
DECEMBER 1982 VOL.5 NO.4

a quarterly bulletin

of the IEEE computer society
technical cornrnittee

on

Database

Engineering
Contents

Distributed Data Base Research at

Grenoble University
M. Adiba

Distributed Database Research at

the Politecnico of Milano

S. Ceri, G. Paolini, G. Pelagatti, and

F.A. Schreiber

Distributed Database Management
Research At Computer Corporation
of America

A. Chan and D.R. Ries

Survey of Current Research at

Prime Computer, Inc. in Distributed

Database Management Systems

D. DuBourdieu

Distribtited Data User’s Needs:

Experience from Some SIRIUS

Project Prototypes
AM. Glorieux and W. Litwin

R*: A Research Project on

Distributed Relational DBMS

L.M. Haas, PG. Selinger, E. Berlon,

0. Daniels, B. Lindsay, G. Lohman,

Y. Masunaga, C. Mohan, P. Ng,
P. Wilms, and R. Yost

The Distributed Database

System VDN 33

R. Munz

ENCOMPASS: Evolution of a

2
Distributed Database/Transaction

System 37

J. Nauman

The DDBS POREL: Current

Research Issues and Activities 42

E.J. Neuhold and B. Walter

A Structural View of Honeywell’s
Distributed Database Testbed

14
System: DDTS

5K. Rahimi, M.D. Spinrad, and

J.A. Larson

SCOOP: A System for COOPeration
20

Between Existing Heterogeneous
Distributed Data Bases and

Programs 52

S. Spaccapietra, B. Demo, A. DiLeva,
23 and C. Parent

Performance Analysis of Distributed

Data Base Systems
28 M. Stonebraker, J. Woodfill,

J. Ranstrom, M. Murphy, J. Kalash,

M. Carey, and K. Arnold

47

58



Chairperson, Technical Committee

on Database Engineering

Prof. Jane Liu

Digital Computer Laboratory

University of Illinois

Urbana, III. 61801

Editor-in-Chief,

Database Engineering

Dr. Won Kim

IBM Research

K55-282

5600 CollIe Road

San Jose, Calif. 95193

(408) 256-1 507

Database Engineering Bulletin is a quarterly publication
of the IEEE Computer Society Technical Committee on

Database Engineering. Its scope of interest includes: data

structures and models, access strategies, access control

techniques, database architecture, database machines,

intelligent front ends, mass storage for very large data

bases, distributed database systems and techniques,
database software design and implementation, database

utilities, database security and related areas.

Contribution to the Bulletin is hereby solicited. News

items, letters, technical papers, book reviews, meeting
previews, summaries, case studies, etc., should be sent

to the Editor. All letters to the Editor will be considered for

publication unless accompanied by a request to the con

trary. Technical papers are unrefereed.

Opinions expressed in contributions are those of the indi

vidual author rather than the official position of the TC on

Database Engineering, the IEEE Computer Society, or

organizations with which the author may be affiliated.

Associate Editors,

Database Engineering

Prof. Don Batory
Dept. of Computer and

Information Sciences

University of Florida

Gainesville, Florida 32611

(904) 392-5241

Prof. Alan Hevner

College ot Business and Management

University of Maryland

College Park, Maryland 20742

(301) 454-6258

Dr. David Reiner

Sperry Research Center

100 North Road

Sudbury, Mass. 01776

(617) 369-4000 x353

Prof. Randy Katz

Dept. of Computer Science

University of Wisconsin

Madison, Wisconsin 53706

(608) 262-0664

Dr. Dan Ries

Computer Corporation of America

575 Technology Square

Cambridge, Massachusetts 02139

(617) 491 -3670

Membership in the Database Engineering Technical

Committee is open to individuals who demonstrate willing
DOSS to actively participate in the various activities of the

TO. A member of the IEEE Computer Society may join the

TC as a full member. A non-member of the Computer
Society may join as a participating member, with approval
from at least one officer of the TO. Both a full member and

a participating member of the IC is entitled to receive the

quarterly bulletin of the TO free of charge, until further

notice.

Membership applications and requests br back issues

should be Sent to IEEE Computer Society, P.O. Box 639,

Silver Spring, MD 20901. Papers and comments on the

technical contents of Database Engineering should be

directed to any of the editors.



Letter from the Editor

This issue of Database Engineering presents the current state of

“Research on Distributed Database Systems.’ Twelve of the leading
university and industrial research groups in distributed database sys

tems have contributed short papers that describe their current and

future research efforts. The compilation of these papers provides a

comprehensive survey of this important research area.

Research in distributed database systems has enjoyed a short but

very active history. in the past seven years the research emphasis has

been on establishing a theoretical basis for the important problems of

distributed concurrency control, distributed query optimization, dis~—

tributed system reliability, and design questions such as resource

allocation on distributed systems. Numerous algorithms to solve these

problems have been developed. As a result of this past work research

on distributed database systems has attained a level of maturity in

which many of the important problems are now well understood. The

challenge of current research becomes one of applying this knowledge
to the design of experimental research activities.

The researcn activities reported here demonstrate quite clearly
this evolution from a theoretical emphasis to an experimental
emphasis. Nearly all of the research groups represented in this spe

cial issue have constructed, or are constructing, a distributed data

base system upon which experiments can be performed. Performance

analysis will become an increasingly important consideration in future

distributed database research.

I would like to thank the contributors to this issue for their

interest, enthusiasm, and willingness to meet the stringent deadlines

required to produce a state—of—the—art research bulletin. My thanks

also extends to my fellow editors who provided advice and assistance.

Alan R. Hevaer

1



DISTRIBUTED DATA BASE RESEARCH

AT GRENOBLE UNIVERSITY

Michel ADIBA

Laboratoire IMAC — FRANCE

BP 53X — 38041 Grenoble Cédex

Ph. (76) 54 81 45

1 - INTRODUCTION

Database research and development started at the IMAC Laboratory
at the end of the sixties with Abrial ‘s pioneer work on the

network DBMS SOCRATE. Developed as a prototype this system is now

commercially avaihie in a great variety of computers : IBM,
CII—HB, etc.

At the begining. of the seventies, research activities were mainly
focused on the relational model of data (11).

Data model, database design and relational database system

developments were some of the first topics studied. From 76 to 79

distributed database problems were addressed mostly thru the

POLYPHEME project which was Dart of the nation wide SIRIUS

project. Several other projects started after POLYPHEME to

investigate other aspects of distributed databases systems.
Recent work is centered around generalized databases systems
(i.e. database managing texts, images and voice) with a new

project called TIGER launched in 1982. In the following we

describe distributed databases activities and future research.

2 - RELATIONAL DATABASE DEVELOPMENTS (73 to 75)

This research started by analyzing database design using
hierarchical and network models compared to the relational

approach. A schema translator from network to relational was

designed in 1974 and algorithms to obtain third normal form

relational schemas were also, investigated. In 1977, an

experimental relational DBMS, called URANUS was implemented (12).

It provided an algebraic—like language to dynamically create and

manipulate a set of relations. Originally planned to provide a

relational. interface for the SOCRATE DBMS, it has been used as a

stand—alone relational system in other projects (e.g. .POLYPHEME).

3 - DISTRIBUTED DATABASE ACTIVITIES (76 to 81)

In 1976, POLYPHEME, a joint project with the CII—HB Scientific

Center addressed the distributed database problem. More precisely
the goal of POLYPHEME was to study how to make existing and

heterogeneous databases co—operate over a general computer

network (ARPA—like). In POLYPHEME we addressed the following

topics

— distributed database models homogeneity of distributed

data thru a dynamic relational model, data distribution,

local and global views,
— distributed database design using a bottom—up approach,

2



— distributed database system architecture,
— request decomposition and optimization,
— distributed and parallel execution of decomposed queries

and updates.

The work on POLYPHEME was published in several articles and

theses (1,2). A distributed database syste~m prototype was also

implemented in 1979 on the french CYCLADES network.

This POLYPHEME prototype is now used by several other research

groups in France to experiment on distributed database

approaches.

Cooperation between distributed and heterogeneous databases is a

problem which is still to be solved in its overall generality.
However, we have proposed in POLYPHEME several solution~. For
instance, we described in (1,6) a general relational model able

to take into account the semantic aspects of existing databases.
This model allows for the creation of a “global” relational view

making further cooperation possible.

In order to cooperate, an existing database, which has been

implemented under a network’ or hierarchical DBMS, must present
itself as a relational automaton. This can be achieved in two

different ways. First, several local application programs •can be

added to an existing database in order to build a relational
interface. Each “relation” seen from outside the database can be

manipulated through these local programs which can take advantage
of local data organization and access paths. Each relational

operation, i.e. get, insert, delete, update tuples, corresponds
to a specific program which is activated on demand. Note that all

these local programs need not be written hut can be automatically
generated. A second possibility has been choosen for the

POLYPHEME prototype. using mechanisms developped for the URANUS

project, each cooperating database is translated from its network

DBMS to a relational form and only this relational copy is

manipulated. Once each local database has been transformed into a

relational automaton, cooperation can take place.

The definition of distributed data has been treated in POLYPHEME

in the following way. The first approach to relational
distributed database was to suppose that a relation was the unit

of data distribution. A second step was to consider that user

relations can be spread over several sites. For instance, a

relation can be horizontally partitioned into several fragments
stored at different sites. In POLYPHEME, we have investigated
horizontal and vertical partitioning together with total and

partial replicat~ons. These issues are discussed elsewhere (4)
but they require a complete view mechanism which has not been

implemented so far. The POLYPHEME prototype supports only the

first level of distributed data and the description of the

database is done by specifying for each relation the site where

it is stored.

The global view is cmerely the union of all the local relations

managed by all the sites. Note however that once the distributed

database has been described t.he user is no longer concerned with

data location, i.e. the POLYPHEME prototype provides location

transparency.

3



On—line data definition, retrieval and modification are allowed

in POLYPHEME through a simple relational language based on the

one developped for URANUS. This interface is available to each

POLYPHEME user when interacting with a “Global machine”. Queries
are expressed by combining operands, i.e. relation names and

operators (JOIN, SELECT, PROJECT, . .
.) in a non—procedural way.

Updates are expressed on individual relations.

Interpretation of a given query is done by first transforming the

query into a binary tree structure (1~) and then pipe—lining
tuple results during tree evaluation. This tree interpretation
technique has been adapted to a distributed environment taking
advantage of possible parallelims between the different sites and

reducing the volume of intermediate results which have to be

moved from one site to another. This is done by characterizing
independent sub—trees which can be evaluated locally. Several

studies on these problems have been made so far. Our approach
however does not require maintenance of attributes selectivity
nor estimation of partial results cardinalities.

The POLYPHEME prototype is designed as a network of Abstract

relational Machines. Local Machines (LM) are built around each

cooperating local database in order to make their behaviour

homogeneous. Global Machines (CM) allow users to interact with

the distributed database, providing them with location

transparency. Note thatCH can store and retrieve data “locally”,
i.e. at the site where they are implemented. Each POLYPHEME user

issues a global request (query or update) or sequences of

requests considered as transactions. Global machines decompose
each request into sub—requests and send them to the corresponding
local machines for evaluation as described later.

Figure 1 shows the architecture of the POLYPHEME prototype as

composed of a Global machine located at site A and two Local

machines located at sites B and C. This is a logical
architecture, physically, all combinations are possible to

implement LM and GMs on real computers in a network. The

prototype can easily be reconfigured to match several

possibilities. In particular, we experimented POLYPHEME on the

CYCLADES network with a GM located in Paris and two independent
LM on the same computer in Grenoble (9). Each machine (local or

global) is implemented with three basic components

1) A relational data manager to store, retrieve-local data

and decompose user, requests (URANUS)

2) A distributed execution monitor which provides basic

communications between remote machines, remote program

activation and synchronization (7,8).

3) A global (or local) execution controller reponsible for

sending (or receiving) sub—trees Co (from) other machines,

to trigger and synchronize their parallel (or local)

executions.

4



LOCAL MACHINE

GLOBAL MACHINE

Data

Base

Site A Site C

/ Site B

Data

Base

Figure 1

Following POLYPI-IEME, two other projects on distributed databases

have been launched in 1979 and are now at an ending phase.

— MICROBE is dedicated to the design and the implementation
of a relational DBMS distributed over a local network of

micro—computers (12). Using Plessey micro—computers MICRO I

and MICRO II (LSI—II.) MICROBE can be used as a stand—alone

relational. DBMS which provides a MIQUEL a (micro—SQL) high
level language. Several experiences have been -initialized

around the MICROBE system : query optimization, graphic
interface (QBE—like), database integrity, etc.

— The SCOTT project done at the CII—HB Scientific Center is

more concerned by the cooperation of transactions over a

distributed system. Using a real banking application
(electronic funds transfer) SCOTT investigates both

distributed transaction design and distributed system

implementation. The prototype which is currently
implemented provides a distributed transaction manager with

a two—phase commit protocol (17).

Global controler

Distributed

execution monitor

URANUS

Local
controler

D.E.M.

URANUS

NETWORK

Local

controler

D,E.M

URANUS

5



4 - CURRENT RESEARCH IN GENERALIZED DATABASE ( 81)

Traditionally, database systems have been used in environments
where data is rather static and highly structured, namely for
business applications. However, there is a growing need for

systems which can manage less structured and dynamic data.

Examples of such applications are computer aided design, (CAD)
office automation and graphics.

Office automation and text processing are new applications which
can take advantages of using database technology. Currently,
capabilities of text processing machines are very limited. For

instance, they do not offer very sophisticated classifications
for documents or they cannot be linked easily to general
databases. On the other hand, DBMS offer very poor tools for

managing textual data.

Research on textual database have been made in Grenoble since
1979. For instance (19) reports on an experimental textual

database system which have been built extending the network DBMS

SOCRATE. One of the main result of this experimental work was to

point out the inadequation of classical DBMS and to prepare a

more general research on generalized database systems. After

investigating several areas where databases can he used, we

la~nched this year a new project called TIGER. In TIGER we are

doing research on generalized databases in three main directions

(1) Data models, (2) Systems Architecture and (3) Applications
and user interface.

1) Our goal is to define a generalized data model. We are

currently studing several solutions considering extensions

to the relational model (e.g. ER model or RM/T), semantics

networks and abstract data types.

2) We beleive that a typical generalized database system will

not be an individual computer neither a centralized

database. The type of systems we are looking at will be

dedicated to a group from 10 to 100 people who work on

alive data. Our system will include one or several

database servers linked by a local network to several

sophisticated working stations.

3) We are investigating several solutions to implement high
level generalized interfaces which can take advantage of

all the capabilities of the working station. Although
graphic or form oriented interfaces will be more suitable

for end—users, our system should provide a high level

programming language (e.g. relational PASCAL) in order to

build more general application programs.

6



5.- RELATIONAL MODEL THEORY

Headed by Claude DELOBEL, research in this area is essentially
oriented towards the study of relational schema dependencies and

their properties. It has been established the equivalence between

the properties of FD and MVD with a class of Bolean expressions-

(21). Recent work is studying the join—project operator and

associated full join or embedded join dependencies. More

precisely, the goal of this work is to find a complete set of

derivation rules for these kinds of dependencies (22).

6 - DATABASE GROUP

in september 1982, people who are working in the database area

are M. ADIBA, A. CHAPEL, C. DELOBEL, L. FERRAT, LEE, NGUYEN CIA

TOAN, 3. PALAZZO. D. RIALHE and F. VELEZ. We are also

co—operating with the CiI—HB scientific center, particularly
J.c. CHUPIN, G. BOGO, P. DECITRE, M. LOPEZ and V. JOLOBOFF.

REFERENCES

(1) H. ADIBA

“Un modèl~ relationnel et une architecture pour les

systèmes de bases de donn~ee r~oartiR. Application au

orojet POLYPIIEME”

These de Doctorat d’Etat, Crenoble, September 1978.

(2) N. ADIBA et al.

“POLYPllEME an experience in distributed database. system

and imolementation”.

Distributed database, North—Holland. 1980. Proceeding of

the International Symposium on Distributed Database,

Paris, March 1980.

(3) N. ADIBA et al

“A distributed database system using logical relational

machines”.

VLDP~. Conf.. Berlin, Sept. 1978.

(4) H. ADIBA, J. ANDRADE

“Expressing update consistency in a distributed database”

international Conference on Distributed Systems, Paris,

April 1981.

(‘) N. ADIBA et at.

“The cooperation problem between different database

management systems”
IFIP TC2 Work. Conf.

,
Nice. January 1977.

(6) H. ADIBA

“Modelling approach for distributed databases”

ECI 1978, Venice, October 1978.

(7) E. ANDRE, P. DECITRE

“On providing distributed applications Programmers with

control over synchronization”
Comp. Network Protocol Symp., liege, February 1978.

(8) P. DECITRE. E. ANDRE

“POLYPHEHE project : the OEM distributed execution

moni tor”

tnt. Symp. on Disir. Database, Paris, March 1Q80.

(9) P. DECITRE, J. ANDRADE

“Technical outline of the POLYPHEME demonstration

prototype”
tnt. Symp. on Distr. Datahas~s. Paris. March 1980.

7



(IA) C. DELOBEL

“An overview of the relational dote theory”
Invited paper, IFIP 80, Tokyo-Melbourne, October 1980.

(1!) C. DELOBEL, M. ADZ8A

“Databases and relational systems”
(In french) DIJNOD Paris. (to apoear. in 1982).

(12) NGUYEN CIA TOAN

“flistrihu~ed Query management for a local network datahasp.

aye tern”

2nd International Conference on Distributed Computing
Systems, ParisApril 1981.

(13) NGUYEN CIA TOAN

“URANUS : Une approche relationnelle ~ la cooperation de

bases de donn~ea”

These de 3~me Cycle. Grenoble. December 1977.

(14) NCUYEN CIA TOAN

“L’adapatibl ltd des bases de donn4es par les moyens
r el a t ion n p.1 s’

CongrCs AFCET Informacique 78. Cif/yvette, ~ovember 1978.

(is) NCUEYN CIA TOAN

“A unified method for query decomposition and shared

information updating in distributed systems”
First Inc. Conf. on Distr. Comp. Syst.. Hunstville.

October 1979.

(16) J. LE BIHAN et al.

“SIRIUS: a french nation wide oroject on distributed

database”

VLDR, Montréal. October 1980.

(11) SCOT, Prdsentacion g~ndrale. Centre de Recherche CIt—}18.

Rapport n~ 8, Grenoble. 1980.

(18) SIRIUS

“Actes de~ Journde.c de précentat ion de.q résulcats’

Paris. Novembre 1981.

(19) 1. KOWARSKI, H. LOPEZ

“The document concept in a database”

SICHOD 82.

(20) V. QUINT, H. RICHY, X. ROUSSET, S. SASYAN, C. SERGEANT,
I. VATTON

“Racic service for a local network”

International Conference on local networks and distributed
office systems, London, May 1981.

(21) Y. SAGIV, C. DELO8EL, D. PARKER. R. FACIN,
“An equivalence between relational database dependencies

and a fragment of propositional logic”
To appear in JACM

(22) J. ZIDANI,
“Th~orie des d~compositions Gén~ralisde.s”

These d’Etat a soutenjr (PhD. Thpsj~ to be defended)

8



Distributed Database Research
at the Politecnico of Milano

S. Ceri, G.Paolini, G. Pelagatti and F. A. Schreiber

Dipartimento di Elettronica, Politecnico di Milano,
P. za L. Da Vinci 32, 20133 Milano, Italy

Abstract We briefly describe some of the on-going research in distributed databases at the
Politecnico di Milano. This research is sponsored by the National Research Council of Italy,
PFI, as part of the nation-wide DATANET and DATAID projects.

1. Introduction

Recent years have shown a growing interest in distributed databases, as a natural
confluence of database systems and of computer networks. The development of the first
prototypes has shown the practicability of the distributed database approach as well as the
extreme complexity of such an approach. Many research efforts are needed both in

-

theoretical and in practical issues in order to establish distributed databases and to provide:
the first commercial applications. The research project at the Politecnico of Milano does not
aim to cover all the aspects of a distributed database system (like SDD-1, R* and others),
but rather to give specific contributions in several areas. However, all such contributions fit
within the same framework.

2. Project Framework

The Relational Model is used as a standard interface for describing the data at all the sites
of the database. A Global Schema describes all the relations of the distributed database, and
several Local Schemas describe the relations and fragments of relations which are stored at

each site. Global relations can be horizontally partitioned into fragments according to disjoint
partitioning predicates, or vertically partitioned by subdividing ncn-key attributes into disjoint
sets, and then projecting each of them into a separate fragment; each fragment also
contains the primary key. Partitioning is a major concern of the project; we assume that
relations in a distributed database will be partitioned to take advantage of the possibility of

locating each fragment local to the database site which mostly uses the fragment tuples (that.
site realistically will own access rigths and perform most of the updates on those tuples)~.
Application programs accessing the distributed database are specified in terms of the
relations of the global schema, and they don’t require the notion of fragments.

3. User Language: Extended Relational Algebra

Queries against the global schema are expressed using an Extended Relational Algebra
(ERA) ICePe 80b]. The major extensions provided by ERA are:

(a) the capability of partitioning a relation into horizontal fragments by means of disjoint
fragmentation predicates. This feature provides the same effect produced by the GROUP BY~

clause of SQL, as well as more complicated horizontal fragmentations.
(b) the possibility of evaluating aggregate functions, either over the whole relation or over

each fragment.

ERA is also used for the description of the mapping between relations of the Global Schema
and fragments of each Local Schema (vertical fragmentation is provided by the standard.

projection operation). The mapping is bijective, i.e. it is possible to describe using ERA how

9



fragments should be aggregated in order to return the global relations. Typically, global
relations are given by the union of horizontal fragments and the equijoin on the key
attributes of vertical fragments. Using the inverse mapping, the user query can be

transformed, in a standard way, into a “canonical” query that operates over physical
fragments, and thus describes a query execution strategy. By applying algebric
transformations, the canonical query can be transformed into equivalent expressions, i.e.

other query execution strategies which produce the same result as the user query (see
CePe 80b]).

4. Optimization of Distributed Database Access

Optimization of query processing strategies is investigated in PeSc 79], CePe 82]. Query
execution costs are evaluated as the cost of the required file transfers between sites.

Because of the horizontal partitioning of relations, the typical operations of relational algebra
now span over different fragments. The simplest way of executing them consists in collecting
the fragments into global relations and to apply the operations to them, but this strategy is

not the most beneficial; the alternative way consists in distributing the operations over the

fragments.

The join of two or more relations which are horizontally partitioned is the most critical

operation, since it requires that each horizontal fragment of any relation involved in the join
be compared with all the horizontal fragments of the other one. In CePe 80a] it is shown

that the number of database sites on which the distributed join can be conveniently executed

has an upper limit, which depends on the size of the involved relations. In CePe 82] the

isomorphism is shown between the problem of allocating partial join operations to database

sites and the warehouse location problem. This permits the development of a linear integer

program for the selection of optimal execution sites for distributed joins.

5. Flexibility of the Access Strategy

In our project, queries are compiled and distributed to all the sites participating in the

execution of a multi-site query. However, the need for a certain degree of flexibility at run-

time is recognized. We distinguish between:

(a) data-dependent flexibility the capability of modifying the query execution strategy by
taking into account the value of parameters supplied by the users. We assume that the query.

predicates incorporate in their definitions parameters which are given a value by users at

run-time (as in cursors of System R). Query execution strategies at run-time should take

advantage of this additional information, that is not known at compile-time. A typical
example is the simplification of a query over an horizontally partitioned relation when the

query predicate implies the partitioning predicate of one of its fragments.
(b) failure-dependent flexibility — the capability of modifying the query execution strategy
because of the failure of sites at run-time. A typical example is the use of a different copy of

data when the site storing the copy involved in the strategy is down.

Data-dependent flexibility is obtained using two ERA operations, called “fragment-select”
and “fragment-compare’. They are applied to catalogs in the Global Schema, which also

have a relational description, and produce the identifiers of fragments which are actually
involved in the operations. At run-time, pre-compiled database programs are activated only
on the selected fragments. Failure-dependent flexibility is provided by pre-compiling
alternative access programs. These features are described in CNOPP 82].

6. Run-time System

The run-time system is designed to provide the above two types offlexibility. A

master process on the activation site of the transaction coordinates the actions of slave

processes at the sites participating in the execution of the transaction. The synchronization
and parallelism required by the execution of the transaction is described in terms of a

Control Graph (CG), executed by the master process.

10



The CG is similar to a Petri-net, i.e. a network of places and transitions. The local database
programs which access the database at each site, the other application programs and the
trasmissions of data between sites are modeled in the Petri-net as transitions. A transition
can be fired by the master process when all of its input places have a token; at its
completion, tokens are produced in its output places. The main differences with a Petri-net
are in the following facts:

(a) transitions are not instantaneous, as they correspond to programs which require an

effective execution time

(b) some special transitions can produce only a subset of the tokens in their output places.
This second feature provides the intended flexibility, because by producing tokens
selectively in the output places it is possible to exclude or to substitute some of the pré
compiled programs. In fact, the same effect is produced of a “cut” of part of the graph, that
will not be executed. These features are described in CNOPP 82].

7. Low Level Language: Dataflow Language

At the run-time system level, the distributed database transaction appears as a set of local

programs which are executed locally to each site and of transmission programs between
sites, controlled by a CC. These programs exchange data, in the form of parameters and
relations storing intermediate results. Thus, it is possible to give a low-level description of a

transaction using a dataflow language, which describes the interconnections between the

programs. The language does not deal with the semantics of programs, but it permits the
specification of the import and export session of the programs, i.e. parameters and relations
exchanged. In order to provide flexibility and dynamic reconfiguration, some of the data in

output from programs might be “missing”; this might produce the same effect as the “cut”
in the Petri-net described above. The compilation of this low level language produces as a

result the CC and the activation records for the local programs. These features are

described in COPP 82].

8. Transaction Management

Two-phase commitment is assumed as a standard technique for providing transaction

atomicity. Our major concern in transaction management is to allow updates to replicated
objects to proceed even in the case of failure of some of the sites. In CNOP 82] we describe
a technique, called Majority 2 Phase Locking (M-2PL), that provides this feature. According
to this technique, transactions are allowed to commit if a majority of the copies in the write
set is available, while updates to the other copies are propagated later by an alignment
process. Thus, update transactions can proceed also in the case of single site failures or

network partitioning (M-2PL assures that only one transaction at a time has the write locks
on a majority of copies and can perform the update). Necessary and sufficient conditions for
this approach and algorithms which satisfy such conditions are described in CNOP 82}.

9. Reliability Analysis

The need of giving figures for parameters such as system’s MTBF and MTBR is strongly felt
in many distributed database applications. Models and techniques for quantitatively
evaluating the reliability of a distributed database system are investigated in Schr 81],
MaRS 81], MaPS 82]. Markov models have been used to describe each component’s
behaviour, and failures both dependent and independent from the state of the system have

been considered.

10. Implementation

Very little effort has been devoted to the implementation of a prototype system up to now~

This is partly due to the fact that we are still in the initial phase of the project, and partly to

our convinction that it is better to have a good understanding of several different aspects of
a system before starting its implementation. We use a network of PDP.1 1/34 which are in
different buildings on the campus, with a star network configuration. Communication
software is standard Dec-Net. We are currently implementing the system bottom-up, starting

11



from the run-time part; this involves the implementation of the Control Machine, to execute

the CG. Our next goal is to complete the design and implementation of the low level

language. That will enable us to develop simple distributed applications.

11. Distributed Database Design

An important issue is the extension of database design techniques in order to apply them to

the design of distributed databases. In CeMP 80], CePe 80a], CeNP 82], CeNW 821 and

NCWD82], the- problem of distributing a database schema over the sites of a distributed

databases has been considered under different assumptions and stressing different aspects.

Also in the design, partitioning is a major concern of the project. CeNP 82] deals with the

specification of requirements about the horizontal partitioning of logical database objects
(relations, record sets, files). The problem in the requirement specification is to determine a

set of predicates which are adequate to represent all the design alternatives for horizontal

partitioning; the paper introduces the notion of completeness and minimality of a set of

predicates. In CeNW 82] the result is reported of research conducted at Stanford University
on the distribution of a database schema. Several candidate horizontal partitionings are

considered for each database object in the schema; a mathematical model is developed for

optimizing the choice of horizontal partitions, minimizing the overall transaction execution

costs. The model determines the optimal solution with non-replicated fragments; replication
is then introduced using an heuristic approach.

The vertical partitioning of database objects has been considered in NCWD 82], which also

reports the results of research conducted at Stanford University. Several algorithms are

proposed for the vertical partition and allocation of database objects, either with or without

replication.

Previous papers have dealt with distributed database design without considering partitioning.
CePe 80a} describes how to evaluate the non-additive benefits that can be obtained by
replication of resources; CeMP 80] gives a simple model for file allocation that applies to

networks of minicomputers.

Our concern will be to integrate all these approaches into a single, parametric design tool

that will have very general capabilities.

References

PeSc 79] G. Pelagatti, F. A. Schreiber: Evaluation of Transmission Requirements in

Distributed Database Access, Proc. ACM - SIGMOD mt. Conference Boston, Ma., 1979.

CeMP 80] S. Ceri, G. Martella, G. Pelagatti: Optimal File Allocation of a Distributed Database

on a Network of Minicomputers, Proc. lnt. ConE. on Databases Heyden P. Co., Aberdeen,

July 1980.
.

CePe 80aJ S. Ceri, G. Pelagatti: A Non-additive Resource Allocation Mode) in Distributed

System Design, IEEPM Report n. 15-80, to appear on Information Processing Letters

CePe 80bJ S. Ceri, G. Pelagatti: Correctness of Read-Only Transactions in Distributed

Databases, IEEPM Report n. 16-80.

CePe 81] S. Ceri, G. Pelagatti: An Upper Bound on the Number of Execution Nodes for A

Distributed Join, Information Processing Letters vol.12 n.1, 1980.

MaRS 81] G. Martella, B. Ronchetti, F.A. Schreiber: Availability Evaluation in Distributed

Database Systems, Performance Evaluation vol. 1, no. 3, 1981.

Schr 81] F. A. Schreiber: State Dependency Issues in Evaluating Distributed Database

Availability, IEEPM Report n. 10-81.

12



CePe 82] S. Ceri, G. Pelagatti: Allocation of Operations in Distributed Database Access,
IEEE-Transactions on Computers vol. C-32, n. 2, 1982.

CeNP 82] S. Ceri, M. Negri, G. Pelagatti: Horizontal Data Partitioning in Data Base Design,
Proc. ACM • SIGMOD Int. Conference Orlando, Fl., 1982.

CNOP 82] S. Ceri, M. Negri, G. Oldano, G. Pelagatti: Majority Locking in Distributed
Databases, IEEPM Report n. 20-82.

CNOPP 82] S. Ceri, M. Negri, G. Oldano, G. Paolini, G. Pelagatti: The Run-Time System of
HERMES-i, IEEPM Report n. 14-82.

COPP 82] S. Ceri, M. Negri, G. Oldano, G. Paolini, G. Pelagatti: A Dataflow Language for
Distributed Database Applications, IEEPM Report n. 19-82.

CeNW 82] S. Ceri, S. Navathe
,
C. Wiederhold: Distribution Design of Logical Database

Schemas, revised version, IEEPM Report n. 14-81, Stanford University Report n. STAN-CS-
81-884.

NCWD 82] S. Navathe, S. Ceri, G. Wiederhold, J. Dou: Vertical Partitioning in Physical and
Distribution Design of Databases, working paper, Stanford University, Stanford, CA 94305.

MaPS 82] C. Martella, B. Pernici, F.A. Schreiber: Distributed Database Reliability Analysis
and Evaluation, Proc. Second Symp. on Reliability in Distributed Software and Database
Systems Pittsburgh, July 1982.

13



Distributed Database Management Research
at

Computer Corporation of America

Arvola Chan
Daniel E.. Ries

Computer Corporation of America

1. Introduction -

Computer Corporation of America is strongly committed to research

that advances distributed database management technology. In this paper,
we summarize the major distributed system development projects in which

we have~ recently been engaged. We also outline on—going fundamental
research efforts that will enhance the capabilities of these systems.

2. SDD—l

SDD—l, originally developed at CCA has the distinction of being the
first general—purpose distributed ~BNS ever developed Rothnie8Q,
Bernstein8Oa, Bernstein8Ob, Hammer8O, Bernstein8l]. SDD—l is a distri

buted, relational DBMS that presents a logically centralized vi~w of a

datEbase to its users while supporting the underlying distrib~ition of
data and processing. SDD—l is composed of functionally identical data
modules that are interconnected via a computer network and that cooperate
in the processing of database queries and updates. The system permits
data to be stored redundantly at many modules in order to enhance the

overall reliability of the system, to improve responsivene~s of the sys
tem to data access requests, to reduce communication costs in processing
transactions, and to facilitate modular and homogeneous upwards scaling
of database size. The Reliable Network subsystem of SDD—l provides the

system with the capability of functioning correctly despite processor
and/or communications failures. A high level of survivability and

robustness is achieved through redundancy of computers, communication
lines, and data.

A fundamental precept of SDD—1 is that users be able to interact
with the distributed system as easily as with a conventional, centralized
one. Thus, the complexities associated with accessing data stored at

remote sites are handled automatically by the system. Techniques have
been developed for optimizing distributed queries that reduce the commun

ication cost in processing the queries. Techniques also have been

developed f9r~updating data stored at multiple data modui.es in order to

permit efficient execution of update transactions while ensuring that

updates cannot cause database inconsistencies. Other SDD—l pioneerin
innovations include the notions of transaction classes and conflict grap
analysis. These notions can improve concurrency achievable in the system
based on knowledge of application characteristics.

The implementation of SDD—l was completed in 1979.

3. Multibase

Multibase is a retrieval facility for interfacing local databases
that reside on different DBMSs at different nodes of a geographically
distributed computer network Smith8l, Katz8l Dayal82a, Dayal82b,
Dayal82c, Landers82j. The Multibase facility will:

1. Provide high—level data definition and manipulation languages for

uniformly querying all data in the multiple databases.

2. Retain local autonomy for organizing and updating databases.

14



3. Ensure the continued validity of all existing application programs.

Multibase includes a powerful, high—level data manipulation language
for expressing global retrieval requests. Requests in this language are

automatically mapped to appropriate queries over local•databa~e~. Such a

mapping must be expressed in a mapping language that is sensitive to the
subtle semantic qualities of the various databases and DBMSs. Because
more than one local database may store information abçut the~same real
world object, the method by which a global database is derived must
incorporate techniques for resolving incompatibilities among these
representations. A key feature of the Multibase approach is that ~he
same language called DAPLEX Shipman8l], is used for both manipulation
and mapping. 1he global schema is defined as a view over DAPLEX versions
of the local databases.(1) In addition, a special integration database
contributes •to the definition of the global schema. This is used to
record additional information (e.g. scale conversion formulas) needed to
resolve differences among individual local database descriptions of the
same global objects. The issue of incompatible data handling and that of
“homogenization” of the heterogeneous local databases are thus treated
separately. The use of DAPLEX for both view integration and view manipu
lation offers potential gains in the areas of data modehng and end—user
query capability.

Global retrieval requests are expressed in DAPLEX without knowledge
of how data is distributed among databases or which fast access paths are
available for locating data in each database. A powerful optimization
strategy is therefore essential for mapping global requests into e~fi—
dent sequences of local operations. Multibase’s global query optimiza
tion strategy is based in part on the data reduction and data movement
techniques used in SDD—l Rothnie8O, Bernstein8l]. That strategy •has
been augmented with additional techniques designed to handle generalized
objects and partially overlapping data. At the same time, the hetero
geneity of database systems introduces three additional factors that
affect query optimization. The different systems may vary widely in:

1. Local processing capability —— Even if the data were local, the
operations required to achieve data reduction might not be supported
locally.

2. Ability to operate on a block of data moved from another site —— This
affects the ability to do semi—joins.

3. Speed of performing local queries —— This affects the cost estimates.

An important technique in the Multibase approach is to parameterize
the different aspects of given database ~ystems, so that they may be used
as input to the optimization strategy. This avoids the expense of writ

ing a separate optimizer for every database and I or DBMS.

Local databases may contain overlapping and sometimes inconsistent
information. For example, one database may only batch update employee
addresses once a month, as opposed to another database that is updated
on—line. Similarly separate local databases could contain separate,
duplicate portions o~ a person’s salary. A Multibase database adminis
trator can specify the conditions under which overlapping information t~ia
exist, and how that data is to be handled. The DBA may specify whic
database to use and how data from the different databases is to be com

bined.

A “breadboard” implementation of Multibase was completed in •early
1982. A prototype syst~ is being irnpl~ented usingAda(2) as the imple
mentation language, and is scheduled for completion in 1984.

(1) The DAPLEX versions of the local databases are straight forward

representation of the relations, hierarchies, or networks that exist in
the local databases.

(2) Ada is a trademark of the Department of Defense (Ada Joint Program
Office).

15



4.D]~i

The DDM is a Distributed Database Manager that is designed to be

compatible with the progr~ing language Ada Chan8l, Chau82a, Chan82b,
Chan82c, Chan82d, Dayal82d, Ries~2]. It is a general—purpose distributed
pBMs that supports the composite language ADAPLEX, which results from the
integration of DAPLEX with Ada. The DDM provides transparency with
respect to location, replication, concurrency, and site failure. While
its functionalities are mostly patterned after those of earlier research

prototypes like SDD—l and R* Williams8l], it goes beyond these earlier
systems in a number of respects. The novel features of the DDM include:

1. Support of DAPLEX. The DDM supports a core language for database
definition and manipulation called DAPLEX. DAPLEX supports the
notions of entities, functions and generalization hierarchies.
These high level concepts greatly reduce the complexity of handlin

highly structured data. At the same time D&PLEX uses a high—leve
predicate syntax that makes database selection expressions easy and

natural to write. The incorporation of fundamental constraints like
referential integrity and subtype overlap in DAPLEX provides new

challenges to efficient storage structure design and access path
optimization. The use of DAPLEX also leads to the support of a ver

flexible scheme for data fragmentation and distribution. The DD

permits “clustering” of pairs of entities of two different types,
based on the existence of a one—to—many relationship between the
entities in question. The “clusteredt’ entities are stored at the
same site to ensure locality of reference. Such “clustering” often
leads to “local sufficiency’ Wong8l] which can greatly improve query
processing efficiency.

2. Unique treatment of replicated data. The DDM distinguishes two kinds
of copies of a data object: regular and backup. Only regular copies
are synchronously updated backups are updated in a batched mode in
the background. Each ~tackup serves as a “warm.” standby that can

readily be promoted to regular status when another regular copy fails
(to retain the desired level of resiliency). Response to update
transactions is improved since they can commit as soon as all the

regular copies have been updated. Response to retrieval operations
is also improved in the DDM due to its use of a dynamic selection

strategy for the materialization of relicated data.• This optimiza
tion takes into consideration the requirements of individual transac

tions and site availability.

3. Optimization for read—only transactions. The DDM implements a

multi—version mechanism to eliminate conflicts between read—only
transactions and update transactions. Read—only transactions are

guaranteed to complete and are never blocked by update transactions.

Likewise, no delays are ever caused by read—only transactions on

update transactions.

4. More robust and efficient recovery algorithms. The DDM design solves
a number of reliability problems not addressed in previous prototypes
like R* and SDD—l. R* uses a two—phase commit protocol Gray78] that

is liable to block should the site that is coordinating the commit

ment fail. SDD—l t~akes use of backup coordinators to improve resi
liency. No provision, however, is made in SDD—l to allow for

recovery from the situation wherein the primary coordinator an4 all
its backups fail simultaneously. The DDM uses an improved version of
SDD—l’s commit al~oritbm to permit automatic recoyery from such “com
mit catastrophes. . Whereas R* handles no replication, SDD—l makes
use of a spooler mechanism to collect update messages destined to a

nonoperational site in order to facilitate the site’s recovery. When
all the spoolers for a given site fail at the same time a ‘spooler
catastrophe” is said to occur and human intervention becomes neces

sary for recovery. The DDM makes use of the audit trails at replica
tion sites in order to recover a failed site. It is designed to

automatically recover from a “total failure.” situation wherein all of
the replication sites of a given data object have failed simultane

ously. The DDM also employs an incremental sitç recovery strategy to

speed up the accessibility of data on a recovering site. The portion
of the data base that is stored at a site is divided into groups of

logically related fragments. Each fragment group is then used as the
unit for recovery. As soon as the locally stored copy of a fragment
group has been rolled forward, that copy can be made accessible to

new transactions immediately.

16



The DDM is beingimplemented in Ada for the purpose of transporta
bility. The initial system is targeted for the VAX machine under the VMS
operating system. It is scheduled for completion in 1984.

5. Further Research on Network Partition

General purpose distributed database systems usually restrict the
~perations that can take place during a network partition situation.
These restrictions prevent different users from simultaneously updating
different copies of replicated data. Several types of database restric
tions have been proposed. One type of restriction would be to prevent
all updates during communication failures. Another type of restri~.ction
would be to allow updates only in a partition that contains a “primary”
copy of the data. Yet another type of restriction is to permit a tran—

saction~to perform the update only if a majority of the copies ~re acces
sible in its partition. •None of the proposed or existing distributed
database management systems is prepared to allow updates to copies of the
same data located in different partitions of the network. Thus, to

effectively use distributed databases in certain types of applications,
we must either assume that communications are completely reliable, or

extend the database recovery mechanisms to correctly restore mutual con

sistency to the copies when the partitions are reconnected. We are

currently investigating two approaches that would allow updates to con

tinue during a network partition situation, and that would restore both
logical and mutual consistency after communications have been repaired.

Both approaches require the recording of auxiliary information dur
ing the lifetime of a partition situation. When communications are rees

tablished, the partitions exchange their respective auxiliary informa
tion. The auxiliary information, along with predefined and application
specific rules, are then used to restore consistency. The approaches
differ in terms of the auxiliary information that is recorded and in the

ways database consistency is restored.

The first approach, called j~g~ transformations records a history of
the transactions that have been run during communication failures. •A~ter
communications have been restored, histories in the different partitions
are merged. Special predefined rules are used to determine the set of
transactions that have to be rerun or to be run differently. These rules

specify which types of transactions are commutative, which types of tran

sactions overwrite other types of transactions, and any special type of
transaction that needs to be run.

The second approach, called data patch records initial database
values when a network partition situations is d~tected. It also records
which values have been changed durln& the life time of a partition. When
communications are reestablished, sites in different partitions exchange
their current values for data items that have been updated. These
current values and their corresponding values at the instigation of the

partiton are then used to update the database according to the prespeci—
fied rules. This approach would call for rules for each type of data
item that can be updated. The rules specify whether to use the latest
data value, apply an arithmetic fwjiction to the data values from the dif
ferent partitions, or run a specific application progr~ •in order to

restore mutual consistency.

The use of either of these approaches requires several additional
research steps. Database administration tools are needed to specify
application specific rules for each approach. Guidelines are needed ~O
design the databases and applications that make these approaches fea~i—
ble. Furthermore, performance studies are required to determine the liiii—
its of the frequencies and the durations of partition situations under
which these approaches are practical.

In addition to the log transformation and data patch approaches, we

are also investigating a hybrid approach that combines the two. We

ex~ect to apply the result of this research to future development of the

17



6. Acknowledgements

The SDD—l project was supported by the Defense Advanced Research

Projects Agency of the Department of Dçfense (DARPA) under contract
N00u39—77—C—0074. The Multibase and DDM projects are jointly supported
by the Defense Advanced Research Project8 Agency of the Department of
Defen8e and by the Naval Electronics System Command (NAVELEX) under con

tract N00039—82—C—0226. The study on network partition is supported b
the Defense Advanced Research Projects Agency of the Department o

Defense and is monitored by the Air Force Systems Command at Rome Air
Development Center under contract F30602—82—C—0037. The views and con—

clu8ions contained in this paper are those of the ~authors and should not

be interpreted as necessarily representing the official policies, either

expressed or implied, of DARPA, NAVELEX, or the U.S. Government.

7. References

Bernsteun80a]
Bernstein, P. A., D. V. Shipman, J. B. Rothnje Jr., “Concurrency Con
trol in a System for Distributed Databases (Sf~D—l), ACM Transactions on

Database Systems Vol. 5, No. 1, March, 1980.
—

Bernstein80b]
Bernstein, P. A., D. W. Shipman, ~‘The Correctness of Concurrency Control
Mechanisms in a System for Distributed Databases (SDD—1), ~ Transac

tions on Database Systems Vol. 5, No. 1, March, 1980.

Bernsteun8l]
Bernstein, P. A., N. Goodman, E. Wong, C. L. Reeve, J. B. Rothnie Jr.,
“Query Processing in a System for Distributed Databases (SDD—15”, ACM

Transactions on Database Systems Vol. 6, No. 4, December, 1981.

Chan8l]
Chan A., S. Fox, W. K. Lin, D. Ries, “The Design of an Ada Compatible
Local Database Manager (L]~4)” Technical Report CCA—81—09, Computer Cor

poration of America, November, 1981.

Chan82a]
Chan, A., S. Fox, W. K. Lin, A. Non D. Ries “The Implementation of an

Integrated Concurrency Control and ~ecovery ~cheme”, ~ SIGMOD Confer
ence Proceedings 1982.

Chan82b]
Chan, A., S. Danberg, S. Fox, W. K. Liii, D. Ries “Storage and Access
Structures to Support a Semantic Data Model”, *LD~ Conference Proceed

ings 1982.

Chan82c]
Chan, A., R. Gray, “Implementing Distributed Read—only Transactions”,
submitted f or publication.

Chan82d]
Chan A., U. Dayal, S. Fox, D. Ries ,“DDM: An Ada Compatible Distributed
Dataf,ase Manager”, to appear in COMkON Digest of Papers 1983.

Dayal82aj
Dayal, U., H. Y. Hwang, “View Definition and Generalization for Database

Integration in Multibase —— A System for Heteroge~ieou~ Distributed Data

bases”, Proceedings of the Berkeley Workshop on Distributed Data Manage
ment ~d~omputer Netwo~t~ 19ö2.

Dayal82b]
Dayal, U., N. Goodman “Query Optimization for CODASYL Database Sys
tems”, ~gj SIGI4OD Conterence Proceedings 1982.

Dayal82c]
Dayal, U., “Global Optimization Techniques in Multibase,”, Technical

Report, Computer Corporation of America, in preparation.

Dayal82d]
Dayál, U., N. Goodman, R. H. Katz, “An Extended Relational Algebra with
Control over Duplicate Elimination”. Proceedings of the A~R Symposi~
on Principles of Database Systems 1982.

18



Gray78]
Gray, J. N., “Notes on Database Operating Systems”, Operating Systems
An Advanced Course Spring—Verlag, 1978.

Haxnmer8Ol
Hammer M., D. Shipman “Reliability Mechanisms for SDD—l: A System forDistributed Databases’s, ACM Transactions on Database Systems Vol. 5,
No. 4, December, 1980.

—
___________

— ________
_______

Katz8l]
Katz, R. H., N. Goodman, T. A. Landers, J. M. Smith, L. Yedwab, “Data
base Integration and Incompatible Data Handling in Multibase —— A system
for Integrating Heterogeneous Distributed Databases” Technical Report
CCA—81—06, Computer Corporation of America, May, 198L

Landers821
Landers, T. A., R. L. Rosenberg, “An Overview of Multibase” •Distributed
Data Bases H. J. Schneider (editor), North—Holland Publis~ting Company,

Ries82]
Ries, D., A. Chan1 U. Dayal, S. Fox, K. Lin, “Decompilation, Optimiza
tion, and Pipelining for ADAPLEX: A Procedural Database Language.”,
Technical Report, Computer Corporation of America, in preparation.

Rothnie8O]
Rothnie, J. B., Jr., P. A. Bernstein, S. Fox, N. Goodman, M. Hammer, T.
A. Landers, C. Reeve, D. W. Shiptnan E. Wong, “Introduction to a System
for Distributed Databases (SDD—1)”, ACM Transactions on Database Sys
tems Vol. 5, No. 1, March, 1980.

— ________
____

Shipman8l I
Shipman, D., “The Functional Data Model and the Data Language DAPLEX.”,
ACM Transactions on Database Systems Vol. 6, No. 1, March, 1981.

Smith8l]
Smith, et. al., “Multibase —— Integrating Heterogeneous Distributed
Database Systems”, Proceedings of the National Computer Conference
1981.

Williams8l I
Williams, R.,, D. Daniels, L. Haas, G. Lapis, B. Lindsay, P. Ng, R. Ober—
marck, P. Selinger, A. Walker, P. Wilms R. Yost, “R*: An Overview of
the Architecture”, RJ3325, IBM Research Laboratory, San Jose, December,

Wong8lj
Wong, E., “Dynamic Re—materialization: Processing Distributed Queries
Using Redundant Data”, Proceedings of the Berkeley Workshop on Distri
buted Data Management and Computer Netwo~1~i 1981.

19



SURVEY OF CURRENT RESEARCH AT PRIME COMPUTER, INC.
IN DISTRIBUTED DATABASE MANAGEMENT SYSTEMS

Deborah DuBourdieu

Prime Computer, Inc.

500 old Connecticut Path

Framingham, Mass. 01701

(617) 879—2960 ext. 4015

The major focus ot research into distributed database systems at

Prime is an on—going investigation of support ror aistributed
transactions DUBO82] .

The current areas of concentration are

improved algorithms for multi—version distributed retrieval

transactions and performance tuning.

Prime has a solid foundation for the support of distributed

systems in its network, Primenet (TM) ,
which provides complete

local and remote network communication services for all Prime

systems GORD79] .
Our ciatabase management system is

CODASYL—compliant and provides full recovery, interactive

database administration, and an interactive query language/report
writer. In developing a distributed DBMS we have concentrated

first upon distributed transactions.

The synchronization technique we use is two—phase locking
ESWA76] but it need be obeyed only by update transactions. For

transactions which are read—only, we employ an optimization of

this technique which uses multiple versions of data items. An

early developer of this technology was Christopher Earnest,
currently of Prime Research. Multiple versions in the context of

timestamp—ordering is discussed in BERN81] ,
and a system whose

multi—version technique is based on ours is found in CHAN82]

The multiple version technique capitalizes on the ract that

read—only transactions require simply that reads be repeatable
(computationally equivalent) , seeing the output of the same write

operation each time the same read is performed. Each data item

can be thought of as having its complete update history available

(though in actuality this history is maintained only as far back

as is necessary to satisfy possible requests). These previous
versions are actually the same versions generated by update
transactions in order to permit dynamic transaction abort after a

concurrency conflict, so no extra work is done except to preserve
the old images as long as there is a read—only transaction which

might make use of Lhem. rransactions receive unique
monotonically increasing transaction numbers which are

interpreted as version or generation numbers. When an update is

performed, the new value of the data item is stamped with the

transaction number of the transaction which wrote it.

When a read—only transaction begins it is given a heavily encoded

20



list ot all transactions whose output is legal for it to read.
When it performs a read, the transaction number in the data block
is checked to see whether it is on the reader’s list. If it is

not, a chain of pointers to previous versions which begins at the

data block is followed backwards in time until a version is found

whose transaction number does appear on the reader’s list.

A distributed transaction is implemented as a group of local

transactions, one at each site the distributed transaction
visits, including the originating site. The Transaction Manager
at the originating site has extra responsibilities in that it
must send requests against remote data files to the correct site
and must coordinate events at start and end of transaction.

Locks are distributed, residing at the site with the data (we
have not yet investigated management of redundant data files).
This has the advantage of incurring the minimum overhead

associated with acquiring locks, since it does not have the

bottleneck problem and communication cost of a central lock

manager site. The problem of distributed deadlock prevention is

dealt with via the hybrid WOUND—WAIT algorithm LROSE78]

This design works very efficiently for global updaters, who

simply acquire a transaction number at any given local site when

they first access a data file at that site. Global readers, who
still use the optimization of previous images, face a new

problem. They must acquire not just one list of completed
transactions, but a list at every site where they access data,
and all of these must be consistent. A simple but relatively
inefficient method for synchronizing this activity is via a lock

which must be obtained by global readers when starting and by
global updaters when ending. We are investigating several more

efficient alternatives, including a variation on timestamp
ordering.

Synchronization of the distributed transaction when it ends is

handled by a variation of the Two—Phase Commit protocol,
developed by Lampson and Sturgis in LAMP76] and by Gray in

GRAY78I .
In the original statement of this protocol, an

important implication is that if the cooroinator fails, then the

participants must wait for the coordinator’s site to restart and
direct the participants to the conclusion of the transaction.

Using our variation, this wait is not necessary in the event that

all the other participants have survived and can communicate with

each other. In this case they can each exchange all the
information they have about the interrupted transaction. If any
of the participants received a commit, they will all decide to

commit. If none heard a commit, they will all decide to abort.
If not all participants survived, then the survivors will have to
wait as in tne original protocol. This variation improves
reliability but at the expense of increased complexity in tne

design.

We have implemented almost the entire system, but have no

21



pertormance statistics yet. We have learned a great deal about
the network support needed by distributed transactions. We used
the network primitive of remote procedure call, with the
Transaction Manager at the originating site taking the role of

master, and each remote site taking the role of slave. We would

now prefer to use high—level network primitives composing a

complete interprocess communication service. This would

facilitate the peer—to—peer communication that takes place in the

(admittedly exceptional) case of coordinator failure discussed

above, as well as in other error conditions.

Areas for future investigation will include management of
redundant data files in the distributed environment, distributed
schema management, and distributed query optimization.

REFERENCES

BERN81] Bernstein, P. A., and Goodman, N.
, “Concurrency Control

in Distributed Database Systems,” ACM~
June 1981.

CHAN82] Chan, A., Fox, S., Lin, W. K., Non, A., and Ries, D.

R. ,
“The Implementation of An Integrated Concurrency

Control and Recovery Scheme,” Proceedings, Int’l. Conf.

on Management of Data, June, 1982.

DUB082] DuBourdieu, D. 3. , “Implementation of Distributed

Transactions,” Proceedings, 6th Berkeley Workshop on

Distributed Data Mgt. and Computer Networks, Feb.

1982.

IESWA76} Eswaran, K. P., Gray, 3. N., Lone, R. A., and

Traiger, I. L., “The notions of consistency and

predicate locks in a database system,” cw~~
~ Nov. 1976.

GORD79] Gordon, R. L., Farr, W. W., and Levine, P., “Ringnet:
A Packet Switched Local Network with Decentralized

Control,” cQW ~ Vol. 3, No. 6, Dec.

1979.

GRAY78] Gray, 3. N., “Notes on database operating systems,” in

~ ~vol. 60,
~Springer—Verlag, New

York, 1978.

LAMP76] Lampson, B., and Sturgis, H., “Crash recovery in a

distributed data storage system,” Tech. Rep., Computer
Science Lab., Xerox Palo Alto Research Center, Palo

Alto, Calif. 1976.

ROSE78] Rosenkrantz, D. 3., Stearns, R. E., and Lewis, P. M.,

“System level concurrency control tor aistributed
database systems,”~
June 1978.

22



DISTRIBUTED DATA USER’S NEEDS

EXPERIENCE FROM SOME SIRIUS PROJECT PROTOTYPES

A.M. GLORIEUX, W. LITWIM

SIRIUS Project, INRIA, BP.1O5, 78153 Le Chesnay—Cédex, France

ABSTRACT

Two different approaches are presented and discussed. First the “Distribu

ted Database Management System” approach where distributed data constitute

a single logical unit for the user (prototype SIRIUS—DELTA). Then the

“Multidatabase Management System” approach where distributed data consti

tute a collection of databases (prototypes MRDSM and MESSIDOR).

1. INTRODUCTION

SIRIUS project was set up in 1977. The goal of the project was the design
of systems to manage distributed databases. SIRIUS was a, socalled, pilot
project. This meant that the resources and the objectives of the project
were larger than the ones of a typical research project. In particular, it

was required from the project to set up research on distributed data mana

gement in French universities, to spread the knowledge of the domain within

the computer industry and potential users, and to design prototype(s) of

DDBMS(s) that would be sufficiently operational to be qualified for indus

trial use.

In order to respond to the objectives, several research studies have been

set up through contracts. These studies gave rise to many theoretical

results. The results have been published in virtually all important confe

rence on databases and/or distributed systems (see the references in

LEBI8O], L1TW82]).

The analysis of user’s needs showed the necessity of two types of systems.

On the one hand, users need systems to manage distributed data that consti

tute a logically single database. This will typically be the case when data

of a centralized database are distributed in order to improve performance
or to provide local data processing autonomy. It would also be the case

when it is desired to build the enterprise database as a database which is

the integration of pre—existing databases, managed by individual data pro
cessing units that may be locally or geographically distributed. Changes to

data locations obviously should not imply changes to the existing applica
tion programs.

On the other hand, users need systems to manage distributed data that cons

titute a collection of databases. Typically, these databases will be inde

pendently created. A collection may involve hundreds of databases that may

23



use different data models. Users of EURONET that interconnects more than

300 heterogeneous bibliographic databases need such a system. It Is also

the case of users of hundreds of databases offered by videotex systems like

TELETEL (France), PRESTEL (UK) or many others under construction.

In SIRIUS, a system of the first type has been called distributed database

management system (DDBMS). A system of the second type has been called

multidatabase management system (MDBMS). We will present the possibilities

that, in our opinion, such systems should offer to users. We will also

shortly present the techniques that we implement in order to provide these

possibilities. These techniques characterize SIRIUS—DELTA prototype that

is a DDBMS, or MRDSM and MESSIDOR prototypes that are MDBMSs for, respec—

tively, relational and bibliographic databases. SIRIUS—DELTA and MESSIDOR

give now rise to the corresponding commercial systems. MESSIDOR is, in

particular, in experimental use at INRIA library.

2. DISTRIBUTED DATABASE MANAGEMENT SYSTEMS

2.1. The ~oss1b1l1ties

The main new possibilities that a DDBMS should provide to users are, in

our opinion, the following ones

2.1.1. The user is not aware of data distribution

The DDBMS is responsible for the identification of all data objects invol

ved in the user’s request, their localization and selection of the proper

copy(ies), if any. In addition, the DDBMS should be able to handle requests

from pre—existing query languages on the submitting sites.

In SIRIUS—DELTA this is achieved using first schemas associated to the DDB

and related local DB’s, next a common internal data manipulation language
the •pivot—language”.

The “pivot—language” is a relational algebra like language that includes

data selection operators (projection, restriction, join, union) and update

operators (create, delete, update).

A global conceptual schema presents to users the Distributed Database as a

logical single database. The Global Internal Schema contains the physical
characteristics of the DDB, mainly distribution rules and mapping rules

between global and local data on each local site. A local external schema

is associated to the DDBMS that provides the global level with an homoge
neous presentation of local data, since local DBs may be heterogeneous.

2.1.2. Various types of data distribution should be available

In order to fit the application needs, various types of data distribution

and duplication must be provided and processed by the DDBMS. This Is neces

sary if one wants to provide some DDB design facilities and processing fa

cilities (e.g.local and parallel processing optimization, usage of

preexisting local data).

A data distribution description language has been developped to describe

the necessary mappings between DDB data objects and local data objects and

the localization rules for these local data objects (data objects can be

distributed up to an attribute value).

24



2.1.3. Distributed data must remain consistent

When concurrent update requests are submitted on the same or on different

sites, the DDBMS must be able to keep consistent the related distributed

data.

A transaction is defined in SIRIUS—DELTA as a sequence of one or several

inquiries/updates enclosed by a BEG—TRANS and an END—TRANS. Distributed

data consistency is achieved thanks to a distributed concurrency system

that provides a unique naming of the transaction, maintains transaction

atomicity and controls local accesses to data objects using locks. A

2—phase locking protocol is implemented and resources are dynamically

requested in the transaction.

In case of failures, the transaction is completed or rolled—back according
to its current status of completion. Strong consistency is achieved, i.e.

all copies are updated or none.

2.1.4. System reliability must be achieved

In a distributed system the number of components (computers, links, etc.)
increases, thus increasing the global fault tolerance.

In SIRIUS—DELTA, system availability is achieved through a dynamic recon

figuration procedure and local log f lies that hold distributed checkpoints.
This permits hot and cold restart procedures.
In addition, failure protection is achieved during transaction commitment.

2.1.5. Heterogeneity

Heterogeneity requirements result either from a wish to offer to users

flexibility on its configuration components and extensions, or from a wish

to make use, as much as possible, of pre—existing components
— data processing units that can be interconnected

— local DBMSS or data managers (DM)
— local DBs or data files.

Heterogeneity is allowed in SIRIUS—DELTA at hardware and software level.

At software level, heterogeneity at DBMS/DM level is taken into account

using the pivot—language. Heterogeneity at local DB or data files level

is taken into account using the local external views associated to the DDB.

2.2. System architecture

In SIRIUS—DELTA DDBMS we rely on an underlying transport layer. It provides
link control between two processes (message and flow control sequencing,
message error—free delivery, signal message of site inaccessibility), and

an adaptative routing to network topological changes.

Four basic functional layers are defined above the transport layer, that

provides
database classical data management function (“DBMS layer)

• distributed data handling functions (SILOE layer)
• distributed concurrency control functions ( SCORE layer)
• distributed execution functions ( SER layer).

25



Each layer involves two components
— a global component, that provides the unified view of a distributed

system
— a local component, that interacts with the global levels and the local

operating system.

Cooperation between the layers SILOE, SCORE and SER is codified via the

Distributed Execution Plan (DEP). A DEP is associated with each query.

All SIRIUS—DELTA layers must not necessarily be implemented upon all sites.

Different configurations may exist in order to fit with specialized data

processing needs and to distribute functionalities (global or local site

only, consumer site, etc).

SIRIUS—DELTA is implemented upon three INTERTECHNIQUE 1N2000. Its con

nection, through the local area network DANUBE, to HB68 with MRDS is under

testing, as well as the connection to connect PHLOX, a micro—computer the

DBMS of which relies upon a network data model and navigational language.

3. MULTIDATABASE MANAGEMENT SYSTEMS

3.1. The ~oss1bil1t1es

The new possibilities that an MDBMS should offer to users are the follo

wing ones

3.1.1. Multidatabase ~uer1es

Users should be able to formulate queries that address simultaneously data

from different databases. For instance, a query to two relational data

bases, let it be RESTAURANTS and CINEMAS, asking for all the restaurants

and cinemas on the same street. Or a query to two bibliographic databases,
let it be INSPEC and PASCAL of EURONET, asking for all the documents

indexed with the key word SIRIUS. All the queries should be formulated

using a single language. If some databases are managed by systems using
different languages, translators to the common one should be designed.

The prototype MDBMS, that we called MRDSM, allows users to formulate multi—

database queries to a collection of preexisting relational databases,

managed by CII—HB commercial DBMS, called MRDS. The query language of MRDS

is an extension of the MRDS language that is very close to SQL. MRDSM

language allows, in particular, the users to employ database names in a

query. A query may produce a relation or a set of relations. Presently, the

multidatabase queries may only retrieve data, multidatabase updates are un

der implementation.

The prototype system MESSIDOR allows one to formulate multidatabase queries
to bibliographic databases. The databases may be on different sites, or

they may be all on one site (ESA, QUESTEL). They may use heterogeneous data

manipulation languages (QUEST, MISTRAL). MESSIDOR provides however a sin

gle language that is very close to COMMON COMMAND SET language. The latter

is recommended by European Community as the standard language for biblio

graphic databases. It Is more than likely that COMMAND SET will become the

world standard.

Presently, the difficulties related to different access procedures, langua

ge heterogeneity and the work with several databases on one—by—one basis

discourage most of potential users of EURONET. Systems like MESSIDOR res

pond to a strong demand and should overcome the present annoying state—of—

the—art. 26



3.1.2. Interdatabase dependencies

Users should be able to define dependencies between data that are within

different databases. These dependencies may, on the one hand, relate

meanings of the names, correspondance between units of measure, etc.

They may, on the other hand, correspond to the Interdatabase consistency
constraints. In particular, they may relate replicated data.

We currently are investigating the corresponding implementation techniques,

using MRDSM system.

3.1.3. Multidatabase views

Users may need a view that presents jointly data that are within different

databases. In an enterprise, a multidatabase view may, for instance,

present selected vital data that are gathered from the major databases of

the enterprise. An MDBMS should also allow one to create a view of views or

of views and databases. Finally, it should allow multiview queries.

In order to create multidatabase views, we plan to use stored collections

of multidatabase queries. The corresponding investigations have just
started. We plan to implement the corresponding techniques on the MRDSM

system.

3.2. System architecture

MRDSM is implemented on a HB—68 computer. For MRDS, it behaves as a user,

i.e. no change to MRDS software is required. For MRDSM, the MRDS system
is the exclusive server of relational data and operations. If a join has

to involve data from different databases, then, in order to allow MRDS to

perform it, a working (temporary) database is created and filled up with

the necessary data. Typically, MRDSM destroys the working databases when

the multidatabase query is completed.

MESSIDOR is implemented on a MICRAL microcomputer. It is intented to be

a personal front—end MDBMS. A site considers the system as a usual termi

nal, i.e. no site software modification is required. MESSIDOR may thus

potentially be used with any database server site.

4. CONCLUSION

We have presented the possibilities that systems managing distributed da

ta should offer to users. The basic techniques that we have developed may

now be considered as validated and will satify many users. However, we

continue research effort, since the gap between what we may presently of

fer to users and their needs still remains large.

NOTE

SIRIUS projet 18 supported by Agence de l’Informatique (ADI)

REFERENCES

LEBI8O] J. LE BIHAN & al. : “A french nationwide project on distributed
data bases”, Proc. 6th VLDB, Montreal, October 1980, 75—85

LITW82] W. LITWIN & al. : “SIRIUS systems for distributed data

management”, Proc. of 2nd Int. Symp. on Distributed Data Bases,
Berlin, september 1982.

27



R*: A RESEARCH PROJECT ON DISTRIBUTED RELATIONAL DBMS

L. M. Haas, P. G. Selinger, E. Bertino, D. Daniels, B. Lindsay,
G. Lohman, Y. Masunaga, C. Mohan, P. Ng, P. Wilms, R. Yost

IBM Research Lab

San Jose, CA 95193

Abstract

The three main goals of the R~ distributed database system--ease of use,

site autonomy and performance--are described. Our progress in meeting
these goals, the current status of our project, and future directions of

our research are also discussed.

1.0 INTRODUCTION

The experimental R~ project at the IBM Research Laboratory has as its goal
the development of a distributed database management system (DDBMS)
meeting three key objectives: ease of use, individual site autonomy, and

reasonable performance. These three objectives have different

implications for a system architecture.

Local autonomy is essential in an environment where sites and

communication lines may fail. To achieve resilience to failures of sites

and communication lines, there can be no reliance on centralized functions

or services, such as a global dictionary, or a centralized deadlock

detector. Site autonomy is also essential to preserve organizational
domains of responsibility in the DDBMS network. This implies that sites

should perform all operations on their own data: their own binding of

print names to internal names, their own decomposition of compound objects
(such as relational views), and their own authorization checking, and of

course, their own database accesses and updates. Site autonomy is most

easily achieved in a system where databases are loosely coupled and

separately managed.

As opposed to autonomy, ease of use and reasonable performance are both

most easily obtained when the databases of a system are tightly coupled
and centrally managed. That architecture would make it relatively simple
to present the user with a single system image, making the distributed

DBMS as easy to use as a single site DB~1S. Better performance is also

easier to achieve in a tightly coupled system where global optimization
can be more easily applied. Most prototype distributed systems have a

reputation for being slow. If distributed database technology is to be

viable, the di~tributed database manageriient system must be built with

careful attention to reasonable performance for typical user operations.

How can a single DDBMS reconcile the conflicting architectural demands

made on it by- these three objectives? Can ease of use, autonomy and

reasonable performance all be achieved by the same DDBMS? These are the

questions which R~ attempts to answer. The remainder of this paper gives
a brief summary of the current status of R~, the progress that it has made

28



in answering these questions, and the directions that additional research

may take in the future.

2.0 R* OVERVIEW

R~ is an experimental distributed database management system being
designed and implemented at IBM Research to explore issues involving
relational data in a distributed environment. R~ consists of a

confederation of voluntarily cooperating sites, each supporting a

full-function database system and communicating via messages.

R* consists of four primary subsystems. The storage subsystem is

concerned with the actual storage and retrieval of data, which are

represented as relatively low level objects at a single site. The data

communications component provides message passing services. The

transaction manager coordinates the implementation of multi-site

transactions. A database language processor translates programs

expressed in the SQL data definition and manipulation language CHAM76

to operations provided by the communication and storage systems. More

details can be found in WILL82J , DANI82], NG82]

The R~ prototype is currently running on a single CPU, with several R*

databases communicating within and between address spaces. Next month, R~

will be installed on several machines in our laboratory. Several R~

systems will run on each machine, communicating with other systems on the

same and on different machines using IBM’s System Network Architecture.

3.0 R* EASE OF USE

R* is an extension of the relational capabilities provided by System R to

a distributed environment. Users make requests to System R in the

non-procedural language SQL. As user comments indicate CHAM8O], System R

was considered easy to use; hence it was logical for R~ to continue using
the SQL language as a user interface. This provides the user with the

basis for a single site image, as the same commands are used to perform
actions on both remote and local tables. Database administrators could

use synonym files for table names to protect the user from any knowledge
of the distributed nature of the system.

4.0 R* AUTONOMY

The next issue to be addressed is that of site autonomy. The principal

technique that R~ uses to achieve autonomy is decentralization. Deadlock

detection, recovery, locking, catalog management, and compilation are all

performed either locally or in a decentralized manner. No service is

centralized In this way, users at each site are never prevented by any

other site from performing any data definition changes they wish to their

own local data: revoking authorization, creating indexes, etc.

This decentralization also leads to a certain degree of resilience. For

example, the high level query execution strategies produced by the query

optimizer at the user’s site are sent to the other sites which will do

work to answer the query. At these sites, another compilation takes place

29



to compile that site’s code for its portion of the query, consistent with

the external constraints of the global plan. If some change later occurs

at these subsidiary sites, they merely mark their local piece of work

invalid, without disturbing any other site. When the query is next

executed, that portion of the query will automatically be recompiled.

5.0 R* PERFORMANCE

We can now address the final issue in our triumvirate: performance.
Compilation is a key to the performance of the System R single site

relational database management system CHAM81J. R~ has also adopted
compilation techniques to improve performance. In R’~, query compilation
is a distributed operation which involves all of the sites participating
in the execution of a multi-site query. The principal issues arise in the

area of catalog management, global vs. local query optimization, the level

of communication between sites at both compilation and execution time, and

recompilation after changes. R~ has local catalogs for local objects,
does remote catalog lookup as necessary, and caches the catalog
information it acquires, thereby avoiding another remote lookup for

subsequent queries on the same remote object.

Query optimization is performed globally by exhaustive search, using
careful pruning techniques to keep the search tree from becoming too wide.

Because we are convinced that simple queries can be optimized trivially,
and that complex queries have a substantial local processing component in

their cost, the R~ query optimizer minimizes a cost which is a weighted
sum of both messages and local processing SELI8O]. Once an access plan
is chosen, the site which performed the query optimization (the one where

the user is located) then sends out a very high level representation of

the work to be done to the sites which will participate in the query

execution.

Two factors affect the goal of performance at execution. The first is

that most of the work to set up the query at each site--to check

authorization, check semantics, choose an access path, and produce
code--was done at compile time. Consequently, the only setup needed at

execution time is retrieval of the compiled program at each site and

verification of the user’s authorization to run it. Since code was

generated at compile time, each site already knows what it should do.

Consequently the control messages flowing at execution time are very
It II ft ft It II

short: startup , stop ,
commit

,
etc. The data that flows between

sites to participate in the query result is blocked into large messages.

The second factor which enhances performance at execution time is

parallelism. Most of the R~ query processing methods, particularly the

join methods, call for parallel execution at the sending and receiving
sites. This means that while the sender is sending the second

message-full of query (or intermediate query) answers, the receiving site

is processing the first message-full. In this way, a sequence of sites

can operate an “assembly line” to produce answers for a join, for example.

Any change to an object on which a query execution strategy is based

(relations, access paths, authorizations) invalidates that portion of the

strategy which is executed at the object’s site. Some changes, such as

migration of a relation, require distributed recompilation and

30



reoptimization of the entire query. Others, such as dropping an access

path, can always be rectified by a local recompilation of the invalidated

portion of the query strategy. While local recompilation is less

expensive than distributed, global recompilation, it may on some

occasions lead to substantial degradations in query performance. By
examining the original strategy and using heuristics, R* can identify
these occasions and do a distributed re-optimization of the entire query.

6.0 ONGOING RESEARCH IN R*

Having demonstrated to ourselves that R~ can achieve performance, ease of

use, and autonomy within the same system, our future research will

concentrate in two areas: adding more function, and evaluating the

technology we have invented.

We already have much of the SQL language working in a distributed

environment. All the data definition statements are running, as well as

insert, update, delete, and select on single tables and joins, including
the use of aggregate functions. Nore complicated queries (such as

subqueries and table migration) are expected to follow shortly.

Some relational ideas, however, have new interpretations in a distributed

environment. For example, we perceive the need for opaque views that can

only be decomposed by the sites which define them, rather than by any

query optimizer. A new kind of object which we believe should be

incorporated into R~ is called a snapshot ADIB8O]. Snapshots contain a

recent copy of some other object(s) which is refreshed periodically by the

DDBMS. R* will also include replicated data and partitioned data. These

new data types can lead to interesting conflicts between the need for site

autonomy and the desire for good performance. A major objective of the R~

implementation of these objects will be to reconcile these goals.

A number of commit protocols are being developed for our very general
model of distributed transaction execution. These protocols are intended

to minimize the number of log records written and the number of times the

records are written synchronously to stable storage. Optimizations are

also being introduced for read only transactions.

One of the major problems faced by the implementors of any distributed

system is debugging. Test buckets which can effectively test distributed

function must be developed. In addition, some tool is needed for

pinpointing bugs when a test bucket fails. For the R* project, this has

meant a tool which allows a user sitting at one terminal to interact with

normal debugging facilities to look at any R~ process running on any
machine in the R~ network.

Another area that is receiving considerable attention at IBM Research is

high availability. A research project has been formed to study
availability issues as they relate to database systems and to build a

prototype of a loosely coupled local network of medium to high-end
processors. A collection of R~’s running on these processors, each

managing a partition of the database, will provide a single database image
to the user. If a DB system fails, it may be restarted in the same or in a

different processor. In the latter case, provisions exist for directly
- accessing the physical media from the new processor.

31



Now that considerable function is running in R*, we intend to explore the

properties of the algorithms we have chosen to implement. For example, we

will install R* on several machines in our laboratory and evaluate its

performance there. The performance properties of join algorithms will

also be investigated, and we may, as a result of our observations, choose

to implement more join methods and discard others.

In conclusion, we are beginning a new phase of design on the R* project
while continuing to evaluate the prototype we have already built.

Bibliography

Adiba, M. E. and B. G. Lindsay. “Database Snapshots”, Proceedings Sixth

International Conference on Very Large Databases Montreal, Canada,
October 1980, pp. 86-91 (also available as IBM Research Laboratory RJ2772,
San Jose, Calif., July 1980).

Chamberlin, D. et al. “Support for Repetitive Transactions and Ad-hoc

Queries in System R”. ACM Transactions on Database Systems Vol. 6, No. 1,
March 1981.

Chamberlin, D. “A Summary of User Experience with the SQL Data

Sublanguage”. IBM Research Report RJ2767, San Jose, California, March

1980.

Chamberlin, D., et al. “SEQUEL 2: A Unified Approach to Data Definition,
Manipulation, and Control”, IBM Journal of Research and Development Vol.

20, No. 6, Nov. 1976, pp. 560-575.

Daniels, D. “Query Compilation in a Distributed Database System”, IBM

Research Laboratory RJ3423, San Jose, Calif., March 1982.

Ng, P. “Distributed Compilation and Recompilation of Database Queries”
IBM Research Laboratory RJ3375 San Jose, Calif., January 1982.

Selinger, P. G. and M. Adiba, “Access Path Selection in Distributed

Database Management Systems”, Proceedings International Conference on

Data Bases ed. Deen and Hammersly, University of Aberdeen, July 1980, pp.

204-215 (also available as IBM Research Laboratory RJ2883, San Jose,
Calif., August 1980).

Williams, R. et al.
,
“R~: An Overview of the Architecture”, Proceedings of

the International Conference on Database Systems Jerusalem, Israel, June

1982. Published in Improving Database Usability and Responsiveness P.

Scheuermann, ed. Academic Press, NY, pp.1-27.

I

32



THE DISTRIBUTED DATABASE SYSTEM VDN

Rudolf Munz

NIXDORF COMPUTER AG

Berlin, West-Germany

1. Introduction

The distributed database system VDN (a german acronym for distributed
database system Nixdorf) is currently under development within Nixdorf.
Its main goals are to provide an easy to use, comfortable relational
database system which is able to administer data stored on different
nodes of a computer network. As a distributed database system it will

provide all features stated in /TRAI 82/, namely

- Location transparency: although data are geographically distribu
ted and may move from place to place, the programmer can act as if

all data were in one node.

- Replication transparency: although the data may be replicated at

several nodes of the network, the programmer may treat the item

as if it were stored as a single item at a single node.

- Concurrency transparency: although the system runs many transac

tions concurrently, to each transaction it appears as if it were

the only activity in the system.

- Failure transparency: either all the actions of a transaction occur

or none of them occur. Once a transaction occurs, its effects sur

vive hardware and software failures.

VDN is not restricted to a certain type of network, that is geographi
cally distributed or local area network. It assumes that virtual commu

nication links exist between any pair of nodes in the network and uses

a simple transport protocol. VDN does not assume a reliable network

(see /HAMM 80/) but copes with all aspects of an unreliable delivery
of messages.

VDN is written in ISO-Pascal. The current implementation is based on

Intel 8086 microprocessors. Because of the portability of the system
it can easily be moved to other processors and operating system en

vi ronments.

33



2. VDN Objects

VDN distinguishes between five types of data objects:
records, fields, groups, subsets and links.

Records consist of a linear sequence of fields. A record type is de
fined by specifying a list of all fieldnames and their datatypes. For
each record type there exists a primary key, consisting out of one or
more record fields. Record fields can be mandatory or optional. VON uses
only two datatypes, namely NUMBER and CHAR with length attributes. For
each field, value restrictions can be formulated using an interval or

enumerating all legal field values.

Groups form a one level aggregation of field names and serve mainly as
a shorthand for a list of record fields. Different group definitions
are allowed to contain the same record field.

Subsets are specified by a query-like qualification of a subset of a
record type. If a file is considered as a relational table, subset de
finitions allow for a horizontal partitioning of that table. Subset de
finitions may overlap.

Links are a shorthand for join expressions in the relational sense. That
is, those joins which are know at database design point or which become
important during the use of the system can be specified and named. In
addition to this, it is possible to construct and maintain access paths
for these static joins.

As can be seen, VDN is not a purist’s implementation of the relational
model. We felt free to incorporate useful features of other data models
without sacrificing the advantages of the relational approach.

3. VDN Functions

The administration of the VDN system is completely freed of the physical
aspects of secondary storage organization. Secondary storage is seen

as a “black box”. The only decisions concerning the physical database
design are the construction of secondary indexes and the support of
links. All other physical design decisions are handled by the system.
That is, the database administration has to specify only the logical
aspects of its database.

The application programmer gets the usual insert, delete and replace
functions together with commands to control the begin, end or abort
of a transaction. Locking (shared or exclusive) has to be stated ex

plicitly by the application programmer. It is possible to specify that
an application program does not want to wait for al lock release in
case of a lock collision.

S

The retrieval functions are distinguished between single record access
and record set access functions. Single record access is provided by
a set of ISAM-like commands based on key ordered records. For record
set accesses a SQL-like SELECT command is provided which creates a

temporary result set. This result set can consist of fields out of
different records (glued together by either static or dynamic joins)
and is ordered according to the specified order criteria.

34



Distributed Queries, are split into subqueries using the definitions

of data distribution provided by the database administration. The

node where the query in entered controls the processing. Semi-joins
initiated by this node are used to implement a join between different

nodes.

The reason for separating single record access and record set access

is that this separation is more convenient in an application program.

Accessing all members of a result set is particularly clumsy if this

set consists of only one member. In addition to this in many applica
tions accesses via the primary key are dominating.

VDN users are separated into different user classes with associated

privilege definitions. These privileges allow the control of all VON

commands down to the record field level.

4. Data Distribution

Subsets (horizontally partitioned relations) are the units of data

distribution in VON. Note that subset definitions are a shorthand for

a qualification. The placement of a subset is a subsequent action.

The subset definitions can exist without the subset being placed.
This is necessary as subset definitions are allowed to overlap and need

not to cover a record type. These rules are more comfortable than the

fragment concept used in /ROTH 80/. The two level existence of subset

definitions allow an application to use its knwoledge about data distri

bution without becomming dependent on it.

Redundancy can be created by overlapping subset definitions or by assig
fling the same subset to different nodes. The placement of subsets can

be changed without affecting application programs. A subset can even

be displaced without deleting the records it contains. In this case,
all records of the subset are moved to the “rest” subset which exists

for each record type. The “rest” subset contains all those records for

which no subset placement definition applies.

Copies of data are updated simultaneously. At the end of a transaction

all redundant data in the system are in the same state. There is however

a mechanism to postpone the updating of copies by “disconnecting” a

node from the network. In the disconnected mode, a node can read all

locally available data but update only those of which no copies exist

at other nodes. These redundant data will remain unaltered until

“reconnect” is given which brings the local copies to the network-wide

newest state. This disconnect—reconnect mechanism is useful for appli
cations where data can be actualized on a day to day basis and an imme

diate actualization is not necessary~. This provides some sort of site

autonomy, however in another sense than used in /DANI 82/.

35



5. Application Philosophy

In geographically distributed networks a distributed database system
supports tasks with a decentralized nature and thus a strong locality
behaviour of data accesses. We assume in such an environment that 80 %

of all accesses or updates concern only the local node and that the

remaining 20 % involve other nodes. In VDN the price for maintaining
copies increments by the same amount for each copy. In commercial en

vironments we assume that if any copies are maintained one additional

copy will be the normal case.

Distributed databases will play an interesting role in local area net

works consisting of workstations and servers. The concept of a distri

buted database allows an easy and transparent replication of a database

server for performance and reliability reasons. The actual data distri

bution and the locality behaviour of data accesses are of minor impor
tance in local area networks. Distributed database systems can also

provide the coupling of different local area networks via a common data

base. In this case, the database server implicitly acts as a gateway to

another network.

Future research is concentrating on a database design aid, and user in

terfaces based on natural language and the integration of office infor

mation system requirements into VDN.

6. References

/DANI 82/ D. Daniels et al.:

An Introduction to Distributed Query Compilation in R*,
Distributed Data Bases (ed. H.-J. Schneider), North-Holland

1982

/HAMM 80/ M. Hammer, D. Shipman:
Reliability Mechanismus for SDD-1: A System For Distributed

Databases, TODS, Vol. 5, No. 4, December 1980

/ROTH 80/ J.B. Rothnie et al.:

Introduction to a system for Distributed Databases (SDD-1),
TODS, Vol. 5, No. 1, March 1980

/TRAI 82/ I.L. Traiger et al.:

Transactions and Consistency in Distributed Database Systems
TODS, Vol. 7, No. 3, September 1982

36



ENCOMPASS

Evolution of a Distributed Database/Transaction System

John Nauman - Tandem Computers Incorporated
19333 Vailco Parkway
Cupertino, Ca. 95014

(408) 725—6000

ABSTRACT

ENCOMPASS is a database and transaction management system that

provides Tandem customers high—level software to develop and install

on—line transaction processing applications in a distributed

environment. This paper outlines the existing parts of the ENCOMPASS

product set and then discusses some of the work currently underway in

each of the areas to provide further capabilities in the distributed

database and transaction environments.

An Outline of ENCOMPASS

Tandem Computers developed the industry~s first commercially available

fault—tolerant computer system designed for on—line transaction

processing BART78]. The term “transaction”, as it is used here,
indicates a business action requiring interaction between an end user

(bank teller or customer) and the data stored in the computer system
GRAY81]. An example of a transaction would be a bank customer~s

interaction with an automated teller machine. Typical applications
for Tandem customers are characterized by the need to support such

transactions in real time and the need to have the system tolerate

faults in both the hardware and the software. Many Tandem customers

make use of the system~s inherent capabilities for modular expansion
and distributed processing. These include two to sixteen processors
connected (via a 13 million bit per second inter—processor bus) to

form a node and up to 254 of these nodes connected in a long-haul
network. A Tandem network features automatic route—through, reroute

in case of a link failure, and best path selection. The network

topology and line type/speed can be chosen by the installation to best

match its requirements. The distributed aspects of the system, in

both the database and transaction processing areas, are the topics of

this paper.

Current Products

ENCOMPASS, the database portion of the Tandem NonStop(TM) computer

The following are trademarks of Tandem Computers Incorporated: Tandem,

NonStop, ENCOMPASS, ENSCRIBE, ENFORM, PATHWAY, ENABLE, and TRANSFER.

37



system software, is composed of the following individual products:

ENSCRIBE (file system)
TMF (transaction monitoring)
DDL (Data Definition Language)
ENFORM (query/report processing)
PATHWAY (application environment)
ENABLE (application generation)
TRANSFER (delivery system)

ENSCRIBE provides access to the data stored in the database. Data can

be stored in any of several storage organizations. The data and

associated indexes can be physically distributed across any of the

processors within a single node or across geographically distributed

nodes. Application programs can access the data without regard for

its geographical location. ENSCRIBE performs all processing necessary

to locate the data within the Tandem network, however, since only one

copy of the data actually exists, some network delay may be

experienced if data is located at other nodes of the network. The

data model supported by ENSCRIBE is the relational data model. The

lack of embedded structure in the relational model is critical to the

system~s distributed capabilities, allowing the data to be accessed

and moved within the network with relative ease.

The Transaction Processing Facility (TMF) supports the database

aspects of the system by providing reliable transaction processing for

applications running within the system BORR81] .
This processing can

include access to one or more databases on a single node or

distributed throughout a network. For transactions processing both

local and distributed data, TMF guarantees the database modifications

of an application program will occur consistently —— that is,
modifications will either occur in all databases and nodes affected or

none of them. This is done with a two—phase commit protocol for

transactions. The installation may choose this transaction

consistency by specifying that TMF is to control access to the

database files. TMF is integrated with Tandem~s languages and

utilities to allow the installation to easily make use of the

capabilities.

Data Definition Language (DDL) is a passive data dictionary that

allows the installation to describe its databases, whether local or

distributed. The dictionary which describes the databases may reside

at a single node or may be replicated at multiple nodes of network.

DDL also aids in the generation of the underlying ENSCRIBE files, and

produces record declarations, that Tandems programming languages can

use. In addition, Tandems high level database products access the

data dictionary directly.

ENFORM is a query and report product that offers a relational

interface for specifying queries about data stored in one or more

databases. Since ENFORM access to files is via the ENSCRIBE

interfaces and, since the descriptions of the records come from the

data dictionary, ENFORM can support queries or reports •about data

physically distributed across the network. The typical ENFORM query

38



might involve joining of files from different nodes of the network,
and then selecting and projecting the desired information from the

relation thus formed. The binding of the query to the data itself is

done during the processing of the query by utilizing information in

the data dictionary. Because of this binding method, data may be

moved about in the system with minimal impact to existing installation

queries or reports. ENFORM consists of two distinct processes —— a

front end compiler and report writer and the back end query processor.
The front end contains the logic to compile the queries and to form

the requested reports. The back end contains the heuristic techniques
that perform strategy selection, optimization, and access the

pertinent relations. Because these processes can run separately,
query processing itself can be distributed to different network nodes.

PATHWAY provides the system’s environment for distributing
transactions. PATHWAY separates the application into requestors
(which handle terminals and are coded in a language called Screen

COBOL) and servers (which provide the database capabilities) .
Servers

can be written in any of the TANDEM supplied languages, but are most

typically written in COBOL. The requestors and servers, once written,
can run in different CPUs and even in different nodes of the network

with no change required to the application itself. The ability to

geographically distribute the application processing in conjunction
with the reliable transaction and database aspects of TMF, gives the

installation an additional level of flexibility when deciding how best

to distribute the work.

ENABLE is an application generator driven almost entirely from the DDL

description of the database (local or distributed) .
ENABLE generates,

from this DDL description, a PATHWAY application to allow simple
processing of the database. ENABLE thus shields the installation from

almost all aspects of application programming, save the description of

the database itself, while still providing the benefit of applications
operating on distributed databases in a TMF and PATHWAY environment.

While most of the application work on Tandem systems is done by the

programmers writing in the PATHWAY and TMF environments, ENABLE is

being used to generate an increasing number of applications, either as

models or as finished applications.

TRANSFER provides reliable, time—staged delivery of information.

TRANSFER applications can send information anywhere within a Tandem

network and be guaranteed that the information will be delivered

whether the addressee is currently active on the system or not.

TRANSFER offers a generalized capability to send radically different

kinds of data. For example, a single TRANSFER application can send

ASCII data, database records and dot matrix representations in the

same package, thus more effectively providing the information required
for a business transaction. TRANSFER uses the facilities of TMF to

ensure delivery of information it handles and PATHWAY to provide an

easy—to—use interface.

39



Future Directions

From the above, it can be seen that ENCOMPASS addresses many of the

classical problems in distributed database processing. Even so, many
interesting problems remain to be addressed. Tandem is identifying
those features absent from the existing system which would further

satisfy the goals of fault tolerance, online transaction processing,
modular expansion, and distributed database and transaction

processing. The remainder of this paper discusses some of the aspects
of ENCOMPASS that are under investigation.

Distributed databases in Tandem systems today use network connections

which typically operate at 56KB. TMF processing differs between the

“long haul” networks connected in this way and the very fast local

links between processors within a node. In the initial TMF design,
the number of transactions operating in a distributed environment was

assumed to be self—limited by the network capabilities. Now, however,
Tandem has announced hardware and software support for the connection

of up to 14 systems (up to 224 processors) in a very fast local

network. This necessitates a change in the original TMF assumptions.
Because of the local network speed, transactions are more likely to be

distributed. Even so, the number of processors actually involved in

the transaction will probably not approach the total number in the

system. We see the need for a more sophisticated mechanism for

tracking which processors have done work on behalf of a transaction.
In this way, we can ensure processors in the local network aren~t

required to deal with “uninteresting” transaction activity BORR81].

A second area which we are beginning to investigate is replicated data

in a distributed database environment. Currently, ENSCRIBE and TMF do

not directly support the replication of data at different nodes of the

network. Some internal Tandem applications have implemented database

replication by making use of ENSCRIBE and TMF. Current requirements
seem to be that data is locally consistent and updated periodically
(rather than instantly) as a result of activity at other nodes. The

internal applications solve the problem of data contention for the

replicated databases by assigning records within the database a “home

node” and allowing update only by that node. Changes are then

periodically propagated to the other nodes. This has proven
successful so far and, coupled with the ability to run transactions

spanning nodes, does not seem to overly restrict the application~s
capability. Although the “home node” and deferred update concept
seems adequate for the applications we have investigated, we continue

to investigate other approaches suggested in the literature.

As distributed databases and transactions become more prevalent, the

need for addi~tional participation and control by the data dictionary
increases. We are currently investigating modifications to the

existing DDL product to allow it to provide active multi—node services

with respect to databases and the transactions. We are investigating
several items in the database dictionary area that should further

enhance the system#s database and transaction processing in a

distributed environment. The first of these is the ability to

dynamically relate dictionaries at various distributed nodes to one

40



another. This will allow the installation to describe the database at

the location that it is used, combine the descriptions from other

nodes of the network, and use this combination to interact with the

data. In addition, research is being done into how to produce an

“active” data dictionary in a distributed environment. This centers

on the ability to relate objects within a distributed environment and

to permit or disallow actions based on these relations. Finally, we

are investigating modifications to the current distributed security
scheme to enhance the protection offered in a distributed environment.

The investigations involve “hardening” the network against possible
breach if a single node of the network is taken over. Such security
enhancements are a requirement for installations that run their

businesses based on distributed transaction processing.

In PATHWAY we are investigating the ability to control the distributed

transaction environment in which PATHWAY applications run. We feel

that the ability to exercise central control over distributed

applications is an important capability. This central control, and

the capability for PATHWAY applications to be knowledgable about the

network, are particularly promising areas of investigation.

Finally, in the TRANSFER product, we are looking at various ways that

Tandem and its customers can utilize the reliable, time—staged
delivery mechanisms provided by TRANSFER. The current TRANSFER and

TRANSFER/MAIL products will be followed by a TRANSFER/FAX package,
which will allow an installation to make cost effective use of its

Tandem systems to do a significant amount of its data and information

distribution. Further, TRANSFER is being investigated as a basis for

additional functions, such as stored voice, voice synthesis and

ASCII/FAX conversion. Our investigations indicate that TRANSFER can

play a central role in the management of a company~s. distributed data

and information resources.

S ummary

The above clearly indicates that, although ENCOMPASS provides the

groundwork for distributed database and transaction processing, there

are still several areas in which it can be enhanced to satisfy the

growing requirements for distributed on—line transaction processing.

Bibliography

BART78, J. Bartlett, “A NonStop Operating System,” Eleventh Hawaii

Conference on System Sciences, Jan. 1978.

BORR81, A. Borr, “Transaction Monitoring in ENCOMPASS,” Proceedings of

the Seventh International Conference on Very Large Databases, Sept.
1981.

GRAY81, J. Gray, “The Transaction Concept: Virtues and Limitations,”

Proceedings of the Seventh International Conference on Very Large

Databases, Sept. 1981

41



The DDBS POREL: Current Research Issues and Activities

E.J. Neuhold

B. Walter

University of Stuttgart
Azenbergstr. 12

D-7000 Stuttgart 1

Fed. Rep. of Germany

Abstract: We briefly describe current research issues as well as

current activities related to POREL, a distributed database

system designed and implemented at the University of Stuttgart.

1. Introduction

The DDBS POREL /NEUH82/ was designed and implemented in the years
1977 — 1982 at. the University of Stuttgart. The implementation of

a first prototype has just been finished. Based on the experience
of this implementation further research studies have been made

and are partially still in progress. In the following chapters
each of our current subprojects related to distributed database

systems will be briefly surveyed, then some of our future plans
related to the DDBS POREL will be sketched.

2. Surveillance of Remote Sites

The processing of a distributed transaction is managed by its

site—of—origin. Assume that a transaction T has been initiated at

site A and that some part of T has to be processed at some remote

site B. Assume further, that A is waiting for a response message
from B. Now, if B crashes or becomes unavailable due to communi

cation breakdowns, two different strategies are possible:
— A waits until the awaited message arrives. However, in the

worst case A must wait forever.

— A backs out the affected transaction.

The second strategy requires some mechanisms for detecting the

unavailability of remote sites. One such mechanism is the newly
developped RSC—protocol (RSC = Reliable Surveillance in Computer—
networks) /WALT82a/ which has the following characteristics:

— Maintenance of a table at each site of the network showing for

all remote sites whether they are currently available or not.

— Synchronization of the clocks in the system.
— Robustness against any number of site crashes and communication

breakdowns including network partitioning.
— Distributed Control.

— Minimality in the given context, i.e. a minimum number of mes

sages is needed to perform the surveillance task and a minimum

of time is needed to propagate detected crashes and recoveries.

42



Among others the RSC-protocol supports WATCH-primitives. If such

a WATCH—primitive is called for a remote site B, then a signal is

passed to the calling module as soon as B becomes unavailable

(available). A desciption of recovery strategies for distributed

transactions using WATCH-primitives can be found in /WALT82a/
and in /WALT82b/.

3. Deferred Updating of Secondary Copies

In distributed systems it is not so easy to implement read—only
transactions with short response times and low processing costs

which nevertheless provide a consistent view of the database.

However, the observation that in many applications most of the

users do not really need data at the highest level of actualiza

tion led to a new solution of this problem /WALT82c/.

The data in our system may be stored partially redundant. For

each object in the database there is one primary copy and a set

of secondary copies. The primary copies of different objects may
be located at different sites of the network. At each site either

one secondary copy of an object may be located or none /NEUHB2/.
Each copy is stored twice on secondary storage, i.e. for each

page there are two physical representations.

In this context an updating protocol has been developed, which

immediately updates the primary copy of a data object whereas the

updating of the secondary copies is deferred to some later point
of time. The primary updates as well as the deferred updates

possess the atomic property, hence, each update transaction has

two commit points. From the user’s point of view an update trans

action terminates after having committed all its primary updates.
So—called read—only—primary transactions provide the user with

the most actualized view of the database at normal costs and

read—only—secondary transactions provide the user with an earlier

but nevertheless consistent view of the database at low costs.

However, in periods with only a small amount of updates this

‘earlier’ view also may reach the highest level of actualization.

The deferred updates are processed making use of stable storage.
At first only one of a copy’s two physical representations is up

dated whereas the other representation is used for the processing
of read—only—secondary transactions. After the deferred updates
have been committed, new arriving read—only—secondary transac

tions are now processed using the ‘new’ representation. The ‘old’

representation can be updated as soon as all transactions using
this representation have terminated. It is this newly developped
strategy for switching from the ‘old’ to the ‘new’ representation
which enables read-only-secondary transactions to be processed
practically without synchronization and without any delays. In

systems with only a small amount of updates this strategy would

be suitable for updating primary copies as well. Furthermore, the

proposed algorithm supports local load balancing strategies.

43



4. DDBS and Open Systems

ISO’s Open Systems Interconnection Architecture was developed in

order to standardize network protocols. The highest layer of this

architecture is the so—called application layer (layer 7). In the

case of distributed database systems this layer would include the

database operating system. An overall architecture of such an

application layer is being developed to meet the requirements of

distributed database systems.

The investigation includes a comparison of the various approaches
to distributed data management to identify common primitives used

in the network sensitive parts of a DDBS. Such commonly used pri
mitives which should be contained in an adequate layer 7 design
include among others:

- ROutines for the manipulation of tables, which are used to con

tain the current processing states of transactions.
— Mechanisms for execution control such as the above mentioned

WATCH-primitives.
— Protocols for the reliable transfer of data and control.

In this context a model for transaction—oriented communication in

distributed systems has been developped /ROTH82/. This model

identifies a set of primitives to support typical communication

patterns used between the various modules which have to cooperate
in order to process distributed transactions.

5. Formal Techniques

The application and evolution of formal techniques have always
been an important activity in our research group. For instance,

the Vienna Development Method (VDM) has been used for the speci
fication of a 3 level external/conceptual/internal schema view of

a relational database system /NEUH81/ and for specifying parts of

an application development system /STUD82b/. Currently formal

techniques are used in the context of distributed database pro

tocols. Since such protocols (e.g. for synchronization or for

recovery) are often rather complex, it is not obvious whether

they are correct or not. Therefore, formal techniques are

required for specifying the protocols and for giving rigorous
proofs of their characteristics.

Higher level petri nets are used as a base for the development
of so—called Timed Predicate Transition Nets (TPrT—Nets)

/wALTB2b, WALT82d/. TPrT-Nets include the possibility to model

minimum and maximum message delays as well as timers; they have

been used to model the above mentioned RSC—protocol and to verify

its properties ‘freedom from deadlocks’ and ‘bounded’. Freedom

from deadlocks means that under each reachable marking at least

one transition is enabled. To prove this property for a TPrT—riet

one has to show that this property holds for the untimed net

and that the availability periods of the tokens which enable some

44



transition do overlap. Examples have been given to show that the

timing of places is superior to the timing of transitions. The

major advantage of TPrT—Nets is that they are suitable for syrn—
metric protocols with an arbitrary number of participants.

Another formal technique for specifying protocols in distributed

systems is the Behavioural Description Language (BDL) which is

currently under development /KARJ82/. BDL is based on an event—

oriented model, in which interactions and sequences thereof are

fundamental concepts. Interactions between processes represent
synchronized communication over explicit interaction points. Pro

cesses which may have concurrent and nondeterministic behaviour

are denoted by so—called behaviour expressions. An algebra has

been defined for the operations of sequential, conditional, and

parallel composition of processes and for the restriction of in

teraction points. Out of a behaviour expression a linear discrete

sequence of interactions can be derived, hence temporal logic can

be used for proving properties of BDL—specified systems.

6. User Interface Related Activities

To improve the usability of (distributed) database systems the

so-called Application Development and Support System (ADS) has

been developed /STUD8O, STUDB2a/. ADS, which is designed to be

implemented on top of the language interfaces of POREL offers

dialogue supported facilities for selecting, combining, and exe

cuting prepared application programs from an application library;
it can be used in the context of any relational database system.

Another subproject is oriented towards extending the POREL—archi—

tecture to a three—level—architecture. This includes activities

for developping dialogue interfaces for

— defining a conceptual schema using the THM semantic data model

/SCHI82/,
— deriving a relational schema from the conceptual schema,
— defining subschemas which are mapped to the conceptual schema,
— defining method skeletons and specifying the appropriate input

data at the conceptual schema level.

It should be noted that the latter activity differs from the

above mentioned ADS in so far as it is constructed on top of the

conceptual schema level whereas ADS directly uses the relational

interface.

Finally in a new subproject an interactive tool will be developed
which enables the user to determine a suitable distribution as

well as suitable replication of data.

7. Future Plans

Concerning the DDBS POREL the following activities have been

planned:
— Extensive testing of the prototype in order to improve the per

45



formance and the reliability of the current implementation.
— Evolution of the current transaction management facilities to

include protocols of higher reliability.
— Investigation of some problems which are related to the execu

tion of host language initiated transactions, e.g. how to avoid

a permanent ‘jumping’ of the cursor from one site to another

when a relation is accessed following some logical order which

does not correspond to its physical ordering.
Further activities will be related to the portability of POREL in

order to enable an installation of the system on other computers.

8. References

/KARJ82/ Karjoth, G., “A Behavioural Description Language for

the Formal Treatment of Protocols in Distributed Sys—
terns”, in preparation, University of Stuttgart, 1982.

/NEUHB1/ Neuhold, E.J., T. Olnhoff, “Building Data Base Manage—
rnent Systems through Formal Specification”, Proc. mt.

Coil, on Formalization of Programming Concepts, Lecture

• Notes in Computer Science 107, Springer Verlag, 1982.

/NEUH82/ Neuhold, E.J., B. Walter, “An Overview of the Architec

ture of the Distributed Data Base System POREL”, in:

H.J. Schneider (ed.), “Distributed Databases”, North

Holland Publishing Company, 1982.

/ROTH82/ Rothermel, K., “Primitives for Transaction—Oriented

Communication Systems”, in preparation, University of

Stuttgart, 1982.

/SCHI82/ Sbhiel, U., “The Temporal—Hierarchic Data Model (THM)”,
TR 10/82, University of Stuttgart, July 1982.

/STUD8O/ Studer, R. “A Dialogue Interface for Database Applica
tions”, Proc. Very Large Databases 6, Montreal, 1980.

/STUDS2a/ Studer, R., “Concepts for the Interactive Development
and Usage of Application Systems”, Dissertation, Uni

versity of Stuttgart, March 1982 (in German).

/STUD82b/ Studer, R., “Using VDM for the Development of Inter

active Application Systems”, in: Y. Ohno (ed.), “Proc.

mt. Syrnp. on Current Issues of Requirements Engineering
Environments”, North Holland Publishing Company, 1982.

/WALT82a/ Walter, B., “A Robust and Efficient Protocol for

Checking the Availability of Remote Sites”, Computer
Networks 6:3, July 1982.

/WALT82b/ Walter, B., “Transaction Oriented Recovery Concepts for

Distributed Data Base Systems”, Dissertation, Universi

ty of Stuttgart, June 1982 (in German).

/WALT82c/ Walter, B., “Using Redundancy for Implementing Low-Cost

Read-Only Transactions in a Distributed Database System”,
Working Paper, University of Stuttgart, August 1982.

/WALT82d/ Walter, B., “Timed Predicate Transition Nets: A Tool

for Modelling and Analyzing Protocols in Distributed

Systems”, Working Paper, University of Stuttgart,
October 1982.

46



A Structural View of Honeywell’s
Distributed Database Testbed System: DDTS

By

Said K. Rahimi

Mark D. Spinrad
James A. Larson

Honeywell Corporate Computer Sciences Center

10701 Lyndale Avenue South

Minneapolis Minnesota 55420

(612)887—4570

i• INTRODUCTION

Distributed database management systems have raised new

implementation questions, in addition to those usually asked for the

conventional centralized systems. One way to answer these questions
is by conducting experiments using a distributed database testbed

system. This paper presents the initial design of one such testbed in

Honeywell, called the Distributed Database Testbed System (DDTS).

DDTS became operational at Honeywell’s Corporate Computer Sciences

Center (CCSC) in July, 1982. DDTS is a testbed in that the system
can be used for experimental evaluation of different issues in

distributed database management systems. The first version of DDTS

is an integrated, rather than federated distributed database

management system in the sense that each node contains the same

conceptual schema that describes all of the data in the system.

Section 2 describes the basic architecture of DDTS, and section 3

describes some of the experiments planned for using this testbed.

~. DDTS ARCHITECTURE

The ANSI/SPARC 3—schema architecture was generalized to a 6—schema

architecture (Figure 1), in order to provide flexible user interfaces

in a distributed system. This DDTS information architecture consists

of the following six inter—related levels of data description:

USER SCHEMA, a description of a user’s view of the database,
specified in terms of any of several data models. One such schema

may exist for each user group. User schemas are not supported in the

current version of DDTS.

ECR SCHEMA, a description of a portion of the database to be accessed

by a user or user group, specified in terms of the same data model as

the global conceptual schema. ECR, the Entity—Category—Relationship
data model WEEL8O] is a generalization of Chen’s Entity—Relationship
(ER) data model CHEN76J. In the current version of DDTS, ECR

schemas are not supported.

47



GLOBAL CONCEPTUAL SCHEMA, a semantic description of the total

database content. The global conceptual schema is specified using
the ECR data model. Users use a high—level language, called GORDAS

(.~raph QRiented ~ta ~election language) ELMA81], as a query and

update language. Currently, users may specify GORDAS commands

directly against the global conceptual schema. The data definition

language for the ECR data model includes the capabilities to specify
general constraints such as attribute domains. Update transactions

are specified without integrity constraints, and the transaction

compiler is designed to automatically modify the transaction to check

for semantic constraints defined in the global conceptual schema

ELMA8O]. The transaction will be examined as a whole, so that only

necessary checks are generated. Automatic integrity constraint check

generation has not been implemented in the initial phase of DDTS.

GLOBAL REPRESENTATIONAL SCHEMA, a syntactic representation of the

total database. The global representational schema is specified
using the relational data model. User requests, stated in GORDAS, are

automatically translated to the relational operators of the

representational schema.

LOCAL REPRESENTATIONAL SCHEMA, a syntactic representation of the data

resident at a specific node. The local representational schema is

specified using the relational data model. Transactions against the

global representational schema are transformed into several local

transactions against selected local representational schemas.

Transaction optimization is accomplished by using data flow analysis
to maximize inter—command parallelism HEVN81].

LOCAL INTERNAL SCHEMA, a local representation of data resident at a

specific node. The local internal schema is specified using the data

model of the host database management system. Local transactions are

translated to sequences of commands against the local internal

schema. Currently all local internal schemas are IDS/Il CODASYL

network schemas HONE72].

The DDTS sYstem architecture consists of three types of abstract

processors (Figure 1):

INTERFACE PROCESSOR (IP) accepts transactions from the user expressed
in terms of a user schema, and modifies those transactions to be

expressed in terms of the global conceptual schema. The interface

processor removes all of the differences in style used by different

users to express their transactions, and produces a common style of

transaction expression convenient for the transaction processor.
Interface processors are not supported in the current version of

DDTS.

TRANSACTION PROCESSOR (TP) modifies a GORDAS transaction to check for

the semantic constraints defined in the global conceptual schema. At

compile—time, IFs compile transactions and develop strategies for

processing transactions by appropriate data processors. For

interactive transactions execution is followed by compilation.
Execution performance can be gained by storing a compiled transaction

48



at local nodes. A compiled transaction can be executed many times

without recompilation.

DATA PROCESSOR (DP) accepts commands expressed using the local

representational schema and executes those commands against the

portion of the database for which it is responsible.

The data, transaction, and interface processors are designed as

“Guardians” LISK79], abstract processors which support multiple

processes with shared memory. Processes in different guardians
communicate through messages sent to, and received from, ports

(one—way message queues).

Reliable execution is accomplished as follows. A master/slave

relationship between a distributed execution monitor (DEM) in a

transaction processor, and local execution monitors (LEM’s) in

selected data processors, is established to carry out the parallel
execution and two—phase commitment of each transaction. The initial

version of DDTS requires all data replicas (if any) to be available

for updates to occur. Much of the recovery and restart capabilities
in DDTS are built upon facilities existing in the local DBMSs. These

include write—ahead logs and transaction backout and restart.

Concurrency control uses the locking facilities and conflict

detection mechanism of IDS/Il to build a distributed deadlock

prevention technique. In this technique, locks are granted

“conditionally” on the basis of transaction timestamps (age) that

prevent deadlocks {HOSE78]. When a transaction is selected to be

restarted, the DEM is responsible for restarting the transaction at

all of the related data processors.

3. STATUS .AIiQ FUTURE PLANS

Currently, DDTS is functional in a multicomputer environment at

Honeywell’s Corporate Computer Sciences Center (CCSC). Three

Honeywell Level 6 minicomputers form the initial DDTS system.

Approximately 20,000 lines of C—language code comprise the DDTS

software resident on the Level 6’s. Capabilities of the initial

system include:

— translation of’ queries from GORDAS to a canonical

representational form;

— site selection of data to be used for transaction execution,
using a data clustering algorithm;

— distribution and synchronization of transaction compilation and

execution;, and,

— translation from the representational form to the network data

model (IDS/Il).

Implementation of stored transaction capabilities and GORDAS updates

is scheduled for completion in 1982. A reliable transaction

49



processing scheme, based on a quorum—based commit protocol SKEE82]
and distributed concurrency control algorithm, is also scheduled for
completion in 1982.

The follow—on version of DDTS and our future experimentations plan
call for:

— database design~ experiments to determine tradeoffs involving
data distribution, data replication, and tools to support
distributed database design;

— distributed data dictionary facilities;

— evaluation and enhancements of materialization and access

planning;

— evaluation of several different concurrency control algorithms.

REFERENCES

CHEN76I Chen, P., “The Entity_Relationship Model: Towards a Unified
View of Data,t’ AC1~1 Transactions ~.n Database Systems vol.

1, No. 1, March 1976.

ELMA8O] Elmasri, R., “Semantic Integrity in DDTS (Distributed
Database Testbed System),” Tech. Rep. HR—80—271~, Honeywell
CCSC, Bloomington, Minnesota, December 1980.

ELMA81] Elmasri, R., “GORDAS: A Data Definition, Query and Update
Language for the Entity—Category—Relationship Model of

Data,” Tech. Rep. HR—81—250 Honeywell CCSC, Bloomington,
Minnesota, January 1981.

HEVN81] Hevner, A., “Transaction Optimization Techniques in a

Distributed Database System,” Tech. Rep. HR—81—259
Honeywell CCSC, Bloomington, Minnesota, July 1981.

HONE72] Honeywell Information Systems, Integrated Data Store

(IDS/Il) References Manual, Weilseley, Massachusetts, 1972.

L15K79] Liskov, B., “Primitives for Distributed Computing,” Proc

.a~ fli~ Itli Symposium .~jj Operating Systems Principles ACM,
December 1979.

ROSET8] Rosenkrantz, D., Stearns, R.. and Lewis, R., “System Level

Concurrency Control for Distributed Database Systems,” A~1~
Transactions on Database Systems Vol. 3, No. 2, June 1978.

SKEE82] Skeen, D., “A Quorum—Based Commit Protocol,” Proc .~i .tfl.~
~ Berkeley Workshop 2J~ Distributed Data Management ~
Computer Network February 1982.

WEEL8O] Weeldreyer, J., “Structrual Aspects of the

Entity—Category—Relationship Model of Data,” Tech. Rep.
HR-80-251, Honeywell CCSC, Bloomington, Minnesota, March

1980.

50



Figure 1: 6—Schema Architecture

51

‘P

— —

I

I IP

-----J

DP

IP

TP =

OP =

USER

Interface Processor

Transaction Processor

Data Processor

USER

USER SCHEMA

-
ECR SCHEMA

USER SCHEMA

‘P

-H-fl
JECR SCHEMA

\ /
GLOBAL

CONCEPTUAL
SCHEMA

GLOBAL

REPRESENTATIONAL

SCHEMA

I

DP

LOCAL

REPRESENTATIONAL
SCHEMA

-
LOCAL

INTERNAL

SCHEMA

LOCAL

~EPRESENTATIONAL
I SCIIcMA

--F--
LOCAL

INTERNAL

SCHEMA

DATABASE ~ASE



SCOOP : a System for COOPeration between existing
heterogeneous distributed data bases and programs

1 2 2 1
S. Spaccapietra, B. Demo, A. DiLeva, C. Parent

Istituto di Scienze

dell ‘ Informazione

Università di Torino

C. M. d’Azeglio., 42

10125 Torino

Italia

INTRODUCTION

The goal of the SCOOP project is to investigate the mapping
algorithms which are needed to build a cooperation-DDBMS,
that is a distributed system which allows for full integra
tion of existing data bases and application programs.

SCOOP’s research fits therefore into a rarely investigated
field of DDBMS design. It is hoped that it will allow a lar

ge set of applications (disregarded by actual DDBMS) to be

nefit by the current advance in the area of distributed da

ta bases.

A cooperation-DDBMS should be able to:

- keep the existing data by integrating them into the DDB

with (ideally) no change at all;
- keep the existing application programs and let them run

as before while addressing the local DB through the DDBMS;
— use the local DBMSs for local data management (to reduce

software development cost)

- offer the other facilities currently provided by the exi

sting DBMSs.

2‘Institut de Programmation
Universitè Pierre et Marie

Curie (Paris 6)

4, Place Jussieu

75230 Paris Cedex 05

France

52



/

Figure 1 illustrates the idea of a heterogeneous cooperation—

DDBMS. To build such a system, new methods and tools, specifi

cally taking into account the distributed environment, have

to be designed to perform the needed translation of data

structures and programs from the external level to the conce~
tual level within the DDBMS. It is the purpose of the project

SCOOP (System for COOPeration), currently on progress at the

University of Paris 6 in cooperation with the Turin Universi

ty, to investigate such new methods and tools.

external (user) interfaces

conceptual (global) interface

internal (local) interfaces

local

DBMS
n

DDB

Figure 1 Skeleton of a heterogeneous cooperation—DDBMS
-

(DM = data model)

-1

53



SCOOP ARCHITECTURE

The overall project architecture is illustrated in figure 2;

for a more detailed discussion of the architecture the rea

der may refer to (Spaccapietra 81).

The SCOOP project concentrates on the mappings between the

external and the conceptual level in the DDBMS. For accessing
data through the network, SCOOP relies on the POLYPHEME pro

totype, which is responsible for the overall management of

the DDB (Adiba 80). The interface between SCOOP and POLYPI-IEME

is defined as a relational DDL, allowing the description of

3NF schemata, and an associated QUEL-like DML. Consequently,
an additional mapping, from the conceptual level to this

interface, has been included in SCOOP.

Input to SCOOP are the user application programs, which may

be written in any of the DMLs supported by existing DBMSs;
the data referred to by a program are described by a global
external schema (ges.) expressing the user’s view of the DDB.

The SCOOP system is made up of six different types of module:

the first three are devoted to schema translation, while the

next three perform program translation. These modules are:

— schema translation modules (ST.): these translate an user

schema (ges.) into an equivale~it, external schema (ees.)

expressing the same semantics through the conceptual d~ta
model. This corresponds to a first step (model mapping)
in the mapping process from the external to the conceptual
level. There is one such module for each DDL supported by
SCOOP.

- schema integration module (SI): this performs the second

step (semantic mapping) in the external to conceptual

mapping. It builds the semantic mapping linking the ees~

to the (global) conceptual schema gcs describing the DD~
and integrating all of the ees... As the ees. and the gcs

use the same data model, only ~emantic tras~’ormations are

perfomed by SI.

— schema conversion module (SC): this module performs a model

mapping to convert the conceptual schema into the equivalent

conceptual schema (ecs) used as interface to POLYPHEME. Ecs

is a 3NF relational schema.

54



Figure 2 : SCOOP architecture

55



— program translation modules (PT.): these modules translate

user application programs (UAP.~J into equivalent programs

(EAP..) in which data manipulations are stated in the DML

defined for the conceptual level and refer to the associa

ted ees.. There is a PT. for each DML/DDL couple supported

by SCOOP.

- program integration module (P1): this module translates

the equivalent application programs (EAP.) into global

conceptual programs (GCP.) by transformi~ig references to

the ees. to references to the gcs.
1

— program conversion module (PC): this last module translates

the GCP. into their equivalent relational programs (RP)

which will interact with POLYPHEME.

The above architecture is based on two assumptions: the first

one is that the conceptual data model is different from the

relational model supported by POLYPHEME, which introduces the

need for the SC and PC modules. The second one is that the

external to conceptual mapping is split into its two separate

components: model mapping and semantic mapping.

The definition of the conceptual interface certainly is the

most sensitive point in the design of a system like SCOOP.

A complete definition includes the choice of a data model

as well as the choice of a DDL and a DML. For the data model,

the Entity Relationship proposal has been selected, mainly

because it is reasonably good at expressing the semantics

of the real world and easy to understand and use. A discus

sion on the criteria of this choice is in (Spaccapietra 82).

For the DML, the specific criteria due to the distributed

environment suggest the development of a new DML. A complete

description of the SCOOP-ER DML working definition will be

available in an incoming paper (Parent 82).

56



SCOOP’s architecture relies on the definition of a set of

mappings: the CODASYL versus ER schema mapping process is

described in (Perez de Celis 81). Some work has been done

on the schema and program conversion techniques for mapping

the conceptual ER interface into POLYPHEME’s relational

interface (Belfar 81).

Current research is mainly on the CODASYL translation and

integration mapping and shoul~result in the implementation
of a first software~ prototype of SCOOP translation methods

in 1983 (Demo 81).

REFERENCES

Adiba 80 Adiba M. et al: “POLYPHEME: An experience in

distributed database system design and implemen

tation”, in Distributed Data Bases, North-.

Holland, 19804

Belfar 81 Belfar K. : “Conversion de données et de pro

grammes d’un modèle Entité-Relation a un modèle

relationnel”, TR SCOOP 81.4, Institut de Program—

mation, 1981.

Demo 81 Demo B. Spaccápietra S. : “A CODASYL COBOL

statements classification for conversion into an

assertional DML”, TR.SCOOP 81.6, Institut de

Programmation 1981.

Parent 82 Parent C., Demo B., Spaccapietra S. : An Entity—

Relationship DML for distributed DBMSs, TR.SCOOP

82.2, Institut de Programmation 1982 (in progress)

Perez de Ce113 81 Perez de Celis C. : Traduction du LDD

CODASYL a un LDD Entité-Relation, TR.SCOOP 81~3,
Institut de Programmation, 1981.

Spaccapietra 81 Spaccapietra S. et al : “An approach to

effective heterogeneous databases cooperation”,
in Distributed Data Sharing Systems, North

Holland, 1982.

Spaccapietra 82 Spaccapietra S. et al. : “SCOOP: a system
for integrating existing distributed heterogeneous
data bases and application programs”, TR.SCOOP

82.1, Institut de Programmation, 1982.

57



PERFORMANCE ANALYSIS OF DISTRIBUTED

DATA BASE SYSTEMS*

by

Michael Stonebraker, John WoodfIll, Jeff Ranstrom, Marguerite Murphy
Joseph Kalash, Michael Carey and Kenneth Arnold

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

UNIVERSITY OF CALIFORNIA

BERKELEY, CA.

ABSTRACT

In this paper we discuss the design of Distributed INGRES and the perfor
mance testing that is planned for it. We also give initial benchmark data for the

system. In addition, we discuss analytic and simulation studies which are in pro

gress and implementation difficulties we have faced.

1. INTRODUCTION

There have been a considerable number of algorithms developed to support
distributed relational data bases in the areas of concurrency control, crash

recovery, support of multiple copies of data, and command processing.

At present there is little concrete knowledge concerning the performance of

such algorithms. Previous work has been based exclusively on simulation, e.g.

RIES79, GARC79. LIN81] or formal modeling, e.g. GELE78, BERN79J. It is the

basic objective of the Distributed INGRES project to provide empirical results

concerning the performance of alternate algorithms.

In Section 2 we discuss the current state of Distributed INGRES. Then, in

Section 3 we present initial benchmark data on the running system. Section 4

discusses the additional benchmarks that are planned while Section 5 and 6

describe some simulation and analytic studies that are underway. Lastly, Sec

tion 7 comments on the implementation difficulties that we have faced.

2. D1STRIIflJTED INGRES

Distributed INGRES operates in a hardware environment consisting of a col

lection of DEC VAX 1 1/78Os and 11/750s all running the UNIX operating system. In

fact, all run 4.23sD, a version of UND enhanced at Berkeley with paging and

numerous program development tools. As of September 1982 there are 5

11/780s and 5 11/750s connected by a 3Mbit ETHERNET purchased from Xerox.

The 4. 2BSD software has been extended to support remote interprocess commun
ication and remote execution of a process. Hence, one can spawn a process on a

remote machine and then do interprocess cOmmunication with that process as if

it were on the same machine.

* Research Sponsored by the Air Force Office of Scientic Research under

Grant number (22544), by the Navy Electronics Systems Command under

Contract number (25990) and by the Army Research Office under Grant

number Z.

58



Distributed INGRES has been described in EPST7B] and is operational with

many of its features at this time. It consists of a master INGRES process which

runs at the site where the command originated and slave INGRES processes at

each site which have data involved in the command. The master process does

parsing, view resolution and creates an action plan to solve the command using
the fragment and replicate technique. The slave process is essentially one-

machine INGRES STON76] with minor extensions and the parser removed. The

coordinator and slaves communicate over the 4.2BsD interprocess message sys
tem.

Distributed INGRES supports fragments of relations at different sites. For

example, one can distribute a relation EMP as follows:

create EMP (name dO, salary = i4, manager dO,

age = i4, dept = dO)

range ofEisEMP

distribute E at Berkeley WHERE E.dept = “shoe”

at Paris WHERE E.dept = “toy”
at Boston WHERE E.dept != “toy” and

E.dept “shoe”

Berkeley, Paris and Boston are logical names of machines which are mapped to

site addresses by a table lookup. The distribution criteria is assumed to parti
tion the EMP relation and is not currently checked for this property by Distri

buted INGRES software. A one site relation is a special case of the above distri

bute command, e.g.

distribute ONE-SITE at Berkeley

At the current time all QUEL commands are processed correctly for distri

buted data with the exception of aggregates. For example, it is acceptable to

perform the following update:

range of E is EMP

replace E(dept = “toy”) where e.salary> 10000

This command will be processed at all three sites where fragments of the EMP

relation exist. Moreover, all qualifying tuples must have an update performed
and their site location may have to be changed.

A two phase commit protocol is Implemented GRAY7B]. Hence, a “ready”
message is sent from the slaves to the master when they are prepared to com

mit the update. If there are tuples which change sites, they are included with

the ready message. The master can then process the tuples from all sites and

redistribute them. This redistribution is accomplished by piggybacking the

tuples onto the commit message when it is sent out. Optionally, a three phase
commit protocol can be used ~SKEE82] for added reliability. In this case the

above redistribution is handled in phase two.

When a command spans data at multiple sites, a rudimentary version of the

“fragment and replicate” query processing strategy is implemented. We illus

trate this module by example. Suppose a second relation

DEPT (dname, floor, budget)

exists at two sites as follows:

distribute D at Berkeley where D.budget> 5

at Paris where D.budget <= 5

and suppose a user submits the following query at Boston:

59



range of E is EMP

range of D is DEPT

retrieve (E.name) where E.dept = D.dname and D.floor = 1

First, the one variable clause ‘D.floor = 1” is detached from the query and run at

Berkeley and Paris, i.e.

range of D is DEPT

retrieve into TEMP (D.dnarne) where D.floor = 1

The original query now becomes

range of E is EMP

range of D is TEMP

retrieve (E.name) where E.dept = D.dname

Data movement must now take place to satisfy the query. One relation (say
TEMP) is chosen to be replicated at each processing site. Hence, both Berkeley
and Paris send their portion of the TEMP relation to each site which has a frag
ment of EMP. The needed transmissions are:

TEMP(Paris) -> Boston

TEMP(Paris) -> Berkeley
TEMP(Berkeley) -> Paris

TEMP(Berkeley) -> Boston

At this time all three sites have a complete copy of TEMP and a fragment of the

EMP relation. The above query is performed at each site, yielding a portion of

the answer. As a last step each site returns tuples to the master site which

displays them to the user.

Since our ETHERNET has the hardware capability to support broadcast, it is

possible to perform the above four transfers by broadcasting each fragment of

TEMP to the other two sites. However, the 4.2BsD operating system software

does not support multicast or broadcast transmissions. Consequently, the

above transmissions must take place individually and our strategy of replication
may perform poorly EPST78j. The network on which we planned to run

ROWE79] supported broadcast, and the code has not been changed.

At the moment, the relation to be replicated is chosen arbitrarily, so TEMP

and EMP are equally likely to be selected for movement. A more elegant stra

tegy is being planned.

3. INITIAL EXPERIMENTAL OBSERVATIONS

In these experiments we use a data base of employees with fields as dis

cussed in Section 2. Our data base consists of 30,000 employee tuples, each 38

bytes in width. Our benchmark consisted of 1000 random updates of the form:

replace E (salary = K) WHERE E.name = L

For this benchmark we compare the performance of four different INGRES

configurations:
a) Normal INGRES on a single site data base with a VAX 11/780 CPU

b) Distributed INGRES run on a data base that happens to reside at the site from

which the benchmark originates. This site has a VAX 11/780 CPU.

c) Distributed INGRES run on a data base spread evenly over three machines,

one VAX 11/780 and two VAX 1 1/750s. In this way e~act1y 1/3 of the updates are

performed at each of three sites. Moreover, the benchmark was submitted in

three job streams one at each site so as to avoid forcing a single site to be “mas

ter” for every command. Consequently, the master running at each site will dis

cover an update which is equally likely to be processed at any of the three sites.

60



In this case we report statistics for each site individually as well as a summation.

d) A computation called 3*75Q~ This row is obtained by multiplying the 11/750
numbers from c) by three. Since one-third of the total work is performed at

each site, this is an estimate of the resources which would be consumed if the

benchmark had been run on three VAX 11/760s.
Table 1 gives three measures for each system, elapsed time, CPU time

spent. in application code, and CPU time spent inside the operating system.

The conclusion to be drawn from Table 1 is that Distributed INGRES is about

20 percent slower than normal INGRES when run on a local data base. This time

is largely the extra overhead which Distributed INGRES must spend examining
the distribution criteria and ascertaining that each of the commands is a local

one. This checking is performed at run time in the current implementation;
however, a smarter implementation would perform most of it at compilation
time. The second source of overhead cannot be diverted to compile time. Each

tuple which is updated must be checked against the distribution criteria to

ensure that it is not being updated in a manner that would physically change its

location.

Second, note that 3*75Q Distributed INGRES uses 20 percent more CPU time

than Distributed INGRES run on a local data base and 47 percent more CPU time

that Normal INGRES. This appears to be the overhead of communication with a

non-local data base. However, it could not possibly run slower than the 13:34

time reported for three site Distributed INGRES. Hence, it cuts elapsed time by
at least 50 percent compared to Distributed INGRES on a one-site data base and

40 percent compared to Normal INGRES.

Benchmark 1 results in 522,880 bytes being transferred across the network

in case c) and uses less than two percent of the available bandwidth. It appears
that a large number of machines could be added to ETHERNET before there were

any bandwidth limitations. Also, as long as the workload partitioned evenly,
total CPU time should remain a constant and be divided among a larger and

larger collection of machines, resulting in a throughput essentially linear in the

number of machines.

user time system time elapsed time

Normal INGRES 7:34 3:04 22:34

Distributed

INGRES - local

data base 9:06 3:53 26:57

Distributed

INGRES - three

sites

11/780 3:43 1:30 12:43

11/750 5:28 2:16 13:34

11/750 5:48 2:13 13:22

total 14:59 5:59 -

3*780 11:09 4:30 -

~Table1

61



4. F(JRFHER EXPERIMINTATION

We propose to run a variety of benchmarks in our environment. We propose
to vary the number of sites from which transactions originate, how many sites

have the data required for individual commands and how much data is required
to be moved between sites. The basic objectives are the following:

a) Network limitations

We speculate that it will be impossible to saturate our 3Mbit network. The

reason is that CPU overhead to manage the network and do local data base pro

cessing is likely to saturate all computers on a reasonable size network before

this bandwidth is achieved. We propose to measure the maximum bandwidth

which our benchmark consumes. The result of this test will give insight into

whether network delay or bandwidth is ever a significant issue in our environ

ment. Moreover, we propose to explore under what circumstances a distributed

DBMS can use more than 5OKbits of bandwidth. This will test whether our

software could saturate a long haul network such as the ARPANET. This test will

shed light on whether semi-join tactics which minimize data transmissions are

desirable in distributed environments.

b) Message Limitations

We speculate that the operating system cost of sending and receiving mes
sages may be a significant factor in distributed data base performance, and pro

pose to test this hypothesis by threct measurement. If so, a distributed DBMS

should attempt to package large messages.

On the other hand, if the operating system cost for messages is not

significant, then we will have discovered that the entire network subsystem is

not a bottleneck in a distributed DBMS. This has great impact on the criteria to

be optimized by the query processing algorithm.

c) CPU Saturation

We expect that many benchmarks will saturate all CPUs which are involved

in command processing and this will be the fundamental limitation in a distri

buted DBMS. If so, a query processing algorithm should schedule the work over

as many machines as possible.

d) Uneven Work Distribution

Our simulation of a similar environment MCCO81] showed that an uneven

workload distribution among the machines caused substantial performance
degradation. We noted that statistical fluctuations in a uniformly distributed

workload could easily cause the command processing loads at the various sites

to become unbalanced. In this case response time for a distributed transaction

became the response time of the processing site with the heaviest load. This

site was slowest to respond and the transaction could not be completed until

this site finished.

Also, we found that an uneven work distribution, once created, tended to

persist for a long period of time. Hence, poor response time also tended to per

sist. A similaryhenomenon has been observed in the locking subsystem of Sys
tem R BLAS79j.

We plan to measure to what extent this uneven workload phenomenon sur

faces in a benchmark of uniformly distributed work. If it is sizeable, then a

query processing algorithm should make rebalancing the workload its optimiza
tion criteria.

62



5. CONCURR1~NCY CONTROL

The experiments sketched above should shed light on query processing and

crash recovery algorithms. In addition, we expect to experiment with a variety
of concurrency control schemes. Unfortunately, there are twenty or more

schemes which have been proposed. Instead of attempting to implement all

twenty in Distributed INGRES (which was never designed with schemes other

than locking in mind), we are proceeding by a combination of theoretical

analysis and simulation.

We have proposed an abstract model of concurrency control algorithms
within which we can address the performance tradeoffs of various popular
schemes. The model facilitates comparisons of the CPU overhead, storage over

head, concurrency characteristics, and message overhead of alternative

schemes. A report on this analysis is nearing completion {CAREB2].
In order to validate the conclusions of the model and to offer further insight

we have also written a simulator of distributed concurrency control schemes.

Experimentation with this simulator will commence shortly. We intend to vali

date the simulator by comparing its results for the Distributed INGRES locking
scheme with actual ex:perimental data.

6. DISTRIBuTED ARC}IITECTLIRES

An important aspect of any distributed data base system is sizing con

siderations. I/O subsystems, CPUs and networks must be balanced to achieve

maximum throughtput. Moreover, the topology of the network may be a con

sideration. We are constructing a second simulation model which can evaluate

alternate distributed architectures. Using this model we hope to experiment
with environments which are not easily tested in our VAX/ETHERNET environ

ment.

7. IMPLEMENTATION PROBLEMS

In this section we mention a few of the difficulties that we have faced in the

implementation.

1) Distributed Debugging

Attempting to remove the bugs from distributed programs has proved to be

a frustrating and slow process. Programs which run on one machine pretending
to be several do not usually run on several machines. Debugging tools for distri

buted environments are very primitive.

2) Machine Time

Attempting to obtain stand-alone time on a. substantial collection of

machines in order to perform experiments has been difficult. The social prob
lem of obtaining cooperation from multiple independent system administrators

has proved taxing.

3) Limitations on Operating System Parameters

Distributed INGRES requires a large number of open flies and connections

to numerous cooperating processes. Most machines on which we try to run are

not configured with sufficient maximum numbers of these objects. Moreover,
most system administrators refuse to reconfigure their systems to rectify the

situation. As a result we must treat file descriptors and connections as a scarce

resource and allocate them to tasks carefully.

63



4) Code Complexity

Distributed INGRES is about 1.7 times a large as normal INGRES. It has
been substantially harder to design and code than any of us realized at the

outset.

5) Connection Topology

A distributed data base system has a “master” and “slaves” as noted above.

However, when data movement is required, a ‘receptor’ must be activated at

the receiving site. Additionally, when tuples change sites, they must be sent

from a slave to the master who sorts them and redistributes them. The slave

must be prepared to accept both commands and data from a master. Lastly, a

user can interrupt the master which must reset all slaves and kill all receptors.
Ensuring that each process is “listening” to the correct connection under all cir

cumstances has been difficult. We have had considerable difficulty managing a

complex connection topology.

6) Boredom

Distributed INGRES has been in development since 1979. Much of that time

has been spent in “wait state” awaiting operating system support for networking.
We have always been in the position of either “waiting a few months for the

promised arrival of general facilities” or “spending a few months on an ad-hoc

implementation of special facilities which would hopefully be thrown away”. We

have always chosen the former; and consequently, wait state has been frustrat

ing. Moreover, a project which shows little noticeable progress results in bore

dom for the implementation team.

REFERENCES

BERN79] Bernstein, P. and Chiu, D., “Using Semi-joins to Solve Rela

tional Queries”, Computer Corp. of America, Cambridge,
Mass., Jan. 1979.

BLAS79] Blasgen, M. et. al., “The Convoy Phenomena”, Operating Sys
tems Review, April, 1979.

CARE82] Carey, M., “An Abstract Model of Data Base Concurrency Con

trol Algorithms” (in preparation).

EPST78] Epstein, R., et. al., “Distributed Query Processing in a Rela

tional Data Base System,” Proc. 1978 ACM-SIGMOD Conference

on Management of Data, Austin, Texas, May, 1978.

CAREB2] Carey, M., “A Formal Model of Concurrency Control Systems”
(in preparation).

GARC79J Garcia-Molina, H., “Performance of Update Algorithms for

Replicated Data in a Distributed Data Base,” PhD Thesis, Stan

ford University, Computer Science Dept, June 1979.

GELE78] Gelenbe, E. and Sevcik, K., “Analysis of Update Synchroniza
tion for Multiple Copy Data Bases,” Proc. 3rd Berkeley
Workshop on Distributed Data Bases and Computer Networks,
San Francisco, Ca., February 1975.

-

GRAY78] Gray, J., “Notes on Data Base Operating Systems,” in Operat
ing Systems: An Advanced Course, Springer-Verlag, 1978,

pp393-48 1.

64



LIN81] Lin, W., “Performance Evaluation of Two Concurrency Control

Mechanisms in a Distributed Data Base System,” Proc. 1981

ACM-SIGMOD Conference on Management of Data, Ann Arbor,
Mich.. May 1981.

MCCO81J McCord, R, “Sizing and Data Distribution for a Distributed
Data Base Machine,” Proc. 1981 ACM-SICMOD Conference on

Management of Data, Ann Arbor, Mich., April 1981.

RTES79J Ries, D., “The Effects of Concurrency Control on Data Base

Management System Performance,” Electronics Research

Laboratory, Univ. of California, Memo ERL M79/20, April 1979..

{ROWE79] Rowe, L. and Birman, K., “Network Support for a Distributed

Data Base System”, Proceedings of the Fourth Berkeley
Workshop on Distributed Data Management and Computer
Networks. August, 1979, San Francisco, California.

SELI8O] Selinger, P. and Adiba, M., “Access Path Selection for a Distri

buted Relational DBMS,” Proc. International Conference on

Data Base management, Aberdeen, Scotland, July 1980.

SKEE82~ Skeen, 11, “A Quorum-Based Commit Protocol,” Proc. 6th

Berkeley Workshop on Distributed Data Bases and Computer
Networks, Pacific Grove, Ca.. Feb 1982.

STON76] Stonebraker, M. et. al., “The Design and implementation of

INGRES.” TODS 2, 3, September 1976.
~

65



acm DATABASE WEEK

SIGMODS3 Plus Special Sessions on

Databases for Business Applications and

Engineering Design

May 23-26, 1983, Hyatt Hotel, San Jose, California

Spoa~i~d by: ACM SIGMOD, ACM SIGBDP, IEEE TC on VLSI. IEEE TC on Design
Autoidoe, IEEE TC on D.tabass Engineering

In cooperatIon with: ACM SIGIR, Iaa*ftnt Nitlenal De Rechereb. en

Infos~adq.e et en Autosatlqu. (INRIA)

TOPICS OF INTEREST

ENGINEERING DATABASES: Relational database support for CAD/CAM, database for VLSI design, graphics
data management, database machines for engineering data, extensions of database systems for supporting

design.

BUSINESS AND OFFICE DATABASES: Non-formatted data (speech, text, image), databases for graphics,
office data requirements, databases for workstations and personal computers, databases for decision support,

experience with database systems, dictionary design, database system selection and administration, database

support for expert systems, centralized versus distributed databases.

SIGMOO83: Database techniques and theory applicable to all areas, distributed database systems, database

models, systems issues (concurrency. locking, transaction management), database machines. query Systems,

query optimization and compilation, database languages, data sharing for multiprocessors, and related topics.

— MAY 23-26 —

FOCUS ON

ENGINEERING

DATABASES
.

SIGMOD83

FOCUS ON

BUSINESS AND

OFFICE DATABASES

~~~V//,1 VENDOR EXHIBITS

General Chairperson
Robin Williams

IBM Research, K55/281

5600 Cottle Road

San Jose, CA 95193

SIGMOD U.S. Chairperson
David J. DeWitt

Computer Sciences Dept.

University of Wisconsin

1210 W. Dayton Street

Madison, WI 53706

SIGMOD European Chairperson

Georges Gardarin

INRIA

B.P. 105

Domaine de Voluceau-Rocquencourt
78 150 Le Chesnay, France

Engineering Databases Chairperson

Raymond Lone

IBM Research, K54/282

5600 CottIe Road

San Jose, CA 95193

Business and Office

Database Chairperson
Eric Carison

Convergent Technologies
3055 Patrick Henry Dr.

Santa Clara, Calif. 95050

Exhibits Chairperson
Paula Hawthorn

Lawrence Berkeley Laboratory
CSAM 50B/3215

Berkeley, CA 94720

66



Call for Papers and Participation

Second International Workshop on

Statistical Database Management

____

27-29 September 1983, Los Altos, California
Laarsnos B.ekalsy~

~ ~‘°i~’ Workshop Program
U.S. Dapstinsrl el Emear This united attendance workshop will bring together corT~tuter scientists,

~I (I) statisticians, system designers, and others to discuss cwrent work on statistical

database management. ~rking groups of five to fifteen participants wll meet daily to

discuss and draft position papers on individual topics. Plenary sessions will include
Sn ~opsratlom ~St

~ special presentations, discussion of selected topics. end working group reporis.
Individual research reports, issue outlines, papers, and biographical sketches will be

~StSllIiCal~ circulated prior to the workshop.

cististicsl Coirçuting Section

Topics

S . Uke its highly successful predecessor in Deceryter 1981, this workshop will address

research and irt~lementation issues including, but not linited to. the following areas

General Chairperson of statistical database management:
.JcITi L. htCwthy
anr.ncs Berkeley L~oratory Nets-data storag, and Access ApplicatIons

conceptual models data structuses scientific experiments

Program Chairperson schema defirition con~ression methods medical records

Roy IIttvt~o~~d data dictionaries secusity and privacy •cononuc time series

Statistics~ self- describing ties distributed databases data analysis

Program Coiraelttas User lntsrfacss ComparatIve AnalysIs Hardware

Radi B,dier languages performance evaluation database machines

Bell Telepflone LWtcratcr*.s software tools interface experiments storage technology
Francis Din interactive requirements benchmark standards ,ncroprocessors
ik*versity of Alberta

lvor Francis Participation by Invitation
Cornell Lhversuty
.leronw Fried,,i The Program Committee will invite 50 to 100 people to the workshop, based on written

Stanford LineX Accelerator Canter research reports, issue outlines, and papers. Contributions should be 000 to 5000

Janes Gentle words in English (preferably in IEEE format), with a separate page containing an

lnterret:oreJ Mlffieffat,c,J and
abstract and a biographical sketch of each author (no more than 100 words each).

Statistical Li~xiet Inc.

non Mains
Send five (5) final copies by 1 March 1983, to

Lhversity of t.brth ~ol,re Roy Haninond. Program Coairperson
David Hos~in Statistics Canada, EPSD
Harvard Lbrivorsity R. H. Coats Building-- 13th Floor
Gregory A. Mwks

Turuneys Pasture. Ottawa Canada K1A 016
Inter Lhiiversity Consortiusn for

had and Social Ramardu
(telephone 613 995- 3973)

Wes licholson The Program Committee will notify authors by I May 1983.
Psdflc Harttreest L~oratory

Gordon~ Location, Cost, and Accommodations
Statistics Canada

Diane c. p• Smith .

The workshop will be held at a 50 acre hilltop retreat center in Los *Jtos. California,

Coir~iuter Carp. of America about forty niles south of San Francisco. The cost will be approximately $250 per

Peter Stevens person, including registration plus three full days room and board. There will be a

&s-eau of Labor Statistics
special registration- only rate for full- time students.

Stsriey Su

(kiversityofFlonda Important Dates
Hany Wang
Lanvence Berkeley L~oratory Subnission Deadline 1 March 1963

Acceptance Notification I May 1963

CorenCa Coordi~tet Final Version t~ie I My 1983

Peggy Little Proceedings Mailed I Septerrter 1963
Law-ence Berkeley Laboratory Workshop 27-29 Septen~er 1983
&slding ~C

Berkeley. CA ~
Further intorn-ation

(415) 486- ~%

FIS: 4.5l~ For additional information, fill in and mail the attached response card, or contact the

Arpanet. tOlW~Ol~ &m
,

LBL Conference Coordinator listed at left.

Response card (please mail to address on reverse side)

Hams ~

OrganIzatIon

Address

CIty, St.t•, ZIp Cods

and Country pi~ check 11 of the followrng that apply:

—
I intend to subnit a research report

—
I intend to subnit a working group issue outline

—
I intend to subtrit,S paper

—
I wodd like 10 help organize a working group

—
Not sure I can participate, but please keep me informed.

Subject of pap.,,

repolt, on outlIne

67



G.n.ral Conference Chsirp.rson
Dr Carl C Dams

Balhstic Missile Defense Advanced

Technology Center

P0 BOa 1500

Huntsville. ~L 35807

Conference Chalrp.rwns
Mr LasztO A Belady
IBM

Old Orchard Rd

Armonk, NY 10504

Professoe Donald A Shurttetf

Department of Computer Science

University of Missoun-Columbia

Columbia, MO 65211

Program ChaIrpersons
Professor Raymond T Yeh

Department of Computer Science

University of Maryland
College Park, MC) 20742

Professor Peter A Ng
University of Missouri-Columbia

ER Conference Steering Committee Chairperson
Prolessor Peter P Chen

Graduate School of Management
UCLA

Los Angeles. CA 90024

Program Committee Members

Macn W Ailord USA

Carlo Bairni iiaiy
Joirn L Borg USA

laws A BabenLo Sweden

I C Crr.arrg USA

Al Dale USA

Andre FlOry France

(SF0 USA

L S lISa S.ngapore
Srepnev P lerbieton USA

Aiseno Mendeizon Canada

C0rrra,rrr B McLean USA

Ercn J Neunold Germany
Ross A Onerbees USA

Douglas I Ross USA

r-ivorana Sonar Japan

Arrre SOUniery Norway
Danrel le.cnroe USA

Jonn 4 luau USA

A Mm IrOa AiiSti,a

Charles dcc USA

JOnes A WeeiOreyei USA

Sponsors
ER Institute

UCLA Graduate School 01 Management
Univ 01 Maryland (Dept. of Computet Science)
Univ of Missouri-Columbia (Computer Science)

This conference wilt bring together researchers and practitioners to focus

attention upon tIre theory of entity relationships and its applications on soft

ware engineering.

Topics of Interest

Papers of high quality are solicited on both principles and pragmatics 01 ER

Approach in software engineering. Topics at major interest are. but are not

limited to.

Theory and Graphical Representations
• Definition of Entities. Relationships. Attributes. etc

• Modification and Extension 01 Entity.Relationship Models and Diagrams
• Representation of Schemes of Entity Relationships
• Semantics and Optimization Issues

• Entity-Relationship Concepts in Management Science Models

• Other Conceptual Models

Systems and Languages
• Computer Languages Based on Entities and Relationships
• Database Management Systems and Distributed Databases

• Database Schema Conversions arid Translations

• Database Design Tools

• Data Dictionaries

• Datab3se Dynamics

System Analysis and Specifications
• Software Design Tecrrniques and Tools

• Requirements Engineering (Definition. Formulation and Analysisl
• Data Abstraction

• Software Environment

• Software Metrics

• Software Productivity
• Quality Control and Assurance

• Software Maintenance Evoluation

• Software Pro1ect Management
• Human Factors

• Organization Des.gn
• Database Organization
• Case Studies

To Submit Your Papers

Ill Five copies tin Englisnl 01 tie double-spaced manuscript should be sub

mitted by February t5 1983 to the Chairperson
Professor Peter A Ng
Department of Computer Scence

University 01 MissourvCohurnbra

Columbia, MO 652tr

Tel (3t4) 882-4540 or 3842 Mrs Norma Kenyonl
121 Authors will be notified of acceptance or re1ection by May IS 983

131 Revised papers will be due by July t5 1983

Proceedings
The conference Pioceedmrigs n.h se SnbiiSireC by the ER Institute A~Ih0rs 01

all accepted papers will be expected to Smgn a COpyrmgrri release lorrrr The

hard cover proceedings 01 the 2nct Conlererice may be ordered liorrr tie ER

INSTITUTE P0 Boa 617. Saugus CA 91350 USA $25 prepaid $30

Otherwise)

ER
3RD INTERNATIONAL CALL FOR PAPERS

CONFERENCE ON

APPROACH ENTITY-RELATIONSHIP APPROACH
October 6-8, 1983 Anaheim, California

Major Theme: The Use of Entity-Relationship Concept
in Software Engineering

.

Sung V Bang
Camel Been

Paul K Biacnweil

Daud I Circe

Peier oeJong
Dennis W F.i.

Rosen A Fiayiey
A I Fuilado

Rossiand Joirnson

B C I Lee

WrIham E UcCailny
John M,icrreii

Jurg Nieveiger
C V Raeiamoorrriy
N,crruias ROuss000oios

Eogar H Smtriey
Terry A Snaeiei

Jui,a5 I lvii

Huberr Tard,eu

Jetirey 0 Unman

inerben WeDer

Alan B Saimbury

Korea

IsrAel

USA

USA

USA

-

USA

USA

Biasri

USA

China

USA

USA

Switzerland

USA

USA

USA

USA

USA

France

USA

Germany
USA

CALL FOfi eaptas

,srFnssiOuui JOURNaL Os LNi,ir ntL*i.ONSvipaPpilOuCn

S,mS,iss.e Oci90e. 902 On~.remr PiiDmUii0~,

in iu.e-ro mm iSeory vi Issues mu 0ei.irJsrin.o~

21 000cahons ii Oaiabases inrov.ar.uv Srsierrms AccosriN SOCa SCP~CS

cU90nSra..nna Decons S.nmiiiarne, cii

,vc~s. iuOOS

S.3m~.r ems-mr Send i~C Cones utm imm deobme sO.Ced n’annsCmmpr

1). Romana Jmn.sen

03

m.se.mnommeC*94550U55

520 m-w-~d.,

SiO mOsr.nomCun,

IS Csmiiuii S.bu ne-S.

xv. Sri Sammqns CO 91% USA

68






	40979_DataEngineering_Dec 1982_Vol 5_No4.pdf

