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Conference Report - SIGMOD ‘81

David Reiner

Arnie Rosenthal

Sperry Research Center

100 North Road

Sudbury, Mass. 01776

The 1981 ACM-SIGMOD International Conference on Management of Data was held at

the University of Michigan, Ann Arbor, Michigan, from April 29 to May 1, 1981.

Slightly over a third of the more than two hundred attendees were from universi

ties, about a sixth were from research laboratories, and the remaining half

represented various computer companies, software houses, and end users. Local

arrangements were competently handled, and the conference ran smoothly.

The twenty-five papers presented ranged from fair to excellent. Most of the

talks were good, although a few needed more rehearsal. In parallel with the

presentation of papers, a number of well-attended panel sessions of somewhat

variable quality were held. We describe below the conference highlights, focus

sing on the most important and controversial papers and discussions as we see

them.

Several papers represented a movement to relate theory and practice. A paper

presented by A. Motro and P. Buneman (University of Pennsylvania) on construct

ing ttsuperviewstt was rigorous in its mathematics and database theory, but was

motivated by the real-world problem of producing a usable unified view of two

databases while preserving their physical independence. From D. Maier and D.S.

Warren (SUNY - Stony Brook) came a paper on extending standard relational data

base theory to include more computational power. The authors began in theore

tical mode, and ended with a number of practical implementation considerations.
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H. Sato (University of Tsukuba, Japan) gave a meticulously-structured paper on

the derivability of data in a summary database, which seems very helpful in

dealing with large summary databases with multiple users (or where the type of

data collected may have changed with time).

Theoretical studies appeared to be moving in a more practical direction One com

mon attitude seemed to be that theory needs to be simplified and assessed in

terms of practical implementation. A major goal should then be to find assump

tions which simplify the theoretician’s task while still modelling most practi

cal situations. For example, E. Sciore (SUNY - Stony Brook) presented a paper on

real-world multivalued dependencies, in which he investigated how much complex

ity is actually needed in real-world situations. C.H. Papadimitriou (MIT) exam

ined the expressive power and limitations of various locking primitives and pro

posed locking modes, as measured by their ability to implement different concur

rency control principles.

P. Hawthorn (Lawrence Berkeley Laboratories) presented a well-received paper

relating the design of a database machine to its intended target application.

The paper showed that different database machine architectures are preferable

for different types of processing, and gave a practical guide to the performance

which may be expected from these architectures.

Several of the papers at the conference generated some controversy. W. Litwen

(INRIA) proposed a new hashing algorithm, called “trie hashing”, which relied on

representing index levels very compactly, searching indices in main memory, and

storing the records on disk, sorted by key. Although the method satisfied

Knuth’s definition of hashing, several attendees commented that the algorithm
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was better viewed as a technique for age splitting and maintenance of a com

pressed sparse index, and that secondary storage utilization might be a problem.

A paper by J.R. Jordan, J. Banerjee, and R. Batman (Sperry Univac) described an

improved version of predicate locks, called ttprecision lockstt. These were

claimed to yield maximum concurrency at low cost, and provoked spirited dis

cussion.

P. Richard (INRIA) gave a paper on evaluating the size of relational algebra

queries through a probabilistic model. The paper was quite thorough and may have

closed off that particular area from a theoretical viewpoint. Obtaining the data

necessary to apply the results could be quite difficult, however.

The design goals, architecture, and implementation of the evolving Cedar DBMS

were described in a paper by M.R. Brown, R.G.G. Cattell, and N. Suzuki (Xerox

Palo Alto). The system has several unusual aspects: It is accessible through

personal computers (mostly Altos) on a local network, and it provides a

low-level, data-independent interface which appears to be very useful for appli

cations programming.

The first panel session, on the database aspects of VLSI design, attracted a

large and interested crowd. Among the proposed systems was one at IBM Research,

San Jose, which will integrate a DBMS, a system description system and a graph

ics system to help with VLSI design. The panel on commercial database machines

covered the ICL Context Addressable File Store, the ADABAS Data Base Machine,

the DAC Mega/Net, and Brittori-Lee’s Intelligent Database Machine. Several of the

speakers were marketing-oriented and sometimes found it difficult to respond to

questions about actual machine implementations.
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A third panel session was on achieving high performance DBMS’s in the 1980’s.

the theme of a few talks at this session seemed to be: “The way to achieve high

performance is to buy our system,” followed by a detailing of the system’s high

lights. Speakers who gave more general observations on current directions in

commercial DBMS’s were more appealing to the audience.

One good point was raised in discussion at this session. Users are becoming

increasingly involved in the design of database applications, sometimes because

MIS departments are not responsive to their needs. Different users have differ

ent perceptions of data, standards of database information content, concerns

about data independence, and levels of attention to integrity constraints. When

these users design or write applications from their varied points of view, it

may be difficult to maintain the “conceptual unity” of the database (the unify

ing perspective which the database should bring to data access).

Additional panel sessions covered database administration, logical database

design techniques, software, and services, and CAD/CAM data management needs.

Copies of the Conference Proceedings may be ordered prepaid from ACM Order

Department, P.O. Box 64145, Baltimore, MD 21264. The price is $15 for ACM mem

bers and $20 for others, and the ACM order number is 472810. Next year’s confer

ence will be held in June, in Orlando, Florida.
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A Project on Design Systems

Raymond Lone

IBM Research

5600 Cottle Road

San Jose, Calif. 95193

This short note reports on work being done at the IBM Research Laboratory, in

San Jose, CA., on the problem of managing the design data for complex VLSI cir

cuits.

For many years design automation tools have been used for designing electronic

circuits, but today the new technology known as Very Large Scale Integration

(VLSI) poses new challenges. The electronic systems being designed comprise up

to several hundred thousand gates. The turnaround time for building a prototype

is extremely long; therefore the design must be extensively tested beEore the

first chip is built. The possibility of improving the productivity of designing

such chips hinges on our ability to provide adequate tools. Much attention is

given to simulators, checkers, and compilers for high-level design languages,

automatic placement and wiring programs, etc. Many of these tools have been used

in the past, but are now being stressed to their limits because of the ever grow

ing complexity of the components being designed. There are many phases in the

design of VLSI circuits and for each phase large amounts of information must be

stored: dataf low and algorithms at the architectural level, logic design, phys

ical design, image data for masks, testing data, textual descriptions, etc. The

structure of the information is generally complex, with many data elements of

various types, and relationships between them. Even data created in different

phases are inter-related: for example, there are relationships between the logic

design and the corresponding physical design. In all phases of the design,
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graphic terminals are used and it is well known that this mode of operations

imposes additional requirements on the management of data. This quick analysis

of the application requirements shows the need for a flexible repository of

data.

It is therefore not surprising that the design community’s interest in database

systems has grown rapidly. In the past, users have encountered difficulties in

trying to use commercially available systems for storing engineering data

because these systems were generally too rigid. Therefore engineers continued to

use files with the inherent disadvantages of poor control, high redundancy, and

poor or nonexistent data independence. In fact, data are very often converted

from one file format to another to fit the need of individual applications. It

is our conjecture that the emergence of relational systems should improve the

situation drastically.

The relational model and systems based on it, like System R (1), INGRES (2), or

SQL/DS (3), are much more flexible and easier to use than previously available

systems. Only tables are specified and their specifications do not involve any

implementation issues. New tables can be defined dynamically; new columns can be

added easily to existing relations. There are no pointers linking together

different rows in the same or different relations. Instead, all relationships

between tuples are based on some mathematical relation (,<,>, etc.) between

data elements, and relational languages are used to exploit them. These features

are particularly useful in applications as complex as VLSI design where it is

impossible to know in advance all data types and relationships that are going to

be used or how they are going to be used. It is precisely the purpose of our

project to demonstrate how a relational system can be used to manage the VLSI

6



design data. (It should be noted that VLSI design is only an example and that our

results should also benefit other engineering areas.) Our task is facilitated by

some previous work done here at IBM San Jose Research, described in (4) and (5).

TELL, for example, uses a relational system to implement the notion of hierar

chical decomposition of a design. Designs are specified in terms of elements.

Each of these elements is, in turn, designed in terms of simpler elements, and

so on until one reaches the level of atomic elements. The designer, or a pro

gram, can study the data at a high level and require the details only when

needed.

Although we are convinced that a relational system. is most appropriate for our

application, we also realize that systems like System R have been developed

mainly for supporting data processing transactions; some enhancements could and

should be made to support more efficiently a broader spectrum of applications.

These enhancements are discussed in (6) and (7), together with the reasons for

introducing them. Let us briefly mention the most important ones.

1. In engineering applications the user deals with objects that are more complex

than single records or sets of homogeneous records. Quite frequently, an object

is a hierarchy of tuples with a root tuple and one or several levels of dependent

tuples that are part of the object. Even if such a structure is easily expressed

relationally, by matching values, it cannot be manipulated as a single object.

For example, in order to delete a single object the user would issue one delete

for each tuple in the hierarchy. We are investigating the possibility of making

such hierarchical structures known to the system so that a single delete oper

ation could automatically cascade through the whole hierarchy. The same would be

true for moving, copying and locking an object, or simply bringing an object
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into main memory.

2. The creation and maintenance of these complex objects are generally handled

interactively (through what we call conversational transactions) and may extend

over a long time, maybe days or weeks. This is different from what happens in

data processing applications where transactions only touch a few records and

generally complete in less than a second. When transactions are so short, locks

can be kept in volatile storage, waits can occur, transactions can be backed out

in case of a deadlock. None of these techniques apply to conversational trans

actions and one way of handling the problem is to introduce the notion of a pri

vate database for each designer. Data are checked out of the public database,

remain in the private database until a new consistent state of the design is

reached, and then are sent back to the public database. A particular implementa

tion could use a host processor to control the central (and shared) database and

a series of satellites connected to it; each satellite would support a single

user and his local, private database and terminals.

3. The objects often contain non-formatted data elements like text, strings, bit

maps for images, etc. Such data elements may be too large to fit in main storage,

but languages like SQL could be extended to support piecewise manipulation.

We believe that enhancements along these lines could substantially increase the

value of relational systems for supporting engineering and design applications,

in particular those related to VLSI design.
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Transaction Flow in System-D

Kapali P. Eswaran

IBM Research

5600 Cottle Road

San Jose, Calif. 95193

Introduction

System-D is a distributed transaction processing system. The system consists of

a set of computers interconnected by a relatively high speed local eommuni~

cations network. System-D emphasizes data integrity, availability, incremental

growth and single-system image. In the System-D architecture, processes either

in the same processor or in different processors exchange information solely by

explicit messages. Sharing of variables between different processes are not

permitted.

System Architecture

A resource, whether a process or a device, is a logical resource. Each process

communicates with any other logical resource using datagram messages. A process

may have one or more logical resource numbers associated with it and a logical

resource number may be associated with one or more processes. A logical resource

number is mapped to a mail box address. The address of a mail box is a

(processor-id, box-id) pair. 1~1essages can be sent by a process to any logical

resource number it knows. A process may receive a message from any (local) mail

box whose address it knows. There are no explicit acknowledgments provided by

the system. The send and receive commands are synchronous with a time limit. For

example, to receive a message, a process provides a mail box address and a time

limit. The process gets control when there is a message in the mail box or when

the time limit elapses.
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In an interactive application processing environment of System-D, there are

three distinct modules: the application, the data manager (a database system or

a file system with an access path), and the storage manager (Input/Output super

visor). The application module, A, handles terminal interfaces and provides pro

grammthg interface. The data manager module, D, understands and operates on

records, relations, and access paths. The storage manager module, S, deals with

concurrency (locking), commit and recovery in addition to fetching and storing

pages. An application operates on a set of records obtained from a data manager

module. An application process specifies the set of records that it is inter

ested in by key association or by positional values. The data manager module

computes the page numbers in which the desired records reside. The page numbers

span all the disks attached to all the processors in the system. The data manag

er module issues a call to the local or remote storage manager module to fetch

(or put) pages. All the changes made by an application are kept local ly in the

data manager module. The changes are sent to the storage manager by the D module

only when the application commits.

We make a distinction between a module and an agent. A module is a function that

exists in a node and is associated with a mail box. One or more processes in that

node may perform that function and share the mail box. Such processes are called

agents. For example, node Ni and N2 may have D modules; i.e. Ni and N2 each has

at least one process that can perform the data manager function. If there are 3

processes (schedulabie tasks) in Ni that share the D module mail box and perform

the data manager function, then there are three D agents in Ni.

Distributed Database System

A limited database system capability is provided in the present phase of the
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prototype. There are two kinds of datasets: sequential datasets and database

datasets. Sequential datasets are lockable by dataset names and are mainly used

by the editor applications. Database datasets provide random access to sets of

records by hashing or B-tree indexing on key values. The database itself is par

titioned; i.e., a piece of information is resident on one and only one disk

(however, all information is mirrored on two disks for availability reasons).

Data Integrity

Multiple transactions run concurrently in System-D which provides full data

integrity. The effect of running mu1~tiple concurrent transactions is equivalent

to running transactions according to some serial schedule. The system also guar

antees that the serial schedule is the same in all the processors. Changes made

by committed transactions are never lost, and no trace of aborted transactions

is left on the database. The storage manager has the responsibility for data

integrity. Shared and exclusive page locks are provided and enforced by the

storage manager. A lock request is accompanied by a time limit. If the lock can

not be acquired within the time limit, the request is aborted. Thus, there is no

explicit global deadlock detection mechanism.

System Design

Whenever a transaction gets started, say in node N, the system binds the trans

action to a D module mail box. During the binding process, the system checks to

see if the load on the local D module is ‘light’ (as indicated by the number of

messages in the mail box). If so, the transaction is bound to the local D module.

If not, the transaction is bound to the D module in node i+l where i was the last

node with D module to which a transaction in N was bound. This algorithm
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attempts to bind transactions to local data managers as much as possible.and

when not possible, heuristically attempts to balance the load on the system net

work without incurring any message overhead. Once the A-D binding is done, the

transaction communicates to that mail box for any database functions. Note that

the mail box may be shared by one or more D agents and that the transaction is

not bound to a single D agent. Each request of the transaction may be done by

different D agents sharing the same mail box. However a request is completely

processed by a single D agent.

As mentioned earlier, the page numbers span the entire network of computers. A D

agent has the knowledge to compute the page number to obtain the required piece

of information. The page number indicates the S module mail box to which the

page number request should be sent. A page is obtained either in a shared or

exclusive mode.

When a transaction makes a database request for the first time, it informs the D

module the maximum amount of time the transaction expects to execute before

commiting. When a D agent makes the first page-request for this transaction from

a S module, it passes on this time value to that S module. The S module which

services the first page-request is called the master for this transaction. The

master initiates aborting of this transaction if the transaction does not commit

within the specified time limit with the presumption that there is communication

failure or the node in which the transaction and/or the D module has failed. We

denote the master S module for a transaction T as MS(T). Whenever the D module

for T, D(T), makes subsequent page-requests for T, it informs the various S mod

ules the identification of MS(T). The other S modules are called the slaves with

respect to MS(T). The main difference between the master and slave S modules is
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that only the master can initiate the termination of a transaction.

Associated with each transaction T, there is a time limit T(w) which is the max

imum amount of time that T is willing to wait for a lock. If a lock cannot be

granted within the time T(w), the termination of T is initiated. The S module

for T which times-out is called the termination initiator. The initiator commu

nicates to D(T) that there has be&i a time-out and that the transaction is to

terminated (the presumption is that there has been a deadlock). D(T) sends the

list of slaves to MS(T) and asks that T be aborted. MS(T) asks all the slaves to.

abort T which involves releasing all the locks held by T and erasing existence T

from the memory (from the Transaction Control Blocks). ?IS(T) also aborts the

transaction. MS(T) then communicates to D(T) that the transaction has been

aborted. D(T) does the necessary clean up and informs the transaction that it

has probably been involved in a deadlock and that it has been aborted. The

transaction may start again either immediately or after a time delay.

When a transaction wants to end, the end-transaction command is sent to D(T).

D(T) initiates the commit procedure. At this time, we recall that all the

changes made by T are kept locally in D(T). The change file containing all the

modifications (to pages in the master and slave nodes) is sent by D(T) to MS(T).

MS(T) is the commit-coordinator for this transaction. MS(T) records the informa

tion in a stable storage. When this is done, MS(T) notifies D(T) that the commit

is complete as far as D(T) is concerned. D(T) then notifies the transaction.

1’IS(T) then sends commit message to the slaves and begins making its own database

changes. Each of the other slaves records its updates stably and in such a way

that it knows the order in which transactions committed at that site. Each

slave, then, acknowledges entry into the committed state to the MS(T). After
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this each slave makes the database changes (applies~ the changes in the change

file to the database). When NS(T) has received all of the acknowledgments, and

has made all its own updates, it discards its log (the change file), returns the

transaction to idle state (releases all the locks), and sends a message to the

slave sites that this has occurred. Upon receipt of such a “finish” message, and

when done updating its own database, a site can dispose of its local traiis

action log and enter the idle state. Note however, that as in other log manage

ment schemes, the log for a transaction cannot be disposed of until all previous

transactions have been returned to the idle state.

Conclusion

System-D has implemented the notion of ‘change files’. The granularity of lock

ing in Systetn-D is a page. Time-outs are used to “detect” live locks and dead

locks. It is claimed that the scheme outlined wi.ll work in all possible failure

modes (failure of the various sites, communication links failure, loss of mes

sages etc.). A new commit procedure has been sketched. Readers are encouraged to

compare this with standard commit procedures. They are also encouraged to verify

that the commit scheme works and to propose various recovery schemes. The recov

ery scheme used in System-D and a detailed account of the commit procedure with

a proof will be the subject of another paper. Discussions on change files,

granularity of locking, time-out schemes, and commit procedures are welcome.

This note describes the work being done by the following members of the project:

Sten Andler, Ignatius Ding, Kapali Eswaran, Carl Hauser, Won Kim, Jim Nehi and

Tom Neuman. This note is being expanded and is being submitted as a journal

paper authored jointly by the above individuals.
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Special-Purpose Processors for Text Retrieval

Roger Haskin

IBII Research

5600 Cottle Road

San Jose, Calif. 95193

Introduction

With a rapidly increasing amount of computer-readable text existing as a side

effect of electronic document preparation, there is more interest in methods

that allow text to be searched and retrieved by content. Retrieval by content is

useful in both small-system environments such as the automated office (i.e.

‘electronic filing cabinets’) and in large ones (i.e. classical online search

services).

Conventional online search systems consist of disk storage units holding

the text and any necessary indices, and a mainframe processor for searching. The

cost of searching this text is proportional to the cost per instruction of the

search processor. The cost per bit of disk storage has been dropping much faster

than the cost per instruction of mainframe processors- a trend that promises to

continue. Thus, the cost of searching text relative to that of storing it online

is increasing.

This cost/performance problem is already a factor limiting the growth of

text search systems. Typical commercially available systems are at the point

where neither cost nor response time can be allowed to rise significantly.

Representative numbers for one system are an average search time of several min

utes during prime shift hours, and an average cost per simple query of $25 (this

can go as high as $100 for more complex queries). Tak~ing advantage of the dra

matic decreases in the expense of online storage, both to increase the maximum
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feasible size of the database in large-scale systems, and to lower the entry

price for smaller-scale users, is going to require a radically new architecture

for search processors, one in which the cost of searching the text rises at most

linearly with the cost of storing it.

1. Search Strategies

Because of the relative expense of searching by comparing the text against a

pattern, most conventional systems use indexing or file inversion to accomplish

the same end. A dictionary of possible query terms is maintained, with each

term’s dictionary entry containing pointers to its occurrences in the database.

The granularity of resolution of these pointers varies from system to system.

They can point to comparitively large sections of the database (such as an

entire document), to a small area (such as an individual occurrence of the

term), or to some physical entity (such as a disk track).

Some systems rely entirely on indexing, allowing no direct comparison of

the text data against query patterns. This requires that the proximity oper

ations supported by the query language (i.e. finding words occurring in the same

sentence) correspond to the granularity of the index. If the granularity is

coarse (such as the document), precision and recall are adversely affected (i.e.

queries don’t retrieve the desired documents). If it is fine (such as the word),

it becomes more expensive to store and consult the index. A word-level index can

range in size from 50% to 300% of the size of the text itself BiNeTr781. Main

taining it is expensive; adding a new document requires on the order of one mod

ification to the index for each unique term in the document. Usually, indexing

is only appropriate in situations where updates are either infrequent or where

they can be saved and processed in a batch during off-shift hours.

An alternative to indexing is to directly scan the text, comparing it

17



against a pattern generated from one or more users’ queries. This, of course,

can result in poor response time for large databases, depending upon the imple

mentation (whether all disk drives are searched sequentially or in parallel;

whether it is possible to search more than one track on a cylinder simultaneous

ly, etc.). The amount of parallelism is a central architectural concern in a

search-intensive system, and will be dealt with in more detail later.

It is possible to combine indexing and full searching in a strategy called

‘partial inversion’. Here, a relatively coarse index is maintained (i.e. resolv

ing to the cylinder, track, or document). Although the number of terms in the

index remains constant as the granularity becomes more coarse, the number of

pointers for each term decreases, and the index size can be reduced to around

20% to 30% of the size of the text. During query processing, the index is first

consulted to restrict the search to regions of the text potentially satisfying

the query. Next, these candidate regions are full searched to determine whether

they actually satisfy the query. The advantage of partial inversion over full

inversion is that it allows choosing the indexing level to optimize storage

overhead and processing efficiency rather than to achieve a desired level of

precision and recall. By varying the granularity of the index, the workload can

be balanced between the index processing and text searching subsystems based

upon their relative speeds.

2. Special-Purpose Hardware for Text Searching

An interesting question is whether, by using partial inversion, it is possible

to confine full-text searching to a small enough area to make it reasonable to

use a general purpose computer to perform the search.. However, even assuming

that such a processor could keep up with typical disk transfer rates (around one

microsecond per character), and assuming that indexing will narrow the search to
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a very optimistic 0.1% of the database, a query on a 50-billion character data

base (comparable to the size of on-line legal retrieval systems) will completely

saturate the processor for almost a minute. Devoting this time to each query

would limit the number of simultaneous users to an unrealistically low number,

or (stated differently) would raise the cost per query unacceptably.

To find ways of getting acceptable response time for a reasonable number of

users at tolerable cost, research has been and is being done into the design of

special hardware to augment text search systems. Machines to perform both index

processing and full-text searching have been proposed and analyzed.

Index-Processing Hardware

Two architectures that have been proposed for index processors are the Batcher

merge network Stell7Sl) and the tree merger Hollaar76]). In both of these,

queries to be processed are converted into trees of Boolean operations (i.e.

AND, inclusive OR) between lists of postings (pointers to term occurrences).

Stelihorn’s merger processes the search tree one node at a time, using a Batcher

network to perform the node operation on the two input lists, and producing

intermediate results in memory. Hollaar’s tree merger assigns one sequential

processor to each node of the search tree. The output of a node’s processor is

connected directly to an input of the processor of the next higher level node.

The fact that lists are merged sequentially rather than in parallel (as in the

Batcher network) is balanced by the fact that all nodes are merged in parallel

(rather than one at a time) and no intermediate results (that must be stored in

and later read from buffers) are generated. Extensive modelling and simulation

of both have been done Hurl76J, Miln76], Huang8o]). There is still disagree

ment over which represents the best solution, which is difficult to resolve

since there is no working prototype of either system.
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Full-Text Search Hardware

Index processing involved two basic steps: consulting a dictionary to find

postings lists for each term involved in a query, and then merging these lists

as specified by the search tree to obtain the result. Full-text searching can be

broken up similarly: scanning the raw text data for occurrences of terms

involved in the query (term matching), and keeping track of these occurrences to

determine when an instance of the search expression has been detected (query

resolution).

While the term matcher must run essentially at disk speeds, the query

resolver need only process items as fast as the term matcher finds them. Howev

er, the processing required in response to each term hit can be rather complex,

and can in fact depend upon details of the query language. For these reasons,

proposed implementations of query resolvers usually use conventional processors

(such as microcomputers) rather than custom hardware. Query resolution thus

becomes a programming problem rather than an architecture problem, and therefore

has generated substantially less interest than term matching. Interested read

ers are referred to Chapters 1 and 4 of Hask8ObJ for a brief survey of query

resolution.

Comparatively more attention has been paid to term matching, and several

architectures have been suggested in the literature. Searchexs using arrays of

comparators to match terms have been proposed by Stellhorn Stell74b], Foster

and Kung FoKu8O], and Nules and Warter NuWar79]. These matchers accept data at

typical disk rates, requiring one matcher for each track being searched at any

one time. The first two of these matchers share similar drawbacks. They cannot

handle embedded variable-length don’t cares (EVLDC’s - patterns with a specified

prefix and suffix and an unspecified middle). More importantly, they are

extremely wasteful of hardware. Stelihorn’s matcher, for example, uses a fixed
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NxM array of cells, where N is the maximum term length allowed and H is the maxi

mum number of terms allowed. The length of most search terms is under eight

characters, but N must be chosen to allow reasonably long terms (at least 16

characters). This results in half the cells being unused. A similar argument

applies to the choice of the maximum number of terms. Also, the comparator cells

are typically limited in the comparisons they can perform, usually allowing only

exact match or don’t care. It is often required to support other functions, such

as matching any punctuation or matching any alphanumeric. However, the addi

tional logic necessary to implement these functions must be duplicated in each

of the NxH comparators in the array.

tiules and Warter’s matcher is a very clever design - it detects many types

df keyboarding errors in the data (insertions, deletions, and transpositions),

and matches terms in spite of them. This matcher was designed for searching a

small, noninverted database. It is debatable how useful the error-detection fea

ture is when searching is used in conjunction with indexing; presumably the

index processor will only point the text searcher to areas known to contain

correct spellings. Also, this searcher is designed to handle a small number of

terms (16) of limited length (16 characters). It is not clear that it could be

economically scaled up to handle the number of terms required in a large system.

#CAB-#

Figure 1

ST~ATE # A B C D

I 211 I I

2 21131

3 24111

4 2 I 5 I I 21

5 2/I I I I I
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Copeland Cop78] and Mukhopahhyay Muk78] proposed matchers based upon

networks of match cells. Mukhopadhyay’s design included both comparator cells

and cells for functions such as character counting and Boolean operations.

Instead of using an array of cells, they are connected as required to detect the

pattern. Presumably, the connections must be reconfigured to detect different

patterns. This was not discussed in Muk78J. Reconfigurable networks have many

gates and are difficult to build in LSI, so a large matcher with hundreds of

cells might be quite expensive.

Finite State Automaton

A more promising architecture for term matching uses the concept of a

finite-state automaton (FSA). Figure 1 shows the state diagram and associated

table necessary to match the word ‘~CAB#’, where ‘#‘ indicates a word break.

When a t~fi~ is seen, the FSA makes a transition to state 2. If the next input

character is ‘C’, the FSA goes to state 3; on any other input the FSA goes either

to state 2 (on a word break) or state 1 (for anything else). When the trailing

‘~‘ is seen, a match is signalled and the FSA returns to state 2. The state

behavior can also be specified by the table shown in Figure 1. Each row repres

ents a state, and the entry in each column corresponds to the next state if the

input character shown at the top of the column is received. The FSA is a signif

icant improvement over cellular matchers. It has less logic wasted due to term

length variations, and since separate comparison logic is not required for each

character in each term, it can be sophisticated as to the types of matching it

will perform.

OSI77a] describes a searcher based upon an FSA model. It is designed to

search an entire disk sequentially; all queries arriving during one pass over

the disk are batched and processed concurrently during the next pass. All terms
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to be searched for in one batch are collected, and a state table is built.

Batches of terms can become quite large, and storing the state table in an array

as shown in Figure 1 results in its occupying a prohibitive amount of memory.

However, since most transitions out of a state correspond to a mismatch (the ‘1’

entries in Figure 1), it is possible to condense the state table substantially.

The OSI design does this by breaking the state set into two classes. States hav

ing only one match transition leading out of them are called ‘sequential’

states, and those having more than one (i.e. when there is more than one valid

alternative successor character) are called ‘index’ states. Sequential states

have only one successor, which is stored in the following location in memory. No

successor address is required, so a sequential state can be stored in fewer bits

than an index state. Since typically only 10% of the states are index states,

using this table encoding results in a substantial memory savings.

Basically, sequential state words contains the code of the next match char

acter. If the next input character compares successfully, the next sequential

state is entered. On a mismatch, a default transition to an idle state is taken.

Index states, for which more than one successful match alternative are possible,

require more sophisticated processing. Rather than indexing into a vector of

next state addresses, one for each possible input character (wasteful of memory)

or comparing against a list of alternative successful match characters (requir

ing multiple comparators or iteratively cycling one comparator), this design has

a bit vector stored in each index state word indicating which input characters

are being looked for in that state. If. the input character code is k, the kth bit

of the vector is tested. Bit k being set indicates a match. To find the address

of the successor state, bits 0 thru k-l are examined, and a count is made of how

many are set. This count is added to a base address stored in the state word. The

result is the address of the next state. If the input character’s bit was clear,
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the default transition to an idle state is taken.

Large input alphabets imply long bit vectors; storing text in 8-bit EBCDIC

requires a 256 bit vector in each index state. In addition to the amount of memo

ry required, engineering a leading-ones counter for long vectors is difficult; a

fast counter requires many gates. To overcome this, OSI77a] proposed a modified

FSA that processes each 8-bit character as two 4-bit nibbles. Nibble processing

requires making two state transitions per input character, increasing the number

of memory accesses. However, the bit vector size is reduced to 16 bits, allowing

the leading-ones counter to be speeded up, or even built as a RON.

Certain pathological types of patterns greatly increase the complexity of

the FSA state table. This can be illustrated most simply with an example. Figure

2 shows a state diagram to match the string ‘ANAS’. Suppose the input string is

‘BANANAS’
.
When the first ‘ANA’ has been matched, the FSA will be in state 3.

When the following ‘N’ is seen, the FSA must ‘backtrack’ via the transition to

state two to enable successful recognition of the succeeding ‘AS’ rather than

taking the normal mismatch transition to state 0. Similarly, if a mismatch

occurs when the input is ‘A’, the FSA must go to state 1 rather than 0, since the

‘A’ could be the start of ‘ANAS’. The point of this example is that some terms

can have a prefix that is embedded within another (or, in this case, the same)

term. Considerable processing is necessary to detect these and include the nec

essary backtrack transitions in the table.

BANANAS

Figure 2
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The OSI machine handles backtracking to the idle state by including special

logic to automatically execute transitions to one state if the input is both a

mismatch and a word separator, and another state on any other mismatch. If all

terms start on word boundaries, most have only one match transition and can be

held in sequential states. However, if even one term is not restricted to start

ing on a word boundary, all other states in the table must have backtrack tran

sitions leading to that term, and thus must be index states. To circumvent this

problem, the OSI machine assigns all such terms to a second, identical FSA. All

states in the second FSA are index states, but most of the states in the main FSA

will be sequential states. A similar problem exists with continuous word phrases

(CWP’s) - terms containing more than one word in sequence. Yet a third FSA han—

dies these.

A few other details regarding the implementation bear mentioning. The state

table memory chosen for the OSI matcher had an access time chosen to match the

‘average sustained worst-case’ state processing speed. The design called for

relatively fast lOOns. bipolar memory. The state memory word is also quite wide

(85 bits for the 6-bit character version and 39 bits for the 4-bit nibble ver

sion). Since the FSA must be replicated at least once per disk drive, it would be

desirable to build it as a VLSI circuit. However, the wide memory word and the

required fast cycle time complicate a VLSI implementation using present technol

ogy.

Nondeterministic Finite State Automaton

An alternative to the FSA-based machine is the nondeterministic FSA, or NFSA,

which is a finite state machine that can be in more than one state at a given

time. Such a machine is described in Hask8Oa], and in more detail in Hask8Ob].

In the standard FSA approach, it was necessary to include many extra states and
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