

‘This work is funded under NASA contract NASI-14700.

2Correspondence may be addressed to the IPAD Program Management Office, The

Boeing Company, P. 0. Box 24346, Seattle, WA 98124, M/S 73-03
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Support is required for dividing a data base into logical partitions, each containing data

associated with an engineering task. A logical partition, referred to in the following as a

“data set”, may include tuples/records from one or more relations/record types. A

relation/record type may span data sets. Facilities must be provided to restrict access

to data sets.

The data manager must also support user description of data sets. This meta-data may

include information such as sources, uses, time of creation, and the quality of data in the

data set. The data manager must support user access to this meta-data.

Versioning of data sets is required to support the iterative nature of the design process.

The data manager must provide for efficient access to versioned data sets while

minimizing physical redundancy across versions. Comparative analysis of versions of a

data set should be supported, along with facilities for tracking the history of change to a

particular design.

A mechanism must be supported to release (approve or sign off) a data set and to insure

that it cannot be changed once released. New versions may be created and modified to

record design changes.

Long term archival of data sets must be supported by the data manager. Archived data

sets must be available upon user demand. Data describing archived data sets must be

available for online perusal.

The data manager must support interactive retrieval and update to support interactive

design and ad hoc queries.

The data manager must support distributed processing in a loosely coupled network of

heterogeneous machines so that data may be communicated between geographically
dispersed divisions of the same firm as well as firms which have received subcontracts

for portions of the design work. The data set is one natural unit of transfer within the

network.

A uniform interface to system facilities should be provided to facilitate learning and use

of the system and communication with other users.

To support the total CAD/CAM environment, the data manager must also provide
support to manufacturing in the traditional sense in terms of providing support for shop
scheduling, material requirements planning, inventory control of finished goods, and the

accounting function. It must also provide for the generation of machine tapes to aid in

the transfer of the design which exists in the data base to the tools which will machine

the parts of the designed product. See 5] for a more complete description of these

requirements.

Finally, the data manager must provide capabilities to support project management.
This should include triggering on user meta-data so that the creation of data sets may be

scheduled and progress monitored by the system.

3.0 The RIM Data Base Management System

The RIM (Relational Information Managment) data base management system was

developed on the IPAD project to explore relational data base concepts prior to the

development of IPIP. RIM has been enhanced by the University of Washington and The
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Boeing Company in cooperation with ITAB and the IPAD Project.

A RIM data base may be accessed in read mode by multiple users. Access to the data

base is restricted to single user, when it is opened for update.

RIM supports a single level of data definition. Relations are organized into schemas.

Schema definition may be entered and modified interactively through a menu interface.

Rules on data relationships within and between relations may be declared. Rules can be

used as constraints, although the user may turn rule checking off and on.

RIM provides several scientific support capabilities with its matrix, vector, and real data

types. It also supports a tolerance capability which supports qualification by user-

specified approximation of equality.

RIM offers both algebra-level (including join) and calculus-level (excluding join) data

manipulation commands through an interactive interface, along with facilities for

formatting retrieved data. RIM supports the calculus-level data manipulation commands

for FORTRAN programs via subroutine calls.

RIM is written primarily in FORTRAN 66, but will compile in FORTRAN 77. It is

available on several hosts: CDC, UNIVAC, VAX, and PRIME. More than 130 copies of

RIM have been supplied to universities and corporations. RIM is used on a daily basis in

many of these organizations.

4.0 The IPIP Data Base Management System

The IPIP (IPAD Information Processor) data base management system is intended to

manage engineering data over time through CAD and CAM environments. To this end,

IPIP supports multiple data models, multiple levels of schemas, and concurrent, multiple

user access through multiple application interfaces in a distributed environment.

Scientific data types and arrays are supported. Composite objects called structures,

which may consist of multiple tuples from multiple relations, may be declared and

manipulated as entities to manage geometry and other scientific data. Data may be

partitioned logically into data sets to support concurrent access, versioning, releasing,
and archival procedures. See 6]for a general description of IPIP.

IPAD has developed a general purpose network facility for intertask communication in a

hetergeneous distributed processing environment. The IPAD network has been

implemented in accordance with ISO specifications of layered protocol. Access to IPIP

and IPIP-managed data is via this network. See 7] for a general description of the

network facility. IPIP and the network are written primarily in Pascal.

1PJP is in early stages of release and consequently is in an evolutionary state. For

example, the latest version of IPIP supports some of the locking aspects of data sets, but

not versioning, releasing, or archival; and initial facilities for the declaration and

manipulation of structures are in integration testing. Application interfaces are limited

to FORTAN programs. IPIP proper, its schema compilers, and CDC and DEC FORTRAN

precompilers execute on CDC CYBER series machines operating under the NOS

operating system. DEC VAX 11 FORTRAN programs against the CYBER-resident data

base may be submitted via the IPAD network from a VAX 11/780 (operating under the

VMS operating system) and then executed on the VAX, DML commands being forwarded

to the CYBER for execution and results being returned via the network to the VAX.
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Application programs submit and receive data in native machine representation.
Currently, IPIP is executing only in a test environment at the Boeing IPAD site.

4.1 Compliance With Standards

One major objective of IPIP has been compatibility with specifications for data

definition and manipulation languages which seem to be leading to a standard. It was

felt that this approach would take advantage of previous work and tested constructs,

would facilitate migration between standard compliant systems and IPIP, and should

facilitate incorporation of IPIP extensions into standards.

Given the work of CODASYL and ANSI committees and the relationships between these

committees, and given the engineering requirement for a FORTRAN interface, the IPIP

Logical Schema Language (LSL) was based upon a subset of the 1978 CODASYL DDL 8]
and the IPIP Data Manipulation Language (DML) was based on a subset of the 1978

CODASYL FORTRAN DML 9] .
Extensions and departures from these specifications

were made in some instances. Some of these are discussed in the following sections.

4.2 Integration of User Interfaces and Capabilities

Integration has been a major objective of IPIP: integration of user interfaces and

integration of capabilities. A single Logical Schema Language (LSL) and Data

Manipulation Language (DML) supports both the relational and network data models and

applications, be they interactive or written in one of several programming languages.
The LSL is used at both the conceptual and external levels of data definition ioJ .

The

Internal Schema Language (ISL) resembles the LSL as nearly as possible. Scientific

features such as the structure-defined composite objects for geometry are integrated
with other data mangement capabilities.

Most aspects of data definition and data manipulation are invariant or are very similar

across data models, application environments, and logical and physical descriptions. The

DATA MODEL clause in the LSL determines which data model specific constructs (e.g.,
CODASYL set or relational foreign key) may be used in a particular schema. Relational

model specific constructs resemble corresponding network constructs. The HOST

LANGUAGE clause in the LSL and ISL specifies which host language rules must be used

in a particular schema to name relations and attributes and to specify data types.
(Alternate, host-independent names may be specified for readibility.) An application
treats both a simple object and a structure-defined composite object in the same way

(i.e., as a relation/record).

The advantages of this integration are several: less language to learn for users of

multiple data definition and/or data manipulation environments; uniformity of semantics

across environments; access to common data at any level of logical schema through any

IPIP-supported data model or application environment; support for the shop where just
one data model and/or application environment is desired; availability of capabilities
traditionally ascribed to one environment in other environments; commonality in

implementation supporting multiple environments.

4.3 Data Architecture
~

By data architecture we mean the framework for configuring data definition and data

manipulation. Data definition for IPIP is organized into schemas, which may be tied

together to provide data independence and various views of data. Data manipulation
commands appear in application programs and interactive sessions.
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There are three types of IPIP schemas: internal, logical, and mapping. The IPIP internal

schema corresponds to the internal schema of the ANSI DBSG 10] and the storage
schema of the CODASYL DDLC s] .

IPIP logical schemas correspond to ANSI

conceptual and external schemas and also to CODASYL schemas and subschemas. The

IPIP mapping schema is used for mapping between schemas of the other two types.

An IPIP data base is described by a single level of internal schemas and one or more

levels of logical schemas mapped to underlying logical and/or internal schemas. An

application program or session may be formulated against logical schemas at any level.

Logical schemas can be configured in the ANSI and CODASYL tree structure

arrangement to provide for centralized definition of a data base through a

comprehensive, base—level logical (conceptual) schema.

Multiple tree configurations of logical schemas can be coupled by mapping one logical
schema to multiple logical schemas or by invoking multiple logical schemas in a single
application program or session. This provides for decentralized definition of a data base

or of a federation of data asesll]. This coupling capability may be used for a variety
of purposes ranging from integration of existing data bases with minimal change to data

definition, to decentralization of data administration over multiple clusters of shared

and/or private data.

The ability to vary the depth of logical schemas supports control of data independence
over a data cluster. The ability to couple logical schemas horizontally supports control

of independence of data and data administration across data clusters -additional

dimensions of independence. Data independence is enhanced in both cases by the use of

mapping schemas, since change often involves only interschema mappings.

JPIP provides for pre-runtime binding of programs and logical schemas. Programs may

be bound at runtime regardless of whether underlying schemas have been bound.

Together, the richness of the IPIP data architecture along with IPIP binding options
permits tradeoffs between degrees of data independence and the overhead of creating,
maintaining, and referencing data description.

4.4 Support for Multiple Data Models

The IPIP LSL and DML support both the relational and network data models. These

languages were based on subsets of the 1978 CODASYL DDL and FORTRAN DML

specifications. Included were those CODASYL constructs supporting sets for which

relationships are determined by states (value or null) of corresponding attributes in

owner and members. Constructs specific to other set selection criteria were excluded.

Inclusion of some constructs (e.g., for set ordering and for multiple member types) was

deferred for one reason or another.

The CODASYL INSERTION and RETENTION clauses which specify constraints on

association/disassociation of members with/from owners were retained and extended

with respect to the handling of null attributes and dovetailed with an IPIP extension

(MEMBERSHIP clause), which provides for member records to be put into ownerless

‘potential’ set occurrences and to be associated automatically by IPIP with an owner

when it is created as well as providing for the CODASYL option where owner must exist

whenever member does (referential integrity in relational terminology). IPIP extensions

include explicit clauses governing IPIP propagation (both from owner to member and
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member to owner) of record deletion. The CODASYL SOURCE clause which provides for

system propagation of item state from owner to member was extended to provide for

bidirectional propagation.

For more direct support of the relational data model, a FOREIGN KEY clause was

included in the LSL using syntax which retained the relational flavor of the concept, but

paralleled set syntax. Clauses were included to specify insertion, retention, and

membership options in terms of item states. Propagation of record (tuple) deletion and

item state may be specified relative to foreign keys as well as to sets.

The IPIP DML provides for operations relative to foreign keys (by name) paralleling
CODASYL operations relative to sets. A WHERE phrase was incorporated into the IPIP

FIND, FETCH, MODIFY, and DELETE commands to support specification of more

general conditions for calculus-level operations. Relation name in a DML command may

be qualified by a cursor name to support program definition of multiple relations,

concurrently, over a single schema-defined relation.

A DATA MODEL clause was included in the LSL to govern which data model dependent
constructs (i.e., set, foreign key, or both) may be used in a particular schema.

‘RELATION’ and ‘RECORD’ are treated as synonyms in IPIP languages, and may be used

interchangeably regardless of data model specified. A DOMAIN clause, which was

included in the LSL and ISL to provide for user-declaration of data types, may be used

with either data model. And it is intended that in future releases of IPIP that regardless
of data model specified, DML commands across relations (records) may be expressed
either in the CODASYL style of referencing schema-declared relationships (e.g., FETCH
items of A, items of B VIA (name of) schema-declared set or foreign key relating A and

B; where a1=b1, ... an=bn is the criteria defining that relationship) or in the relational

style of in-line specification of relationship criteria (e.g., FETCH items of A, items of B

WHERE a1=b1, ... a~=b~). The full relational join is not available at this time.

The unified approach to support for the network and relational data models is described

more fully in 6, 12].

4.5 Other Scientific Capabilities

Currently, attributes of IPIP relations may be integer, real, character, or boolean scalars

or arrays. Selection and projection on individual elements of an array is not supported at

this time.

Initial capabilities for data set partitions of a data base are supported. A data set is

declared implicitly on first user access. Data set intersections with relations are the

units of locking data for read/update. Access by data set is supported by IPIP indexing
(B-tree). IPIP indexing and address conversion structures have been designed to support

access to versions of data sets while minimizing physical redundancy of data across

versions. Data sets may be used in specifying data to be processed by a prototype

facility for transferring data between IPIP and RIM data bases.

Composite objects called structures are supported to manage geometry and other

scientific data. A structure is defined in a logical schema to consist of tuples from a

tree or network of relations as related by foreign keys. A structure may also be defiiied

in terms of records and sets. A relation/record in one logical schema may be mapped to

a structure in another schema. Such a relation/record is said to be structure-defined. A

structure is manipulated (retrieval and update) as an entity through operations on a

7



structure-defined relation; the same commands used on non-structure defined records.

A user accesses structure-defined data at the entity (e.g., surface, curve, segment) level.

A single user command may result in IPIP processing of multiple underlying tuples as

specified by schema-declared constraints and propagated actions for relations and

foreign keys within the structure. On store, IPIP will generate values for unique keys
when the user does not. IPIP will sequence retrieved data according to schema

specification for inclusion in the structures-defined record. User productivity is

enhanced through support of entities which are natural to his application. Data integrity
is enhanced through definition of structure processing in the schema, as opposed to

complicated command sequences being embedded in numerous applications.

5.0 Distributed Processing

Some initial capabilities for distributed processing are in place. This includes the IPAD

network and the VAX interface to CYBER data bases (see Section 4.5). The ability to

loosely couple IPIP data bases (see Section 4.3) has extensive potential for distributed

data management.

A prototype facility is available for transferring data between IPIP and RIM data bases

on a copy and replace basis. One area for further investigation here is the use of IPIP

and RIM in tandem to manage global and local data bases; data sets being copied to RIM

for local use. Questions arise as to the implications for versioning of data sets and/or
locks on data sets which span program executions.
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Using a Relational Database System for Circuit Design

Roger Haskin

Raymond Lone

IBM Research

5600 Cottle Road

San Jose CA 95193

The revolution in circuit fabrication technology poses problems that

threaten to make many conventional design automation systems obsolete.

The size and complexity of modern computer systems increases both the

amount of data to be managed and the number of designers accessing the

data. Also, the long turnaround time necessary to correct chip design
errors requires extensive simulation to be done prior to circuit fabri

cation. Data necessary to the simulation must be correlated to the

network specification (i.e. parts and wires), and this correlation must

remain consistent as the design evolves.

The difficulty of adapting the usually ad-hoc data management facili

ties of existing design systems to handle larger designs has created

interest in employing modern database technology on their behalf.

However, while many features of modern database systems make them attrac

tive for use in a design environment, the fact that they were intended to

manage business data compromise their ability to be integrated into a

design system.

At IBM San Jose Research, we are in the process of modifying System R

1]) to improve its ability to handle design data. Some of this work is

described in 2]. briefly, the extensions we are making include:

Complex Objects are a facility that allows the user to declare and to

specify structural relationships among semantically related data. Fig. 1

shows a complex object for a simplified ‘module’ (e.g. logic block).

Complex objects are implemented by defining three new column types. The

I’IODULES.tiID, PARTS.PID, FUNCTIONS.FID, and SIGNALS.SID columns are all of

the new type IDENTIFIER. The PARTS.MID, SIGNALS.I’IID, FUNCTIONS.PID, AND

PINS.FID are all of type COMP_OF, denoting that the tuples in these

relations are components of (i.e. hierarchical descendents of)

higher-level objects (e.g. a pin belongs to a function residing on a part
of a module). PINS.SID is of type REF. which is used to express

non-hierarchical references. The complex object mechanism allows parti

tioning the relations containing object components (e.g. PARTS,

FUNCTIONS, etc.), and expressing the connectivity among elements of the

partitions (e.g. saying which gates are wired to which). Fig. 2 shows a

small example fragment of a logic diagram expressed in this schema.

Entries in the MID, PID, FID, and SID columns are shown as integers, but

are really system generated unique values (machine id, timestamp).

Complex objects retain the use of value matching to define the partitions
and connections, and also retains the relational query language to perform
data manipulation (although see the comment below). However, by defining
the object structure to the system, it is possible to provide enhanced

performance and integrity checking.
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MODULES

MID~ MODULE NAME 1
PARTS

PID~’1ID~ PART NAME

SIGNALS

LSID~ SIGNAL NAME ]
FUNCTI ONS

rFIDIPID~ FUNCTION NAME 1
PINS

LFID~PIN PIN NAME ~SID~I/Q~

Fig. 1 - Complex Object Schema for Gedanken Logic Designs

Conversational Transactions. Use of the design database is likely to

be highly interactive. This poses problems for the transaction management
and concurrency control facilities of System R (as it would for most other

systems). A transaction is defined to span the period during which the

database is inconsistent. System R was designed for transactions that

access only a few records, complete quickly (i.e. fractions of a second),
and have inputs that are known in advance. Conversational transactions

address two problems of standard transaction management:

a. Changes made by a transaction can be backed out (e.g. due to system

crashes). Backout is intolerable when the transaction spans an incon

sistency due to a long series of interactively entered changes.
b. It is standard practice to suspend (block) a transaction attempting to

access a locked object until the lock is acquired (i.e. rather than

informing the transaction and letting it decide what do). Interactive

users would undoubtedly find such suspensions bothersome.

In most interactive applications, the programts data access patterns map

well onto complex objects. In these situations, complex objects are a

more appropriate lock granularity than relations or tuples. The heart of

the conversational transaction mechanism is a facility for acquiring
locks on entire complex objects, thus including them in the lock graph
2,3]). Conversational locks persist past end of transaction until

explicitly re1eased by the user. An attempt to acquire a conversational

lock on an already locked object returns an error rather than suspending
the transaction.

Database-Data Structure Interface. To achieve adequate performance,

many functions (e.g. display management, simulation) will probably be

done using memory-resident data structures. Perhaps the overriding data

base performance issue is how fast these structures can be built from data

11
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Fig. 2 - Complex Object Fragment for a Signal Path

in the database. The overhead of the record-at-a-time SQL interface

(shared by most other systems) is too high to allow adequate performance.
We are therefore providing an object-oriented interface to allow a data

structure to be built from the data in one complex object or a set of

objects. In addition to creating a data structure from complex objects,
this interface will provide language constructs to initialize elements in

the structures that do not contain data from the database, and will auto

matically translate structural interrelationships defined in the complex

object into pointers in the data structure.

Storing Non-Coded Data. In common with most business-oriented data

management systems, System R has only rudimentary facilities for handling
the non-coded data necessary to many phases of the design process (e.g.
simulation checkpoint data, circuit mask patterns). System R’s facili

ties for managing non-coded data are being modified to greatly improve

performance on updates, to support data items of essentially unlimited

length (2+ Gb), and to manage data stored outside of System R (e.g. in

VSAM datasets).

Preliminary Results

A detailed description of these extensions is available in 2], and

will not be repeated here. However, experience with the design gained

during the implementation effort have led us to several interesting obser

vations.

Our original intent was to implement complex objects by giving each

tuple in the object a unique identifier, and handling structural naviga

L~1 STROBE
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tioii (e.g. retrieving all tuples in a relation belonging to a given

object) using joins. This is, of course, the way a user would implement
such objects on top of a relational system. This proved unsatisfactory
for three reasons: the space overhead of storing identifiers in tuples of

large objects, the time overhead of performing a join (or at least

consulting an index) to follow a reference, and the fact that duplicating
an object would have required a network copy, generating new identifiers

and resolving references to them. we therefore implemented intra-object
access paths using a special table, called the ‘object map’ .

The object

map contains an entry for each tuple in the object (the root tuple occupy

ing the first entry), each entry holding the tuple’s address (TID). The

user thinks that COMPOF and REF columns contain identifiers, but in fact

they contain an index into the object map. This speeds following logical
links (to at most two I/O’s) and enables copying an object by merely

duplicating the tuples and rebuilding the map as the new tuples are

created.

Another interesting question involves the suitability of the relation

al query language for performing queries on complex objects. Consider the

object shown in Fig. 1. Further, suppose we wish to select all modules

where an output pin is connected to more than ten inputs. This would

require the following SQL query:

SELECT UNIQUE MODULE NAME

FROM MODULES ,PARTS ,FUNCTIONS ,PINS P1

WHERE MODULES.MID = PARTS.MID AND

PARTS.PID = FUNCTIONS.PID AND

FUNCTIONS.FID = PINS.FID AND

PINS.IO = ‘0’ AND

10 < (SELECT COUNT (UNIQUE PNID)

FROM PINS P2

WHERE P2.10 = ‘I’ AND

P2.SID = Pl.SID);

Not only is this query clumsy, requiring explicit coding of the joins

necessary for navigating from the pins to the modules containing them, but

they do not even map well into the access path that will be used since, as

mentioned above, the root tuple is known to be the first entry in the

object map. It therefore appeared desirable to provide improved facili

ties for maneuvering in complex objects, for example:

SELECT UNIQUE MODULE NAME

FROM MODULES,PINS P1

WHERE MODULE.NID = ROOT OF(PINID) AND

PINS.IO = ‘0’ AND

10 < (SELECT

Although the example schema and queries are rather contrived, we are in

the process of investigating using the extended System R to manage data

for a large internal design system. Preliminary estimates show that in

addition to the added integrity offered by complex objects, the perform
ance will be dramatically better than it would be for a comparable schema
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using INTEGER columns and joins rather than IDENTIFIER, etc. and the

object map.

Summary

We believe the System R extensions described here overcome many of the

problems conventional database systems have in managing design data. In

particular,

1. By defining the structure of objects to the system, improvements in

performance, structural integrity, and ease of applications program

ming can be. achieved.

2. Complex objects are a more appropriate unit of locking in many cases

than are relations or tuples. Object locks were used to implement
conversational transactions, which greatly improve the ability of the

system to be used interactively.

3. Providing the ability to build program data structures directly from

large objects or sets of objects, and allowing non-coded data to be

stored and retrieved efficiently and in synchronization with the tran

saction and recovery mechanism enhance the performance and utility of

the database system for many common design operations.
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PERFORMANCE OF DATABASE MANAGEMENT SYSTEMS IN VLSI DESIGN

Anne Beetem

Jack Milton

Gio Wiederhold

I. Introduction.

VLSI custom design involves the manipulation of large volumes of diverse interrelated data. The

need to invest 4 to 30 man years for microprocessor design makes single-designer oriented

methodologies infeasible Sch79]. The effort to communicate concepts and data among multiple

design specialists probably contributes significantly to the design cost, and the volume of data is

certain to grow as refinements in fabrication methods allow increases in component count and

heterogeneity. Because database technology has dealt with both the management of large volumes

of data and problems caused by concurrency of data access Ful8O], Mal8O]), we investigate the

effective handling of VLSI design data through the use of database management systems with their

attendant advantages of flexibility, ease of use, provisions for protection, increased data

independence, and concurrency control, for example.

There are several key issues which must be addressed if databases are to become effective tools in

VLSI design. There seems to be Iitt~e disagreement that design systems should exploit hierarchy

Kat82]. Additionally, it is of critical importance that the system allow for a variety of design

methodologies so that 1) changes at any level can be reflected both up and down the design

hierarchy, and 2) different representations of the design (e.g. sticks, layout geometry, circuits, gate

logic) are allowed. Ultimately, the system should maintain equivalence between these

representations more or less automatically e82],Kat82]). Explicit storage for all attributes of all

elements at lower levels of a design must be avoided in order to permit effective management of

change emanating at higher levels, because excessive replication of lower level elements vitiates the

benefits of hierarchical design methods, and because explicit storage at the gate instance level

creates excessive storage demands. To avoid these demands the database system must be able to

fetch actually instantiated data, compute potential, non-instantiated data using stored algorithms, or

“infer” certain parameters of the design from relationships between elements (See Ko81]).

Moreover, in order to make the move away from specialized design files to database systems

acceptable to the design engineering professionals, the performance of the system has to be such

that the degradation of performance relative to that of specialized files is proportional to the benefits

gained.
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II. Current Work.

The main objective of our work is to determine whether commercial database systems, used

knowledgeably, can perform adequately.

The initial set of experiments has revolved around DEC’s DBMS-20, a system based on the

published CODASYL database definition DBT71]. We spent a major initial effort to design the

database schema. In order to obtain correct and high performance operation from current

commercial systems it is essential that the semantics of the application be modelled carefully before

attempting to map them into a database schema WEM79]. Due to availability of data and programs,

we are using data from conventional circuit board design to model the VLSI design process. Since

many of the problems are similar, we believe that the results are applicable to the VLSI design process

as well. More importantly, by using this data, we were able to make benchmark comparisons with

existing specialized design files and programs on the same data.

We first demonstrated the replacement of design files by an equivalent database representation.

Specialized design files of circuit information were used as the control. SDL (Structural Design

Language vC79]) is a straightforward hierarchical description language (e.g. registers are described

in terms of flip-flops, flip-flops are described in terms of gates, gates are described in terms of

transistors). The SDL compiler produces a binary file from a design written in SDL. The binary file

contains the logical description of each component described in the design which is then loaded into

the SPRINT database vC77], the specialized control subject, via a “hardwired” schema. For test

purposes, we chose the PDP-1 1 processor, as described in SDL SL79]. There are eight different

levels in the hierarchical description: cpu (central processing unit), reg (registers), rf 1 (priority arbiter

and timer), r12 (register files), if (flip flops), gate (gates), trans (transistors) and bottom (primitives).

The CODASYL schema was modelled closely to the SPRINT schema except for revisions to take

advantage of the network structure. The binary file produced by the SDL compiler was loaded into

the DBMS-20 database. The initial loading of the PDP-11 example took SPRINT about one minute

and required about four minutes for DBMS-20, which we find acceptable.

Reading from the Database

The next experiment tested the time i~ takes to both read from and write into the database. A

macroexpander program Pay8O] was used which first reads the logical description of a high level

component from a database. The user then specifies the levels to be expanded. Thus, if the user

requests that the program expand all levels down to the transistor, the resulting output will be the

logical description of the original component described totally in terms of transistors. This form of

description could be the input to a simulator ~rogram. Also, in the VLSI environment, this could be

the first step in producing the layout diagram.

The macroexpander program needs to do very many random read operations, especially if the

component that is being expanded is large and described at a high level. The following are the results

of expanding the PDP.1 1 and its ALU:
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SPRINT DBMS-20 Records read Words read

ALIJ 10 time 21s 33s 1514 7754

CPU time 30 45

PDP-11 10 time. 66 115 5925 28501

CPU time 120 190

These results show less than a factor of two degradation in performance of the DBMS-20. This is an

acceptable trade-off for the increased flexibility and generality of CODASYL and disputes the original

theories that there would be at least an order of magnitude difference in performance.

Writing iat~ the Database

To test writing into the database we do not have a control, as the SPRINT design system does not

have this capability. We proceeded with the DBMS-20 tests hoping that the times would be

acceptable both in an absolute sense and relative to the retrieval times. In order to simulate a real

application of VLSI design, we considered how the database would handle instantiations.

To exercise the representation of a given device within the database, the macroexpander program

was modified so that it could write back into the database. In this mode, after the program expands a

component, it stores the new representation as another internal description. In the design

atmosphere, if the user makes some changes to the original description at a given le~’eI, and stores

this version in the database, the program can choose the appropriate internal description to use when

a higher level component is expanded. This scenario was tested on one of the registers, the ALU.

Two of the parts in the upper level description of the ALU are the 40181 and the 40182. When these

pieces were expanded, the 40181 gave a total read time of 17.4 seconds and a total write time of 41.3

seconds. The corresponding times for the 40182 were 8.78 and 8.82 seconds. Two other pieces at

this level (the MUX and the XOR) were also expanded, and the ALU was expanded again with the

expanded versions of these lower level pieces in the database. The total read time was 48.0 seconds,

and the total write time was 203.0 seconds. We consider that the DBMS-20 implementation showed

an acceptable performance.

Signalling Changes ui the Database

At this stage, we explored implementation of data management facilities not provided by

specialized design files. A strong motivation for using a database is that it provides the data as a

resource to all design participants and so becomes the communication medium in a future VLSI

design environment. To carry this function effectively the database system has to be augmented with

communication paths. These paths may ultimately be oriented in any combination of directions - - up

or down between different hierarchical levels, and sideways between different representations of a

given design.

The downward direction is supported by the hierarchical design process, but in practice design
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changes also flow upwards, as instances at a lower level are modified to satisfy layout, timing, fanout

and other performance oriented needs. We hence have developed communication in the upward

direction, which relates detail to more abstract specifications. The creation or modification of lower

level instances has to be bound to the appropriate higher level elements. We implement this task by a

signalling scheme. Multiple structures at higher hierarchical levels may become involved because an

element may be defined by an association of several higher level entities Wie77]: a simple example is

an element that is defined from the expansion of a functional component and a library description.

The signal of the change creates an exception flag at the higher structures. At a later time, when the

level to which the signal was directed is accessed by the specialist responsible at that design level,

the system provides a warning that a change has been made. An appropriate action could then be

taken; for example, verification of continued correctness at that level, the introduction of a new

version of a component, or a new parameterization of the library description.

One approach to the signalling problem would be to have each component keep track of the upper

level parts that use that component. This is a costly and rigid approach. Alternatively, we developed

a method to find the owners indirectly and implemented a “height first” algorithm to signal by flagging

upper level components. Without going into further detail (See Wie82]), we indicate some sample

flagging times:

Piece Level Time

ALU reg 0.13s

MUX,XOR gate 0.9

INV trans 7.1

TN bottom 21.0

Ill. Dealing with Partially Instantiated Levels.

We have written procedures which will obtain all dependent instances at a lower level of some

element. This requires that first all actually instantiated elements are retrieved, and then all other

elements are obtained by expansion using the macroexpander. Actual instantiations are required to

be stored whenever an element contains data not derivable from the expansion. This is typically true

for elements at the extremes of an otherwise regular structure. For such elements the driving

transistors, the connection configuration, or some layout detail may have to be specified.

IV. Conclusions and Future Work.

The initial approach continues to seem promising: DBMS-20 allowed us to implement both initial

designs and modifications relatively quickly and easily. Coupled with the fact that performance has

not been badly affected, this has allowed us to experiment productively. We expect to use these

experiments to obtain the knowledge needed for eventually designing versatile and complete

database systems for VLSI design. Our immediate goals and activities are the following:

1.) The database description needs to be expanded to deal with the signalling procedures. We are

18



developing the schema further Be81J to incorporate multiple representations and other desirable

expansions using the same reloaded data and timing tests to reaffirm our theory that the overhead

involved in using a commercial database is not prohibitive.

2.) We plan to investigate the passage of information using procedures.

3.) With the development of systems for maintaining equivalence between representations (for

instance the logical and layout aspects of our design), we plan to test the “sideways” passage of

information in order to handle different representations of the same design in a unified manner. The

new schema is designed to facilitate this investigation.

4.) We are in the process of acquiring relational database management systems and wish to do

similar experiments with those systems.

5.) We would like to develop further ways to manage queries that access partially instantiated,

computable and/or retrievable elements.
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1. Introduction

There has been considerable interest in using
relational database systems to manage data for computer
aided design (CAD) systems. However, concerns have been

expressed that database systems generally have been designed
for other uses and might not be well suited to CAD. In

addition, there is concern that relational DBMS’s are too

slow. The purpose of this paper is to report our experience
with implementing a CAD application in a relational DBMS and

comparing its performance with a non—database CAD package.

In Section 2 we discuss the database schema that was

used and describe the structure of the special purpose CAD

package. Then in Section 3 we indicate the experiments
performed and give the results. Section 4 contains a

discussion of the results. Lastly, Section 5 indicates

areas where a relational DBMS was found to be inadequate as

a support tool for CAD applications.

2. The Database Schema

The application package benchmarked was KIC, a graphics
editor for integrated circuit designs developed at Berkeley
2]. A KIC database consists of a collection of circuit

“cells”. Each cell can contain mask geometry and subcell

references. A complete circuit design expands into a tree,
with a single cell at the root and other cells, used as

subcells, for the non—root nodes. Mask geometry can be

associated with each node in the tree. During editing KIC

stores a circuit in virtual memory on a VAX 11/780 computer.

Our INGRES schema reflects the above structure and has

five main relations:
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cell master ( author, master Id, defined)

cell ref ( child, cell ref Id, tll—t32)

box ( use, xl, x2, yl, y~)

wire ( use, wire Id, width xl, ~ ~

polygon ( use, polygon id, vertnum x,

In the cell master relation, name is the textual name

given to the cell and author is the name of the person who

designed it. Master id is a unique identification number

assigned to each cell. It is used for unambiguous
references to the cell within the database.

The cell ref relation describes subcell references.

For example, if the cell “cpu” contains “register” as a

part, then the cell ref relation contains a tuple in which

parent is the identifier of “Cpu” and child is the

identifier of “register”. Tll through t32 are a 3 X 2

matrix specifying the location, orientation and scale of the

subcell with respect to the parent. This representation of

a spatial transform is the one generally used in computer
graphics 3].

The box relation describes mask rectangles. Owner is

the identifier of the cell of which the box is a part. Use

specifies the mask layer; e.g. metal or diffusion Xl and

x2 are the x—coordinates of the left and right sides of the

box while ~ and ~ are the y—coordinates of the top and

bottom.

A “wire” is a connected path of lines. Each tuple in

the wire relation describes one line segment, giving the

coordinates of its centerline (xl, y~, x2, ~) and its

width. Wire id is a unique identifier for a particular
wire. Owner and use mean the same as for the box relation.

A “polygon” is a solid shape with any number of

vertices. One vertex is stored in each tuple of the polygon
relation. X and y are the coordinates of the vertex, and

vertnum orders the vertices (tuples) within one polygon.

3. The Experiment

For our test data we used circuit cells from two design
projects at Berkeley. GORDA is a prototype layout for a

switched capacitor filter 5], and decO—i is a part of the

RISC VLSI computer 6,7]. The design descriptions were

translated from KIC files and loaded into the INGRES

database.
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We programmed three representative CAD retrieval

operations and measured the speed of our test programs

compared to KIC performing the same operations. The test

programs were written in C and made calls to the INGRES DBMS

L4].

~p—leve1 geometry retrieval The first program
retrieved the geometry data associated with a given circuit

cell, not including geometry belonging to subcells. This is

the first step in most CAD editing sessions.

Geometry retrieval with tree expansion The second

program retrieved geometry for all cells referenced in a

fully expanded design tree. Geometry for lower level cells

was transformed to its proper position relative to the root

cell. This operation produces a plot of an entire design.

Retrieval ~ location The third program retrieved

top—level geometry that fell within a small area in the

middle of a cell. This operation would be used to “window”

a circuit.

The tables below show the results of the tests.

Geometry Tuples refers to the number of tuples representing
geometry retrieved from the INGRES database during each

operation. CPU Time and Elapsed Time were reported by the

operating system. The msec/Tuple figures are time divided by
the number of INGRES tuples. The Relative Time rows give
the slowdown factor of our test programs relative to KIC.

Circuit

Geometry Tuples

GORDA

592

KIC INGRES
—

CPU Seconds 7.5 24.0

CPU msec/Tuple 13 41

Relative CPU Time
~ 1

Elapsed Seconds
—

7.5 41
—

Elapsed msec/Tuple 13 ~ 69

Relative Elapsed Time 1 5.5

Pest 1: Top Level Retrieval
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Circuit GORDA

Geometry Tuples

—

12,7T9

KIC INGRES

CPU Seconds 128.3 443.5
—

CPU msec/Tuple 10 35

Relative CPU Time 1 3.5

Elapsed Seconds 128.3 649

Elapsed msec/Tuple 10 ] 51

1 1
5.1Relat lye Elapsed Time

Test 2: Retrieval with Tree Expansion

Circuit decO—i

Geometry Tuples 448

KIC INGRES

Geometries in Window 87 85

CPU Seconds .75 14.5

C

Re

PU msec/Tuple 9 171

lative CPU TIme 1 20

E

Ela

Rela

lapsed Seconds .75 33
—

psed msec/Tuple 9 388

45tive Elapsed Time 1

Test 3: Retrieval by Location
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4. Discussion of Results

In Tests 1 and 2, the factor of three increase in CPU

time for INGRES can be attributed primarily to the fact that

INGRES is a general—purpose DBMS while KIC includes only
functions that it requires. Any DBMS used in place of

special purpose code will show some decrease in performance.
This cost must be balanced against the advantages of using a

DBMS, e.g. simplification of application software, data

independence, etc.

The elapsed time measurements show a larger performance
difference, about a factor of five. This is mainly because

INGRES geometry data is disk resident. KIC geometry data

resides in virtual memory, and since the tests were run on a

dedicated machine with ample main memory, KIC’s data was

actually in real memory.

KIC has a spatial bin structure that allows it to

quickly isolate geometry in the window for Test 3. INGRES

has no such access method and must perform a sequential
search.

The new features suggested in the next section may
narrow the performance gap. In addition, changing INGRES to

manage a virtual memory database would dramatically improve
performance.

5. New Peatures

During our experimentation we identified four features

that should be added to a relational DBMS to facilitate CAD

applications. We discuss them in turn.

5.1. Ragged relations

It would have been convenient for a field in a relation

to repeat a variable number of times. In our database, for

example, this would have allowed us to store data for a

varying number of “boxes” in the cell master relation,
instead of in a separate box relation. The cell master

relation could have been defined by

cell master ( id, name, author,
defined &(use, xl, x2, ~, ~fl.

where the notation “&(...)“ means that the group of five

fields describing a box is repeated, once for each box. The

wire, polygon and cell reference relations could be

coalesced with the cell master relation in a similar way.

This revised schema might be more natural for a user to

understand. In addition, it would speed access to the

25



geometry for a particular cell, since the geometry would be

in one tuple rather than distributed across three relations.

We propose this extension under the name “ragged
relations”. One way to support ragged relations would be to

first provide ordered relations, which has been suggested by
Stonebraker and others 8,11], and then allow relations to

nest, so that a field of a relation could be an ordered

relation. We are investigating this idea.

A database with ragged relations or nested relations is

not in first normal form, and reflects the hierarchical

nature of the data. A language that provides just the

standard relational data manipulation operations must be

augmented before it can be used with ragged relations or

nested relations. We are investigating such an

augmentation.

5.2. Transitive Closure

Our second test program was required to expand subcells

which could nest a variable number of times. This is an

operation similar to a transitive closure and does not

correspond to a single INGRES query. We have extended the

syntax of QUEL with a
* operator to facilitate such tasks.

For example:

range of r is cell ref

range of t is tree

retrieve ~ into tree ( = r.child)
where r.parent = ROOT

or r.parent = t.cell

Here the tuple variable t ranges over the tree relation,
which is the result of the query. The retrieve adds tuples
to tree and is repeated (with t ranging over the new

tuples) until~ there are no new additions.

Some database operations involving transitive closure

are possible in Query—By--Example 12] and in the ORACLE

system 13].

5.3. Access ~ spatial location

Many CAD programs, like our third test program, need to

retrieve design data according to its spatial location.

This test would have run much faster in INGRES if data could

be classified according to a system of spatial “bins”, i.e.

by approximate location.

We are considering adding a spatial bin mechanism to

INGRES as an extension of the secondary index facility. A

two—dimensional array of bins is defined by a grid. A bin
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inaex is a file containing, for each bin, pointers to all

the objects that might overlap that bin. Geometries in a

particular area can be found quickly by looking in the index

under the appropriate bins. For example, a bin index could

be defined by:

index on box is boxbins

~(i~i,x2) through max(xl,x2) ~ 10

min(~j,~) through max(~,~) ~ io5.

This bin index is based on a grid of 10 X 10 squares.
The mm—max expressions specify the size of each box and

define the set of bins it could overlap.

5.4. Unique identifiers

Codd and others 9,10] have suggested the usefulness of

unique identifiers for database objects. They should be

generated automatically by the database system and handled

internally as a special type. In our application we were

forced to manage our own unique identifiers for cells,
wires, etc.

6. Conclusions

INGRES performs typical computer aided design retrieval

operations considerably slower than special purpose

programs. We have suggested a number of enhancements that

could be made to a relational database system that would

improve performance and make the system easier to use for

CAD applications. We are continuing to look for additional
mechanisms along the same lines.
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Abstract We briefly describe on—going research at the University

of Wisconsin into ways of applying database technology for the

management of computer—aided design data.

1. Introduction

Modern database systems have evolved to satisfy the require
ments of traditional EDP applications. These have had either a

transaction (short duration, touch little data) or report (read

only, touch most of database) orientation. Database research has

recently been directed towards the needs of the design automation

community. Computer—aided design systems have a tremendous need

for data management facilities unlike those required by the

canonical debit—credit transaction GRAY78].

Some of these are described here. A design data management

system must support the hierarchical construction of a design

object, to mirror the wide spread use of hierarchical design

methodologies. For example, a microprocessor consists of a con

trol part and a data path part; the latter consists of an ALU and

a register file; and so forth. Further, a design exists in multi

ple representations, and the equivalence across representations
should be enforced by the system. For example, a VLSI circuit

design can simultaneously exist as a block diagram, a functional

description, a transistor network, a stick diagram, a logic

diagram, and a mask layout EMEAD8OI. The system must manage the

evolution of a design, as it progresses from release to release.

Finally, since design objects are so complex, the system must

support multiple simultaneous designers.

2. The Library Paradigm

A major complaint of the design automation community is that

state—of—the—art relational database systems are too slow for

real—time design applications (see GUTT82]). We feel that it is

perhaps unrealistic to expect a database system to interactively

perform updates to a design. A more realistic approach is to

extract data from the system, update it in memory over a long

period of time, and return it when done. We call this model of

usage the Library Paradigm

A design database resembles a hierarchically structured

“electronic filing cabinet,” and serves as a centralized reposi

tory of a design information. A subpart of design (e.g., an ALU

slice of the ALU of the Data Path of a Microprocessor) is

checked—out for design activity in such a way that no concurrent
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designer is working on any of its subparts, nor on any parts that

contain it. The mechanism is based on hierarchical locks with

intentions. Designers can work in parallel as long as they are in

parallel subtrees of the design hierarchy KATZ82a] .
When a

design part is successfully checked out, the data associated with

it is loaded into virtual memory data structures, which are mani

pulated directly by the applications program. The data structures

are periodically checkpointed back into the database. When

through, the design subpart is returned to the database (i.e.,
the locks are released). The system must now enforce integrity
constraints up the hierarchy and across equivalent representa
tions (e.g., has a cell now outgrown its “bounding box” of

geometries?, has a representation been invalidated by a design
change?).

By not updating the database directly, we avoid much of the

overhead of entering and leaving a database system. Applications
programs have more knowledge about the design data and how it is

to be manipulated, and thus provide special purpose data struc

tures for its representation. The database system still provides
the sharable, centralized data repository, as well as a standard

interface for data access.

3. Schema for Design Data Management

We choose to represent a design with three types of tables.

The cell table describes each primitive and composite design
cell. Associated with a unique cell—id is the cell~s name,

designer, and other control information. The composition table

encodes the design hierarchy by describing how more primitive
cells are placed and oriented within higher—level composite
cells. Finally, the representation tables describe how primitive
objects, such as transistors or geometries, are placed within

cells. The details of the representation, as well as the encoding
of orientations and placements, are determined by the programs
that use the representation. For example, mask geometries are

represented as boxes assigned to specific layers and placed on a

Cartesian grid.

4. Work at Wisconsin

We have just begun to undertake a research program in design
data management. Currently underway is an effort to implement a

low—level database system based on System—R~s RSS. The system,
called WiSS (Wisconsin Storage System) ,

is being designed and

implemented in conjunction with Professor David DeWitt and a

group of students led by Tobin Lehman and Richard Simkin. It pro
vides facilities for sequential files, B—tree indexes, binary
links (also implemented wih B—tree structures) , long records, and

file level versions. We are using the system as a research vehi—

cle for a number of experimental projects in database management.
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The features of WiSS most relevent to design data management
are the latter two. Long records are those which are much longer
than a single page. They are meant to handle non—traditional

data, such as text and rasterized images, that frequently arise

in the design environment. Our model of access for long records

is the same as random access files. It is possible to seek to any
location within the record and to read/write any length of data

at that location.

We strongly believe that the system should support versions,
alternatives, and releases. In the design environment, it is use

ful to keep old versions of data on—line for reference. Further,
because of legal requirements, old released versions cannot be

destroyed. Since it is not feasible to keep all versions on—line,
the system must provide facilities for archive and restore, and

mechanisms for differentially encoding old on—line versions.

Alternatives are hypothetical designs, and are implemented as

hypothetical databases STON8O, STON81]. System generated surro

gates are used to identify records across versions. An implemen
tation of differential files based on B—tree indexes over surro

gates is described in KATZ82b] .
In addition, we have been inves

tigating how optical digital disk technology can be used for ver

sion management (similar work appears in SVOB81]).

5. Future Work

WiSS is essentially an access method with some features use

ful for the design environment. We intend to build DAVID, a

design management system, on top of it. DAVID will keep con

sistent a design~s multiple representations and design hierarchy.
It has been structured to keep small that part of the system that

is specific to VLSI design. It should be possible to use DAVID

for other design domains, as long as the objects are designed
hierarchically.

We are also examining the role of a centralized design data

base “server” within a local network of designer workstations.

Again, a paradigm related to a library appears appropriate.
Design parts are checked out and later returned. They can be put
“on—reserve” (read ible, but not updatable). They can also be

“held” for a designer if already checked out to someone else.

6. Conclusions

The design automation community has real needs for design
management facilities, many of which are not currently supported
by state—of—the—art database systems. A fruitful area for data

base research will be to study how database systems can be

extended to fit into this new environment, providing the needed

functionality with a reasonable (and hopefully small) additional

overhead.
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